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Planning with Iperfect Information: Interceptor Assignment

l)V

Dalliel B. IMcAllister

Sulllitte(d to tle Sloan School of Maiiagelllent
on May 18. 2006. i )partial fulfillinent of the

re(lqtireielitts for te (legree of
Iaster of S(cienllce ill Op)erationls Research

Abstract
\e ('consider' the [)roblel of assigning a sarce lulnnl)er of intercei)tors to a wave of il(coining
(atlllosl)hlli( re-enlltry vehicles (RV). Ill this single wave. there is timle to assigin itercel)tors
t') a wave of i('colling RVs, gain information o the iltercel)t status. a(l then if ne(essarv.
assign illter'eI)tors once more. However. te status illforllltionl of these RVs mlay lnot e
reliaile. This I)lo)leil l)e('olnes challenging when collsidering the small ivelltory of illter-
cel)tors. implerfect iforimation froIl sensors, ald the p)ossiility of flture waves of RVs.

Thllis work formulllllates the I)robllel as a Ipartially oserval)le \Ilarkov d(ecision Iprocess
(PO()IIDP) ill order to accouit for the ulll(ertailt ill ilfforatioli. We use a POMIDP solu-
tioll algorithllll to finlld a otillmal Ipolicy for assigiling interceItors to RVs ill a silgle wave.
Fromll there. three ases are collll)ared ill a simulationl of a single wave. These cases are
pIcrfect illforlllation)ll frolll sellsors: imlI)erfe('t iformaltioll frolll senllsors. but actillg as it were
pcrfe(t: ad ac(()untinlg for ilI)erfect iforniatioll froli senisors using the P()OIDP forlm-
latioll. Usiilg a variety of I)aralueter variation tests. we examine the I)erformllan(e of the
PF'OMDP formulationr by comIii)arinlg the Iprobal)ility of al incolillg RV' avoililng itercel)t
al(d the itercel)tor iventory remaining. We vary the reliability of thle senlsors. as well as
tlle ntilib)er of itercel)tors iii ivelitory. amd the iimber of iterceito Rs i in. an te le f i s i the wave. The
P'()5IDP fornlllationl consistently I)rovides a )oli(cy that collserves miore illterel)tors aicd I)ap-
proacllhes the I)ro)ablility of interceP)t of tle other cases. However. situatiolls dlo exist where
tile PONIDP formulation I)ro(hlces a I)olicy that Iperforllls less effectively thaln a strategy
as-llillng l)erfect informalltion.
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Thesis Advisor: Leslie P. Kaelbling
Title: Professor. Comill)uter Sien e alld Ellgineering
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Chapter 1

Introduction

1.1 Problem Description

For deca(les. tile United States has been vulnerable to ballistic missile attacks that could

devastate the nation with nuclear, biological. or chemical weapons. In today's world. these

a.ttacks could co:rne from not only a. traditional foe such a.s North Korea or Iran. but also

all accilental or unauthorized launch or, more likely, a stateless terrorist organization [15].

.Malnv of these enelmies view weapons of mass destruction as an asymmetric means to counter

tlhe conventional military might of the United States.

In recent. years, ballistic missile technology has spread to more and more countries. Na-

tions all over the world are dleveloping missiles capable of reaching the United States [1]. On

August 31. 1998.. North Korea successfully launched the three-stage Ta.epo Dong 1 missile

over ,Japan that a-llnlost reached Hawaii [5]. While it is not known whether this was a failed

spa.ce launch or an intercontinental ballistic nlissile test, this initially undetected three-stage

missile proved that North Korea had the capability to hit any point on earth with a several-

hundred pound vwarhlead [5]. Presently it is known that North Korea's Ta.epo Dong 2 missile

could reach Alaska and Hawaii with a nuclear payload in a. two-stage rocket configuration.

If a third stage were added. this missile would likely be able to reach all of North America.

[1.5]. In addition to North Korea.. China and Iran are also reported to be developing and
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testing offensive ballistic missiles. These growing threats have led the U.S. to upgrade its

current deterrenc(e posture with a. ballistic lnissile defense system. The goal of this system

is to render missile attacks on tle U.S. ineffective.

In 2004 the United States stoodl UI) its first defense against lonlg-range missile attacks [15].

For the first time. the U.S. possesses the capability to intercel)t and destroy an in(oming

ballistic lnissile before it strikes its target [1]. While President Reagan envisioned a robust

defense system capable of rendllering mlissile attacks clomlpletely futile, the initial system is

simpler and smaller. This Ground-based Mlidcourse Defense (G.MD) system includes 10 silo-

based interceptor missiles in celltral Alaska and southern California, which will be connected

b)y an extensive command ad control network to a mnix of space- and land-based sensors [1].

Fort Greely, Alaska.. currently has eight operational ground-based interceptor missiles and

Vandenberg Air Force Base. California, has control of two more interceI)tors [3].

This ballistic missile defense system is designed to be te last line of defense if diplomacy

and threats of retaliation fail. Employment. of the grollncd-based interceptor missile is cued on

satellite and radar data and then it uses its own sensors to identify targets launched from any

site [5]. The interceptor correlates its observations with the information from the satellites

a-id radar, and discriminates between decoys and actual warheads [5]. Interceptor missiles

include a. three-stage booster and are tipped with an Exoatmospheric Kill Vehicle (EKV)

[15]. After the interceptor is approximately 140 miles in space. the kill vehicle detaches from

the mIissile, locates a inconming missile, and destroys it with its sheer kinetic force.

As important as the interceptor missiles themselves is the sensor network used to detect

an incoming attack. This network includes the Air Force's Defense Support Program (DSP)

infrared early warning satellites. an upgraded early warning radar at Beale Air Force Base,

California., a.n upgraded Cobra Dane surveillance radar on Sheinya Island at the western

end of the Aleutian islands. and three forward-deployed Navy Aegis destroyers equipped

with Spy-1 radars [1]. These Aegis ships provide early target-track data [1]. All of these

sensors and missile launch sites are onnected to the heart of the system,. the Command and

Control, Battle Management and Comnmnications network. based a.t Schriever Air Force

18



Bis'. (1ola01 (io.

rlhe (conllalll all d ctrll ol al)e(t of this systeml ultimately relies o Ihuian o)eratons

to make (de(ision1 aout how to defendll(l agalist anl i(comlling attack. I 2002. LUnlited( States

N'ortllerll Collinm-i(lld (USNORTHC()I) was created( andl givenl the responsllil)ilit to efellnd

t-hle U.S. against ml! attack illnclclillg a llg-range missile attack [5]. In turll tlle (olllllll(ier

of USN()RTHC()\I holds that responsibility and wouldl likely lhave the allthorit- to make a

ldecision as to how 1)est to use the inter(el)tor missiles to defelld America galillst an attac('k.

Thllis ommanderl will rel on( United States Strategic Commlland (USSTRATCOSI) to provide

el- wNarllillg frmlll tile Ilreviollsly described sensors and radlars [5].

Tllhe followill,: is a demnlonstration of how all collll)onents work together i all actual

engagement [1]:

1. DSP satellites initially detect a threat lnissile's plum e soon after it is launl(hed.

2. This alerts the fire-control network which )egins plainilg all intercept. Sinmlultaneously.

the other sensors such as Cobra Dane in Alaska. radars at Beal{e AFB, Califorllia. ald

SIpy-1 ra(dars on Aegis shiI)s l)eginl tracking the illonling miissiles.

3. As operators receive higher quality data oi the ill(omlllillg attack. tlley launch their

ilnterceptol missiles.

4. As each EKV detacllhes fromn the nissile and is deplloved into sl)ace. radar c()ntinues to

up)dalte it withl track data.

5. Using these ul)(lates and its own sensors. the EKV locates the warhead of the inlcoing

miissile and collid(es with it.

6. Radar tllen assesses whether or not thle incomillg warhLead was d(estroved to determine

if other intercelptor missiles should be fired.

There are tlhree l)hases of flight for an illcollling ballistic miissile: boost. imidcourse, and

termlilnal. The first phase, boost, usually lasts three to five ilmutes ill which the missile is
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powered by its engines [2]. During tile mlidcourse ph)ase. te missile travels above the at-

inos)llere and releases its warheads becomling llltiI)le objects [2]. Whlen the warhead flls

back into the atlnosphllere it ellters the terminal p.llase [2]. Of these three stages. intercep-

tors target and destroy incoming missiles in the mlidcourse phase-the longest duration of

the three. During the 20 inulrte mlidcourse Iphase a single engagement is assumed to be a

"shoot-look-shoot" scenario. ill which there are two opIportunities to shoot interceptors at a

wave of incoiling missiles. lWe define a shot as a one-timle assignment of multiple interceI)-

tors to multiple ta.rgets. The initial information regarding the nmunber of incoming mlissiles

is a.ssulned to be completely accurate, and the decision maker has all oIpportunity to fire

multiple interceptor missiles at this set of incoming missiles. Next. the decision maker has

anl opportunity to gain inforllation oil which incoming missiles were destroyed and which

incoming missiles remain intact. Lastly. a fina.l decision is made as to how mlany illtercep-

tors to fire at the believed remailning incomling missiles. We assume only enough time for

two shots at a wave of incoming missiles. hence the terml "shoot-look-shoot." The decision

maker must weigh two important issues: saving some interceptor missiles for future waves of

attacks. and stopping all incoming missiles from striking a target. This beconmes a resource

alloca.tion probleln under uncertainty with nmultiple objectives.

While this system aims to provide a very robust network of sensors to detect and track

an incoming attack, there are several known limitations. The Cobra. Dane radar's field of

view ca.n only detect a portion of North Korean missile la.unches [15]. The Beale AFB radar

system has not completed all of its operational testing [15]. Overall. the entire system needs

more extensive testing before America is assured to be safe from a ballistic lnissile attack.

The future holds a great deal of expansion for the ballistic missile defense system. As

stated in the Missile Defense Agency's ba.llistic missile defense systeln overview, "'The mission

of the Missile Defense Agency is to develop all integrated. layered Ballistic MNissile Defense

System (BMIDS) to defend the United States. its deployed forces. allies, and friends from

ballistic missiles of all ranges and in all phases of flight" [1]. This means that in the future

the defense system will include more than just the 10 ground-based interceptor missiles
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(lisinlle to destroy missiles in the llidcollrse hase of flight. Eventually the BIDS will

includ(e Patriot Advanced Cal)abilit'-3 missiles and Aegis Ballistic Mlissile Defense Standard

MIissile-3 missiles locate( oil forward (leIloyed slliI)s used to destroy short- and mlle(dilll-range

ballisctic missiles. The B-MIDS will have grollnd-l)ased interc(ep)tors for illtermle(liate-range and

interc(ontinental i)allistic missiles. AIn Airborne Laser will 1)e added to the BIDS. employing

a hligh-pI)(wered laser attachedl to an Air Force air('raft (esigned t() (estroy a nlissile ill its

boost p1hase. Lastly. the BMIDS will have a termninal high altitude area defense element

d(esigned to destroy inc(oming nlissiles in their termlilnal phlase [1]. In a.d(lition to adding mIore

mettl()ods to shoot (lown incoll('ing missiles. there will )be improvemlents to urrent sensors andl

addled sensors ill other plarts of the world to augment the current surveillanc.lle and d-etection

component of thlle BMIDS.

While all of these filture components will likely prove to be inmportant in the layered.

integratedl defense of the United States. this thesis will focus only o the GIMD. as it is the

newest. and presently the only operational defenlse against a long-range missile attack.

1.2 Motivation

Because the single engagement problem is a "shoot-look-shoot" situation. there is infor-

Ilation to 1)be gained ill between the first and second decisions. However. in order for this

' shoot-look-shoot' technique to be successful, it requires accurate kill assessment after the

first shot opportulity [17]. To te best of our knowledge, this is the first work that addresses

inl:Lperfect kill assessment in this domnaiIn. Previous work has assumed that after the first shot,

it is known with certaintv whether each target hlas survived or not. This a.ssuIIpItion. how-

ever mlay not actually be valid. One of the main objectives of this thesis is to compare

thlle perforlnance of a system mnaking this assumption and a systenm that tries to accomt for

implLerfct kill assessnment. The focus of this thesis Nwill be managing the uncertainty in kill

assessment.
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1.3 Overview of Thesis

This thesis describes the single engagemntelt problenl assuling ip)erfect. kill assessmlent. Ve

provide all overview of related research and p)revious aI)l)roachles to this pIlobleill. We then

introdluce a partially observable MIarkov decision process (POTMDP) formulation and assess

the performallce of this formulation colipared to other mlethods of solving the problell. We

measure the value of our formulation through a series of experimlents and statistical analysis.

The individual chapters are summalllrized as follows:

Chapter 2: Related Research

In this chllapter we discuss the relate(d research appIlicable to the single engagement. prob-

lemI. We begin with a. discussion of dynamic progralmmllinig and( its characteristics, as well a.s

guidelines for solving a. dynamic programmlllling probleill. We continue with a. description of

.Markov decision processes (IDP) a.s a. class of problenms typically solved by dynamic pro-

grainmling. We outline the comll)onents and decision cycle of ailn IDP. Next. we describe a

variant of the \IDP: the partially observable MIlarkov decision process (POMIDP). VWe discuss

the differences between the MIDP and POM\DP and how they a.re handled. This chapter con-

cludes with a. discussion of the weapoll-target assigmilnteit (WTA) problem as an approa.ch

to the single engagement probleml. We explain how this approach fails to account for the

imperfect information that is assumed by this thesis.

Chapter 3: Problem Formulation

This chap)ter outlines three cases of the single engagement problem that we will use to

assess the impact of imperfect kill assessment: perfect informnation, imI)erfect information

assumed perfect, and imperfect information taken into account. Case 1 acts as a best-case,

and is the case assunmed by previous aI)proaches to this probleiml. Ca-se 2 uses the sanme

strategy as the first: case. except. that. the assumptions of perfect information no longer ex-

ist. Case 3 accounts for this imperfect inforimation and makes decisions based on this nlew

assumption. We focus on the third case and formulate it. as a. POMXIDP.
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Chapter 4: Implementation

We )egill this ('hal)ter with a description of the solution process for POIDPs. We start

with a descri)tiotl of tile POIDP solver software andl tile solution algoritllnls it uses. Next

we liscuss how we simulate tile single engagemlent using either the POIDP solver for Case

3 or the lllaxilllllll Imarginal return (MNIR) algorithm for Case 2 to generate a I)olicy so-

lution. This c'llaI)ter continues with a descrip)tion of the exI)erilental design. \We divide

our exl)eriLleints into three sets: initial exl)eriments. a central co(lil)osite design exp)eriment.

and a set of single-factor exp)erinents. All experiments blegin with a baseline setting for

all factors and chlange factors from this sceenario. First. we conduct initial experiments to

exalmine the effect of three factors on the performance of the PONIDP solver and NIMIR

algorithllm. These factors are left constant in the remaining exl)erinlents. Next. we use a

lentral (conI)osite, design (CCD) exl)eriment testing the effects of five different factors oil

the d(ifference in I)erformlance between the two cases ith impll)erfect illformation. Lastly. we

runll a series of single-factor experinments that vary the same five factors in(lividually. This

provides a more detailed understanding of each fa(t.or's effect on the I)erfornlance of each case.

Chapter 5: Results and Analysis

This chaI)ter l)resents the results and analysis of the experiments described in Chapter

4. We begin with outcomes of the baseline scenario and the results from three initial exper-

ilnients. We continue with statistical analysis on three quadratic models created from the

CCI) in ExI)eriient 4. Lastly. we assess the imlIact of the factors in the final four one-factor

ex)erinlents.

