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Abstract
Human decision making is a topic of great interest to marketers, psychologists,
economists, and others. People are often modeled as rational utility maximizers with
unlimited mental resources. However, due to the structure of the environment as well
as cognitive limitations, people frequently use simplifying heuristics for making quick
yet accurate decisions. In this research, we apply discrete optimization to infer from
observed data if a person is behaving in way consistent with a choice heuristic (e.g.,
a noncompensatory lexicographic decision rule).

We analyze the computational complexity of several inference related problems,
showing that while some are easy due to possessing a greedoid language structure,
many are hard and likely do not have polynomial time solutions. For the hard prob-
lems we develop an exact dynamic programming algorithm that is robust and scalable
in practice, as well as analyze several local search heuristics.

We conduct an empirical study of SmartPhone preferences and find that the be-
havior of many respondents can be explained by lexicographic strategies. Further-
more, we find that lexicographic decision rules predict better on holdout data than
some standard compensatory models.

Finally, we look at a more general form of noncompensatory decision process in
the context of consideration set formation. Specifically, we analyze the computational
complexity of rule-based consideration set formation, develop solution techniques for
inferring rules given observed consideration data, and apply the techniques to a real
dataset.

Thesis Supervisor: James B. Orlin
Title: Edward Pennell Brooks Professor of Operations Research
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Chapter 1

Introduction

1.1 Motivation

One of humankind's most interesting characteristics is the ability to think about

thinking. When reflecting on thought processes, however, it is not always clear that

how we retrospectively perceive and describe them accurately matches up with the

mysterious emergent behavior of the brain (coupled with other physiological factors

such as emotions). Even analysis of a thought process that results in a tangible

outcome (e.g., choosing an option from a set of alternatives), is not always clear cut.

Nevertheless, there is great interest in studying decision making at the individual

level.

Psychologists approach decision making in a variety of ways, ranging from topics

like memory and cognition to framing, biases, etc. Economists are interested in

decision making since ultimately higher level system behavior and dynamics arise

from individual level consumer behavior. Insight into how people evaluate options

and make decisions can also be helpful for studying contracts, auctions, and other

forms of negotiation.

Computer scientists involved in constructing intelligent systems have often looked

to human decision making as an existing example that works well in practice. For ex-

ample, chess playing programs, while admittedly having an architecture significantly

different from human brains, often incorportate heuristics for making the search more
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intelligent. One such example is the "killer heuristic." If the computer discovers a

"killer" reply to one of the computer's possible moves (i.e., a reply that makes the

move unplayable), there is a good chance that it might also be a killer reply to other

moves and should be checked as the first reply to those as well.

Researchers in marketing science (and consumer behavior) have perhaps the keen-

est interest in learning how consumers choose between products. Knowing how con-

sumers evaluate products and product features can aid in product design and also

serve to focus and improve advertising. Ultimately, market researchers desire models

of decision making that have robust predictive ability.

1.2 Background

Decision making is an interesting field of study for several reasons. One is that nearly

everyone makes numerous decisions everyday-some weighty and some not, some

repeated, some only once. For some people, professional success directly depends

on making good decisions with high frequency, e.g., effectively managing a portfolio

of securities. The following anecdote illustrates an example of decision making in

today's modern world.

A certain graduate student was going to be attending a conference in a month

and needed to book a hotel and flight. The student's advisor, who would be financing

the trip, suggested that the student try not to travel too extravagantly if possible.

Armed with this objective, the student headed to the internet.

The conference was being held at a particular hotel that guaranteed a limited

number of rooms at a special group rate. However, one potential way to reduce cost

would be to find a cheaper hotel close by. Entering the address of the conference hotel

into Yahoo.com's yellow pages and searching for nearby hotels brought up a list of

about 10-15 hotels within 0.5 miles. This cutoff was chosen because the student felt

that half a mile was a reasonable distance to walk (and taxi costs would be avoided).

After pricing several of the alternatives (starting with brands that the student

recognized), many had exorbitant rates. A couple unknown hotels were found that
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appeared very reasonable with respect to price. However, when starting to book

a reservation through travel.yahoo.com, the student noticed very poor user ratings

(dirty, worst hotel ever, would never stay their again, etc.). At that point, the student

decided to restrict the search to hotels that had at least an average user rating of 3

or 4 stars. This drastically reduced the available options. The few hotels that were

within 0.5 miles and had acceptable ratings either had no rooms available or were

very expensive.

Faced with this dilemma, the student relaxed the distance preference. However,

the set of options was becoming complex. Ultimately, the student enlisted the help

of orbitz.com to find a list of hotels in the area that had vacancies and sorted the list

by price. An alternative materialized that had a decent rating, a decent price, and

was located within a mile or two from the conference. Success!

Several interesting observations can be made. First, the student looked at only

a small number of cues per alternative (distance, brand/chain, price, rating). Sec-

ond, no tradeoffs between cues/features were made at any point (e.g., figuring out

how much each tenth of a mile was worth). Third, the importance of cues changed

throughout the decision process. Some important questions arise. Was the final

decision optimal? Was the decision process even rational?

Theories about decision making are intimately tied to theories about rationality.

The following overview of unbounded and bounded rationality closely follows Gigeren-

zer and Todd [22]. Gigerenzer and Selten [21] and Chase et al [10] also provide good

historical overviews.

Unbounded Rationality. Models of unbounded rationality are reminiscent of

Pierre-Simon Laplace's idea that a superintelligence with complete knowledge of the

state of the universe at a particular instant would be able to predict the future (which

would be deterministic and certain). In a similar way, unbounded rationality does

not take into account constraints of time, knowledge (information), and computa-

tional ability. The models do account for uncertainty (unlike Laplace's vision), and

ultimately take the form of maximizing expected (subjective) utility. One way to

characterize unbounded rationality is that it focuses on optimization. The core as-

19



sumption is that people should and are able to make optimal decisions (in a subjective

utility sense). Thus, models of rationality have often been viewed as both descriptive

and prescriptive.

Proponents of unbounded rationality sometimes acknowledge human limitations

while arguing that the outcomes of decision processes are still consistent with un-

bounded rationality. That is, humans act as if unboundedly rational. Alternatively,

a modification known as optimization under constraints tries to incorporate limited

information search in an attempt to be more faithful to reality. In optimization under

constraints, information search is stopped once the cost of the next piece of informa-

tion outweights the benefits. However, adding the determination of optimal stopping

rules to the decision process can require even more calculation and information gath-

ering than plain unbounded rationality!

Bounded Rationality In the 1950s, Herbert Simon introduced the important no-

tion of bounded rationality ([59, 60]). In a later paper, Simon summarized the concept

well with the following metaphor: "Human rational behavior...is shaped by a scissors

whose two blades are the structure of task environments and the computational capa-

bilities of the actor" [61, p. 7]. From the perspective of bounded rationality, human

decision processes are viewed as shaped by both mental limitations and the structure

of the environment. Hallmarks include simple and limited information search as well

as simple decision rules. For example, Simon introduced the process of satisficing in

which a search is stopped once an alternative meets aspiration levels for all features.

Another term that Gigerenzer and others have used to represent the key ideas

of bounded rationality is ecological rationality. One reason for the relabeling is that

the term bounded rationality has often been misapplied, e.g., as a synonym for op-

timization under constraints. Furthermore, emphasis has often been placed on the

limitations aspect of bounded rationality instead of the structure of the tasks. The

reality is that simple heuristics and environmental structure can work together as a

viable alternative to optimization.

Gigerenzer et al [23] describe simple heuristics that are ecologically rational as

"fast and frugal" -fast because they do not require complex computations, and frugal
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because they do not require too much information. One class of fast and frugal

heuristics is one reason decision making (e.g., the "Take The Best" heuristic described

in Gigerenzer and Goldstien [20]). It circumvents the problem of having to combine

multiple cues, which requires converting them into a common currency. This is often

difficult if not impossible, e.g., trading off living closer to family versus having a more

prestigious job. Models that involve maximizing expected subjective utility require

that options/features be commensurate. Thus, fast and frugal heuristics are often

noncompensatory, while unbounded rationality models are often compensatory.

How can simple heuristics work. How can fast and frugal heuristics be so

simple and yet still work? There are a few reasons. One is that they are specific to

particular environments and exploit the structure. However, they are not too specific,

i.e., they still often have much fewer parameters than more complex models. For this

reason, they are less likely to overfit and are robust. Thus a nice side effect of being

simple is better generalization.

Many researchers (e.g., in the heuristics-and-biases camp) often judge the quality

of decisions by coherence criteria that derive from the laws of logic and probability.

For example, preferences are supposed to be consistent and transitive. These include

the standard assumptions on consumer preferences found in texts on discrete choice

or microeconomics (e.g., see Chapter 3 of Ben-Akiva and Lerman [2] or Chapter 3 of

Pindyck and Rubinfeld [53]). However, satisfying these normative characteristics does

not guarantee effectiveness in the real world. Instead, correspondence criteria relate

decision making strategies to performance in the external world. It turns out that

fast and frugal heuristics (though sometimes viewed as irrational due to coherence

criteria violations) are truly "rational" in an ecological sense when evaluated according

to correspondence criteria.

Czerlinski et al [12] provide a good deal of evidence that many naturally occur-

ing problems have a structure that can be exploited by fast and frugal heuristics.

Importantly. there are cases where heuristics outperform more complex models.

When are simple heuristics likely to be applied. Payne et al [52] explore

many factors that affect which decision strategies are used in different contexts. They
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fall into two broad categories: task effects and context effects. The use of noncom-

pensatory decision making can be influenced by task effects such as the number of

alternatives, the number of attributes, whether or not the decision maker is under

time pressure, whether the response mode is choice (choosing between alternatives)

or judgment (assigning values to alternatives), and how the information is displayed

(e.g., how many choices shown at one time). Decision making strategies can also

be affected by context effects (properties of the alternatives, attributes, choice sets,

etc.), e.g., similarity of alternatives, attribute ranges, correlation among attributes,

and framing effects.

Because which decision making strategy is used seems contingent on (and adapted

to) the structure of the particular task, Gigerenzer et al [23], Payne et al [52], and

others have introduced the metaphor of an adaptive toolbox. Choosing which heuristic

to apply from the toolbox can depend of the amount of information (e.g., using Take

The Last instead of Take The Best if no cue validities are available). Deciding which

tool to use can also be affected by the tradeoff between effort and accuracy.

There is substantial evidence that noncompensatory heuristics are used in situa-

tions like those described above (e.g., tasks with a large number of alternatives and

attributes). Examples include: Bettman et al [3]; Bettman and Park [4]; Brbder [9];

Einhorn [14]; Einhorn and Hogath [15]; Gigerenzer and Goldstein [20]; Hauser [28];

Hauser and Wernerfelt [30]; Johnson and Meyer [34]; Luce, Payne and Bettman [44];

Martignon and Hoffrage [45], Montgomery and Svenson [49]; Payne [51]; Payne et al

[52]; Roberts and Lattin [54]; Shugan [58]; and Urban and Hauser [68].

Consumer choice. Consumer choice is an area where the use of compensatory

models has become standard practice. Conjoint analysis is a marketing science tech-

nique for analyzing how people choose between options that vary along multiple

dimensions. It has been heavily used for over thirty years. Green et al [26] pro-

vide a thorough overview of the history of conjoint analysis, including data collection

options and estimation methods. Conjoint analysis has been a vital part of many

success stories in which accurately learning about consumer preferences was critical

for improved product design and ultimate financial success. For example, Wind et
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al [69] describe the design of the Courtyard by Marriott hotel chain-a project that

was a finalist for the 1988 Franz Edelman Award from INFORMS.

However, given the substantial and growing evidence for heuristic decision mak-

ing, it is important to address the mismatch between models and reality in marketing

science practice. Managerially speaking, detecting the use of choice heuristics can

affect advertising, product design, shelf display, etc. Due to the robustness of heuris-

tics explained above, incorporating noncompensatory heuristics into conjoint analysis

studies may also help increase the predictive ability for market simulators etc.

Inferring choice heuristics. In order to detect the use of choice heuristics,

researchers have used verbal process tracing or specialized information processing

environments (e.g., Mouselab or Eyegaze) to determine what process subjects used

during a task. Payne et al [52] provide a review of how researchers have studied how

consumers adapt or construct their decision processes during tasks.

Some software packages include steps in which respondents are asked to eliminate

unacceptable levels (e.g., Srinivasan and Wyner's Casemap [64] and Johnson's Adap-

tive Conjoint Analysis [36]). However, because asking respondents outright to identify

unacceptable levels (a form of screening rule) is sometimes problematic (Green et al

[25], Klein [38]), some researchers have tried to infer the elimination process as part

of the estimation (DeSarbo et al. [13], Gilbride and Allenby [24], Gensch [18], Gensch

and Soofi [19], Jedidi and Kohli [32], Jedidi et al [33], Kim [37], Roberts and Lattin

[54], and Swait [65]).

Br6der [9] uses statistical hypothesis tests to test for the Dawes equal weights

compensatory model and a lexicographic noncompensatory model (where partworths

have the form 1, 1, 4, etc.). Broder's approach is conceptually similar to ours in that

we are both interested in classifying subjects as compensatory or noncompensatory.

However, in the empirical tests reported in [9], it appears that the approach was

unable to classify a large portion of the respondents.

The approach closest to the proposed work is found in Kohli and Jedidi [39]. They

analyze several lexicographic strategies and suggest a greedy heuristic for optimizing

an otherwise hard integer programming problem. Our approach differs in several
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ways, including data collection, algorithms, and focus, although it appears that both

research teams hit on a similar development in parallel.

1.3 Contribution and outline

We attempt to alleviate the mismatch between theory and practice in conjoint analysis

by providing a direct (and unobtrusive) way of estimating noncompensatory decision

processes from data. The following outline highlights the main contributions of the

thesis.

Chapter 2 We introduce several new lexicographic models for decision making. We

also propose a constrained compensatory model that can aid in detecting (or

ruling out) a truly compensatory process. We perform a simulation study to

show that the constrained model has sufficient discriminatory ability.

Chapter 3 We propose several problems related to lexicographic (noncompensatory)

inference and analyze their computational complexity. In particular, we show

that some are easy due to possessing a greedoid language structure, while some

are sufficiently hard that they admit no constant factor approximation scheme

unless an unlikely condition holds.

Chapter 4 We construct exact greedy algorithms for the easy problems of Chapter

3. For the hard problems, we exploit some additional structure to formulate a

dynamic programming recursion. While still having exponentially worst case

runtime complexity, the dynamic programming algorithm is enhanced to per-

form very well in practice. Additionally, several local search heuristics are de-

veloped and analyzed. Numerical experiments explore the performance of the

heuristics and the DP algorithm on the core lexicographic inference problem.

Chapter 5 We conduct an empirical study of SmartPhone preferences as a test of

the effectiveness of the algorithms developed in Chapter 4, as well as exploring

various behavioral questions. We find that a large portion of the respondents
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behaved in a way consistent with lexicographic decision processes. In addition,

the lexicographic strategies had better predictive ability on holdouts than two

other benchmark compensatory models. We also analyze a dataset of computer

preferences generously provided by another group of researchers and again find

that the behavior of a significant portion of individuals can be explained by

lexicographic models.

Chapter 6 Finally, we generalize lexicography and apply it to consideration set for-

nlation by allowing rules (logical expressions over features) for acceptance or

rejection. We show that the problem of estimating rule sets given data is NP-

hard. We develop an algorithm that can find the best rule sets of varying

complexities using integer programming. We then apply the technique to the

SmartPhone dataset and find that rule-based models for consideration predict

as well or better than pure lexicographic or compensatory based approaches.

Using the techniques developed in this thesis, a researcher performing a study

can perform indivual level estimation of lexicographic processes from observed data.

Then, coupled with a standard compensatory analysis (possibly with constrained

compensatory), the researcher can analyze to what extent noncompensatory processes

were being used for the decision task and can segment the sample accordingly. This

extra dimension of analysis can then aid in future product development, advertising,

etc.
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Chapter 2

Decision Making Models

In this chapter, we present several noncompensatory decision processes in the lexi-

cographic family. We propose a constrained compensatory model to be used as an

aid for gauging whether or not a process is truly compensatory. Finally, we test the

ability of the constrained formulation to help rule out compensatory models.

