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Abstract
This thesis investigates the impact of lack of information and decentralization of
dlecision-making on the performance of inventory, supply chain, and transportation
systems. In the first part of the thesis, we study two extensions of a classic single-
item, single-period inventory control problem: the "newsvendor problem." We first
analyze the newsvendor problem when the demand distribution is only partially spec-
ified by some moments and shape parameters. We determine order quantities that
are robust, in the sense that they minimize the newsvendor's maximum regret about
not acting optimally, and we compute the maximum value of additional information.
The minimax regret approach is scalable to solve large practical problems, such as
those arising in network revenue management, since it combines an efficient solution
procedure with very modest data requirements. We then analyze the newsvendor
problem when the inventory decision-making is decentralized. In supply chains, in-
ventory decisions often result from complex negotiations among supply partners and
might therefore lead to a loss of efficiency (in terms of profit loss). We quantify the
loss of efficiency of decentralized supply chains that use price-only contracts under the
following configurations: series, assembly, competitive procurement, and competitive
distribution.

In the second part of the thesis, we characterize the dynamic nature of traffic
equilibria in a transportation network. Using the theory of kinematic waves, we
derive an analytical model for traffic delays capturing the first-order traffic dynamics
and the impact of shock waves. We then incorporate the travel-time model within
a dynamic user equilibrium setting and illustrate how the model applies to solve a
large network assignment problem.

Thesis Supervisor: Georgia Perakis
Title: J. Spencer Standish Associate Professor of Operations Research
Sloan School of Management
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Structure of the Thesis

The thesis investigates the impact of lack of information and decentralization of

decision-making on the performance of inventory, supply chain, and transportation

systems. The first part of the thesis analyzes two extensions of the traditional

"newsvendor problem," which is a single-item, single-period inventory control prob-

lem.

The newsvendor model, like most stochastic inventory models, assumes full knowl-

edge about the demand probability distribution. However, in practice, it is often dif-

ficult to completely characterize the demand distribution, especially in fast-changing

markets. In Chapter 1, we study the newsvendor problem with partial information

about the demand distribution (e.g., mean, variance, symmetry, and unimodality).

Specifically, we derive the order quantities that minimize the newsvendor's maximum

regret about not acting optimally. Most of our solutions are tractable, which makes

them attractive for practical application. We also quantify the "Price of Information,"

defined as the maximum opportunity cost from not knowing accurately the demand

distribution. We then illustrate how the minimax regret criterion can be adopted to

solve complex inventory problems, such as those arising in network revenue manage-

ment, since our approach combines an efficient solution procedure with modest data

requirements.

In Chapter 2, we quantify the loss of efficiency (i.e., loss of profit) associated with

decentralizing inventory decision-making. In particular, we measure the efficiency of

decentralized supply chains that use price-only contracts. With a price-only contract,

a buyer and a seller agree only on a constant transaction price, without specifying

the amount that will be transferred. It is well known that these contracts (lo not
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provide incentives to the parties to coordinate their inventory/capacity decisions.

Efficiency is measured using the "Price of Anarchy" ratio, defined as the largest

ratio of profits between the integrated supply chain and the decentralized supply

chain. We characterize the efficiency of various supply chain configurations: push or

pull inventory positioning, two or more stages, serial or assembly systems, single or

multiple competing suppliers, and single or multiple competing retailers.

In the second part of the thesis, we analyze a model of traffic assignment, called

the "dynamic user equilibrium," in which travelers noncooperatively seek to minimize

their travel time. To determine such an equilibrium, it is important to evaluate the

impact of congestion on a driver's travel time. In Chapter 3, we derive an analytical

travel-time function, based on the theory of kinematic waves, and integrate it within a

dynamic user equilibrium setting. Our travel-time model captures the first-order traf-

fic dynamics as well as the impact of shock waves. Numerical examples demonstrate

the quality of the analytical function, in comparison with simulated travel times. We

also prove that the travel-time function is continuous and strictly monotone if the

flow varies smoothly. We then illustrate how the model can be used to solve a large

network assignment problem through a numerical example.

All proofs appear in the appendix.
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Part I

Beyond the Newsvendor Model
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Introduction to Part I

The newsvendor model is a single-item, single-period stochastic inventory model. A

make-to-stock firm has to decide how much to order before a selling season, without

knowing the demand, so as to maximize its expected profit.

The decision variable is the order quantity, denoted by y. Demand D is random

and is assumed to follow a distribution F(x). One cannot sell more than what has

been ordered; therefore, the amount sold will be min{y, D}. We assume that the firm

has a unit ordering cost c and a unit selling price p > c. Units purchased but not

sold become obsolete by the end of the season and have no salvage value. If the firm

orders y units, it pays an order cost cy and receives an expected revenue equal to

pE[min{y, D}]. Therefore, the newsvendor problem can be formulated as follows:

max E[II(y, D)], (1)
y

where E[H(y, D)J = pE[min{y, D}] - cy.

The name of the model is derived from the situation of a newsvendor who has to

determine how many newspapers to buy at the beginning of the day, before attempting

to sell them at a street corner. Despite the name that focuses on a specific application,

the newsvendor model has been used in many different contexts, such as fashion

retailing (Fisher and Raman 1996, Graves and Parsons 2005), capacity planning (Van

Mieghem and Rudi 2002), and airline revenue management (Littlewood 1972).

The problem (1) is a concave optimization problem. The optimal order quantity

y* is the smallest y such that F(y) > 1 - r, where r - c/p. With a nonnegative

demand distribution, the optimal order quantity y* is also nonnegative. If the demand
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distribution is continuous, the optimality condition is equivalent to

F(y*) = 1 - r,

and the optimal order quantity is called the critical fractile solution, first appearing

in Arrow, Harris, and Marschak (1951). Arrow (1958) attributes the model itself

to Edgeworth (1888). The newsvendor model has been used as a building block for

more complex inventory control problems including multiple periods, multiple items,

multiple stages, fixed order costs, and pricing decisions among others; see Porteus

(1990) for a review.

In this first part of the thesis, we investigate two extensions of the newsvendor

model. First, the newsvendor model assumes full knowledge of the demand probability

distribution; however, inventory decisions must often be made with little information

about demand. Second, the newsvendor model assumes a single decision-maker; how-

ever, supply chains are composed of several decision-makers, possibly with conflicting

objectives. In the thesis, we quantify how the lack of information about the demand

distribution and the decentralization of decision-making affect the order quantity and

the efficiency of the decision.

Lack of information. The newsvendor model (1) assumes full knowledge of the

demand probability distribution. However, demand is often subject to several factors

that are beyond the firm's control (competitors' prices, availability of alternative prod-

ucts, consumption behavior) and that are in essence hard to predict (Huyett 2005).

Moreover, as economic conditions are changing fast (because of increased globaliza-

tion, economic liberalization, etc.), companies introduce new products with very little

historical data (Fisher and Raman 1996). Finally, many firms forecast a single point

of demand using qualitative methods (Darlymple 1988), without estimating the full

distribution.

In order to use the newsvendor model (1), one must select a demand distribution

as an input to the model. But which distribution should be picked? Uniform, normal,

20



gamma, or exponential? All these distributions give rise to different order quantities.

Ideally, the order quantity must be robust, i.e., perform well under most demand

scenarios.

In Chapter 1, we examine the newsvendor model (1) with partial information

about the demand distribution (e.g., range, mean, variance, symmetry, and unimodal-

ity). We derive the order quantities that minimize the newsvendor's maximum oppor-

tunity cost, called the minimax regret, from not knowing the demand distribution.

We then show how the minimax regret approach can be used for solving practical

problems. In particular, we focus on a network revenue management application, and

illustrate how the minimax regret approach relies on modest data requirements and

leads to efficient solution techniques.

Decentralization of decisions. The newsvendor model (1) assumes a single decision-

maker. However, different partners in a supply chain have different exposures to risk;

as a result, the level of inventory in a decentralized supply chain might be different

from that in an integrated supply chain. In fact, it has been shown that price-only

contracts, i.e., contracts that only specify the wholesale-price between two parties, do

not coordinate the inventory decisions in a supply chain and lead to a profit loss; see

Lariviere and Porteus (2001) and Cachon and Lariviere (2001).

To remedy this loss of efficiency, many more elaborate contracts have been pro-

posed: buyback, revenue-sharing, nonlinear pricing schemes, etc. (see Cachon 2003

for a review). However, these contracts are in general more costly to negotiate and

more complex to administrate. On the other hand, they have the advantage of coor-

dinating the inventory decisions in a supply chain-at least under certain conditions.

Before implementing these more elaborate contracts, it is worth measuring the

inefficiency associated with the simplest ones. In Chapter 2, we quantify the loss

of efficiency associated with price-only contracts in decentralized supply chains. We

measure the loss of efficiency using the "Price of Anarchy" ratio, defined as the largest

ratio of profits between the integrated supply chain and the decentralized supply

chain. We characterize the efficiency of the following supply chain configurations:
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push or pull inventory positioning, two or more stages, serial or assembly systems,

single or multiple competing suppliers, and single or multiple competing retailers.

Notations. We begin by introducing some notational conventions. Vectors are

denoted in small bold letters. For a vector x, xj denotes its jth component and x_j

denotes the other components. All vectors are column vectors, and x' is the vector

transpose. The function min{x, y} takes the componentwise minimum of vectors x

and y. Similarly, the function x + takes the componentwise maximum of x and 0. Let

1 be a vector of ones. Matrices are denoted in capital bold letters. For a matrix A,

let Aj represent its jth column

Random variables are usually denoted with a capital letter while their realization

is noted with a small letter; for example, d is a realization of random variable D. A

cumulative probability distribution F(x) has a complementary distribution F(x)

1 - F(x). If the distribution is continuous, it has a density f(x). Finally, w.p.1 is

short for with probability 1.
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Chapter 1

The Price of Information in the

Newsvendor Model

1.1 Introduction

The classic newsvendor model (1) assumes full knowledge of the demand probability

distribution. However, in practice, it is often difficult to completely characterize the

demand distribution, especially in fast-changing markets.

In this chapter, we study the newsvendor problem (1) with partial information

about the demand distribution (e.g., mean, variance, symmetry, and unimodality). In

particular, we derive the order quantities that minimize the newsvendor's maximum

regret about not acting optimally. Most of our solutions are tractable, which makes

them attractive for practical application. We also quantify the "Price of Information,"

defined as the maximum opportunity cost from not knowing accurately the demand

distribution, and highlight that the shape of the demand distribution has sometimes

more informational value than its variance. Finally, we illustrate the potential of the

minimax regret approach for solving practical stochastic inventory control problems,

such as those arising in network revenue management.

Decision-making models can be classified according to the degree of uncertainty

they are addressing (Luce and Raiffa 1957). (a) If the firm orders after observing the

demand realization, its decision is made under certainty. (b) If the firm orders before
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the realization of the demand, but with knowledge of the demand distribution, its

decision is made under risk. The classic newsvendor model (1) fits into this class of

problems. (c) Finally, if the firm has no knowledge about the demand distribution,

its decision is made under uncertainty or under ambiguity.

In this chapter, we adopt a median approach between risk and uncertainty, and

assume only partial information about the demand distribution (e.g., range, mean,

variance, symmetry, and unimodality). Partial demand information can come from

expert judgments (i.e., depending on what the sales managers are confident in assum-

ing about the demand) or a stationary forecast methodology (e.g., if the mean and

variance of forecast errors are stationary over time, but the distribution of forecast

errors is not). The problem of making an order decision with only partial infor-

mation about the demand distribution was raised at the origins of inventory theory

(Scarf 1958). In the next section, we review the different approaches that have been

proposed subsequently to address this issue.

In a multi-period setting, past sales data are available and the optimal order

quantity can be computed either with a Bayesian approach (e.g., Scarf 1960, Lariviere

and Porteus 1999, Ding, Puterman, and Bisi 2002), or with a nonparametric approach

(e.g., Godfrey and Powell 2001, Levi, Roundy, and Schmoys 2005). In contrast, we

focus on the single-period nature of the game and assume that past sales data are

unavailable.

When demand can be only vaguely described (e.g., "demand is about d"), fuzzy

set theory can be applied to derived order quantities (see e.g., Petrovi6 et al. 1996

and Guo 2003). In contrast, we assume precise, but partial, information about the

demand distribution.

This chapter analyzes the newsvendor problem with partial information about the

demand distribution. The main contributions of this chapter are the following:

1. We adopt an approach to solve a variety of problems that require a robust but

not conservative solution.

2. We characterize the robust order quantities in the presence of partial infor-
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mation about demand, such as the moments (mean, variance) and the shape

(range, symmetry, and unimodality) of the demand distribution.

3. We compute the maximum value of additional information about the demand

distribution, called the "Price of Information." In particular, we observe that

the shape of the demand distribution can have more informational value than

its variance.

4. We justify the use of entropy-maximizing distributions in the newsvendor model.

5. We illustrate how the minimax regret approach can be used to solve more

complex problems, such as those arising in network revenue management.

The chapter is organized as follows. Section 1.2 reviews the common criteria

for making decisions under uncertainty and motivates the minimax regret as a less

conservative approach. In Section 1.3, we characterize the problem of minimizing

the maximum regret and formulate it as a moment bound problem. In Section 1.4,

we derive the order quantities that minimize the newsvendor's maximum regret. In

Section 1.5, we quantify the Price of Information, and show that knowing the variance

is in general less valuable than characterizing the shape of the demand distribution.

In Section 1.6, we analyze a multi-item generalization of (1) with capacity constraints,

and illustrate how the minimax regret approach can be used to solve complex network

revenue management problems. Finally, we outline our conclusions in Section 1.7.

1.2 Decision-Making under Uncertainty

In this section, we review the common criteria for making decisions under uncertainty.

Instead of assuming a particular probability distribution F(x) in (1), we assume that

the demand distribution is only partially specified (by its range, moments, shape,

etc.). Let D be the set of probability distributions that are consistent with the prior

information. Slightly abusing of notations, we write D E D to say that the probability

distribution of D belongs to D.
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1.2.1 Maximin

The traditional paradigm to decision-making under uncertainty is the maximin ap-

proach and consists in maximizing the worst-case profit, where the worst case is taken

over all possible distributions in ). That is,

max min E[t(y, D)]. (1.1)
y DED

Scarf (1958) derived the optimal order quantity when only the mean and the

variance c 2 of the demand are known. Gallego and Moon (1993) rederived Scarf's

result using a simpler proof and extended the model to include recourse orders, fixed

order costs, random yields, and multiple products. The maximin approach has also

been applied to multi-period inventory models, under continuous or periodic review

(Gallego 1992, Moon and Gallego 1994, Gallego 1998), to the newsvendor model with

customer balking (Moon and Choi 1995), to the newsvendor model with combined

choice of lead-time and order quantity (Ouyang and Wu 1998), and to finite-horizon

models with discrete demand distributions, incompletely specified by selected mo-

ments and percentiles (Gallego, Ryan, and Simchi-Levi 2001). Zhou and Natarajan

(2005) also derived the minimax order quantity when the demand distribution is

symmetric, with known mean and variance.

By definition, the maximin approach is conservative since it focuses on the worst-

case profit. In some situations (e.g., when only the mean is known), the maximin

criterion recommends not to order at all. In fact, the maximin approach guarantees a

lower bound on the expected profit but says nothing about the quality of the solution

under different demand scenarios.

To reduce the level of conservativeness of the approach, Ben-Tal and Nemirovski

(1999) and Bertsimas and Sim (2004) suggested to reduce the size of D by imposing

a "budget of uncertainty." By varying the budget, the decision-maker can adjust the

level of conservativeness of the model. In particular, when the budget of uncertainty

is zero, the set ' is a singleton and (1.1) reduces to (1). Their approach performs

well with a large number of random variables, as illustrated by Bertsimas and Thiele
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(2006) in a multi-period environment, and we explore it in more detail in a multi-item

extension of (1) in Section 1.6.

There are other criteria for decision-making under uncertainty that are similar to

the maximin (Luce and Raiffa 1957): the maximax, often considered as too optimistic;

and the Hurwicz criterion, which combines the maximin and the maximax criteria.

1.2.2 Minimax Regret

The concept of regret was introduced by Savage (1951), as an improvement over the

too-conservative maximin criterion. For a particular random event D, the expected

profit associated with a decision y equals E[II(y, D)]. If the probability distribution

of D was known, the maximum expected profit would be equal to maxz E[If(z, D)].

The regret measures the additional expected profit that could have been obtained if

the probability distribution had been known at the time of the decision, that is

p(y, D) = max E[n(z, D)] - E[(y, D)]

While decision y is distribution-free, decision z depends on the probability distribu-

tion. Similarly, the relative regret, analog to the "competitive ratio" (e.g., see Karp

1992), measures the additional profit increase that could have been obtained with full

information, and is defined as maxz E[H(z, D)]/E[(y, D)].

Savage (1951) proposed to minimize the maximum regret as a decision criterion

under uncertainty, where the maximum is taken over all possible probability distri-

butions in D, that is

min max p(y, D). (1.2)
Y DED

The ininimax regret was introduced as an improvement over the maximin criterion.

While the maximin criterion is pessimistic, the minimax regret is more informed, as

it benchmarks any decision against the optimum under full information. Among the

distributions in D, some lead to more extreme order decisions than others. In general,
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the extreme order quantities (e.g., such as the solution to the maximin objective) are

associated with distributions at the boundary of D. The purpose of the minimax

regret approach is to get away from the boundaries of D and to choose a decision

that performs well under most probability distributions.

The regret is a pure intellectual construct. In practice, there does not exist a

"true" probability distribution, especially in a single-period setting, and the actual

opportunity cost will never be measured. Instead, the set of probability distribu-

tions )D should be considered as expressions of the decision-maker's ignorance and is

essentially defined subjectively (Keynes 1921, Savage 1954).

Savage (1951) introduced the concept of regret as a normative criterion, for mak-

ing decisions under uncertainty. By contrast, Bell (1982) and Loomes and Sugden

(1982) used the regret in a descriptive setting, in order to justify some behaviors that

the classic expected utility theory considers as paradoxical (e.g., the coexistence of

gambling and insurance). In the context of the newsvendor model, Schweitzer and

Cachon (2000) and Brown and Tang (2006) experimentally observed a systematic

departure from the traditional newsvendor solution. In fact, managers tend to make

order decisions that minimize the ex-post difference between inventory and demand

realization, independently of the costs involved.

The concept of regret as a normative criterion for decision-making (1.2) has been

applied to different contexts, with different specifications of D. Chamberlain (2000)

considered a parametric family of distributions. Bergeman and Schlag (2005) and

Lim and Shanthikumar (2006) defined D as a neighborhood around a distribution of

reference. When D is defined as the set of distributions with a given support, the

regret approach has been applied to solving combinatorial problems with uncertain

cost parameters (Kouvelis and Yu 1997), with a recent attention on the knapsack

problem (Averbakh 2001, Conde 2004) and on linear optimization problems (Inuiguchi

and Sakawa 1995, Averbakh and Lebedev 2005).

In inventory management, the regret has been used by Morris (1959), Kasugai and

Kasegai (1961), and Vairaktarakis (2000) in the newsvendor model, and Yu (1997)

in the EOQ model, when only the support of the demand is known. Yue, Chen, and
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Wang (2006) used the regret in the newsvendor model when the mean and the variance

of the demand are known, with no restriction on the nonnegativity of demand.

In this chapter, we define ) as the set of distributions with certain moments and

shape, similarly to Scarf (1958) and Gallego and Moon (1993) with the maximin

criterion, and Yue, Chen, and Wang (2006) with the minimax regret criterion.

In addition to providing a robust decision, solving problem (1.2) quantifies the

maximum opportunity cost from not having full information about the demand dis-

tribution. If the newsvendor has the option to conduct a marketing survey to learn

more about the demand distribution, she will evaluate this option against its potential

gain, which suggests the next definition.

Definition 1. The Price of Information (PoI) corresponds to the maximum profit

loss from knowing only partial information about the demand distribution. Mathe-

matically, the PoI is the optimal value of (1.2).

1.2.3 Entropy Maximization

In contrast to the maximin and minimax regret, entropy maximization is not a deci-

sion criterion, but is a criterion for selecting a probability distribution among a set

D, as an input to a stochastic decision model. The principle of insufficient reason,

proposed by Laplace, states that, with no information available, all possible outcomes

should be considered as equally likely (Luce and Raiffa 1957). Jaynes (1957, 2003)

extended the principle of insufficient reason by proposing to consider the distribution

that maximizes the entropy over the set of distributions D).

For a discrete random variable, with probabilities P1 , ..., P, the entropy, as defined

by Shannon in the field of information theory, is equal to

H(P1,...,Pn) = -K P In Pi,

where K is a positive constant. The entropy of a probability distribution represents

the amount of uncertainty associated with the distribution. Jaynes (1957) claimed

that the distribution that maximizes the entropy is a good prior distribution, as
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it is the "maximally noncommittal with regard to missing information." In fact,

the entropy is similar to the barrier function in nonlinear programming (Bertsekas

1999); the distribution that maximizes the entropy is therefore equivalent to the

analytical center of D. The entropy has also been defined for continuous distributions,

in reference to a prior measure (usually taken as uniform); see Jaynes (2003) for

details.

Table 1.1 lists some of the distributions that maximize the entropy for a given

prior information. The distribution that maximizes the entropy among all distribu-

tions with given mean and variance (without restrictions on nonnegativity) is the

normal distribution. While the Central Limit Theorem explains the ubiquity of the

normal distribution, the maximum-entropy principle justifies the assumption of nor-

mal distribution when the first two moments of a random variable are specified.

Table 1.1: Entropy-maximizing distributions
Prior information MaxEnt Distribution

Range Uniform
Mean and nonnegativity Exponential

Mean and variance Normal

Since the selection of the demand distribution is distinct from the costs of the

decision (Hayes 1969), there is no guarantee that maximizing entropy is a reasonable

criterion for choosing a distribution as an input to (1). In contrast, the minimax

regret approach addresses both problems (selection of the demand distribution and

choice of order quantity) simultaneously and has a performance guarantee.

1.3 Methodology

In this section, we formulate the minimax regret problem (1.2) as a moment bound

problem. Moment bound problems aim at maximizing a function over all possible

random distributions that satisfy some moment constraints. They have been applied

to deriving Chebyshev-type inequalities, pricing options, and managing inventories

(Scarf's maximin problem can also be formulated as a moment bound problem).
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Suppose that the newsvendor considers a convex class of distributions whose n first

moments match ji, denoted by D. For convenience, we take p = 1. If n moments

are known, any distribution F E D satisfies the following constraints:

o xzdF(x) = pi, V = O0, ..., n.

We also assume that certain Slater conditions hold on the moment constraints (i.e.,

the moment vector is interior to the set of feasible moments).

Problem (1.2) can be reformulated as follows, by inverting the order of maximiza-

tion:

min max max E[n(z, D) - H(y, D)]
Y D z

= minmax {maxE[fl(z,D)-l(y,D)]

= nmaxp max fo(min{x,z} -min{x, y})dF(x)} +c(y-z). (1.3)

Let 'D be the convex class of distributions that satisfy the shape constraints, and

Q be the support of the distribution. The inner problem can then be formulated as

the following moment bound problem:

maxFD f0 (min{x,z} - min{x,y})dF(x), (1.4)

s.t. Af idF(x) = Hi, Vi = 0, ..., n.

If D is simply the set of nonnegative distributions with support Q, the above problem

is a semi-infinite linear optimization problem, in which the variables are the amount

of mass at each point x E Q. By the theory of linear optimization, at most n + 1

variables are positive in an optimal solution. Hence, the distribution achieving the

maximum regret is a discrete distribution, with mass at n + 1 points at most (Smith

1995, Bertsimas and Popescu 2002, 2005).

For cl general convex set of probability measures D, problem (1.4) is equivalent to

its relaxation over the cone of measures, i.e., when F belongs to the cone generated by

the set D. By strong duality (under Slater's conditions), problem (1.4) is equivalent
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to the following dual problem (Popescu 2005):

minO,..,n Z=o aii, (1.5)

s.t. En0 aixi - (min{x, z} - min{x, y}) E C*,

where C* is the polar of the cone of measures defined by D. When D is the set of

nonnegative distributions with support Q, the dual problem (1.5) simplifies to the

following semi-infinite linear optimization problem:

min,,al,.,--C _Zoi aipi, (1.6)

s.t. En 0 aix > min{x, z} - min{x, y, , Vx E Q.

Bertsimas and Popescu (2002, 2005) showed that the above semi-infinite linear opti-

mization problem can be formulated as a semi-definite optimization problem and be

therefore efficiently solved. Similar results hold for the general conic dual problem,

under certain conditions (Popescu 2005).

The next proposition characterizes the optimal solution to problem (1.3).

Proposition 1. (a) The function )(z; y) = maxDED E[n(z, D) - fI(y, D)] is quasi-

concave on the interval z e [0, y] and on the semi-interval z E [y, oo), but not neces-

sarily on [0, oo).

(b) The function T(y) = maxz {maxDED E[I(z, D) - I(y, D)]} is a convex func-

tion of y.

Part (a) states that the optimization problem over z is not a concave problem,

unless we distinguish the two cases y < z and y > z. According to Part (b), the

optimal robust quantity y equates the regret from ordering too little to the regret

from ordering too much (minimum of two convex functions).

1.4 Minimax Regret Order Quantities

In this section, we derive the order quantities that minimize the newsvendor's maxi-

mum regret, in the presence of limited information about demand.
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Range. When the demand distribution is known to lie in some bounded range, the

maximum regret order quantity is given by a convex combination of the boundaries

of the interval, as stated in the following theorem.

Theorem 1. If the demand distribution is nonnegative, with support [1, u], the min-

imax regret order quantity is the following:

y = rl + (1 - r)u,

where r c/p, and the Price of Information amounts to

PoI = c(1-r)(u -1).

The minimax regret order quantity is the same as the optimal solution of the

newsvendor model (1) with a uniform demand distribution, consistently with the

principle of insufficient reason (or the maximum entropy), which suggests a uniform

prior when only the range is known (Table 1.1).

Range and Mean. Suppose that the newsvendor knows the mean of the demand.

This case corresponds for instance to the situation in which a firm has a single-point

forecast of demand. We first derive a general result, if the demand distribution is

known to have its support on [1, u), and specialize it after to the case where 1 = 0 and

U = 00.

Theorem 2. If the demand distribution is nonnegative, with support [1, u) and mean

jI, the minimax regret order quantity is the following:

lr +/(1 - r),
Y + 4r4r 

u - r (u-1)2
/1-I

if < r
if l-, < r < 1

if r < I1 E-l
- 2 u-1'
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and the Price of Information amounts to

c(1 - r)(1l -1), if <r,
PoI ={ c- if 1 - <r< 1

4r' 2u-1 2'

(U - 1)(1 - r-l), if r < -=
U-l/ - 2 u-1'

The support of the demand distribution plays a similar role to the "budget of

uncertainty" proposed by Bertsimas and Sim (2004). By restricting the size of the

support of the demand distribution, the decision-maker adjusts the amount of vari-

ability she wants to cover with her decision. Smaller intervals correspond to higher

degrees of confidence in the average value of the demand.

Mean. The next corollary derives the optimal order quantity when the newsvendor

knows nothing about the support of the demand distribution, i.e., when I = 0 and

U = 00.

Corollary 1. If the demand distribution is known to be nonnegative with mean A,

the minimax regret order quantity is equal to

(1-r), if < r,
Y 2- (1.7)

4rX if > r,

and the Price of Information amounts to

Po =PoI E c(1-r)~ if 2 <r1c, if > r.

When only the mean is known, the maximin approach recommends not to order

since the worst-case demand scenario is close to a unit impulse at zero. In contrast,

the minimax regret approach balances the losses incurred with low demand scenarios

with the opportunity costs associated with high demand scenarios.
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The exponential distribution maximizes the entropy over all nonnegative distribu-

tions with mean (Table 1.1). The optimal order quantity of (1) with an exponential

distribution is equal to - ln(r)u. Figure 1-1 compares the minimax regret order quan-

tity with - ln(r)/ for increasing values of 1/r, as well as the expected profits when

the demand distribution is exponential. Although the minimax regret order quan-

tities are lower than the order quantities derived with the exponential distribution,

especially for large profit margins, the expected profits are similar when demand is

exponentially distributed.

a

l/r 1/r

Figure 1-1: Order quantities and expected profits when only the mean of the demand
distribution is known ( = 100)

Table 1.2 compares the average performance of the minimax regret approach to

the traditional newsvendor approach, with a gamma distribution. The gamma distri-

bution has two parameters: the scale 0 and the shape k. Its mean equals kO and its

coefficient of variation equals 1/Vk. We consider three demand scenarios, each with

a mean 100, and with k equal to .1, 1, and 10. Table 1.2 shows the expected profits

when p = 1.5, c = 1 (left part) and p = 3, c = 1 (right part). For each demand

scenario (i.e., value of k), we compare the order quantities y and the expected profit

obtained with the minimax regret approach and the solution of (1). The maximum
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expected revenues correspond to the diagonal (when the correct value of k is used in

the newsvendor model).

When the profit margins are small (p = 1.5, c = 1), the potential losses from

choosing an erroneous parameter mostly result from holding too much inventory.

The robust policy avoids most of the losses when k is small, but only captures 50%

of the profit when k is large. On the other hand, when the profit margins are higher

(p = 3, c = 1), the losses from choosing a wrong parameter are essentially opportunity

costs from not meeting the demand. The robust policy avoids most of the losses when

k is small and captures more than 85% of the profit when k is large.

Table 1.2: Order quantities and expected profits with M = 100

p= 1.5, c = 1 p = 3, c = 1
Approach y k =.1 k= 1 k = 10 y k = .1 k = 1 k = 10

Minimax regret 33.33 -17.28 9.18 16.65 75 -15.36 83.29 141.02
r with k = 0.1 0.01 0.00 0.01 0.01 10.63 1.92 19.63 21.27
r with k = 1 40.54 -21.82 9.45 20.20 109.86 -31.51 90.14 164.40

r with k = 10 83.94 -51.57 1.26 33.76 110.66 -31.92 90.14 164.41

Mean=Median. When the mean equals the median of the distribution, there is

50% chance that the demand realization falls below the mean p, and 50% chance

that it is above . This happens when the demand distribution (or the distribution

of forecast errors) is not skewed. In fact, most of the common distributions (e.g.,

normal, uniform, triangular) have the median corresponding to the mean. With this

additional restriction, the robust order quantity changes substantially, as shown in

the next theorem.

Theorem 3. If the distribution is known to have its mean p equal to the median, the

minimax regret order quantity is equal to

2/(1-r), if < r,
Y 4 I l+8r I >8, if4 -
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and the Price of Information amounts to

c/(2 - l)(1 - r), if < r
POI c -2r, if 1 < r <
I A~rv if > r.8r' 4

The additional requirement that the mean equals the median makes the order

quantity larger than (1.7). In particular, it is now optimal to order more than the

mean demand when r falls below 1/2, instead of 1/4. Moreover, for low-margin

products (r > 1/2), the newsvendor orders twice as much as (1.7).

Mean and Symmetry. Let us assume that the demand distribution is known to be

symmetric with mean p. A symmetric demand distribution gives the same probability

to - x and p + x, for all 0 < x < _/. Despite this case is stronger than having the

mean equal to the median, the robust order quantity is the same as in Theorem 3,

when r > 1/4.

Theorem 4. When the demand distribution is known to be nonnegative, symmetric,

with mean iu, the minimax regret order quantity is equal to

y = 2(1 - r),

and the Price of Information amounts to

c/It(2-')(1-r), if 1/2 < r,PoI =r
C/( -2)r, if 1/2 > r.

From the nonnegativity of demand, a symmetric demand distribution with mean

/p is bounded from above by 2. Interestingly, the optimal order quantity with a

symmetric demand is the same as the optimal solution of the newsvendor model

(1) with a uniform demand distribution. Intuitively, the uniform distribution is "in
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the middle" of all symmetric distributions. At one extreme, we have the two-point

distribution, giving positive probability to both 0 and 2; the other extreme is the

deterministic case, with all probability mass at p.

The order quantity derived in Theorem 4 is the same as the one derived in Theorem

1, when the demand distribution is known to have its support on [0, 2y1 ]. However,

the robust value of additional information is lower in the case of symmetry.

Mode. Very often, the mode of the demand, i.e., the demand outcome that has the

largest probability of occurring, is taken as a reference, instead of the mean demand.

By focusing on the mode, the newsvendor exhibits some aversion against the ex-

post difference between inventory and demand, similarly to the behavior observed by

Schweitzer and Cachon (2000).

We assume that the demand distribution is unimodal, with its mode equal to m.

A unimodal cumulative distribution function with mode m is convex to the left of m

and concave to the right of m. If the distribution is continuous, the density function

is increasing to the left of the mean and decreasing to the right.

When only the mode is known, the maximum regret is infinite because the regret

when z > y, equal to (p - c)(z - y), goes to infinity when z increases. In fact, there

is no upper bound on the critical fractile z when only the mode is known. To avoid

this problem, we assume in Theorem 5 that the demand distribution is nonnegative

and bounded above by u.

Theorem 5. If the demand distribution is known to be nonnegative, bounded from

above by u, and unimodal with mode m < u, the minimax regret order quantity is

{ m(l - r)(2rm + u(1- r), if u < m(1+ ( l-r)2 ),
uYr(u-m)(2u-ru±2rm - 2m), if U > M(I + ( )2),

u/r(u m)(2u ru +2rm 2m), if u > re(l+ ( lr)2),
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and the Price of Information amounts toc (V/( -r)(2m + u(r -1))- /( ))

~Po-I~~ =J~ ~ if u < m(1 + (r)2),
| c(m(r/2- 1) + u - /r(u - m)(2u - ru + 2rm -2m)),

if u > m(l + (r)2).

Figure 1-2 illustrates how the robust order quantity changes with the mode, for a

fixed upper bound u = 160. When the mode is large, e.g., equal to 100, the minimax

regret order quantity is close to the optimal solution of the newsvendor model with a

normal demand distribution with a mean/mode equal to 100 and a standard deviation

equal to 30 (so that the normal distribution is virtually bounded from above by u) or

with a uniform demand distribution (for which the mode is anything in the interval

[0, 160]). However, when the mode equals zero, as is common for slow-moving items

which have a high probability of not being ordered but a fat right tail, the minimax

regret order quantity is smaller.

I ~l

16

14

12

10
>1

8

6

4

2

1/r

Figure 1-2: Order quantities when the mode of the demand distribution is known

More general results can be derived when the mode is known to lie in a certain
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interval [ml,m 2] (see Popescu 2005). However, solving the model analytically is

cumbersome, as there are 12 cases to consider, depending on the relative order of

ml, m 2, y, and z.