Chapter 6: Summary and Future Work

This clhal)ter summarizes the single engagement I)robleli and the POIMDP formulation.

along with exl)erimental results and conclusions. It ends with a disculssion of suggested

filture work for this problem.
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1.4 Chapter Summary

The U.S. has begun to stand up its Groun(l-ba)sed Mlid(lcourse Defense-the first defense system

designed to defend against long-range ballistic missile attacks. This SVStem's 1() interceptor

missiles are designed to locate and destroy incoming missiles ill space based on information

froln a complex senlsor network of satellites and radar. Due to the very lilmited number of

intercep)tor missiles in inventory. each interceptor is a. high-valued asset. 'While still being

tested and upgraded. there is a great deal of uncertainty in this system. It is not known how

effective the interceptors will be at destroying icoming missiles. and there may be problems

detecting and tracking incoming missiles accurately with the current sensor network. The

problem of assiglling illterceptors to incoming mnissiles in an attack becomes nuch more

challenlging due to the uncertainty in information froml the sensor network. With only two

shots at an incoming missile, it is very imnporta.nt to have accurate kill assessment: that

is. to know which incoming missiles haxve been destroyed and which ones are still headed

inbound. Finding a way to decide how many interceptors to use ill an attack that accounts

for this imperfect kill assessmnent could be very valuable. This task will be the focus of this

thesis. WNXe accomplish this by assessing the impact of a PONIDP formulation that accounts

for imperfect information, and comparing it to existing a)proaches that do not account for

this uncertainty.
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Chapter 2

Related Research

I:L1 this (llcI)pter lwe discuss the researlcl related to this probleml ill order to formulllllate it

llathellaticallv i11( Ilultilllatelv solve it. NWe begin withll (isculssioln of (dvlllllic I)ogralllllling

land Markov decision I)rocesses. Then we discuss the pIartially observal)le iMarkov d(ecisioll

iL'oc(ss. lwhich will be used ill our formulation. Finally. we discuss plrevious formulations of

re.ate(d lproblellls andl their apI)licability to other dolllains.

2.1 Dynamic Programming

The single engle gement pIroblelll described( ill Chapter 1 is a sequential decision problemll. Ollne

of the riilary tchlilllues use(l to solve a problem that optimizes an objective over several

dlecisions is dnalnic Iprogrammling. Although dynallic l)rogrammlllillg problemlls o not have

a specific forlllllltion. they (all be easily recogllized( by several charac(teristics [9]:

1. The p)roblell call be partitioned into stages. At each stage a policy d(ecisioll or action

must )e llladle.

2. Each stage has a numb)er of states associated with that stage. which are the I)ossible

conditions that the system could be in at that stage. There mnay be a finite or infinite

nlluni)er of states.
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3. The policy decision made in each stage will transforlm the current state into a state

associated with the next stage.

4. A recursion call be created on the optimal cost/reward from the origin state to the

destination state.

5. To solve the problem. an optimal policy over the entire problem must be found. This

policy provides the optimnlal decision at each stage for each possible state.

6. An optinlal policy for a fiture stage is only dependent on the current state and not

the decisions made in previous stages. This prop)erty is the Iarkovian property and is

the principle of optimality for dynamic programing.

7. The solution procedure begins by finding the optimal policy for the final stage.

8. There is a recursive relationship that provides the optimal policy for stage n given the

optimal policy for stage n + 1.

9. The solution procedure uses the recursive relationshiIp to start at the last stage and

move backward iteratively finding the optimal policy at each stage. This is carried out

until the optimal policy at the first stage is found.

In dynamic programming the time indices are called epochs. The O-epoch begins at the

end of the planning horizon at the final stage and the epochs increase until the first stage is

reached. In other words an epoch is the number of stages left in which actions can be taken.

According to Bertsimas and Tsitsiklis, the following are guidelines for solving a dynamic

programming problem [4]:

1. View the choice of a feasible solution as a sequence of decisions occurring in stages,

and the tot.a.l cost or reward as the suni of the costs of each decision.

2. Define the state as a summary of all relevant past decisions.

3. Let the cost/reward of the possible state transitions be the cost/reward of the corre-

sponding decision.
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2.2 Markov Decision Process

C)c1( variant of 1;he typical (ynallic )rorallnllillg )pro()lem ill which state transitions are

l( --(ttelllilliS sti ' is a Mlarkov de(cision I)ro(cess (IDP). All IDP is tile secificrtion of a

Seullltitial (tecisioll Il'ol)l('lll for a flly o)serva)lc envirinellllt with a Markvian tralllnsition

mo(del and( a(l(ditive rewards [14]. Aln NIDP is (tefinlte (l) four l)rilmary comp(lI)onents:

1. A set of staltes: s C S

2. A set of actions for each state: (l C A

:3. A transition lllo(lel: T(s. . s')

4. A reward fn(tion for both intermellleiate an(l terminal rewards for each state: R(s. u. s')

Thl( transition model specifies the probability of transitioning froil one state. s. to an-

other state. s'. in one tillle step givell all action. . Inll an IDP there canlll be rewards for

tralnsitioning fon one state to another in intermne(liate time steps as well as a terminal rewNard

fo:r being ill a state at the final stage. Alln DP mlay transition an infinite numl)er of timles

(infinite horizon) or it may' only transition a finite numlber of times (finite horizon). The goal

,f an IDP is to choose the optimal actions for the respective states whelln 'ollsiderillg the

exI)ected rewar(ds/costs of those actions. For infinite horizon )r'oblemslll, a discount factor. .

is used( to alue current rewards over future rewards [14]. Again. the MIarkovian I)roi)erty.
or lack-of-mlelnory roperty.' appI)lies because the transition Iprobabilities are unaffected )by

the states ill sta,[ges prior to the currellt stage [9].

The d(ecision cycle of a MIarkov decision process is as follows:

1. Based oil the current state, all optilmal actioll or decision is chosen froll a set of i)ossible

act ions.

2. The select(edl action deterlnlines the prol)abilities of transitioning into a nlew state.

3. All immellleiate reward/cost is incurred.



4. The state of the system is determlilned after each transition.

5. The process is repeated.

A complete policy for the MiDP is a spIecification of the optimlal actions for each state.

A solution maps a state to an action (S - A) where s C S and a E A. The objective is to

find all optimal policy of actions considering both immrnediate and terminal rewards.

Markov decision p)rocesses are an imnportant class of problemlls that are often solvable

through (ynamic p)rogranmgilg . There are solution nlethods for MDPs that run in poly-

nomial time in IS. AI. allnd finite horizon or infinite horizon writh a discount of -1,. The

concept of dynllamic progralmling applied to MIDPs forms the basis for the focus of this

thesis: partially observable Markov decision processes.

2.3 Partially Observable Markov Decision Process

A Markov decision process as defined in Section 2.2 assumes that the environment is fully

observa.ble. This means that thile state of the systei is always known with certainty. However,

in many real-world problems the environment is only partially observable, and the state of

the system may not be known with certainty. As all examnple this I)artia.l knowledge mnay

occur if the observer is removed from te process in some way and must gain information

over an impnIerfect communicatiolls channel [16]. In the world of ballistic missile defense,

human operators are forced to rely on sensors and radar to determine the status of incoming

ballistic missiles.

Using an MIDP to model this type of partial observability falls short as step one of the

decision cycle is not possible. In order to model systems with these characteristics. they are

defined as partially observable Markov decision processes (POMIDP). The POMDP. originally

developed by Drake [8], but. formalized by Sondik [16], is "the specification of a sequential

decision probleml for a. partially observable environmlent with a IMarkovian transition model

and additive rewards" [14]. A POMDP is an MDP tha.t handles the case in which states

can "look" the same or where the sarme state can "look" different each time it is visited. A
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P(0)IDP is dlefile(ld )by six primllary colmponents:

1. A set of states: s E S

2. A set of actions for each state: a( E .A

3. A transition niodel: T(s. a,.s')

4. A set of observations: o E 0

5. All observation model: O(s. o. ea. s')

6. A reward filnction for both intermediate and termlinal rewards for each state: R(,s. o. a. s')

These elements are defined in mnore detail and in terlns of the single engagelent prol)leln in

Chapter 4.

A POMDP lhas the same elements as an MIDP with the addition of the set of observations

and the observation model. The observation model specifies the probability of perceiving

ob)servation given that the system started in state s. ended in state s'. and took action 

to get there. In addition. the reward function may now also depend on observation o.

In IDPs the optimal action depends only on the c(urrent state, and a solution mnaps a

state to an action. Inl POMDPs the current state is not known. so there is no way to inap

a tate to anl action. NWithout knowing the current state. th( optimial action d(epends on

the comIplete history of the system. including the initial information about the system. as

well as all subsequent actions and observations. Sondik provedl that a sufficient statistic for

this compnlete history of the system is the belief state [16]. A belief state. b E (S). is the

probability distribution over all possible states where II(S) is the set of all possible belief

states [14]. Let b)(s) be the probability of being in the actual state .s given the belief state

b.. In a P()MIDP. tile optimal action depends only on the system's current belief state [14].

A solution mnaps the belief state to an a.ction ((S) -- A). A graphical depiction of a two

state belief state is shown in Figure 2-1. In this two-state POMIDP. the belief state an be

replresented by a single probability. p. of being in one state. The probability of being in the

oth].er state is siniply 1 - p. Therefore, the entire belief space can be represented as a line
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0 1

Figure 2-1: Two-state Belief State

segment. The point at 0 on the line segment indicates there is no way the systeml is in state

s candl must be in state s,2. Likewise. the point 1 on the line segment indicates the system

is in state s with certa.inty alld there is no chance of being in state *s2. This means that

b = (p, 1 - p) where b(sj) = p and b(s2 ) = (1 - p).

While the MIarkovian property does not hold for the state of the system, it does hold for

the belief state of the svstemI. The optimal policy for any given stage is only dependent on

the current, belief state and not decisions made in previous stages.

The decision cycle in a POMIDP formulation is now:

1. Based on the current belief state. an optimal action or decision is chosen from a set of

possible actions.

2. The selected action determines the probabilities of transitioning into a new state.

3. An observation on the state of the system is made.

4. An immediate reward/cost is incurred.

5. The new belief state is calculated based onI the action and observation after each

transition.

6. The process is repeated.

The current belief state can be calculated as the conditional probability distribution over

the actual states given the previous observations a.nd actions so far. If b was the previous
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lelief state. ac(til l was taken. allnd observatiol (o was plerceiveld . then tile new elief state.

h'. i calculated for each state. .s'. by Equation 2.1.

O(.s'. (. o) s T(s. ( .')b(.s) (2.1)
h (s ) = Pr~olfl h) (2.1)

Pr(o[kl. 1))

Th11e (tenolilllator normllllizes the resulting belief state so that it sils to one. and( call be

colnIll)ute(d bv E(lqlation 2.2.

Pr(ola. b) ' [ (I.0.. 1. T(s;. . s')lb(s) (2.2)

As anll exaiille of uipdating the belief state. assume the system has two pIossible states

(sl anld s,). two possille actions ( and 2). alld to plossible o)servatiolls ( andl( 0).

A gra)hic'al rel)esentationl is shown in Figure 2-2. The larger black (lot represents the

a 1
1 02

S22 -i 1

02
a 01
a2

Figure 2-2: Updating tile Belief State

starting belief state. and each of the slaller dots represent a possible resultinlg belief state

givell a certain action and observation. The arcs linking these belief states represenlt the

transfornlition of belief states by Equation 2.1. In this exampille there are oly ftour new

pc(,ssible belief states; one for each colbination of actiolls and observations.

A collmplete policy for the PONIDP is a spIecification of tile optimaill actions for each b)elief

state. The objective is to filid a optimal policy of actions colnsidering both immllmediate
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and termina.l expected rewards. However. the challenge in finding an optimal policy for a

PONIDP is that. unlike the (liscrete state spa-ce in an MIDP, the belief space for a PONMDP is

c'ontinuous. Ill conlltrast to \IDPs. the )belief state probalilities create a state space of infinite

size. To deal with this. the belief space can be partitioned into regions where certain actions

are optilllal and the long-term value is a linear funclltion of the belief state.

Assume now that the system has three possible actiollns. The belief space could be p)ar-

titioned into three regions where each of these actions is ol)timal as shown in Figure 2-3.

These lines in two imlnensions, and hyperplanes ill greater dimlensions, are called alpha. vec-

O a a2 a 3

Figure 2-3: Belief State with Value Function

tors. They are simply vectors with a value for ea.ch state, and correspond to anl action. An

action is optimal where its alpha vector dominates other alpha. vectors. Graphicallyv this

means one alphlla vector lies above another. The value function for a POMDP, V(b). is simply

the upper surface of the alpha vectors over the belief space-a piecewise linear combination

of the alpha vectors. V(b) is a mapping of the belief space to the expected total reward [7].

Because the value function is piecewise linear and convex, the belief space can be partitioned

into regions where certain actions are optiimal. Despite the simplicity of Figure 2-3. a belief
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Sla(e 1av 1 e )artitiolle( ito lnanY iorllre regions than actions. land therefore all actionll ('all

1e' optimal ill several different regiolns. The b)elief state (all also be represente(d as a vector

with prob),;llilitics for eacl state. Finding thle optilllal action for a given belief tate requires

alllatillg thle (,:t i)rod(lllt of the belief state vector and each alpl)ha ve(tor and finding which

(lot )rodu(t has tile greatest value.

2.4 Mathematical Approaches

()ne plreviolls appllro(h to I)rol)lellls siilar to the sillgle enlgagellenlt problelll i the weap)oll-

targetll t assiglllllLt (WTA) plroblem. Ill tlle static W TA. weaplons are assignlle( to targets in

(order to liilllize either the total exp)ected( llullllber or the expe(ted( value of the remainilln

talrgets [10]. A value is assiglned to each target. and each eaI)on-target pIair has a kill

pr('llaility assxo(iated witil it. This i tle problability that a (ertain weapon will destroy a

('ertaill target. T''lle assignlllent of a weapolln to a target is independent of all other weapons

a l.L(l targets.

A (vlaillli weapo-target assigllet problem is a static- weaIon-target assignlllllent prob-

1u1ll tllat ilvolves Illllltiple stages. This lllealls that the outonllle of al assiglllllent in olne

st ge calll affec(t the assiglllllellt ill tlle nllet stage. Eachll stage onsists of two steps:

1. Determline whllic( targets have survived the assignment ill the previous stage.

2. Assign a subset of tle rellaining weapons to the targets that survived based oil the

object ive.

The llissile lefense single engagemllent prollelll canll be defined as a dlYllallic weapon-

target assigmllllelt problelm. In this appIlicatioll. the weapons are inter(eptor missiles or

kill vehlicles. all( the targets are in(olming missiles. A certain portion of thile illnventory of

initerelptor missiles (the weapons) mulst be assigilel to a numlber of incolling missiles (the

targets). In a single engagement there are two stages, so that the outollle of the first

sllhot" ill stage 1 inlav determine the assignment of interceptor missiles for the secoid shot"

in stage 2. The obje('tive may be to linimlIize the probability an inlolillg issile leaks
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through defenses. to minimize the dlamage done if incoming missiles are headed for different

locations, or a variety of other potential objectives. The objective function may also be a

weighted function maximizing not only the prob)a.bility of no leakage. but also the remaining

intercepltor nlissiles left in inventory.

In this probleln all incoming lissiles (targets) are assuined to have the same value.

In addition, because all intercelptors are assumed to be identical, all kill pIroba.bilities are

a.ssumned equal. With these assumptions Hosein, Walton, and Athans showed that in a

dynamic pIrobleml with N targets and Al weapons. it is optima.l to spread the wea.pons

evenly allmong all targets at each stage. In addition. given a two-stage problem in which

Al > N with A11 being the munlber of assigned weapons in stage one and Il2 being the

number of assigned weapIons ill stage two. it was shown that the optimal assignment has the

property tha.t Al1 > N [10].

These conclusions prove to be very useful ill solving the single engagement problem.

However, the addition of imperfect kill assessment. after the first stage makes it more difficult

to use the weapon-target assignment formulation. Under impIerfect information, step one

of each stage becomes very challenging: determine which targets have survived the last

assignment. This information is no longer known with certainty and this makes it much

more difficult to accomplish step two: assign weapons to the targets which survived.

2.4.1 Applicability to Other Problems

By no means is this probletl only applicable to ballistic missile defense. The work on

this problem c.an easily be applied to a wide range of battle management problems. Mlore

specifically, the issues of a limited time window. linmited resources. imperfect kill assessment,

and severe consequences for every action are very relevant to many defense and non-defense

related problems. As an example of a type of problem that could be formulated in this

manner, we consider the use of unmanned aeria.l vehicles (UAVs) for reconnaissance and

surveillance. A limited number of UAVs may be assignled to a number of different ground

targets. Information on these targets nay be required in a timely manner. Imagery from
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the UA\s iiia\ not be cm111l)lete or conclusive. 1)lit assigining more UAVs to a target may,

il.inrove the information received. Assigning more UAVs to a target mlay comel at soIle cost.

sichll as losilng inf'rmnationl froim other targets. This is one examlI)le of a pIroblel to which

tile applroach in this thesis llmay also applI)ly.