2.1 Notation

Following Tversky [67], we use the term aspect to refer to a binary feature, e.g., "big"

or "has-optical-zoom". We will typically denote aspects using lower case letters such

as a, b, c, or subscripted as, e.g., al, a2, a 3. The set of all aspects will sometimes be

denoted by A. Note that k-level features, e.g., low, medium, and high price, can be

coded as k individual aspects: "low-price", "medium-price", and "high-price".

We use the term profile to refer to a set of aspects, representing a particular

product (or other) configuration. For example, a digital camera profile might be

{low-price, small, has-optical-zoom, 1-megapixel}.

Profiles will typically be denoted as Pi, with the set of all profiles being P. An aspect

a is said to differentiate two profiles Pi and Pj if and only if a is contained in exactly

one of the profiles.
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Given a set of profiles, preferences can be elicited from a subject in several ways.

Profiles can be rank ordered. The subject can select a subset for consideration and

subsequently rank order only those selected for serious consideration. In a choice-

based conjoint analysis setting, the subject is presented with a series of small sets

of profiles and asked which one is most preferred in each. In a metric setting, the

subject is asked to provide a rating for each profile, say from 1 to 100.

In all cases, a set of paired comparisons can be generated,

= (i P): Pi Pj).

Here, Pi >- Pj means that Pi is preferred to Pj. We use the notation Pi F Pj to

indicate that neither Pi s Pj nor Pj >- Pi. We will also occasionally add subscripts to

the preference and indifference symbols to make it clear where the preferences came

from (if necessary), e.g., Pi >-n Pj. If the preference relation on profiles is reflexive,

antisymmetric, and transitive, it can be viewed as a partial order on the profiles,

which we will denote by X. In the case of rank order data, we actually have a total

(linear) order over the profiles.

An aspect order is an ordered set of aspects and will typically be denoted by a.

The following is some notation for identifying key characteristics and features of an

aspect order.

I,(a): position (or index) of aspect a in l

a(i): aspect in position i

a (k): left subword of a of length k

= (a(1), a(2),..., a(k)), i.e., the left subset of ac of length k

The following definitions relate to special sets of aspects or refer to special aspects:

A > (P, Pj) : set of aspects that are in Pi but not in P

= {a E A: a Pi,a a Pj}

A<(Pi, Pj) : set of aspects that are not in Pi but are in Pj

= {a E A: a i Pi, a E Pj}
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A°(Pi. Pj) : set of aspects that do not differentate Pi and Pj

= A\ (A (Pi, Pj) U A(Pi, Pj))

f, (Pi, Pj) : first (leftmost) aspect in ac that differentiates P and Pj

= arg minaEA (P ,Pj)UA< (pi,pj) Ia(a)

Given an aspect order, the lexicographic preference relation over profiles is given

by >-. In this relation,

That is, Pi is lexicographically preferred to Pj if and only

differentiates Pi and Pj is contained in Pi.

if the first aspect that

Note that using a lexicographic decision rule to make decisions between profiles

is fast because there are no computations involved (besides noting the presence or

absence of aspects). It is also frugal because once a differentiating aspect has been

found, no subsequent aspects from the aspect order need to be considered. The

process is noncompensatory because the final decision (i.e., which profile is preferred)

depends solely on the most important differentiating aspect-the presence of less

important aspects can never compensate for the absence of a more important aspect.

The following sets and functions relating X and >-a will be helpful in later analysis.

X + : set of all

= {(Pi, P)

= {(Pi, Pj)

X- : set of all

= {(PiP)

= {( Pi. j)

pairs in X that are differentiated correctly by a

E X: Pi Pj}

E x: f(P, Pj) E A>(Pi, Pj))

pairs in X that are differentiated incorrectly by c

E X: P h, Pi}

E X: f (Pi, Pj) E AI (Pi, Pj)}

X : set, of all pairs in X that are not differentiated by a

= X \ (X+ U X,)
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Ex(a) : number of errors/violations caused by ac

= (P, Pj) . x: Pi 0 Pj)}

nM (a) : number of (new) errors/violations caused by the last aspect in a

= (Pi, Pj) E X: a(k-) n AO(Pi, Pj) = 0 and oa(k) E A-(Pi, P)}

M+l(a) : number of (new) correct differentiations caused by

= I{(P, Pj) E X: a(k - l) n A(Pi, Pj) = 0 and a(k) E

Finally,

and data.

the last aspect in a

A-(Pi, Pj)}l

we define the term lexico-consistent with respect to both aspect orders

Definition 1 We say that an aspect order a is lexico-consistent

on profiles X if Ex (a) = 0.

with a partial order

Definition 2 We say that a partial order on profiles X is lexico-consistent if there

exists an aspect order a such that Ex(a) = 0.

2.2 Lexicographic Models

In the previous section, it was implicitly assumed that the presence of an aspect was

considered "good". Following Tversky's nomenclature in [67], we call a decision pro-

cess based on the lexicographic preference relation -, acceptance-by-aspects (ABA).

For example, suppose we have a product category with 5 features-one four-level

feature, one three-level feature, and three two level (binary) features.

al, a2 , a 3 , a4 , bl, b2, b3 , c, d, e

Then a possible ABA strategy is

cAAl- = (a, a4, b3, d, e, c, a2 , b2, bl, a3)

However, it is not always clear whether inclusion or exclusion of an aspect is
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preferred. Thus it will sometimes be necessary to refer to the orientation of an

aspect. If the opposite (or absence) of aspect a is preferred, the subject will be said

to prefer -a (or reject a).

ABA is intimately connected to the deteriministic version of Tversky's elimination-

by-aspects (EBA). In EBA, all profiles that contain the most important aspect a(1)

are eliminated. Next, all profiles containing the secondmost important aspect a(2)

are eliminated, and so on until only one profile remains. This is equivalent to an

ABA process where a contains negated versions of each aspect (though in the same

positions):

aEBA = (al, a4, b3, d, e, c, a2, b2, bl, a3)

X IABA = (-al, -a 4 , -b 3, -d, -e, -c, -a2, -b2, -bl, -a3)

Alternatively, EBA can be viewed as ABA with aspects recoded to their opposite

orientations (e.g., change aspect "big" to "small").

We generalize ABA and EBA to allow the mixing of acceptance and rejection

rules, which we refer to as lexicographic-by-aspects (LBA). In this case, any aspect

can occur in either the accept or reject orientation, e.g.,

aLBA = (al, a4, b3, -d, e, c, a2,-b2, bl, a3)

We say an aspect order is implementing a lexicographic-by-feature (LBF) decision

process if the aspects corresponding to each multi-level feature are grouped together.

This is equivalent to first ranking the features according to importance and then

ranking the levels within each feature, e.g.,

CYLBF = (b3 , bl, b2 , C, e, a, a. 2, a, d)

Finally, notice that when all features are binary. ABA, EBA, LBA, and LBF

are all equivalent (assuming we always allow recoding of binary features since their

orientation is arbitrary). On the other hand, when there are one or more multi-level
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features, the models are not strictly equivalent. For example, the EBA strategy

CEBA = ($high, green, small, $medium, red, blue, $low)

has no exact ABA counterpart. If we allowed unions of aspects (see Section 3.2.4),

an equivalent ABA model would be

(aABA = ($low or $medium, red or blue, big, $low, blue, green, $high)

2.3 Compensatory and Constrained Compensatory

Models

In a linear compensatory model (also known as Franklin's rule or a weighted additive

model), there are partworths or weights wi associated with each aspect a, with

Pi Pj X= E Wi > E Wi.
aEPi aEPj

As Martignon and Hoffrage [45] show, compensatory models include lexicographic

(noncompensatory) models as a special case. For a given aspect order ce, any set of

weights satisfying
n

Wa(i) > E wa(j), i (2.1)
j=i+l

will result in the same preference relation as >-,. For example, this property is satisfied

by setting

Wa(i) = 21-i .

In order to determine whether or not these extreme lexicographic weights are nec-

essary to fit a given respondent or not, we would like the ability to exclude partworth
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vectors that are consistent with (2.1). A set of constraints such as

W < Ei1 iWi

W2 < if 2 Wi

W < i0n Wi

would prevent partworth vectors from satisfying (2.1). However, even though a single

aspect would be prevented from dominating the rest, the rest of the aspects could have

a perfectly lexicographic substructure. It is not clear how to prevent lexicographic

substructures with a polynomial number of linear constraints. Thus we propose an

alternative approach.

The form of our constraints is motivated by behavioral researchers who have

sought to identify whether compensatory or noncompensatory models fit or predict

observed choices better. For example, Broder [9] requires that wi = wj for all i, j.

We generalize Br6der's constraint by defining a set of partworths as q-compensatory

if wi < qwj for all i Z j. With this definition, we can example a continuum between

Dawes' model as tested by Br6der (q = 1) and the unrestricted additive benchmark

(q = oc) that nests lexicographic models.

It is interesting to note that Dawes' Rule (wi = 1 for all i) can be considered to

be both the most compensatory weighted additive model and a simplifying heuristic.

Because of the special nature of the weights, simple counting can be used for deter-

mining the overall utility of a profile versus computing a weighted sum in the general

compensatory case (which requires multiplication and addition operations).

Monte Carlo Simulation. The q-compensatory constraints can be incorporated

into most existing compensatory partworth estimation techniques. For example, LIN-

MAP (Srinivasan and Shocker [63] and Srinivasan [62]) uses a linear program to find

partworths that optimize an objective function related to the set of paired conm-

parisons. Analytic center methods (Toubia et al [66]) find the analytic center of a

particular polyhedron (which is defined by linear constraints). Hierarchical Bayes

(HB) techniques (e.g., Rossi and Allenby [56]) uses a hierarchy of probability distri-
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butions so that population data can inform and improve individual level estimation.

The sampling (random draws) over partworth distributions can be restricted to the

q-compensatory constrained region.

For simplicity of exposition, we report Monte Carlo results for LINMAP and for

rank-order data only. We obtain qualitatively similar results for consider-then-rank

synthetic data. For these tests, we use the 32 x 16 SmartPhone experimental design

that will be described in Chapter 5.

For our generating model, we modify a functional form proposed by Einhorn [14].

We first define a set of generating weights, w, = 2 1-n for n = 1 to N. We then select

each synthetic respondent c's true partworths as follows: Wnc = (n)m = 2 (1-n)

for the nth smallest partworth. Following Einhorn, m = 0 implies Dawes' model

and m = 1 implies a minimally lexicographic model. (By minimally lexicographic,

we mean that the model may not be lexicographic in the presence of measurement

error.) Setting 0 < m < 1 generates a q-compensatory model. By setting m = 0, 1/15,

2/15, 4/15, 8/15, and 16/15 we generate a range of models that are successively less

compensatory. (For 16 aspects, the smallest partworth is 2-15. Setting the largest m

to 16/15 makes the last model less sensitive to measurement error.) We then generate

1, 000 synthetic respondents for each m as follows where ujc is respondent c's true

utility for profile j.

1. For each m, generate W, normalize so wnc's sum to 1.0.

2. For each c, add error to each true profile utility: uijc = ujc + ej, where j 

N(0, e) and e = 0.2, 0.4.

3. Given {Ukc}, generate a rank order of 32 cards for respondent c. Repeat for all

m.

For each respondent, we use estimate an LBA aspect order (using algorithms

developed in Chapter 4) and use LINMAP(q) to estimate q-compensatory partworths.

Both aspect orders and estimated partworths imply a rank order of the 32 profiles.

The comparison statistic is the percent of ordered pairs of profiles predicted from
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Figure 2-1: Results of the Monte Carlo Experiments

the estimated model that are consistent with the true model. The results are shown

in Figure 2-1. For ease of interpretation and comparison with the q-compensatory

constraints, we label the horizontal axis with the ratio of the largest to the smallest

partworth. For example, m = 2/15 implies a ratio of 4: 1.

Compare first the highly constrained compensatory model, LINMAP(2), to LBA.

As expected, the compensatory model predicts better than LBA when respondents

are truly compensatory and LBA predicts better than LINMAP(2) when respondents

are truly lexicographic. Furthermore, there is a smooth movement from LINMAP(2)

to LINMAP(co) as q increases. This is also true for q = 1, 8 and 16 (not shown for

simplicity). For this particular simulation with homogeneous respondents, constraints

help significantly for low m. The unconstrained compensatory model, LINMAP(oo)

may overfit the data for low m. We expect this to be mitigated with heterogeneous

respondents as will be seen in the SmartPhone and computer empirical studies in

Chapter 5. Finally, we see that q = 4 is a reasonable discriminator vs. LBA because

the two curves cross for m in a moderate range.
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Chapter 3

Complexity Analysis

In this chapter, we introduce several problems related to noncompensatory inference.

We analyze the computational complexity of each problem, showing whether they

belong to the class of problems that can be solved with polynomial-time algorithms

or belong to more difficult classes. Several problems are shown to be easy by proving

that they have a greedoid language structure. Other problems are shown to be hard

and, furthermore, hard to approximate.

3.1 NP-Completeness and Approximation

Computational Complexity. For proving properties about the hardness of var-

ious problems, we rely on the theory of computational complexity. In the 1970s,

researchers began developing the theory of NP-completeness and studying other prop-

erties of complexity classes, i.e., classes of problems with the same level of difficulty.

Garey and Johnson [17] is the standard text on NP-completeness.

Problems in class P can be solved with polynomial-time algorithms. Problems in

class NP have the property that a solution can be verified in polynomial time (e.g.,

checking whether a given traveling salesman tour has length less than k). Finally,

a problem is in the class NP-complete if it is in NP and also has the property that

any other problem in NP can be transformed to it with a polynomial-time trans-

formation. Examples of problems that are NP-complete include VERTEX COVER,
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SATISFIABILITY, and the TRAVELING SALESMAN PROBLEM. The class NP-

complete contains essentially the "hardest" problems in NP (since any algorithm for a

NP-complete problem can be applied (after transformation) to any other problem in

NP). Specifically, if a polynomial-time algorithm were discovered for an NP-complete

problem, it would imply that P = NP and all problems in NP would be polynomially

(efficiently) solvable.

The initial framework for studying computational complexity was based in logic,

and the problems were all cast as decision problems (i.e., problems that asked a yes/no

question). Thus, instead of asking what the smallest (minimum size) vertex cover is,

it is asked if there exists a vertex cover of size less than or equal to k.

Subsequent work has extended and applied complexity analysis more directly to

optimization problems (see Ausiello et al [1]). Additionally, even though the class

NP-complete contains many hundreds of equally hard problems in the decision sense,

not all problems are equally hard when it comes to approximability. For example,

certain problems admit approximation schemes that guarantee a solution within a

factor r of optimality, while others do not. The problems that do have constant-factor

approximation algorithms belong to the class APX. Thus, even after showing that an

optimization problem is NP-hard (i.e., that all problems in NP can be transformed to

it in polynomial time, though the problem itself is not necessarily in NP), it is often

useful to determine how difficult it is to approximate it.

3.2 Easy Problems

3.2.1 Greedoid languages

Greedoids are mathematical objects initially developed by Korte and Lovasz [40] to

study conditions under which a greedy algorithm can solve optimization problems.

They have proven useful in sequencing and allocation problems (e.g., Niiio-Mora

[50]). Bjorner and Ziegler [5] and Korte et al [41] are excellent references that provide

numerous examples of greedoids. We believe that this is the first application of
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greedoids to marketing science.

Greedoids are a class of set systems that possess certain properties. (Any matroid,

a perhaps more widely known object, is also a greedoid.) It can be shown that

greedoids have an equivalent language representation. The language form given in

Definition 3 is more appropriate for our application.

Definition 3 A greedoid language (E, L) is an alphabet E and a language L such

that

(G1) If a E L and a = y, then E L.

(G2) If ac,,3 E L and lol > IPI, then there exists an x E a such that ox E L.

Property (GI) means that if a word is in the language, then any left subword must

also be in the language. Property (G2) states that if two words are in the language,

then there exists some letter from the larger word that can be right appended to the

shorter word to make a new word in the language.