Mean, Unimodality, and Symmetry. When the demand distribution is known

to be symmetric, one of the worst-case demand scenarios is a two-point demand dis-

tribution, with nonzero probabilities at 0 and 2/. Arguably, this worst-case scenario

might not be realistic. With the additional requirement that the demand distribution

is unimodal, this worst case is ruled out. As a result, the Robust Value of Information

is reduced, as shown in the next theorem.

Theorem 6. If the distribution is known to be nonnegative, symmetric, unimodal,

with mean MI, the minimax regret order quantity is equal to

if1 < r,i2 
Y 2,(1-/r(1-r)) if > r

and the Price of Information amounts to

_o |¢/ -(12) 1- iif < ,
c/1 2r-(1-r)), if r.

Although the requirement of symmetry and unimodality might seem restrictive,

many distributions fall into this category: uniform, normal, and Poisson if p is large.

Moreover, no assumption is made about the variance.

The right part of Figure 1-3 compares the regret minimax order quantities for

various classes of demand distribution, assuming an average demand of 100. For

comparison purposes, we have plotted on the left part of the figure the optimal solu-

tion to the newsvendor model (1), for a normal demand distribution with mean 100

and standard deviation of 1, 30, and 60.

As shown in the figure, the robust order quantity is increasing with 1/r, under

all scenarios. When only the mean of the demand is known, the order quantity is
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Figure 1-3: Order quantities when the mean of
addition to some shape characteristics

1/r

the demand distribution is known in

lower than the average demand, for 1/r < 4 (curve with triangles). When the de-

mand distribution has more structure (mean/median, symmetry, or mode and upper

bound), the optimal order quantity becomes closer to the order quantity obtained

with the newsvendor model for a normal demand distribution. Moreover, the optimal

order quantity is equal the mean demand when r = 1/2 (provided that u = 2m).

Finally, when the demand distribution is both unimodal and symmetric with mean

100, the robust order quantity is almost equal to the mean, for sufficiently small r.

Intuitively, the conditions of symmetry and unimodality tend to accumulate more

probability mass about the mean, leading the order quantity to be also closer to the

mean demand.

Comparing the left and right parts of Figure 1-3 illustrates the similarities of

effect between restricting the shape of the demand distribution to a "regular" class

and improving forecast accuracy (measured by a decrease of the standard deviation).

As the standard deviation decreases, the optimal order quantities are also re-centered

about the mean. Therefore, joint efforts could be devoted to both reducing forecast
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error variability and better characterizing the shape of the demand distribution since

both lead to less sensitive order quantities.

Mean and Variance. The variance of the demand distribution is usually taken as

the variance of forecast errors. In contrast to the maximin approach, the minimax

regret approach does not lead to a closed-form solution of the optimal order quantity.

Theorem 7. If the demand distribution is known to be nonnegative, with mean i

and variance a2, the minimax regret order quantity is the solution to the following

equality:

max max (p/ - C)( - ) ,
max{lX,Y}2x , 2 X

max (p -_) 2-- c)(X-Y)} (1.8)
y<X<iUmax{y, 2} 2+(y

min{p,y} >x>max{O,y-/a2 +(_y)2} a + (x-)2 )

When the variance grows to infinity, the minimax regret order quantity (1.8) tends

to the robust order quantity when only the mean demand is known, derived in (1.7).

At the other extreme, when the variance tends to zero, it becomes optimal to order

exactly the mean demand.

Condition (1.8) involves three optimization problems. The first problem depends

on the mean only, while the two other problems depend on both the mean and the

variance. In fact, there is some similarity between the first problem and Markov's

inequality and the next two problems and Chebyshev's inequality since the optimal

solution of (1) is characterized by a critical fractile.

The robust order quantity can efficiently be found by a line search since, from

Proposition 1, the inner maximization problems are quasi-concave. Alternatively, the

robust order quantity can be approximated by considering a feasible solution, instead

of an optimal solution, in the inner maximization problems of (1.8).
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Approximation 1. When al/u < v/-r, the minimax regret order quantity, ob-

tained by solving (1.8), can be approximated as follows:

2 1 - 2r
y max{0, + ra 1- (1.9)5 r (X_ r)

The approximate order quantity (1.9) is the sum of the mean demand and a

(possibly negative) safety stock. As in the traditional newsvendor model with a

normal distribution, the safety stock is proportional to the standard deviation of the

demand by a factor that is concave decreasing with r. The safety factor is negative

for low-margin products (r > 1/2) and positive otherwise.

The approximation is constructed by considering a feasible solution, instead of

the optimal solution, in the inner optimization problems in (1.8). In particular, we

set x = p + 1/2u/(p - c)/c in the left-hand side, and x = p- 1/2 /c/(p - c) in the

right-hand side. Moreover, we ignore the first maximization problem in the left-hand

side. Equating both sides of the equality and solving for y, gives rise to approximation

(1.9). More details are provided in the appendix.

The approximation is derived by equating the two optimization problems in (1.8)

that depend on both the mean and the variance. In fact, the presence of the first

optimization problem (related to Markov's inequality) is essentially due to the non-

negativity requirement. If the distribution had its support on the real line, only

the last two terms would appear in (1.8). Yue, Chen, and Wang (2006) analyzed

the newsvendor problem with the minimax regret objective, when the mean and the

variance are known, but with no restriction on the nonnegativity of demand. As a

result, their safety stock factor (which is also not in closed-from) is almost equal to

the approximated safety stock factor in (1.9), as it is illustrated in Table 1.3.

Table 1.3: Comparison between the safety
tained by ignoring the nonnegativity of the

factor in (1.9) and the safety factor ob-
demand

1/r 2 3 4 5 6 7
2 1-2r 0.0000 0.2828 0.4619 0.6000 0.7155 0.8165

Yue et al. (2006) 0.0000 0.2758 0.4503 0.5850 0.6977 0.7961

43



Table 1.4 compares the relative difference between approximation (1.9) and the

minimax regret order quantity, obtained from (1.8), for various levels of profit margins

and coefficients of variation. As expected, the quality of the approximation deterio-

rates when the coefficient of variation becomes large (as the probability of negative

demand becomes non-negligible) and as r increases.

Table 1.4: Relative difference between the robust order quantity and its approxima-
tion

1/r .2 .4 .6 .8 1

1.5 0.12% 0.92% 4.95% 8.84% 12.56%
2 0.00% 0.00% 1.00% 7.12% 14.09%

2.5 0.06% 0.11% 0.17% 2.30% 9.51%
3 0.11% 0.21% 0.30% 0.46% 4.99%

Figure 1-4 compares the order quantities obtained with the minimax regret objec-

tive (obtained by solving (1.8)), the maximin objective, and the newsvendor model

(1) with a normal distribution. When the coefficient of variation is small, e.g., when

Standard Deviation = 30 Standard Deviation = 100

20

15

>, 10

5

1 1.5 2 2.5 3 1 1.5 2 2.5 3
1/r 1/r

Figure 1-4: Order
known ( = 100)

quantities when the mean and the variance of the distribution are

I = 100 and ao = 30 as in the left part of Figure 1-4, there is almost no difference
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among the three approaches. Similarly, Naddor (1978) observed that the optimal

solution of (1) is insensitive to the choice of the demand distribution when the first

two moments are known. As a result, selecting a normal demand distribution when

the first two moments are known can be justified on the grounds of

* the Central Limit Theorem,

* maximizing the entropy,

* (approximately) maximizing the worst-case profit, and

* (approximately) minimizing the maximum regret.

However, when the coefficient of variation is large, assuming a normal distribution

is no longer valid, as the probability of negative demand becomes non negligible.

The right part of Figure 1-4 compares the order quantities when = a = 100.

Since the coefficient of variation is large, the maximin approach recommends zero

order quantities and the newsvendor solution recommends negative order quantities

when the profit margin is small. In contrast, the minimax regret approach always

recommends positive order quantities. Moreover, the order quantity obtained with the

minimax regret objective is less sensitive to the profit margin, which is an attractive

feature when costs are uncertain as well.

In addition, when the profit margin is large, and the coefficient of variation goes

to infinity, the newsvendor order quantity obtained with a normal demand distribu-

tion grows to infinity, while the order quantities obtained with gamma, lognormal,

and negative binomial distributions (which are nonnegative) tend to zero (Gallego,

Katircioglu, and Ramachandran 2006). In fact, as the coefficient of variation in-

creases, more probability mass is accumulated at zero for nonnegative distributions,

while it is accumulated in the tails for a normal distribution. Gallego et al. also

show that the order quantity associated with nonnegative demand distributions is

bounded from above by //(1 - r), when the coefficient of variation becomes large,

and that the bound is tight. Figure 1-5 compares the order quantity as the coefficient

of variation increases, for p = 20, c = 1, using the newsvendor model with a normal
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demand distribution, the maximin approach, and the minimax regret approach. The

maximin approach recommends not to order at all if the coefficient of variation ex-

ceeds some threshold. In contrast, the minimax regret order quantity tend to u/(4r)

(see (1.7)) as the coefficient of variation becomes large, since having infinite variance

is equivalent, from an informational perspective, to knowing only the mean.

c.v.

Figure 1-5: Evolution of the order quantity when the coefficient of variation increases
(, = 100,p = 20, c = 1)

Table 1.5 compares the average performance of the minimax regret approach with

those of the maximin approach and the traditional newsvendor approach. We consider

three demand scenarios, each with a mean equal to 100 and a standard deviation equal

to 60: (truncated) normal (N), uniform (U), and gamma (r). When p = 1.2, c = 1,

the expected profit with the maximin policy is zero. In contrast, the minimax regret

quantity leads to a positive profit in all demand scenarios, and is in fact very close to

the maximum achievable when the demand distribution is normal or gamma. On the

other hand, when p = 3, c = 1, both robust approaches perform equally well, within

a few percents of the maximum profit.
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Table 1.5: Order quantities and expected profits with tt = 100, a = 60
p = 1.2, c = 1 p = 3, c = 1

Approach y N U rF N U F
Minimax regret 56.97 1.40 1.10 5.44 116.62 133.76 129.58 132.11

Maximin 0 0 0 0 121.21 134.35 130.61 131.79
N 41.95 2.01 2.65 6.06 125.84 134.55 131.32 131.14
U 31.82 1.77 2.96 5.41 134.08 133.95 131.82 129.25
F 44.84 1.99 2.46 6.09 114.54 133.36 129.02 132.14

1.5 Value of Additional Information

Using the mean and the variance to guide inventory decisions is common practice,

essentially because it leads to efficient strategies for pooling inventories (over products,

markets, and periods). Moreover, the variance of aggregated demands is easy to

compute, while the shape of the distribution might not be preserved under convolution

(e.g., see Eppen and Martin 1988). However, estimating the variance can sometimes

be more an art than a science (Fisher and Raman 1996). In addition, when qualitative

forecast methods are used, it might be easier to characterize the shape of the demand

distribution. It is therefore important to quantify the value of information associated

with the variance, in comparison to a more qualitative description of demand.

Figure 1-6 compares the Price of Information under different assumptions on the

demand distribution, when jp = 100 and c = 1 (without loss of generality). As

one adds more restrictions to the shape of the demand distribution, the Price of

Information (PoI) decreases. Moreover, the PoI generally increases with the profit

margin, unless one assumes that the median is equal to the mean, in which case the

PoI first decreases to zero (at r = 1/2) and increases afterwards. In fact, when the

median is known and when r = 1/2, it is optimal to order the median, independently

of the shape of the demand distribution.

Figure 1-6 also shows that the regret when the demand distribution is known to

be unimodal, symmetric, with mean ,u, is lower than the regret when the demand

distribution is known to have a mean pu and a coefficient of variation greater than .3.

(which is not an uncommon value for practical coefficients of variation). Similarly,
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l/r

Figure 1-6: Price of Information

the regret when the demand distribution is known to be symmetric with mean is

lower than the regret when the demand distribution is known to have a coefficient of

variation greater than one. (In fact, the largest coefficient of variation of a nonnegative

symmetric demand distribution is 1, obtained with a two-point distribution with equal

probability masses at zero and at 2.)

Therefore, in practice, when it is clear that the demand distribution is symmetric

and unimodal, it does not seem worth spending time and efforts for estimating the

demand variance. This observation also suggests alternative forecasting techniques:

rather than focusing on the estimation of moments of the demand distribution, one

could alternatively try to better characterize the shape of the demand distribution.
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1.6 Extension: Robust Revenue Management

The newsvendor model (1) is at the foundation of stochastic inventory theory. Prac-

tical environments are of course more complex than the single-item, single-period

model. In this section, we illustrate the potential of the minimax regret criterion

for solving practical problems. In particular, we analyze the multi-item newsvendor

model with capacity constraints when demand distributions are partially specified.

We consider a single-period stochastic inventory management problem with M

items subject to K capacity constraints. There are b available units of resources.

Every sale of item j, j = 1, ..., M, generates a revenue pj and consumes Aj units

of resources. For simplicity, we assume that the unit order costs are equal to zero.

The demand for item j is unknown but assumed to be distributed according to Dj.

The problem is to determine the order quantities y so as to maximize the expected

revenues, subject to the capacity constraints, that is

max EM 1pjE[min{yj, Dj}],

s.t. Ay < b, (1.10)

y > 0.

Problem (1.10) is commonly solved in network revenue management (RM). Con-

sider a network with K resources (e.g., flights, night stays) and M classes of customers

characterized by a specific origin-destination and fare (ODF) pair. Customers arrive

according to a certain (continuous or discrete) stochastic process over a finite time

interval. We seek a policy P that maximizes the expected revenues p'E[nP], where

nP is the vector of total number of accepted requests when policy P is in use. The

policy needs to satisfy (almost surely) the capacity constraints, i.e., An P < b, and

the accepted requests are obviously nonnegative and cannot exceed the demand, i.e.,

O < n < D. In addition, the policy is required to be non-anticipating. That is, the

acceptance/rejection decision at each time t should be based only on the information

acquired up to time t. Let P be the set of non-anticipating policies. The network

49



RM problem can then be formulated as follows:

sup p'E[nP],
PEP

s.t. An P < b (w.p.), (1.11)

0 < nP < D (w.p.1).

With a discrete stochastic process of arrivals, problem (1.11) can be formulated

as a dynamic program: At each (discrete) time t, given the level of available capacity,

one needs to decide about accepting or rejecting the requests arriving in period t,

in order to maximize the total expected revenues until the end of the time horizon.

However, the dynamic program is rarely solved in practice because of computational

and management limitations. Practical networks are extremely large, leading to the

so-called curse of dimensionality. Moreover, the data requirements of the stochastic

process of arrivals might be hard to collect. In fact, Boyd and Bilegan (2003) report

that "business practitioners conceptualize demand in terms of units of inventory sold

and its variability, not in terms of arrival rates and interarrival distributions, and this

can lead to confusion."

Therefore, in practice, the network RM problem (1.11) is often solved approxi-

mately. In particular, the problem can be simplified by assuming that capacity cannot

be reallocated in the future. Under this assumption, one needs to know only the dis-

tribution of the total number of requests per class, and not their order of arrivals

(i.e., the underlying stochastic process). The capacity is therefore partitioned into

M buckets, each corresponding to a different class. For each class j, let yj be the

booking limit; the total sales corresponding to class j are thus equal to min{yj, Dj},

i.e., one cannot sell more than the booking limit. The problem is to choose a capacity

allocation y that maximizes the network expected revenue. Under the assumption of

partitioned booking limits, problem (1.11) is thus equivalent to (1.10), which is often

called the Probabilistic Nonlinear Optimization Problem (PNLP).

However, problem (1.10) presents its own challenges, because it assumes the knowl-

edge of the demand probability distributions. In practice, the demand distribution
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for a particular fare class on a particular flight might be difficult to estimate be-

cause it is associated with limited sales data and is highly sensitive to changes in the

environmnent (such as price, seasonality, etc.). Moreover, the large size of practical

networks I motivates the use of simple forecasting techniques. For tractability, it is

also traditionally assumed in (1.10) that the demand distributions of different classes

of customers are independent and that there are no group arrivals, which is an obvious

simplification of reality.

A common way to simplify the PNLP is to replace the stochastic demand D

by its mean . In this case, the problem simplifies to a simple deterministic linear

optimization problem (DLP), and combines therefore an efficient solution method

with modest data requirements:

max p'y,
y

s.t. Ay < c, (1.12)

0 < y < A.

However, the DLP completely ignores the stochastic nature of the demand. In this

section, we formulate the robust version of (1.10), based on the knowledge of the

range of the demand distribution. The robust formulation of (1.10) is a simple linear

optimization problem but captures the stochastic nature of demand. We will then

show how the model can be used in an environment where capacity allocations are

made dynamically, as a heuristic for solving (1.11).

Literature review. The problem of allocating fixed capacity to several classes

of customers, each characterized with a certain probability distribution, has been

extensively studied in the literature. The multi-item newsvendor problem (1.10),

sometimes called the "newsstand problem," was first presented in Hadley and Whitin

(1963). The solution of this model is usually based on a Lagrangean relaxation

of the capacity constraints (see e.g., Hadley and Whitin 1963, Hodges and Moore

1Talluri and van Ryzin (2004) report that, for a medium-size airline, about 2 million demand
quantities must be forecasted every day.
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1970). Even with one capacity constraint, numerical problems might arise when the

number of items is large; Nahmias and Schmidt (1984) developed several heuristics to

efficiently approximate the optimal order quantities. When the number of capacity

constraints is large, advanced nonlinear optimization methods must be used to identify

the set of active constraints; e.g., see Lau and Lau (1995, 1996). Vairaktarakis (2000)

investigated the robust version of the problem under the maximin and the minimax

regret criteria, and solved the problem with a Langrangean relaxation. However, his

model did not consider the capacity constraints in the regret maximization.

When classes are not partitioned, i.e., when the same product can be used to

satisfy several class demands, the problem of allocating fixed capacity to different

classes of customers is usually formulated as a dynamic program (see Talluri and van

Ryzin 2004 for a review). The single-resource capacity control problem was introduced

by Littlewood (1972) with two classes of customers arriving sequentially, and was

subsequently extended to multiple classes of customers, (Brumelle and McGill 1993,

Curry 1990, and Wollmer 1992), with general order of arrivals (Robinson 1995). The

optimal control is well understood and can be achieved with either nested protection

levels, nested booking limits, or bid price tables (see Talluri and van Ryzin 2004 for

a review). Several heuristics, such as the EMSR-a (Belobaba 1987) and EMSR-b

(Belobaba 1992), also perform well in practice.

The network RM problem is significantly more complex and little is known about

the optimal policy. According to Talluri and van Ryzin (2004), network RM cre-

ates methodological and operational challenges, both on the forecasting side and on

the optimization side. Therefore, in practice, the network RM problem is solved

only approximately. Commonly used controls are partitioned booking limits, virtual

nesting controls, and bid-price controls (see Williamson 1988, 1992 for a comparison

of those approaches). The network RM is often approximated with the DLP (Dror

et al. 1988, Bertsimas and Popescu 2003), with possible randomization of demand

samples (Talluri and van Ryzin 1999), or with the PNLP (Wollmer 1986). Both prob-

lems assume partitioned booking limits. Curry (1990) and Chi (1995) proposed an

intermediate approach when fare classes are only nested by itinerary. The controls
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obtained with these approximated problems can also be improved using a stochastic

gradient algorithm (Bertsimas and de Boer 2005 and van Ryzin and Vulcano 2005).

Contributions. In this section, we model the robust network RM problem with

partitioned booking limits (1.10), using the maximin (1.1) and the minimax regret

(1.2) criteria. In particular, we assume that only the ranges of the demand distribution

are specified, that is, demand for class j is known to have its support on the interval

[Ij, uj]. Let D be the set of multivariate probability distributions such that the support

of the jth marginal distribution lies in the interval [Ij, uj]. In contrast to most RM

models, we make no assumption about the independence of classes and implicitly

capture group arrivals, sell-ups, buy-downs, and the influence of external factors on

the demand distributions. This representation of uncertainty captures the stochastic

nature of the problem, while remaining simple to estimate.

All our formulations are polynomial-size linear optimization problems (LP), which

makes them attractive for solving practical large networks. Moreover, the minimax

regret problem can be used to derive bid prices that capture the stochastic nature of

demand at a low computational cost and can be used as controls in a non-partitioned

network environment. Our numerical study confirms the potential of robust opti-

mization, and in particular of the minimax regret approach, as a new methodology

for solving practical RM problems.

1.6.1 Maximin

First, consider the maximin criterion (1.1) applied to the network problem with par-

titionecl booking limits (1.10):

max min p'E[min{y, D}] (1.13)
y:Ayb,y>O DED

The revenue is minimized when Dj = Ij w.p.1, for all j. The maximin booking

limits can be found by solving a problem similar to (1.12), in which the vector of

mean demand t is replaced with the lower value of the support 1.
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To reduce the level of conservativeness of the maximin approach, Bertsimas and

Sim (2004) proposed to restrict the total amount of variability to a "budget of uncer-

tainty." Indeed, in practice, it is unlikely that all demands differ significantly from

their nominal (or expected) values. For each demand Dj, let mj be the nominal value

and let sj the maximum deviation from it. With these notations, the demand has

a lower bound lj = mj - sj and an upper bound uj = mj + sj. Bertsimas and Sim

(2004) suggested to limit the sum of relative deviations from the nominal values to

some budget r, that is to require that ZM II(dj - mj)/sj < rF. The parameter F

measures the amount of uncertainty captured by the model. If F = 0, there is no un-

certainty and the problem is deterministic (in which all demands dj are equal to their

nominal values mj). At the other extreme, if F equals the number of classes, there is

complete uncertainty on demand, and the worst case occurs when dj = mj - sj, Vj.

Intermediate values of F specify a moderate level of conservativeness, while accounting

for some uncertainty. For simplicity, we assume that r is an integer.

The objective is to determine booking limits y that maximize the worst-case

realized profit, under the budget constraint, that is

max min pi min{y, d (1.14)
y:Ay<b,y>O dE[l,u]:M 1 (dj-mj)/sjl<r

We show next that the maximin network RM problem with a budget of uncertainty

can be formulated as a polynomial-size linear optimization problem. For each class

j, the revenue is minimized only with negative deviations from the nominal values.

Therefore, the maximin network RM problem with a budget of uncertainty F can be

simplified to:

max min p'min{y, m - S6},
y:Ay<b,y>O 6:0<6<l,l'<r

where S is a diagonal matrix in which diagonal elements are equal to sj, j = 1,..., M.

Theorem 8. The maximin network RM problem with partitioned booking limits, with

a budget of uncertainty F on the sum of relative deviations from the nominal values,
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(1.14), can be formulated as the following linear optimization problem:

max aF + 3'1 + p'w

s.t. Ay < b,

w Y,

w < m, (1.15)

Wp + al + < (M - S)p,

a < 0,3 _ O,y 0 O

where M, S, and W are diagonal matrices in which diagonal elements are mj, sj,

and wj respectively.

Since the budget of uncertainty is restricted to r, the realized revenue will be no

less than the optimal value of (1.14) with at most probability exp (-r 2/(2M)), if the

demands distributions are symmetric about their nominal values and independent of

each other (Bertsimas and Sim 2004).

1.6.2 Minimax Regret

The robust network RM problem with the minimax regret criterion (1.2) can be

formulated as follows:

min x m max E[p(z, D, y)]} (1.16)
y:Ay<b,y>O DED z:Az<b,z>O

The regret is defined as the difference in revenues:

p(z, d, y) = p' min{z, d} - p' min{y, d}.

Following Section 1.3, we invert the order of the two maximization problems. The

next lemma characterizes the worst-case demand distributions and the maximum

regret attained with that distribution.

Lemma 1. Fix y, z.
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(a) The optimal demand distributions are unit impulses.

(b) Dj = maxz j , Ij} w.p.1, for all j.

(c) maxdj[lj,uj] pj(Zj, dj, yj)z - if j j,
pj min(zj - j, (zj - yj)+, if yj > lj.

From Lemma 1, the maximum regret is thus not necessarily concave in zj. In fact,

one can show that the problem of choosing the booking limits z can be formulated

as a mixed-integer linear optimization problem. In order to remain tractable, we

introduce the following assumption.

Assumption 1. The booking limits Z can be randomized and the capacity constraint

must hold only in expectation, that is AE[Z] < b.

Every booking limit zj is associated with a demand impulse Dj = max{zj, lj}

w.p.1 from Lemma 1 (b). Therefore, randomizing over the booking limits z is equiv-

alent to randomizing over the demand impulses, and then choosing a booking limit

after observing the demand realization. Under Assumption 1, the minimax regret

network RM problem (1.16) is then effectively simplified to

min {max max E[p(ZD,y)]}, (1.17)
y:Ay<b,y>O DED ZEZ I

where Z is the set of nonnegative multivariate distributions such that AE[Z] < b.

Since AZ < b w.p.1 = AE[Z] b, the regret with this relaxed constraint is an

upper bound on the maximum regret (1.16).

Since the booking limits Z are randomized under Assumption 1, the expected

regret corresponds to the concave envelope of the function presented in Lemma 1 (c),

with at most three breakpoints: at zero, lj, and uj. Therefore, any booking limit

zj can be represented as a convex combination of these three breakpoints. The next

theorem shows that the minimax regret network RM (1.17) can be efficiently solved.

Theorem 9. The minimax regret network RM problem with partitioned booking lim-

its, (1.17), where the capacity constraints must hold only in expectation, can be for-
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mulated as the following linear optimization problem:

min 7r'b + q'1

s.t. Ay < b,

7r'AU + q' > p'(U - Y),

r'AL + q' > 0,

Fr'AL + q' > p'(L - Y), (1.18)

q' > -p'L,

q' > -p'Y,

y < u,

r,y > 0.

where U, L, Y are diagonal matrices in which the diagonal elements correspond to

u, 1, and y respectively.

The linear problem presented in Theorem 9 has (K + 2M) variables and (K + 6M)

constraints. In comparison, the DLP has M variables and K + M constraints. The

larger size of the problem is the price to pay to capture demand stochasticity.

Regret with no uncertainty. There is no uncertainty if uj = Ij = uj for all j;

that is, demand is deterministic. In this case, the minimax regret LP (1.18) simplifies

to

min -p'y + 7r'b + (p' - r'A)+/L,

s.t. Ay < b,

7r,y > 0.

Because the dual of the Deterministic Linear Optimization Problem (1.12) mini-

mizes r'b + (p' - r'A)+~, the above problem's objective is to minimize the duality
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gap of the DLP. By strong duality, the maximin regret equals then zero, and the

optimal booking limits and shadow prices are the same as those obtained with the

DLP.

Regret under uncertainty. The range is uninformative if uj is larger than the

largest component of the capacity limit b, and lj = O. Under these circumstances,

there is complete uncertainty about the demand distributions. Since j = O, zj is

always greater than Ij, and the minimax regret LP (1.18) simplifies to

min 7r'b + q'l,

s.t. 7r'AU + q' > p'(U- Y),

Ay < b,

y, r, q > 0.

The variable q can be eliminated by making the first constraints tight, that is

min 7r'b + (p'(U - Y) - r'AU)+1,

s.t. Ay < b,

y,7r > 0.

For a single-leg problem, the optimal booking limits are given in closed form.

Because uj > b by assumption, the worst-case demand is such that for some j,

Dj = b w.p.1, and Vk 4j, Dk = 0 w.p.1, and has a value pj(b - yj). Since there are

only M such demand scenarios, they can be enumerated. As a result, the minimax

regret LP simplifies to

min maxj{pj(b- yj)},

s.t. l'y < b,

y >O.
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Proposition 2. In the case of complete uncertainty, the partitioned booking limits

that minimize the maximum regret in a single-leg problem are given by:

b-b 1 pi if j<t,
yj Z k<t pk 

0, if j > t.

where t is the largest integer less than M such that (t- 1)/(Zj<t(1/pj)) < pt, or equal

to Al otherwise.

Therefore, when booking limits are partitioned, the fraction of capacity allocated

to some class is proportional to its fare relative to the harmonic mean of all fares.

For instance, if b = 10 and Pi 4 - i for i = 1, 2, 3, then t = 2 because P2 = 2 >

(2 - 1)/(1/3 + 1/2) = 6/5, but P3 = 1 < (3 - 1)/(1/3 + 1/2 + 1) = 12/11. Thus, it is

optimal to set Y1 = 6, Y2 = 4 and Y3 = 0. Notice that these booking limits have been

derived without making any assumptions about the demand distribution.

Regret with knowledge about the moments. One can also incorporate some

moment information into D. However, the minimax regret problem might no longer

have a linear formulation, as (1.18), unless the regret function is approximated with

a piecewise linear function.

For instance, suppose that, in addition to the range of the distribution [0, uj],

one also knows the mean demand j. Similarly to Lemma 1, it is possible to derive

an explicit function for the regret. In particular, using a similar argument as in

Theorem 2 in Section 1.4, one can show that the expected regret associated with a

pair of booking limits yj and zj, equals pj min{1, 1j/zj}(zj - yj)+ . The function is

nonlinear between max{yj, j} and uj. Nevertheless, in practice, the regret function

pj min{ 1, i/jlzj}(zj - yj)+ can be approximated with a piecewise linear function, with

breakpoints at zero, /zj, and uj. With this approximation, the minimax regret problem

can then be formulated as a linear optimization problem, as in Theorem 9.

Comparison between the minimax regret approach and the multi-item

newsvendor problem with uniform distributions. With a single item, the
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minimax regret problem is the same as the newsvendor problem with a uniform

distribution (see Theorem 1). However, with multiple items and capacity constraints,

the two approaches differ. Consider for instance a problem with 11, 12 > 0 and a

single capacity constraint. If the capacity equals 11 + 1, the solution of (1.10) is such

that y = 11 + 1 if pl(ul - yl)/(ul - 11) > P2, by comparing expected marginal seat

revenues. In contrast, the solution of the minimax regret solution has yl = 11 + 1

if Pi > 2 p2. Indeed, if the unit is allocated to class 2, the maximum regret equals

P1 - P2 (if 11 + 1 units are demanded for class 1), while if the unit is allocated to class

1, the maximum regret equals P2 (if only 11 units are demanded for class 1).

1.6.3 Numerical examples with partitioned classes

Single-leg problem. We first consider the single-leg five-class example proposed

by Wollmer (1992). Each class j is characterized by a fare pj, a mean demand /1j,

and a standard deviation aj (see Table 1.6). In addition, we assume that the only

information available about the demand distribution is that it has support in the

interval [j, uj], where Ij and uj correspond to the 5th and 95th percentiles of the

gamma distribution with mean pj and standard deviation aj. (Given that aj/1 j =

1/3 in this example, we could have taken Ij = j - 2aj and uj = aj + 2aj considering

a normal distribution.) There are 119 available seats available on the aircraft.

Table 1.6: Problem data and partitioned booking limits for the single-leg example of
Wollmer (1992)

Demand Statistics Partitioned Booking Limits
7 pj pj aj Regret Maximin DLP PNLP N PNLP U
1 1,050 17.326 5.775 20.1 12.2 17.3 19.5 20.8
2 567 45.052 15.017 35.3 25.6 45.0 39.1 38.8
3 534 39.550 13.183 29.0 23.1 39.6 32.8 32.3
4 520 34.018 11.339 24.2 20.5 17.1 27.6 27.0
5 350 19.786 6.595 10.3 19.8 0.0 0.0 0.0

Table 1.6 displays the partitioned booking limits obtained with the minimax re-

gret LP, the maximin LP with r = 5, the DLP, the PNLP with independent normal
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distributions with mean ,/j and standard deviation aj, and the PNLP with indepen-

dent uniform distributions over [Ij, uj]. The DLP reserves capacity in priority to the

high-fare classes, without exceeding their mean demand. On the other hand, the max-

imin LP allocates capacity so that the minimum demand lj is covered for all classes

j; since Ej Ij < b in the example, the remaining capacity is allocated indifferently. In

contrast to the maximin and the DLP booking limits, the minimax regret booking

limits are similar to those obtained with the PNLPs. However, the minimax regret

problem is a simple linear optimization problem, while the PNLPs are non linear.

Tables 1.7 and 1.8 compare the expectations and standard deviations of revenues

(computed over 1,000 samples) obtained with the different approaches, under the

following demand scenarios: independent gamma distributions with mean j and

standard deviation c-j, independent uniform distributions over [j, uj], independent

Poisson distributions with mean j, independent two-point distributions with prob-

ability 11/4 (resp. 3/4) at Ij and probability 3/4 (resp. 1/4) at uj. Not surprisingly,

the maximin booking limits perform poorly since they do not reserve enough capacity

for the high-fare demand. In contrast, the minimax regret booking limits are near-

optimal under all demand scenarios and generally outperform those obtained with

the DLP' (both in terms of expected revenues and in terms of standard deviation).

The DLP gives larger revenues than the minimax regret approach when the demand

distribution is Poisson; in this case, the actual range is [0, oo) and not [Ij, uj]. Inciden-

tally, the booking limits obtained with both PNLPs are also robust, as they perform

consistently well under all demand scenarios.

Table 1.7: Expected revenues for the single-leg example of Wollmer (1992) with par-
titioned classes

Demand Regret Maximin DLP PNLP N PNLP U
Gamma 66,342 55,382 65,341 66,873 66,760
Uniform 67,828 56,157 67,122 68,480 68,497
Poisson 68,870 56,474 69,194 70,478 70,190

2-point (, 3) 66,205 54,618 66,190 66,657 67,125
2-point (, ) 53,346 49,345 50,792 51,139 51,292

Figure 1-7 illustrates that the regret is first increasing and then decreasing with

61



Table 1.8: Standard deviations of revenues
(1992) with partitioned classes

for the single-leg example of Wollmer

capacity. In fact, as capacity becomes large, most of the demand is covered (since it is

bounded from above) and the opportunity cost is reduced. The regret does not evolve

smoothly: it is sometimes constant and sometimes sensitive to the level of available

capacity. This reflects the nonlinear nature of the minimax regret approach.

Xlo4

Capacity

Figure 1-7: Evolution of the regret as capacity increases

Finally, Table 1.9 shows that both the maximum and average difference in revenues

between the minimax regret LP and the PNLP with normal distribution is fairly

insensitive to the choice of the values of Ij and uj, although the natural choice of the

5th and 95th percentiles dominates.

Network problem. Let us now analyze the five-node hub-and-spoke problem pro-

posed by Williamson (1988). Four cities are connected with a hub. Considering all
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Demand Regret Maximin DLP PNLP N PNLP U
Gamma 5,061 2,202 6,254 5,638 5,840
Uniform 4,429 1,368 5,570 4,893 5,198
Poisson 3,457 1,197 3,729 3,505 3,821

2-point (, ) 2,738 2,266 2,908 2,841 2,809
2-point (, 4) 2,288 2,147 2,360 2,217 2,204

1,
(I)a:



Table 1.9: Sensitivity to range
Percentiles of the distribution [.01, .99] [.05, .95] [.1, .9] [.2, .8]

Maximum difference 2.37% 1.61% 1.77% 2.81%
Average difference 1.28% 0.82% 0.87% 1.29%

possible origin-destination pairs, there is a total of 20 itineraries on 8 legs. There is one

aircraft per leg, and each aircraft has a capacity of 150 seats. There are four classes

per itinerary. Each class on a given itinerary is associated with a mean demand, a

standard deviation, and a fare. Williamson considered three demand scenarios, cor-

responding to low, medium, and high demand. These scenarios differ not only with

respect to the mean demand but also with respect to the coefficient of variation. The

problem data can be found in Tables 5.1-5.3 in Williamson (1988).