2.5 Chapter Summary

'This chapter p)rogressed( through a discussion of the mathematical tools used in this thesis

begiming with the general technique called dynanic Iprogranfniing. a class of pIroblenis called

Marko\v (tdecision l)rocesses. and ending with a variallt of AIDPs. the I)artially observable

Markov (decisioll Iprocess. All of the. nine chara(teristics of dillamic prograInmlliing prollellls

previously d(escribed( are appIlicable to the POIDP when applied to the single engagement

pro)leml. Ill Iarticular. POM\IDPs are solved l)a ckwar(ls iteratively. The basis for the PO\IDP

is te IMarkov (hecision process and its four prillary elements. The POMIDP is simlply an

MIDP with only p)artial knowledge of the state. This comnllicatioin adds two new elements to

tlle IDP: the set of observations andl the observation model. Instead of making decisions

base(l oil the current state. dec(isions nlust be made based o the belief state. a probability

distrilbutioll oer all states.

Previouslv. Hosein. Walton, and Athans formlulated the single ballistic nmissile engage-

inilnt as a wea)O-target assignment problem. Using this formulation, several key results

were proved( about the otimal assignlent of interceI)tors to incoming missiles. While this

formulation provides valuable insight into this problenl. it fails to account for the imperfect

kill assessment in the G.MD. Lastly. we discuss the applicability of our approach to other

problems. The value of formulations accounting for iperfect information transcend ballis-

tic missile defense. This approach could be applicable to any problemln dealing with limited

resources. uncertainty, and assignments.
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Chapter 3

Problem Formulation

This (lhalI)t1r (11I isses the tihree ciases we use to assess the ilmpallct of illl)elrfect information

on the single elagellelt pIroblleml. These three cases describ)e different assUmptiOls anll

realities ill the single egagemenlt p)robleml: a sstelll that hals I)erfect kill assessment. Ca

sysitemll that assiLues p)erfect kill assessment incorrectly. and a systeml that makes decisions

takiiing the impIerfect kill assessment into accouIlt. We formulate the third case as a partially

obsercvablfe Iarlkor dlecisionl Iprocess (POMDP). Ill order to assess the erforlllmance of this

approach. we ('com)pare it to the other two c'ases.

3.1 Perfect Information

In the b)est case. Case 1. the informationl received( after the first action would be colmpletely

acculate. Ill this Ier'fect informaltion" case, the p)robalbility of oserving a mliss given a

iss al(tuallv oc'urreld. Pr(roissll.'s.s). and the probability of observing a hit given a hit

atually occurre(l. Pr(hit1it). would both equal one. The assumpItion that all observation

is coplll)letely accuralte simplifies te problem. Case 1 dlescribes te assumptions of previous

work conducted on the single egagelmenlt p)ro)lem.
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3.2 Imperfect Information Assumed Perfect

Given that previous formulations of this prollenl have assuneld perfect information. an

ilnl)ortant situation to analyze is one where Pr(7mi.ssmliss) # 1 and Pr(hithit) ~ 1. et

the policy is created assunlling that Pr(mis.s-iss) = 1 and Pr(hl.it;hit) = 1. This mneans

that the observations of which incollling targets were hit and missed are taken to be true.

even though there is a. chance those observations are incorrect. These assumptions could

have disastrous consequences in an actual engagement. If an incoming target were falsely

believed to be destroyed. and consequently no nlore iltercepltors were fired a.t it. it would be

allowed to leak through defenses without bleillg engaged. We refer to this situation as Case

2. In this case the decisions are made with the same assumnptions as the first case. Reality.

however, is different.

3.3 Imperfect Information: POMDP Formulation

In Case 3, the imperfect information froil sensors after the first shot is known and the policy

solution attempts to account for it. In order to do this. the single engagement problem is

modeled as a partially observable Ma.rkov decision process (POIMDP). This PONIDP ha.s a

horizon of two stages to model the "shoot-look-shoot" aspect of the probleln. Each decision

or "shot." is the action of that stage.

States

We define a state, s, as the following:

,s= (/L p)

where /3 is the interceptor inventory remaining and p is the number of targets remaining.

Given this state definition, a.n initial interceptor inventory /30. and an initia.l wave of targets
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pl. the size of the state space is:

( 3,o + 1)(po + 1)

Ad(ling 1 to both ,3( and P0 ill this exI)lression. ac(counts for the states ill wich ! = 0 or

:= ().

Actions

W e define an a.ction. a( E A, as the total umlber of interceptors assigned to all targets. given

the current state. s. Manyl logical restrictions could be plla.ced on the action. As an example

of an action that could be restricted. consider the action of assigning fewer interceptors than

tairgets eveln with enough inter(eptors ill inventory. This action would allow a target to pass

through defenses without being elngaged. and appears not to be logical. However. in our

for)mulation the only restriction placed on the allowable actions is a < /. By assigning a

large negative value in the reward function. these impossible actions. in which a > 3, are

restricted. Although this is the only restriction placed on actions. in theory an optillal

policy will not cloose illogical actions given the proper reward( filnction. Given the state.

s = (. p). the numlber of allowable actions is equlal to '3 + 1.

'Transition Model

In our formulation the only uncertainty affecting the transition fronl one state to another

is the single-shot I)robability of kill (SSPK), which is the probability a single interceptor

hits a single target. The probability of transitioning from state s S to state s' E S after

taking action a A is denoted by T(s. a. s'). The transition model is the three-dimensional

matrix of all of these values. Assuming that the interceptors are evenly distributed amolg all

ta-rgets. either all targets will have the same number of interceptors assigned to them, or one

group of ,91 targetts will have n, interceptors assigned to them and the remainling 92 targets

will have n. - 1 iiterceptors assigned to them. As an exalmple, if 7 interceptors were assigned

to 3 targets. one target would have three intercep)tors assigned to it. and two targets would

each have two interce)tors assigned to them. This means that gY = 1 target. 2 = 2 targets.
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and r1 = 3 interceptors. Let PKl and PA 2 equal the overall probl)ability of no leakage for

one target given the nlulber of interceptors assigned to each target ill the groups containing

g1 anlld 92 targets respectively. P 1 allnd PK, c'all be calculated( using Equation 3.1 and

Equation 3.2.

PIiM = 1 - (1 - SSP)" (3.1)

PK2 = I - (1 - SSPK)( "- 1) (3.2)

Let h be the number of hits or number of targets destroyed. This value is calculated by

Equation 3.3.

1, = pR - R, (3.3)

Because there may be two groups of targets with PK1 and Pi 2 associated with them. there

are malny combinations of hits from each of the two groups of targets that result in the same

number of overall hits and thulls the same transition. To calculate the transition probabilities,

T(s. a, s'), Equation 3.4 sums over all possible combinations that result in the same number

of hits.

h

T(s. a. s') = [ [(9l)PK9I(1 - PA)'1] [(92 i)PK292+i(l - PK2)92] VE.SVS'ESVa<
i=0

(3.4)

It should also be noted that for any a.ction, a, the transition probabilities suml to one over

the ending states:

rT(s. a, s') = 1
s'ES

Observation Model

The observation model is the main component that differentiates a POMDP from an MIDP. In

this problem the observation probability, (0(s', a, o), is based on the probabilities Pr(mnissl miss)

and Pr(hitjhit). Table 3.1 depicts a confusion matrix of these probabilities. Ultimately, the

observation model is a three-dimensional matrix dependent on the starting state, action, and

resulting state.
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Observedl
Hit \iiss

Actu al Hit Pr(hitllit) Pr(mnis.slhit)
Miss Pr( hitjmiss) Pr(miss. miss)

Table 3.1: Confilsionll Iatlix

Ill order to calculate thle observation lprobal)ilities we define the following variablles:

Variable Definition
P,,M7 T Pr(m.i.lssl miss)

Ph.77, Pr(hit'mi.ss)
Phh/_ Pr(litlh.it)

P,, h Pr(ri.s s | it )

110 nulmber of observed target l misses
h1 nunliber of ob)served target hits
711, number of actual target nlisses
h1, nmunl)er of actual hits
lb lower blound on mnumber of actual mnisses
'ub upper bound oil number of actual nlisses

Table 3.2: Variable Definition for Observatioll Probabilitv Calculation

where lb = 1max(O, (tno- ha)) and ub = miri(nm. m,,) ill order to accOlllt for the correct

combinations of possible observations. Equation 3.5 shows the equation to calculate each

observatioin probability, where O(s', a. o) = Pr(o s'. a).

ub

()(.a. o) = [ [(a )
i:=lb

rPm( - P, ,)' -] [(, - - J i (.n.o- i) Pma,
- PI.)11),- (7,7,-i)] ]

where

O(s',a. o) = 1
oEO

Reward Model.

The objective of the single engagement problem is to ilinimize the p)robability that any

targets leak throulgh defenses while maxinlizing the number of interceptors left in ilnvenltory

after the engagemIenelt. To reconcile these two comipeting g objectives a weight, iul is used.
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where 0 < l 'I < 1.0. Let P,,.I equal the probability of no leakage for the entire single

engagement. The reward function in Equation 3.6 balances the percenta.ge of initial inventory

of interceptors renmaining and the probability that no targets leak through defenses after the

transition. We sale the remaining inventory by the initial inventor i order for 0 < t. < 1

just as 0 < P,, < 1. A u1 ' close to zero tells the POnIDP solver to be nuch more conservative

with its inventory of interceptors, while a ui close to one tells the POMIDP solver to value

mllnimizing leakage much iliore than saving intercei)tors. This weight is varied in subsequentl

exI)erimlellts to determine its ill)a.ct on engageIment success.

R(s, o. .s') = ( 1.) (+) + t'l PI (3.6)

In the context of this problemn, as with many PONIDPs. the ending state is more iml-

portant than the intermediate states. For example, targets remaining after the final shot

have far more severe consequences than targets remaining when there is still one shot left at

them. To account for this characteristic, terminal rewards can be specified for the PONIDP.

These rewards simply place a value ol each of the possible final states. The terminal reward

function in this problem took the form of Equation 3.7. where WTrl is the weight given to the

inventory remaining and uT2 is the weight given to the targets remaining. In this equation,

/3, is not scaled as it is in the intermediate reward function. because its competing metric is

Ps, which is the number of targets remailing.

F(s) = WT1,/3 - wT2Ps (3.7)

3.4 Chapter Summary

This chapIter discusses the three cases to be used for comparison to assess the effect of

imperfect information on interceptor assignment. Tile first case assumes (correctly) perfect

information from sensors. The second case assumes (incorrectly) perfect information from

sensors in a world where information is not. perfect. The third case attempts to account for
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illperf'l(t iforlllltioll ill its decisionll akin. The focus of this (hapIter is the ast case.

whichl is fornmulated as a artially o)servable Mlarkov dec(ision l)ro(ess.
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Chapter 4

Implementation

Thllis ( haplter dis usses the lethodologyl used to solve allnd test each of tle three c Eases outlined

iln Chapter 3. \\e )egin with a lescril)tion of the lnaxilllllll marginal return (MMIR) algo-

ritlllll used to llke assignmellnts for Cases 1 and 2. Next. we discuss tile PO\IDP solution

algoritllllls used i Case 3. \We then outline how these algorithms are use(1 ill tlle solution

i):o('ess. Finally. e disculss the experilellntal (lesignl tilized to compl)are the l)erforlllan(ce of

thle three cases.

4.1 MMR Algorithm

Althllollugh they deal with different information certailty. the first to cases described in

Chllapter 3 se the same1 algorithmlllll to mnake interceptor assiglllellnts: the Ilaxilliull iilarginal

retluI11 (1I\IR) algoritlllll. The \IIR algorithm variant ilsed in this work assiglns illterceI)tors

to targets i a single engagemlelnt. Tle objective of this algorithll is to liliinlize the nlullll)er

of interceptors uised while lneetillg a probability of no leakage thllreshllold. Tllese two goals ale

ill ol)positionl to Eachl other. Ill order to do this, te algorithllllln iteratively assigins itercepltors

to targets one-at-a-tiime ulltil eithler tile overall p)robability of no leakage reaches the thlreshold

Or l1o illtercel)tors relain in inventory. The threshold( for thlis MI5IR version is 0.99 to focus

oil Silliizing F1,,l withlout usilng all inventory. If the threshold was Pr, = 1.(). the algorithli
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would consistenltly use all intercep)tor inventory. After each iteration. every target's marginal

probailityS of leakage is alculated an( the target with the highest probability is the next

target to gain another interceptor assignllent in the following iteration.

The i\IMR algorithml also assigns interce)tors to one of the two time stages. For instance,

the algorithlnm initially a.ssigns sonle interceptors for stage one ad some for stage two. but

the assigned interceptors fr stage two are not actuallv fired in stage one. but are plalned to

be fired. In this way the algoritllhm chooses the best two-stage strategy, with the knowledge

that it will reI)lan after kill assessment of the first stage. After the assignment is made in

stage one. the algorithm is run again to make a new assignment for stage two based on the

nunml)er of targets that still remain. During tle first assignment, when determining which

time stage to assign an interceptor, if none have been assigned to a target, the assignment

is made to the first time stage. Otherwise. the assignment is made to the stage with fewer

interceptors assigned. with the second stage gaillillg the assignment in the event of a tie.

This second stage preference provides the same probability guarantee with fewer expected

interceptors used. A description of this algorithm is shown in Algorithm 4.1.

Algorithm 4.1 Maximum MIarginal Return Algorithm
B 1 /
P,, <= O

while P,,r < 0.99 and B > 0 do
for all p targets do

Find target with highest probability of leakage
Assign one interceptor to that target
if In stage 1 then

if First interceptor assigned to target then
Interce)tor assigned to first stage

else if Each stage has equal interceptors assigned then
Interceptor assigned to second stage

else
Interceptor assigned to stage with fewer interceptors assigned

Recalculate P,,, based on new assignments
B B-1

The MMR. algorithm was tested on a varietv of scenarios of varying interceptors and

targets under the Case 1 assumptions. The algorithm provides a policy solution and firom
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tllrlt I)olicy a I)robal)bility of no leakage as well as an estilate inventory rellaililng are

cal(ulate(l for each scenario. These mneasures of performance. P,, alnd ,l, . are cal(lllated

using SSPK. The values shown in Table 4.1 and Table 4.2. were est.ilmated( using MIonte

Carlo( simulation of 10.()()000 trials of the single engagement assuming l SSPIK = 0.8. These

prol)al)ilities provide a good benchmark for thile probabilities for the other cases. Likewise.

thll average remaining inventory for Case 1 rovides a good ben(lllark for the other cases

remallining inventory. Hypl)othetically. P, 4 is greater in this case. than in the case in which

the information is iperfect.