Greedoids (and greedoid languages) are important since for a certain class of

compatible objective functions (see Definition 4), the greedy algorithm is guaranteed

to return optimal solutions.

Definition 4 (from Boyd [7]) An objective function W is compatible with a language

L if the following conditions hold: If oax E L and W(ax) > W(ay) for all y such that

ay E L (i.e., x is the best choice at a) then

(a) a3x-y L, a3zy E L ==z W(a3xy) > W(aPz.y)

(x is best at every later stage)

(b) ax/3zy E L, azi3xy E L > W(ax,dz'y) > W(azoxy)

(x before z is always better than z before x)

For several problems in this chapter, we will be interested in finding the longest

word in the greedoid language. Lemma 1 shows that this objective function is com-

patible.
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Lemma 1 The objective function W(a) = lor is compatible with any language L.

Proof. Property (a). Suppose a/3zy E L, acozy E L. Then

W(&zy) = adxzl = lazyl = W(aozy).

Property(b). Suppose ax/pz"y E L, az/3xy E L. Then

W(axzxy) = laxz-yl = az/xyl = W(azpxy).

Thus W is a compatible objective function. ]

3.2.2 Is there an aspect order that is lexico-consistent with

the data?

Here we define the problem LEX CONSISTENCY in the style of Garey and Johnson

[17] by giving the objects that make up an instance along with the decision question.

For the optimization problems that appear later in this section, we follow the style

of Ausiello et al [1] by giving the form of the instance, the form of a feasible solution,

and the measure (over feasible solutions) to be optimized.

The first problem we consider is one of the two core noncompensatory inference

problems. Given data, e.g., a set of pairs of profiles Q or a partial order on the

profiles X, we are interested in determining if there exists an aspect order that is

lexico-consistent with the data, i.e., that induces no errors with respect to the data.

We first show that this problem has a special greedoid language structure, and then

show that the problem is in complexity class P.
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LEX CONSISTENCY

INSTANCE : Set of aspects A, set of profiles P, partial order

on profiles X

QUESTION: Is there an aspect order a such that Ex(a) = O?
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Theorem 1 Let X be a partial order on the profiles P, and let G be the collection

of all aspect orders that are consistent with X. Then G is a greedoid language.

Proof. Property (G1). Suppose a = /3Y E G. Consider any (Pi, Pj) E X and let

X = f,(Pi, I') be the first aspect in a (if any) that differentiates Pi and Pj. If x E /,

then f(Pi, Pj) = x and Pi >-3 Pj. If x /3, then f(Pi, Pj) = 0 (by definition of x)

and is consistent with P -x Pj.

Property (G2). Suppose a, ,3 E G with Ia > /131. Let x E a be the first aspect

from a that is not also in , i.e.,

x = arg min I,(a),

and consider the new word Ox. For any (Pi, Pj) C X, there are two cases to consider.

(1) If either Pi >-p Pj or both Pi tp Pj and x A-(Pi, Pj), then Ox is consistent

with Pi >-x Pj. (2) Suppose that Pi ad Pj, and, for the sake of contradiction, that

:r e A-(Pi, Pj). This implies that f(Pi, Pj) -~ x (since ac E G), and there exists an

aspect x' c a such that f,(Pi, Pj) = x' and I,(x') < I,(x). By the definition of x,

x E /3, which contradicts fx(Pi, Pj) = x. Thus x V A-(Pi, Pj) and x is consistent

with Pi >-x Pj. El

Corollary 1 LEX CONSISTENCY is in P.

Proof. Since G is a greedoid language and W(a) = Ja( is compatible, the greedy

algorithm (which has polynomial running time) can be used to find the longest word

in G. The partial order X is lexico-consistent if and only if the maximum word length

returned by the greedy algorithm is n. Thus, we can determine if X is lexico-consistent

in polynomial time. El

3.2.3 Is there an aspect order such that each aspect intro-

duces at most k new errors?

The previous section considered whether there existed an aspect order that was per-

fectly lexico-consistent with the data. Here we relax the objective. Instead of desiring
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an aspect order where each aspect introduces zero new errors, we consider aspect or-

ders where each aspect is permitted to cause up to k errors.

We first show that the problem has a greedoid language structure, and then show

that the problem is in class P.

Theorem 2 Let X be a partial order on the profiles, and let G be the collection of

all aspect orders such that each aspect introduces at most k (new) errors with respect

to X. Then G is a greedoid language.

Proof. Property (G1). Suppose a = /3y E

Mx (a(i)) < k, for i = 1,..., n. Since p = a(i)

Mx(a(i)), for i = 1,... ,j, showing that P E G.

Property (G2). Suppose a,3 E G and Icle

from a that is not also in f3, i.e.,

G. By the definition of G, we have

for some j < n, we have Mx(P(i) =

> 131. Let x E a be the first aspect

x = arg min I (a),
aEa\/3

and consider the new word 3x. We will show that Mx(fx) < k. Let a' = a (I (x) ),

i.e., the left subword of a up to and including x. For all (Pi, P) E X such that

either Pi >-: Pj or both Pi ad Pj and x ¢ A-(Pi, Pj), the relation Pi >-x Pj is not

violated and so does not contribute to Allx(/3x). Suppose instead that Pi >-x Pj while

P : Pj and x E A-(P, Pj). By the definition of x, we have

fox(Pi, Pj) = f, (Pi, Pj) = x.
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BOUNDED ERRORS PER ASPECT

INSTANCE: Set of aspects A, set of profiles P, partial order

on profiles X, scalar k

QUESTION: Is there an aspect order a such that MIx(a(i)) < k

for all i?



(If there was an x' \ f3 with smaller index than x that also differentiated Pi

and Pj, it would have been chosen instead of x.) This means that Pj -, Pj since

x C A-(Pi, Pj). VWe have shown that if 3x violates Pi -x Pj, then a' also violates

Pi -x Pj. Thus, Mix(x) < MAx(a') < k. o

Corollary 2 BOUNDED ERRORS PER ASPECT is in P.

Proof. Since G is a greedoid language and W(a) = lal is compatible, the greedy

algorithm (which has polynomial running time) can be used to find the longest word

in G. There exists an aspect order such that each aspect introduces at most k new

errors if and only if the maximum word length returned by the greedy algorithm is

n, which can be determined in polynomial time. ]

3.2.4 Adding unions and intersections of aspects

In regression and other methods that involve modeling with independent (or pre-

dictor) variables, it is often necessary and/or advantageous to include interactions

between variables or other nonlinear derived terms. Here we consider adding derived

aspects that are formed from unions and intersections over all pairs of aspects.

For example, if the original set of aspects included { small, medium, large }

and { red, blue, green }, then possible derived aspects would include small-and-red,

medium-or-green, and blue-or-green. We show that exanding the set of aspects in

this way does not affect the greedoid structure with respect to lexico-consistency.

Theorem 3 Let A be a set of aspects, P be a set of profiles, and X be a partial

order on the profiles P. Let A' = A U {aiuj} U {ainj}, i.e., the original aspects plus

all possible unions and intersections of two aspects, and let G be the collection of all

aspect orders over A' that are consistent with X. Then G is a greedoid language.

Proof. This follows immediately from Theorem 1. Replacing aspect set A with A'

does not change the structure of the problem. O
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3.3 Hard Problems

In this section, we consider problems that are not in class P (unless P = NP). In

many of the proofs, we will reduce the problems to MIN SET COVER, a canonical

problem in approximation.

MIN SET COVER

INSTANCE: Collection C of subsets of a finite set S.

SOLUTION: A set cover for S, i.e., a subset C' C C such that

every element in S belongs to at least on member

of C'

MEASURE: Cardinality of the set cover, i.e., C'I.

3.3.1 Minimum number of errors

Suppose we know that there is no aspect order lexico-consistent with the data. In that

case, we might still be interested in the aspect order that induces the least number

of errors with respect to the data, i.e., that fits it best. We refer to this problem as

MIN LEX ERRORS.

Unlike LEX CONSISTENCY, MIN LEX ERRORS is not in P (unless P = NP).

Schmitt and Martignon [57] show that the decision version of this problem is NP-

complete with a reduction from VERTEX COVER. Here we strengthen their result

by showing that not only is MIN LEX ERRORS NP-hard, but it is AP-reducible to

MIN SET COVER. The following result is known for MIN SET COVER.
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MIN LEX ERRORS

INSTANCE : Set of aspects A, a set of profiles P, and a set of

pairs X C P x P.

SOLUTION : Aspect order a such that lJol = IAI.

MEASURE: Ex(a)



Theorem 4 (Feige [16]) MIN SET COVER is not approximable within (1 -6) nn

for any > 0 unless NP C DTIME(n°(l°gl°gn))), where DTIAIE(t) is the class of

problems for which there is a deterministic algorithm running in time O(t).

By reducing a problem from MIN SET COVER, with an approximation preserv-

ing (AP) reduction, the problem is shown to be at least as hard to approximate as

MIN SET COVER. From Feige's result, that means there can be no constant factor

approximation algorithm unless NP C DTIME(nO(l ° gl° gn)) (which is unlikely).

Theorem 5 MIN SET COVER is AP-reducible to MIN LEX ERRORS.

Proof. Given a collection C of subsets of set S in a MIN SET COVER instance,

we construct a MIN LEX ERRORS instance as follows. Let C1, C2,..., Cn be the

elements of C and let x1, x 2, . ., xm be the elements of S. Associate an aspect ai with

each element Ci of C. Introduce an additional aspect q. Associate a profile Pi with

each element xi of S such that

Pi = {aj : i E Cj)

Introduce new profiles V and W1, W2, ... , Wn such that

V= {q}

Wi = {ai}.

Finally, let

X = {(Pi,V): i = 1,...,m} U {(V,W): i = 1,...,n}.

Note that the (Pi, V) pairs in X will all be correctly differentiated by a if xi is

contained in somle Cj such that aj comes before q in a (i.e., if a corresponds to an

actual set cover). The (V, Wi) pairs in X encourage q to appear as left as possible

in a'. Figure 3.3.1 shows an example transformation. Notice that the transformation

can be accomplished in polynomial time.

45



al a 2 a 3 a 4 q

P , 1 0 1 1 0

P 2 0 1 1 0 0

P3 0 1 0 1 0

P4 1 0 0 0 0
P5 0 0 1 0 0

P6 1 0 0 1 0
P7 1 1 0 0 0
V 0 0 0 0 1

W1 1 o0 0 0 

W 2 0 1 0 0 0
W3 0 0 1 0 0

W 4 0 0 0 1 0

Figure 3-1: Transformation from MIN SET COVER to MIN LEX ERRORS

The errors/violations for this MIN LEX ERRORS instance are of two types:

(V1) Violations of Pi >- V

(V2) Violations of V >- WE

Let the number of violations of type V1 and V2 for the approximate solution be el

and e2. Next we show that the best MIN LEX ERRORS can achieve is el + e2 = k*,

where k* is the size of a minimum set cover in the original MIN SET COVER instance.

Let a = /3q-y be an aspect order. If corresponds to a set cover in the original

MIN SET COVER instance, then e2 = (,/ and el = 0. On the other hand, if 

does not correspond to a set cover in the original MIN SET COVER instance, then

e2 = Ii1 and el is the number of elements from S not covered by the Cj corresponding

to p. Note that el > 161, where is the smallest subset of -y such that /36 corresponds

to a set cover in the original MIN SET COVER instance. Combining these two cases,

we see that el + e2 is always at least as large as the size of the smallest set cover

containing p. Thus the best objective value MIN LEX ERRORS can achieve is to

have 3 correspond to a ninimum set cover in the original MIN SET COVER instance.

Now suppose we have an r-approximation algorithm for MIN LEX ERRORS. This

guarantees that
el + e2

k* < - r,k*
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C C2 C 3 C4

X1 1 0 1 1

x 2 0 1 1 0

X3 0 1 0 1

X4 1 0 0 0

X5 0 0 1 0

X6 1 0 0 1

X7 1 1 0 0



where k* is the size of the minimum set cover of the original problem. To transform

an r-approximate solution to MIN LEX ERRORS into a set cover for the original

MIN SET COVER instance, consider the following. If the Cj corresponding to the aj

in do not already form a set cover for the original MIN SET COVER instance, then

at most el additional elements from C need to be added to the existing group of e2

elements to form a set cover (since el corresponds to the number of elements of S not

yet covered). The size of the constructed set cover is at most e2 + el, guaranteeing a

performance ratio
e2 + el

k* -< r.

Therefore, MIIN SET COVER is AP-reducible to MIN LEX ERRORS. Ol

3.3.2 Minimum weighted number of errors

It might be the case that for a given set of pairs of profiles Q, some comparisons

are more important than others. For example, perhaps the comparisons from the

earlier part of a conjoint survey are deemed more likely to be accurate than later

comparisons when a subject might be more tired.

Theorem 6 MIN WEIGHTED ERRORS is NP-hard.

Proof. This result follows directly from Theorem 5 since by setting all weights wij

equal to 1, MIN WEIGHTED ERRORS is equivalent to MIN LEX ERRORS. O
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MIN WEIGHTED ERRORS

INSTANCE : Set of aspects A, set of profiles P, set of pairs X C

P x P along with weights wij for all (Pi, Pj) E X.

SOLUTION : Aspect order o such that Iac = AI.

MEASURE : Ex,w(a)



3.3.3 Minimum position of an aspect given lexico-consistent

Given that a set of data is lexico-consistent, we might be interested in the leftmost

position that a particular aspect can occur in among all lexico-consistent aspect or-

ders. Note that how far left an aspect occurs relates to the aspect's importance. We

call this problem MIN ASPECT POSITION.

Theorem 7 MIN SET COVER is AP-reducible to MIN ASPECT POSITION.

Proof. The reduction from MIN SET COVER is nearly the same as in the proof

for MIN LEX ERRORS, except there is no need for profiles Wi. Suppose we have an

r-approximate algorithm for MIN ASPECT POSITION, i.e.,

Ia(q) < r
k* 1< r,

where k* is the size of the minimum set cover of the original problem. Note that all

feasible solutions to MIN ASPECT POSITION must be of the form a = -q-y where 

corresponds to a set cover in the original MIN SET COVER instance (otherwise some

Pi >- V would be violated). Thus, the best objective value MIN ASPECT POSITION

can achieve is k* + 1, by letting /3 be a minimum set cover in the original MIN SET

COVER instance.

The Cj corresponding to the aj in /3 (from the r-approximate solution to MIN

ASPECT POSITION) form a set cover C' for the original MIN SET COVER since

all pairs (Pi, V) are correctly differentiated by a. With respect to MIN SET COVER,
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MIN ASPECT POSITION

INSTANCE: Set of aspects A, aspect q E A, a set of profiles

P, and a set of pairs X C P x P that is lexico-

consistent.

SOLUTION: Aspect order a with Ex(a) = 0.

MEASURE : I,(q)



the performance ratio is
Ia(q)- 1

k*

Calculating the difference between the performance ratios of MIN SET COVER and

MIN ASPECT POSITION,

1.(q) - 1 Is(q)

k* k* + 1
I,(q)-(k*+ 1)

k*(k* + 1)
Ia (q) I _ 1 I.(q) 1)

k*(k* + 1) k * k* + 1

we see that

I.(q)-1 I (q) I +_ _ ),
k* k*+l 1 k* k* + r

since k* > 1 and a(q) < r. Therefore, MIN SET COVER is AP-reducible to MIN

ASPECT POSITION. O

3.3.4 Minimum number of aspects needed to explain lexico-

consistent partial order on profiles

Suppose we have a set of data that is lexico-consistent. For concreteness, suppose

our data consists of a set of pairs Q. Even though a full aspect order differentiates

all possible pairs of profiles, it might be the case that a partial aspect order, i.e.,

with lal < Al, can differentiate all pairs in Q correctly. We call the problem of

finding the shortest such aspect order (that is still lexico-consistent with the data)

MIN ASPECTS TO EXPLAIN.

Theorem 8 MIN SET COVER is AP-reducible to MIN ASPECTS TO EXPLAIN.