When classes are partitioned, the minimax regret approach performs better than

all other distribution-free approaches, as illustrated in Table 1.10 for the high demand

scenario. In fact, the minimax regret approach is almost optimal and is more tractable

than the PNLPs. As in the single-leg example, the PNLP with normal or uniform

demand distributions performs consistently well across the different demand scenarios.

Figure 1-8 illustrates that the minimax regret approach performs well independently

Table 1.10: Expected revenues for the high-demand network example of Williamson
(1988) with partitioned classes

Demand Regret Maximin DLP PNLP N PNLP U
Gamma 147,010 133,700 144,390 148,020 147,270
Uniform 156,190 136,380 148,910 155,830 156,470
Poisson 148,020 133,430 145,750 149,310 148,420

2-point (, ) 167,300 132,820 146,240 161,510 167,270
2-point (, 4) 115,420 112,410 109,590 114,390 114,960

of the level of capacity, assuming independent gamma demand distributions. Finally,

Table 1.11 shows that the good performance of the minimax regret is not dependent

on the level of demand.
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Figure 1-8: Expected revenues with independent gamma demand distributions for
the high-demand network example of Williamson (1988)

Table 1.11: Expected revenues for the network example of Williamson (1988) with
partitioned classes

Demand Regret Maximin DLP PNLP N PNLP U
Low 91,440 84,883 80,623 91,611 91,476

Medium 124,600 116,880 121,200 125,110 124,600
High 147,010 133,700 144,390 148,020 147,270

1.6.4 Application to non-partitioned network problems

We have assumed so far that classes were partitioned. However, in many RM envi-

ronments, the same product can be used to satisfy the demand of different types of

customers. For instance, in the airline industry, seats in the coach cabin are sold at

different fares and/or to passengers having different origins and destinations.

The most common controls when classes are not partitioned, are the booking

limits and the bid prices. Booking limits are typically defined over a set of classes

of customers. In a single-leg problem, it is in fact optimal to nest classes by fare; a

request from class j is accepted if the sum of requests from classes j, ..., M that have

been accepted so far is less than yj. In other words, b-yj seats are protected from class

j. In a network environment however, it is not clear how to order classes associated
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with different itineraries. Most existing methods (pro-rated EMSR, Displacement-

Adjusted Virtual Nesting) reduce the network problem to a collection of single-leg

problems, in which the fares are adjusted to account for the network effects (Talluri

and van Ryzin 2004).

Bid prices measure the opportunity cost of capacity: In every period t and for

every vector of resources b, a price rk(b, t) is associated with each resource k. A

request of class j is accepted at time t if and only if the collected fare pj exceeds

the implicit cost of consuming resources, A'r. Bid price controls are in general not

optimal (Talluri and van Ryzin 1998), yet they are widely used in practice. Usually,

the shadow prices of the DLP or the Lagrange multipliers of the PNLP are chosen

as bid prices (Simpson 1989, Williamson 1992). Talluri and van Ryzin (1999) also

suggested to consider as bid prices the expected dual values of a Randomized Linear

Optimization Problem (RLP), similar in nature to the DLP (1.12), but in which is

replaced by a random demand sample d.

Because the minimax regret LP (1.18), the maximin LP (1.15), the DLP (1.12), the

RLP, and the PNLP (1.10) assume that classes are partitioned, there is no guarantee

that the controls derived with these models would perform well in an environment

where classes are non-partitioned, at least not asymptotically (Cooper 2002, Talluri

and van Ryzin 1998). In fact, the controls obtained with the PNLP, which is the

most sophisticated model, have poor performance when classes are not partitioned,

in comparison to the controls obtained with the DLP, which is the simplest model

(Williamson 1992 and de Boer et al. 2002).

Bid prices. The variables ir correspond to the dual variables associated with the

constraint AE[Z] < b in (1.17). Therefore, the optimal value of kIr measures the

additional revenue that could be obtained if, in addition to knowing the demand dis-

tributions, we were also provided with an additional unit of capacity bk. Accordingly,

the optimal value of these variables can be used as a proxy for the marginal value of

capacity.

In contrast to the dual values of the DLP, variables 7r capture the stochastic nature
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of the demand. In fact, the minimax regret model (1.18) can be rewritten as follows:

min 7r'(b - AL) + q'1 + p'(L - Y)+l,

s.t. pj + qj > 7r'Aj > pju ( 1 y 1, ..., NU3_1- q ~ 3j = _ 1..., N

Ay < b,

y< u,

y, r, q > 0.

The opportunity cost of selling Aj units of capacity is thus compared to the expected

marginal seat revenue of class j if the (partitioned) booking limit associated with

class j is equal to yj and the demand for class j is uniformly distributed between j

and uj. By comparison, with two fare classes, the optimal bid price is equal to

plP(Di > Yi) when Yl units of capacity are reserved for class 1.

In contrast, the bid-price obtained with the DLP (1.12) is only compared to the

full fare. Indeed, when j = uj = j, the constraint involving 7r'Aj simplifies to

1
Pj + qj - > r'Aj.

/~j

Based on the example of Wollmer (1992), Figure 1-9 compares the dual prices

obtained with the minimax regret LP, the DLP, the PNLP with gamma demand

distributions, the maximin LP, and the RLP with 10 samples of gamma-distributed

demand (Talluri and van Ryzin 1999). With the maximin LP, the dual price quickly

falls to zero when capacity is sufficiently large to cover the minimum demand Ij for

all classes. For the DLP, the dual price decreases stepwise, where the jth downward

jump occurs when the capacity equals the cumulative mean demand of the j highest-

fare classes. In contrast, the Lagrange multiplier obtained with the PNLP decreases

continuously. The figure illustrates how the shadow price obtained with the minimax

regret approach captures well the stochastic nature of demand, despite the fact that

it is the output of a linear optimization problem.
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Figure 1-9: Evolution of the dual prices as capacity increases

Implementation of a dynamic bid-price control. In the following, we evaluate

the performance of bid-price controls when classes are not partitioned. Bid prices are

computed with the following models: the minimax regret LP, the maximin LP with

r = M (for which the shadow prices equal zero if b > Ej Ij), the DLP, and the RLP

with 10 samples of demand. As before, Ij and uj correspond to the 5th and 95th

percentiles of the gamma distribution with mean j and standard deviation aj.

Algorithm 1 summarizes the way demand samples are generated and bid prices

are used as controls, when the bid prices are derived with the DLP. Similar algorithms

can be constructed for the RLP, minimax regret, and maximin. For each itinerary i,

i = 1, ..., N, we assume that there are M fare classes, indexed by j. The input data

consists of the capacity vector b, the resource utilization matrix A, where the ith

column Ai represents the amount of resources needed to satisfy a unit request from

itinerary i. In addition, each fare class j on each itinerary i is associated with a price

p(i, j) and a demand distribution Fr(i,j) with support [l(i,j), u(i, j)] and mean /u(i, j).

Expected revenues are computed over 100 randomly generated demand scenarios.

In our numerical study, we assumed that the demands for the different classes are

independent and follow a gamma distribution, and that customers arrive sequentially

in increasing order of fare. Within a fare class, the order among customers with
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different OD pairs was picked randomly.

Bid-prices must be recomputed frequently during the selling season to represent

accurately the opportunity cost of capacity utilization (although frequent reoptimiza-

tion might not always lead to increased revenues, see Cooper 2002). In our numerical

study, bid prices are computed every 100 requests (accepted or not). In Algorithm 1,

the variable NberRequests counts the number of requests that have been introduced

since the last reoptimization of the bid prices. Once this variable is equal to 100, bid

prices are recomputed.

The demand forecasts that are used to calculate the bid prices are updated using

past sales data. If d requests have been introduced by the time the bid prices are

recomputed, the mean demand is set to the mean residual life E[D(i,j)lD(i,j) >

d(i, j)] - d(i, j) Vj in the DLP and the RLP. Moreover, since fare classes are known

to arrive sequentially, the mean demand for the lower-fare classes that have been

completely addressed are set to zero. Similarly, in the minimax regret LP and the

maximin LP, the lower and upper bounds on the demand distribution are also updated

to the 5th and 95th fractiles of the residual life distribution respectively. Updating the

models with past requests improved the performance of all models in our numerical

study.

Finally, a request from a fare class j is accepted only if there is enough capacity to

satisfy the minimum demand for the higher-fare classes, sharing the same itinerary.

In other words, a request from fare j and itinerary i is accepted if (i) p(i, j) > T'Ai

and (ii) b > Zk<jl(i,k)Ai.

We first consider the single-leg example of Wollmer (1992). Table 1.12 compares

the expected revenues when bid prices are computed with the minimax regret LP,

maximin LP, the DLP, and the RLP. The minimax regret bid prices slightly out-

perform the DLP bid prices since they capture the stochastic nature of demand.

While being more computationally-friendly, the minimax regret approach also per-

forms slightly better than the RLP by 1%. The maximin approach performs surpris-

ingly well despite the fact that the budget of uncertainty is set to its maximum. In

fact, although the bid price is equal to zero most of the time, not all requests are
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Algorithm 1 Dynamic Bid-Price Control Simulation when Bid Prices are obtained
with the DLP

Revenue = 0
Nber equests = 0
for all j = 1, ..., M do

for all i = 1,..., N do
x = RAND
d'(i,j)= Fr1 (j)(x)

end for
while there exists some itinerary i with d(i,j) > 0 do

Pick some itinerary i such that d(i,j) > 0
d(i,j) = d(i,j) - 1
Update the mean residual life /t(i, j)
NberRequests = NberRequests + 1
if NberRequests = 100 then

Re-Compute Bid Prices based on DLP with mean vector /t and capacity
vector b
NberRequests = 0

end if
if r'Ai < p(i, j) and b > Zk<j Ail(i, k) then

Revenue = Revenue + p(i,j)
b = b-A

end if
end while
for all i = 1,...,N do

p(i,j)= 0
end for

end for

accepted since some level of capacity is protected to cover the minimum demand of

the high-fare classes. Frequent reoptimization of the bid prices does not seem to affect

the performance.

We next consider the network example proposed by de Boer et al. (2002). The

network consists of four cities in series with six possible OD pairs (flights only go in

one direction) and three fare classes per itinerary. The fares, mean, and standard

deviation of each ODF class can be found in Tables 8 and 9 of de Boer et al. (2002).

Each aircraft has 200 seats. We also considered their cases of inflated variance and

smaller fare spreads (Tables 10 and 11 in de Boer et al.). Table 1.13 shows that

bid prices obtained with the minimax regret LP performs slightly better than the bid
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Table 1.12: Expected revenues with bid-price controls in the single-leg example of
Wollmer (1992)

Reopt. Fqcy Regret Maximin DLP RLP(10)
1/150 68,271 65,033 68,271 67,553
1/100 67,249 64,311 67,258 66,804
1/50 67,475 64,566 67,437 66,987
1/10 68,677 65,310 67,360 68,363

prices obtained with the DLP or the RLP. In contrast to the single-leg example (Table

1.12), the maximin approach performs poorly because the protection level only covers

the minimum demand of the higher-fare classes on the same itinerary.

Table 1.13: Expected revenues with bid-price controls in the network example of de
Boer et al. (2002)

Model Regret Maximin DLP RLP(10)
base case 76,614 56,245 75,965 75,141

inflated variance 75,974 59,902 74,934 74,746
smaller fare spread 64,376 55,570 64,430 63,513

The last example that we consider is the five-node hub-and-spoke network pro-

posed by Williamson (1988), under three demand scenarios (see Tables 5.1-5-3 in

Williamson 1988). Table 1.14 displays the performance of the bid prices in this ex-

ample. The minimax regret bid prices perform better than both the DLP and the

RLP bid prices by 1%. The maximin LP perform well when capacity is loose: since

the maximin bid price is almost equal to zero, the maximin policy consists in accept-

ing all requests, while the other policies impose unnecessary protection levels. Figure

Table 1.14: Expected revenues with bid-price controls in the network example of
Williamson (1988)

Demand Regret Maximin DLP RLP(10)
High 161,600 113,810 159,250 159,620

Medium 135,860 134,260 135,200 135,000
Low 91,692 91,692 91,692 91,692

1-10 illustrates that the minimax regret approach performs well independently of the
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level of capacity.
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Figure 1-10: Expected revenues for the high-demand network example of Williamson
(1988)

To test the robustness of our results, we consider the previous examples with

random order of arrivals, among all itineraries and classes. Table 1.15 shows that

the bid prices obtained with the minimax regret outperform by 1-4% the bid prices

obtained with the alternative approaches, which is even greater than with a sequential

order of arrivals.

Table 1.15: Expected revenues with bid-price controls with random order of arrivals

Problem Regret Maximin DLP RLP(10)
Wollmer (1992) 71,703 69,125 70,968 68,132

de Boer et al. (2002) base case 79,020 74,483 76,608 74,729

de Boer et al. (2002) inflated variances 78,914 74,650 78,413 76,744

de Boer et al. (2002) smaller fare spread 66,255 63,712 63,300 61,821
Williamson (1988) high 163,350 157,300 158,060 155,700

Williamson (1988) medium 136,790 137,050 133,320 131,920
Williamson (1988) low 92,937 92,937 92,937 92,937
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1.7 Conclusions

In this chapter, we propose a robust approach to the newsvendor model with partial

demand information. In particular, we derive order quantities that minimize the

newsvendor's maximum regret. The minimax regret objective balances the risks of

ordering too little against the risk of ordering too much and is consequently less

conservative than the maximin approach.

Most of the derived order quantities are simple functions, which makes them

attractive for practical application. The minimax regret approach is related to the

entropy maximization approach. As a result, the minimax regret order quantity is

close (or equal) to the newsvendor solutions with an exponential demand distribution

when only the mean is known, with a uniform distribution when only the range is

known, and with a normal distribution when only the mean and variance are known

and the coefficient of variation is small.

When the mean and the variance are estimated, assuming a normal demand dis-

tribution is justified by (a) the Central Limit Theorem, (b) the maximum entropy,

(c) the maximin approach, and (d) the minimax regret approach. However, if the

coefficient of variation is larger than 0.3, the normality assumption breaks down as

the probability of negative demand becomes non-negligible. In this case, the minimax

regret approach seems to be the most appropriate approach as it always recommends

to order positive and finite quantities.

We also show that recognizing that the demand distribution has a "regular" shape

(i.e., symmetric and unimodal) has more informational value than estimating the

variance.

Finally, we illustrate the potential of the minimax regret criterion for solving

practical problems. In particular, the minimax regret network revenue management

problem can be formulated as a linear optimization problem, which makes the ap-

proach attractive for solving practical problems, involving large network sizes and

many demand uncertainties. In addition, bid prices based on the minimax regret

problem capture the stochastic nature of demand while being computationally inex-
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pensive. As we showed in our numerical examples, network RM based on the minimax

regret bid prices can outperform the traditional approaches.

On the other hand, the maximin approach generally underperforms the minimax

regret. However, in uncertain environments, when the decision-maker is risk-averse,

the maximin criterion combined with a budget of uncertainty guarantees a minimum

level of revenue with a certain probability, which is called the Value-at-Risk (Bertsi-

mas and Sim 2004, Bertsimas and Thiele 2006, Lancaster 2003).

More generally, the field of robust management opens new avenues for model-

ing uncertainty differently than with probability distributions. As we have seen in

this chapter, this new approach can lead to more efficient solution techniques, while

requiring less data or making less stringent assumptions.
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Chapter 2

The Price of Anarchy in Supply

Chains

2.1 Introduction

The classic newsvendor model (1) assumes a single decision-maker. However, inven-

tory decisions in supply chains are often the result from complex negotiations among

supply partners with different, if not conflicting, objectives. In a decentralized supply

chain, each partner acts selfishly, by maximizing his/her own profit. As a result, the

level of inventory in a decentralized supply chain might not be equal to what would

have been optimal to have if the supply chain had been integrated.

In this chapter, we quantify the efficiency of decentralized supply chains that use

price-only contracts. Price-only contracts specify a constant per-unit selling price

between a buyer and a seller. These contracts are certainly the simplest and the most

common mechanisms for governing transactions in supply chains. However, they

do not coordinate the supply chain (Cachon 2003), a manifestation of the "double-

marginalization" phenomenon: in a decentralized supply chain with two monopolists,

two successive markups occur, causing the final price to be higher and the aggregate

profits to be lower than if the firms were vertically integrated (Spengler 1950). When

demand is stochastic and the retail price is fixed, double marginalization is reflected

through reduced inventory levels.
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The limited performance of price-only contracts was first investigated in two-

stage supply chains by Lariviere and Porteus (2001) and by Cachon and Lariviere

(2001). It was then analyzed in more complex supply chains, such as assembly systems

(Wang and Gerchak 2003, Gerchak and Wang 2004, and Tomlin 2003), multi-tier

assembly systems (Bernstein and DeCroix 2004), distribution systems when demand

is stochastic (Anupindi and Bassok 1999, Cachon 2003, Bernstein and Federgruen

2005) or deterministic (Chen, Federgruen and Zheng 2001, Wang 2001). However, no

formal analysis has accurately quantified the loss of efficiency associated with these

contracts.

To improve coordination in supply chains, various alternative contracts have been

proposed: buy-back, revenue sharing, quantity flexibility, sales rebate, and quantity

discount contracts (see Cachon 2003 and Lariviere 1999 for a review). However, these

more elaborate contracts are typically more costly to negotiate, more complex to

administrate, or might create additional moral hazard problems (e.g., see Krishnan,

Kapuscinski, and Butz 2004).

Because of the prevalence of price-only contracts in practice and the additional cost

of using more elaborate contracts, it is important to quantify the loss of efficiency

associated with price-only contracts. Numerical examples in Cachon (2004) show

that the relative efficiency of a two-stage decentralized supply chain could be as low

as 70-85% for push configurations and 75-90% for pull configurations. Keser and

Paleologo (2004) experimentally observed a relative efficiency of 69% in a two-stage

push supply chain, but with different wholesale prices and profit allocations that those

predicted by the theoretical models (Lariviere and Porteus 2001). But to the best of

our knowledge, there has been no formal analysis to quantify the loss of efficiency in

decentralized supply chains.

Quantifying the efficiency of a decentralized system relative to the performance

of a centralized system has generated a lot of research interest over the past few

years. The "Price of Anarchy"-concept introduced by Koutsoupias and Papadim-

itriou (1999) and dubbed by Papadimitriou (2001)-measures the ratio of the per-

formance of the centralized system over the worst performance of the decentralized
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system (corresponding to the worst Nash equilibrium). The Price of Anarchy has

been used as a measure of performance for transportation networks (Roughgarden

and Tardos 2000, 2002, Correa, Schulz and Stier-Moses 2004, 2005, Perakis 2005), in

network resource allocation games (Johari and Tsitsiklis 2004), and network pricing

games (Acemoglu and Ozdaglar 2004).

In contrast, there has been little research on quantifying the efficiency of supply

chains. Chen et al. (2000) quantified the inefficiency due to the bullwhip effect

by comparing the variance of orders with the variance of demand. Martinez-de-

Albeniz and Simchi-Levi (2003) computed the Price of Anarchy of a procurement

game with option contracts. There are two main differences between option contracts

and price-only contracts. First, option contracts are two-dimensional (there is the

reservation price and the execution price); as a result, competition is multidimensional

and preserves the diversity of suppliers. Second, there is no moral hazard with option

contracts, as supply capacity is assumed to be contractible. Finally, Chan and Simchi-

Levi (2(005) characterized the loss of efficiency in a two-stage supply chain, where the

manufacturer chooses the wholesale price and the retailer chooses the retail price

under buyback and inventory sharing contracts.

In this chapter, we quantify the impact of double marginalization in supply chains

that use price-only contracts. All our bounds are tight and distribution-free (under

the restriction that the demand distribution is nonnegative and has an increasing

generalized failure rate). Distribution-free bounds are useful when supply chain design

decisions must be made without knowledge about demand distribution.

We focus on price-only contracts, as their inability to coordinate the supply chain

lies at the foundation of the large body of research on more elaborate contracts (buy-

back, quantity flexibility, etc.). We assume that the only decisions are the wholesale

price and the inventory/capacity levels at each stage. In particular, we assume that

the retail price is fixed and that no efforts can be done to improve forecast accu-

racy, increase sales, or reduce costs. We also ignore the effect of repeated interaction

(Anupindi and Bassok 1999), nonzero reservation profits (Lariviere and Porteus 2001,

Bernstein and Marx 2005), or renegotiation to a Pareto-improving situation (Ertogral
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and Wu 2001, Cachon 2004), as they diminish the impact of double marginalization.

We characterize the efficiency of different supply chain configurations: push or

pull inventory positioning, two or more stages, serial or assembly systems, single or

multiple competing suppliers, and single or multiple competing retailers. We also

validate our findings with a numerical study, measuring supply chain efficiency for

commonly-used demand distributions. Our analysis generates the following insights:

1. The loss of efficiency from double marginalization constitutes a major concern:

even in a two-stage supply chain, there might be a loss of efficiency of 42%;

with more stages, the supply chain performance deteriorates further.

2. The efficiency of price-only contracts generally drops with the number of inter-

mediaries but rallies when competition is introduced. There are however a few

exceptions.

3. Focusing on the impact of double marginalization, and assuming everything

else being equal, a pull inventory configuration generally outperforms a push

configuration. In particular, significant savings can be realized if the supply

chain adopts an assemble-to-order production policy, i.e., assembles components

after observing the demand.

The chapter is organized as follows. In Section 2.2, we introduce the model frame-

work and characterize the solution of the integrated supply chain. In Section 2.3, we

compute the Price of Anarchy of a serial system, first limited to two stages, then con-

sisting of an arbitrary number of stages, in both pull and push configurations. Section

2.4 is devoted to deriving the Price of Anarchy of assembly systems, in which the com-

ponents are procured from different suppliers. In Sections 2.5 and 2.6, we quantify the

efficiency of competition among suppliers and among retailers respectively. Finally,

we summarize and discuss our results in Section 2.7, to generate insights into supply

chain design.
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2.2 Model Framework

Model Notations. Consider a supply chain facing the newsvendor problem (1). We

assume that the demand distribution F(x) is strictly increasing and continuous, with

density f(x), and has an increasing generalized failure rate (IGFR) (see Lariviere

and Porteus 2001, Lariviere 2004, and Paul 2005). Let h(x) = f(x)/F(x) be the

hazard rate and let g(x) = xh(x) be the generalized failure rate, approximating the

percentage decrease in the probability of a stockout from increasing the stocking

quantity by 1%. The IGFR assumption is sufficient to guarantee a well-behaved

(unimodal) problem for the contract initiator in a decentralized setting.

We also define £(x) = (h(x) fo F(P()d<)/F(x), roughly representing the percentage

decrease in the probability of stockout from increasing the expected sales by 1%. The

quantity £(x) is increasing if the distribution is IGFR (Cachon 2004).

Centralized Supply Chain. As a benchmark, we consider the centralized (or

integrated) supply chain, as if there were a single decision-maker operating the entire

supply chain. The level of inventory yC (for centralized) is chosen to maximize the

total supply chain expected profits and therefore solves the newsvendor problem (1).

That is, yC = F(r) where r = c/p.

The Price of Anarchy. The inventory level in a decentralized supply chain, de-

noted by yd, is in general not equal to yC, as each partner optimizes her own profit

locally.

To measure the loss of efficiency, we derive a worst-case bound, computed over

all IGFR distributions. We restrict our analysis to the class of IGFR distributions

to ensure that the decentralized problem has a well-defined solution. This bound is

a proxy for the magnitude of the loss of efficiency, without requiring to estimate the

demand distribution. In fact, supply chain design, which is essentially strategic, must

often be done without knowing the demand distribution (especially if the same supply

chain is used for several generations of products), in contrast to inventory decisions,

more tactical. All of our bounds are tight; that is, there exists an IGFR demand
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Figure 2-1: Decentralized supply-chain framework

distribution for which the supply chain efficiency is characterized by the worst-case

ratio.

Definition 2. The Price of Anarchy PoA is the worst-case ratio of the profit achieved

by the centralized supply chain over the profit achieved by the decentralized supply

chain, that is,

-cyc + pE[min{yC, D}PoA = sup (2.1)
DED -cy + pE[min{yd, D}]' 

where D is the set of nonnegative demand distributions that have the IGFR property.

Decentralized Game Framework. In the following, we analyze the performance

of the decentralized supply chain depicted in Figure 2-1. The supply chain is divided

into three parts: the procurement stage, the bill of materials of an assembly, and the

distribution stage. A square represents a product and a circle represents a decision-

maker. A solid arrow symbolizes a "goes-into" relationship while a dashed arrow

represents a supply/distribution channel.

In the center of the figure, the bill of materials represents an assembly structure,

where Nc components are assembled into one end-product. At the procurement
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stage, in the left part of the figure, each component can be procured from any of

Ns competing suppliers. For simplicity, we assume the same number of suppliers

corresponding to each component. Finally, at the distribution stage, the end-product

can be sold to the end-market through any of the NR retailers. Accordingly, the

structure of the supply chain is parameterized by the triplet (NC, Ns, NR).

To highlight the impact of double marginalization of supplier interdependence

through a bill of material, supplier competition, and retailer competition, we analyze

several special cases of the general supply chain depicted in Figure 2-1, corresponding

to specific values of parameters Nc, Ns, and NR. In general, the structure of the game

depends on whether the parameter values equal 1 or many (i.e., n, where n > 1). Table

2.1 summarizes the different supply networks that we analyze in the next sections.

Table 2.1: Supply network structures
Structure Nc Ns NR Section
serial system 1 1 2.3
assembly system n 1 1 2.4
competitive procurement system 1 n 1 2.5
competitive distribution system 1 1 n 2.6

For each supply chain structure presented in Table 2.1, we consider two inventory

configurations, according to the push-pull classification introduced by Cachon (2004):

when the downstream (resp., upstream) partner holds the supply chain inventory,

the supply chain is said to be operated in a push (resp., pull) mode. In other words,

a push (resp. pull) configuration corresponds to a Make-to-Stock (resp. Make-to-

Order) production policy at the downstream stage. To highlight the impact of double

mnarginalization, we assume zero unit production costs and zero salvage values in both

configurations.

Consistently with the literature (Lariviere and Porteus 2001, Cachon and Lariviere

2001), we model the problem as a Stackelberg game where a leader proposes a "take-

it-or-lea;ve-it" contract to a follower, and we assume perfect information. The timing

of the game for a two-stage supply chain is outlined below. Notice that the order of

the last two steps of the game depends on the push-pull configuration of the supply
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chain.

1. The leader offers the follower a contract specifying the unit wholesale price w.

2. The follower accepts the contract if his expected profit is above his reservation

profit, assumed to be zero. Otherwise, there is no transaction between the

parties.

3. The manufacturer chooses his/her level of inventory at a unit cost c.

Pull:

4. Demand D is realized.

5. The retailer orders what is needed to meet demand, at a unit cost w. Each unit

of satisfied demand generates a revenue p. If the manufacturer does not have

enough inventory, the excess demand is lost at no cost.

Push:

4. The retailer places an order, at a unit cost w.

5. Demand D is realized. Each unit of satisfied demand generates a revenue p.

If the retailer does not have enough inventory, the excess demand is lost at no

cost.

2.3 Serial Supply Chain

We first characterize the efficiency of a two-stage supply chain, under a push or a

pull configuration, constituted of a manufacturer and a retailer. We then extend our

results to multistage serial structures.

2.3.1 Push Serial Supply Chain

In a push supply chain, the inventory is held at the retailer's site, i.e., the retailer

orders before observing the demand. We consider two Stackelberg games, depending

on who proposes the contract.
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Manufacturer is the Leader. When the manufacturer chooses the wholesale price

w to maximize her profits, she anticipates the retailer's order quantity. That is, she

solves the following bilevel optimization problem:

maxw(w - c)y,

s.t. y = argmaxxpE[min{x, D}]-wx, (I.C.),

pE[min{y, D}] - wy > 0, (I.R.).

Consistently with the standard principal-agent models, the incentive compatibility

(I.C.) constraint states that the retailer chooses the order quantity to maximize his

expected profit, and the individual rationality (I.R.) constraint ensures that the re-

tailer earns at least his reservation profit (assumed to be zero).

Lariviere and Porteus (2001) showed that if the demand distribution is IGFR

with a finite mean, the manufacturer's problem is pseudo-concave. In particular, they

showed that the manufacturer's optimal sales quantity lied in the interval [A, y] where

A > 0 is the lowest value of the support of the distribution, and y = inf{xlg(x) < 1}

maximizes the manufacturer's revenues. They showed that 9 is finite when the mean

is finite.

However, requiring the mean to be finite is unnecessary. In fact, the manufac-

turer's profit is negative when w < c, or equivalently when y > ye; on the other hand,

the manufacturer can obtain zero profit by charging w = p, inducing the retailer not

to order. Therefore, the manufacturer's optimal sales quantity lies in the interval

[A, min{y, yC}], which is always finite; moreover, on that interval, the manufacturer's

profit function is strictly concave. Therefore, the optimal inventory level in the supply

chain is either equal to the lowest value of the support of the demand distribution or

uniquely determined by the following first-order optimality condition:

F(yd)(1 - g(yd)) = r, (2.2)

where g(x) = xf(x)/F(x) is the generalized failure rate.
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The next theorem quantifies the Price of Anarchy (PoA, see (2.1)) of a two-stage

push supply chain.

Theorem 10. In a two-stage push supply chain, when the manufacturer is the ini-

tiator of the price-only contract,

PoA = r - r-r

The bound is tight. In particular, the worst-case demand distribution is a Pareto

distribution, F(x) = Skx - k for x > S, for some S > 0 and with k = 1 - r. Such

a demand distribution is appropriate when orders of a total of S units have been

pre-committed, and all the remaining uncertainty lies on the excess demand above

that level S.

Remark 1. The Price of Anarchy measures the largest loss of efficiency over the set

of IGFR distributions. With more general distributions, the loss of efficiency can be

even larger. For instance, in appendix, we consider the two-point demand distribution,

equal to I with probability 1 - r, and equal to u > I with probability r, that is associated

with a Price of Anarchy of 2 - 1/u. When 1/u -- O, this is greater than the bound

derived in Theorem 10 when r > .5

Table 2.2 displays the performance of a two-stage push supply chain when the

demand distribution is gamma, i.e., f(x) = xk -1 exp(-x/O)/(F(k)Ok). Since supply

chain efficiency is independent of the scale of the demand (Lariviere and Porteus

2001), we only vary parameter k, by taking k = .1, 1, and 10. When k = 1, the

distribution is exponential. As k increases, the coefficient of variation 1/k', the

skewness, and the kurtosis decrease, and the gamma distribution looks more like a

normal distribution. Also, when the demand distribution is uniform between 0 and u,

it turns out that E[n(yc, D)]/E[H(yd, D)] = 4/3, independently of the profit margins

and the value of u.
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Table 2.2: Performance of a two-stage push supply chain
E[n(yc, D)]/E[II(yd, D)J yc/yd Stockout Probability

r PoA k = .1 k = 1 k = 10 k = .1 k1 k k-= 10 k = .1 k=1 k = 10
.2 2.48 1.36 1.41 1.34 2.64 2.57 1.84 0.27 0.53 0.85
.4 2.10 1.36 1.37 1.30 2.60 2.28 1.67 0.45 0.67 0.90
.6 1.92 1.36 1.35 1.27 2.60 2.14 1.56 0.64 0.79 0.93
.8 1.80 1.36 1.34 1.24 2.59 2.06 1.48 0.82 0.90 0.97

As shown in Table 2.2, the worst-case ratio PoA is roughly 30-80% greater than

the performance of the supply chain for "common" demand distributions (exponen-

tial, gamma, uniform). However, the qualitative behavior remains the same: the

performance of the decentralized supply chain is decreasing with the profit margin

1 - r and the coefficient of variation 1/v/k, at least after a certain point, as already

noted by Lariviere and Porteus (2001). Table 2.2 also shows that the loss of efficiency

is caused by both a reduction in inventory levels and a deterioration in service level.

Interestingly, the two effects evolve in opposite directions as the coefficient of variation

increases (i.e., k decreases) or as the profit margin increases (i.e., r decreases).

Retailer is the Leader. If the retailer proposes the contract, there is no moral haz-

ard and the first-best solution is achieved. Formally, the retailer solves the following

bilevel optimization problem:

maxw,y pE[min{y, D}] - wy,

s.t (w - c)y > (I.R.).

It is easy to see that the retailer proposes a price w c. As a result, the retailer's

problem reduces to (1). Therefore, full coordination is achieved, i.e., PoA = 1.

Multistage Supply Chain. Let us consider a push serial supply chain, where every

stage offers a take-it-or-leave-it contract to the next downstream stage. As double

marginalization occurs at every stage, the performance of the decentralized supply

chain deteriorates. To highlight the effect of double marginalization, we assume that
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the intermediaries in the supply chain incur no additional cost, and by consequence,

do not add value to the product. We start with characterizing a bound on the level

of inventory in the decentralized supply chain yd.

Lemma 2. With an IGFR demand distribution, the optimal inventory level in an

n-stage push serial system, is such that F(yd)(1 - g(yd))n-l > r.

Using Lemma 2, the next theorem quantifies the worst-case loss of efficiency.

Theorem 11. In an n-stage serial push supply chain, when every stage offers a

contract to the next downstream stage,

1 I

PoA = -r )(-r 1-r
en-_ 1 n-

-1 + (1-) (n - 1)2 + ((1- r))

The approximation, obtained from a series expansion around r = 1, shows that

the number of intermediaries has an exponential influence on the value of the Price

of Anarchy.

Figure 2-2 depicts the evolution of Price of Anarchy of a serial push supply chain as

the profit margin 1 - r increases and as the number of intermediaries n increases. Ta-

ble 2.3 compares the Price of Anarchy with the profit ratio E[II(yC, D)]/E[II(yd, D)]

of serial supply chains with three and four echelons, under a gamma demand dis-

tribution, for different values of the coefficient of variation 1/V'. 1 Also, when the

demand distribution is uniform between 0 and u, one can show that the profit ratio

equals 16/7=2.29 when there are three echelons, and 64/15=4.27 when there are four

echelons, independently of u and the profit margin.