T'able 4.1: Probability
rithl.. SSPK = 0.8

of No Leakage with Perfect Infornmation (Case 1) using MNIR Algo-

4.2 POMDP Solver

To solve the POIDP used in Case 3, we use the software pomdp-solve, version 4.0. developed

by Cassandra [6i. Using a. basic dynamnic progralmming approach working backwards in

tilne. this software can use a variety of different algorithms to solve the POMIDP. It is

capallle of solvillg both finite and infinite horizon problems and implemlents a number of
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Interceptors Targets
1 2 3 4 5 6 7 8 9 10

1 0.7961 0 0 0 0 0 0 0 0 ()

2 0.9593 0.6i403 0 0 0 0 0 0 0 0

3 0.9922 0.8963 0.5076 0 0 0 0 0 0 0
4 0.9984 0.9708 0.8214 0.4059 0 0 0 0
5 0.9984 0.9888 0.9438 0.7445 0.3294 0 0 0 0
(i 09982 0.9931 0.9737 0.9020 0.6626 0.2675 0 0 0
7 0.9982 0.9968 0.9872 0.9504 0.8541 0.5773 0.2060() 0 0 0
8 0.9980 0.9973 0.9911 0.9(775 0.9173 0.7915 0.5084 0.1671 0 0
9 (.9980 0.9985 0.9957 0.9812 0.9572 0.8794 0.7371 0.4406 0.1277 0
10() 0.9987 0.998 0.9963 0.9910 0.9684 0.9376 0.8428 0.6811 0.3731 0.1093
11 0.9979 0..9982 0.9975 0.9927 0.9879 0.9515 0.9047 0.8052 0.6194 0.3166
12 0.9985 0.9977 0.9988 0.9943 0.9871 0.9764 0.9325 0.8779 0.7610 0.5655
1_ 3 0.9988 0.9977 0.9990 0.9952 0.9915 0.9810 0.9664 0.9153 0.8439 0.7125
14 0.9987 0.9981 0.9995 0.9968 0.9943 0.9898 0.9746 0.9510 0.8915 0.8094
15 0.9982 0.9982 0.9991 0.9974 0.9951 0.9910 0.9843 0.96f10 0.9326i 0.8599
1( 0.9984 (.9984 0.9996 0.9988 0.9957 0.9928 0.9880 0.9753 0.9526 0.9086



Interceptors Targets
1 2 3 4 5 6 7 8 9 10

1 0 () 0 0 0 0 0 0 () 

2 0.8012 0 0 0 0 0 0 0 0

3 1.613 0.639 0 0 0 0 0 0 0 0
4 2.4 1.2772 0.5181 0 0 0 0 0 0

5 3.4081 1.9284 1.0178 0.4146 0 0 O 0

6 4.4102 2.8783 1.5303 0.8242 0.3323 0 0 0 0 0
7 5.4009 3.296(i4 2.4007 1.2546 0.6544 0.2624 0 ) 0

8 6.385 4.2925 3.3375 2.0682 0.9771 0.5216 0.2056 0 0 0

9 7.4147 5.2842 4.2498 2.8728 1.727 0.7743 0.4052 0.1688 0 0
10 8.3841 6.2662 4.6554 3.6867 2.439:3 1.4451 0.6363 0.3236 0.1334 0
11 9.3958 7.2503 5.1462 4.4978 3.165:3 2.0832 1.2433 0.4938 0.2654 0.104

12 10.384 8.2628 5.6412 5.3329 3.!)222 2.7741 1.7757 0.9779 0.3978 0.2114

13 11.402 9.2543 6.6572 5.907 4.6885 3.4174 2.3616 1.519 0.8415 0.3273

14 12.392 10.267 7.6374 6.4342 5.6035 4.091 2.9768 2.0154 1.2544 0.7169
15 13.408 11.266 8.6178 6.9909 6.517 4.943 3.5021 2.4982 1.6992 1.0675

16 14.39 12.252 9.6342 7.4991 7.1632 5.8672 4.3381 3.024(6 2.1616 1.4079

Table 4.2:
Algoritlhm,

Average Inventory
SSPK = 0.8

Remaining with Perfect Information (Case 1) using MIMR

algorithms inchluding the enumeration. witness. and incremental pruning algorithms. The

software requires an input file specifying the number of states. actions. and observations.

as well as the complete transition model. observation model, and reward model. WVe wrote

and used an inl)ut file writer to create such an input file. The input file writer begins with

the basic settings: /3. Po. SSPK. Phh,. P,,,, and wll. It then calculates the transition

probabilities. observation probabilities. and reward matrix using the equations described ill

Chapter 3 and then writes themn to a file.

4.2.1 POMDP Solution Algorithms

Ever since Sondik's formalizatioll of tihe POIMDP and his "One-Pass Algorithm," [16], so-

lution algorithms for POMDPs have been proplosed and researched. Because the ballistic

missile defense single engagement problem is a "shoot-look-shoot" problem with two possible

actions. it has a. horizon of only two. Therefore. only finite-horizon algorithms are discussed

in this section. All finite-horizon algorithms follow thile same general structure as shown in

Figure 4-1. First, the O-epoch value function, Vo(b), is constructed using the terminal values.
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Initialize final stage with
O-epoch alpha vector set

to terminal values

i
Find next epoch
value function

No

Current epoch = Horizon ?

Yes

Return optimal policy

Figure 4-1: Finite-horizon PONIDP Algorithml Structure

Termllinal values place a reward or cost on each state for the final stage of the system. Next.

the value function for the next epoch is compl)uted. This dynamic programming update of

the value function for each belief stage works backwards iteratively firom the filnal stage in a

recursive llannec:L until the epoch equals the horizon of the problelll. This process defines a

new value fiunction. V'(b), froml the current value function. V(b) as shown in Eqluation 4.1

[7.

V'(b) = max [Y R(s. a)b(s) + Z Pr(ola, b)V(b') (4.1)
(lEA I-0

LSES oEO

This equation states that the value finction for a. belief state, b. is the value of the best action

I:ossille from b of the expected immediate reward for tha.t action plus the expected value

of the resulting belief state. b. This dynamic programming update is conducted until the

horizon is reached. At that point. an optima.l policy is produced [18]. This policy specifies

tile best action to take at that stage given the observation.

The main distinction between POMDP solution algorithms is the way they generate a

finite set of points to build the alpha vectors for the value function. The process of finding

dolinant alpha vectors requires the use of linear programlning. It should be noted that

in somle problenls it is difficult. to find regions where one alpha vector dominates others.
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This may ('ause nunlerical istability in the linear plrogralIinng plroblenls. The work in this

thesis investigated three primary algorithmls to solve the POMNDP: Monallha' s enumerative

algorithlni. Littlllan's witness algorithmll, and Zhang and Liu's incremlental pruning algorithln .

Enumeration Algorithm: This type of algorithnl. which was mnentioiled by Solldik in

1971. but formalized by M\lonahan ill 1982. (loes not actually try to find a finite set of points

to build the alpha vectors [6]. Instead it simply enumerates all alpha vectors [12]. From

this superset of vectors. extraneous vectors are deleted if they are dominated by others.

Ultimately the algoritlm generates a set of dominant allha vectors of mlinimal size. The

problem with this algorithm is that the lnumber of alpha. vectors becolles very large as the

horizon or number of epochs in thle probleln increase [6]. Even using the simple examlple in

Figure 2-2 with two actions and two observations. the number of alpha. vectors can become

very large. This probleln starts with only one alpha vector at the -epoch. which is the

terminal value fimction. At each epoch the nulber of alpha vectors grows exponentially, so

the total numlber of alpha. vectors is doubly exponential in the horizon. It is clear that more

complex problems with more possible actions and observations would require the generation

of an excessively large number of alpha. vectors. For this reason, enumerative algorithms are

best suited to plroblems with small nmnbers of actions. observations, and a short horizon.

Witness Algorithm: This algorithnl, developed by Littman. Cassandra. and Ka.elbling,

differs in the way it finds a set of alpha vectors of nminimal size [11]. Instead of enumerating

all possible alpha vectors and paring that set down, it builds up to that set one vector

at a time. The witness algorithm defines regions for an alpha vector and looks for places

where the vector is not dominant [11]. It starts with an arbitrary belief state. and finds

the dominant alpha. vector for this belief state. While it is known that the alpha vector is

optimal for this point.. it is not known where this vector is not dominant. The algorithm

then defines a region of the belief space for this alpha vector and then searches for a point.

where it is not dominant. Unlike other algorithms, the witness algorithm defines a value

function in this manner for each action separately. Then, it combines the value fnctions in

the end to create the final value function. In addition to maximizing over actions in isolation.
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tl:Lh' itness algorithin (leals with on1 observatioll at a time. In choosing a vector for eac'h

olbservation. it ('ooses all action. The algorithm then searches one ol)servation at a tinle for

a hlloice that imlllroves the overall value. If it finds all action alld ('corres)onding vector that

iln)l'\ves the ivalue fiunction, then that serves as witlless that the current value function is

not the final value fun('tion [6].

Incremental Pruning Algorithm: This algorithmlllll. originally proposed(l b Zhang and

Liui [19)] but de(velopeld by Cassandra. Littmanl. and Zhalg [7]. is the latest and fastest

algoritlllml for solving P()OMIDPs. It conllines elements of Monahan's enumeration algorithl

anll( the witness algorithm [6]. Instead of finding the regions where alllha vectors olinllate.

this algorithllm focuses on finding different comlbillations of flture strategies. It begins by

;elneratillg all)la vectors for a fixed ac'tion and observation. These vec(tors are olll)pared and

doinnate(l vecto:rs are relnoved. creating a domlinant set of alI)ha vectors for only this action

and o)bser\vation. Froml there. the sets are combined for all the observations anll doninated

vectors are reml:oved. creating a dominant set of alpha. vectors for each action. Finally,. the

sets for each action are conmbined and dominated vectors are relnoved. creatillg the value

filnction. V'(b).

4.3 Solution Process

'Thlle assunll)tions of this thesis make the single engagement a stochastic process ba-sed oil

several probalbilities: SSPK. Ph, and Pr,,. In order to deterline how the policies generated

by the INMMR algorithm and the POMIDP solver perforrim, we used a Ml\onte Carlo simulation

of the single engageIment. to calculate estimates for P,, and /32. This sirnulationl can be run

Using either the M\INIR algorithnl for Case 2 or the POMDP solver solutionl for Case 3. The

lonte Carlo sinlulation for Case 1 is nuch simpler. as PI,,, = 1 and P,,,,,, = 1. Therefore,

the ollly uncertaillty comes from SSPK.

Figure 4-2 dep)icts the solution process for Case 2. In this case. the input file writer beginls

with the basic settings: intercet)tors. targets, SSPK. P,,,, P,,,,, and 'u1L. It thenl calculates

the transition probabilities and the observation probabilities. All of the iitial settings. the
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Targets
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Observation
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Optimal Policy
Probabill of No Leakage
Average Inventory Peraining

Figure 4-2: Solution Process Using IMM\IR Algorithm

transition model. andl the observation model are then used by the silnulation. To deterllline

the actions. the simulation calls the MMR algorithm, which takes the observation as the true

nummber of targets remaining. The M:INIR, algorithlm thell I)rovi(les an optimal policy back

to the simulation. The single engagement is simulated many times for the same settings in

order to calculate average mea-sures of perfornlall(e.

WVhen using the simulation with the POMNDP solver of Case 3, the program flow is

as depicted in Figure 4-3. As with Case 2, the input file writer begins with the basic

settings and produces an inlIut file for the simulation. In addition, it also produces two

input files for the POMIDP solver: one containing the transition model, observation model.

and reward function and one containing the terminal rewards for each state. WVith these input

files, the POMIDP solver uses the selected POMDP solution algorithm. such as incremental

pruning, and produces a solution file containing alpha vectors and their associated actions.

After translating this file into a matrix for the alpha vectors and a. vector for the actions

corresponding to each alpha. vector, the simulation uses themi along with the initial settings

froml the input file writer. Again the simulation is run nmany times to estimate average

probability of no leakage and average inventory remaining. The entire process depicted in

52



Wear.--h File Writer.F'n:r1

| .nput FileWriter I
.~~~~

I r.l:U;u Mudel
Ibss'tl: h n Mrd,1l
FiAard Fur :t,or,
T-rrnlr al F; e,,ard=. ,

POMDP Solver

Solution File Translator!

Intr-eptrr
Tjr _,:

F nh
i'-m l'l
vVelghts
I'lumber of tates
irMnstlun !tdel
)bN:Pvt 'tlln Model

A:.,n VS:tlrn

Simulation
Opt r.a FVllc'
Pr3bat',llt, ,rf .I -akage
.Aerae ,r.Average t-y :rnalnng

Figure 4-3: Solution Process Using POMDP Solver

Figure 4-2 for Case 2 and Figure 4-3 for Case 3 combine to forml one run of each exp)eriment

to be described in detail in the following section.

The simlulation was developed to rn a simulated single engagement a large uImber of

times to gain an accurate assessment of the strategy and settings chosen based on several

response variables. It begins by using either the MI\IR algorithml or the POMlDP solution

p)(licy to determine an initial action. If the simulation is using the PONIDP strategy. the

belief state is multiI)lied with each alI)hlla vector to produce a value. The alpha vector resulting

in the highest value corresponds to the best action to take. If the MNIR strategy is used.

the simulation simply invokes the MM\IIR algorithm to determine the best action given the

situation. The algorithm plans the assignment for two stages. and the simulation uses the

first stage assignment as the first action. The simulation then determlines how mlally targets

are in Y1 and 92 and how lnany interceptors are fired at ea.ch target i a rn- 1. resI)ectivelv.

With those values it calculates PKl and PA-2 . It then generates a random number between

zero and one for each target and compares it to PKI or PK 2 . If the rando numlber is

less than P 1 or PKI2. the target is hit. Then. a new random number is generated for

each target. This number is comrnIared to Ph1 if the target was hit and Pm,, if the target
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was missed. If the randon l number is less than Phh or P,,,,7, the observation is correct.

Next, a second action is determined from either the PONIDP solution policy or the \INMR

algorithm based on the observed mnumber of targets remaining. For the POMDP case, this is

acconl)lished by updating the belief state. and nultiplying it with each alpha vector to find

the highest value corresponding to the best action. For the \MMR strategy the algorithm

replans its assignment for stage two based on the new observations, providing the second

action. The process of generating a random number to compare to PK1 and PK 2 is then

repeated to determine the final state of the systeIn. Running this simulation over many trials

produces an average est.inate of the response variables: inventory remaining. targets leaked.

and probability of no leakage. A description of this simulation is depicted in Algorithm 4.2.

4.4 Experimental Design

The experimental design has three separate sets of experiments. First, three initial experi-

ments were run varying factors that are later held constant. In this set of experiments we

screen these variables to determine their effect on system performance. as well as establish

an optimum set of values for the factors. Next, a. central composite design of 87 runs was

conducted varying five different factors at two levels each, in order to see how these factors

and their interactions affected the results. Lastly. one-factor experinments were conducted on

those five factors to determine how they affected the results when varied over a wide range of

values. Whereas, in the second set of designed experiments, we used a CCD to determine if

each factor had significant influence on the response variables, and if there were interactions

between factors. this last set of experiments provides different information by showing the

effect of the input variables over the full spectrum of their possible values.
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Algorithm 4.2 Sillngle Enlgagemllent Simulatioll
I = 0. L < ()
for i = I to t do

h/, ,= (). '111, <= 0. ha0< = . 7 0

if Case 2 then
Determilline a fiom INIMR Algoritlhm

else {Ccase 3}

Deteriiiiie (I foll PONIDP all vectors

Calculate . 92. 1. PK1. PK 2
for all Ij targets do

Generate ranldoll lulmber 0 < PKsi, < 1
if PKIx,,, < PKI1 then

Io ~= 1 a + 1

else

for all 92 targets do
Generate randolll nunlber 0 < PIi,,, 1
if PK,i,,, < PKI2 then

11a 11 1a + 1

else
( 4= 'tla + 1

for all p targets do
Generate rand(loll number 0 < Pot, < 1
if Target hit then

if Pos < P, , then
tho : ha, + 1

else
n7 o 4= no + 1

else {Target nliss}
if Pobs :5 Pr.,,,, then

o110 :- I, + 1

else
ho(, = ho + 1

Repeat on(ie
if rma > 0 then

L = L + 
I = I + Ii

t
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4.4.1 Initial Experiments

The initial experiments started with a baseline scenario that is a combination of input factors

chosen as a likely real-world scenario. W\e then ran three different experiments varying the

algorithm, terminal rewards, and the single-shot probability of kill (SSPK), leaving all other

factors at the baseline level. The purpose of these experilents is to get a general idea. of how

these factors affected the POMIDP solver software, before leaving them constant in the main

experiments. The baseline scenario was first run for 10,00() trials of the simulation with the

settings shown in Table 4.3.

Factor Value
3o 10

Po 3
SSPK 0.8

Psh,. 0.8

Prr, 0.8
wI 0.7

W!TI 1

1''T2 100

Table 4.3: Baseline Scena.rio

Each of the three initial experiments began with the baseline scenario and varied one of

the factors.

Experiment 1: This experiment varied the algorithm used in the POMDP solver software.

The three algorithms examined are enumeration, witness, and incremental pruning.

While Cassandra,. Littman, a.nd Zhang assert that the incremental pruning algorithm

is the fastest algorithm to date, we conduct this experiment to test the algorithms on

our problem. The response variables are the following: solving time. instability, policy

solution, and number of alpha vectors. Each run of this experiment consisted of 10,000

simulation trials.

Experiment 2: This experiment varied the terminal reward function for the POMIDP solver

software. From Equation 3.7, 'WT, and 'uT2 were varied. This experiment set WT2 to
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differenlt o:rders of lnagnitude, and one experimental run also set both lWT anld uWT to

zero. One run also turned off the terminal reward setting for the solver. Each rlll is

compared on the following response variables: solving time. instability. policy solution.

and number of alplha vectors. Due to increased execution tinlme of the simulation. each

run in this experiment consisted of 1.000 simulation trials.

Experiment 3: This experiment varied SSPK at different levels between 0.5 and 1 to

examine its effect on the two cases assuming imperfect information. Due to the con-

siderable t.ime required to generate Table 4.1 and Table 4.2 for the perfect information

case. frther experiments were run using only one value: SSPIK = 0.8. Runs were

compared on the following response variables: policy solution. targets leaked. remain-

ing inventory. and probability of no leakage. Each run in this experimellt also consisted

of 1.000 sinlulation trials.

Table 4.4 sulmnmlarizes these three experiments.