49

MIN ASPECTS TO EXPLAIN

INSTANCE : Set of aspects A, a set of profiles P, and a set of pairs

X C P x P that is lexico-consistent.

SOLUTION: Aspect order rs such that Ex(a) = 0.

MEASURE: al

_ _



Proof. We again give a reduction from MIN SET COVER. Given a collection C

of subsets of some set S, we construct a MIN ASPECTS TO EXPLAIN instance as

follows. Let C1, C2,. . , C,, be the elements of C and let xl, x2 ,.. ., xm be the elements

of S. Associate an aspect ai with each element Ci of C. Associate a profile Pi with each

element xi of S and have Pi contain aspect aj if and only if xi E Cj. Create a profile

V that contains no aspects. Finally, let X = {(Pi, V): i = 1,. . ., m}. Note that this

MIN ASPECTS TO EXPLAIN instance is consistent (assuming Ui Ci = S and all

Ci are nonempty) because any aspect order containing all aspects will differentiate

all pairs of profiles in X correctly.

As an example of the transformation, the MIN SET COVER instance

C1 C2 C 3 C4

X1 1 0 1 1

x 2 0 1 1 0

x 3 0 1 0 1

X4 1 0 0 0

X5 0 0 1 0

x 6 1 0 0 1

x7 1 1 0 0

al a2 a3 a4

P 1 1 0 1 1

P 2 0 1 1 0

P3 0 1 0 1

P4 1 0 0 0

P5 0 0 1 0

P6 1 0 0 1

P7 1 1 0 0

V 0 O O 0
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Now suppose we have an r-approximate algorithm for MIN ASPECTS, i.e., the

performnance ratio is guaranteed to satisfy

lal <
k* -,

where k* is the size of the minimum set cover of the original problem. The best MIN

ASPECTS can do is k* by letting ac be a minimum set cover in the original MIN SET

COVER instance, because lal < k* would mean that at least one element j C S

would be uncovered and (Pj, V) would not be differentiated.

Note that the approximate solution oa correctly differentiates all pairs in X since a

is a feasible solution for MIN ASPECTS TO EXPLAIN. Thus the Cj corresponding

to the aj in a form a set cover C' for the original problem. The performance ratio

with respect to MIN SET COVER is

IC' aI <
k* k* -

Therefore MIN SET COVER is AP-reducible to MIN ASPECTS. O

3.3.5 Minimum distance to a specified order given lexico-

consistent

Suppose a set of data is lexico-consistent, i.e., there exists some aspect order that

induces no errors with respect to the data. Furthermore, suppose that the research

has an idea of what the aspect should have looked like ahead of time, e.g., from self-

explicated questions at the beginning of a conjoint analysis survey. Then it might be

desirable to find the lexico-consistent aspect order that is closest in some sense to the

specified order. We call this problem MIN CONSISTENT DISTANCE, where the

distance between two aspect orders is defined as the sum of the absolute differences

in aspect position over all aspects.
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Theorem 9 MIN ASPECT POSITION is AP-reducible to MIN CONSISTENT DIS-

TANCE.

Proof. We give a reduction from MIN ASPECT POSITION. Suppose we have an

instance of MIN ASPECT POSITION with aspects A, profiles P, and partial order

on profiles X. Let al, a2,.. ., a,, q denote the aspects in A, with q being the special

aspect. We construct an instance of MIN CONSISTENT DISTANCE as follows. Let

X 1, x2, . . , XN be additional (dummy) aspects, with N = n2 to ensure that

N > max d(yl,Y 2),
Y1 ,Y2

where 'y1 and y2 are any permutations of n aspects. Let the desired aspect order for

MIN CONSISTENT DISTANCE be

al = (q, Xi x2, .· · , XN, al,a2, · · · an-1)

Construct new profiles Pq= {q} and Pi = {xi} for all i = 1,..., N, and let the set of

profiles be

P' = P U Pq U {P: i= 1,..., N}

Finally, let the partial order on profiles be

X'= XU{(Pq, Pi): i = ,...,N}
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MIN CONSISTENT DISTANCE

INSTANCE: Set of aspects A, an aspect order c (not necessarily

lexico-consistent), a set of profiles P, and a set of pairs

X C P x P that is lexico-consistent.

SOLUTION: Aspect order cr* such that all pairs in X are differentiated

correctly.

MEASURE : d(a, a*) = i IQ(ai) - I, (ai) 



Note that the new pairs in X' force aspect q to come before aspects xi in any consistent

aspect order for the MIN CONSISTENT DISTANCE instance.

In order to analyze the optimal cost for MIN CONSISTENT DISTANCE, consider

a consistent aspect order oa* (of the aspects in A) that minimizes the position of aspect

q and also minimizes the distance from a* to (q, a l,a 2,. . .,an-l) as a secondary

objective. We argue that an optimal aspect order for MIN DISTANCE is 3*, where

xl, x2,..., xN immediately follow q, while all other aspects are in the same relative

order as in a*. The total cost is given by

cost(*) = dl + d2,

where
d = d(a, a*), and

d2 = (N+ 1)(I, (q)- 1)

The second component of the cost, d2, is caused by q and xi shifting to the right due

to (I, (q)- 1) aspects that must appear before q in o*.

Now suppose another aspect were shifted before q. This change would increase

d2 by (N + 1) while it could only decrease d by at most n2. So this change would

worsen the cost. Furthermore, suppose that the permutation of the aspects (other

than q and xi) were changed. The value of d2 stays the same, while d1 becomes worse.

Thus 0* achieves the optimal cost for MIN CONSISTENT DISTANCE.

Now suppose we have an r-approximation algorithm for MIN CONSISTENT DIS-

TANCE. Given an approximate solution 3, transform it to 3' as follows. First reorder

the xi so that they are in increasing order by index. Second, shift all xi to appear

immediately after q (if not already there). This transformation can only increase the

quality of the approximate solution, since inserting an xi at a position k slots to the

left of its original position causes at most k aspects (from A) to shift to the right.

We now have

d(a, 3' \ {Z1, ... XN}) + (N + 1)(,113(q)-1)<r
d(, a*) + (N + 1)(I,. (q) - 1)
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It follows that
d(a, a-) + (N + 1)(I/3,(q) - 1)<
d(a, a*) + (N + 1)(I,*(q)- 1) -

since d(ac, a*) < dist(a, 3' \ Xl,.. . , XN}) by the definition of a*. Finally,

d(ca, a*)/(N + 1) - 1 + I, (q) -d((v, a*)I(N + 1) - 1 + I* (q)

I/, (q) r
1,,* (q) <r,

since d(c, a*)/(N + 1) - 1 < 0 by definition of N.

The last ratio is precisely the performance ratio of using /'\{x 1 , XN} as an ap-

proximate solution for MIN ASPECT POSITION. Thus, MIN ASPECT POSITION

is AP-reducible to MIN CONSISTENT DISTANCE, and it follows from Theorem 7

and the transitivity of AP-reducibility that MIN SET COVER is also AP-reducible

to MIN CONSISTENT DISTANCE. O

3.3.6 Minimum distance to a specified order when data not

lexico-consistent

Suppose a set of data is not lexico-consistent, i.e., there are no aspect orders that

induce zero errors with respect to the data. Furthermore, suppose that the researcher

has an idea of what the aspect order should look like ahead of time, e.g., from self-

explicated questions at the beginning of a conjoint analysis survey. Then it might be

desirable to find the minimum error aspect order (i.e., that has induces that same

number of errors as the optimal solution of MIN LEX ERRORS) that is also closest

in some sense to the specified order. We call this problem MIN ERROR DISTANCE,

where the distance between two aspect orders is defined as the sum of the absolute

differences in aspect position over all aspects.
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Theorem 10 MIN ERROR DISTANCE is not in APX (unless P = NP).

Proof. This result follows immediately from Theorem 5. If it were possible to

approximate MIN ERROR DISTANCE with some constant factor approximation

scheme, then we could use it to solve MIN LEX ERRORS exactly. O

3.3.7 Consistency with ties

Suppose that we allowed the possibility of ties between profiles. Then no aspect

order corresponding to the lexicographic decision-making process described earlier can

possibly be consistent with data that contains ties (since the lexicographic strategy

differentiates every pair of profiles given an aspect order).

Here we introduce a more general lexicographic strategy that allows for ties in the

aspect ordering. Specifically, instead of depending on an ordered subset of aspects, a

lex with ties strategy will depend on an ordered collection of subsets of aspects:

S1 - S2 - ... - > Sp,

where the sets Si form a partition of A. When the cardinality of each set is 1, the lex

with ties strategy is equivalent to the lex strategy. If ISil > 1, then the aspects in Si

are valued equally. If two profiles are considered equal before applying Si, then the

profile with more aspects from Si is preferred.

For example, suppose A = {al, a2, a3}, S1 = {al, a2}, S2 = {a3}, and we have

profiles Pi = al), P2 = a2}, P3 = {al,a 2}, and P4 = {a3 }. Then we have the
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MIN ERROR DISTANCE

INSTANCE : Set of aspects A, aspect order c, set of profiles P, set of

pairs X C P x P that is not lexico-consistent.

SOLUTION : Aspect order a' such that Ex(a') equals minimum num-

ber of errors according to MIN LEX ERRORS

MEASURE : d(a, a') = Ei II(ai) - I,(ai)l



following relationships:

Theorem 11 CONSISTENCY WITH TIES is NP-complete.

Proof. We transform 3-DIMENSIONAL MATCHING (3DM) to CONSISTENCY

WITH TIES (CWT). Let W, X, Y, and M C W x X x Y be an arbitrary instance

of 3DM, with IWI = IXI = IYI = q. Construct a corresponding instance of CWT

as follows. Associate an aspect ai with every element mi of M. Let count(e) be the

number of times that element e (from W, X, or Y) appears in (elements of) M and

let

N= max count(e).
eEWUXUY

Introduce aspects r and dl, d2,... , dN-1. Next, associate a profile with each element

of W, X, and Y. Specifically, let profile Wi correspond to wi such that

Wi = {aj : wi E mj} U {dl, d2,.. , dN-cont(wi)).

That is, profile Wi contains all aspects that correspond to elements of M that contain

wi plus enough dummy aspects di to ensure that [Wi4 = N. Profiles Xi and Yi are

similar. Finally, create profiles Z1, Z2, and Z3 , where

Z1 = {r, d, d2, ... , dN-l}

z 2 = {r}

Z3= {dld2, ..,dN-l}

56

CONSISTENCY WITH TIES

INSTANCE : Set of aspects A, set of profiles P, and set of comparisons

X

QUESTION : Is there a partition of aspects S1, S2 ,. .. , Sk that is con-

sistent with X?



Note that IZ11 = N. Given aspects ai, r, and di, and profiles 14i, Xi, Y, and Zi, we

desire comparisons: Vi = Z 1, Xi = Z1, Y/ = Z1, and Z 2 >- Z3 . The last comparison

causes aspect r to be preferred to di in any consistent lex-with-ties strategy (i.e.,

partition of aspects).

As an example, consider a 3DM instance with W = {wl, w2, w3}, X = { 1 , X2, x 3 },

and Y = {Y1, Y2, Y3}, with

Al = {(Wl, , Y2), ( 2, X3, Y1), ( 3. X2, Y3), (l, xl, Y1), (w2, x2 , Y1)}.

The CWT instance is shown in the following table:

al a 2 a 3 a 4 a r d1 d2

W1 1 0 0 1 0 0 1 0

W 2 0 1 0 0 1 0 1 0

W 3 0 0 1 0 0 0 0 0

X 1 1 0 0 1 0 0 1 0

X 2 0 0 1 0 1 0 1 0

X 3 0 1 0 0 0 0 1 1

Y 1 1 0 1 0 O 0

Y2 1 0 0 0 0 0 1 1
Y3 0 0 1 0 0 0 1 1

Z1 0 0 0 0 0 1 1 1

Z 2 0 0 0 0 0 1 0 0

Z 3 0 0 0 0 0 0 1 1

First we show that if a matching exists,

(This direction of the proof is easy since it is

then the CWT instance is consistent.

what drove the construction.) Suppose

a matching A1l' exists. Then the aspect partition S1 >- S2 with

S1 = {ai : mi E I'} U r

S 2 = {ai : mi 1lI'} U {dl, d2 ,. , dNl}

is a consistent lex-with-ties strategy. Under this strategy, all profiles Wi, Xi, Y
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contain exactly one element from S, as does profile Z1 (aspect r). For example,

profile Wi contains exactly one aspect from S1 since wi occurs in exactly one element

of M'. Furthermore, all profiles Wi, Xi, IY, and Z1 contain N- 1 aspects from S2 by

construction. Thus all comparisons (x) are satisfied.

Next we show that if the CWT instance is constistent, then a matching exists.

Consider the consistent aspect partition

S1 S2 ... Sp

Since Z2 >- Z3, it must be the case that r E Si and dk e Sj such that i < j. Next,

consider the set S' that contains r. Because profile Z1 must contain exactly one

aspect from S', profiles Wi, Xi, Yi must also contain exactly one aspect from S'. This

implies that S' contains aspects corresponding to a matching M', otherwise at least

one comparison from (x) would be violated.

Therefore the 3DM instance is a "yes" instance if and only if the CWT instance

is a "yes" instance, and CWT is NP-complete. ]
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Chapter 4

Algorithms

In this chapter, we present solution methods for the problems described in Chapter 3.

The problems exhibiting a greedoid language structure (e.g., LEX CONSISTENCY)

can be solved with a greedy algorithm over an appropriate objective function. We

make use of some additional structure to show that each NP-hard problem (e.g.,

MIN LEX ERRORS) can be solved with dynamic programming. Since the dynamic

programming based algorithms have exponential worst case time complexity, we an-

alyze several heuristics including a greedy heuristic and insertion based local search.

We also present several implementation enhancements to the dynamic programming

algorithm that provide significant speedup in practice.

4.1 Greedy Algorithms

In each of the decision problems shown to have a greedoid language structure, the

decision question can be rephrased as: "Is there a word of length n that is contained

in the language?" (where n is the size of the alphabet). The corresponding objective

function we are trying to maximize over words in the language is the length of the

word. Equivalently, we are maximizing a linear function over the letters where the

coefficient corresponding to (the inclusion of) each letter is equal to 1. Recall that

this objective function, W(a), was shown to be compatible in Chapter 3.

Let c(a, x.) denote the new errors directly caused by aspect x occuring after aspect
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Algorithm Greedy Algorithm for LEX CONSISTENCY
a = empty word
while a[ < n do

if there exists x C E \ a such that c(a, x) = 0 then
a ax

else
DONE

end if
end while

order (or aspect set) a, that is

c(a, x) = Ex(ax) - Ex(s) (4.1)

Algorithm 1 is the greedy algorithm for LEX CONSISTENCY. (See Boyd [7] for the

general form of the greedy algorithm.)

Note that we append any aspect that meets the condition in the if statment

because the objective function is simply the length of the aspect order. If Algorithm 1

terminates with al = n, then the partial order on profiles (or other paired comparison

data) is lexico-consistent. Conversely, if al < n, the partial order on profiles is not

lexico-consistent.

The greedy algorithm for BOUNDED ERRORS PER ASPECT is similar. The

condition in the if statment is changed to require that c(a, x) < k. Solving LEX

CONSISTENCY or BOUNDED ERRORS PER ASPECT when including unions

and intersections of aspects simply requires applying the greedy algorithm over the

augmented set of aspects.

4.2 DP Algorithm for MIN LEX ERRORS

The following property of lexicographic preference structures permits us to concen-

trate on subsets of aspects rather than permutations of aspects.

Lemma 2 Let al and a 2 be two different permutations of a set of aspects S C A,

and let x be any aspect not in S. Then the number of errors directly caused by x in
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a1x is the same as the number of errors directly caused by x in a 2x, i.e., lIx(alx) =

A'x (2xz).

Proof. Consider a pair of profiles Pi and Pj with Pi >-x Pj. Either Pi and Pj are

differentiated by oal (and a 2) or not. If they are already differentiated, then aspect

x can not cause a new error regardless of whether if follows al or a 2. On the other

hand, suppose Pi and Pj are not yet differentiated by ca (and a 2). If aspect x also

does not differentiate the profiles, then no error is caused in either case. If aspect x

does differentiate the profiles, then

x = flX(Pi, Pj) = fa2(Pi, Pj)

and Aix (alx) = Mx(a 2x) since x differentiates Pi and Pj the same way in both cases.