We make the following observations, based on Figure 2-2 and Table 2.3. First,

the loss of efficiency generally increases with the profit margin of the supply chain

'In this numerical study, the set of possible wholesale prices between any two stages was dis-
cretized: in particular, only the prices w = r + (1 - (/1001)r, for = 1, ..., 1000, were considered.
Therefore, some errors might be due to the discretization.
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Table 2.3: Performance of an n-stage push supply chain
n=3 n=4

r PoA k=.1 k=1 k=10 PoA k = .1 k= k10
.2 4.14 2.40 2.62 1.95 7.68 4.84 5.14 3.07
.4 3.72 2.51 2.47 1.89 7.15 4.86 4.78 2.87
.6 3.50 2.51 2.37 1.79 6.81 4.85 4.34 2.70
.8 3.32 2.51 2.30 1.72 6.56 4.85 4.02 2.51

and with the coefficient of variation. Second, even when the profit margin is small (r

close to 1), full coordination is not achieved; in particular, with only two stages, the

worst-case supply chain performance PoA is equal to e - 1 when p = c. Third, the

supply chain becomes less efficient when the number of intermediaries in the supply

chain increases, reflecting the impact of double marginalization. More specifically,

the Price of Anarchy is nearly doubled each time a new intermediary is added.

14
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10

PoA 8

4

-n=3
n=4

-n=5

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6

1-r

Figure 2-2: Price of Anarchy of a serial push supply chain

2.3.2 Pull Serial Supply Chain

In a pull supply chain, the inventory is held at the manufacturer's site, i.e., the retailer

orders after observing the demand. We consider two Stackelberg games, depending

on who proposes the contract.

Retailer is the Leader. The retailer proposes the manufacturer a wholesale price

so as to maximize her expected profits, anticipating the manufacturer's choice of in-
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ventory level. Formally, the retailer solves the following bilevel optimization problem:

max(p - w)E[min{y, D}],

s.t. y = argmax. wE[min{x, D}] -cx, (I.C.),

wE[min{y, D}] - cy > 0, (I.R.).

Cachon and Lariviere (2001) showed that the optimal inventory level yd is either

equal to the lowest value of the support of the demand distribution or uniquely

determined by the following first-order optimality conditions:

F(yd) = r(1 + £(yd)), (2.3)

where £(x) = (fo F'()d~)f(x)/(F(x)) 2.

The next theorem characterizes the loss of efficiency from decentralizing opera-

tions.

Theorem 12. In a two-stage pull supply chain, when the retailer is the initiator of

the price-only contract,

PoA = e - 1.

where e approximately equals 2.71828 and is the base of the natural logarithm.

Equivalently, the loss of efficiency (computed by 1 - 1/PoA) is 42%. The bound

is tight and is attained with the following piecewise Pareto demand distribution, with

a breakpoint at yd,

x-'S t, for S < x < yd,
(x) ='

x-kT k, for x > yd,

where S = (yd)lr(1 + k), Tk = (yd)kr(1 + k), and both 1 and k tend to zero, but 1

tends faster to zero than k. Roughly speaking, the demand is either equal to zero

with probability 1 - r, or greater than y with probability r. Thus, in the worst
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case, the product is either a success (sales are greater than yC) or a failure. Given

the one--shot nature of the game, such a demand distribution is appropriate for the

launch of a new product.

The Price of Anarchy in a pull supply chain is lower than that of a push supply

chain (Theorem 10) when r < 1, and equal when r = 1. In fact, in a pull supply

chain, the demand risk is spread over the two parties since the transfer of inventory

occurs after the demand realization. In contrast, in a push supply chain, only the

retailer is directly exposed to the demand risk, as he orders before observing demand.

Since there is more risk sharing in a pull supply chain, the individual objectives are

more aligned, and the whole supply chain is more efficient.

Tabl]e 2.4 compares the Price of Anarchy with the performance of a two-stage pull

supply chain, with a gamma distribution and varying coefficient of variation. Also,

when the demand is uniform between 0 and u, one can show that the ratio takes on

values between 1 (when r - 0) and 4/3 (when r -- 1), independently of u.

Table 2.4: Performance of a two-stage pull supply chain
E[II(yc, D)]/E[I(yd, D)] yc/yd Stockout Probability

r PA k=.l k=l 1 k= 10 k=.1 k=1 k=10 k=.l1 = k = 10
.2 1.'72 1.32 1.22 1.14 2.48 2.00 1.49 0.27 0.45 0.66

.4 1.72 1.35 1.27 1.18 2.55 2.00 1.48 0.45 0.63 0.82

.6 1.'72 1.35 1.30 1.20 2.57 2.00 1.46 0.64 0.77 0.91

.8 1.'72 1.36 1.32 1.22 2.59 2.00 1.44 0.82 0.90 0.97
.-

The Price of Anarchy is in general 30% higher than the profit ratio with gamma

and uniform demand distribution. The performance of a pull decentralized supply

chain deteriorates when margins become small (in contrast to a push supply chain)

or when the coefficient of variation increases (as in a push supply chain).

In addition, comparing Table 2.4 with Table 2.2 reveals that both the inventory

and the service levels are improved under a pull configuration relatively to a push

configuration.

Manufacturer is the Leader. If the manufacturer proposes the contract, there is

no moral hazard. Formally, the manufacturer solves the following bilevel optimization
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problem:

max,, wE[min{y, D}] - cy,

s.t (p - w)E[min{y,D}] > 0, (I.R.).

It is easy to see that the manufacturer will propose a wholesale price w = p. As a

result, the manufacturer's problem is equivalent to (1) and the Price of Anarchy is

equal to 1.

Multistage Supply Chain Let us consider a pull serial supply chain, where ev-

ery stage offers a take-it-or-leave-it contract to the next upstream stage. As double

marginalization occurs at every stage, the performance of the decentralized supply

chain decreases with the number of intermediaries. We start with characterizing the

level of inventory in the decentralized supply chain, yd.

Lemma 3. With an IGFR demand distribution, the optimal inventory level in an

n-stage pull serial system, is such that F(yd) > r(1 + e(yd))n-l.

Using Lemma 3, the next theorem quantifies the worst-case loss of efficiency.

Theorem 13. In an n-stage serial pull supply chain, when every stage offers a con-

tract to the next upstream stage,

en-l - 1PoA = -n-1

With two stages, the Price of Anarchy is equal to 1.72; with three stages, it goes

up to 3.19; with four stages, it raises to 6.36.

As in the two-stage supply chain, the performance of the pull supply chain dom-

inates that of the push supply chain. In particular, the Price of Anarchy of the pull

supply chain corresponds to the Price of Anarchy of the push supply chain with zero

margin, i.e., r = 1 (compare Theorem 13 with the approximation of the Price of

Anarchy in a push supply chain in Theorem 11).
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Table 2.5 compares the performance of the decentralized supply chain, with three

or four stages, when the demand distribution is gamma. As in a two-stage supply

chain (see Table 2.4), the performance of the supply chain decreases with the co-

efficient of variation 1/x/k and increases with the profit margin 1 - r. Moreover,

comparing Tables 2.3 and 2.5 reveals that a pull serial system is more efficient than

a push serial system, consistently with the worst-case analysis (except when n = 4,

k = .1, r > .6 due to roundoff errors).

Table 2.5: Performance of an n-stage pull supply chain
n=3 n=4

r PoA k=.1 k=1 k=10 PoA k=.1 k=1 k=10
.2 3.19 2.21 1.77 1.54 6.36 4.27 2.89 2.08
.4 3.19 2.35 2.01 1.65 6.36 4.33 3.52 2.17
.6 3.19 2.39 2.04 1.67 6.36 5.05 3.62 2.17
.8 3.19 2.35 2.17 1.68 6.36 5.01 3.67 2.11

2.4 Assembly System

In this section, we characterize the efficiency of a two-level assembly system, depicted

in Figure 2-3. We consider a manufacturer that purchases for assembly n distinct

components from outside suppliers. Following the framework proposed in Figure 2-1,

we assume that there are Nc = n components to be assembled and that each of these

is procured from exactly Ns = 1 supplier. Notice that, in contrast to Section 2.3, the

manufacturer is located downstream of the supply chain; accordingly, NR = 1. Each

supplier is specialized in the production of a particular component; therefore, suppliers

are not competing on the same markets. However, they have strategic interactions

as they are linked through the assembly process. Let ci be the unit production cost

of supplier i, i = 1,..., n, and co be the unit assembly cost of the manufacturer; as

before, p is the unit selling price of the end-product.

Since all components are needed for the production of the end-product, the system

capacity corresponds to the minimum level of capacity (or inventory) held by each
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supplier. As a result, if one supplier is particularly reluctant to build large inventories,

it will affect the performance of the entire system.

2.4.1 Push Assembly System

We consider first a push supply chain, i.e., where the manufacturer orders before

observing the demand. As in a two-stage supply chain, if the manufacturer speci-

fies the terms of the contracts, full efficiency is achieved. On the other hand, if the

suppliers specify the contracts, the decentralized supply chain is less efficient than

the centralized supply chain. In particular, suppose that each supplier i proposes the

manufacturer a unit transfer price wi in order to maximize her profit. As the man-

ufacturer makes to stock, he faces the standard newsvendor problem. Anticipating

the manufacturer's order size, the suppliers propose transfer prices to jointly solve

the following bilevel optimization problem:

max, (wi - ci)y, Vi = 1, ..., n,

s.t. y = argmax pE[min{x, D - in 1 wi - c, (I.C.),

pE[min{y, D}] - En 1 wiy - coy > 0, (I.R.).

Gerchak and Wang (2004) proved the existence of a Nash equilibrium in the game and

showed that the quantity ordered by the manufacturer to each of his suppliers is either
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equal to the lowest value of the support of the demand distribution or determined by

the following equation:

F(y)(1 g(yd)) cj + o + ij i j = 1, ...,n.
P

Since the left-hand side is constant for every supplier, it turns out that, at the

Nash equilibrium, all suppliers make the same profit, i.e., wi - ci = wj - cj, Vi, j.

Therefore, one can show that wi = ci + (pF(yd) - E=o ci), and that the first-order

optimality condition reduces to

F(yd)(1 - ng(yd)) = r, (2.4)

where r = EnO cil/p. The next theorem quantifies the loss of efficiency in the assembly

system.

Theorem 14. In a push assembly system with n components, when the suppliers

offer the price-only contracts,

1 - -n _ 1PoA = n-1+r

As shown in Figure 2-4, the loss of efficiency of price-only contracts can be dra-

matic in push assembly systems. The performance of the decentralized supply chain

quickly falls as the number of components and the profit margins increase. Compar-

ing Figures 2-2 and 2-4 reveals that the Price of Anarchy is larger in push assembly

systems with n components than in a n-stage push serial structure. Therefore, aiming

at reducing the number of stages in the assembly process (e.g., through the produc-

tion of kits upstream of the assembly stage) can be valuable to mitigate the effect of

double marginalization, everything else being equal.

However, the performance of assembly system is not always so poor. Table 2.6

compares the profit ratios E[H(yc, D)]/E[II(yd, D)] of an assembly structure with two
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Figure 2-4: Price of Anarchy of a push assembly system

or three components, when the demand has a gamma distribution. Similarly, when

the demand distribution is uniform between 0 and u, one can show that the profit

ratio equals (n + 1)2 /(2n + 1), independently of the profit margin and the upper

bound u; in particular, the profit ratio equals 9/5 = 1.8 and 16/7 = 2.29 when

there are two and three components to assemble respectively. Unlike the Pareto

distribution, which characterizes the worst-case bound, the gamma, exponential, and

uniform distributions are associated with efficiency losses that are comparable to

(and in fact even lower than) those in serial structures (see Table 2.3). For these

distributions, only the number of intermediaries in the supply chain seems to affect

its performance, almost independently of the network configuration.

Table 2.6: Performance of an n-component push assembly system
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r n = 2 n=3
PoA k =.1 k = 1 k = 10 PoA k = .1 k =1 k = 10

.2 8.48 2.35 2.09 1.53 37.54 4.26 2.81 1.66

.4 5.34 2.32 1.96 1.47 15.86 4.18 2.58 1.59

.6 4.20 2.33 1.89 1.43 10.26 4.17 2.45 1.53

.8 3.58 2.32 1.84 1.38 7.76 4.18 2.35 1.47



2.4.2 Pull Assembly System

Let us consider now a pull assembly system, i.e., where the manufacturer assembles

to order but the suppliers decide their inventory level without knowing the exact

demand (e.g., because of long lead-times). Suppose that the manufacturer has full

negotiating power and offers each of her suppliers a price-only contract. Given he

is offered a wholesale price wi, supplier i will hold a certain level of inventory i.

Consequently, the manufacturer will be able to assemble at most y = mini=l,...,n yi

products. Anticipating the reaction of her suppliers, the manufacturer designs the

contracts in order to maximize her profits, that is:

maxxwl,,,,,,(p - - w - co)E[min{mini i, D],

s.t. yi = argmax, wiE[min{x, D, yi}] - cix, Vi = 1,..., n, (I.C.),

wiE[min{yi, D, yi}] - i > , Vi = 1, ...,n, (I.R.).

The (I.C.) constraint represents the newsvendor problem faced by each supplier, sell-

ing the minimum between the demand D, his capacity level yi, and the others' ca-

pacity levels, denoted by yi. As all components are required to assemble one unit

of end-product, the system capacity is the minimum of all supplier's inventory levels.

Wang and Gerchak (2003) proved the existence and uniqueness of the Nash equilib-

rium in the game. They also showed that the optimal level of capacity is either equal

to the lowest boundary of the support of the distribution or uniquely determined by

the following first-order optimality condition:

F(y) = `i Ci (1 + e(yd))p-co

The quantity defined by (2.5) is the same as the quantity determined by (2.3),

as if the supply chain had only one supplier. As a result, the Price of Anarchy is

unaffected by the number of suppliers in a pull assembly system.

Corollary 2. In a pull assembly system, when the manufacturer offers the price-only
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contracts,

PoA = e - 1.

Therefore, the performance of a pull assembly system is equal to that of a two-

stage pull supply chain. Similarly, an n-level pull assembly system is equivalent to an

n-stage pull serial system (see Bernstein and DeCroix 2004). While the performance of

a push assembly system dramatically falls as the number of components increases (see

Figure 2-4), the Price of Anarchy of a pull assembly system remains equal to 1.72,

independently of the profit margin and of the number of components. Therefore,

when the profit margins are large and the bill of materials is complex, it is highly

profitable, from a pure double-marginalization perspective, to operate the assembly in

a pull instead of a push mode. Part of Dell's success can be explained by its Assemble-

to-Order production policy (Dell and Magretta 1998); in addition to lowering system

inventories and making the supply chain more responsive to demand variations, this

configuration also mitigates the efficiency losses due to double marginalization.

2.5 Competitive Procurement System

In this section, we quantify the impact of competition among suppliers on supply

chain efficiency. In general, competition improves system efficiency, but the degree of

improvement depends on the supply chain structure and the level of competition.

We consider a competitive procurement system similar to the one displayed in

Figure 2-5. Following the framework introduced in Figure 2-1, we assume that the

manufacturer needs only Nc = 1 component, purchased from any of Ns suppliers,

to make a unit of final product. All suppliers are identical, i.e., procure the same

component and have the same unit cost c. As before, the manufacturer is downstream

of the supply chain and sells the final product at a unit price p; accordingly, NR = 1.
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Figure 2-5: Competitive procurement system

2.5.1 Push Procurement System

In a push supply chain, the manufacturer bears all risk of the supply chain (i.e., is a

newsvendor). Let us assume that the suppliers choose the wholesale prices.

Facing different wholesale prices wi's for the same homogeneous component, the

manufacturer orders from the cheapest supplier. Since the suppliers bear no risk,

the cheapest supplier will not ration her capacity and will deliver the exact amount

ordered. If several suppliers offer the same low price, we assume that the manufacturer

splits his order equally among them. This game is exactly a Bertrand competition

(Bertrand 1883). Accordingly, there exists a unique Nash equilibrium in which all

suppliers offer the same wholesale price c.

As a result, there is no loss of efficiency in this supply chain, i.e., PoA = 1. It

is interesting to notice that the push configuration in a serial supply chain leads to

the poorest performance, but that full efficiency is achieved as soon as competition is

introduced. In fact, one might think that the opposite situation would happen: as the

number of suppliers (leaders) increases, the manufacturer (follower) has less and less

surplus, and supply chain efficiency decreases. However, since the leaders compete

against each other, they sacrifice the surplus they extract from the manufacturer to

remain competitive, and full coordination is achieved.

Similarly, when the manufacturer is the leader, she offers a wholesale price c to

each of her suppliers, and the supply chain operates at full efficiency.
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2.5.2 Pull Procurement System

In a pull supply chain, the suppliers bear the demand risk. The manufacturer is

in general not able to procure everything she needs from the same supplier, as this

supplier might hold limited inventory. In fact, the cheapest supplier has the least

incentives to hold large inventories, as his margins are the thinnest. By increasing

the number of suppliers, the manufacturer has more sourcing options and risks less

to be held up by one of her suppliers.

Let us assume that the manufacturer initiates the contracts with her suppliers.

Anticipating their limited incentives for holding large inventories, the manufacturer

offers different wholesale prices to her suppliers. After demand is realized, the manu-

facturer will procure what she needs from her suppliers in increasing order of wholesale

prices. Suppose without loss of generality that supplier i is proposed the ith smallest

wholesale price and let us denote by pi the cumulative inventory from supplier 1 to

supplier i, i.e., yi = Ej<i yi. Therefore, the manufacturer will order from supplier i

only if demand D exceeds the cumulative inventory level of suppliers 1 to i - 1, i.e.,

if D > yil.

Thus, the manufacturer offers different wholesale prices wi's to maximize her prof-

its, that is:

maxw,...,wn -, i(p - wi)(E[min{D, i}yi-1 < D] - Yi-)P(Yi-l_ <D),

s.t. Yi = argmaxx>,i_l wi(E[min{D,x}lyi-l < D] - i- 1)P(Ji-1 < D)

-c(x - Ji-1), Vi = 1,..., n, (I.C),

wi(E[min{D,y ilyi- < D] - yi-)P(yi-l < D) - c(i- i-) > 0,

Vi = 1, ..., n, (I.R.),

wi Wi+l, Vi = ,...,n-1,

with yo = 0. The (I.R.) constraints are always satisfied if pi > yil for all i. The (I.C.)

constraints represent the newsvendor problem faced by each supplier, conditional on

the fact that demand exceeds yi-1 for supplier i to receive an order. The optimal
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solution to (I.C.) is such that the cumulative inventory for suppliers 1, ...,i equals

i = F---l(c/wi). Because there is a one-to-one correspondence between wholesale

prices wi's and cumulative inventory levels yi's, the manufacturer can equivalently

choose the induced inventory levels yi's. Plugging wi = c/F(yi) into the objective

function and integrating by parts simplifies the manufacturer's problem to:

n

max E(- ) Z - F(x)dx,Y,. (yi ) 4i1
where Yo = 0.

The optimal cumulative inventory levels in the competitive procurement system

can then be determined from the following set of first-order optimality conditions:

F(l) =F() + ( 1() 21 F (x)dx

F( {) -- x 1 }

d 1 () )dx}.Fl p { ( 9q) )2 d () dx i 2 n - 1

As we show in Lemma 7 in the appendix, the first-order conditions are also suf-

ficient for IGFR demand distributions with increasing f'(x)F(x)/(f(x)) 2 ; for these

distributions, the objective function is concave. In particular, the exponential, the

Pareto and the uniform satisfy this condition, so as the Weibull when the shape pa-

rameter is less than one. On the other hand, the normal distribution does not satisfy

this condition, and there are some instances where the objective is not concave (e.g.,

when the demand distribution is N(10,2), with n = 2, p = 2, c = 1, the profit

function is only pseudoconcave).

The next theorem quantifies the loss of efficiency in a procurement system. Adding

competition improves the performance of the decentralized supply chain. However,

full efficiency is only achieved in the limit, when the number of competing suppliers

becomes large.

Theorem 15. In a pull procurement system, when the manufacturer offers price-only
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contracts to n competitive suppliers, then

e n- 1(1)- 1
PoA =- n-1(1)

where £(x) = 1 - exp(-x) and £n(x) is the n-th composition of the function with

itself, i.e., £n(x) = £(n- 1(x)) for n > 1 and £o(x) = 1.

With one supplier, the Price of Anarchy equals 1.72; with two suppliers, the Price

of Anarchy goes down to 1.39; with three suppliers, it lowers to 1.28. In the limit,

with an infinite number of competing suppliers, the decentralized supply chain is as

efficient as the integrated supply chain.

Table 2.7 depicts the performance of competitive procurement systems with two

or three suppliers, when the demand distribution is gamma. Comparing Table 2.7

with Table 2.4 illustrates how competition gradually improves supply chain efficiency,

consistently with the worst-case analysis.

Table 2.7: Performance of an n-supplier competitive procurement system
r n=2 n=3

PoA k= .1 k= 1 k= 10 PoA k=.1 k = 1 k= 10
.2 1.39 1.13 1.08 1.04 1.28 1.07 1.04 1.02
.4 1.39 1.14 1.10 1.06 1.28 1.08 1.05 1.03
.6 1.39 1.12 1.11 1.06 1.28 1.10 1.06 1.03
.8 1.39 1.20 1.12 1.07 1.28 1.20 1.06 1.03

On the other hand, when the suppliers are the leaders and offer the manufacturer

wholesale-price contracts, there exists no pure-strategy Nash equilibrium (see Bryant

1980 for an analogous game). The manufacturer always orders in priority from the

cheapest supplier; if two suppliers offer the same price, we assume that the manufac-

turer orders an equal amount from each of them. Consider two competitors i and j

with prices wi < wj. By offering a price wj - e and holding the same level of inventory

as supplier j, supplier i will make more profit than supplier j with positive probabil-

ity, since the manufacturer always gives priority to the cheapest supplier. If supplier

i offers wj - , supplier j can increase its profits by lowering its price to wj - 2e
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and holding the same level of inventory as supplier i, contradicting that wi < wj.

Similarly, if wi = wj > c, supplier i can decrease her price to wj - and make more

profit. If wi = wj = c, supplier i can increase her price and make positive profit.

However, there exists a mixed-strategy Nash equilibrium in that game if the de-

mand distribution is continuous with a finite mean (Dasgupta and Maskin 1986). For

each supplier, the feasible set of wholesale prices is the closed interval [c,p]. The

payoff of supplier i is continuous, except on the set of points for which wi = wj for

some j i. It is bounded since the demand has a finite mean. At the points of

discontinuity wi = wj > c, supplier i can increase its profit by lowering its price;

hence, its payoff is everywhere lower semicontinuous. Finally, the sum of profits of

all suppliers is continuous since discontinuous changes of orders from one supplier to

the other occurs only when both suppliers earn the same profit.

2.6 Competitive Distribution System

In this section, we quantify the impact of competition among retailers on supply chain

efficiency. In particular, we consider a distribution system, in which NR = n > 1

identical retailers compete for the same demand, each with a unit selling price p, as

shown in Figure 2-6. In order to compare the performance of the competitive system

with an integrated supply chain (1), we assume that the aggregate demand has a

distribution function F and is allocated to the retailers according to some rule, as in

Lippman and McCardle (1997). All retailers are served by the same manufacturer,

producing the same product at a unit cost c; accordingly, Ns = Nc = 1. Notice

that, in contrast to Sections 2.4 and 2.5, the manufacturer is located upstream in the

supply chain.

2.6.1 Push Distribution System

We first analyze the case where the inventory is located downstream, i.e., at the

retailers' sites, assuming that the manufacturer proposes the contracts. We consider

two different allocation rules: herd behavior and splitting proportional to inventories.
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Figure 2-6: Competitive distribution system

Herd behavior. Suppose that customers move as a herd and visit one retailer at

a time, in a certain order, until the total demand is satisfied. The order between

retailers 7r = (7rl, ... , 7rn) is chosen randomly, and all permutations are equally likely.

(See Lippman and McCardle 1997.)

The manufacturer proposes a set of prices Wl,..., wn to maximize her expected

profits, given that the retailers face the demand risk associated with the customers'

herd behavior. Formally, it solves the following problem:

n
max (wi - c)yi,

Wl ... ,Wn .

n 1

s.t. yi = argmaxpE E iE[min{x,(D-Ey .)+)}]-wix, Vi (I.C.),
k=1 r:i=7rk j>i

p E E iE[min{yi,(D- E y7,)+}]-wiyi > 0, Vi, (I.R.),
k=l r:i=rk j>k

where the retailers choose their order quantity to maximize their expected profits,

taken over all possible permutations.

The retailers are symmetric because all permutations are equally likely. Therefore,

if they are offered the same wholesale prices, they will order the same quantity. Given

the symmetry, the manufacturer offers the same price to all retailers as they all equally

contribute to her profits. Let y be the order quantity of each retailer. The retailer's

problem then simplifies to maximize PZ 1 E[min{x, (D - ky)+)}- wx, and the

optimal order quantity is uniquely determined by (1/n) E-=l F(ky) = w/p (Lippman
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and McCardle 1997). Replacing the wholesale price with the induced order quantity

in the manufacturer's profit function, it turns out that the optimal order quantity

of each retailer is either equal to the lowest value of the support of the demand

distribution or uniquely determined by

n
E F(ky)(1 - g(ky)) = r (2.5)
k=l

The next theorem characterizes the loss of efficiency in this competitive distribu-

tion system.

Theorem 16. In a push distribution system with n retailers and herd behavior, when

the manufacturer offers the price-only contracts, then

PoA = 1 ( ( n(-r)- 1)

n(e/n- 1) + (1-r)(n2(e / - 1) - e/(n - )) + O ((1 -r)2).

The approximation, obtained from expanding the Taylor series of PoA around

r = 1, shows the magnitude of improvement when the number of retailers increases.

Figure 2-7 depicts how supply chain efficiency increases with the number of retailers.

1.5

PoA

1

0.5

-n1a

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6

1-r

Figure 2-7: Price of Anarchy of a push competitive distribution system
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Splitting Proportional to Inventories. Suppose now that the aggregate demand

is allocated to the retailers proportionally to their inventory levels (Cachon 2003).

There is no reallocation of the unmet demand. Specifically, if retailer i holds yi units

and there are y units in the system, i.e., y = j yj, the fraction of demand observed

by retailer i is Yi/Y. Consequently, the manufacturer solves the following optimization

problem:

max. Ei, (w - c)yi,

s.t. yi = argmaxxpE[min{q,Dx+ } - wi x, Vi = 1, ...,n, (I.C.),

pE[min{y, D -}]- wiyi > 0, Vi = 1, n, (I.R.).

For a given wholesale price w, Cachon (2003) showed the existence and uniqueness

of the Nash equilibrium of the subgame. He also showed that the optimal order level

yd is determined by the following first-order optimality condition:

1 d

F(yd)(1 - -g(y ))= r. (2.6)

The next theorem quantifies the loss of efficiency of such a distribution system.

Theorem 17. In a push distribution system with n retailers, when the manufacturer

offers the price-only contracts and that aggregate demand is allocated proportionally

to the inventory levels, then

PoA = 1n(1 - (r n(1-r) -1).

The Price of Anarchy is the same as if customers adopt a herd behavior (see The-

orem 16), although the optimality conditions (2.5) and (2.6) are different. Therefore,

this bound is robust in the sense that it does not seem to depend on the alloca-

tion/reallocation mechanism (as long as there is competition among retailers).

Table 2.8 compares the Price of Anarchy to the performance of distribution sys-
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tems with splitting proportional to inventory levels when demand has a gamma dis-

tribution.

Table 2.8: Performance of an n-retailer competitive
proportional to inventories

distribution system with splitting

2.6.2 Pull Distribution System

In a pull supply chain, the manufacturer bears all demand risk. We consider two

allocation schemes: herd behavior and uniform split. (The allocation rule based on

the relative inventory position is irrelevant here since retailers order after observing

the demand.)

Herd behavior. Suppose that all customers visit the same retailer. Since the

retailer can order anything she wants from the manufacturer, within the limits of

the manufacturer's inventory, she will sell the minimum between the demand and

the manufacturer's inventory. In contrast to a push distribution system with herd

behavior, customers will not visit more than one retailer. Suppose in addition that

each retailer has an equal chance of facing the total demand. Then, retailers choose

the wholesale prices they offer to the manufacturer, anticipating the manufacturer's

inventory decision, by solving the following problem:

maxw, (1/n)(p - wi)E[min{y, D}],

s.t. y = argmaxZ E=1 wi/nE[min{x, D}] - cx,

ELz=1 wi/nE[min{y, D}] - cy > 0,

Vi= ,...,n,

(I.C.),

(I.R.).
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r n=2 n=3
PoA k =.1 k = 1 k = 10 PoA k =.1 k =1 k = 10

.2 1.51 1.10 1.13 1.17 1.30 1.05 1.06 1.10

.4 1.42 1.10 1.13 1.16 1.25 1.05 1.06 1.10

.6 1.36 1.10 1.13 1.14 1.22 1.05 1.06 1.09

.8 1.32 1.10 1.12 1.14 1.20 1.05 1.06 1.09



Therefore, the manufacturer faces a newsvendor problem, with a selling price equal

to the average of the proposed wholesale prices. Accordingly, he chooses an inventory

level such that the stockout probability F(y) equals cn/ Ei wi.

Given the wholesale prices of the other retailers, each retailer i chooses a wholesale

price wi, or equivalently, the induced order quantity y such that F(y)(1+Eji wj/p) =

rn(1 + £(y)). If the demand distribution is IGFR, each retailer's profit function is

concave. Moreover, the set of possible wholesale prices, [c, p] is compact and convex.

As a result, there exists a pure-strategy symmetric Nash equilibrium. Since the right-

hand side is the same for all retailers, it turns out that all retailers choose the same

wholesale price. Replacing each wj with c/F(y) in the optimality condition simplifies

to

F(yd) = r(1 + ne(yd)). (2.7)

The next theorem characterizes the efficiency of this pull distribution system.

Theorem 18. In a pull distribution system with n retailers with herd behavior, when

the retailers propose the price-only contracts, then

PoA = (en 1).
n

With one retailer, PoA = 1.72 as in Theorem 12. In contrast to the other com-

petitive systems analyzed so far (competitive procurement, push distribution), com-

petition increases inefficiency in this system. With two retailers, PoA = 3.19; with

three retailers, PoA = 6.36. In fact, because the manufacturer bases his inventory

decision on the average wholesale price, retailers have less incentives to discount their

wholesale prices, as their impact on the inventory decision is diluted.

Uniform Allocation. Suppose now that the aggregate demand is split uniformly

among retailers. That is, if the aggregate demand is D, each retailer observes a
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demand D/n. Let us assume that the retailers are the leaders and propose the

wholesale prices to the manufacturer. After observing the demand, the retailers

place their orders to the manufacturer. If the wholesale prices are different, the

manufacturer serves the retailers in decreasing order of wholesale prices. In case of

equal wholesale prices, the manufacturer allocates an equal amount to each retailer.

If there are no potential entrants, there exists no pure-strategy Nash equilibrium.

For instance, consider two competitors i and j with prices wj < wi. By offering a

price w.: + and ordering the same amount as retailer j, retailer i will make more

profit than retailer j with positive probability, since the manufacturer always gives

priority to the retailer with the highest price. If retailer i offers wj + 6, retailer j will

increase its price to wj + 2E, contradicting that wj < wi. Similarly, if wi = wj < p,

retailer i can increase her price to wj + e and make more profit. If wi = j = p, retailer

i can decrease her price and make positive profit. Therefore, there exists no pure-

strategy Nash equilibrium. However, there exists a mixed-strategy Nash equilibrium

(see Dasgupta and Maskin 1986).

If there is at least one potential entrant, there exists a pure-strategy Nash equilib-

rium, at which all retailers earn zero profit by setting w = p, and the system operates

under full efficiency.

2.7 Conclusions

In this chapter, we quantify the loss of efficiency from decentralizing operations in a

supply chain that uses price-only contracts. In particular, we measure the Price of

Anarchy, defined as the ratio of total profits between the centralized (or integrated)

supply chain and the decentralized supply chain. Our bounds are IGFR distribution-

free and depend on the profit margin 1 - r.

Table 2.9 summarizes the different Prices of Anarchy bounds associated with the

following supply chain configurations: push or pull inventory positioning, two or more

stages, serial or assembly systems, single or multiple competing suppliers, and single

or multiple competing retailers. For the sake of clarity, Table 2.9 focuses on the cases
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where the downstream (resp. upstream) partner is the contract initiator when the

inventory configuration is in a push (resp. pull) mode.

Table 2.9: Price of Anarchy in decentralized supply chains with price-only contracts
Structure (Nc, Ns, NR) Push Pull
2-stage series (1,1,1) - -1 e -1

n-stage series (1, 1, 1) (1-r --T)( 1-, ) -l

assembly (n, 1, 1) rn'-l e-1
e- 1(1)_1procurement system2 (1, n, 1) 1 en-()

distribution system (herd) (1,1,n)(en _ 1)

By comparing the values of the Price of Anarchy under different supply chain

network configuration, we make the following observations:

1. In simple configurations (e.g., two-stage supply chains), the Price of Anarchy

is at least 1.71. Thus, the inefficiency of price-only contracts has not been

overstated in the literature. This magnitude of the loss of efficiency justifies

the whole stream of research on the design of more elaborate contracts and

motivates future research on improving coordination in supply chains.

2. The efficiency of price-only contracts generally drops as the number of inter-

mediaries increases (in series or assembly). However, this might not always be

the case: in a pull assembly system, the Price of Anarchy is independent of the

number of suppliers.

3. Introducing competition generally increases supply chain efficiency. The im-

pact of competition on supply chain coordination is sometimes radical (push

procurement), sometimes more gradual (pull procurement, push distribution).

However, competition is not always beneficial and can sometimes lead to an

increase in inefficiency (pull distribution).

4. In general, a pull configuration mitigates the effects of double marginalization

more than a push configuration, as the inventory risk is shared among the supply
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chain partners. This is especially true in an assembly system, in which the loss

of efficiency might be extreme; therefore, in complex assembly systems with

small profit margins, huge benefits can be reaped by moving the inventory from

a push to a pull configuration. With competition however, a pull system might

outperform a push system.

Table 2.9 summarizes the results obtained for the "classical" Stackelberg games,

where the leader is the upstream party in the push game and the downstream party

in the pull game. However, if we reverse the roles between the upstream and the

downstream parties, full coordination is in general achieved, i.e., PoA = 1. Future

research needs to address the impact of the reservation profit (assumed to be zero in

this chapter) and to analyze the possible improvements through long-term relationship

or renegotiation. Also, it would be interesting to quantify one party's share of profit

in the worst case, as well as formalizing the impact of the coefficient of variation on

supply chain efficiency.