Table 4.4: Initial Experiments
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Experiment Varied Factor Levels Response Variables

_ .Enunmeratioln Solving Time

1 Algorithms \itness Instability
Policyv Solution

Incremental Pruning Alpha Vectors

None
ILT, = 0. 1 'T2 = 0 Solving Time

uy!T = . 21.'T = Instability
2 Terminal Rewards, F(s) W!T = 1, w 2 = 10 POIt a1Uit

1T1- 1, T T2= 1000 Alpha Vectors
'__rT = 1 WT.2 = 1000
lTl = 1. UIT2 = 10000

Policy Solution

3 SSPK 0.5 < SSPK < 1 Targets Leaked
-_ - Remaining Inventory

Prob of No Leakage



4.4.2 Central Composite Design Experiment

The purpose of Experiment 4 is to understand how five different factors affect the outcome

using the I\'IR algorithm and the PO\IDP solver. The five factors varied in this experiment

were the number of interceptors ((O), the number of targets (po). the observation probabilities

(Phh and P,,,,,), and the intermediate weight (wI). In order to truly know the effects of the

five factors, including quadratic effects and interactions b)etween factors, a central composite

design (CCD) was used. The importance of this design is two-fold.' First. it allows us to

determine interaction effects of different factors. While "one factor at a time" experiments

may show that the response increases as a. factor increases, it may be true that the response

actually decreases when that factor increases and another factor decreases. This implies

that there is a significant effect on the response by an interaction between the two factors.

If we only examine the effect of a factor as all other factors are held constant we really

do not know how the response performs in other regions of the factor space. As a result.

our conclusions are very dependent on the initial conditions and we may be led to a false

conclusion. Secondly, the CCD allows the fitting of a second-order model [13]. This would

imply that the effect of some factors on the response is not linear. Both of these occurrences

seem likely with respect. to our problem. First, it seems likely that factors such as the number

of interceptors and targets would have significant interaction effects. Secondly, it seems likely

that the effect of some factors on the response is nonlinear given that one response term is

a, probability.

The CCD begins with a 2 factorial design, which sets the five factors a.t a. high and

low level. creating 32 runs for all combinations of each of these levels. Then to check for

curvature, axial runs and center points are added to the design. A center point simply sets

all the factors to a level halfway between the high and low levels. Axial runs set all factors to

the center level and one factor to a certain distance from the design center, a [13]. With five

factors, this experiment had 10 axial poilt.s. A graphical depiction of a two-factor central

coniposite design is shown in Figure 4-4. In order for the model to provide good predictions

throughout the region of interest, the design nmust have rotatability, which means that the
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Factor 1
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(0,-a)

Figure 4-4: Two-factor Central Composite Design

variance of the predicted response should have equal variance at all design points that are

equal distance from the design center [13]. This is attained by choosing the proper a. In

general. setting = fl/ 4 where f is the number of factorial runs leads to a rotatable

design [13]. In this experiment, nf = 32 so a = 321/4 , 2.378. MIultiplying a by the distance

fronl the factorial points to the design center provides the distance from the axial runs to

the design center for each factor. This distance was rounded to the nearest integer for the

factors 3(% and p.)

Tlle factorial. runs, n f, and the axial runs. n.,. were replicated twice, while the center

point. n was replicated three times for a total of 87 runs. According to XMontgonleryv, three

to five center points provide reasonable stable variance of the response [13]. In experimental

design, replication is used to obtain an estimate of experimental error and to obtain more

precise estimates of the effects of the factors [13]. In this experiment, the same settings

for the POMIDP solver produce the same policy, and the output of the POMIDP solver

provides the input for the simulation. Therefore, the only variation in results conies fromn

the stochastic simulation. If enough trials are used in the simulation, there should be very

little difference in the response variables between replicates of the salne fa.ctor settings.
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Each run in this experiment consisted of 1,00() simulation trials. Table 4.5 shows the design

matrix for this experiment without any of the replicates. Because the POMDP solver, INMMR.

algorithm, and sinullation have no memory. each run is comlI)letely independent. Because

of this independence, randomization of trials is not necessary in this experinlent. and runs

were conducted in the order depicted in Table 4.5.

4.4.3 Single-Factor Experiments

Finally. one-factor experiments were conducted on each of the five factors varied in the CCD.

In each of these experiments. all settings were set to the baseline level, except for the factor

of interest. From there. that factor was varied over a wide range of relevant, values. The

goal of these experiments is to compare the performance of the three cases as each of the

five factors changed over a. wide range of values. They provide a more detailed depiction

of what happens to the response variables as one factor changes. The important response

variables examined in all of these experiments were: policy solution. targets leaked, inventory

remaining, probability of no leakage, and a linear combination of inventory remaining and

probability of no leakage based on the weight. w/1. Except for Experinment 5, each run in all

experiments consisted of 1000 simullation trials.

Experiment 5: This experiment varied the intermediate rewards weight. uwi, used by the

PO1MDP solver software. Vve set 7l to values between zero and one at intervals of 0.1.

Because the IINMMR algorithm does not depend on W1 to make decisions, Case 2 only

required one experimental run. This decreased simulation time greatly and each run

consisted of 10,000 simulation trials.

Experiment 6: This experiment varied P,,, and P,,, simultaneously. While this is not

truly a. single-factor experiment, it was found that varying Phh and Pm,m separately

produced the same results as varying them simultaneously. This experiment set Phh

and P,,,,, to values between 0.5 and 1. While it is possible to examine values between

zero and one. the most relevant values were those in which Phh = Pm,m > 0.5. If sensors
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Run Type (o p P1I l P ,,,, 'I

1 Hnf 7 3 (.6 0.G 0.3

2 1f 11 3 0.6 0.6 0.3

3 'Hf 7 5 0.6 ).(G 0.3

4 f 11 5 0.(6 0.( 0.3

5 I.f 7 3 0.8 ().( 0.3

6 If 11 3 0.8 (). 0.3

7 11 f 7 5 0.8 0.(i 0.3

8 Hf 11 5 0.8 0.(i 0. 0.3

9 'Hf 7 3 0.6 0.8 0.3

1() if 11 3 0.6 .8 0.3

1 1 f 7 5 0.6 0.8 0.3

12 f 11 5 0.6 ().8 .3

13 'f 7 3 ()0.8 (.8 .3

14 ' I.f 11 3 ).8 0.8 0.3

15 Inf 7 5 0.8 0.8 0.3

16 f 11 5 0.8 0.8 0.3

17 f 7 3 ).(6 ().(6 0).7

18 11f 11 3 0.6 0.( 0.7

19 1 .f 7 5 0.6 0.6 0.7

2(0 n f 11 5 0.6 0.(6 0.7

21 f 7 3 .8 O. ( 0.7

2'2 lf 11 3 0.8 ().(j6 0.7

23 If_ 7 5 0.8 0.6 0.7

2 4 -f 11 5 0.8 0.6 0.7

25 1 f 7 3 0.6 (.8 0.7
26 Of 11 '3 0.6 0.8 0.7
27 i1f 7 5 0.6 0. 8 0.7

28 'Hf 11 5 0.6 .X8 0.7

29 ,'f 7 3 0.8 0.8 0.7
30 2f 11 3 0.8 0.8 0.7
31 Hl~f 7 5 0.8 ().8 0.7

32 l1,f 11 5 0.8 0.8 0.7

33 11, 5 4 0.7 0.7 0.5

34 11, 13 4 0.7 0.7 0.5

3.5 'a 9 2 0.7 0.7 0.5

36 ,, 9 6 0.7 0.7 0.5

3 7 9 4 0.4 0.7 ().5

38 '11 9 4 0.94 0.7 0.5
39 'Ha 9 4 0.7 0.46 (0.5
40) a 9 4 0.7 0.94 0.5

41 11a 9 4 0.7 0.7 0.02

42 11n 9 4 0.7 0.7 0.98
4:3 1 9 4 0.7 0.7 ().5

Table 4.5: Central CompIosite Design SMatrix
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were so unreliable that they gave tile wrong information most of the time. this entire

exercise as well as the actual system would be ineffectual.

Experiment 7: This experimentl varied the numlllber of initial interceptors in the scenario

between 3 and 16. Te experiment did not include runs with tile initial inventory

less than 3. because the most relevant runs involved nmore interceptors than targets.

With fewer or equal interceptors than targets. the best action is to assign all of the

interceptors in inventory.

Experiment 8: The number of initial targets in this experiment, was varied between 1

and 10. Again, as the numlber of targets approaches the numlber of interceptors, the

resulting policy solution is less interesting, as all of the inventory will be assigned.

Table 4.6 summarizes these three experiments.

Experiment Varied Factor Levels Response Variables
Policy Solution

5 Intermediate Weight, w () < u < 1 Targets Leaked
Remaining Inventory
Prob of No Leakage

0.5 < Pm,, < 1 Policy Solution
Targets Leaked

6 Pn,) ad P, 0.5 Phh < _ Ph_
6Pn =0 Pith 1 Remaining Inventory

Prob of No Leakage
Policy Solution

7 Interceptors, /0o 3 to 16 Targets Leaked
Remlaining Invenltory
Prob of No Leakage

Policy Solution
8 Targets, pto 10 Targets Leaked

Remaining Inventory
Prob of No Leakage

Table 4.6: Single-Factor Experiments
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4.5 Chapter Summary

This chapter describes tile iplelelltation of the roblem formulation from Chapter 3. It

begils with a discussion of how the MIMIR algorithm is used to I)rovi(e a I)olicy solution for

tile first two cases alnd( how a POMIDP solver is used to I)rovide the pIolicy solution for Case

3. It discusses the various POMDP solution algorithms and how they are differentiated by

t lie nethod use.. to create a. value fiunction over the belief states. We then describe how the

I)erforlllance of the cases is estimated with a simulation of the single engagement using the

policy solution (c:eated froln the IIMMR algorithm or the POMDP solver. The chapter finishes

with a discussion of the experimental design beginning with initial experiments. continuing

ith a central comIlosite design, . anl ending with a series of single-factor experiments.
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Chapter 5

Results and Analysis

This chapter assesses the potential imlpact of imperfect information on the perfornimance of

interceptor a.ssignment. and the possibility of accounting for this uncertainty with a PO.MDP

aplI)roach. Illn order to do this we carry out a series of experiments that. compare the decisions

anld performance of the three cases described in Chapter 3: perfect. information. iinperfect.

information assumed perfect. and imperfect information known to be imperfect. This chapter

discusses the results of the experiments outlined in Chapter 4.

MVe begin witll the results from the baseline scenario. This serves as a basis for comparison

for all other results. We then compare the three POMDP solution algorithms in Experiment

1. Next. we examine the performance of the PONIDP solver with various terminal reward

functions in Experiment 2. With the last initial experiment. we assess the performance of

each case with varying SSPKs.

Experiment 4 provides us with the data. necessary to develop three statistical models.

W~e conduct. an analysis of variance (ANOVA) on each of these three quadratic models and

then check for mnodel adequacy. The response variables in each model are a. difference in

perfornlance between Cases 2 and 3 using three different measures of performance. Each

model includes five factors.

Our final four experiments assess the factors used in Experiment 4, by varying them

in(lividually. We assess the impact of w!l from the results of Experiment 5. In Experiment
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6, we vary P,,h, and P,,,, silmultaneously. and determine how they affect the performance of

Cases 2 and 3. Finally. in Experiments 7 and 8. we assess the impIact of the mlnIbler of initial

interceptors and initial targets respectively. WVe end this chapter with overall conclusions

based on these experiments.

5.1 Initial Results

5.1.1 Baseline

As stated in Chapter 4. experimentation began with a baseline scenario. Chosen for its

realistic settings. this baseline is the starting point for all following experiments. The results

for the baseline scenario are shown in Table 5.1.

Response j Case 1 Case 2 Case 3
Execution Time NA NA 35.40 sec

Instability NA NA 243,388
Alpha Vectors NA NA 67
Policy Solution 4:0,3,6.6 4:0,3.6,6 3:1,2,2,3

Prob of No Leak 0.9963 0.9494 0.9367
Remaining Inventory 4.6554 3.468 5.2829

Leaked Targets 0.0037 0.0524 0.0697
Weighted Combination 0.83707 0.76862 0.814177

Table 5.1: Results from Baseline Scenario

In this table, "Case 1' corresponds to perfect information, "Case 2" corresponds to

perfect information assumed perfect and "Case 3' corresponds to imperfect information that

is known to be imperfect. This terminology is used throughout the chapter. In Table 5.1,

the first three results only apply to the POMDP solver (Case 3). "Execution Time" shows

the time required for the POMDP solver to execute and solve the problem. This correlates

to the size and complexity of the problem, as well as the speed of the algorithm used to

solve it. "Instability"' is the number of linear programming subproblems that had numerical

instability during the execution of the PONIDP solver. "Alpha. Vectors" refers to the number

of alpha vectors in the solution provided by the POMDP solver, and is highly correlated with
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tile illstab)ilit. As tllhe instabilitv increases ill a I)roblem,. it is more difficult to find whllich

al)lla vectors dominate over the belief space. Consequently, the number of alpha vectors in

the solution inc(1eases. Muclh like instability. this also correlates to tile comllplexity and size

of tlle Iroblem.111 These three results only apIply to Case 3 and give a general baseline for the

pIerforlmancee of the POMIDP solver.

The next five results in Table 5.1 are used as a baseline for complarison between each of

the three cases. The "Policy Solution" is depicted in the form

((I: a.: a". a" (°-l1)

where a is the first action ad a. is the second action based onl an observation. Because this

problem begins with three targets. there are only four possible observations. "Probability of

no leak." P,,1. "Remaining Inventory." /]2. and 'Lea.ked Targets" are direct ways to compare

the performance of each case in this baseline scenario. Lastly. "';,eighted Combination."

1TU. is a. method to assess each case based oni the weight, wU in the reward function. This

value pIrovides all overall metric of performance combining P,,1 and 2. Il I is calculated by

Equatioll 5.1.

l' = 'Ill,p + (1 - Uwi) (5-1)

As call be seen in Table 5.1, Case 3 has a. more conservative policy solution than the two

other cases. and consequently has a greater rema.ining inventory. In spite of this conservatism.

Case 3 almost matches the probability of no leakage of Case 2: 93.67/i: compared to 94.49%.!.

Case 1 proves to have the highest probability of no leakage. allowing only 0.0037 targets

leak through defenses onl average. In comparison of '. Case 1 does the best. followed by

Case 3. and Case 2. It is importanlt to note that if the weight, uw. is truly the importance

of probability of no leakage compared to inventory remaining, then TI is probably the best

metric when comparing the three ca.ses.
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5.1.2 Experiment 1

Experiment 1 is simply a. comparison of three algorithms used to solve the POnIDP. The

results of this experinent are shown in Table 5.2. The first important result from this exper-

Algorithm Enumn Witness Incprune
Execution Time 30 mrin 24.91 sec 23.81 sec 35.40 sec

Inst ability 892.667 256.,785 243.388
Alp)ha Vectors 531 42 67
Policy Solution 3:1,2.2.3 3:1,2.2.3 3:1.2,2.3

Table 5.2: Results from Experiment 1

iment is that all three algorithmls p)roduce the same policy solution. So, aside from the fact

that some algorithms may take longer than others. all three could be used interchangeably

in further experiments. However, Table 5.2 clearly shows that the algorithm does matter

when it comes to execution time. The enumeration algorithm takes over 30 minutes to run

for this one scenario, while both the witness and incremental pruning algorithms require

only around 30 seconds to run. In addition, the enumeration algorithm has far more alpha

vectors and linear programming subproblems with instability than the other two algorithms.

In this experiment the witness and incremental pruning algorithms are very similar in execu-

tion time and instability. Ultimately the incremental pruning algorithm was chosen for the

remaining experiments not only because this experiment proved it to be fast and efficient,

but also due to previous research by Littman, Cassandra. and Zhang that showed it to be

the simplest and fastest algorithm to date [7].

5.1.3 Experiment 2

In the next experiment we examine various terminal reward functions, F(s) and their effect

on the POMDP solver. The results of this experiment are shown in Table 5.3 where the

terminal reward function. F(s), is described by (T1, U.T2). While the results of this exper-

iment are not completely conclusive, they do provide some useful insights. First., it is clear

that as WT2 increases by orders of magnitude, the execution time, instability, and number of
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Table 5.3: Results fronl Experiment 2

alI)ha vectors generally increase. 'We note that higher instability may not indicate an inferior

solution. ut. mnore likely a larger or more complex problem.