Lemma 2 allows us to write the following dynamic programming recursion:

J(S) = min{J(S \ x) + c(S \ x, x)} (4.2)
XES

Translating recursion (4.2) directly into pseudocode leads to the implementation

given in Algorithm 2. A table is maintained that corresponds to the optimal values

and policies for each possible state. The table contains 2 entries-one for every

possible subset of aspects. Each entry keeps track of the lowest number of errors

achievable for some optimal arrangement of those aspects (the optimal value), plus

the aspect that occurs in the last position in that optimal arrangement (the optimal

policy). The algorithm correctly fills in the table because by the time it is computing

table entries for subsets of size k, it has already finished computing optimal values

and policies for subsets of size k - 1.

Algorithm 2 processes 0(2 n) states and requires 0(2") space. It ultimately per-

forms O(n2") stage cost computations (i.e., computations of c() in the innermost

loop).
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Algorithm 2 Naive DP algorithm for MIN LEX ERRORS
1: for k = 1 to n do
2: for all subsets S of length k do
3: // perform minimization over aspect in last position
4: for all i S do
5: if T(S \ i).cost + c(S \ i, i) < T(S).cost then
6: T(S).cost = T(S \ i).cost + c(S \ i, i)
7: T(S).aspect = i
8: end if
9: end for

10: end for
11: end for

Table 4.1: Exponential vs factorial running time
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n 2n n2 n n!

1 2 2 1

2 4 8 2

3 8 24 6
4 16 64 24
5 32 160 120
6 64 384 720
7 128 896 5,040
8 256 2,048 40,320
9 512 4,608 362,880

10 1,024 10,240 3,628,800
11 2,048 22,528 39,916,800
12 4,096 49,152 479,001,600
13 8,192 106,496 6,227,020,800
14 16,384 229,376 87,178,291,200
15 32,768 491,520 1,307,674,368,000
16 65,536 1,048,576 20,922,789,888,000



Even though the naive algorithm finds an optimal solution to MIN LEX ERRORS

much faster than the O(n!) method presented in Martignon and Schmitt [46] (see Ta-

ble 4.2, Algorithm 2 can still only be applied to problems of moderate size. However,

there are several "tricks", some standard to dynamic programming and some specific

to our problem, that substantially speed up the practical running time.

Bounding. Suppose we know that a particular solution for an 6-aspect problem

(e.g., provided by the backward insertion heuristic) can achieve as few as 2 errors.

Furthermore, suppose the best arrangement of a subset of aspects S = {a, b, c} al-

ready causes more than 2 errors. Then having aspects d, e, or f in the 4th position

after {a, b, c} is also guaranteed to cause more than 2 errors. Thus, the stage cost

computations c(S, d), c(S,e), and c(S, f) are not necessary (even though they are

computed in Algorithm 2). Keeping track of the best known solution can avoid many

unnecessary computations.

Differentiation. Once a set of aspects has a certain size, it becomes likely that all

pairs of profiles are already differentiated. In a balanced design, a given aspect would

be expected to differentiate about half of the pairs of profiles (since the probability of

both profiles in a pair being differeniated by a given aspect is 0.5). If the number of

undifferentiated pairs halves each time an aspect is added to an order, then we would

need approximately

log2 () = log2[m(m - 1)/2]

aspects to differentiate all pairs of profiles.

For example, suppose we have a problem with 32 profiles and 20 aspects. (The

experimental design is given in the appendix.) The expected number of aspects

required to differentiate each possible pair of profiles is 8.42 with a standard deviation

of 1.18 (1000 trials over uniform random aspect orders were conducted). This result

matches up well with log2 (32 · 31/2) = 8.95. Table 4.2 shows the fraction of pairs

differentiated for each number of aspects as well as the fraction of aspect orders of each

length that differentiated all pairs. Repeating this analysis for a 64 x 40 experimental
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Table 4.2: Differentiation behavior in 32 x 20 design

design (given in the appendix) results in an expected number of aspects of 10.84 with

a standard deviation of 1.45. This matches up well with log2(64 63/2) = 10.98. Table

4.2 presents more detailed information.

The key observation is that if a set of aspects has already differentiated all pairs

of profiles, then appending additional aspects after it has no effect on the number of

errors. For example, suppose in a 20 aspect problem that S = {a, b, c, d, e} totally

differentiates all pairs of profiles. Then computing the stage costs

c(S, f), c(S, g), ... , c(S, t)

is unnecessary. Furthermore, the savings multiply since computing

c(SU f,g),c(SU f,h),.. .,c(SU f,t);
c(S U gy,f), c(S U g,h),... ,c(SU g,t);

c(S U t,f), c(S U t, g),..., c(S U t, s);

64

| k mean(fd) stddev(fd) frac(fd = 1)
1 0.5140 0.001452 0
2 0.7714 0.001601 0
3 0.8962 0.006640 0
4 0.9547 0.006672 0
5 0.9812 0.005228 0
6 0.9924 0.003681 0.016
7 0.9972 0.002371 0.253
8 0.9989 0.001442 0.589
9 0.9996 0.0008291 0.832
10 0.9999 0.0004226 0.954
11 1 0.0002452 0.985
12 1 0.0001103 0.997
13 1 0 1

20 1 0 1



frac(fd = 1)

Table 4.3: Differentiation behavior in 64 x 40 design
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0.001089
0.000895
0.002802
0.003203
0.002600
0.002084
0.001501

0.0009794
0.0006565
0.0004345
0.0002682
0.0001839
0.0001086
6.032e-05
4.138e-05
2.217e-05
1.569e-05

0

0

/i: mean(fd) stddev(fd)
1

2

3

4Z

5

6

7

8

9

10
11

12

13

14
15

16

17
18

40

0.5072
0.7609
0.8858
0.9462
0.9753
0.9888
0.9951
0.9978
0.9991
0.9996
0.9998
0.9999

1

1

1

1

1

1

I

0

0

0

0

0.010
0.1441

0.482
0.730
0.877
0.956
0.985
0.993
0.998
0.999
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and so on also becomes unnecessary. For this example, the total number of avoided

stage cost computations is 15 x 14 x ... x 2 = 15!.

Dynamic memory allocation. Suppose that the following stage cost computa-

tions are unnecessary due to the above considerations:

c({a, b}, c), c({a, c}, b), c({b, c}, a).

For example, it could be the case that J({a, b}), J({a, c}), and J({b, c}) are all worse

than the cost of a known solution. Then J({a, b, c}) never has to be computed at

all. In the event that many subsets of aspects can be completely ignored, it becomes

attractive to only store table entries for those subsets that actually matter.

Combining the preceding observations leads to Algorithm 3. It maintains a FIFO

queue of all sets of aspects that have costs (so far) that are less than or equal to

the cost of the best known solution. The queue also contains only sets that do not

completely differentiate the profiles. These two properties ensures that no unnecessary

stage cost computations are performed with respect to bounding and differentation.

Another property of the queue is that the sizes of the sets it contains are nonde-

creasing. This guarantees that the optimal value for a set of size k is already known

before that set is used for stage cost computations on sets of size k + 1.

Additionally, the table is designed to contain only those sets that are necessary.

The table can be implemented efficiently as a hash table.

Greedoid Initialization. One further tweak is possible, capitalizing on the

greedoid structure of the problem. First we prove the following lemma.

Lemma 3 Suppose that /3 is an ordered subset of aspects that is lexico-consistent with

the preferences in X. Then there is an optimal (full) ordering of aspects that begins

with the order 3.
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Algorithm 3 Enhanced DP algorithm for MIN LEX ERRORS
1: initialize T
2: initialize Q
3: bestSoFar = cost of heuristic solution
4:

5: // add singleton sets to Q
6: for all aspects i do
7: if Ex(i) < bestSoFar then
8: add {i} to T
9: add {i} to Q

10: end if
11: end for
12:

13: while Q not empty do
14: remove first set S from Q
15: for all i E S do
16: if T(S).cost + c(S, i) < bestSoFar then
17: if (S U i) E T then
18: // update existing table entry if necessary
19: if T(S).cost + c(S, i) < T(S U i) then
20: T(S U i).cost <= T(S).cost + c(S, i)
21: T(S U i).aspect = i
22: end if
23: else

24: // create new table entry for this set of aspects
25: add (S U i) to T
26:

27: // only add to Q if this set will need further processing/expansion
28: if (S U i) does not totally differentiate P then
29: add (S U i) to Q
30: end if
31: end if
32:

33: // update bestSoFar if necessary
34: if (S U i) totally differentiates P and T(S U i).cost < bestSoFar then
35: bestSoFar = T(S U i).cost
36: end if
37: end if
38: end for
39: end while
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Proof. Let a be a solution to MIN LEX ERRORS (with Jcal = IAl) and suppose

there exists a subset of aspects 3 such that Ex (3) = 0. Consider the aspect order

y = (, (a \ ))

and any aspect x E a \ 3. The number of errors caused directly by x in y must be

less than or equal to the number of errors causes directly by x in a because the set of

profiles differentiated by y(,(x)) is a superset of the profiles differentiated by a(I(x)).

(This is because the set of aspects preceding x in -y is a superset of the set of aspects

preceding x in a.) Since all x E a \ 3 cause at most the same number of errors as x

in a, Ex(y) < Ex(a) which implies that Ex(y) = Ex(a). l

The significance of Lemma 3 is that the greedy algorithm can be run first to

find the longest (partial) aspect order that induces no errors (if one exists). Then

the problem size can be reduced by removing those aspects and the profiles already

differentiated by them.

4.3 Other DP Recursions

The basic property in Lemma 2 extends for most/all of the other hard problems from

the previous chapter. What follows are the appropriate modifications to the property

(stated without proof) and the resulting DP recursions.

4.3.1 Min Weighted Errors

Lemma 4 Let a and be two different permutations of a subset S of aspects, and

let x be any aspect not in S. Then the number of weighted errors directly caused by x

in ax is the same as the number of errors directly caused by x in 3x.

This property permits the following DP recursion:

J(S) = lnin{J(S \ i) + c(S \ i, i)},iES

68



where

c(T, x) = wij
(ij)cxnx-T )

4.3.2 Min aspect position

Lemma 5 The position of aspect x in a does not change if the permutation of the

aspects preceding x is modified.

Consider the following DP recursion:

J(S) = min {J(S \ x) + c(S \ x, x)} 
xES

where
TI+1 ifx=q

c(T, x) = (n + 1) AIMx(T, x) + 1 if
0 otherwise

The first term of the stage cost c(., ) is incrementally computing the number of

errors multiplied by a constant. The second term simply records the position of q.

The constant in the first term is chosen to be n + 1 so that having aspect q earlier in

the order can never compensate for having even one more error. (The constant n + 1

is an upperbound on the position of q.)

Thus, for lexico-consistent data, the DP recursion will favor all lexico-consistent

solutions over non lexico-consistent ones, and then select the lexico-consistent solution

that allows q to appear earliest in the order. Similarly, for data that is not lexico-

consistent, the DP recursion will favor all subsets that achieve the minimum error

(i.e., the optimal objective function value of MIN LEX ERRORS), and then select

the minimum error solution that allows q to appear earliest in the order.

4.3.3 Min error order closest to a specified order

Lemma 6 Let a = yx6, with -y = k, let y' be a different permutation of y, and

let /3 be some other aspect order. Then the contribution to d(/3, a) caused by x is the

same as the contribution to d(f3, y'x6) caused by x.
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Note that in each case, the contribution to total distance caused by x is I(x) -

(k + 1)1. Now consider the following DP recursion:

J(S) = inin{J(S \ x) + c(S \ x, x)}, (4.3)
xES

where

c(T, x) = n 2 Mx(T, x) + [IP(x) - (ITI + 1)].

The first term of the stage cost c(-, ) is incrementally computing the number of

errors multiplied by a constant. The second term is incrementally computing the

distance between the solution and O. The constant in the first term is chosen to be

n2 so that having an aspect order closer to P can never compensate for having more

errors. (The constant n2 is an upper bound on total distance.)

Thus, for lexico-consistent data, the DP recursion will favor all lexico-consistent

solutions over non lexico-consistent ones, and then select the lexico-consistent solution

that is closest to 3. Similarly, for data that is not lexico-consistent, the DP recursion

will favor all subsets that achieve the minimum error (i.e., the optimal objective

function value of MIN LEX ERRORS), and then select the minimum error solution

that is closest to .

4.3.4 Minimum number of aspects necessary to explain lexico-

consistent data

Lemma 7 The number of new (correct) differentiations directly caused by x in aspect

order a does not depend on the permutation of the aspects preceding x in a.

Consider the following DP recursion:

J(S) = 1min {J(S \ x) + c(S \ x, x)),
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where

0 if iMx (Tx) = 0 and M+ (T) = 0

c(T x) = 1 if MAIx(Tx) = 0 and M1lX(Tx) > 0

oo if Mlfx(Tx) > 0

The third condition of the stage cost function guarantees that any solution with

no errors is favored over any solution with errors. The first and second conditions

serve to count the number of aspects that actually (correctly) differentiate at least one

pair of profiles. Since any aspect that differentiates no profiles at its current position

in an aspect order can be moved to a later position in the order without affecting the

total number of errors, the DP recursion computes the minimum number of aspects

required to differentiate the data.

4.4 Greedy Heuristic

Kohli and Jedidi [39] present a greedy heuristic for minimizing the number of errors

with respect to a set of paired comparisons of profiles. Algorithm 4 provides essentially

the same algorithm adapted to our formulation and notation.

Algorithm 4 Greedy heuristic for MIN LEX ERRORS
a (= empty word
while al < n do

x* t= arg minxeE\a c(a, x)

end while

Note that if X is lexico-consistent, then applying Algorithm 4 will find an aspect

order a that is consistent with X, i.e., with Ex(a) = 0.

4.5 Insertion Heuristics

In the field of combinatorial/discrete optimization, numerous local improvement or

neighborhood search heuristics have been developed for solving hard optimization
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problems. Here we consider two heuristics based on insertion due to the efficiency of

searching over the neighborhood of possible moves.

4.5.1 Forward Insertion

For forward insertion, a move m = (i j), with i < j, consists of moving the aspect

currently in position i to position j and shifting all aspects currently in positions

i + 1, i + 2, ..., j one position to the left. We will use the notation am to denote the

resulting aspect order after applying move m to a. For example, if a = (a, b, c, d, e)

and m = (2 --* 4), then oam = (a, c, d, b, e). Algorithm 5 gives the basic outline of the

forward insertion heuristic.

Algorithm 5 Forward insertion heuristic for MIN LEX ERRORS
a <= random permutation of 1,..., n
repeat

(i - j*) = argmini<j{d = Ex ((ij))- Ex(a)}
if d* < 0 then

end (i.fj*)

end if
until d* > 0

A naive implementation would simply compute the total number of errors from

scratch for each possible forward insertion. This would have an O(n3Q1l) running

time if O(n2) moves were scored, scoring each move required checking each pair in Q,

and checking each pair required iterating over O(n) aspects.

Due to the special nature of forward insertions, however, the change in the number

of errors resulting from applying move m, i.e.,

Ex (m) - Ex (a)

can be computed more efficiently in an incremental manner. Suppose we have an

existing aspect order a. Consider a pair (Pi, Pj) and let xl be the leftmost aspect

in a that differentiates Pi and Pj and let x2 be the second leftmost aspect in a that

differentiates them.
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Causing a new error. First, suppose that (Pi, Pj) is currently differentiated

correctly, i.e., x C A>(Pi, Pj). Then the only way for a new error to be caused by a

move is if

(a) ax2 E A (Pi, Pj), and

(b) x1 is inserted behind x 2.

In other words, the only moves that will cause a new error are

(a(X1) ---+ j), j > I ( 2).

We will refer to this as a move family, and refer to it as (I,(xl) -> I(x 2)).