Quantifying the efficiency of supply chains based on the Price of Anarchy gen-

erates good insights into supply chain design. Obviously, our base model is fairly

idealized and can be extended in various ways. Future research needs to characterize

the impact on the supply chain performance of information disclosure, retail pric-

ing decisions, inventory sharing and allocation, and efforts to increase sales, improve

forecast accuracy, or reduce costs.
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Part II

Dynamic Traffic Assignment
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Chapter 3

An Analytical Model for Traffic

Delays and the Dynamic User

Equilibrium Problem

3.1 Introduction

Over the last 20 years, traffic congestion has grown dramatically, resulting in high

environmental costs and productivity losses. According to the Texas Transportation

Institute (2003) on traffic congestion in the United States, "the average delay for

every person in the 75 urban areas studied climbed from 7 hours in 1982 to 26 hours

in 2001. [...] The total congestion 'invoice' for the 75 areas in 2001 came to $69.5

billion, which was the value of 3.5 billion hours of delay." All the proposed solutions

(capacity increase, highway efficiency improvement, demand management) rely on an

accurate prediction of traffic congestion. To this end, it has become critical: (1) to

determine the travel time of a traveler and how it is affected by congestion, and (2)

to understand how traffic distributes in a transportation network.

In this chapter, we derive an analytical travel-time function that integrates the

traffic dynamics and the effects of shocks. Subsequently, we illustrate how this func-

tion can be employed to determine the routes that individual travelers take in a
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transportation network. In particular, we assume that each user in the system min-

imizes the time length of his or her own trip, depending on congestion, leading to a

dynamic user equilibrium (DUE) in the transportation network.

Analysis of traffic flow can be microscopic or macroscopic. Microscopic models

focus on the behavior of a single vehicle, reacting to other vehicles' behavior and gener-

ally adopt a simulation approach (e.g., see Herman et al. 1959, Gazis et al. 1961, and

Mahut 2000). In contrast, macroscopic models rely on the aggregate behavior of vehi-

cles, depending on surrounding aggregate traffic conditions. Most macroscopic models

are based on the theory of kinematic waves in transportation, developed by Lighthill

and Whitham (1955) and Richards (1956), that models traffic flow as a compressible

fluid in a pipeline. The fluid approach represents the limiting behavior of a stochastic

process of a large population, and is therefore appropriate to large-scale problems,

such as traffic equilibrium problems on long crowded roads. However, since macro-

scopic models generally assume a uniform, stationary distribution of traffic, they are

generally unable to capture local interactions of vehicles, the time-dependent behavior

of traffic within a queue (e.g., the "stop-and-go" phenomenon), and therefore ignore

the local triggers of congestion such as traffic controls, turn permissions, opposing

traffic streams, etc. Nonetheless, despite these limitations, the theory provides good

estimates of the delays caused by queues and their dependence upon entrance and

exit flows (Hurdle and Son 2000). In this chapter, we derive a function of congestion

delays from the theory of kinematic waves.

Over the past decade, most developments based on the theory of kinematic waves

have focused on modeling flow propagation rather than deriving an analytical travel-

time function. Newell (1993) modeled flow propagation by using curves of the cu-

mulative number of vehicles at the road entrance and at the road exit. Travel times

correspond to the horizontal difference between these two curves. Daganzo (1994,

1995a) proposed an efficient way of propagating flow, by splitting the road into cells.

(See also Velan (2000) for enhancements of this model.) His model, called the Cell

Transmission Model, is not only very efficient for simulating the transportation net-

work but can also be formulated as a linear optimization problem (Ziliaskopoulos
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2000). While the Cell Transmission Model relies on a triangular flow-density curve,

other simulation models rely on a quadratic flow-density curve (see Daganzo 1995b,

and Khoo et al. 2002).

On the other hand, most traffic assignment models rely on an analytical travel-

time function. In fact, traffic assignment problems (such as the DUE problem) can

be formulated as nonlinear problems and be solved with standard optimization algo-

rithms. In particular, when the travel-time function is differentiable, gradient algo-

rithms can be used to solve traffic assignment problems (see Patriksson 1994 for a

review). In addition, analytical models allow studying the convergence behavior of

these traffic assignment algorithms (e.g., see Friesz et al. 1993, Ran and Boyce 1994).

However, it is unclear which analytical travel-time function should be used in

these models. The most generic travel-time function depends on the number of cars,

the inflow, and the outflow (see Ran and Boyce 1994). Although Daganzo (1995c)

claimed that a travel-time function should depend only on the number of cars on the

road, Lin and Lo (2000) pointed a paradoxical situation with such a function. On the

other hand, Carey et al. (2003) introduced a generic travel-time function depending

on the average flow rate, satisfying FIFO and other desirable properties. Based on the

theory of kinematic waves, Perakis (2000) and Kachani and Perakis (2001) proposed

polynon:mial and exponential travel-time functions for situations without congestion.

Based on the simplified kinematic wave model proposed by Newell (1993), Kuwahara

and Akamatsu (2001) derived an analytical function of the instantaneous travel time

in order to solve the dynamic user equilibrium. However, the travel time they derived

does not represent the actual (or experienced) travel time, unless traffic conditions

remain constant. Finally, the theory of vertical queues suggests that the travel time

can be decomposed into a free-flow travel time and a waiting time in a queue (e.g., see

Li, Fujiwara, and Kawakami 2000). However, these travel-time functions typically do

not consider other flow dynamics than the queue and disregard the spillback effects.

In this chapter, we propose a methodology for deriving a polynomial travel-time

function on a single stretch of road, based on the theory of kinematic waves. This

travel-timne model only depends on the traffic conditions at the entrance and at the
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exit of the road and is therefore less memory-intensive than the Cell Transmission

Model. We extend the work by Perakis (2000) and Kachani and Perakis (2001) by

including congestion into a travel-time function. We also complement the work by

Kuwahara and Akamatsu (2001) by analyzing the dynamic user equilibrium with

experienced instead of instantaneous travel times. Finally, we generalize the queuing

models by integrating the flow dynamics and the spillback effects into the travel-time

function. The main contributions of our model are the following:

1. We develop a methodology for determining travel times analytically that applies

to both triangular and quadratic flow-density curves.

2. We introduce a travel-time function that integrates the first-order traffic dy-

namics, shocks, and queue spillovers.

3. From our numerical experiments, it appears that the travel-time function is

consistent with the results obtained by simulation.

4. We establish that the travel-time function satisfies properties such as continuity,

monotonicity, and FIFO.

5. We incorporate the travel-time model within a dynamic user equilibrium (DUE)

model.

The chapter is organized as follows. In Section 3.2, we review the theory of

kinematic waves. In Section 3.3, we propose a general methodology for deriving

a travel-time function and illustrate it within two particular models of flow-density

(quadratic and triangular). In Section 3.4, we discuss the properties of the travel-time

function that we derived. In Section 3.5, we embed our travel-time function within a

more general dynamic user equilibrium problem and illustrate our model through a

numerical example. Finally, we conclude by outlining directions for further research.
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3.2 Review of the Theory of Kinematic Waves

In this section, we review the hydrodynamic theory of traffic flow, proposed by

Lighthill and Whitham (1955) and Richards (1956). From a macroscopic point of

view, the flow of traffic on a stretch of a road can be modeled as the flow of a fluid

in a pipeline. Accordingly, traffic flow is animated with waves, moving backwards or

forwards.

Because of the dynamic nature of traffic, we work on a time-space plane. The

fundamental traffic variables to describe traffic conditions on a road are:

* the flow rate, f(x, t), which is the number of vehicles per hour passing location

x at time t,

* the rate of density (or concentration), k(x, t), which is the number of vehicles

per mile, at location x at time t, and

* the instantaneous velocity, v(x, t), which is the speed of vehicles passing location

x at time t.

Assuming a homogeneous road, these quantities are respectively bounded from

above by fmax, kma, and vmax

Most models assume a one-to-one relation between the speed and the density, i.e.,

v(xc, t) =:-- v(k(x, t)). This relation has the additional property that when the density

is zero, the speed is equal to the free-flow speed vmax, and when the density is equal

to the jam density, k = kmax, the speed is zero.

Notice that the definition of the fundamental traffic variables implies that f(x, t) =

k(x, t)v(x, t). Therefore, the flow and the density are related through the so called

fundamental diagram:

f(x, t) = k(x, t)v(k(x, t)), Vx, t. (3.1)

Depending on the assumed speed-density relation v(k), the fundamental diagram

can have different shapes. In what follows, we analyze the two most common shapes,

namely the quadratic and the triangular fundamental diagrams.
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Greenshields (1935) modeled the vehicle velocity as a linear function of density,

i.e., v(k) = vmax(1 - k/kmax). Based on this function, the fundamental diagram has

a quadratic shape, as in Richards (1956):

f(x, t) = k(x, t)vmax(1 - k(x, t)/kmax). (3.2)

Newell (1993) proposed a triangular curve with a left slope of 1/uo and a right

slope of -1/wo. The change of slope occurs when k = k(fmaz), where k(fmax) is the

density associated with the road capacity.

f(X, t) - Jk(x, t)/uo if k(x, t) < k(fmax) = fma, (3.3)

(krmax - k(x, t))/wo otherwise.

In addition to (3.1), the traffic variables are related through a conservation law,

stated as the following partial differential equation:

ak(x, t) df (k) k(x, t)
=0. (3.4)t dk Ox

This conservation law describes the fact that on a single stretch of road, no cars are

lost.

In the time-space plane, a level curve of density is the set of points (x, t) such that

k(x, t) remains constant. Since the density uniquely determines the flow according to

(3.2) or (3.3), the flow f (k) and by consequent df (k)/dk also remain constant along

a level curve of density. Therefore, if k(x, t) remains constant, (3.4) reduces to the

equation of a straight line with slope df/dk. In other words, the level curves of density

are straight lines, called characteristic lines.

Characteristic lines represent the propagation of traffic density in the time-space

plane. Essentially, density propagates as a wave with speed df/dk. The wave speed

(i.e., the slope of the characteristic line), df/dk, is positive when the traffic is light

(k < k(fmax)) and negative when the traffic is heavy (k > k(fmax)). Accordingly,

macroscopic traffic conditions propagate forwards when traffic is light and backwards
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against traffic when traffic is heavy. In particular, with a triangular fundamental

diagram, the speed of a wave is 1/uo in light traffic and -1/wo in heavy traffic. With

a quadratic diagram, the wave speed is vma(1 - 2k(x, t)/kmax), which is positive

when k(x, t) < kmax/2, and negative otherwise.

It might seem surprising at first to have waves moving in the opposite direction

of vehicles. In fact, in many dynamical systems, particles do not move in the same

direction as waves. Haberman (1977) illustrates this phenomenon by a horizontal

rope, attached to a tree at one side, and vertically moved by a person at the other

side. Although waves propagate on the rope from the person to the tree, particles

of the rope only move up and down. In transportation, a wave moves backwards

when cars are decelerating: The position at which a car begins decelerating is in fact

upstream of the position at which the preceding car began decelerating.

If two characteristic lines intersect, the density around the point of intersection is

discontinuous. The set of points of intersection is called a shock wave and represents

a sudden change in traffic conditions. Behind a bottleneck, a shock wave separates a

downstream congested region from an upstream uncongested region. The shock wave

propagates backwards when the queue is increasing or forwards when the queue is

decreasing.

On the other hand, after an increase of capacity (e.g., when a traffic light turns

green), there is a discontinuity of traffic between an upstream congested region and a

downstream uncongested region. At the location of the first vehicle in the queue, traf-

fic is discontinuous; hence, the lead vehicle is assumed to accelerate instantaneously,

from zero to the free-flow speed. From the lead vehicle's location originates a fan of

waves of all possible velocities. In the case of a quadratic fundamental diagram, each

of the waves in the fan corresponds to a different density. Accordingly, the following

vehicles in the queue accelerate gradually, as they pass through the fan of waves. In

contrast, in the case of a triangular fundamental diagram, all waves in the fan have

the same density k(f m a ) (as their velocity is a supergradient of the fundamental

diagram when the flow is at capacity); hence, the following vehicles in the queues are

assumed to accelerate instantaneously, from zero to the free-flow speed.
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Figure 3-1 (borrowed from Lighthill and Whitham's paper) illustrates a traffic

light cycle. The straight lines are the characteristic lines, the bold line is the shock

wave trajectory, and the dashed line represents a single vehicle's trajectory. When the

light turns red, a queue appears behind the traffic light. The characteristic waves in

the upstream uncongested region have positive slope while those in the downstream

congested region (i.e., the queue) have negative slope. The two regions are separated

by a shockwave, which propagates backwards as the queue grows. After the light

turns green, the first car in the queue instantaneously accelerates from rest to the

free-flow speed. At this point of discontinuity, characteristic lines of all intermediate

slopes fan out. As the queue clears up, the shock wave moves forwards and passes

through the intersection after some time. Notice that the represented vehicle crosses

various waves during its trip. In particular, in the case of a quadratic fundamental

diagram, all waves in the fan have different densities, and the vehicle can increase its

speed only slowly, after the light turns green, as it traverses the fan of waves. More

details and examples of the theory can be found in Haberman (1977).

distance

time

Figure 3-1: A traffic light cycle

120



3.3 An Analytical Derivation of the Travel-Time

Function

In this section, we propose a general methodology for evaluating the travel time

r(L, to) of a vehicle entering a homogeneous road of length L at time to, based on the

theory of kinematic waves. In particular, our methodology applies to the triangular

and quadratic flow-density curves.

3.3.1 General Framework

Because of the discontinuity in density induced by shocks, the kinematic wave model

may be quite hard to solve. In what follows, we introduce three assumptions that

simplify the model.

Assumption 2. Linear density. The second-order variation of density is locally

negligible.

Accordingly, for every period t, the density at location x can be approximated by

k(x, t) = k(, t) + B(,, t)(x - E), (3.5)

where 0 = O if the traffic conditions at (x, t) are light, and J = L if they are heavy. We

denote by B(5, t) the rate of evolution of the density at time t at the road entrance

(if = 0) or at the road exit (if J = L).

We focus on the rate of evolution of the density, instead of the flow, as it might

seem more natural, because the value of density carries more information than the

value of flow. In particular, from the fundamental diagram, a given flow can be

associated with a low or high density, whereas a given density uniquely determines

the flow.

Under this assumption, an analytical model of travel time of a vehicle departing

at time to and (approximately) arriving at time to + 0 > to (e.g., 0 might be chosen

to be the free flow travel time) can be based on the knowledge of only two quantities,
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B(0, to) and B(L, to + 0). In contrast, an exact model would consider all different

values of density k(x, t) of the waves that a vehicle would cross during its trip. If the

incoming flow or the exit capacity varies in a very nonlinear fashion, Assumption 2

will be violated. On the other hand, when the flow evolves smoothly, the densities

of the waves that the vehicle crosses, will not be very different from each other, and

the second-order variations will be negligible. In the context of traffic equilibrium,

one expects that if the travel demand changes smoothly, the flow on each arc will

also evolve smoothly, if the path travel-time function is continuous. This intuition

has also been confirmed in our numerical example in Section 3.5.

In addition, by considering smaller road lengths, a vehicle will cross fewer waves

and hence will encounter less variable traffic conditions. At the limit, one can consider

road segments as small as the cells of Daganzo (1994), on which the flow remains

constant. However, improved accuracy would come at the price of greater memory

requirements.

In practice, parameters B(O, t) and B(L, t + 0) will have to be estimated from the

traffic conditions at the road entrance and exit respectively. The quantity B(O, t+'y(t))

can be estimated by (k(O, t) - k(O, t + 7(t)))/L where y(t) is the time for a forward

wave crossing the road entrance at time t to reach the road exit, if there was no

shock. In particular, y(t) = Luo in the case of a triangular flow-density curve and

y(t) = L/(vmax(1 - 2k(L, t)/kmax)) in the case of a quadratic flow-density curve.

Parameter B(L, t + 9) can be estimated in a similar way.

The linear relationship of density (3.5) is not required to be time-consistent. That

is, assuming a particular value for k(x, to) at time to does not imply that there was

an actual wave with this density that crossed the road entrance some time before.

Instead, Assumption 2 must be considered as a snapshot of the traffic situation from

time to onwards, for computing the travel time of a vehicle starting its trip at to.

To illustrate the implications of this assumption, let us consider the traffic light

example, presented in the last section (Figure 3-1). Since we consider homogeneous

roads, the traffic light must be located at the intersection of two road segments.

Let us first consider the downstream road segment. Suppose that the traffic light
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has been red for a long time, so that there are only waves of zero density on the

road. Following the theory of kinematic waves, when the traffic light turns green, the

density at the entrance, k(O, t), suddenly jumps to k(fmax), while the traffic density

at all other points of the road remains zero, i.e., k(x, t) = 0 for x E (0, L]. From the

origin emanates a fan of waves of all possible velocities, as is illustrated in the left

part of Figure 3-2.

Instead, Assumption 2 states that k(x, t) = k(fmax)+B(O, t)x = k(fmax)(L-x)/L,

since B(O,t) = (O - k(fmax))/L. Therefore, the gradual change of density is still

captured under Assumption 2 but the waves associated with these densities do not

originate from the same point, as shown in the right part of Figure 3-2. Similarly,

for the upstream segment, Assumption 2 captures the gradual change of density from

km ax (at the end of the queue) to k(f ma x) (at the head of the queue), but the waves

do not originate from the same point. Since the waves are more spread out under

Assumption 2, the time to exit the queue will be underestimated and the time to

accelerate on the downstream road will be overestimated.

distance distance

i Red Green
1.

0

I

- time

Red Green

P time
t t

Figure 3-2: When the traffic light turns green. Comparison between the theory of
kinematic waves (left) and the simplified model, under Assumption 2 (right)

Assumption 3. As most one shock. There is at most one shock on the road,

dividing an upstream uncongested region from a downstream congested region.

123

(I

II

I I I_

T



In the original model by Lighthill and Whitham (1955) and Richards (1956), a

shock may result from the focusing of two forward waves, two backward waves, or

one forward and one backward wave. However, as argued by Newell (1993), only the

latter type of shocks is observed in reality.

Accordingly, the road can be divided into two segments, separated by the shock

wave: On the first segment, the traffic flow has a low density, whereas on the second,

it has a high density. If there is no shock, the second segment has zero length, while

if heavy traffic conditions back up to the road entrance, the first segment has zero

length.

When the fundamental diagram is triangular, waves in a certain regime have all

the same speed; hence, Newell's assumption is automatically satisfied. When the

fundamental diagram is quadratic, the assumption holds if 0 < k(O, t) + B(O, t)L <

k(fmax) if the traffic conditions at (x, t) are light, and k(f m ax) < k(L, t) - B(L, t)L <

kmax if they are heavy (see the appendix).

Assumption 4. Bounded variation of density. The variation of density is

bounded by

IB(&, t)l < (kmax - k(, t)) 2 /(4Lkmax), for 0 = 0 or L. (3.6)

This assumption allows us to neglect high order terms in the travel-time function,

as we will show in the proofs of Theorems 1 and 2. If the evolution of traffic flow is

highly variable, we can relax (3.6) by considering smaller road lengths.

Methodology

From Assumption 3, the road can be decomposed into two segments, separated by

the shock wave. Therefore, before a vehicle reaches the shock wave, its travel time

depends only on the light traffic conditions, while after the shock wave, its travel time

depends only on the heavy traffic conditions. As a result, as in Ran et al. (1997), the

total travel time can be decomposed as the sum of
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* the travel time to go from the entrance to the shock wave (under light traffic

conditions), and

* the travel time to go from the shock wave to the road exit (under heavy traffic

conditions).

In particular, let us consider a vehicle that starts its trip at time to, on a road of

length L. We denote by (x, to) its travel time to reach location x. We assume

that we know the traffic conditions (cumulative number of vehicles, density, rate of

evolution of density) at the entrance at time to and at the exit at time to + 0, for

some 0 > 0.

Shock Location. A shock is a discontinuity in the traffic flow. Rather than work-

ing with flows, Newell (1993) introduced the concept of cumulative number of ve-

hicles passing through location x by time t, F(x, t). The partial derivatives of

F(x,t) correspond to the density and the flow rates, i.e., F(x,t)/dx = -k(x,t)

and aF(x, t)/&t = f(x, t).

Along a characteristic line passing through (xo, to) with slope df/dk, the rate of

evolution of F(x, t) with respect to x is equal to:

dF(xt) k(x,t) + f(x,t)( )-1. (37)dxr; dk )~(3.7)

Along a characteristic line, variables k, f(k) and df (k)/dk remain constant, im-

plying that dF/dx also remains constant. Therefore, the knowledge of F(xo, to) and

k(xo, to) completely determines the cumulative number of vehicles at each point on

the characteristic line.

If the characteristic line has positive slope, k(xo, to) is approximated by k(O, to) +

B(O, to)xo, according to (3.5). Likewise, F(xo, to) = F(O, to) + fJo k(x, t)dx is approx-

imated by F(O, to) + k(O, t)xo + 1/2B(O, to)xo. As a result, the cumulative number

of cars at (x, t) is a function of the traffic conditions at the entrance, i.e., a function

of k(O, to), B(O, to) and F(O, to). In this case, we denote by A(x, t) the cumulative
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number of vehicles passing x by time t, instead of F(x, t). We use this notation in

order to emphasize the reference to the cumulative number of arrivals on the road.

Similarly, if the characteristic line has negative slope, the cumulative number of

vehicles at (x, t) is a function of the traffic conditions at the exit of the road. In this

case, we denote by D(x, t) the cumulative number of vehicles passing x by time t,

instead of F(x, t), in order to emphasize the reference to the cumulative number of

departures from the road.

If there was no shock, all characteristic lines would never intersect, and the cu-

mulative number of vehicles would be uniquely determined at every point. However,

in the presence of shocks, two characteristic lines could potentially intersect at point

(x, t). In such a case, the cumulative number of vehicles at (x, t) would have two

different values, namely A(x, t) and D(x, t). Newell (1993) argued that the correct

value for the cumulative number of vehicles passing x by time t is the minimum be-

tween A(x, t) and D(x, t), and that the intersection, A(x, t) = D(x, t), determines the

shock.

Plugging the vehicle's trajectory (x, to + r(x, to)) into the shock wave equation,

A(x, t) = D(x, t), gives rise to the point (x, to + f) at which the vehicle goes through

the shock, i.e., ~ = (x, to).

Travel-Time Function in Light/Heavy Traffic. Under Assumption 3, the total

travel time can be decomposed as the sum of the travel times before and after the

shock.

From the fundamental diagram (3.1), the instantaneous vehicle's velocity at (x, t)

is the ratio between the flow and the density. Accordingly, the vehicle's trajectory

(x, to + r(x, to)) evolves as follows:

d(x, to) 1 = k(x, to + (x, to))
dx u(x, to + r(x, to)) f(x, to + 7(x, to)) (3.8)'

From the flow-density curve ((3.2) or (3.3)), f(x, to + r(x, to)) can be expressed as

a function of k(x, to + r-(x, to)). Therefore, the right hand side of (3.8) depends only
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on density.

If the traffic conditions are light at (x, t), the instantaneous velocity (3.8) can be

expressed as a function of the traffic conditions at (0, to). Along a characteristic line,

the density remains constant; hence, k(x, to + T(x, to)) = k(xo, to), where x0o is the

ordinate at to of the characteristic line passing through (x, to + 7(x, to)).

Using Assumption 2, k(xo, to) = k(O, to)+B(0, to)xo. Plugging the density function

into (3.8) gives rise to an ordinary differential equation (ODE). This ODE, together

with the initial condition r(0, to) = 0, can be solved through a power series expan-

sion (see Edwards and Penney 1985). Under Assumption 4, the ratio between two

successive terms in the series is bounded from above by 1, and the series converges.

Similarly, if the traffic conditions are heavy at (x, t), the instantaneous velocity

at (x, t) can be expressed as a function of the traffic conditions at (L, to + 0), for

some 0 > 0. Denoting by x0 the ordinate at to + 0 of the characteristic line passing

through (x, t), we have that k(x, to + T(x, to)) = k(xo, to + 0). Under Assumption 2,

k(xo, to + 0) = k(L, to + 0) - B(L, to + 0)(L - x0 ). Plugging this function of density

into (3.8) gives rise to an ordinary differential equation (ODE), which can be solved

with a power series solution. However, since (x, t) is in the heavy traffic region, the

boundary condition is now defined by the shock location, i.e., r(x, to) = , where

(, ) solve A(x, to + T(X, to + f)) = D(, to + T(X, to + f)).

Flow Propagation. A model of travel time is also a model of flow propagation. In

effect, the cumulative number of vehicles at the exit at time t + r(L, t) is equal to the

cumulative number of vehicles at the entrance at time t, i.e., A(0, t) = D(L, t+r(L, t)).

However, because of time discretization in numerical experiments, D(L, t) is not

defined for the periods t that do not correspond to departure times. Therefore, we

have assumed that D(L, t) is piecewise linear between two successive departure times,

i.e., for [r(L,t - 1)] - 1 < s < Lr(L,t)J,

D(L, t + s) = AA(0, t) + (1 - A)A(O, t - 1),
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where A = (t+8)-(t-l+r(L,t-1))

At time t, the traffic conditions at the exit are known up to time t -1 +7(L, t -1),

since they depend on the flows that entered the road at or prior to time t - 1.

Therefore, in our numerical experiments, we have chosen 0 = Lr(L, t - 1)J - 1.

For a one-link network, the flow at the road exit, f(L, t + 0), is set equal to the

exit bottleneck capacity Q. For a two-link network, the exit capacity at the end of

the upstream link (denoted as link 1) is time-varying since a queue may spill back

from the downstream link (denoted as link 2). If the queue has uniform density, equal

to k2(L 2, t + 0), only k2 (L2, t + O)L2 vehicles can be present on link 2 at time t + 0.

Considering the difference between inflows and outflows, at most D2(L 2, t + + 1) -

A 2(0, t + 9) + k2(L2, t + O)L2 vehicles are allowed to enter link 2 in period t + 0. As a

result, the capacity at the exit of link 1 is the minimum between Q2 (static capacity

of link 2) and D2(L 2, t + 0 + 1) - A2(0, t + 0) + k2(L2, t + O)L2 (dynamic capacity

due to queue spillbacks). If link 1 has several downstream links or link 2 has several

upstream links, the same reasoning applies, with additional care of the neighbor links.

More details of the general case are presented in Section 3.5.

According to Assumption 3, the density at the entrance of the road is taken as

the low density associated with the incoming flow f(0, t) and the density at the exit

of the road is taken as the high density associated with f(L, t + 0). As mentioned in

the discussion of Assumption 2, B(O, t + y(t)) = (k(O, t) - k(O, t + y(t)))/L, where

iy(t) = L/(df(O, t)/dk). Similarly, B(L, t + y(t)) = (k(L, t + y(t)) - k(L, t))/L, where

iy(t) = -L/(df (L, t)/dk).

In what follows, we apply this general methodology to the triangular and the

quadratic fundamental diagrams.

3.3.2 Triangular Fundamental Diagram

Shock Location

We first show that, along the vehicle's trajectory, the cumulative number of vehicles

based on the prevailing traffic conditions at the entrance, A(x, t), remains constant.
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Indeed, when traffic is light, the vehicle is moving at the same speed as the wave

conveying the entering flow, T(x, to) = xuo. Therefore,

A(x, to + r(x, to)) = A(, to) + dA(, to) ,

= A(0, to) + (-k(O, to) + f(O, to)uo)x

= A(0, to)

from (3.7),

from (3.3).

On the other hand, the cumulative number of vehicles depending on the traffic

conditions at the exit, D(x, t), varies along the vehicle trajectory. In contrast to the

light traffic region, the vehicle's trajectory crosses several backward waves.

The cumulative number of vehicles in the heavy traffic region, D(x, t), is expressed

as a function of the the traffic conditions at (L, to + 0). The ordinate at to + 0 of a

characteristic line passing through point (x, to + r(x, to)) is xo = x - (- T(x, to))/wo.

Because dD/d remains constant along a characteristic line, from (3.7), the cumula-

tive number of vehicles based on the traffic conditions at the exit varies as follows:

D(x, to + r(x, to)) = D(x, to + ) + d )=x
dJ C~ze

From Assumption 2, D(xo, to+O) = D(L, to+O)+k(L, to+O)(L-xo)-1/2B(L, to+

0)(L - xo) 2. Replacing dD/d in (3.9) with (3.7) gives rise to

D(x, to + (x, to)) = D(L, to + o) + k(L, to + O)(L - ) - B(L, to + 0)(L - o)2

+(-k(xo, to + ) - f(xo, to + 0)wo)(X - xo),

= D(L, to + ±) + k(L, to + 0)(L - xo) - -B(L, to + 0)(L - Xe)2

-kmax(x-xo),

where the last equality comes from the backward wave speed definition, wof (xo, to +

6) = km ax - k(xo, to + 0).

At the shock location, xo = x(1 + uo/wo) - O/wo, and the cumulative number of
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vehicles becomes

9 1 2

D(,to+Tr(, to)) = D(L, to+) +k(L,to+O)(L+ )-B(L, to + 0 )(L )wo 2 wo

-kma0 - k(L, to + 0)(1 + -)
Wo W0

+B(L, to + 0)(1 + )(L + -)
WO wo

+kmaxz _o 1 B(L, to + 0)x2(1 + o )2.
Wo 2 wo

Equating D(}, to+ r(i, to)) to A(, to+ r(, to)) = A(0, to) gives rise to a quadratic

equation in x. Considering the lower root gives the shock location when the vehicle

will go through it.

In particular, when B(L, to + 0) = 0, the shock location is simply

D(L, to + ) - A(O, to) + k(L, to + )(L + -o) kmax Oo 
= Wwo (3.10)k(L, to + 0)(1 + o) -kmax .

Special Case: 0 = 0. We consider the special case where the available traffic

information at the exit is at time to. Our goal is to justify why only D(L, to) -

A(0, to - 1) + k(L, to)L vehicles are authorized to enter the road, when a queue spills

back.

By definition, x: is the shock location on the trajectory of a vehicle that enters the

road at time to. For this reason, when a queue spills back onto upstream links, the

shock location x must be equal to zero, since the entire road is covered by the queue.

Therefore, the incoming flow will be constrained to maintain x > 0. If 0 = 0, the

shock location (3.10) is identified as x = (D(L, to) -A(O, to)+ k(L, to)L)/(k(L, to)(1 +

o) - kmao). The denominator is always positive since, from (3.3), k(L, to) = km a -

f(L, to)wo (high density value), and (krmax - f(L, to)wo) - f(L, to)uo > O. Therefore,

x > 0 if the numerator is positive, that is, D(L, to) - A(O, to) + k(L, to)L > O.
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Travel-Time Function

Because vehicle's speed is constant in light traffic, the travel time to go to the shock

location is equal to u0 .

On the other hand, the travel time to go from x to the road exit is obtained by

plugging f(x, to + r(x, to)) = 1/wo(kma x - k(x, to + 7(x, to))) into (3.8).

Since the characteristic line passing through (x, to + r(x, to)) intersects the time

line to q- at x = x - ( - r(x, to))/wo, and the density remains constant along a

characteristic line, k(x, to + r(x, to)) = k(xo, to + 0). Moreover, from (3.5), k(xo, to +

0) = k(L, to + 0) - B(L, to + 0)(L - xo ). Updating (3.8) gives rise to

dr(x, to) (k(L, to + 0) - B(L, to + 0)(L - o))wo
dx kmax - (k(L, to + 0) - B(L, to + 0)(L - xo))'

As shown in Theorem 19, solving this differential equation gives rise to a closed

form solution of the travel-time function. The static parameters of the obtained travel

time are the positive and negative wave paces, u0 and w0, and the road length L. On

the other hand, the travel time also depends on the dynamic evolution of traffic,

namely the cumulative number of vehicles at the road entrance and at the road exit,

A(0, to) and D(L, to + 0), the associated densities, k(0, to) and k(L, to + 0), and the

rate of evolution of the latter with respect to distance, B(L, to + 0). Notice that

the travel-time function is independent of the rate of evolution of the density at the

entrance, B(O, to).

In order to prove Theorem 19, we need a technical assumption about the value of

0. Specifically, we assume that 0 is greater than the free flow travel time up to the

shock location and less than the road travel time with a shock.

Theorem 19. Under Assumptions 2 and 4, if uox + (L - 5)wok(L, to + 9)/(k max -

k(L, to + 0)) > 0 > iuo, the triangular diagram (3.3) gives rise to the following travel

time for a vehicle entering the road at time to:

(L t) - + k(L, to + O)wo-B(L, to + O)(wo(L -) + O-uo) (L )
T(Lto) - :UO +- kmax - k(L, to + 0) + B(L, to + 0)(L - + ( - uo:)/wo)

+O((L - )wo), (3.12)
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where ~ is defined by (3.10).

Numerical Comparison

Daganzo (1994) proposed a discrete simulation method of flow propagation, called

the Cell Transmission Model, in the case of a triangular flow-density relation. His

algorithm is available through a user-friendly software program, called Netcell (Cay-

ford et al. 1997). Netcell builds the curves of cumulative number of vehicles at the

entrance and at the exit of the road. The travel time of a vehicle corresponds to the

horizontal difference between the two curves.

Figure 3-3 displays the analytical travel time (3.12) and the travel time ob-

tained with Netcell, as a function of the departure time. The entering flow evolves

quadratically with time, peaking at 1600 vehicles/hour after 1/2 hour: f(O,t) =

1600- 6400(t/3600 - 0.5)2 vehicles/hour, for t = 1, ..., 3600 seconds. The flow-density

relation is asymmetric triangular, with u0 = 1/40 hour/mile, wo = 1/10 hour/mile,

and km ax = 200 vehicles/mile; hence the road capacity is fmax = 1600 vehicles/hour.

The road has a length of 4 miles and has a bottleneck at its end authorizing only

1400 vehicles/hour to exit the road.

The travel times determine the flow propagation, and the flow propagation deter-

mine future travel times (by building the curve D(L,t)). In this example, the exit

bottleneck capacity is fixed, and B(L, t) is zero for all t.

As illustrated in Figure 3-3, for each of the 3600 departure times, the analytical

travel-time function practically coincides with the Cell Transmission Model. We

performed many different numerical tests (with or without shock, low/high entering

flow), and all displayed the same behavior as the example we study in Figure 3-3.

The next example investigates a queue spillback situation in a two-link network.

The lengths of the links are 3 miles for the first one (upstream) and 1 mile for

the second (downstream). The flow incoming to link 1 is the same as before, but

there is now an incoming flow at the entrance of the second link, piecewise linear:

(300 - 6001t/3600 - 0.51) vehicles/hour for t = 1,...,3600. The two links have the

same characteristics as above (u0o = 1/40 hour/mile, wo = 1/10 hour/mile and kmax =
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Figure 3-3: Travel time with an exit bottleneck. Comparison between the analytical
model (3.12) and the Cell Transmission Model.