N\ost ilI)ortantly. this experiment shows that the policy solution highly depends on the

terminal rewardls. In this baseline scenario. no terminal rewards or even terminal rewards

with small weights on targets remaining, WT2. provide somewhat strange policy solutions.

in which the first action is very small. When the first action is less than the inumlber of

targets. it is iml)ossible to have an observation of zero or more targets depending on the

dlifferelince between action and targets. This is depicted in Table 5.3 where a second action

is listed as 'NA." This indicates that an action is not applicable to that situation, because

a, < po. However. even with these strange cases, as 'T2 increases. the policy solution uses

more interceptors. This result is logical. a.s increasing W'T2 places more value on stopping

targets comparedl to conserving interceptors.

Overall. this experiment shows that a. logical and balanced policy solution results from

VY!T2 - 100. With this setting. all actions were at least a.s great a.s the number of targets

thought to be remaining. and more interceptors were used as mrnore targets were observed.

Subsequent experiments were conducted with the settings W!T = 1 and wuT2 = 100. Ill

a sense this says that a.t the end of the engagement, we are 100 times more concerned

about stopping targets from leaking through defenses than saving ourl inventory. To change

the policy solution slightly based on the preferences of an actual decision maker. we could

increase or decrease WT2 from a value of 100.
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17 F(s) |j None [ (0.0) I (1.1) (1.1() I (1.100) (1,1000) (1.1(0000) 

Execution Tile 0.24 sec 0.49 sec 1.76 sec 5.28 sec 35.39 sec 55.15 sec 49.72 sec
Ilstability 531 5:31 10.748 50.940 243388 335.882 305.388

Alpha Vectors 24 24 46 44 67 74 45
Policy Solution 1:NA.NA.1.6 1:NA.NA.1.7 2:NA.2.1.1 3:1.2.1.2 3:1.2.2.3 6:1.2.2.2 6:2.2.2.2



5.1.4 Experiment 3

Experiment 3 examines the effects of various single-shot probabilities of kill (SSPK) on the

performance of each of the three cases. Table 5.4 shows the policy solutions for each of

these cases. This table only lists values of 0.5 < SSPK < 0.98. because those are the most

SSPK Cases 1 and 2 [ Case 3
0.5 4:0,6.6.6 6:2.2.2.2
0.6 4:0.6.6,6 6:1.2.2,2
0.7 4:0,4.6.6 6:1.2,2.2
0.8 4:0,3.6.6 3:1.2.2.3
0.9 3:0.3.6.7 3:1.1.1.2

0.98 3:0.2.4.6 2:NA.1,1.1

Table 5.4: Policy Solutions for Experiment 3

relevant values. As previously mentioned, it makes little sense to use interceptors that have

a higher probability of missing a target than hitting one. In addition. an interceptor with

SSPK = 1.0, although operationally outstanding, provides little interesting insight into our

work. In that scenario. imperfect kill assessment matters little when every target can be hit

with certainty on the first shot.

In Table 5.4, we first note that Case 1 and Case 2 always have the same policy solution, as

they both use the MMR algorithm to determine how many interc(eptors to assign to targets.

The difference in the two cases is that in Case 1, an observation is always true, and in Case

2 it may not be true. This difference is not indicated in the policy solutions.

Table 5.4 also shows that in all of the cases, as SSPK increases the policy solutions

become more conservative with interceptor inventory. This result occurs because as kill

probability of a single interceptor versus a single target increases, fewer interceptors should

be required. The policy solutions in Cases 1 and 2 gradually become more conservative as

SSPK increases, while the policy solutions in Case 3 have a major decrease in number of

interceptors assigned in action 1 from SSPK = 0.7 to SSPK = 0.8. This occurs because

the POMDP solver generally assigns enough interceptors in action 1 so that each target is

assigned the same number, while the MMINR algorithm generally does not. For Cases 1 and
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2. most policy solutions assign four interceptors to three targets in action 1. while Case 3

typically assigns either six or three inltercep)tors to three targets in action 1.

While this trend of becoming more conservative as SSPK inl(reases exists in all cases.

Case 3 begins m1uch more conservatively in the first shot than the other cases, using six

as opposed to four interceptors with SSPK = 0.5. Likewise. with this SSPK. Cases 1

and 2 use six interceptors when at least one target is observed. while Case 3 uses only two

interceI)tors regardless of the observation. Although it seenls illogical not to use as many

interceptors a.s targets observed in Case 3. the POMDP solver knows that Prrh > 0. andl

that missing all three targets is unlikely. Therefore. while not necessarily te safest course

of action. it does make sense to use only two interceI)tors even when three targets were

observed.

Another major difference between Cases 1 and 2 and Case 3 is the number of interceptors

tlhev assign with an observation of no targets remaining. While the MINIR algorithllm never

assigns any inte:rceptors with an observation of no targets remaining. the POI\IDP solver

always assigns at least one interceptor, as it accounts for imperfect kill assessment.

Finally. it is important to note that as SSPK approaches values very close to one. the

cases vary greatly. Cases 1 and 2 still assign one interceptor for each target in the first

shot. and two interceptors for each target in the second shot. Case 3. however. continues

to become more conservative. With SSPK = 0.98 the PONIDP solver initially uses only

two intercel)tors. and then uses only one more interceptor regardless of the observation. In

essence it always uses three interceptors for three targets. when SSP 1.

In addition to comparing the policy solutions of each case. it is impIortaint to examine the

performnance of each case. We begin by comparing the probabilities of no leakage for various

levels of SSPK in Figure 5-1. This chart includes more experimental runs than depicted in

Table 5.4. as we varied SSPK at increments of 0.02 between 0.7 < SSPK < 1.0. In this

('hart. the probability of no leakage generally increases as SSPK increases for all three cases.

Case 1 I)rovides an upper bound on the probability of no leakage for the other cases. For

tlhese other two cases. Case 2 outperfornms Case 3 with SSPK = 0.5 and SSPK = 0.6. After
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Figure 5-1: P,,r versus SSPK
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that region. Case 3 generally matches the P,,, of Case 2. The P,,l in Case 2 increases lluch

more gradually than that of Case 3, which can be attributed to the imore gradual changes ill

policyv solutions shown in Table 5.4. The chart shows that for Case 3. large decreases ill the

mlnllber of interceptors assigned in action 1 correspIond to a decrease in P,I.

In addition to comparing pIerformance on probal)ility of no leakage. we examine the

inventorv remai:ring for each of the three cases. Figure 5-2 depicts a chart of this mnetric

as SSPK is varied. This chart shows that for all cases. as SSPK increases. the average

8

7

6

=5

oi

-3

0

-
Case 1

-- -Case 2
------- Case 3

0.7 0.8 09
SSPK

Figure 5-2: /32 versus SSPK

inventory remaining also increases. This flows logically. as fewer interceptors should be

used if each interceptor is more lethal. Except for SSPK values around 0.7. the remaining

inventory for Case 3 generally matches that of Case 1. with Case 2 typically the lowest of

the three. Again. this makes sense, as the POIMDP approach is the most conservative with

inventory of the three cases. As with Figure 5-1. the inventory remaining for Case 3 increases

less gradually due to its more drastic changes in policy solutions.
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Lastly, we examine the effect of SSPK on 1. Figure 5-3 depicts a chart comparing each

case. In a. sense, this chart is a way to assess overall perfornmance by combining the trends

]
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0.5
06 0.7 0.8 0.9

SSPK

Figure 5-3: WI versus SSPK

of the two previous charts using the weight., w1 . Figure 5-3 shows that as SSPK increases.

W1 also increases, as it is a linear combination of Phi and inventory remaining, which were

both shown to increase as well. Case 1 again proves to be an upper bound on the other

two cases. In addition, Case 3 almost always outperforms Case 2. This indicates all other

factors constant, as SSPK is varied, accounting for imperfect kill assessment proves better

than not accounting for it.

5.2 Central Composite Design Results

With a general idea of how the three cases perform from Experiments 1 through 3, we now

conduct a full statistical analysis to better understand how Cases 2 and 3 compare. Our
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focus in Experinlent 4 is oll the cases that have imperfect informnation. In order to estimate

an applropriate statistical model we use the central colImosite design described ill Chapter

4. wlhilch varies tile factors /30. po. P1h, P,n, and u1l silmultaneously. In this section. we will

refer to the effects of factors ;3o. Po( Phh. Pnm, and 1'i as A, B. C. D. and E respI)etively.

5.2.1 Model 1

Because we wish to compare the performance of Cases 2 and 3. we investigate three statistical

models with different response variables: AP,, A132 and Al. These variables represent the

difference in Case 2 and Case 3 probability of no leakage. remaining inventory, and I1

resp)ectively. ad. are calculated by the following equations:

A,, : P;3, P (5.2)

A1 2 = 3 - _32 (5.3)

Al = ' t -3-2 (5.4)

where the superscript indicates Case 2 or Case 3.

We begin with a quadratic model on Ap, that initially includes all five main effects,

all two-way interactions, and all square terms. We pare down this nlodel in a stepwu-ise

process to thile significant factors at thile a = 0.10 significance level to produce the analysis of

variance (ANOVA) results in Table 5.5. This table shows that the model is significant with a

p < 0.0001. In addition. all main effects are significant. One quadratic effect. B2. and three

two-way interaction effects, AB. BD, CD, are also significant. The lack of fit significance

indicates that this model may not fit., and that significant terms are omitted. However, this

nodel has significant lack of fit regardless of the terms included. The model also has an

R2 = 0.8415 and R 2adj = 0.8230. This indicates that approximat. ely 84% of the variability in

the data is explained by this model [13]. Rdj is an adjusted R 2 for the number of factors

in(luded in the model. R is useful, because in general. increasing the number of terms in

a model alone increases R2.

75



Source Sum of Squares DF Mean Square F Value P-Value
Model 0.43 9 0.047 45.42 < 0.0001

A 0.029 1 0.029 27.62 < 0.0001
B 0.12 1 0.12 119.07 < 0.0001

C 0.020 1 0.020 18.81 < 0.0001
D 0.047 1 0.047 44.51 < 0.0001
E 4.577E-003 1 4.557E-003 4.38 0.0397
B 2 0.082 1 0.082 78.61 < 0.0001
AB 0.11 1 (.11 105.10 < 0.0001
BD 3.844E-003 1 3.844E-003 3.68 0.0589
CD 7.353E-003 1 7.35E-003 7.03 0.0097

Residual 0.081 77 1.046E-003
Lack of Fit 0.073 33 2.217E-003 13.24 < 0.0001
Pure Error 7.365E-003 44 1.674E-004
Cor Total 0.51 86

Table 5.5: Analysis of Varia.nce on Ap,,

Equation 5.5 shows the final quadratic model.

Ap,, = -0.023 + 0.019A - 0.039B + 0.015C - 0.023D + 7.252 x 10-3E

- 0.039B2 + 0.041AB + 7.750 x 10-3BD- 0.11CD
(5.5)

This equation indicates that although significant, E and BD have very little effect on the

response. In other words. the weight, wl and the interaction between targets. po, and Po,,,

do not greatly affect the difference in P,, between Case 2 and 3. It is important to note that

the effect of Po on this difference is quadratic. In addition, factors 130 and po and factors Pi,h

and Pm,,, both have strong interaction effects on this difference.

In order to test the adequacy of our model, we must make sure some assumptions hold

true. If is the error between predicted values and actual values, we assume that is

normally and independently distributed with a mean zero and constant variance [13]. We

first examine the normality assumption with Figure 5-4. For the normality assumption to

hold. the data points should fall along the line drawn through the chart. In this chart, we

see that some points a.t the top right, of the chart lie off of that, line. This indicates slight

departures from normality, but. overall the majority of points lie close to the line. Therefore,
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overall the normality assumption is valid.

Next. we examine the residuals for inldepIendence between runs. We already discussed

that there should be no relationship between runs. as our sinlulation and POMIDP solver

have no nlemory. Therefore. we did not randomlize our exp)eriments. Regardless of this fact.

we examine the independence of runs in Figure 5-5. This chart shows that there is no reason
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0 U -pp
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-1 35- p

-3001

1 1S 35 52 69 86
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Figure 5-5: Residuals versus Runs in Model 1

to suspect any violation of the independence or constant variance assumption.

Lastly, we examine a plot of the residuals versus the predicted values from our model

shown in Figure 5-6. If our assumptions hold true, the residuals should not be related to

the predicted response variablle. In this chart. no unusual structure or pattern is apparent.

Overall, we have shown that our assumptions hold true and that our model is valid.
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5.2.2 Model 2

Our second model fits a regression equation oil the response variable, Aif 2. As with the first.

nodel. we begin with an all-inclusive quadratic nlodel, and reduce the model in a stepwise

manner to only significant. termns. Table 5.6 shows the ANOVA results for this model. TWe

Source Sum of Squares DF [Mean Square F Value P-Value
Model 95.90 10 9.59 109.98 < 0.0001

A 59.73 1 59.73 685.00 < 0.0001
B 7.67 1 7.67 87.97 < 0.0001
C 12.58 1 12.58 144.25 < 0.0001
D 4.21 1 4.21 48.26 < 0.0001
E 0.80 1 0.8( 9.14 0.0034

A 2 2.27 1 2.27 26.03 < 0.0001
B 2 2.39 1 2.39 27.36 < 0.0001
AB 4.10 1 4.10 47.01 < 0.0001
AC 2.40 1 2.40 27.49 < 0.0001
BC 0.46 1 0.46 5.29 0.0242

Residual 6.63 76 0.087
Lack of Fit 6.46 32 0.20 52.94 < 0.0001
Pure Error 0.17 44 3.813E-003
Cor Total 102.52 86

Table 5.6: Analysis of Variance on Ai

see that with a p < 0.0001. NModel 2 is significant. In addition to all main effects. two

quadratic effects, A2 and B2 . are significant. This indicates that the relationship between

both interceptor inventory and number of targets to the difference in remaining inventory

is non-linear. The mlodel also includes three two-way interactions: AB, AC, and BC. This

suggests that the interceptor inventory, number of targets. and Phh have interacting effects

on the remaining inventory. As with MiNodel 1, this model has a significant lack of fit for

likely the same reasons. However, with R2 = 0.9354 and R = 0.9269, we know that about

93% of the variation in the response is explained by the model.
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Our final quadratic model is shocwn in Equation 5.6.

'32 = 1.28 + 0.86A - 0.31B - 0.38C + 0.22D - 0.096E

+ 0.21A2 + 0.21B - 0.25AB - 0.19AC + 0.085BC
(5.6)

We again check the assumptions of our model through three seI)arate charts. Figure 5-7

shows the normall probabilitv plot for Model 2. This chart. shows slight departures fiom
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F:igure 5-7: Normal Probability Plot of Residuals for Model 2

normality. especially at the ends of the data points. with most points in the center fa.lling

along the line. According to Montgomery slight deviations from normality such a.s these do

not significantly impact the validity of the ANOVA results [13]. Therefore, we may I)roceed

with our analvsis of the model.

We next examine the independence between runs shown in Figure 5-8. This chart depicts

no pIattern between the runs and so there is no reason to suspect any violation of the

independence or constant variance assumption.

81



I
-0

-1

-3

1 18 35 52 69 86

Run Number

Figure 5-8: Residuals versus Runs in Model 2

82

1



Finally. Figure 5-9 shows a chart of the residuals versus the p)redictedl values from our

lodel. The model is valid if the error is not related to the predict.e(l response variable. This

3 0o

1.39

-0 22
I

-184

-345

0.31 1.26 2.21 316 4.10

Predicted

Figure 5-9: Residuals versus Predicted Values in Model 2

chart suggests no pattern or structure in the error. Our model proves to be valid as it does

.ot violate any of the assurmptions.

5.2.3 Model 3

In our third model. we fit a quadratic equation to the response variable AIV that includes

terms based on their significance, determined in a stepwise manner. The results from the

ANOVA are shown in Table 5.7.