Fixing an existing error. On the other hand, suppose that (Pi, Pj) is currently

differentiated incorrectly, i.e., xl E A<(Pi, Pj). Then the only way for this error to

ble fixed by a move is if

(a) X2 C A(Pi, Pj), and

(b) xl is inserted behind x2.

In other words, the only moves that will fix the existing error are

(X (x) j), Vj > Ia(X2).

To exploit these properties, we can maintain a min binary heap for each (Pi, Pj )

in Q containing all aspects in A>-(Pi, Pj) UA-(Pi, Pj) sorted by their current positions

in a. This allows querying for the first and second minimal elements (corresponding

to the leftmost and second leftmost differentiating aspects in a) in constant time (see

Cormen et al [11].

For example, suppose

P1 = (100101)

P 2 = (001110)

and P1 >- P2, then the heap would include aspects a, c, e, and f. The pair is currently

differentiated correctly since xl = a E A>-(P1 , P2 ). However, applying any move from
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the move family

(I0(x1) -> I,(x2)) = (1 > 3)

would cause a new error.

There are at most II2 move families that result from examining all heaps. Each

move family mf has a value associated with it (mf.delta) that corresponds to the

total change in the number of errors that (any move in) the move family would cause.

For example, if a total of three pairs in Q are affected by the same move family,

and two existing errors would be fixed while one new error would be introduced, the

combined effect of that move family over all pairs would be -1 (i.e., the total number

of errors would decrease by one).

Determining the best move over all move families. Given a list of all

relevant move families, it is necessary to compute the best overall move. Suppose all

move families that involved moving a(1) to another location were

(1 --> 3).delta = +2

(1 -*> 5).delta = -3

(1 -- > 9).delta= +1

Remember that moving a(1) to position 3 or later causes two new errors. Thus,

moving a(1) to position 5 results in a net effect of removing one error. And moving

a(l) to position 9 results in a net effect of not changing the total number of errors.

If we restricted ourselves to finding the best insertion point for a(1), it would be 5

(or 6, ... , 8).

The important thing to note is that finding the optimal insertion point for a(1)

did not necessarily require considering all O(n) insertion points. Likewise, finding

the best move over all origins (that occur in at least one move family) only requires

considering at most II move families rather than O(n2 ) possible moves. The only

requirement is that the move families be sorted first by origin, then by destination.

A radix sort can accomplish this in 0(I2Il) time.

Updating after a move. Once a best move (i* j*) has been found, the aspect
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order and heaps must be updated. Because the relative positions of all aspects other

than a(i*) stay the same, the relative positions of those aspects in each heap remain

the same. Only the relative position of aspect a(i*) to the other aspects changes.

Specifically, its position increases and the heap property can become violated. In order

to restore the heap property, a(i*) can be swapped (downward) with its smallest child

as needed. Because the depth of each heap is O(log n), updating all heaps requires

O(log njQl) time.

Overall algorithm and complexity. The forward insertion heuristic with a

heap-based implementation first initializes all heaps which takes O(nlognlQl) time

(O(n) time for finding the elements that need to go in each heap and O(nlogn)

time for constructing each heap). Each iteration involves finding the best move and

updating the heaps after applying that move (if the move is an improvement). Find-

ing the best; move (see Algorithm 6) takes 0(1I2) time since detecting all relevant

move families takes 0(I j) time, the radix sort over origins and destinations takes

0(I2I) time, and finding the best move over all move families takes (jQj) time.

As mentioned above, updating the heaps takes O(lognQl) time. Thus, each itera-

tion requires O(lognQl) time rather than the O(n3 lQl) time complexity of the naive

implementation.

4.5.2 Backward Insertion

For backward insertion, a move m = (j - i), with j < i, consists of moving the aspect

currently in position i to position j and shifting all aspects currently in positions

i, i + 1,...,j - 1 one position to the right. For example, if a = (a, b, c, d, e) and

m = (2 +- 5), then cm = (a, e, b, c, d). Algorithm 7 provides a high level view of the

method (which strongly resembles the forward version). The analysis for finding the

best backward move is similar to the forward move case, but differs in a critical way.

Causing a new error. Suppose that (Pi, Pj) is currently differentiated correctly,

i.e., xl E A (Pi, Pj). Then the only way for a new error to be caused by a backward

move is if some aspect x E A (Pi, Pj) is moved before xl. Thus, instead of a single

relevant move family (as in the forward case), O(n) move families can be relevant for
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Algorithm 6 Finding best forward insertion move
1: // find all move families that affect number of errors
2: for all (Pi,Pj) C Q do
3: X1 < heap(Pi, j).f irst
4: x2 ' heap(Pi, Pj).second
5:

6: // see what move family would cause new error
7: if x Ce A> (Pi, Pj) and x2 e A (Pi, Pj) then
8: // update delta for move family
9: T[I.(x) - I(x 2 )] T[I( 1) I(2)] + 1

10: end if
11:

12: // see what move family would fix existing error
13: if x CE A-(Pi, Pj) and x2 C A>(Pi, Pj) then
14: // update delta for move family
15: [IIj - X I 2()1 T[I,(xi) -I '(X2)-1
16: end if

17: end for

18:

19: // create sorted list of destinations for each origin (a list of lists)
20: moveList radixSort(T)
21:

22: // find best move
23: bestAMove.delta < oc

24: for all orig in moveList do
25: currentDelta z= 0
26: for all dest in moveList(orig) do
27: currentDelta = currentDelta + T[orig -- dest]
28: if currentDelta < bestMove.delta then
29: bestAMove.move z (orig -- dest)
30: bestMove.delta ~ currentDelta
31: end if
32: end for
33: end for

Algorithm 7 Backward insertion heuristic for MIN LEX ERRORS
a -= random l)ermutation of 1, ... , n
repeat

(j* -- *) = argmnij<,{d = Ex(ac(ji)) - Ex(o)}
if d* < 0 then

a (t(j*-is)
end if

until d* > 0
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a given pair of profiles.

Fixing an existing error. On the other hand, suppose that (Pi, Pj) is currently

differentiated incorrectly, i.e., x1 E A- (Pi, Pj). Then the only way for this error to

be fixed by a move is if some aspect x E A>-(Pi, Pj) is moved before xl. Here again,

instead of a single relevant move family (as in the forward case), O(n) move families

can be relevant for a given pair of profiles.

Determining the best move over all move families. Once all relevant move

families have been computed, the best overall move can be determined in a similar way

to the forward insertion case. The only difference is that the result of the radix sort

must have the move families sorted by origin, and then by destination in decreasing

order.

Updating after a move. Once a best move (j* i*) has been found, all heaps

need to be updated. As in the forward insertion case, we only need to be concerned

with the relative positioning of ac(i*). Since the position of a(i*) has decreased, the

heap property may now be violated. However, it can be restored by swapping (i*)

(upward) with its parent as needed. This is an O(logn) operation per heap.

Overall algorithm and complexity. The form of the overall algorithm and the

complexity analysis is very similar to the forward insertion case. The only difference

is that there are O(nliQl) relevant move families. Thus, each iteration takes O(nlQl)

time.

4.6 Numerical Results

4.6.1 Comparison of heuristics

In order to compare the performance of the greedy and insertion heuristics, we con-

ducted a series of experiments. We consider two methods for generating partial orders

over profiles, each intended to allow varying the degree of lexicography (or degree of

"lexico-consistency"'). For one set of experiments, partial orders over profiles were

generated in the following way:
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1. Given k > 0.

2. Construct a partworth vector w such that each element wi is uniformly dis-

tributed in [0, 1].

3. Raise each element of w to the kth power.

4. Then Pi preferred to Pj if aEPi Wa > aePj Wa.

Note that this is the same Einhorn generating model discussed in Section 2.3. When

k = 0, we have the Dawes equal weights model. When k = 1, we have uniform

random weights. When k is large, the operation of raising each element to the kth

power behaves similarly to the Loo norm in that it "selects" and exaggerates the

largest element. It also exaggerates the second largest element with respect to the

remaining elements, and so on. So as k grows, the degree of lexicography grows.

A second method for generating partial orders over profiles is as follows:

1. Given a random lexico-consistent profile order (i.e., a linear ordering of the

profiles that is induced by some random aspect order).

2. Given a number of iterations, flips.

3. Swap a random profile with its successor (in the linear ordering of the profiles).

4. Perform Step (3) flips times.

Here we start with a perfectly lexico-consistent profile order and introduce possible

errors by repeatedly swapping neighboring profiles in the order. When flips grows

large, the profile order approaches a uniform random profile order.

The results of varying k from 1/8 to 64 on designs of size 32 x 20 and 64 x 40 (see

Appendix A for details) are shown in Tables 4.4 and 4.5. The results of varying flips

from 2560 down to 0 are given in Tables 4.6 and 4.7. Each heuristic was run 20 times

for each parameter setting (i.e., each row of each table), and the results averaged.

The columns have the following meanings: cost = number of errors, diff = number

of errors - optimal number of errors, time = running time in seconds, and moves =
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number of insertions. All the experiments in this chapter were carried out on a laptop

with an Intel Centrino 1.6 GHz CPU, 1 GB of memory, and the Fedora Core 4 linux

operating system. The algorithms were coded with the Java programming language.

Discussion. Both the greedy heuristic and backward insertion heuristic perform

very well over all designs and generation method parameters. The performance of

both greedy and backward improves as the degree of lexicography increases (i.e., as

k increases and f lips decreases). It is also interesting to note that the hardest case

to fit was k = 1/8 for the 64 x 40 design. This suggests that a very compensatory

profile order is harder to fit than a random one (e.g., flips = 2560 for the 64 x 40

design).

Interestingly, even though the forward insertion heuristic has a slightly better

asymptotic running time per iteration, it performs poorly compared to the backward

insertion heuristic and greedy heuristic. Furthermore, the performance appears to

degrade as the degree of lexicography increases. Wolpert and Macready [70] emphasize

that incorporating problem-specific knowledge into an optimization algorithm is very

important. For any given problem, some algorithm is best, and which is the best

depends heavily on the "landscape" of the objective function.

In the case of finding aspect orders that minimize errors (wrong comparisons), it

appears that moving aspects to earlier positions in the order is much more effective

than moving aspects forward (later in the order). This makes sense intuitively since

moving good/important aspects to the front of the order seems to have the potential

for larger gains than simply moving unimportant aspects out of the way. Practically

speaking, the backward insertion heuristic appears less susceptible to getting stuck

in (poor) local optima and often performs as well or better than the greedy heuristic

(which also focuses on the most important aspects first).

4.6.2 Scalability and robustness of the DP algorithm

In order to test the effectiveness of Algorithm 3, we applied the algorithm (seeding

it with bounds from the greedy heuristic) over all parameter settings discussed in

the previous experiment. The results are given in Tables 4.8, 4.9, 4.10, and 4.11.
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Table 4.8: DP performance for 32x20 design as k varies

Table 4.9: DP performance for 64x40 design as k varies

The columns have the following meanings: cost = optimal number of errors, time =

running time in seconds, entries = total number of entries stored in the table, and

computations = total number of stage cost computations.

Discussion. The number of table entries and computations decreases as the de-

gree of lexicography increases, i.e., the algorithm is faster when the data is more

lexicographic. For all parameter settings, the running time is very reasonable. Run-

ning times on the order of hundreths of a second for a 40 aspect problem compare

very favorably to the running time of 2 days for 9 aspects reported in Martignon and

Hoffrage [45]. In fact, for problem sizes likely to be found in practice, the speeds

achieved by Algorithm 3 would enable solving lexicographic inference problems on

84

k cost time entries computations
1/8 134.05 0.03 229.85 3789.90
1/4 132.20 0.01 170.20 2907.25
1/2 128.65 0.02 224.80 3674.25

1 119.90 0.02 212.25 3320.35
2 99.10 0.00 61.25 984.20
4 78.45 0.00 30.45 487.90
8 43.70 0.01 12.65 216.60

16 14.75 0.00 2.00 56.20
32 7.15 0.00 0.95 37.15
64 0.85 0.00 0.05 20.95

k cost time entries computations
1/8 708.65 2.34 20414.30 709590.35
1/4 695.65 2.37 25381.40 865289.70
1/2 675.45 1.55 15282.75 523247.95

1 642.70 0.71 6528.30 224503.00
2 588.05 0.26 2242.40 76559.60
4 481.75 0.05 448.15 15101.40
8 346.65 0.01 112.00 3727.20
16 143.00 0.01 49.00 1617.80
32 88.15 0.00 4.45 204.85
64 16.45 0.00 3.15 149.10



Table 4.10: DP performance for 32x20 design as flips varies

Table 4.11: DP performance for 64x40 design as flips varies
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flips cost time entries computations
2560 130.40 0.02 205.95 3190.05
1280 105.15 0.01 135.15 2038.50
640 76.45 0.01 126.85 1879.80
320 56.00 0.01 51.45 780.25
160 39.20 0.01 68.30 1009.70
80 25.95 0.00 27.75 416.20
40 16.85 0.00 29.80 441.80
20 11.05 0.00 17.05 259.00
10 6.25 0.00 5.75 113.30
0 0.00 0.00 0.00 20.00

flips cost time entries computations
2560 259.55 0.07 803.35 26547.90
1280 174.40 0.02 224.65 7467.15
640 127.25 0.04 510.50 16674.35
320 79.35 0.02 192.85 6266.35
160 56.25 0.02 181.30 5902.05
80 35.55 0.01 72.90 2353.00
40 20.20 0.01 33.65 1109.85
20 12.80 0.00 24.60 832.80
10 7.75 0.00 5.70 248.75
0 0.00 0.00 0.00 40.00
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Figure 4-1: Number of table entries vs goodness of initial bound

the fly, say as part of an online survey.

4.6.3 Sensitivity to initial bound

Much of the success of Algorithm 3 can be attributed to the goodness of the initial

bound. Here we explore this by generating 4 subjects with k taking on values 64, 8,

1, and 1/8. The results of running the DP with different hypothetical initial bounds

are show in Figure 4.6.3. In essence, we are considering how sensitive the running

time (or equivalently, the number of table entries) is to the goodness of the initial

bound.

Discussion. For each value of k, the total number of table entries is approximately

23, 000 when no initial bound is given. (Note that there can be at most 496 wrong

comparisons given 32 profiles.) What Figure 4.6.3 suggests is that having an initial

bound (say from the greedy heuristic) that is close to the optimal number of errors can

drastically reduce the number of table entries (and stage cost computations) required.

Is also appears that the algorithm is less sensitive to the goodness of the initial bound

when the optimal number of errors is low (i.e., the data are close to lexicographic).
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Chapter 5

Empirical Studies

In this chapter, we report on an empirical study of SmartPhone preferences. We

describe the experimental setup and data collection, perform several analyses using

noncompensatory, compensatory, and constrained compensatory models, and discuss

behavioral and managerial implications of the results. We also analyze an additional

dataset in another product category (computers) that was generously provided by

another team of researchers. We draw similar, though slightly different conclusions

for the second set of data.

5.1 Basic conjoint analysis study

The basic goal of a conjoint analysis study is using stated and/or revealed preference

data to learn about the decision-making processes in a given population and context,

and to subsequently apply those insights to predict future preferences or behavior.

Datasets for studies of consumer preferences are often collected via a survey or

questionnaire in which a subject rates or makes choices between different profiles (e.g.,

products). Holdout (or validation) questions are usually included in the questionnaire.

These extra observations (either choices or ratings) are not used to fit the models,

but are instead kept separate for validating the models after estimation. They serve

as a proxy for truth and enable the comparison of competing methods.
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5.2 Benchmarks

For choice data (rank order, choice-based, etc.), LINMAP and Hierarchical Bayes

(HB) are two well-established estimation methods. As discussed in Section XXX,

these two methods can be adapted to accomodate q-compensatory constraints. Al-

though HB seems to be considered the most popular method to estimate additive

models in conjoint analysis, we will use both HB and LINMAP as compensatory

benchmarks.

Since we will be using HB in a choice setting (instead of metric), we will refer

to it as hierarchical Bayes ranked logit (HBRL). We use the most-recent version of

LINMAP which enforces strict rankings (Srinivasan [62]). Both benchmark meth-

ods predict holdouts slightly better than either traditional LINMAP (Srinivasan and

Shocker [63]) or analytic-center estimation (Toubia et al [66]).