200 vehicles/mile), and there is a bottleneck at the end of the second link of 1400

vehicles/hour.

Figure 3-4 displays the travel time of the downstream link (bottom), the travel

time of the upstream link (middle), and the path travel time (top), as a function of

the journey departure time, computed with the analytical model (3.12) and the Cell

Transmission Model. As shown on Figure 3-4, a queue appears behind the bottleneck,

at the end of link 2, propagates backwards on link 2 and then spills back into link

1. At this point, the travel time on link 1 starts increasing, while the travel time on

link 2 remains constant, since the size and the density of the queue remain constant.

Notice that, because the flow incoming to link 2 is time-varying, the capacity at the

exit of link 1 is also time-varying, and B(L, t + ) is nonzero. As shown in the figure,

both the analytical model and the simulation model give rise to similar travel times.

The final example examines a queue dissipation situation. We consider the same

two-link network topology as before, with the same quadratic incoming flow rate. At

the end of the first link, after 3 miles, an incident occurs between periods 1100 and

1500, reducing the exit capacity from 1600 vehicles/hour to 100 vehicles/hour. Figure

3-5 displays the evolution of the travel times on link 1 (middle), link 2 (bottom), and

the total path (top), using the analytical function and the Cell Transmission Model.
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Figure 3-4: Travel time with queue spillback. Comparison between the analytical
model (3.12) and the Cell Transmission Model.

Notice that the travel times on link 2 obtained with both methods are equal and

correspond to the free-flow travel time, despite the approximation of wave velocities

shown in Figure 3-2. In fact, with a triangular fundamental diagram, all waves that

have a pace between uo and -wo have density k(fmax), since their slopes correspond

to the supergradients of fmax with respect to k; hence, the speed of a vehicle that

crosses the fan of waves is 1/uo, with or without the linearity assumption. Therefore,

Assumption 2 does not affect the travel time in this case.

In summary, in this subsection, we analyzed the traffic delays experienced by a

traveler on a single stretch of road, when the fundamental diagram is triangular. In

particular, under Assumptions 2 and 4,

* we proposed a closed-form solution of the shock location,

* we derived a closed-form solution of the travel time, capturing the traffic dynam-

ics and spillback effects, based on the solution of a single ordinary differential

equation, and

* we compared the analytical travel time with Daganzo's Cell Transmission Model,

revealing that both models lead to similar results.
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Figure 3-5: Travel time with temporary incidents. Comparison between the analytical
model (3.12) and the Cell Transmission Model.

3.3.3 Quadratic Fundamental Diagram

In this section, we derive a travel-time function when the fundamental diagram is

quadratic. As we will see, the same methodology applies and the travel-time function

that we obtain is also very close to the numerical simulations.

Travel Time without Shock

From the quadratic fundamental diagram, we substitute f(x, to + r(x, to)) = k(x, to +

T(x, to))vmax(1 - k(to + T(x, to))/km a x) into (3.8).

A characteristic line passing through (x, to + T(x, to)) intersects the time origin to

at

X -vma(x, to)(1 - 2k(O, to)/k m a x)
XO = I - 2vmaxT(x, to)B(O, to)/kmax

Because the density remains constant along a characteristic line, k(x, to+T(x, to)) =

k(xo, to). Under Assumption 2, k(xo, to) = k(O, to) + B(O, to)xo. Substituting this lin-

ear function of density into (3.8) gives rise to an ODE. This ODE, together with the

initial condition r(0, to) = 0, can be solved with a power series solution, giving rise
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to the following analytical function of travel time in light traffic:

x 1 B(O, to)k(O, to)x 2 L
to) max(1 k(O, to)/kmax) 2 (kmax) 2 vmax(l - k(O, to)/kmax) 3 ax.13)

This power series converges under Assumption 4 since the ratio of two successive

terms is bounded above by 12B(O, t)L(kmax/(kmax - k(O, t)) 2 )I, which is less than 1

under Assumption 4. Notice that if there is no variation in density, i.e., B(O, t) = 0,

the travel time (3.13) reduces to the ratio of distance over speed.

Shock Location

Unlike with the triangular fundamental diagram, the vehicle's trajectory crosses sev-

eral waves in light traffic when the fundamental diagram is quadratic. Nonetheless,

the cumulative number of vehicles depending on the prevailing conditions at the road

entrance, A(x, t), remains constant along the vehicle's trajectory. Let us denote by

xo the ordinate at to of the characteristic line passing through (x, to + T(X, to)). From

(3.7), the cumulative number of vehicles along the vehicle's trajectory is equal to:

A(x, to + r(X, to)) = A(xo, to) + dA to) ( - o)

k(xo, to)(1 - k(xo, to)/kmax))( - xo)
= A(xo, to) + (-k(Xo, to) + 1 -2k(xo, to)/kma

- 2k(o, to)/cma.
= A(0, to) - fo k(x, to)dx +

k(xo, to)(1- k(xo, to)/kmax)
(-k(xo, to) -+t (1 - 2k(xo, to)l/kmax )(x

Replacing xo by (3.13), and T(x, to) by the n-th order expansion of (3.13) into the

above expression of A(x, to + r(x, to)), and finally taking the n-th order Taylor series

expansion around x = 0, we obtain that

A(x, to + (x,to)) = A(, to) + O(xn).

Therefore, similarly to triangular case, the cumulative number of vehicle remains
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constant along the vehicle's trajectory, despite the fact that the vehicle crosses waves

of different densities.

On the other hand, D(x, t) is expressed as a function of the traffic conditions

at (L, to + 0). Let xo be the ordinate at to + 0 of the characteristic line passing

through (x, to + r(X, to)). To simplify the computations, we assume that the density

is constant in the heavy traffic region. Therefore, the characteristic line has a slope of

vmax(l - 2k(L, to + 9)/k ma x) and xs = x ( - r(x, to))vmax(l - 2k(L, to + 0)/krmax).

From (3.7),

D(x, to + (x, to)) = D(xo, to + 9) + dD(, to + ) )

= D(L, to + 0) + k(L, to + )(L - o)

+(-k(L, to + ) + vm(2k(L, to + )/kma))( - o)vmax( - 2k(L to + 0)/kmax))

At the shock location, the vehicle's travel time T(, to), denoted by a, is defined

as in (3.13), with x instead of x. Plugging r(x, to) into xo defines the cumulative

number of vehicles at the shock location as follows:

D(i, to + Tr(, to)) = D(L, to + O) + k(L, to + O)(L - k(L, to + ) - k(O, to)
km ax - k(, to)

A shock occurs when A(:, to + r(T, to)) = D(5, to + r(x, to)), i.e., at location

km ax - k(0, to)
= L - (A(O, to) - D(L, to + 0)) k(L, to + 9)(k(L, to + 0) - k(O, to))' (3.14)

Travel-Time Function with Shocks

In this subsection, we integrate the effects of a shock into the travel-time function. As

with the triangular flow-density curve, the resulting travel-time function has a closed

form and depends on static road features (maximum speed vmax, jam density kmax,

and length L) and on the dynamic evolution of the cumulative number of vehicles at

the entrance and at the exit, A(0, to) and D(L, to+0), the associated densities, k(0, to)

and k(L, to + 0), and their rate of evolution, B(O, to) and B(L, to + 0). Similarly to
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the triangular case, we need a technical assumption on the value of 0 to prove the

theorem. Specifically, we assume that it is greater than the free flow travel time up

to the shock and less than the road travel time with the shock.

Theorem 20. Under Assumptions 2-4, if ? + (L -k)/(vma(1- k(L, to + )/k ma)) >

0 > -, the quadratic diagram (3.2) gives rise to the following travel time for a vehicle

entering the road at time to:

'(L, to) = ~ + (k m ax + 2vmaX(O - )B(L, to + 0))(L -)
vmax(kmax - k(L, to + 0) + B(L, to + 0)(L -x vmax( -)))

+0(Lvx ) (3.15)

where x is defined in (3.14), = (x, to) according to (3.13).

Numerical Comparison

We compared the analytical travel time (3.15) with several travel-time functions that

were proposed in the literature, all based on the theory of kinematic waves, obtained

either via simulation or via an analytical derivation.

In the case of a quadratic fundamental diagram, Kachani and Perakis (2001)

derived two functions (polynomial and exponential) of travel time. On the other

hand, Khoo et al. (2002) simulated the flow propagation along Godunov's scheme for

calculating the numerical flux. They used two different methods, called hyperbolic

PDE and iterative position update methods. Finally, Daganzo (1995b) approximated

the kinematic wave model with finite difference equations (FDE) and simulated flow

propagation accordingly. The travel time is the horizontal difference between the

cumulative departures and the cumulative arrivals on the road.

In Figure 3-6, we consider a quadratic incoming flow rate f(0, t) = 1600 -

6400(t/3600 - 0.5)2 vehicles/hour, for t = 1,..., 3600 seconds. The road has a length

of 4 miles, a maximum speed vmax = 40 miles/hour, a maximum density kmax = 200

vehicles/mile, and hence, a capacity of fma = 2000 vehicles/hour. There is no exit

bottleneck. The x-marks represent the analytical travel time derived in Theorem
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2. The three top lines are the travel times obtained by simulation by Khoo et al.

(KLPP) and Daganzo (D), and the two bottom lines are the analytical functions

proposed by Kachani and Perakis (KP). As illustrated in the figure, the analytical

travel-time function (3.15) is very close to what was obtained from the simulations.
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Figure 3-6: Travel time under light traffic, with a quadratic incoming flow rate.
Comparison among the analytical model (3.15), the analytical models by Kachani
and Perakis (2001), the simulations by Khoo et al. (2003) and the Finite Difference
Equation simulations by Daganzo (1995b).

The second example investigates the evolution of travel times, in the presence

of an exit bottleneck of 1500 vehicles/hour. In this example, we only compared

the analytical travel time (3.15) with Daganzo's FDE model. In fact, the simulation

results obtained by Khoo et al. were not available to us in this case, and the analytical

travel-time functions proposed by Kachani and Perakis are only valid under light

traffic. As illustrated in Figure 3-7, both the analytical model (3.15) and the FDE

simulation model lead to similar travel times. We obtained comparable results with

larger incoming flows.

Because the bottleneck capacity remains constant over time, B(L, t + 0) = 0. On

the other hand, the incoming flow is time-varying, and B(O, t) is different than zero.

In contrast, most models of vertical queues ignore the flow dynamics, setting B(0, t)

to zero.. As illustrated in Figure 3-7, although a model of vertical queue gives a good
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Figure 3-7: Travel time with an exit bottleneck. Comparison between the analytical
model (3.15) and the Finite Difference Equation simulations by Daganzo (1995b).

approximation of the simulated travel time, it is not as accurate as the analytical

model (3.15).

The last example analyzes a situation with a queue dissipation. We consider the

same quadratic entering flow and the same road characteristics as before. We assume

that an incident occurs at mile 3 after 1100 seconds, causing a temporary bottleneck of

100 vehicles/hour (in lieu of 2000 vehicles/hour) until time 1500. Figure 3-8 displays

the travel times on the first 3 miles (middle), on the last mile (bottom), and on the

total link (top), as a function of the departure time, obtained with the analytical

model (3.15) and the FDE simulation model. The parameter B(0, t) was constrained

to be no larger than (3.6), in order to ensure convergence of the series expansion of

(3.15). The travel time on the first 3 miles computed with (3.15) is slightly larger than

the travel time obtained with simulation. In fact, the travel time (3.15) is evaluated

in reference to the exit capacity at time t + 0 = t - 1 + [T(t - 1)J and identifies the

capacity increase at the end of the incident with a one-period lag.

On the other hand, the travel time on the last mile obtained with (3.15) slightly

overestimates the one obtained by simulation, just after the removal of the bottleneck.

In fact, Assumption 2 approximates the fan of waves appearing just after the bottle-

neck removal (see Figure 3-2). Since low-density waves are located farther from the
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Figure 3-8: Travel time with an incident. Comparison between the analytical model
(3.15) and the Finite Difference Equation simulations by Daganzo (1995b).

entrance under Assumption 2, the analytical travel-time function (3.15) overestimates

the simulated travel time on the downstream road segment. On the other hand, after

the queue has cleared up, the analytical travel time (3.15) underestimates the one

obtained by simulation. In fact, the analytical travel time, based on Assumption 3,

ignores the shock occurring between low-density upstream flow and and higher, but

still low, density downstream flow.

In summary, in this subsection, we analyzed the traffic delays experienced by a

traveler on a single stretch of road, in the case of a quadratic fundamental diagram.

In particular, under Assumptions 2, 3 and 4,

* we proposed a closed-form solution of the shock location, assuming constant

density in the heavy traffic region,

* we derived a closed-form solution of the travel time, capturing the traffic dy-

namics, based on the solution of a single ordinary differential equation,

* we highlighted the quality of prediction of the analytical travel time in compar-

ison to simulations.
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3.4 Properties of the Travel-Time Function

In this section, we analyze some common properties of the two travel-time functions

that we derived in Section 3.3. First, we consider two particular cases, namely when 0

corresponds to the free flow travel time and when t + corresponds to the departure

time of the flow that arrived one period earlier. Notice that these two particular

cases satisfy the conditions of Theorems 1 and 2. Second, we prove that the travel-

time function is continuous, monotone and satisfies the FIFO property under certain

conditions.

3.4.1 Two Particular Cases

0 = Free Flow Travel Time

When 0 corresponds to the free flow travel time and the dynamic effects are neglected,

the travel-time functions (3.12) and (3.15) are very intuitive, as shown in the next

Corollary.

Corollary 3. When 0 equals the free flow travel time (Luo under a triangular fun-

damental diagram, and L/(vmax(1 - k(O, t)/k max) under a quadratic fundamental di-

agram), and when B(O,t) = B(L, t +- ) = 0, the travel-time functions (3.12) and

(3.15) simplify to

A(O, t) - D(L, t + ±)r(L, t) = + A t(L,t + ) (3.16)

Under the assumptions of Corollary 1, the travel-time function can be decomposed

as the sum of:

* the time to travel a distance L at the free flow speed, 0, and

· the time to wait in a queue for available downstream capacity, A(ft)-D(L,t+O)

Such a travel-time model is very similar to the traditional point queue models (e.g.,

see Li, Fujiwara and Kawakami 2000). However, queuing models usually assume that
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the exit capacity is fixed, i.e., f(L, t + 0) = Q. In this particular case, despite the fact

that B(O, t) = B(L, t + ) = 0, the exit capacity might be different for each period of

incoming flow.

t + = Departure Time of the Flow that Arrived in Period t - 1

When t + 0 corresponds to the departure time of the flow that arrived in period

t - 1, and when B(O, t) = B(L, t + ) = 0, the expression for the travel-time function

greatly simplifies and is insightful. Notice that, when we compute the travel time of

the incoming flow at time t, time t + 0 = t - 1 + r(t - 1) corresponds to the last

period for which we have traffic information at the exit.

Corollary 4. When 0 = (t - 1) - 1, and B(O, t) = B(L, t + 0) = 0, the travel-time

functions (3.12) and (3.15) simplify to

frO, t)
r(L,t) = T(L, t- 1)-1 + f (3.17)f(L, t + )'

The corollary follows from the fact that, when r(L, t) = r(L, t-1)-1, D(L, t+6) =

A(O, t - 1), and f(O, t) = A(O, t) - A(O, t - 1).

Therefore, the departure time of a flow incoming at time t, i.e., t + r(L, t), is the

sum of:

* the departure time of the flow that arrived one period before, and

* the time to wait for the incoming flow to exit, at the rate defined by the exit

capacity at time t + 9.

Although both particular cases assume B(O, t) = B(L, t + 0) = 0, the second

case is actually more accurate than the first one. Figure 3-9 illustrates a situation

where a vehicle departing at time t is in a queue, assuming a triangular fundamental

diagram. The horizontal distance between the curves of cumulative number of vehicles

correspond to the travel time. The slope of the cumulative number of vehicles at the

exit is changing over time, because the exit capacity is time-varying (e.g., due to the

changing traffic on neighbor roads).
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The first case considers 0 = Luo. The travel time is the sum of 0 and the size of

the queue, A(O, t) - D(L, t + 0), divided by the exit capacity f(L, t + Luo). Since the

difference between the experienced travel time and the free-flow travel time can be

large, approximating the average capacity between t + and t + T(L, t) with f(L, t +0)

might lead to a poor estimation of the travel time.

The second case considers 0 = r(L, t - 1) - 1. The travel time is the sum of 0 and

the incoming flow f(O, t) divided by the exit capacity f(L, t - 1 + r(L, t - 1)). Since

the difference between the departure times of two successive vehicles, r(L, t) + 1 -

T(L, t- 1), typically covers few periods, the average capacity between t- 1+r(L, t- 1)

and t + T(L, t) will be fairly accurately approximated with f(L, t - 1 + 7(L, t - 1))

(in the figure, they are equal). As a result, the approximation of the travel time

with 0 = r(t - 1) - 1 will in general be more accurate than that with 0 equal to the

free-flow travel time.

cumulative number ot cars
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,I IE
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Figure 3-9: Evolution of the cumulative number of cars at the entrance and at the
exit.

In fact, even if B(L, t + 0) = 0, the travel-time function (3.17) integrates the

changes of exit capacity that occurred prior to t - 1 + r(L, t - 1), because it is defined

recursively. The rate of change of the exit capacity B(L, t + 0) only matters for

describing changes in traffic conditions between t- 1 + r(L, t - 1) and t + r(L, t),

which typically covers few periods.
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In the example of Figure 3-4, B(L, t + 0) was assumed to be nonzero to capture

the dynamics of the entering traffic onto link 2. However, considering a nonzero value

of B(L, t + 0) led to some numerical instability if the travel time (3.12) was truncated

to low orders. In particular, truncating the travel-time function to low orders gives

rise to a chain of errors: inaccurate travel times lead to inaccurate flow propagation,

and vice versa. To ensure numerical stability, we had to consider a 15-th order series

expansion of the travel time (3.12). In contrast, taking B(L, t + 0) equal to zero

is very stable numerically. Moreover, the travel times computed with (3.17) are still

very accurate: in the example of Figure 3-4, the maximum relative difference between

the 15-t:h order series expansion of (3.12) and (3.17) was 0.25%.

This observation also holds in a less restrictive environment, when B(0, t) is not

required to be zero (under a quadratic diagram).

3.4.2 Continuity and Monotonicity

Continuity and strict monotonicity of the travel-time function are desirable properties

for solving the dynamic traffic equilibrium problem. In particular, the DUE problem

can be formulated as a variational inequality over a compact set (see Nagurney 1993).

If the travel-time function is continuous, the variational inequality has a solution. If

the travel-time function is strictly monotone, the variational inequality has at most

one solution.

In what follows, we assume that 0 is smaller than or equal to T(L, t - 1) - 1 and is

independent of the incoming flow. Accordingly, the traffic quantities at the road exit

(i.e., D(L, t + 0), f(L, t + 0)) are independent of the entering flow. For instance, the

conditions are met if 0 = T(L, t - 1) - 1 or if 0 corresponds to the free-flow travel time

under a triangular fundamental diagram. However, with a quadratic fundamental

diagram, when 0 corresponds to the free-flow travel time, it depends on the incoming

flow, as 0 = L/(vmax(1 - k(0, t)/kmax)).

Theorem 21. If 0 < Tr(L, t - 1) - 1 and is independent of the incoming flow, the

travel-time functions (3.12) and (3.15) are continuous.
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Theorem 22. If 0 < T(L, t - 1) - 1 and is independent of the incoming flow, there

exists a range of values for B(O, t) and B(L, t + 9) around zero, for which the travel-

time functions (3.12) and (3.15) are monotone and strictly monotone functions of

flow respectively.

Incidentally, the Jacobian matrix is lower triangular, consistently with the princi-

ple of causality (Daganzo 1995b) that states that the travel time can only be affected

by current or previous flows.

3.4.3 First-In-First-Out (FIFO)

The First-In-First-Out (FIFO) condition guarantees that a vehicle that departed later

cannot arrive earlier. The FIFO property gives consistency to the model, especially

when one computes the path travel times as the sum of the link travel times. However,

despite its nice analytical and computational properties, FIFO is not always verified

in practice (e.g., in multilane intersections).

In the next theorem, we prove that the travel-time functions (3.12) and (3.15)

satisfy the FIFO property, for the particular case where 0 = r(t - 1)- 1 and B(L, t +

9) = 0.

Theorem 23. If 0 = r(t - 1) - 1 and B(L, t + 0) = O, there exists a range of values

for B(O, t) around 0 such that the travel-time functions (3.12) and (3.15) satisfy the

FIFO property.

The FIFO property can be shown in more general cases, but we omit the proof

for the sake of brevity.

3.5 Integration within a DUE Problem

3.5.1 Path Formulation of the DUE

The model for traffic delays can be embedded within a DUE setting. In this subsec-

tion, we propose a standard path formulation of a discrete-time DUE, defined on a

time-expanded transportation network (see Ran and Boyce 1994).
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Let us consider a network with a set of arcs A, a set of paths P, over a time

horizon of T periods. Let W be the set of all origin-destination (OD) pairs. For a

particular OD pair w E W, let PW C P be the set of paths linking this origin to

this destination, and let d(t) be the given demand for period t. A DUE based on

WVardrop's first principle (Wardrop 1952) satisfies the following property: If the flow

on path p E PW at time t, fp(t), is positive, the associated travel time Tp(t) is minimal.

Let w(tl) be the smallest travel time for the OD pair w at time t. Mathematically,

Wardrop's first principle can be formulated as follows:

i( = (t) i ff(t) > Vif P V E ()W>0 (3.18)
> 7wr(t) if fp(t) = 0

Stated differently, according to Wardrop's first principle, each traveler non-cooperatively

seeks to minimize his/her travel time. If path p consists of the m arcs {al, a2, ..., am},

the path travel time for a vehicle starting its trip at time t, Tr(t), is defined recursively

as

TP(t) = Tal(t) + Ta2(t + Tal(t)) + ... + Tam(t + Tal(t) + Ta2(t + Tl(t)) + ...), (3.19)

where ,,, i = 1, ..., m, are the arc travel-time functions defined in (3.12) or (3.15),

depending upon the assumed curve in the fundamental diagram.

In the following, we denote by f the vector of path flows for all periods, i.e.,

f = (f (1), f2(1), ..., fwlp(1), fl(2), ..., f (T), ..., flap(T)),

associated with a vector of path travel times T(f). A vector of path flows is feasible if

it is nonnegative and if it satisfies the demand, that is, if it belongs to the following

polyhedron:

C = {f: E fp(t) = d(t),Vw E l/,f > }.
pEPw

Wardrop's first principle can be expressed as the following variational inequality
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(see Nagurney 1993):

7*(f)'[f - f*] > 0, f E AC. (3.20)

However, there is no guarantee for the existence and the uniqueness of a solution

to this variational inequality in a discrete-time setting. Even if the arc travel-time

function (3.12) is continuous (see Theorem 21), the path travel times can be discon-

tinuous, since (3.19) involves discrete time indices. This problem would not occur

with a continuous-time formulation; however, the variational inequality would have

infinite dimension.

On the other hand, even if the Jacobian matrix of the arc travel times (3.15) is

positive definite (see Theorem 22), the Jacobian matrix of the path travel times is

much more complex to analyze, since it relies on the path flow pattern (if a path

flow increases, it may affect the travel time of another path flow that shares some

arcs in common) and the network structure (the capacity at the exit of an arc, Q(t),

depends on the flow exiting adjacent arcs). In particular, the Jacobian matrix of the

path travel times is not necessarily lower triangular, since the travel time of a flow

starting its trip at time t might be affected by a flow on another path departing some

time later. Further research is needed to characterize the structure of the Jacobian

matrix of the path travel times. Alternatively, one could consider a formulation of

the variational inequality in terms of arcs.

3.5.2 Path Flow Disaggregation

Formulating (3.20) relies on mapping path flows into path travel times. However,

in Section 3.3, we only mapped arc flows into link travel times. In order to use our

previous results, we need to develop a procedure for disaggregating path flows into

link flows. Once we know the link flows, we can easily compute the link travel times

with (3.12) or (3.15) and obtain the path travel times through (3.19).

We first outline the general procedure for the path flow propagation. Working

with one path at a time, we start propagating the path flow from the path origin and
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continue propagating it along the path, moving forward in time. Specifically, if the

path consists of arcs al, a2, ..., we first compute the travel time on al of the path flow

starting its trip at time t, Ta (La, t). Then, we propagate the path flow along al,

and we compute its travel time on a2 given that it is at the entrance of a2 at time

t a- Ta (ai, t), and so on.

However, in order to compute the link travel time, one needs the total incoming

flow, and not only the flow related to that particular path. Therefore, we stop prop-

agating the path flow as soon as we encounter a link on the path at which not all

path flows have arrived. If some path flows are waiting at link I for other path flows

before being propagated, we say that link 1 is "blocking". As a result, the path flow

is propagated along the path until it reaches either its destination or a blocking link.

In our implementation, we have initialized to -1 all cumulative arrivals and de-

partures on link I associated with path p, denoted by Al(t) and D (t) respectively,

for all links 1, all paths p that use link 1, and all time periods t. Therefore, the flow

can be propagated on link 1 if all but one path flows have arrived. A procedure for

counting the number of path flows that have not arrived to link I at time t is outlined

in Procedure 2.

Algorithm 2 Number of path flows that have not arrived to link (, t)
Count = 0
for all p cE P: I p do

if path p does not start with I then
u =link preceding 1 on path p
ii DP(t)= -1 then

Count = Count + 1
end if

else
if Al(t)= -1 then

Count = Count + 1
end if

end if
end for
return Count

Once the path flow has been propagated along link I at time t, all links downstream

of I are examined, one at a time up to period t + rl(L1, t), and the flow is propagated
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along these links if the links are not blocking. In Procedure 3, we maintain a list of

active links, U, from which we branch out in the network. Once the flow is propagated

on some link 1, we add to the list of active links all links downstream of 1. Notice

that we add several copies of each of them, since the flow that has arrived on link I at

time t exits the link some time between the last departure time, t - 1 + [T(Ll, t- 1)],

and the next one, t + [T (LI, t)].

The procedure described above is repeated for each departure time of each path.

We define a list of active paths, Q, and an order on the paths to propagate the flow

as far as possible into the network. For each path p, we denote by tp the maximum

exit time of some path flow on a link in the network. This measures the progression

of the flow into the network. A path flow that is blocked in the upstream links

of the network will be associated with a small tp, and conversely, a path flow that

encounters no blocking link will have a large tp. In Procedure 3, this quantity is

updated in the Link Flow Propagation module. Therefore, to avoid blocking links,

we choose to process the paths in increasing order of tp. Notice that this order changes

dynamically. Once a path has been examined T times, no flow will enter the network,

and the path is deleted from the set Q.

In Procedure 3, we compute the link travel time for several path flows. So far, we

have analyzed the travel time of vehicles with the same destination. In particular,

the travel-time function that we derived depends on the ratio of the incoming flow

over the exit capacity (see (3.17)). When there are several downstream links, it is

not clear how to compute the exit capacity, as it depends on the different priorities

(e.g., special lane for right turns). In our simulation, we assumed that there was

only a single lane on each arc and no priorities. Accordingly, in our setting, if a flow

associated with a particular path is jammed, all flows associated with the other paths

are also jammed.

Consider all path flows on link I whose next link is the downstream link d. If there

were only these path flows on link 1, the travel time would be a function of the ratio

of the sum of these path flows over the capacity of link d. If link d is the tightest

bottleneck at the exit of link 1, all other path flows will have the same travel time.
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Algorithm 3 Path flow propagation
Q = P (list of active paths)
for all p E P do

Al(t) = D (t) = -1 Vl, t
tp = 0

end for
while Q L 0 do

p = arg minpEQ{ tp
I= first link on path p
List U +- 1 (list of active links)
while U 0 do

l=first link in list U

t= smallest time period for which A(t) = -1 for some p E P
if (path p starts with 1) and (t = T) then

Q -Q\p
end if
if Number of path flows that have not arrived to link (1, t)=l then

Travel time computation (1, t)
Link flow propagation (, t)
for all s = [rl(L, t - 1)- 1 to L (LL, t)J do

for all d E D(l) do
U - U U d (Branching out)

end for
end for

end if
end while

end while

Therefore, having clustered the path flows by downstream link, the travel time on

link 1 is the maximum of the travel times of all clusters. Kuwahara and Akamatsu

(2001) proposed a similar procedure, by allocating the capacity of a downstream link

d in proportion of the incoming flows whose next link is link d.

In a diverging intersection (one-to-many), the capacity of a downstream link d in

period t + 0 is computed as the minimum between the static link capacity Qd and

the dynamic link capacity, if there is queue spillback, Dd(Ld, t + 0 + 1) - Ad(0, t +

9) + kd(Ld, t + O)Ld. In a more general intersection, link d can have several upstream

links, other than link 1. Therefore, the downstream link capacity needs to be reduced

to take into account of the flow coming from these other upstream links. If these
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incoming flows are not known in time t (because these path flows have not arrived

yet to link d, being blocked upstream), we estimate these flows from the past flows,

taking a linear interpolation.

In the case of a triangular fundamental diagram and with 0 = rl(Ll, t - 1) -1, the

dynamic effects at the entrance B(O, t) have no influence and the dynamic effects at

the road exit B(L, t) are negligible. Therefore, the travel-time function can be fairly

accurately approximated as the maximum between the free flow travel time and the

travel time with shock (3.17). In fact, if the downstream link d has a bottleneck

capacity CAPd and that a flow Fd is incoming to link I with destination d, one can

show that there is a shock if and only if CAPd(O - Lluo,ll) < Fd, i.e., if Lluo,l <

0 + Fd/CAPd.

Procedure 4 outlines the computation of the travel time on link at time t. We de-

note by D(1) and U(1) the set of links downstream of I and upstream of 1, respectively.

Algorithm 4 Travel time computation (1, t)

0 = L(Lt, t-1)-1
for all d E D(1) do

CAPd = min{Qd, Dd(Ld, t + 0 + 1) - Ad(O, t + 0) + kd(Ld, t + 0)Ld}
CAPd = CAPd - EuU(d),uol fu,d(L, t + 0) (remove flows outgoing from other
links)
Fd = O
for all p E P: l,d E P do

if p starts with 1 then
Fd = Fd + fp(t) (add flow at the path origin)
AP(t) = A~(t - 1) + fp(t)

else
u=link preceding 1 on path p
Fd = Fd + DP(t) - DP (t - 1) (add flow coming from upstream links)
Ap(t) = D (t)

end if
end for
Td = T(Li, t - 1)- 1 + Fd/CAPd (travel time associated with downstream link d)

end for
T (LI, t) = max({Luo,l, maxdED() {Td} }

Once link travel time have been computed, the flow can be propagated along the
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link, following the general idea that A(O, t) = D(L, t + T(L, t)), detailed in Procedure

5. In addition, Procedure 5 measures the progression of each path flow into the

network, tp.

Algorithm 5 Link flow propagation (1, t)
for all p E P: I E p do

for all s = [r(Li,t- 1)- 1 to Lt(L, t)J do
X = (t+s)-(t-1+rl(Ll,t-1))(t+rl (Ll,t))-(t-1+r (Ll ,t-1))
Dl(Lt, t + s) = AAPI(O, t) + (1 - A)AI(O, t - 1)

end for
tp = max{tp, t + Lr (Ll, t)]}

end for

Example. To illustrate the procedure we just described, let us consider the two-

link network displayed in Figure 3-10. We denote by link 1 the upstream arc and by

link 2 the downstream arc. Link 1 has infinite capacity while link 2 has a capacity

of 2. The free flow travel times are equal to 1 for both links. We consider two paths,

during two periods of time. Path 1 goes along link 1 and link 2 and has 0 units of

flow in the first period, and 2 units of flow in the second period. Path 2 goes along

link 2 only and has 0 units of flow in the first period and 1 unit of flow in the second

period.

Path 2 (1 unit)

I " 21 \ 2

, ', CAP = 2

Path 1

(2 units)

Figure 3-10: A two-link network example.

We initialize Q = {1, 2}. In the first iteration, the two measures of progression

of the paths, t and t2 are set to zero. We arbitrarily select path 1 to start with. In

period 1, path 1 has zero units of flow that will travel at the free flow speed; therefore,

Al(1) = 0 = Dl(s), for s < 2, and t is updated to 2. The flow cannot be propagated
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on link 2 because the flow from path 2 has not arrived yet. We say that link 2 is

blocking.

Since 0 = t2 < tl = 2, we select path 2 in the second iteration. Path 2 has zero

units of flow in the first period, A2(1) = 0. The flow on link 2 in period I is the

sum of flows of paths 1 and 2, i.e., F = f2(1) + (D'(1) - D'(0)) = 0. This zero flow

will travel at the free flow speed. Therefore, DP(s) = 0, for p = 1, 2 and s < 2; t2 is

updated to 2.

Since t2 = tl = 2, we pick arbitrarily path 2 in the third iteration. The flow on link

2 in period 2 is the sum of flows of paths 1 and 2, i.e., i.e., F = f2(2) + (D(2)- D(1)) =

1 + 0 = 1 and will travel at the free flow speed. Therefore, D2(3) = 0, and D2(3) = 1.

As path 2 has been examined twice, it is deleted from Q.

The set of active paths Q contains only one element, path 1. The incoming flow

is 2, and A1 (2) 2. The downstream capacity is equal to 2, from which we subtract

the flow that came from path 2 in period t - 1 + Tr(Li, t - 1) = 2, equal to 1. As a

result, only 1 unit of capacity is available for the flow of path 1. The travel time is

the maximum between the free flow travel time, 1, and the travel time with shock,

Ti(L, 1) - 1 + 2/1 = 2. Therefore, D l(4) = 2 and Dll(3) = 1. The list of active links

contains two copies of link 2, corresponding to the propagation of flow in periods 3

and 4.

Since no flow comes from path 2 in period 3, the flow from link I can be propagated

downstream. As a result, Al(3) = 1. As a result, A(3) 1. Since the flow propagates at the free flow speed

on the second link, Di (4) = 1.

Likewise, since no flow comes from path 2 in period 4, the flow from link 1 can

be propagated downstream. As a result, Al(4) = 2. Since the flow propagates at the

free flow speed on the second link, D2(5) = 2.

3.5.3 Numerical Example

To validate the procedure we introduced for solving DUE problems, we consider the

transportation network test example proposed by Kuwahara and Akamatsu (2001)

with time-varying demands. As shown in Figure 3-11, this transportation network of 6
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nodes and 7 links is a simple model of a freeway and an arterial running parallel. The

link data are shown in Table 3.1, associated with a triangular fundamental diagram.