Based on a p < 0.0001, M\Iodel 3 is significant. Although factor D is not statistically

significant, it is included in the model. Despite a. lack of statistical significance, we include

P: ,,,,, because of its operational importance as a factor in a single engagement. In addition

to main effects, this model has many other terms that are significant. Two square terms
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Source Sum of Squares [DF Mean Square F Value P-Value
Model 0.45 13 0.035 100.79 < 0.0001

A 0.11 1 (.11 333.38 < 0.0001
B 0.10 1 0.10 304.24 < 0.0001
C 0.015 1 0.015 44.42 < 0.0001
D 3.920E-004 1 3.920E-004 1.14 0.2894
E 0.18 1 0.18 529.31 < 0.0001

B 2 3.614E-003 1 3.614E-003 10.50 0.0018
*E2 2.464E-003 1 2.464E-003 7.16 0.0092
AB 7.042E-003 1 7.042E-003 20.46 < 0.0001
AC 2.025E-003 1 2.025E-003 5.88 0.0178
AE 2.275E-003 1 2.275E-003 6.61 0.0122
BC 5.131E-003 1 5.131E-003 14.91 0.0002
CE 7.704E-003 1 7.704E-003 22.38 < 0.0001

Residual 0.025 73 3.442E-004
Lack of Fit 0.023 29 7.811E-003 13.90 < 0.0001
Pure Error 2.473E-003 44 5.621E-005
Cor Total 0.48 86

Table 5.7: Analysis of Variance on Awll

are significant: B2 and E2 . Therefore. we know that the number of targets and the weight

have a quadratic effect on the difference in our weighted perforniance metric, WI1. Model

3 also includes six two-way interactions: AB. AC, AE, BC, and CE. It should be noted

that these six effects are the three included in Model 2: AB, AC, BC. in addition to all of

the statistically significant main effects interacting with factor E from Model 3. It is logical

that factor E is significant in addition to its interactions as wl has a direct impact on the

calculation of Aw. Therefore. we know that wl has a large impact on the overall performance

of Case 3. Model 3 also has significant lack of fit regardless of the terms included. but its

R2 = 0.9472 and Ra2 = 0.9378.

Our final quadratic model is shown in Equation 5.7.

,2 = 0.064 + 0.038A - 0.036B - 0.013C + 2.122 x 10 3D - 0.046E

- 8.329 x 10-3 B 2 + 4.847 x 10-3E2 + 0.010AB - 5.624 x 10-3AC

- 5.962 x 10-3AE + 8.954 x 10-3BC + 0.011CE - 5.356 x 10-3DE

(5.7)

84



XWe' check thlle validity of our model l)v verifying tile assulmptions ab)out the error terml.

e. First. we check the nornlalitv of the residuals with the chart in Figure 5-10. The points
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Figure 5-10: Normal Probability Plot of Residuals for MIodel 3

i:tl this chart all lie verv close to the normalitv line, so we call assume the error is normally

distributted.

To deternline if the runs are independent, we use the chart in Figure 5-11. The residuals

in this chart appear completely random. which indicates independence and constant variance.

Third, we eamine Figure 5-12 to check if the residuals are related to the predicted

resI)onse. There is no pattern to suggest that the residuals are not independent of the

response. Based on these three charts, we have checked all of the assumptions of Model 3.

From our three sta.tistica.l models, we have seen that each of the five factors does not

have a simple linrea.r effect on the pIerformance of Cases 2 and 3. In all three models. there

were significant quadratic and two-way interaction terms. This imIplies that the response

variables are many times determined by a complex interaction of factors. Knowing this
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result. we proceed to our single-factor experiments.

5.3 Single-Factor Results

After gaining insight as to how five factors affect the performance of Cases 2 and 3. we. further

investigate the effects of these factors in single-factor exl)erilnents. Experiments 5 through

8 give us a more in-depth idea as to how sensitive the response variables are to changes

in each factor. We note that ba.sed on the results of Experiment 4, we cannot expect that

the results of these single-factor experiments to be completely typical of all scenarios. Due

to interactions between factors, beginning these experiments with different baselines could

prove to yield sonliewhat different results. Despite this fact. we still gain valuable insight.

from these one-factor experiments.

5.3.1 Experiment 5

Ve begin by varying the intermediate weight, ?'i,,

we examine the performance of each case as w is

Table 5.8 shows the policy solutions for each case at

in Experiment 5. In this experiment,

varied at. levels between zero and one.

various levels of uw. In this table, Cases

w Cases 1 and 2 Case 3

0.0 4:0.3.6.6 3:0.1,2,3
0.1 4:0.3,6,6 3:0.1.2.3
0.2 4:0.3,6.6 3:1.1,2.3
0.3 4:0,3.6.6 3:1.1,2.3
0.4 4:0,3,6.6 3:0.1,2.3
0.5 4:0.3,6,6 3:1,1.2,3
0.6 4:0.3.6.6 3:1.1,2,3
0.7 4:0,3.6,6 3:1,2,2.3
0.8 4:0.3.6.6 3:1,2.2,3
0.9 4:0.3.6.6 3:2,2.2.3
1.0 4:0,3,6.6 3:2.2.2,3

Table 5.8: Policy Solutions for Experiment 5

1 and 2 always have the same policy solution regardless of wI. This occurs because the MMR
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algorithnl used in these cases does not take v'l into account when making decisions. The

MNSIR algorithnl relies only on i. p. and SSPK to make decisions. Ill contrast. the POiIDP

solver used in Case 3 relies on the reward function calculated by tll to determine a policy

solution.

Table 5.8 also shows that in general as w. increases. the policy solution uses llore inter-

eI)tors in the second action. The first action consistently rellains at al = 3 regardless of

the l,/. This decrease in (onservatism occurs due to the nature of the reward fnction in

Equation 3.6. Higher levels of wI correspond to a R(s, o. a. s') that values P,,v. and likewise

lower levels of urf correspond to a R(s. o. a. s') that. values W. We should note that while the

policy solutions for Case 3 generally add more interceptors to action 2 as /w1 increases. this

trend does not occur for w'1I = 0.4. In this scenario the POIDP solver chooses to use one

less intercep)tor for a than the policy solutions for 'll = 0.3 and :/iw = 0.5. This aberration

nlay result from some instability in the POMIDP solver solution.

We. further investigate the impact of w/?l on the performlance of each case by examining the

problabilities of no leakage as ?/i changes. A chart of 1.'l versus P,1 is shown in Figure 5-13.

Ill this chart. Cases 1 and 2 a.re denoted by a single line. This occurs because the MIIR

algorithnl in both of these cases has the sanme policy solution regardless of 'u!i. Figure 5-

13 shows tha.t for Case 3 as U!1 increases, Pni generally increases as well. P,, begins at

app)roximatelv 84%c, and continually increases until it approaches the P,,i for Cases 1 andl 2

at appIroximlately 95%. Once w1r > 0.7, we see that P,, remains greater than 93/c. almost if

n.ot equaling the performance of Cases 1 and 2. We also notice the effect of the aberation in

policy solution a.t. .1 = 0.4 on P, 1,. as it decreases momentarily against the general trend.

Next, we consider a plot of the inventory remaining against varying levels of ?'t, shown

in Figure 5-14. This plot shows that Cases 1 and 2 have an average remaining inventory

of approximately 3.5 interceptors. The policy solutions of Case 3 gradually become less

conservative as uw' increases and leave less interceptors in inventory. For this case. a u1 ~ 0

corresI)onds to ¢1i2 ; 6. and a ui 1 corresponds to /32 m 5. Again. we notice the sa-me

al)erration at 'I = 0.4 as the only point on the line where the slope is positive.
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Lastly. we examine the effect of u.!l on 11'. A chart of this data is shown in Figure 5-15.

Based on the T4 measure of performance. Case 3 always outperforms the other cases. except
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Figure 5-15: W versus uIy

for wl = 1.0 where Aw 0. which could be explained by random error in the simulation.

The Wt' of Case 3 gradually increases as wl increases, but it does not increase as much as

17 for Cases 1 and 2. This difference in 14' is greatest when ul = 0 and decreases gradually

until there is no significant difference at w1! = 1.0. Based on 14, as we increase w, the

advantage of Case 3 over Cases 1 and 2 decreases.

5.3.2 Experiment 6

In Experiment 6 we vary Phh and P,,,,, simultaneously to examine the effect on the perfor-

mance of Cases 2 and 3. It should be noted that in Ca-se 1 Phr, = P,,.m = 1, so there is only

one data point for comparison. Table 5.9 shows a table of policy solutions for Cases 2 and

3 as P,,, and Pnr,, are varied between values of 0.5 and 1.0. In this experiment the policy
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Plh = Prn| Case 2 Case 3
0.5 4:0.3.6.6 3:2.2.2.2
0.6 4:0.3.6.6 3:1.2.2.2
0.7 4:0.3.6.6 3:1.2.2.3
0.8 4:0.3.6.6 3:1.2.2.3
0.9 4:0.3.6.6 3:1.2.3.3
1.() 4:0.3.6,6 3:0.2.3.3

Table 5.9: Policy Solutions for Experiment 6

solution for Case 2 is always constant. as it does not account for varying Ph,, or P,,,,m. Ill

other words Case 2 always assumes that P,,, = P,,- = 1. and conse(luently takes the same

actions. In colltrast. Case 3 does account for this imperfect kill assessment.

The values of Ph,, and P,,, affect the policy solutions in two different and indel)endent

ways. P,, affects the number of iterceptors used with none or few targets observed. P,,,,,

affects the nunber of interceptors used when a higher number of targets are observed. With

lower values of PEl1,. the POIDP solver uses fewer interceI)tors in action 2 with observations

of mlany targets remaining. In a sense, it does not trust these observations and does not use

as many interceptors as seems appropriate. This occurs due to low P,,, which implies a larger

t:,,lh. This means that we think we missed more targets than we actually missed. Therefore.

when many targets are oblserved remaining, there is a good chance some of those have been

hit. Table 5.9 shows that when P,,, = P,,,n = 0.5 and three targets are observed, the

PO()IDP solver only uses two interceptors. Given this PI,,, and SSPK = 0.8. it is unlikely

that all targets were mnissed even if they were all observed missed. As P,, improves. the

POMIDP solver gradually uses more interceptors with observations of two or three targets.

Inl a sense, it can trust the observations more.

While P,1h affected the policy solution with larger observations, Pm,,, affects the policy

solution when fewer targets are observed. With lower values of P,,,,, the POIDP solver

uses more interceptors in action 2 when observing zero targets remaining. This occurs due to

a low P,,,,.l which implies a higher Ph,, . This means that we think we hit more targets thanl

we actually did. When zero targets are observed remaining. there is a good chance sonicme still

remain. In the scenario PEI, = P,,, = 0.5, the POMDP solver in Case 3 uses two interceptors
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when it. ol)serves zero targets remaining. As P,,,, imnproves. the POMDP solver can trust its

observations more and gra(lually uses fewer interceptors with observations of zero targets.

Finally. when P,,,, = 1. the POMIDP solver uses zero interceptors for an observation of zero.

In summary, the two effects of P,,, alld P,,,, produce the following result: a.s P,, and P,,,,,

increase, a decreases and a(1 and a increase.

In addition to the two independent effects of P,, and Prn,,. we observe that as Phh and

P,,,, both increase. action 2 goes from being comI)letely independent, of the observation to

being very dependent on the observation. The PONIDP solver cannot trust the observations

when PI,,, = P,,, = 0.5. so it always assigns two intercel)tors. However. when Ph,,, = P,,,, =

1.0, the POMIDP solver assigns very differently depending on the observation.

While the policy solutions provide an idea of how the decisions are made. we also need

to examine how Ph and P,,rn actually affect the performance of Cases 2 and 3. Figure 5-16

shows a plot of probl)alility of no leakage versus Ph,,, and P,,7,,,. This chart shows that most
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of the time Case 2 outperforms Case 3 in terms of P,, . Case 1 provides olle point. which is

all upper lbounmd. that is only matched by Case 2 when P,, = P,,,, = 1. This makes sense.

b)ecause when ,h1 = P,,,,r = 1. Case 1 and Case 2 are essentially the same. WVhile Case 2

always outperfoirms Case 3 except when Ph,, = P,,,,, = 0.7. it is important to note that Case

3 always almost matches the P,M of Case 2. There is never a difference in P,,t greater than

3c%/. and Case 3 values for P,,t never fall below 93/(%.

\e also exanmine a plot of Phi, and P,,,,, versus inventory remaining in Figure 5-17. This

_- ------ ---
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Figure 5-17: j3 versus Ph~h and P,,,

figure shows that Ca-se 3 always has a higher average inventory renlaining than Cases or

2. The diffrene been the remaining invenltories of these cases does decrease as Phh and

P,,, increase. but it never falls below one interceptor. Wlhen P : = P,,, = 0.5, A, > .

This is an important result, because the policy solutions of Ca-se 3 provide P,,, that almost

match those of Case 2 while saving between one and three extra interceptors.

Lastly. we analyze a plot of TV versus Phh ad P,,,, shown in Figure 5-18. This chart
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p)roves to be very similar to Figure 5-17. Ca-se 3 always has a higher H' than Cases 1 and 2.

anlld the differene between tel. AL,W. decreases as P,, and P,,n, ecrease.

(O)verall. Experiment 6 showed that over various levels for P,,, anlld PM,, Case 3 almost

natc(hes P,,1 for Case 2 and always outpIerfornls Cases 1 and 2 with respect to inventory

relailling and I1'.

5.3.3 Experiment 7

Experiment 7 varies the number of initial interceptors in order to compare the perfornlance

of all three cases. Table 5.10 shows the policy solutions for the three cases in this experiment.

Again. ill this experinlent. Cases 1 and 2 have the same policy solution based on the MMNIR

Interceptors Cases 1 and 2 Case 3
4 3:0.1.1.1 2:NA.1.1.1
5 3:0.2.2.2 3:1.1.1.1
6 3:0,3.3.3 3:1.1.1.1
7 3:0.3,4.4 3:1,1.2.2
8 3:0.3.5,5 3:1.2.2.3
9 3:0,3.6,6 3:1.2.2.3
10 4:0.3.6.6 3:1.2.2.3
11 5:0.3.6,6 3:1.2.2.3
12 6:0.3.6.6 3:1.2.2.3
13 6:0.3.7,7 3:1,2,2,3
14 6:0,3.8,8 3:1.2.2.3
15 6:0.3,8.9 3:1,2,2.3
16 6:0,3.8,10 3:1.2.2,3

Table 5.10: Policy Solutions for Experiment 7

algorithmn. The policy solutions for all cases gradually use inore interceptors as the inventory

increases. However, there are many differences between the policy solutions. The first. major

difference between Cases 1 and 2 and Case 3 is that the POMIDP solver in Case 3 always

assigns one interceptor for action 2 when the observation is zero targets. In contrast, the

MIIR algorithm never assigns an interceptor when no targets are observed. Another differ-

ence between the cases is how each case uses its inventory. In Cases 1 and 2 the algorithm
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takes advantage of its inventory assigning mnole interceptors as its inventory increases. The

POMDP solver for Case 3 is far more conservative. Regardless of its inventory, it never

assigns more than six interceI)t.ors in a. single engagement. When 30 > 8 the policy solution

is always (3:1,2.2.3). In addition. for a small initial inventory of interceptors. Case 3 does

not always use all of its inventory, while Cases 1 and 2 always use their filll inventory. In

fact with four initial intercei)tors. Case 3 only uses three interceptors, assigning al = 2 and

a2 = 1 regardless of the observation.

While the policy solutions provide some insight as to the sensitivity of each case to

changes in initial inventory, we also examine the sensitivity of the probability of no leakage,

remaining inventory, and T . Figure 5-19 depicts a chart of P,, versus interceptors. This

I.Z
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.-- Case 3
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Figure 5-19: P,,, versus/30

table shows that Case 1 is an upper bound on P,,I that. is almost reached by Case 2 for high

values of /o. In general, Case 2 also does better than Case 3. Except for o30 = 4 and 30 = 5.

the difference between Cases 2 and 3 is not too considerable. When /30 > 8, the difference
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in P,, is inever greater than 6%.

Next we consider a plot of interceptors versus inventory remaining in Figure 5-20. This
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Figure 5-20: 3 2 versus 13o

chart shows that Case 3 almost always has more remaining inventory than Cases 1 arid 2.

and Case 1 performs better than Case 2. This occurs because Case 3 typically has a much

nlore conservative policy solution. Although they have the same policy solutions. Case 1 has

nmore remaining inventory than Case 2 because it sees observations of three and two targets

nluch more rarely, as in Case 1., Phh = 1.

We further explore the relationship of initial inventory to each case's performance with a

plot of interceptors versus V in Figure 5-21. In this figure, we observe that as in Figure 5-19.

Ca.se 1 serves as an upIper bound on I for the other two cases. The difference from that

plot is that Case 3 has a higher W than Case 2 after > 7. Even when 4 < ;30 < 7, the

difference in 1' t: between Cases 2 and 3 never exceeds 0.05.

Overall. this experiment showed that the performance of Case 3 is somewhat sensitive to
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chlallges in initial inventory. pIarticularly with respect to P,,I. TWhile Case 3 outIperforms the

other cases in terms of inventory remainlling, it does not have P,,1 levels as high as Cases 1

or 2 for lower initial inventories of interceIptors. Inl add(litioll. ITf for Case 3 does not match

tillat of Case 2 for lower numbers of interceptors.