5.3 SmartPhone study

We invited respondents to complete a web-based questionnaire about SmartPhones.

The respondents were students drawn from the undergraduate and graduate programs

at two universities. To the best of our knowledge, they were unaware of greedoid

methods or the purpose of our study. As an incentive to participate, they were

offered a 1-in-10 chance of winning a laptop bag worth $100, yielding a 63% response

rate. Pretests in related contexts suggested that SmartPhones were likely to include

noncompensatory features and thus represented an interesting category for a first test

of greedoid methods.

The survey consisted of six phases. The first three phases are as described in

Figures 5-1, 5-2, and 5-3: respondents were introduced to the category and Smart-

Phone features, indicated which SmartPhones they would consider (in half the cells),

and successively chose SmartPhones in order to rank their considered products (or

rank all products, depending on cell). Respondents then completed a mini-IQ test

to cleanse memory--a task which pretests suggested was engaging and challenging.
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Each phone has seven features that
vary.

The size, form, and keyboard are
depicted visually. Price, brand,
network, and operating system are Size: arge
indicated by text and graphics.

On the following screens you will be
shown various smartphones and
asked to indicate your preferences
for these smartphones. Some will be
familiar and some not. We are
interested in your preferences.
Please make choices as you would M-NilKeyti,-r) & v ?,
were you selecting a smartphone for
your personal use.

/__ Brand: Nokia

_ Form: Brick

* Operating
System: Pairn

Cell Network: Va½yz r.

Figure 5-1: SmartPhone Features

Following this filler task, respondents completed a holdout task consisting of two sets

of four SmartPhones chosen randomly from a different 32-profile fractional factorial

design.15 The final task was a short set of questions about the survey itself-data

which we use to compare task difficulty. For the holdout task, in order to avoid

unwanted correlation due to common measurement methods, we used a different in-

terface. Respondents used their pointing device to shuffle the profiles into a rank

order as one might sort slides in PowerPoint. Pretests suggested that respondents

understood this task and found it different from the task in Figure 5-3.

The survey was programmed in PHP and debugged through a series of pretests

with 56 respondents chosen from the target population. By the end of the pretests,

all technical glitches were removed. Respondents understood the tasks and found

them realistic.

5.3.1 Experimental Design

Respondents were assigned randomly to experimental cells. The basic experimental

design is a 2 x 2 design in which respondents complete either a full-rank or a consider-

89

Alan

____ ____ I~Ft~r~Si~



There are 32 smartphones shown below Please select those smatphones that you would consider purchasing for your own use.

As you click on a smartphone, a blue box wil appear Click on as many or as few as you would consider. When you are done, click NEXT, which is located
at the bottom of the page

If you would like, you may sort the smartphones on up to three features Yo may also simply scroll through the smartphones to indicate those that you
would consider

.(miute 1). 3 hettibut~e.2). A| | (ettbute 3). 3 j
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Figure 5-2: SmartPhone Consideration Stage

A group of smatphones is shown below.

Please click on the smartphone that you are most likely to buy for your own use.

That smartphone wril disappear and you wil be asked for your next preference.

If you would like, you may sort the smartphones by up to three features

I(Wttibute 1) ,j ("tibute 2) - I (ribute 3) ,i2

$499 S99 499*~~~~1 
God :_ : ,5f !!1 i 1; ; e!

3Cn

Figure 5-3: SmartPhone Ranking Stage
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Consider-then-Rank Full-Rank

No sorting

Sorting allowed

Cell 1 Cell 2
89 resps 82 resps

consider 6.4 rank 32

Cell 3 Cell 4
87 resps 81 resps

consider 6.7 rank 32

Figure 5-4: SmartPhone Experimental Design (32 Profiles in a 4324 Fractional Fac-
torial Design)

then-rank task and are given the opportunity to presort profiles or not (Figure 5-4).

In the consider-then-rank sort cell, respondents could sort prior to consideration and

prior to choice. Respondents in the sort cells could re-sort as often as they liked.

We also included an additional cell (described below) to test whether the results

vary by the number of profiles presented to the respondents. This experimental

design enables us to test greedoid methods with different data collection tasks and

to illustrate how greedoid methods might be used to explore on how context affects

respondents processing strategies.

5.3.2 Task Difficulty

Greedoid methods can be used to analyze any full- or partial-order respondent task.

We first examine whether the consider-then-rank task is more natural and easier for

respondents than the full-rank task. The results are reported in Figures 5-5 and

5-6. We oriented both axes such that down is better. In the base condition of no

sorting, the consider-then-rank task is seen as significantly more enjoyable, accurate,

an(l engaging (t = 2.2, p = 0.03), saves substantial time (3.75 minutes compared to

8.75 minutes, t = 2.8, p = 0.01), and appears to increase completion rates (94% vs.

86%, t = 1.7, p = 0.09). Sorting (as implemented) mitigates these advantages: neither

attitudes, time, nor completion rates are significantly different between the full-rank
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Figure 5-6: Attitudes toward task difficulty (less is better)

and consider-then-rank tasks when respondents can pre-sort profiles.1 A possible

explanation is that sorting made the full rank task easier (though not necessarily

more enjoyable), while making the consider-than-rank task more complex.

5.3.3 Predictive Ability

We first compare the most general greedoid method (LBA) to the unconstrained addi-

tive models HBRL and LINMAP, as averaged across respondents. Holdout predictions

are based on two metrics (see Table 5.1). Hit rate provides fewer observations per

respondent (2) and leads to more ties, but is not optimized directly by either greedoid

methods or the benchmarks. The percent of violated pairs provides more observations

per respondent (12 potential pairs from two sets of four ranked profiles), but is the

1For the sorting cells, attitudes (t = 0.9, p = 0.37), time (t = 0.4, p = 0.70), and completion rate
(t = 1.1, p = 0.26). Using analysis of variance, there is an interaction between sorting and task for
time, but it is not significant (F = 2.6, p = 0.11). For attitudes only task is significant (F = 4.9, p
= 0.03).
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LBA HBRL LINMAP LBF
Fit (percent pairs) 0.955* 0.871 0.9 6 9 t 0.826
Holdout (percent pairs) 0.745* 0.743 0.737 0.658
Holdout (hit rate) 0.597** 0.549 0.549 0.481

**LBA significantly better than HBRL, LINMIAP, and LBF. *LBA significantly better

than LBF. tLINMAP significantly better than LBA and HBRL. Tests at the 0.05 level.

Table 5.1: Comparison of Fit and Prediction for Unconstrained Models

metric optimized by greedoid methods, and, to some extent, by LINMAP. Empiri-

cally, the two metrics are significantly correlated (< 0.001 level) for all methods and

provide similar comparative qualitative interpretations. 2

As expected the unconstrained LINMAP, which nests LBA and optimizes a metric

similar to the fit metric, provides the best fit. However, LBA fits almost as well. The

more interesting comparisons are on the two holdout metrics. For both metrics, LBA

is better than both benchmarks and significantly better on hit rates. It appears that,

for these data, greedoid methods are more robust than the unconstrained additive

models that could, in theory, fit a lexicographic process. This apparent robustness

is consistent with predictions by Mitchell [48] and Martignon and Hoffrage [45]. We

address the last column of Table 5.1 later in this section.

5.3.4 Comparison to q-compensatory Processes

Following Brdder [9] we examine whether respondents are described better by lex-

icographic or q-compensatory processes. Three comments are in order. First, this

description is paramorphic. We say only that respondents rank (choose, consider)

profiles as if they were following one or the other process. Second, we have some

confidence in the descriptions because LBA predicts better for synthetic respondents

who are lexicographic and a constrained additive model (q-compensatory) predicts

better for synthetic respondents who are q-compensatory (see Section XXX). Third,

for simplicity of exposition, we compare LBA to the HBRL benchmark. This bench-

mark does slightly better than LINMAP in Table 5.1 and, we will see later, better

2For example, correlations between the metrics are 0.70 for LBA, 0.64 for HBRL, and 0.66 for
LINIAP.
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Figure 5-7: Comparison of Holdout Prediction for q-compensatory Models

for a second data set.

Figure 5-7 plots holdout predictions as a function of q. Predictions improve as the

models become less constrained (larger q), consistent with a perspective that some

aspects are either being processed lexicographically or have large relative partworths.

HBRL(q) approaches LBAs holdout percent-pairs-predicted for large q, but falls short

on holdout hit rates.

At the level of the individual respondent, comparisons depend upon the choice of

q. As an illustration we use q = 4. At q = 4 the respondent is acting as if he or she

is making tradeoffs among aspects by weighing their partworths. Furthermore, the

analysis of synthetic data suggests that at q = 4 respondents that are truly compen-

satory are classified as compensatory and respondents who are truly lexicographic are

classified as lexicographic.

For holdout percent pairs, LBA predicts better than HBRL(4) for 56% of the

respondents, worse for 43% of the respondents, and is tied for 1% of the respon-

dents. On average LBAs predictive ability is about 5 percentage points higher than

HBRL(4). The corresponding comparative percentages for hit rates are 46%, 30%,

and 24%.3 On average, LBAs hit rate is about 11 percentage points higher than

HBRL(4). Figure 5-8 and 5-9 provides a visual comparison of the distributions of

holdout metrics for individual respondents. Positive numbers (darker bars) indicate

those respondents for which LBA predicts better than HBRL(4). These percent-

3 At the level of individual respondents, hit rates are coarser measures than the percent of violated
pairs, hence more ties are observed.
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ages and Figures 5-8 and 5-9 suggest that greedoid methods are a viable method

to complement more-traditional methods to evaluate whether respondents are using

compensatory or noncompensatory processes.

5.3.5 Constructed Processes : Full-rank vs Consider-then-

rank; Sorting vs Not Sorting

Behavioral researchers hypothesize that consumers construct their decision processes

as they make their decisions and, hence, that these decision processes can be in-

fluenced by the nature of the decision task. We examine this issue by comparing

the influence of task (consider-then-rank vs. fuill-rank) and the availability of a pre-

sorting mechanism (sorting allowed vs. not allowed). Figures 5-10 and 5-11 compare
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Figure 5-10: Predictive Ability by Experimental Cell, Lexicographic vs. q-
Compensatory Processes : No sorting allowed

the predictive ability (holdout violations) for the four cells of our basic experiment.

Some insights are:

1. Allowing respondents to presort SmartPhones does not have a significant effect

on either LBA or HBRL(4). Task has a significant effect for both LBA and

HBRL(4). 4

2. On average, LBA predicts significantly better than a q-compensatory model in

full-rank cells (t = 6.0, p = 0.0), but not in the consider-then-rank cells (t =

0.4, p = 0.69).

3. A lexicographic model predicts better than a q-compensatory model for more

respondents in the full-rank cells than in the consider-then-rank cells (62% vs.

50%, t = 2.2, q = 0.03). 5

We obtain a similar pattern of results for hit rates with the exception that hit rates

are a coarser measure at the level of the individual respondent (more ties) and require

a relative measure. 6

4Using analysis of variance, task is significant for both LBA (F = 51.1, p = 0.00) and HBRL(4)
(F = 3.7, p = 0.05). Sorting is not significant for either LBA (F = 2.1, p = 0.14) or HBRL(4) (F
= 0.1, p = 0.79).

5This observation is tempered with the realization that the full-rank cells provide more ordered
pairs than the consider-then-rank cells (496 vs. 183, on average).

6 For many respondents the hit-rate prediction of LBA is tied with HBRL(4). Among those that
are not tied, significantly more are fit better with LBA in the full-rank cells than in the consider-
then-rank cells, t = 2.3, p = 0.02.
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Figure 5-11: Predictive Ability by Experimental Cell, Lexicographic vs. q-
Compensatory Processes: Sorting allowed

5.3.6 Constructed Processes: Predictive Ability vs. Effort

Data in the previous section are consistent with a hypothesis that the more-effortful

experimental cells (full-rank vs. consider-the-rank) lead to more lexicographic pro-

cessing. We can also manipulate effort by the number of profiles that the respondent

is asked to evaluate. Indeed, behavioral theory suggests that respondents are more

likely to use a lexicographic process for choice (rank) if there are more profiles (e.g.,

Bettmnan et al [3]; Johnson et al [35]; Lohse and Johnson [43]).

To examine this issue we assigned an additional 86 respondents to a fifth cell in

which respondents evaluated fewer profiles (16 vs. 32) using the consider-then-rank

task. With this manipulation, we found no significant differences in the relative pre-

dictive ability of LBA vs. HBRL(4) between cells (t = 0.2 , p = 0.88 for percent-pairs

predicted and t = 1.0, p = 0.31 for the percent of respondents for whom LBA pre-

dicts better). We obtain the same pattern of results with hit rates. Interestingly,

the differences in effort are also not significant for 16 vs. 32 profiles when the task

is consider-then-rank. 7 Perhaps the number of profiles has less of an effect on con-

sideration than that reported in the literature for choice--an empirical result worth

examining in future experiments. Alternatively, the 16 profile task might have already

been sufficiently difficult to trigger the use of simplifying heuristics for consideration.

We did not include a cell in which respondents were asked to provide full-ranks

7Enjoyment;. interest, and accuracy (2.07 vs. 2.04, t = 0.1, p = 0.90); task time (3.40 vs. 3.75
minutes, t = 0.5, p = 0.64) for 16 vs. 32 profiles in a consider-then-rank task.
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for 16 profiles. However, to gain insight we simulate a 16-profile full-rank cell by

randomly choosing one-half of the 32 profiles for estimation. Predictions degrade

with half the profiles, but the loss is less than three percentage points (80.8% vs.

77.9%, t = 4.3, p = 0.00).8

The effect of task type seems to have a larger impact than the number of profiles.

LBA estimates from the full-rank task predict significantly better than those from the

consider-then-rank task (review Figures 5-10 and 5-11). On average (combining sort

and no-sort cells), 81% of the holdout pairs are predicted correctly in the full-rank

cells compared to 69% in the consider-then-rank cells (t = 2.6, p = 0.01). On the

other hand, the consider-then-rank task took significantly less time to complete in

the no-sort cell (8.75 vs. 3.75 minutes).

The three effort comparisons (full-rank vs. consider-then-rank, 16 vs. 32 profiles

for consider-then-rank, 16 vs. 32 profiles for full-rank) suggest an interesting man-

agerial tradeoff between predictive ability and task time. With specific loss functions

on predictability and task time, such comparisons enable managers to design more

efficient market research studies.

5.3.7 Aspects vs. Features

Finally, we address whether respondents process profiles by features or by aspects

when they use lexicographic processes. Recall that lexicographic-by-features (LBF)

is a restricted form of LBA where respondents rank by features (i.e., all aspects derived

from a given feature must appear next to each other in the aspect order). Because

LBA nests LBF, LBAs fit statistics will be better. However, there is no guarantee that

LBAs holdout predictions will be better than those of LBF. If respondents process

profiles by features, then LBF may predict as well as LBA, perhaps better if LBA

exploits random variations.

Table 5.1 compares LBA to LBF. On average, LBA predicts significantly better

8Hit rates are worse by 2.9 percentage points, but the difference is not significant, t = 1.7, p =
0.00. Because the predicted holdout percentages are based only on the full-rank cells, they differ
slightly from those in Table 5.1.
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Aspect ABA or EBA Affect Consideration* Top Aspectt
$499 EBA 49.2% 26.1%
Flip ABA 32.0% 10.4%

Small ABA 29.4% 10.0%
$299 EBA 19.8% 4.2%

Keyboard ABA 17.3% 7.5%
$99 ABA 14.5% 4.8%

Column sums to 300% over all aspects. tColumn sums to 100% across all aspects. Most

aspects not shown.

Table 5.2: Top Lexicographic Aspects for SmartPhones (for our sample)

on both holdout violations and hit rates. LBA predicts better in all four cells and

significantly better in three of the four cells (t's = 1.8, 7.1, 2.4, and 4.5; p's = 0.07,

0.00, 0.02, and 0.00 in Cells 1-4). However, LBF predicts better for about a third of

the respondents (35% holdout violations and 34% hit rate, no significant differences

between experimental cells).