We consider the evening commute, where users are going back from their work place

to the residential area, by taking either the freeway or the arterial. In particular,

we consider two origin-destination pairs, 1, 2} and 1,3} with the following traffic

demand:

di 1,2(t)= 

di 13(t)= {
1000

2000

2000

4000

veh/hour

veh/hour

veh/hour

veh/hour

o < t < 1 (h) and 3 < t < 5 (h)

1 <t < 3 (h)

o < t < 1 (h) and 3 < t < 5 (h)

1 <t <3 (h).

Figure 3-11: An example network

Table

wo (h/km)
0.05
0.05
0.05
0.05
0.05
0.05
0.05

3.1: Link characteristics

kmax (veh/km) Length (km) fmax (veh/hour)
450 2
375 16
250 8

225 2

450 16
450 12
450 2

6000
6000
4000
3000
6000
6000
6000

In free flow, the freeway is the most attractive path to go from the work place

to the residential area. For instance, for the OD pair {1,3}, the freeway free-flow

travel time is 0.4 h while the arterial free flow travel time is 0.7 h. On the other
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(1,4)
(4,5)
(5,6)
(6,3)
(1,2)
(2,3)
(5,2)

u0 (h/km)
0.025
0.0125
0.0125
0.025
0.025
0.025
0.025



hand, in the peak traffic period, link (6, 3) will be saturated, since it has a capacity

of 3000 vehicles/hour, while the peak demand is 4000 vehicles/hour. As a result, a

queue will appear and propagate backwards, and the freeway will become less and

less attractive, in comparison to the arterial. As shown in Kuwahara and Akamatsu

(2001), the impact of the queue spillback is so significant that a point queue model

would not be appropriate for this example.

In our simulations, we considered 5 hours of traffic demand, discretized in time

steps of 0.01 h, that is, we considered 500 time periods.

To solve the dynamic user equilibrium problem on this network, we implemented

in C++ a dynamic version of the Frank-Wolfe algorithm. At every iteration we

solved a linear optimization problem, calling the CPLEX library, to solve the path

formulation of the DUE, described in Subsection 5.1. The Frank-Wolfe algorithm for

solving static variational inequality problems is fairly standard in the literature (e.g.,

see Martos 1975), and we outline it only briefly in Algorithm 6.

Algorithm 6 A dynamic Frank-Wolfe algorithm for solving (3.20)
Choose e > 0
m = 0,
fpm = OVp E P
Tm = T(f m ) (free flow travel times)
for all w C W do

p =shortest path w.r.t. Tm

fpm(t) = d(t), Vt = 1, ..., T
end for
repeat

m m+l
T m T= (fm ) (see Section 3.5.2)
f* = argmaxf{(rm) 'f' : EpeP fp(t) = dW(t),Vw E W,f > 0} (Linear Optimiza-
tion)
if 7(f*)I(fm - f*) < 0 then

Use binary search to find fm+l = Afm + (1 - A)f*, 0 < A < 1, such that
T(fm+l),(fm f*) = 0

end if
until T(f m )'(f m - f*) < E

As shown in Figure 3-12, the algorithm made significant progress in the first it-

erations (in terms of the decrease of r(fm)'(fm - f*)) but had trouble to converge to

156



zero thereafter. In fact, as we mentioned above, the path travel times are not neces-

sarily monotone, and the algorithm is not a priori guaranteed to converge. However,

from Figure 3-12, it seems that the algorithm would ultimately converge, but not

monotonically.

10
5

14

0 5 10 15 20 25 30
iterations

Figure 3-12: Convergence Plot of the Frank-Wolfe Algorithm

The key issue in implementing this algorithm is the evaluation of the path travel

times that relies on the procedure described in Section 3.5.2. Even if the procedure

for disaggregating path flows into link flows may seem cumbersome, it runs pretty

fast. In fact, the first 30 iterations took less than a minute.

Figures 3-13 and 3-14 display the curves of cumulative number of vehicles at the

entrance of each link, for the OD pairs {1, 3} and {1, 2} respectively. Since the path

choice decisions are based on the actual travel time, and not the instantaneous travel

time as in Kuwahara and Akamatsu (2001), the figures are very different from Figures

6 and 7 in their paper.

For OD pair {1, 3}, the freeway is the first used path. As in Kuwahara and

Akamatsu, a queue completely covers link (6, 3) after 1.35 hour and spills back onto

the previous link. After 1.75 hour, the queue also covers link (5,6) and spills back

onto link (4, 5). Notice that, since the capacity of link (6, 3) is fixed and that there is

no incoming flow into the freeway at the intermediate nodes, the density of the queue

remains constant, and so is the travel time when the queue covers an entire link.

One significant difference with their model is that path {(1, 2), (2, 3)} starts being
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Figure 3-13: Cumulative link arrivals for the OD pair {1, 3}

used after 1.9 hour, and not after 2.09 hours. In fact, our model is based on the actual

travel time and not the instantaneous travel time, and drivers anticipate earlier the

possible delays on the freeway. Another difference with their results is that the two

paths are never used simultaneously, while in Figure 3-13, the curves of cumulative

arrivals into (1, 4) and (1, 2) keep growing together. Specifically, in their model, there

is no flow incoming to link (1,4) in the time intervals [2.09, 2.29] and [2.85, 3.15], as

everything goes through the second path. The sudden switch of used paths that they

observed seems to be a consequence of the path choice based on the instantaneous

travel times. In their model, even though everybody decides to take an alternate

path, the instantaneous travel time of the original path keeps increasing, deterring

future flow to choose this path.

For OD pair {1,2} (see Figure 3-14), the effects of the queue originating from link

(6, 3) have an impact on the travel time of link (4, 5) in period 1.75, as the queue

backs up into link (4, 5). Because the travel time is increasing, the arterial is becoming

more and more attractive. In period 1.79, the arterial is so attractive that all flow

is taking it. In contrast, in Kuwahara and Akamatsu's model, the drivers did not

anticipate the queue on the freeway, and the switch to the arterial only occurs after

2 hours. Moreover, in our model, the arterial is being used during the whole peak
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Figure 3-14: Cumulative link arrivals for the OD pair {1, 2}

period, as the queue on the freeway does not decrease. With the instantaneous travel

time decisions, since there are two switches from the freeway to the arterial, and then

from the arterial to the freeway for OD pair {1, 3} during the peak period, the travel

time on the freeway decreases after 2.34 hours, making the arterial less attractive.

In addition, we can observe that the principle of optimality is maintained dy-

namically. For example, if one of the shortest paths for OD {1,3} in period 2 is

{(1, 2), (2, 3)}, one of the shortest paths for OD {1, 2} in the same period is {(1, 2)}.

This observation may be used to speed up the solution of the DUE problem.

3.6 Conclusions

In this chapter, we proposed a methodology for deriving an analytical travel-time

function based on the theory of kinematic waves. In particular, we derived a travel-

time function in the cases of a triangular and a quadratic fundamental diagrams.

The derived travel-time function integrates first-order traffic dynamics as well as

shock waves. Moreover, we illustrated numerically that this travel-time function is

very consistent with the simulated travel times proposed in the literature.

With the advent of advanced transportation management systems (ATMS), a lot
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of attention has been devoted to solving the dynamic user equilibrium problem. We

showed that the travel-time function that we derived can be incorporated within a

DUE setting, since it is (strictly) monotone and satisfies the FIFO property under

certain conditions. As an illustration, we applied our model to a simple evening

commute problem, emphasizing the dynamic nature of the traffic assignment.

Further research is necessary to develop a mathematical formulation of the flow

propagation proposed in Section 3.5. A mathematical formulation of the problem,

defined in terms of links instead of paths, would take advantage of the continuity

and the (strict) monotonicity of the travel-time functions derived in Section 3.4.

Moreover, the model needs to be enriched to capture local triggers of congestion such

as deadlocks (on cyclic networks), traffic lights, multi-lane roads, etc. Finally, the

proposed model for delays can be incorporated into more general or alternative traffic

assignment problems as the system equilibrium, the stochastic DUE, or the DUE

with departure time choices.
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Conclusions

This thesis investigates the impact of lack of information and decentralization of

decision-making on the efficiency of inventory, supply chain, and transportation sys-

tems. The first part of the thesis quantifies the loss of profit in the newsvendor model

with limited knowledge about the demand probability distribution (Chapter 1) and

with several competing decision-makers (Chapter 2). The second part of the thesis

analyzes the dynamic traffic equilibrium in a transportation network, when drivers

choose their itinerary selfishly (Chapter 3).

It is common to hear that "all models are wrong." One of the greatest challenges

for modelers is to trade off the complexity of reality with mathematical tractability.

On the one hand, a model that fails to capture the main constituents of a problem

will lead to poor decision-making. On the other hand, a mathematical problem that

is impossible to solve is useless. Both the newsvendor problem and the traffic equi-

librium problem are traditionally associated with a certain set of assumptions (e.g.,

probabilistic description of demand and centralized decision-making in the newsven-

dor model; static representation of the traffic equilibrium problem). One of the goals

of this thesis was to analyze the performance of these models under more general

assumptions.

Our motivation for relaxing assumptions in these two models was threefold. First,

a model that relies on fewer assumptions is usually a more accurate representation

of reality and can therefore lead to better decisions. For instance, in transportation,

congestion is inherently dynamic; therefore, a traffic equilibrium model that captures

the dynamic interaction of traffic flows is more informative than a static model, which

would focus only on the peak congestion period. In particular, in a dynamic model,
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travelers anticipate congestion ahead and choose their itinerary accordingly. Simi-

larly, in supply chain management, decision-making is decentralized; incorporating

the multiplicity of decision-makers into an inventory model sheds light on the ineffi-

ciency of simple contracting mechanisms. In this study, we analyzed various supply

chain configurations to develop insight into the factors that accentuate or mitigate

this loss of efficiency.

Our second goal was to test the robustness of the classic models under more

general assumptions. For instance, the newsvendor model assumes that the demand

probability distribution is known but says nothing about how to estimate it. By

assuming only limited information about the demand, we have derived guidelines for

selecting a demand distribution, as a function of the prior information about the

demand. In particular, the uniform demand distribution should be chosen when only

the range is known and the exponential distribution should be chosen when only

the mean is known. When both the mean and the variance are known, the normal

distribution can be assumed only if the coefficient of variation is less than .3; for

larger coefficients of variation, the gamma distribution seems to be robust.

Finally, and perhaps paradoxically, making fewer assumptions sometimes simpli-

fies the mathematical analysis. For instance, the multi-item newsvendor problem with

capacitated constraints is a difficult nonlinear problem, often prone to numerical in-

stabilities. On the other hand, when only the ranges of the demand distributions are

specified, the problem can be formulated as a simple linear optimization problem,

despite the fact that it still captures the stochastic nature of the demand. More gen-

erally, this thesis illustrates how adopting a new perspective on a specific problem

might lead to more relevance, more insights, and more efficient solution techniques.
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Appendix A

Proofs

A.1 Chapter 1

Proof of Proposition 1

(a) A function f defined on a convex set C is quasi-concave if f(Axl + (1 - A)x2) >

min{f(xI), f(x 2)} for x1,x 2 E C (Boyd and Vandenberghe 2004).

Let us consider the case y < z. We will show that the function D(z; y) is quasi-

concave for z E [y, oo). Fix two points z2 > Zl > y, and a scalar A E (0, 1), and let

zo = Az:j + (1 - A)z2. The optimal solution of problem (1.4) when z = zi, is denoted

by Fi E D, for i = 0, 1, 2.

The objective function of (1.4) can be rewritten as fjZ F(x)dx. Therefore, Fo(zo) >

F1(zl) by optimality of F1, and Fo(zo) < F2(z2) by optimality of Fo. Consequently,

F2 (z2 ) > Fo(zo) > F ().

If Fi(zl) > 1 - c/p, F2(z2) > Fo(zo) > 1 - c/p. As a result, the quasi-concavity of

1 (z; y) is established as follows:

4(zo; y) - (Z2; y) = p j(min{x, z} - min{x, y})dFo(x) - c(zo - y)

-p (min{x, z2 } - min{x, y})dF2(x) + c(z2 - y),

> -pJ 2 F2(x)dx + c(z2 -z)

> -p(Z2- o)F2( 2) + C(Z2 - ),
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> -P(Z2 - zo)(c/p) + c(Z2 - Zo) > 0,

where the first inequality follows from optimality of Fo when z = zo, the second

inequality follows from the fact that F2 is increasing, and the third inequality comes

from the assumption F2(z2) > 1 - c/p.

Similarly, if F2(z2) < 1-c/p, Fi(zi) < Fo(zo) < 1-c/p. Then, for similar reasons

as above,

(Zo; y) -- (Z; y) > p fliI(x)dx-c(zo - z),

> p(z - Zi)Fi(Z0) - C(Z0 - Z1),

> p(Zo - Zl)(C/p) - C(Zo - Z1) > 0.

Finally, when F(zl) < 1 - c/p and F2(z 2) > 1 - c/p, J)(zo;y) > (Zl;y) if

Fo(Zo) < 1- c/p, and z(zo; y) > 1(Z2; ) if Fo(zo) > 1 -c/p.

Hence (z; y) is quasi-concave for z > y. One can apply the same argument to

show that the function is also quasi-concave for z < y, but we omit the details for

the sake of brevity.

However, q4(z, y) is not necessarily quasi-concave on [0, oc). For instance, consider

D as the set of all distributions with support Q. Then, d((z; y) equals (p - c)(z - y)

when z > y, and -c(z - y) otherwise. As a result, d1(z; y) is piecewise linear convex,

with a kink at z = y.

(b) For a fixed demand distribution D D, E[H(z, D) - (y, D)] is a convex function

of y, since -E[nI(y, D)] is the negative of the objective of the classic newsvendor

problem (1). Because convexity is preserved under maximization (Porteus 2002), the

maximum of the regret over all demand distributions is a convex function of y. C]

Proof of Theorem 1

Consider problem (1.4) with only the normalization constraint, i.e., f dF(x) = 1.

From Proposition 1, two cases need to be considered: when y < z and when y > z.
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When y < z, the worst-case demand distribution that solves (1.4) is a unit impulse

at z. Accordingly, the optimal value of (1.4) equals (p - c)(z - y). Maximizing the

value of the regret over all feasible z E [y, u], we obtain a regret equal to (p-c)(u -y).

Similarly, when y > z, the worst-case demand distribution is also a unit impulse

at z, and gives rise to a regret of -c(z - y). The maximum regret, taken over all

feasible z E [, y], equals -c(l - y).

From Proposition 1, the optimal order quantity y equates the two maximum re-

grets, leading to the theorem statement. O

Proof of Theorem 2

Problem (1.4) can be formulated as a semi-infinite linear optimization problem. By

strong duality (Smith 1995), the primal problem is equivalent to the following dual

problem:

min,,O,mV ao + alji, (A.1)

s.t. a0o + al > min{x, z} - min{x, y}, V <x < u.

(a) If z > y, a dual feasible function is any straight line, possibly discontinuous

at z, with ordinate a0 and slope al that is nonnegative for all x > I, lies above the

line x - y between y and z, and above the line z - y for all z < x < u. In an optimal

solution, the constraints are tight at z. (Otherwise, one could reduce the cost, by

lowering either a 0 or al, without violating a constraint.) It is easy to see that there

are two possible optimal solutions: either the straight line that goes through the

points (1, 0) and (z, z - y), or the horizontal line at z - y. In the first case, ao = -la,

acl = (z - y)/(z - 1), and the optimal value of (A.1) is equal to (z - y)(Y - l)/(z -1).

In the second case, a0 = z - y, a = 0, and the optimal value of (A.1) is equal to

(z - y). Therefore, the first case is optimal if and only if p_ < z.

(a.1) If _ < z, the regret is equal to (z - y)(p(L - )/(z - 1) - c), which is concave

in z. The regret, optimized over all possible values of z E [, u], is maximized at

z* = 1 + (y- 1)(p- l)(p/c), if / < z* < u, at /i if > z*, and at u if z* > u.
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Substituting z by its optimal value simplifies the regret to

( -( y)(p- c), if y _< + ( -),
(l-y+ (Y-)(I- ) cp(-c) , if l+ rc( , -) <yl+ c (u-l)2

( - y)(P - c), ify > 1 + p(l)2

(a.2) If z < p, the regret is equal to (z - y)(p - c). The maximum regret, when

it is optimized over z E [, p], is attained at z = p and equal to (p - y)(p - c).

(b) On the other hand, if y > z, the right hand side of the constraints is nonincreas-

ing. It is easy to see that the optimal solution is a0 = al = a2 = 0. Therefore, the

regret equals -c(z - y). The maximum regret, optimized over all values of z E [1, y],

is equal to -c(l - y).

From Proposition 1, the quantity y balances the opportunity cost from ordering

too much with the opportunity cost from ordering too little. If y < + (c/p)(p-1), the

optimal order quantity minimizes the maximum of the two following convex functions:

min max(c(y - 1), (p - c)(/ - y)}.
y>0

In this case, it is optimal to order y* = (c/p)l + ((p - c)/p)I. The condition y* <

1 + (c/p)(p - 1) reduces to (p/c) 2.

If 1 + (c/p)(p - I) y < 1 + (c/p)(u - 1)2/(p - 1), the order quantity minimizes

the following expression:

min maxc(y -1), (I-y + (y 1)( - ) c)( -C)

The minimum is at the intersection of the two curves, i.e., when y* = l+(p/c)(M-1)/4.

For this value of y, the conditions 1 + (c/p)(p - I) < y < I + (c/p)(u - 1)2/(p - 1)

translate to 2 < (p/c) < 2(u - )/(p - 1).

Finally, if y > 1 + (c/p)(u - 1)2/(p - 1), the optimal order quantity solves the
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following:

min max(c(y - 1), ( - y)(p - c)}
Yy>O u- 

The minimum occurs at the intersection of the two curves, i.e., when y* = u- p (-) 2

For this value of y, the condition y > I + (c/p)(u - 1)2 /(p - 1) translates to (p/c) >

Finally, the Price of Information is obtained by plugging the optimal values of y

into the regret functions. [

Proof of Theorem 3

Problem 1.4 can be formulated as the following semi-infinite linear optimization prob-

lem:

maxp(x) f(minx, z} -min{x,y))P(x)dx,

s.t. fO' P(x)dx = 1,

fo xP(x)dx = ,

f, P(x)dx = 27
P(x) > 0,

where the next to last constraint ensures that the mean is the median of the dis-

tribution. Rather than solving the primal problem, we solve its dual problem (1.5)

geometrically. We denote by ai the dual variable associated with the ith constraint.

Since the mean is equal to the median, then z < if and only if c/p > 1/2. As

a result, it is optimal to order y < p if and only if c/p > 1/2. Therefore, four cases

need to be considered, depending on whether y > z or not, and whether c/p > 1/2

or not.

Case 1: c/p > 1/2. If z > y, a dual feasible solution is a straight line with ordinate

a0o, slope a, and possibly discontinuous at p by an amount a 2, that is nonnegative

for all x > 0, lies above the line x-y between y and z, and above the line z-y for all

167



z < x. The optimal dual solution is a horizontal line, with ao = z - y, al = a 2 = 0.

The associated regret, (p - c)(z - y), is maximized at z = p.

If z < y, the dual constraints are piecewise linear decreasing. The optimal dual

solution is a horizontal line at zero, discontinuous at P by an amount a 2 = z - y. The

regret is equal to (p/2 - c)(z - y) and maximized when z = 0.

The robust order quantity equates the following maximum regrets:

min {(p - c)( - y), (p/2 - c)(-y)}
yO

and is equal to y = 2/(p - c)/p.

Case 2: c/p < 1/2. The dual feasible sets are the same as when c/p > 1/2. If

z y, there are two possible optimal solutions, depending on whether z > 2 or

not. If z 2, the optimal dual solution is also a straight line, but with a 2 = z - y

and ao = al. The associated regret equals (p/2 - c)(z - y) and is maximized when

z = 2. On the other hand, when z > 2, the optimal dual solution is a piecewise

linear line, with slope a1 = (z - y)/(z - p), discontinuous at p by an amount a 2 =

-ailp. The associated regret equals (pp/(2z - 2) - c)(z - y) and is maximized

when z = P + 1/(2c)v/(2cpu)(y - p). The maximizing z is greater than 2 whenever

y > (p + 2c)/p.

On the other hand, when z < y, the optimal dual solution is a horizontal straight

line at zero. The related regret -c(z - y) is maximized when z = p.

If y < Ip(p + 2c)/p, the robust order quantity equates the following maximum

regrets:

min {(p/2 - c)(2p - y), -c(p - y))
y_0

and is also equal to y = 2p(p - c)/p. Condition y < p(p + 2c)/p then simplifies to

p < 4c.

If on the other hand y > (p + 2c)/p, the robust order quantity minimizes the
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following regrets:

min PA -eg(Zr-ts-4 -n
yi>n 2(z - i)

with z = ,A + 1/(2c) (2cpla)(y -/), and is equal to p(p + 8c)/(8c). Condition y >

pI(p + 2c)/p simplifies then to p > 4c. [1

Proof of Theorem 4

Following Popescu (2005), the closed convex set of symmetric distributions D can be

generated by pairs of symmetric Diracs. Using this characterization, the dual problem

(1.5) can be formulated as (Popescu 2005):

minao,ai, ao + CalI/,

s.t. 2ao + 2pa1 >

minf{ - x, z} + minf{ + x, z} - minf{ - x, y} - minf{ + x, y},

V0 < x < .

The dual problem can easily be solved geometrically. A dual feasible solution is a

horizontal line, lying above the piecewise linear function described by the right-hand

side of the constraint. By symmetry, the mean is equal to the median. As a result,

y, z > if and only if c/p < 1/2. Four cases need to be considered, depending on

whether z > y or not, and c/p > 1/2 or not.

Case 1: c/p < 1/2. When z > y, the ordinate of the line is equal to z - y. The

associated regret, (p/2 - c)(z - y), is maximized at z = 2.

When z < y, the ordinate of the line is equal to zero. The associated regret,

-c(z - y), is maximized at z = L.

Equating both regrets, (p/2 - c)(2p - y) = -c(p - y), gives rise to the robust

order quantity y = 2p(p - c)/p.
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Case 2: c/p > 1/2. When z > y, the ordinate of the line is equal to 2(z - y). The

associated regret, (p - c)(z - y), is maximized at z = .

When z < y, the ordinate of the line is equal to z - y. The associated regret,

(p/2 - c)(z - y), is maximized when z is zero.

Equating both regrets, (p - c)(/ - y) = -(p/2 - c)y, gives rise to the robust order

quantity y = 2(p - c)/p. E1

Proof of Theorem 5

Following Popescu (2005), the closed convex set of unimodal distributions with mode

m, D, can be generated with m-rectangular distributions (i.e., uniform distributions

over a segment bounded by m). With this representation, the dual problem (1.5) can

be formulated as (Popescu 2005):

mino aoo,

s.t. ao(m - x) > f min{(, z} - min{(, y}d, VO < x < m,

cao(x - m) > f min{(, z} - min{, y}d, Vm < x < u.

The dual problem can easily be solved geometrically. A dual feasible solution is a

piecewise linear function, passing through (m, 0), with slope -ao before m and ao

after m, lying above the piecewise quadratic function described by the right-hand side

of the constraint. Six cases need to be considered, depending on the relative order of

z, y, and m.

Case 1: z < y < m. The right-hand side is constant linear for x < z, quadratic

between z and y, then increasing linear until m, and decreasing linear thereafter. The

optimal dual solution is such that the constraint is tight at zero. Therefore, ao0 =

(z - y)(m - z/2 - y/2)/m, and the regret equals p(z - y)(m - z/2 - y/2)/m - c(z - y).

The maximum regret is attained at z = m(p-c)/p or z = y, whichever is the smallest.

It is equal to zero when y < m(p - c)/p, and to (yp - m(p - c))2/(2pm) otherwise.
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Case 2: z < m < y. The right-hand side is constant up to z, then quadratic

between z and y, with a change of concavity at m, and linear after y. An optimal dual

solution is such that the constraint is tight at zero. Therefore, ao = -1/2(m- z)2/m,

and the regret equals -p/2(m - z) 2 /m - c(z - y). The maximum regret equals

c/(2p)(mc - 2mp + 2yp) and is attained at z = m(p - c)/p.

Case 3: m < z < y. The right-hand side is zero for x < z and negative thereafter.

The optimal dual solution is equal to zero, and the regret equals -c(z - y). The

regret is maximized when z = m; as a result, Case 3 is dominated by Case 2.

Case 4: m < y < z. The right-hand side is zero for x < y and increasing after; it is

convex between y and z, and linear beyond z. The optimal solution is such that the

function ao(x - m) crosses the constraint set at u, i.e., ao = 1 / (u - m)(z - y)(u - z/2 -

y/2). The regret equals (p/(u - m) (u - z/2 - y/2) - c)(z - y) and is maximized at z =

u(p-c)/p+mc/p. At its maximum, the regret equals (u(c-p)-mc+yp) 2/(2p(u-m)).

Case 5: y < m < z. The right-hand side is constant for x < y, concave decreasing

between y and m, convex increasing between m and z and linear increasing after. The

optimal solution is such that the function aco(x - m) crosses the constraint set at u,

i.e., ao = 1/(u - m)((z - m)(z/2 + m/2 - y) + (z - y)(u - z)). The maximum regret,

attained at z = u (p - c)/p + c/pm, is equal to (p - c)((u + m)/2 - c/p(u - m)/2 - y).

Case 6: y z < m. The right-hand side is constant for x < y, concave decreasing

between y and z, linear decreasing until m, and linear increasing thereafter. The

optimal solution is to have the slope of the function equal to the slope of the linear

piece of the constraint. Accordingly, a0 = z - y; the regret equals (p - c)(z - y) and

is maximized at z = m; as a result, Case 6 is dominated by Case 5.

The robust order quantity equates the regrets. Taking y < m(p - c)/p is subopti-

mal, since the regret when z > y, equal to (p - c)(u - y) dominates the regret when
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z < y, equal to zero. When m(p - c)/p < y < m, y minimizes the maximum regrets:

(yPp-m(p-c))2 u+m cu-m
ymOnm 2pm (p-c)( 2 p 2

and is equal to m(p - c)(2cm + u(p - c)/p. The condition that y > m(p - c)/p

is automatically satisfied if u > m(1 - 2c/(p - c)), and the condition that y < m

simplifies to u < m(1 + (c)2).

When y > m, the robust order quantity minimizes the maximum regrets:

min max{ (mc - 2mp + 2 mcyp) y
yo 2p 2p(u - m)

and is equal to u - /c(u - m)(2up - cu + 2cm - 2mp)/p. The condition that y > m

simplifies to u > m(l + (c)). 0

Proof of Theorem 6

Following Popescu (2005), the set of unimodal and symmetric distributions with

mean /p can be generated using a mixture of pu-centered rectangular distributions

(i.e., uniform distributions centered around ,u). Using this representation, the dual

problem (1.5) can be formulated as follows:

mina,,l ao + al1 ,

s.t. 2t(ao + Cal1 ) > ft t min{(, z} - min{(, y}d, VO < t < p.

A dual feasible solution is the slope of a straight line, passing through the origin

originating. Because the mean equals the median (by symmetry), z > , whenever

c/p < 1/2. As a result four cases need to be considered, depending on whether z > y

or not, and whether c/p > 1/2 or not.

Case 1: c/p > 1/2. When z > y, the right-hand side of the dual constraint is

increasing, linearly with slope 2(z - y) for t < p - z, then concavely between - z

and I - y, and then linearly with slope z - y. The dual optimal solution is a straight
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line with slope equal to the first piece of the constraint, i.e., a0 + a1 /i = z - y. The

regret, (p - c)(z - y), is maximized at z = p.

If on the other hand z < y, the right-hand side of the dual constraint is decreasing,

first linearly with slope 2(z - y) until t = u - y, then convexly between p - y and

- z, and finally linearly with slope z - y. The optimal dual solution is a straight line

intersecting the constraint at the origin and at t = L. Accordingly, ao + alp, = (z -

y)(2p -z/2-y/2)/(2p), and the regret equals (z-y)(p(2p-z/2-y/2)/(2a)-c). The

maximum regret, attained at z = 2l (p - c)/p, is then equal to (py - 2 (p - c)) 2/(4pl/).

The robust order quantity minimizes the maximum of the following regrets:

min max{(py - 2M/(p - c))2/(4ppu), (p - c)(i - y)}

and is then equal to y = 2/pV .

Case 2: c/p < 1/2. When z > y, the right-hand side of the dual constraint is zero

for x < y and increasing after; it is convex between y and z, and linearly increasing

beyond z. The optimal dual solution is a straight line, intersecting the curve defined

by the right-hand side at zero and t = . Therefore, ao + acl = (z - y)(2p - z/2 -

y/2)/(2p), and the regret equals (z - y)(p(2/ - z/2 - y/2)/(2 i) - c). The maximum

regret, attained at z = 2/i(p - c)/p, is then equal to (py - 2p(p - c))2/(4pp).

On the other hand, when z < y, the right-hand side is zero for x < z and decreasing

thereafter. The optimal dual solution is a horizontal line. Therefore, ao + alp = 0,

and the regret equals -c(z - y). The maximum regret, attained at z = , is then

equal to -c(p - y).

The robust order quantity minimizes the following maximum regrets:

min max{(py - 2A(p - c))2/(4pp), -c( - y)}
y>
0

and is then equal to y = 2 p/p(p - /p-c2). E
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Proof of Theorem 7

When only the mean /t and the variance 2 are known, the dual problem (1.5) is the

following:

min ao + all + a 2(a2 + p/2),

s.t. ac + alX a2x2 min{x, z} - min{x, y, VOy}, < x.

Following Proposition 1, two cases must be considered: z > y and y > z.

Case 1: z > y.

The right hand sides of the constraints of the dual problem is piecewise linear in-

creasing. A dual feasible function is any quadratic function g(x) that, on the positive

orthant, is nonnegative, lies above the line x - y between y and z, and above the line

z - y after z.

If the quadratic term of the function is zero, the problem reduces to finding a

straight line, as in Theorem 1. Otherwise, in an optimal solution, either the parabola

is tangent to x - y at some point between y and z or it passes through the kink point

(z, y - z). Also, either its minimum value is zero on the half line x > 0, or it passes

through the origin. Combining these possibilities gives rise to five different cases that

we analyze next.

Case 1.1: g(x) is a straight line. Following the proof of Theorem 1, two cases

are possible. When z < p, the optimal solution is a horizontal line. The associated

dual objective value is equal to z - y. On the other hand, when z > , the optimal

solution is a straight line passing through the origin. The optimal dual objective

equals in this case (z - y)pl/z.

Case 1.2: g(x) is tangent to x - y. This analysis of this case is similar to the one

performed by Bertsimas and Popescu (2002). If the quadratic function is tangent to

x - y, it can be expressed as g(x) = a(x - b)2 + x - a for some a > 0. The minimum
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of the function, denoted by x0, equals b - 1/(2a).

If b > 1/(2a), x0 > 0. Since g(xo) = 0, a = 1/(b - y). After plugging this

value of a into the dual objective function, we minimize the function over all b E

[max{y, 1/(2a) }, z]. The minimum value equals 1/2(p - y) + (1/2) /a2 + ( - y)2 and

is attained at b = y+ Va22 + (Z - y)2 . Trivially, b > y. On the other hand, b > (1/2a)

if and only if y > ( 2 + 2)/(2p), and b < z if and only if y + a2 + ( -y) 2 < z.

If b < 1/(2a), x0 < 0. Therefore, g(x) must pass through the origin. Thus, a =

y/b 2. After plugging this value of a into the dual objective function, we minimize the

function over all b E [y, min{1/(2a), z}]. The minimum value equals It - yp2/(Iz 2 + a2 )

and is attained at b = (a2 + p2)/p. The condition that b < (1/2a) simplifies to

y < ( 2_+a 2)/(2/p); therefore, the condition b < y is automatically satisfied. Moreover,

since b < z, (p2 + c 2 )/I < z.

Case 1.3: g(x) passes through (z, z - y). Since g(x) must lie above the piecewise

linear function defined by the constraint, the derivative of g(x) at the kink point must

be less than 1, i.e., 2a2z + a1l 1. The minimum of the function, denoted by x0,

equals -a 1/(2a 2).

If -a1/(2a2) < 0, the quadratic function passes through the origin, i.e. g(0) = 0.

Accordingly, the dual objective function simplifies to a 2 (a2 + 2 _- Z) + PU(Z - y)/z.

Minimizing the objective with respect to a 2 gives rise to three possible cases. When

z (a 2 + P 2 )/ip, the minimum is attained at a2 = 0 (straight line) and equals

Ip(z-y)/z. If z > (a2+p/2)/U and z < 2y, the minimum equals (a 2+ 2)(z-y)/z 2 , and

x0 = 0. If z > (a2 +1 2)/Iu and z > 2y, the minimum equals (a 2 + p2)y/z 2 + (z- 2y)/z

with g'(z) = 1. Clearly, these last two cases are "border situations", resulting from

the distinction between cases, and will never be optimal.

On the other hand, if -a 1 /(2a 2) 0, the quadratic function is minimized at

some x0 > 0. Thus, g(x) is assumed to pass through (z, z - y) with a derivative

less than 1, and to have a minimum value of zero, attained on the interval [0, y].

From these conditions, the dual feasible function can be expressed as a function of a 2

only. Consequently, the dual objective function can also be expressed as the following
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function of a2: a 2 (a 2 + CA2 - 2A/z + z2 ) + 2Vx/ 'z-y( - z) + z - y. Minimizing the

dual objective over all nonnegative values of a2, such that the above conditions are

met, gives rise to the following cases. If z < (a2 + A2)/A, the minimum dual objective

value equals (a2 +IL2)(z_y)/z 2 , with xo = 0. If z2/2+py-zy > (a2+/p2)/2, the dual

objective value equals p - y + (a2 + ( - Z)2)/(4(z- y)), with g'(z = 1. Clearly, these

two cases are "border situations", resulting from the distinction between cases, and

will never be optimal. Finally, if z > (a2 + 2)/p and if z2/2 + puy - zy < (a2 + p2)/2,

the minimum dual objective value equals a2 (z - y)/(a 2 + ( - z) 2), attained when

4 = (Z-y)/ /(a2 + ( _ z)2).

Case 1 Summary. All border situations can be discarded from consideration, as

they arose from the separation between cases. Therefore, the optimal value of the

dual problem (1.5) is equal to:

z - y, if > z,

~(z- y) if / < z < 2+42,

2(- Y)~2+~_u? if 2+t(2 < z < + a 2+ (y - ~)2P- Y2 2 if 2+ < z, and y < +~,

(1/2)( - y) + (1/2)/a2 + ( y)2 if z > + V/aa + (y -y ) and y < 2t

The two candidate solutions obtained in Case 1.2 can be disregarded. In fact, they

are independent of z. Therefore, the regret associated with these solutions equals a

constant minus c(z - y). Maximizing the regret over all values of z will take z as small

as possible. Therefore, the regret associated with the last two solutions is dominated

by a2(z - y)/(a2 + (- z) 2).