5.3.4 Experiment 8

In our final experiment. we vary the number of initial targets. p(, between one and ten.

leaving all other factors at the baseline level. Te policy solutions for this experiment are

shown in Table 5.11. The policy solutions in this table are not extremely different between

Targets Cases 1 and 2 Case 3
1 1:0.3 2:0.2
2 3:0.3.7 2:1.2.2
3 4:0,3.6.6 3:1.2.2.3
4 4:0.3.6.6.6 4:1.2.2.3.4
5 5:0.3.5.5.5,5 5:1.2.3.3.3.3
6 6:0,3,4.4.4.4,4 6:1.2.2.2.2.2.2
7 7:0.3.3.3.3.3,3.3 7:1.1.1.1.1.1.1.2
8 8:0.2,2.2.2,2.2.2.2 8:1.1.1.1.1.1.1.1.1

9 9:0.1.1.1.11,1.1,1.1 8:N A.1.1.1.1.1.1.1.1

10 10:0.0.0.0.0,0.0.0.0.0.0 9:NA.1.1,1.0.0.0.0.0.0

Table 5.11: Policy Solutions for Experiment 8

Cases 1 and 2 and Case 3. Except when po = 1. the second action given an observation of

zero targets for Case 3 is always a = 1. In general, Case 3 is much more conservative in

terIlls of its second actions. Particularly when po > 5. the POMDP solver in Case 3 does

not always use a.s mlany interceptors in action 2 as targets observed. This occurs because

the reward function values remaining inventory, and it is still fairly unlikely to mIiss half of

the targets given the baseline SSPK.

The number of targets versus probability of no leakage is plotted in Figure 5-22. In this

figure, Case 1 always performs the best with respect to P,,t. and Case 2 performs better than

Case 3. Case 3. owever. almost matches the performance of Case 2 for po < 5.

101



- Case 1

-- Case 2
-- - --- 0------ Case 3

"\

1 2 3 4 o 6 7 8 9 10
Targets

Figure 5-22: P versus po

102

1 

08 -

0 06 
z

0.4

0.2

O 



Again. we assess

remailning in Figure

8

7

8

is

3

2

0

the effect of varying the nunlber of targets with a chart of inventory

5-23. In this chart. as with most of the other exl)erimlent.s. Case 3
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Figure 5-23: /32 versus p(

generally has the greatest remaining inventory, with Case 2 having the least remaining

inventory. Also.. similar to previous experiments. the difference between Cases 2 and 3

becomes greater as the number of targets increases.

Finally, we compare the three cases with the weighted combination of P,,, and /.2 in

F'igure 5-24. This chart appears much like that of Figure 5-22. in which Ca-se 1 performs the

best. However, with respect to I, Ca.se 3 does better for Po < 5 and Ca.se 2 does better for

p) > 5. This nhart g along with the other two from this experiment show that Case 3 is very

sensitive to chlanges in the number of initial targets. Specifically, as p approaches /30, Case

3 becomes much less effective, and the INMMR algorithml of Case 1 and 2 proves superior with

respect. to P,,. 32, and IV.
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5.4 Chapter Summary

Tllis chal)ter contains the results and analysis for all eight experimenlits. It begins with a

discussion of the lbaseline case. chosen as a possible real-world sc'enario. This baseline is the

starting poillt for all other experiments. The first three experiments varield factors that would

later bIe held constant: algorithnl. terminal reward function. and SSPK. We found that

all algorithms provide the samne policy solution, lbut incremental pruning generally provides

the fastest and :inost stable algoritlln. In Experiment 2 we found that the PO\IDP solver

is verv sensitive to the terminal reward function, F(s). and we deterlined a setting for this

finction that produces reasonalble results. Experiment 3 showed that the l)erforlrlnace of

each ('case is very dependent on SSPK, however, Case 3 generally performs as well if not

better than the other cases regardless of SSPK.

After conducting the initial experiments, we exanlined the way five factors affect )both

Case 2 and Case 3. We ran Experiment 4 in a central composite design in order to test for

quadratic terms and factor interactions. Ve set up three quadratic Inodels on the differences

of P,,t. ,'32. and between Case 2 and Case 3. We found that all three models prove(d

significant. and that all three had significant quadratic termls and two-way interactions. This

tells us that there are complex relationships a.rnong the factors that affect the I)erforniance

difference between Cases 2 and 3.

Lastly, we ran four single-factor experiments to further analyze the effect on the perfor-

mallce for each of the five factors in Experiment 4: wl, Ph. P,n, o0, and po. The overall

comnclusions froim these four experiments were generally the samne. We found that Case 3

tyl)ically has lower Pl than the other two cases, but for most scenarios, this difference is

very small. MIany times Case 3 is within 3% to 6% of Case 2 in ternls of P,,1. At the same

timne. Case 3 typically conserves may more interceptors. This can be attributed to Ca-se 3

always assigning an interceptor with an observation of no targets. These two facts lead to a

Ca.se 3 W that is generally better than Ca.se 2 anld sometimes better than Case 1. Overall.

we found that using the PO.MDP solver in Case 3 provides policy solutions that achieve

a.lost equal P,,1 as in Case 2. but consistently have a greater iventory of interceptors re-
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mIaining. Using I' as an overall mletric. Case 3 generally does better thanl Case 2. These

experiments also showed that while Case 3 was somewhat sensitive to all factors. it proved

most sensitive to 3o and Po. The performance of this case was especially questionable as the

scenario approachedl /30 Po.
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Chapter 6

Summary and Future Work

This chapter serves as a sunlmmary of the thesis and sonle final conclusions. It also provides a

descriI)tion of possible future work expanding on this research or applying it to other areas.

6.1 Thesis Summary

The goal of this thesis is to address the issue of imperfect information received fron sensors

in a ballistic missile single engagement and to investigate a. method for making decisions

in light of this uncertainty. To our knowledge, this is the first work that addresses the

issue of imperfect kill assessment in the single engagement problem (consisting of a wave

of incoming targets and a set of interceptors). We deal with the imperfect information by

fornlulating the problem as a partially observable Mlarkov decision process (PONIDP). We

assess the performance of this formnulation by comparing it to two other cases in a series of

experiments.

In Chapter 1 we outlined the motivating problemn for this work: a Groulnd-based Mid-

course Defense (GMID) systenl. As this system grows and improves, uncertainty in sensor

reliability mnay be an issue. The single engagement problem is assumned to be a "shoot-

look-shoot" scenrio. After an initial shot of a set of interceptors at a set of targets, sensors

observe which targets were hit and which targets were missed before the second shot is taken.
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Imperfect information from these sensors could have serious affects on the decision of how

many interceptors to use in the second shot.

Chapter 2 focuses on the basis for our formulation. We discuss the use of dynamic

progranming to optimize an objective over multiple decisions. We describe the class of

problems known as Markov decision processes (IiDP), which are the basis for POMIDPs.

WVe outline the components of MDPs and the decision cycle. Next. we expand on this set of

problems to describe the POM\DP as an M\DP in which the state of the system is not known

with certainty. We explain the use of the belief state as a. sufficient, statistic for the state.

Chapter 2 concludes with a description of the weapoii-target assignment (WTA) problem.

While the WVTA approach does not account for the inperfect kill assessment addressed in

this thesis. it does provide some useful mathematical ideas about methods for interceptor

assignment.

In Chapter 3 we present three cases for comparison: perfect information from our

sensors (Case 1), imperfect information from sensors assumed perfect (Case 2). and imperfect

information from sensors that decisions account for (Case 3). We formulate the third case

as a. POMIDP.

Chapter 4 provides a description of the process used to solve and test the performance

of each of the three cases. We begin with a. description of the maximum marginal return

(MIMR) algorithm used to make interceptor assignments in Cases 1 and 2. From there we

discuss the POMDP solver and its solution algorithms used to make interceptor assignments

in Case 3. Next, we explain the solution process for a. single experimental run. In this process,

a simulation for the single engagement uses either the IMMR algorithm or the POMDP solver

to make interceptor assignments. This simulation over many trials estimates the performance

of each case. Chapter 4 continues with a. description of the experimental design. We begin

with experiments to assess the effect of factors to be held constant in later experiments.

Next, we conduct statistical analysis on three models to determine how five different factors

impact the performance for Cases 2 and 3. Lastly, we conduct single-factor experiments on

these five factors to gain a more detailed understanding of how they affect performance.
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In Chapter 5 we preselnt the results fromn the exI)erimlents described ill Chapter 4. For

the initial expIeriments we find that the incremental pruning algoritllhm for solving POMIDPs

is the fastest and most stable algorithm. We also find that the algorithml is very sensitive to

the terminal reward function. and we find a setting that provid(es reasonable results. Lastly.

we show that all three cases are very sensitive to single-shot probability of kill (SSPK). but

Case 3 generally performls better when varying this factor. In Experiment 4 we find that

all three statistical models are significant. We find that not only all five factors. but at

tinles their quadratic effects and interactions. highly impact the response variables. For the

single-factor experilnents we find that for most of the experinments. the POMIDP approach of

Case 3 conserves more interceptors and still ap)roachlles the probability of no leakage of Case

2. Based on the overall performance inetric. 11. we show that Case 3 tyl)ically outperforms

Case 2.

In conclusion. the purIpose of this thesis was to investigate the impact of imperfect kill

assessment. UWe showed that assuming perfect information in a world where it is imperfect

maly significantly decrease the performance of tile system, leading to a much lower probability

of no leakage and wasted inventory. Our POMIDP approach consistently conserved far more

interceptors and generally performed well in termns of probability of no leakage. At the very

least. this approach showed that using a. single interceptor when no targets are observed canl

improve the overall probability of no leakage significantly. This approach. however, was very

sensitive to the scenario. in particular the initial interceptors and initial targets. The policy

solutions produced by the POMDP solver were not always reasonable. It is unlikely that a

decision mnaker would use fewer interceptors than targets observed, unless that observation

were extremely unlikely. Overall. the PONMDP a.pproach plroved a valuable tool for making

decisions under uncertainty in the single engagement problem.

6.2 Future Work

The work in this thesis on imperfect kill assessment could easily be expanded and continued

to handle a. broader array of missile defense scenarios. \Ve suggest the following a.reas of
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further research in the missile defense field:

· Our work assumed uniform reachability bet~weeii targets and interceptors. In reality,

incomling missiles have varying degrees of reachability depen(ing on target destination

from where they are launched. and the location of the interceptors in relation to the

flight. path. In particular. there are currently two different interceptor locations.

* Our work also assumed identical single-shot probabilities of kill, SSPK, for each target.

Targets may actually have different SSPKs based oil each target-interceptor assign-

ment; that is, some targets may be more difficult to destroy than others.

* This work did not address the existence of decoy targets. In reality, it is possible that

some of the initial or observed targets are decoys and not actually warheads. This

discrimlination between decoys and actual targets adds a new element of uncertainty

to the problem that was not formulated in this thesis.

* We also assunled that each target had an equal value. It is very reasonable that

not every incoming target has the same value, especially if they are headed towards

different locations. Certain cities or military installations have greater strategic value

than others based on their population or on other factors. Thus. the value of any

individual incoming missile might vary depending on its destination.

* This work also assumed that the initial state of the system is completely observable;

that is, the initial wave of targets is known with certainty. It is quite possible that this

may not be true. Future work could formulate a POMDP with a. different, initial belief

state.

* Our work only considered one wave of incoming targets. Considering multiple waves

of targets and modeling the state uncertainty in multiple waves would be a logical

extension of this research.

In addition to expanding this research in the context of the missile defense problem,

the work in this thesis could easily apply to a variety of other problems. The POMDP
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fiorillation as well as the techniques used to solve the PO.MDP mlay be applied to other

lbattle lalnageIm.ent rob)lenls. Specifically. pIroblemls involving allocating limited resources

ill a lilliite(l time-framle under uncertainty with consequences for every action mnay closely

resemble the single engagement problem. These problems could be defense or lnonll-defense

relatedl.
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Appendix A

Glossary of Acronyms and Terms

action : decision made at each stage in a PORIDP

alpha vector : vector with a value for each state corresl)onding to an action

ANOVA : Ana:lsis of Variance

belief space: ,et of all possible belief states

belief state: probability distribution over all possible states

BMDS : Ballistic Missile Defense System

boost phase : first phase of missile flight in which it is powered by engines

case: set of assumptions and realities for the single engagement problem

CCD: Central Composite Design

DSP: Defense Support Program

EKV: Exoatniospheric Kill Vehicle

epoch : iunber of stages left in which actions can be taken
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experiment : test ill which changes are made to input variables of a process in order to

observe the reasons for changes in the output variables [13]

factor: input variable that affects the outconle of the exp)eriment

GMD : Ground-based Midcourse Defense

interceptor: defensive missile designed to destroy incoming offensive missiles

kill assessment : the conclusion by a sensor network of whether an incoming target was

destroyed

leakage : allowing a target to pass through defenses and strike its destination

MDP : Markov Decision Process

midcourse phase : second phase of missile flight in which it travels above the atmosphere

and releases warheads

MMR: M\aximum Marginal Return

observation : perceived state of the system

policy solution: provides the optimal action a.t each stage for each possible state

POMDP: Partiallv Observable Markov Decision Process

response: output variable from an experiment.

reward : conlsequence of an action

RV : Re-entry Vehicle

shot: one-tilme assignment of nmultiple interceptors to multiple targets

single engagement : shoot-look-shoot opportunity against one wave of incoming targets

SSPK : Single-shot Probability of Kill
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stage : partition of a dynamic progralllling probl-lenl ill which action Inmst l)e mna(le

state : condition of tile systeim

target : incomling offensive missile

terminal phase : third Illase of missile flight in which warhea(l falls back into atmllosphere

transition : system halnge from one state to another

U JAV : nllmanned aerial veihicle

IJSNORTHCOM: United States Northern Conmland

lJSSTRATCO:M: United States Strategic Commrnand

value function: piecewise linear combination of alpha. vectors over a belief space

WTA : Weaponl-Target Assignment
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Appendix B

Notation

B.1 POMDP Formulation

, E S state

, E A : action

o C (: ob)servatioll

7'(s. a, s') : transition model

O(s, o. a. , s') : observation model

R(s. o. a., s') : intermediate reward model

F'(.s) : terminal reward model

b E 7(s) : belief state

b( s) = p: probability of being in state s

V/'(b) POMDP value finction

6 : discount factor for finite horizon POMIDPs
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B.2 Problem Implementation

130 : number of initial interceptors

P0 : number of initial targets

: number of interceptors remaining in inventory

p: number of targets remaining

SSP : single-shot probability of kill

g : number of targets with most interceptors assigned to them

2 : number of targets with fewer interceptors assigned to them

n.: number of interceptors assigned to each of the g targets

PK1 : overall probability of no leakage for each of the gy targets

PK 2 : overall probability of no leakage for each of the 92 targets

PKsi,, : randomly generated number to compare to PK1 or PAk2 in simulation

h : number of hits from an assignment

Pmml : probability of observing a miss given a miss actually occurred

Ph.m : probability of observing a hit given a. miss actually occurred

Ph,, : probability of observing a hit given a hit. actually occurred

P7 h : probability of observing a miss given a hit. actually occurred

Pobs randomly generated nlumnber to compare to Ph,, or Pmrm in simulation

m.: number of observed misses

h : number of observed hits

118



m1.n : nluhll)el of actual misses

h,, : nnlll)er of actual hits

lb : lower bound oil observations

u) upper boun d on observations

-ic, : intermediate reward( weight

"'u : terminal reward weight on inventory remaining

u'r, : terlninal reward weight on targets remaining

B: number of interceptors remaining in inventory during MIM\IR assignment pIlanning

I : total numbe:r of interceptors remaining in inventory for all simulation trials

L : total lnuilbe:r of sinmulation trials that allowed target to leak through defenses

t : ullrlber of simulation trials

B.3 Experimental Design

( : distance fromli center points for axial runs

7f : lmll)er of factorial runs

'n, : ilrl)er of axial runs

n, : nunmber of center points

B.4 Results

P,,l : probability of no leakage

/% : intercelptors remlaining in inventory after second shot
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11' : weighted combination of probability of no leakage and inventory remaining

Ap,, : difference in probabilities of no leakage between Case 2 and 3

nAO : difference in inventory remaining between Case 2 and 3

A1w : difference in 117 between Ca.se 2 and 3

e : residual or error between predicted and actual response
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