Similarly, the solution z - y can also be discarded from consideration. The asso-

ciated regret, (p - c)(z - y) is increasing in z. Taking the largest z makes z - y equal

to /Z(Z - y).
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As a result, the maximum regret must be maximized between

(p- c)(z-y) if 2 < z < +2 ' 2,and

(Pa2+z2 - )(z - y) if z < y + 2 + (y - p) 2

The first term is a concave function of z, while the second term is concave-convex

with only one maximum on its interval.

Case 2: z < y.

The right hand sides of the constraints of the dual problem is piecewise linear de-

creasing. A dual feasible function is any quadratic function g(x) that, on the positive

orthant, is nonnegative, lies above the line x - z between z and y, and above the line

z - y after y.

If the quadratic term of the function is zero, the problem reduces to finding a

straight line, as in Theorem 1. Otherwise, in an optimal solution, either the parabola

is tangent to x - z at some point between z and y or it passes through the kink

point (z, 0). In the last two cases, its minimum value is z - y on the half line x > y.

Combining these possibilities gives rise to three different cases that we analyze next.

Case 2.1: g(x) is a straight line. Since the constraint right-hand side are de-

creasing, a horizontal line at zero is a candidate solution. The optimal dual objective

equals zero in this case.

Case 2.2: g(x) is tangent to x - z. In this case, the function can be expressed

as g(x) = a(x - b)2 + z - x, for some a > 0. The minimum of the function, denoted

by x0, is then equal to b + 1/(2a). Since g(xo) = z - y, b = y - 1/(4a). The dual

objective function can then be expressed as a function of a only, namely a(a2 + p 2) +

2a(1/(4a) - y)p + z - p + a(l/(4a) - y)2. When minimized over all nonnegative

a, the function attains its minimum at a = 1/(4/a 2 + (p y) 2 ) and is equal to

(1/2) V'a2 + ( - y)2 + (-y)/2+ z -p. The point of tangency between the quadratic
function and the constraint is equal to b = y - V/a2 + ( - y)2 is trivially less than
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y, as well as the minimum point x0 . It is greater than z if z < y - JA 2
+ ( - y) 2

.

Case 2.3: g(x) passes through (z, 0). Since g(x) must lie above the piecewise

linear function defined by the constraint, the derivative of g(x) at the kink point must

be greater than -1, i.e., 2a2z + al > -1. The minimum of the function, denoted by

x0, equals -1/(2a 2). Thus, g(x) is assumed to pass through (z, 0) with a derivative

greater than -1, and to have a minimum value of z- y, attained on the interval [y, oo).

From these conditions, the dual feasible function can be expressed as a function of a 2

only. Consequently, the dual objective function can also be expressed as the following

function of a2: a 2(02 + 2 - 2z + z2 ) + 2a 2 z - y(p - z). Minimizing the dual

objective over all nonnegative values of a 2, such that the above conditions are met,

gives rise to the following cases. If z > , the derivative of the objective function

with respect to a2 is always positive. The optimal solution is to take a 2 as small

as possible, i.e., a 2 = 0. In this case, the dual optimal solution is a horizontal line

at zero, similarly to Case 2.1. If z < t and 2(u - z)(z - y) < 2 + (A - z) 2, the

minimum objective is attained when u 2 = (- z) /-/( 2 + (t - z)2), and

equals (z-y)(t - z) 2/(u 2 + (z - z) 2). The other cases are "border situations", arising

from the distinction between cases in the analysis, and can be discarded from future

consideration.

Case 2 Summary. All border situations can be discarded from consideration, as

they arose from the separation between cases. Therefore, the optimal value of the

dual problem (1.5) is equal to:

0, if > z,

(z Y ' 2+(Z -/)2 if > > /o2 + (y- _) 2

(1/2 )(/ - y)+ (1/ 2)V/CO2 + (- _ )2 + z- if z < Y _ V/ 2 (y - p)2.

Optimizing the regret over z, it turns out that only the second solution is relevant, as

the derivative with respect to z of the first regret is always negative and that of the

third regret is always positive on its interval. Furthermore, one can show that the
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second regret function is concave on its interval of definition. Therefore, the optimal

regret is

(Z - At)2

max (Z - Y)(2 + -2 )}.
min{,y}>z>y- 2+(Z-y)2 

Equating both regrets gives rise to the theorem statement. D

Justification of Approximation 1

First, we bound from above the left-hand side of (1.8) with max(p 2+( ) - c)(x -

y) in which max{At, y} < x < y + /a 2 + (y - ) 2. This is indeed an upper bound,

since the function (px - c)(x - y) is the optimal value of the dual problem (1.5)-a

minimization problem-when x < (a2 + A2 )/A.

From the proof of Theorem 7, the maximum of the function (x - y)(pa 2 /(a2 +

(u - x) 2) - c) is the maximum regret from not ordering x, when x > y. In fact,

the worst-case demand distribution is a two-point distribution, with a probability

mass of a2/(a 2 + ( - x)2 ) at x, corresponding to the right-hand side of Chebyshev's

inequality (see, e.g., Bertsimas and Popescu 2005). By optimality of x, we have that

a2/(a 2 + (A - x) 2 ) > c/p. Solving the inequality for x gives rise to the following upper

bound on x: + a /(p- c)/p. From (1.8), At is a lower bound of x, when x > y.

Therefore, rather than maximizing the regret of ordering too little over all possible

values of x, we evaluate the function at the middle point x = p + (1/2)a(p - c)/c.

Similarly, the maximum of the function (x - )(po(- )2 - c) is the maximum

regret from ordering too much, when x < y. The worst-case demand distribution

is also a two-point distribution, with a probability mass of a2/(0a2 + ( _ x) 2) at x.

By optimality of x, we must have that (x - )2/(a2 + ( - x)2) < c/p. Solving the

inequality gives rise to the following lower bound of x: t - o/c/(p - c). From (1.8),

At is an upper bound of x, when x < y. Therefore, rather than maximizing the regret

of ordering too much over all possible values of x, we evaluate the function at the

middle point x = / - (1/2)ac/(p - c).

Equating both sides, and solving for y, we obtain (1.9).
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By construction, the approximation is not expected to be accurate when the max-

imizing term in the left-hand side of (1.8) is less than (a2 + p 2)/p, since the associated

function (p 2+()2- c)(x - y) is replaced with (x - y)(px/l - c). In particular, this

will happen when the upper bound on x, + (p - c)/p, is less than ( 2 + 2 )/,

i.e., when /p > /(p- -c)/p. Accordingly, the approximation is not expected to be

accurate for high coefficients of variation a/ or low profit margins p/c. [

Proof of Theorem 8

The minimization problem in (1.14) consists in minimizing a concave function (min-

imum of linear functions) over a polyhedron. Therefore, an optimal solution is an

extreme point of the polyhedron. Since F is integer, every extreme point of the poly-

hedron {6 0 < < 1, '6 < Fr different from zero has F coordinates equal to 1 and

M - r coordinates equal to zero. Since 6j can only take two values in an optimal

solution, the inner problem is equivalent to:

min p'min M,Y}(1 -3) + p'min{M - S,Y}6,

s.t. 1'6 <F,

0<6<1,

where M, S, and Y are diagonal matrices whose diagonals are equal to m, s, and y

respectively.

Associating a dual variable a with the budget constraint and vector of dual vari-

ables 3 with the upper bound constraint, the dual problem can be formulated as

follows:

max ar + ,'1 + p' min{y, m}

s.t. al + 3 < (min{M - S, Y} - min{M, Y})p,

a < O,3 < 0.

The dual problem is a maximization problem. Therefore, the maximin network
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RM problem (1.14) simplifies to the following maximization problem:

max aFr + ,1 + p' min{y, m}

s.t. Ay < b,

al + + min{M, Y}p < Yp,

al + p + min{M, Y}p < (M - S)p,

a <0,/3 O,y > 0.

Introducing the variable wj = min{yj ,mj} simplifies the problem to a linear

optimization problem. O

Proof of Lemma 1

(a) The minimax regret problem can be formulated as a moment bound problem,

with only one constraint per distribution, namely fjj P(x)dx = 1. By linear

programming theory, there exists an optimal solution which is an extreme point

of the polyhedron. Since there is only one constraint, an extreme point has only

one positive variable P(x), corresponding to a unit impulse distribution.

(b) If zJ > Ij (resp. zj < Ij), it is never optimal to have a demand dj > zj (resp. d >

Ij). Otherwise, dj could be reduced without diminishing the revenue associated

with zj but with potentially reducing the revenue associated with yj, leading to

a regret decrease.

(c) First, suppose that yj < ij. If zj > Ij, then dj = zj by (b), and the regret equals

to pj(zj - yj); if zj < Ij, dj = Ij and the regret might be positive or negative and

equals pj(zj - yj). Second, suppose that yj > Ij. If zj < Ij, then dj = Ij and the

regret is equal to pj(zj - Ij). On the other hand, if zj > Ij and zj < yj, d = zj

and the regret is zero. Finally, if zj > yj > Ij, dj = zj and the regret equals

pj(Zj - yj). O
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Proof of Theorem 9

Let 6, 56, and 57 the probabilities that the optimal booking limit Zj equals 0, j,

and uj respectively. Since any feasible value for Zj can be expressed as a convex

combination of these three points, + 6 + 6 + = 1, and these probabilities are

between 0 and 1. From Lemma 1, the regret equals pj(uj - yj) when z = uj,

pj max{0, Ij - yj} when zj = Ij, and -pj min{yj, lj} when zj = 0. Under Assumption

1, the objective function can also be expressed as a convex combination of these three

points. Accordingly, the regret maximization problem can be rewritten as

max p'(U - Y)" + p' max{O, L - Y}61- p' min{L, Y}6 °,

s.t. 6u + 6 + = 1,

A(Ub" + L6 l) < b,

6u, 61, 0 > O.

We associate a vector of dual variables r with the capacity constraints and a

vector of dual variables q with the constraints that probabilities sum up to unity. By

strong duality, the above problem is equivalent to the following dual problem:

min 7r'b + q'1

s.t. ir'AU + q' > p'(U - Y),

ir'AL + q' > p' max{O, L - Y},

q' > -p' max{Y, L),

1r > 0.

Plugging this inner problem into the general minimax regret problem, we obtain

the theorem statement. C
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A.2 Chapter 2

Lemma 4

Lemma 4. Fix F(y) = p. Then,

inf jF(x) =yp,

where D is the set of all IGFR distributions; the minimizing distribution is the fol-

lowing:

F(X) = { z -
if 0 < x < ypl/l,

if yP/I1 /l x < y.

=y 1/l + Wy/(l - ) - yW1/l/(1 - 1),

= oy,

when 1 tends to zero. The distribution has a constant generalized failure rate, equal

to 1, between yp1 /l and y, and is thus IGFR. fl

Lemma 5

Lemma 5. Fix F(y) = p and g(y) = k. Then, for x > y,

max F(x) = x-ky ,
FED

where D is the set of all IGFR distributions.

Proof. Expressing F(x) as an exponential function of its hazard rate (Barlow and
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Proschan 1965), we have the following

F(x) = exp(- h()d~),

= (y) exp(- j h(~)d),

< F(y) exp(- f( k/f)d),

= (Pykx- k

where the inequality comes from the IGFR property of F(x).

Lemma 6

Lemma 6. Fix F(yd) = W and g(yd) = k. Then

-cyc + pE[min{yc, D}] k r()l/k -

DEuD -cYd + pE[min{yd, D}] 1-k p-r (A.2)

where D is the set of IGFR distributions. The maximizing distribution is piecewise

Pareto with a breakpoint at yd:

(x) = { x- (yd)W,
xk(yd)kp,

for yd(f)l/l < X < yd,

for x > yd,

when tends to zero.

Proof. From integrating

both the numerator and

follows:

by parts, E[min{y, D}] = foy F(x)dx. Hence, after dividing

the denominator by p, the ratio of profits can be written as

-cyc + pE[min{yC, D}] -ryc + f"d F(x)dx + fyd F(x)dx
-cyd + pE[min{yd, D}] -ryd + fod F(x)dx

Since the ratio is greater than 1, it is maximized when fOd F(x)dx is the smallest.

From Lemma 4, fd F(x)dx > ydp(yd) = yd. Replacing 0fd F(x)dx with its lower
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bound gives rise to the following bound:

_ry + yd + yd + F(x)dx
_ryd + yd

The ratio is maximized when fYd F(x)dx is the largest. Using Lemma 5 gives rise

to the following inequality:

j F(x)dx < (yd)k xkdX,

(P yd_ 5 (yc( )k _ yd)
1-k yC

After replacing fyd F(x)dx by its upper bound, and dividing both sides of the

ratio by yd, one obtains the following bound:

-T + W + l_((y )lk _ 1)-r + 
The ratio is increasing with yc/yd. Using Lemma 5, r = F(yC) < ()ks. Thus,

the ratio is maximized when yc/yd = (/r)l/k, giving rise to the lemma statement. 

Proof of Theorem 10

The proof is based on Lemmas 4-6 in the appendix. Suppose yd is an interior solution

and satisfies (2.2), i.e., F(yd) = r/(1 - k), with k = g(yd). Replacing so with r/(1 - k)

in (A.2) simplifies the Price of Anarchy to:

-cyc + pE[minlyc, D}]
-cyd + pE[min{yd, D}] < (1 k) (1 k)

The right-hand side is an increasing function of k and attains its maximum when

k = 1 - r (since r/(1 - k) = F(yd) < 1), leading to the theorem statement. Notice

that, since p(yd) = 1 in the worst-case, yd is not in the interior but corresponds to

the lowest value of the support of the distribution. O
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On Remark 1

If r > r, the optimal inventory level in the integrated supply chain, yC, equals u. In

the decentralized supply chain, the manufacturer can induce the retailer to order 1 or

u. If she induces the retailer to order 1, she will offer a wholesale price p and obtain

a profit equal to (p - c)l. On the other hand, if she induces the retailer to order u,

the maximum wholesale price she can offer is rp, which would leave her with a profit

equal to (rp - c)u. If r < r + (1- r)l/u, she will choose a price p and induce an order

quantity 1. The ratio of expected profits for the entire supply chain is then equal to:

E[n(yC, D)] p(-ru + (1 - 7r)l) - cu
E[n(yd, D)] (p - c)l

The ratio increases with r and is maximized when r = r+(1-r)l/u. At its maximum,

the ratio equals 2 - 1/u. L[

Proof of Lemma 2

The proof is by induction, by moving upstream along the supply chain. With only

two stages, the lemma reduces to (2.2).

For the induction, assume that if the supply chain consists of i stages and has an

inbound cost w, the order quantity satisfies F(y)(1 - g(y))i-l > w/p. Consider now

the stage upstream of that supply chain, i.e., stage i + 1. With an inbound cost of

materials c, stage i + 1 will choose her transfer price w so as to maximize her profits,

anticipating the order quantity of the downstream stages, that is,

max (w - c)y,
wy

s.t. F(y)(l - g(y))i-1 > w/p.

Since the stage wants to maximize its profits, it will offer w = pF(y)(1 -I(y))i-,

and choose the induced level of inventory y to maximize (pF(y)(l - g(y))i-l - c)y.

Differentiating the profit function with respect to y, and using the fact that g(y) is

increasing (because of the IGFR property), we obtain that pF(y)(1 - g(y))i - c > 0,
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completing the induction step.

Proof of Theorem 11

The proof is based on Lemmas 4-6 in the appendix. The bound (A.2) in Lemma 6 is

decreasing with p. From Lemma 3, > r/(l-g(y))n- 1. Replacing Wp with r/(1-k)n - l

in (A.2), we obtain an increasing function of k, attaining its maximum when P(yd) =

1, i.e., when k = 1 - rl/(n - l ) . Notice that since the worst-case distribution is Pareto,

the inequality in Lemma 2 is tight in the worst case. C[

Proof of Theorem 12

The proof is based on Lemmas 4-6 in the appendix. In Lemma 6, the worst-case

distribution is such that fjYd F(x)dx - F(yd)yd. Thus, optimality condition (2.3)

simplifies to F(yd) = r(1 + k), where k = g(yd). Replacing so with r(1 + k) into upper

bound (A.2) simplifies the Price of Anarchy to ((1 + k)l/k - - k)/(1 - k), which is

decreasing with k and is maximized when k tends to zero. E[

Proof of Lemma 3

The proof is by induction, by moving downstream along the supply chain. With only

two stages, the claim holds at equality by (2.3).

For the induction, assume that, if the supply stage consists of i stages and has

a unit selling price w, the level of inventory in the supply chain satisfies F(y) >

(c/w)(1 + e(y))i-1. Consider now the stage downstream of the supply chain, i.e.,

stage i + 1. With a unit selling price p, stage i + 1 will choose a transfer price w

in order to maximize her profits, anticipating the level of inventory in the upstream

supply chain, that is,

max (p - w) foY F(x)dx,

s.t. F(y) > (1 + f(y))i-l.
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Since the stage wants to maximize its profits, it will offer w = c/F(y)(l +

e(y))i-l, and choose the induced level of inventory y to maximize (p - c/F(y)(1 +

£(y))i-l) f F(x)dx. Differentiating the profit function with respect to y, and us-

ing the fact that (y) is increasing (because of the IGFR property), we obtain that

pF(y) - c(1 + £(y))i > 0, completing the induction step. l

Proof of Theorem 13

The proof is based on Lemmas 4-6 in the appendix. The bound (A.2) in Lemma 6 is

decreasing with . From Lemma 3, p > r(1 + f(y))n-l. With the distribution that

attains the upper bound (A.2), fJyd F(x)dx - ydF(yd); accordingly, (y) g(yd)

Replacing Sp with r(1 + k)n-l in (A.2), we obtain a decreasing function of k, which is

maximized when k tends to 0. Since k - 0, the inequality in Lemma 3 is tight with

the worst-case distribution. l

Proof of Theorem 14

The proof is similar to the proof of Theorem 10. Using (2.4), we replace F with

r/(1 - kn) in (A.2) of Lemma 6. The resulting upper bound is increasing with k

and maximized when k = (1 - r)/n (since F(yd) = r/(1 - kn) < 1), leading to the

theorem statement. [l

Lemma 7

Lemma 7. If the demand distribution is IGFR, is twice differentiable, and is such

that f'(x)F(x)/(f(x)) 2 is increasing, the function

n -i= - (i)) _ F(x)dx,
where Yo = O, is concave in Yl, .. n
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Proof. Let us decompose the function as follows

Enp ) f F' F(x)dx = Ap F(x)dx- E F(x)dx.
i=1 F(yi ) -1 i=1 i=1

The first term is a concave function of Yn. A sufficient condition for the second term

to be concave is that each term fi F(x)dx/F(jy) is convex in Yi_ and Yi, as the

sum of convex functions is convex and the negative of a convex function is concave.

Since the distribution function is twice differentiable, the function is convex if and

only if the Hessian is positive semidefinite. Taking the second derivatives gives the

following Hessian:

f(i-1) _f(_ _)F(_ -j)
F(Vi) (F(V ))2[f(V)F(~-) F((9i) + fM F(z)dx (2 + 2 
(F(i))2 F(yi) +Y8F(~))s 

Using a similar proof as Lemma 1 in Cachon (2004), one can show that the quantity

f(x)/(F(x)) 2 f P(6)d is increasing in x if the demand distribution is IGFR. (The

original lemma was shown for the case a = 0.) Accordingly, the diagonal elements of

the Hessian are nonnegative.

To complete the proof, we need to show that the determinant of the Hessian is

nonnegative. It is equal to zero when yi- = yi. Suppose now that it is equal to zero

for some Yi-1 and let us show that the derivative with respect to yi-1 is negative. If

this is true, then the determinant is nonnegative.

The derivative of the determinant with respect to yi-l is equal to

| I_ (F(y ))3 + (F(i))4 
f'(Yi)f(Yi-1)F(Yi-1) f(Y)f'(Yi-1)

(F(i))3 (F(p,))2

If the determinant is equal to zero, then by rearranging terms,

Yi F(x)dx =-f(Y)f)) 2 (f(V)) 2

Yi- f'(i)(Yi-)F() + 2(Yi)((i))
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Replacing f~[_l F(x)dx with the above function simplifies the derivative of the

determinant to

f(F(cl) _) f'( -'(Yi)(Yi-)
(9 ))3 f (B,_ )F(.i) - f(yi)F(yi-1) 

which is nonpositive if f'(x)F(x)/(f(x)) 2 is nondecreasing, since Yi-l < Yi. [

Proof of Theorem 15

Lemma 4 showed that the distribution that minimizes f F(x)dx for fixed d and

pF(y), is Pareto with a generalized failure rate converging to zero. In this proof, we

generalize this result by considering a piecewise Pareto distribution, with breakpoints

at y,...,y . The generalized failure rates of all pieces, except the last one, tend to

zero, and the convergence to zero is faster for the pieces associated with lower values.

Since this distribution generalizes the result obtained in Lemma 4, it is clear that

foeI F(x)dx = YiF(i), for i 1, ..., n.

In addition, we will show by induction that with that distribution, F(id_) =

F(id)(1+g(qid_l)£i-2(1)) for i = 2, ..., n. With that result, F(dn) = r(l+g(nd)£n-l()).

Replacing p with r(1 + k£n- 1(1)) in upper bound (A.2) in Lemma 6 simplifies the

Price of Anarchy to a function of k only. The function is decreasing in k and attains

its maximum when k goes to zero. At the limit, the Price of Anarchy simplifies to

(e mains to show by induction that i-(1)) for i =

It remains to show by induction that F(YiU_,) = F(g' )(1 + g(Vid_1 )gi-2 (1)) for i =

2, ..., n with the proposed piecewise Pareto distribution. To simplify the exposition,

we remove the superscript d, as all quantities refer to the decentralized case.

Consider supplier 1. Let us fix F(yl) = p and g( 1y) = k. Using Lemma 4,

the distribution that minimizes fo" F(x)dx is Pareto with a generalized failure rate

converging to zero. With that distribution, f F(x)dx = Pyl, and the first-order

optimality condition for Yl simplifies to F(y1) = F( 2)(1 + k) = F( 2)(1 + kE°(1)).

Let us consider supplier i < n and fix F(yi) = p and g(yi) = k. By induction

hypothesis, the distribution between 0 and i-1 is piecewise Pareto, with breakpoints
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at yj, j :' i - 1; the generalized failure rates of all pieces, except the last one, tend to

zero, and the convergence to zero is faster on the pieces associated with lower values.

Accordingly, fo9' - ' F(x)dx = yi- 1F(yi- 1), with F(yi-1) = W(1 + g(yi_l)£i- 2 (1)).

Using Lemma 4, the distribution that minimizes fy 1'l F(x)dx when F(yi) = p,

is Pareto between yi-1 and pi with a generalized failure rate converging to zero, i.e.,

Fi(x) = (ix)p when 1 tends to zero. Thus,

= T _ i(11-i
= S _ (11-1

1-1

1-1- ( § ) ))_ (F(Yi-l) )- 1-l-)

- (1 + i-2(1))- ),

where the second equality follows from F(yi-1) = (i/Yi-)kp by construction, and

the next-to-last equality is derived from the induction hypothesis. Therefore

f' F(x)dx
i-1

= i-lF(yil) + 1 -- (1 (1))- ),

1s1 -1 _ W(+i-2())+ yi( - (1+/£i-2(1))-')

I - 1 i

by applying twice

I - 0.

the induction hypothesis. Therefore, foi F(x)dx tends to qyi as

On the other hand, the first-order condition for optimality simplifies to

F(y) - F(i+1) 1 + (F(y ))2 |_! F(x)dx)),

= F(Y+) +1 1 k (1-(1 + l£i-2(1))-YY))

= F(yi+l)(1 + _/(1 - - (1 + lEi-2(1)) (1 + li-2(1)))+(t1- 
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Taking the limit when 1 goes to zero simplifies the first-order condition to

F(yi) = F(yi+1) (1 + ki-(1))),

since limlo(1 + xl) (- 1 /l) = e - x , preserving the induction hypothesis for the next

supplier. E

Proof of Theorem 16

The proof follows the proof of Theorem 10. In Lemma 6, the worst-case distribution

is such that f(x) - 0 and F(x) -, F(yd), for x < yd. Accordingly, (2.5) reduces

to P(yd)( - g(yd)/n) = r. Replacing o with r/(1 - k/n) in upper bound (A.2), we

obtain an increasing function of k. Since F(yd) < 1, k < (1 - r)n. Replacing k with

its upper bound in the ratio gives rise to the theorem statement. El

Proof of Theorem 17

The proof is similar to the proof of Theorem 10. Using (2.6), we replace Wo with

r/(1 - k/n) in (A.2) of Lemma 6. The resulting upper bound is increasing with k

and maximized when k = (1 - r)n (since r/(1 - k/n) = F(yd) < 1), leading to the

theorem statement. C1

Proof of Theorem 18

The proof is similar to the proof of Theorem 12. In Lemma 6, the worst-case distri-

bution is such that f F(x)dx = F(yd)yd. Thus, optimality condition (2.7) simplifies

to F(yd) = r(l + nk), where k = g(yd). Replacing so with r(l + nk) into upper bound

(A.2) simplifies the Price of Anarchy to ((1 - kn) 1/k - (1 - kn))/(n(1 - k)), which is

decreasing with k and is then maximized when k -- 0. [
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A.3 Chapter 3

Existence of at most one shock in the case of a quadratic

fundamental diagram

Potentially, a shock could result from the focusing of two even forward waves, or two

even backward waves. We will impose a condition eliminating these cases. This will

imply that there is at most one shock on every road, occurring when forward waves

intersect backward waves.

Let us first consider two characteristic lines associated with forward waves, one

emanating from the origin 0, and the other emanating from some arbitrary location

y, with respective positive slopes defined according to Assumption 2. That is,

df (k(0, t)) v"max( - 2k(O, t)/kmax), and
dk

df (k(y, t)) = Vma( - 2(k(0, t) + B(O, t)y)/krmax).
dk

A shock occurs at the intersection of these two characteristic lines, at location

x = (k "" - 2k(0, t))/(2B(O, t)). Since the shock location is independent of y, we

conclude that all forward characteristic lines intersect each other at the same location.

Therefore, no local shock occurs if i > L, that is, if B(0, t) < (k max/2 - k(O, t))/L.

This is automatically satisfied if 0 < k(0, t) + B(0, t)L < kmax/2.

Similarly, for backwards moving waves, we consider two characteristic lines, one

emanating from the destination L, and the other emanating from some location 0 <

y < L. No local shock occurs if the shock location is below 0 (before the road

entrance), i.e., B(L,t) < (k(L,t) - kmax/2)/L. This is automatically satisfied if

k max/2 < k(L, t)- B(L, t)L < k "lmax. 

Proof of Theorem 19

The travel time to go from the road entrance to the shock location is u0 . On the

other hand, the vehicle's trajectory in the heavy traffic region is given by differen-
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tial equation (3.11). Solving the differential equation, together with the boundary

condition Tr(, to) = u0o and using a power series solution gives rise to (3.12).

This power series is guaranteed to converge as long as Assumption 4 holds. Indeed,

the ratio of two successive terms is bounded from above by

2B(L, to + O)krax(L -)
(kmax - k(L, to + 0) + B(L, to + 0)(L- + + (0- uo:)/wo))2 '

and the series converges if the ratio is bounded from above by 1.

If B(L, to + 0) > 0, an upper bound on the denominator of the ratio is (k m a x-

k(L, to + 0))2 since both L - x and 0 - u0 are positive, by assumption on 0. Hence,

the ratio is bounded from above by 1 if B(L, to + 0) < (kmax - k(L, to + 0))2/(2Lkmax),

which holds under Assumption 4.

If B(L, to + 0) < 0, the term (L - + ( - uo)/wo) is bounded from above by

(L - :)(k max/(kmax - k(L, to + 0))), by assumption on 0. Replacing B(L, to + 0) by

its lower bound (3.6) in the denominator, we obtain that the denominator is bounded

from below by (3/4(kcma x - k(L, to + 0))2. Hence, the above ratio is less than 1 if

-B(L, to + O) < 9/16(km ax - k(L, to + 0))2/(2Lkmax), which holds under Assumption

4. L]

Proof of Theorem 20

We obtain an ODE representing the instantaneous velocity of a vehicle in a similar

fashion as in the case of light traffic. However, the boundary condition is defined at

the shock location, (i, to) = , where Tr(x, to) is the time to reach the shock, using

(3.13). Using a power series solution to solve the differential equation, together with

the boundary condition, gives rise to (3.15). The ratio between two successive terms

in this power series is bounded from above by

2B(L, to + 0)(km ax + 2vmaxB(L, to + 0)(0 - 4f))(L -

(kma - k(L, to + O) + B(L, to + O)(L - r + vmax(0 - )))2 ,

and the series converges if this ratio is less than 1.
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If B(L, to + 0) > 0, the denominator of the ratio is bounded from above by

(k max - k(L, to + 0))2 since both L - x and - are positive, by assumption on 0.

Replacing B(L, to + 0) by its upper bound (3.6) in the numerator, we obtain that the

numerator is bounded from above by 2B(L, to + 0)(km ax + 1/2(k ma" - k(L, to + 0))) <

5/2B(L, to + 0)k ~" , since k(L, to + ) > kmax/2. Hence, the ratio is bounded by 1 if

B(L, to - 0) < 2/5(kma" - k(L, to + 0)) 2/(Lkma"), which holds under Assumption 4.

If B(L, to + 0) < 0, the term (L - + vma(9 - )) is bounded from above by (L-

i)(2kmax-k(L, to+O))/(kmx -k(L, to+O)), by assumption on 0. Replacing B(L, to+O)

by its lower bound (3.6) in the denominator, we obtain that the denominator is

bounded from below by ((km ax - k(L, to + 0))(1 - 1/4(2 - k(L, to + )/kmax)))2.

Since k(L, to + 0) < km a , the denominator is bounded from below by (3/4(k m"a -

k(L, to + O)))2. Hence, the ratio is less than 1 if -B(L, to+ 0) < 9/16(k max -k(L, to +

9)) 2/(2Lkmax), which holds under Assumption 4. C

Proof of Theorem 21

The shock locations (3.10) and (3.14) are continuous functions of A(O, to). Since both

travel-time functions in light traffic (xuo and (3.13)) are continuous functions of x

and k(0, t), and the travel-time functions (3.12) and (3.15) are continuous functions

of -, it follows that the travel-time functions are continuous. []

Proof of Theorem 22

Proving the (strict) monotonicity of a function is equivalent to showing that its Ja-

cobian matrix is positive semi-definite (positive definite) (see Nagurney 1993). The

(i, j)-th entry of the Jacobian is the derivative of the travel time of the ith period

with respect to the flow incoming in the jth period. In what follows, we consider

the derivatives of the travel times with the incoming densities, as there is a one-to-

one relation between the incoming flow and the incoming density (recall that, from

Assumption 3, we always have k(0, t) < k(fmax)).

In the remainder of the proof, we show that, if B(O, t) and B(L, t + ) are in the
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some intervals around zero, the Jacobian matrix is lower triangular, with nonnegative

diagonal entries. In particular, if the fundamental diagram is quadratic, all diagonal

entries are positive, and the Jacobian is positive definite. If the fundamental diagram

is triangular, some diagonal entries might be equal to zero, and the Jacobian matrix

is positive semidefinite.

Let us first consider the case without shocks. The free flow travel time consistent

with a triangular fundamental diagram is independent of flow. As a result, if there

is no shock in period i, the entire i-th row in the matrix is zero. On the other hand,

with a quadratic fundamental diagram, the travel time under light traffic depends on

the entering flow, both through k(O, t) and B(O, t). In the following, we assume that

B(O, t + y(t)) = (k(O, t) - k(O, t + y(t)))/L, with y(t) = L/(df (O, t)/dk) > O. (Simpler

results can be derived if B(0, t) is independent of the incoming flow.) The travel time

in period t + y(t) is a function of k(O, t) and k(O, t + y(t)); hence the travel time

depends only on past flows. Considering the first-order travel-time function (3.13),

the diagonal elements of the Jacobian matrix are of the form

dr(L, t) L(k max - (3/2)k(O, t))k m ax B(O, t)L2 (km ax + 2k(O, t))k m ax
dk(O, t) vma(kmax - k(O, t))3 2vmax(kmax - k(O, t))4

Therefore, if B(O,t) is in some interval [-Blo,, oo) around zero, dr(L,t) > 0. The

travel times in periods other than t and t + L/(df(O, t)/dk) are independent of k(O, t);

hence, their derivative with respect to k(O, t) is zero.

Let us now introduce shocks into the travel-time functions. Independently of the

shape of the fundamental diagram, the shock location for a vehicle departing at time

t, (3.10) and (3.14), decreases linearly with the flows that have started in periods

s < t and that have not left the road at t + 0, i.e., s + r(L, s) < t + 0, through

A(O, t) - D(L, t + 9).

In addition, one can show that the travel time with shocks is a decreasing function

of the shock location, if B(L, t + 9) is in some interval [-Bhigh, Bhigh] around zero.

In the case of a triangular fundamental diagram, the derivative of the first order
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travel-time function (3.12) with respect to the shock location,

d(L, t) -kmax wo(kmax - k(L, t + 0)) + B(L, t + 0)(9 - uoL)-(kma- k(L,t + ) + B(L,)t )(L + + ))2'

is negative if B(L, t +0) is in some interval [-Bhigh, Bhigh] around zero. If we multiply

the first term uo + wo by the denominator, we obtain a quadratic equation in terms

of B(L, t + 0), with positive and negative roots. Similarly, in the case of a quadratic

fundamental diagram, the travel time (3.15) is decreasing with the shock location ,

for some range of values of B(L, t + 0) around zero.

As a result, a flow increase in period s < t, with s + ,(L, s) < t + 0, will decrease

the shock location, and hence increase the travel time of a vehicle departing at time

t.

Thus, the proposed travel-time functions only depend on past flows. Moreover,

their derivative with respect to the current flow is positive in the case of a quadratic

fundamental diagram, and nonnegative in the case of a triangular fundamental dia-

gram. As a result, the Jacobian matrix is positive (semi-)definite. [

Proof of Theorem 23

Satisfying FIFO means that the derivative of the travel time with respect to time,

i.e., dr/dt is greater than or equal to -1. For the triangular fundamental diagram, the

free flow travel time does not depend on previous flows, and the travel-time function

is defined by (3.17). Because f(O, t)/f(L, t + ) > 0, the difference between T(L, t)

and T(L, t - 1) is greater than -1. The travel-time function in the case of a quadratic

fundamental diagram (3.15) is a polynomial of B(O, t), and so is dr/dk. Since FIFO

is satisfied when B(O, t) = 0, as (3.15) simplifies to (3.17), there is a range of values

around zero for B(O, t) for which the property is also satisfied. [
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