5.3.8 Managerial Implications

Manufacturers, retailers, or website designers seek to design products, store layouts,

or websites that have (or emphasize) those aspects that strongly influence which prod-

ucts customers select for further consideration. They seek to avoid those aspects that

customers use to eliminate products. In the parlance of product development, these

are the must-have or must-not-have aspects or features (Hauser, Tellis, and Griffin

[29]). Both General Motors and Nokia have indicated to us that the identification

of must-have aspects is an extremely important goal of their product-development

efforts (private communication). Table 5.2 lists the six aspects that were used most

often by SmartPhone respondents and indicates whether they were used to retain

profiles as in ABA or eliminate profiles as in EBA (second column), the percent of

consumers who used that aspect as one of the first three aspects in a lexicographic

order (third column), and the percent who used that aspect as the first aspect in a

lexicographic order (fourth column).

Table 5.2 has a number of implications. Firstly, for our student sample, there are
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clear price segments for almost half the sample high-price is an elimination aspect.

Secondly, flip and small are each acceptance aspects for about 30% of the respondents.

For this sample, any manufacturer would lose considerable market share if it did not

include SmartPhones that were small and flip. The keyboard aspect is interesting.

Keyboard is an acceptance aspect for 17.3% of the respondents and an elimination

aspect for 7.5% of the respondents (not shown). On this aspect, a manufacturer

would be best advised to offer both SmartPhones with keyboards and SmartPhones

without keyboards. Finally, brand, service provider, and operating system are not

high in the lexicographic ordering.

It is interesting that, in our data, price aspects were often, but not always, elimina-

tion aspects, while all other aspects were acceptance aspects. (This is true for aspects

not shown in Table 5.2.) We do not know if this generalizes to other categories. Fur-

thermore, although high-price was the top lexicographic aspect in our study, this may

be a consequence of the category or our student sample. We do not expect price to

be the top lexicographic aspect in all categories nor do we feel that this result af-

fected the basic scientific and methodological findings about lexicographic processing

or predictive ability.

5.4 Computers from study by Lenk et al [42]

We were fortunate to obtain a classic conjoint-analysis data set in which respondents

evaluated full profiles of computers that varied on thirteen binary features: telephone

service hot line, amount of memory, screen size, CPU speed, hard disk size, CD

ROM, cache, color, availability, warranty, bundled software, guarantee, and price.

Respondents were presented with 16 full profiles and asked to provide a rating on a

10-point likelihood-of-purchase scale. They were then given a holdout task in which

they evaluated four additional profiles on the same scale. These data were collected

and analyzed by Lenk et al [42], who suggest excellent fit and predictive ability with

hierarchical Bayes compensatory models. Based on their analysis and our intuition,

we felt that the features in this study were more likely to be compensatory than those
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LBA HBRL HBRL (q = 4)
Fit (percent pairs) 0.899* 0.906* 0.779
Holdout (percent pairs) 0.790* 0.827** 0.664
Holdout (hit rate) 0.686* 0.692* 0.552

**HBRI, significantly better than LBA and HBRL(4). *LBA and HBRL sig-

nificantly better than HBRL(4). Tests at 0.05 level.

Table 5.3: Comparison of Fit and Prediction for Computer Data (Lenk et al [42])

in the SmartPhone study. However, this is an empirical question. 9

We first degraded the data from ratings to ranks. For example, if Profile A were

rated as a "10" and Profile B were rated as a "1," we retained only that Profile A

was preferred to Profile B. Because there were 10 scale points and 16 profiles, there

were many ties-an average of 6.6 unique ratings per respondent. Interestingly, even

though there were many ties, there were approximately 96 ranked pairs of profiles per

respondent ---80% of what would be obtained with full ranks. Because the degraded

data are partial ranks, we can analyze the data with greedoid methods and compare

predictions to HBRL(oo) and HBRL(q). l °

Table 5.3 reports the fit and prediction results for the computer data. As with

the SmartPhone data we address the predictive ability of LBA compared to (1) an

unconstrained additive model and (2) a q-compensatory model. On these data, the

unconstrained additive model predicts better than LBA, significantly so for holdout

pairs. (The difference in hit rates is only one respondent out of 201 respondents.)

However, LBA predicts significantly better than the q-compensatory model.

For the computer data, LBA predicts better for 58% of the respondents compared

to 25% for HIBRL(4); the remainder are tied. We distinguish fewer respondents by

hit rate because hit-rate classification is a higher-variance classification: 32% LBA,

20% HBRL(4), and 47% tied.

Interestingly, LBA on the degraded data does as well as metric hierarchical Bayes

9 There are other differences between the data sets that are worth further study. For example,
the rating task might induce more compensatory processing than the full-rank or consider-then-rank
tasks.

10For the Leuk et al data, HBRL predictions are significantly better than those by LINMAP. For
holdout pairs, LINMAP predicts 0.734 (t = 5.3, p = 0.00). For hit rates, LINMAP predicts 0.597 (t
= 2.6, p = 0.01).
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on the ratings data (0.687, Lenk et al [42, p. 181]) and better than either OLS

(0.637, ibid.) and latent class analysis (0.408, ibid.).ll In this case, a reduction in

effort (ranking vs. rating) may have had little effect on predictive ability. For a

further discussion of ranking vs. rating data, see Huber et al [31].

Table 5.3 is consistent with the analysis of metric data by Kohli and Jedidi [39]

who found that a different lexicographic model (binary satisficing, LBS) fit almost as

well as an unconstrained additive model (0.93 fit pairs for LBS vs. 0.95 for classic

LINMAP; no data available on holdouts). The Kohli-Jedidi context is remarkably

similar to that of Lenk et al: metric ratings of 16 laptop computers described by

memory, brand, CPU speed, hard drive size, and price (in a 3322 fractional design).

Comparing the SmartPhone and computer data, we get surprisingly similar respondent-

level comparisons. LBA predicts at least as well as HBRL(4) for 57% of the Smart-

Phone respondents and 75% of the computer respondents. 12 Kohli and Jedidi [39] did

not test a q-compensatory model, but they did find that an unconstrained additive

model was not significantly different from LBS for 67% of their respondents. Thus, on

all data sets, for more than half of the respondents, noncompensatory models predict

holdout data at least as well as q-compensatory models.

We can also compare the predictive ability of LBA to an unconstrained additive

model. LBA predicts at least as well as HBRL for 49% of the SmartPhone respondents

and 62% of the computer respondents. Thus, even compared to an unconstrained

additive model, LBA is promising as a predictive tool.

1"We compare to the highest hit rate they report that for HB estimated with 12 profiles. For
16 profiles they report a hit rate of 0.670. For other statistics, HB with 16 profiles performs better
than with 12 profiles (ibid, p. 181).

12The corresponding percentages for hit rates are 71% and 80%.
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Chapter 6

Rule-based consideration

In this chapter, we approach consideration set formation from a rule-based perspec-

tive, which can be viewed as a nonlinear generalization of lexicography. Given a

subject's consideration set, we are interested in finding the best set of rules (consist-

ing of logical expressions) that explain the data while meeting a complexity measure

budget constraint. Applying the technique to real data shows that it performs well

compared to a compensatory model of consideration set formation, while being the

simpler both in terms of complexity and explanation.

6.0.1 Related Work

Roberts and Lattin [55] give an overview of research in consideration. Mehta et al

[47] analyze consideration set formation in the context of the cost of information

search. They apply the method of simulated moments to estimate the parameters in

a random-utility model. Gensch and Soofi [19] use an information-theoretic approach

(involving maximizing entropy). Gilbride and Allenby [24] estimate screening rules

in Bayesian framework using MCMC methods. Other have also tried to estimate

elimination rules as part of the overall choice process (DeSarbo et al. [13], Jedidi and

Kohli [32], Jedidi et al. [33], Kim [37], Roberts and Lattin [54], and Swait [65]).

Because consideration set formation can be formulated as a binary classification

problem (with considered and not considered classes), existing classification algo-
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rithims from the pattern recognition / machine learning fields can be applied. Stan-

dard techniques include logistic regression, decision trees, neural networks (NNs), and

support vector machines (SVMs). Certain techniques are more discrete in nature and

hence more relevant to the current discussion.

Consideration set formation problem bears a strong resemblance to the concept

learning task found in machine learning (see Mitchell [48]). In concept learning, which

can be viewed as a special case of classification in general, a boolean-valued function

is inferred from training examples. Early concept learning algorithms were extremely

sensitive to errors in the training data, while later enhancements improved robustness.

Decision trees (e.g., the classification and regression trees (CART) of Breiman et

al [8]) can also be viewed as rule-based. In each node of a decision tree, a question is

asked and the next decision (e.g., branch left or right) depends on the answer. Once

the path through the tree reaches a leaf node, the classification decision corresponding

to that leaf is applied. Each path from the root to a leaf corresponding to class k

can be expressed as a conjunction of conditions, e.g., "If condition A and condition

B and condition C, then assign class k". Furthermore, the collection of all paths

from the root to leaf nodes associated with class k can be viewed as a disjunction of

conjunctions (of conditions). In this chapter, we will be focusing on this natural form

of decision rule.

The main inspiration for our approach comes from a machine learning technique

called the Logical Analysis of Data (LAD) developed by Peter Hammer and others

(see Boros et al [6]). In LAD, logical rules (boolean expressions) are inferred from

training data in order to approximate a boolean function. The main steps are:

1. Generate short positive and negative patterns from the training data.

2. Prune the patterns to form a minimal cover of the training data.

3. Determine weights for the patterns to form an overall/final decision rule.

The overall goal is to discover short logical patterns in the training set that hopefully

generalize well to previously unseen observations. When applied to several standard
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datasets froml the UCI repository, Boros et al [6] report strong performance compared

to other top methods. In particular, their single method applied well across many

different problems.

Our formulation and algorithms bear a strong resemblance to those in LAD, al-

though adapted and extended for the context of individual choice. Specific differences

include:

* Individual level estimation

* Different handling of errors

* Sparseness of data

* Asymmetric accept/reject

These differences require special treatment in our consideration set context.

6.1 Rule-based Model

6.1.1 Notation

As a convention, we will generally use lower case letters for aspects and upper case

letters for profiles (which are sets of aspects). We will let C+ denote the consideration

set and C- represent the set of profiles not considered.

6.1.2 Rule Format

Drawing on decision tree theory, we consider rules that are unions of intersections of

variables (aspects), e.g.,

(a A b) V (c A-d A e) V () (6.1)

We call each intersection expression a pattern (after LAD), and refer to the whole

expression (disjuction of conjunctions) as a rule (or consideration rule). We call
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patterns derived from (or associated with) profiles in C+ positive patterns and those

from profiles in C- negative patterns.

For the rule above, a profile would be said to match it if the profile contained

aspects a and b, and/or contained aspects c and e but not d, and/or did not contain

aspect f. In other words, a rule matches a profile if at least one of its constituent

patterns matches that profile.

6.1.3 Decision Rules

There are several possible ways a decision rule can be constructed and used. An

acceptance rule consists of a set of positive patterns and is applied in the following

way: if a profile matches one or more positive patterns, consider it; else do not

consider it (the default decision). Conversely, a rejection rule consists of a set of

negative patterns and has the following interpretation: if a profile matches one or

more negative patterns, do not consider it; else consider it (the default decision).

It is an open question as to whether consumers are more likely to use rejection

or acceptance rules. Elimination-by-aspects (EBA), one of the early choice heuristic

formulations, focused on rejection in the context of choice. The SmartPhone study

described in Chapter 5 found that the behavior of respondents in the sample were

more consistent with a mixed LBA model than with strict ABA or EBA.

It should be noted that in LAD, both positive and negative patterns are combined

(along with weights) into a final decision rule or discriminant function. In essence,

each pattern participates in a weighted vote. While this approach is also possible

here, it makes the interpretation of the overall rule more difficult and (in our view)

less likely to represent how consumers form consideration sets in practice.

6.1.4 Rule Complexity

Note that any training set (consideration set) can be modeled exactly using this rule-

based formulation. Specifically, we can construct one pattern per profile where the

pattern's positive and negative variables are determined exactly by the presence or
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absence of the corresponding aspects in the profile. Such a decision rule is essentially

saying. "If the profile is one of the considered profiles already seen, consider it." While

this rule achieves perfect performance on the training set, it will likely do poorly on

a previously unseen test set. Thus we would like to enforce some regularization on

the form or size of the rules in order to improve the chances of good generalization to

unseen observations. (See Hastie et al [27] for a discussion of complexity/smoothing

parameters and their effect on the bias-variance tradeoff (and test/generalization

error) .)

As a first pass, we use the total number of aspects across all patterns in a rule

as a measure of rule complexity. For example, the rule (6.1) above would have a

complexity of 6. An important variation on this theme is counting the total number

of symbols as opposed to simply aspects, and possibly assigning weights to symbols

based on the amount of mental processing power required to carry out the various

operations. This variation ties in nicely with the effort-accuracy tradeoff perspective

developed in Payne et al [52].

6.1.5 Measure of Goodness

Given a cap on the allowed complexity, how do we decide which of a given number

of rules is the best? Standard approaches include symmetric and asymmetric loss

functions. In the following section, we use a symmetric loss function such that both

types of errors (i.e., incorrectly including a profile and incorrecting excluding a profile)

are tallied and counted equally.

6.2 Computational Complexity

Before discussing a method for find the best rule given a complexity budget (i.e.,

the rule that induces the least number of errors), we show that the problem is NP-

hard. First. we show that determining whether or not a perfect rule explaining the

consideration data exists is NP-complete.
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Theorem 12 CONSIDERATION-CONSISTENCY is NP-complete.

Proof. We reduce CONSIDERATION CONSISTENCY to SET COVER. Suppose

we are given SET COVER instance with ground set S containing elements x, 2 ,

... , x, a collection D of subsets of S, D, D2, ... , Din, and ksc, the upper bound on

set cover size. We will construct an instance of CONSIDERATION CONSISTENCY

that can be used to solve the SET COVER problem.

Let aspect set A be {al, a2,... , an}, where aspect ai corresponds to subset Di. Let

profile set P be {P1, P2,..., Pm, Y1, Y2 ,... , Ym}, where profile Pi is associated with

Pi = {aj: xi C Dj},

and Yi are dummy profiles:

yi = {}

Finally, let C+ = {Pi}, C- = {Y/}, and kcc = ksc.

For example, the SET COVER instance

would become

First, suppose there exists a set cover D' with jD'j = k < ksc. Then a consistent

rule exists consisting of k patterns each with a single positive variable corresponding
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CONSIDERATION CONSISTENCY

INSTANCE : Set of aspects A, set of profiles P. sets C+, C- C

P, set of (positive) patterns, scalar k

QUESTION : Is there a rule of complexity < k that induces no

errors with respect to C+ and C-?

D1 D2 D3 D4

X 1 1 0 1 0

x 2 0 1 0 0

X3 1 0 0 0

X4 0 0 1 1
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to the subsets in D'. Because D' is a set cover, all xi are covered, which implies

that all Pi are "matched" and thus cause no errors with respect to C+. Therefore, if

CONSIDERATION CONSISTENCY returns "no", it means that no set cover of size

less than or equal to ksc exists.

Conversely, suppose CONSIDERATION CONSISTENCY returns "yes". First

note that each pattern must contain only positive variables. (If a pattern contained

a negative variable, then all Y would be "matched", causing m errors with respect to

C+ and C-.) Second, note that we can trim each multi-variable pattern down to a

single variable (say the first variable). The resulting rule will still be a consistent rule

because each shortened pattern is guaranteed to match at least as many profiles Pi as

it originally did (and still does not match any profiles Y). Finally, because all profiles

in C+ are matched by single-variable rules, it must be the case that the subsets Di

corresponding to the variables in the rules form a set cover in the original problem.

Since CONSIDERATION CONSISTENCY returns a "yes" if and only if the SET

COVER instance was a "yes" instance, CONSIDERATION CONSISTENCY is NP-

complete. W

We now show that the problem of finding the best consideration rule, i.e., the rule

that induces the least number of errors with respect to the data is NP-hard and not

in APX.
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Theorem 13 BEST-RULE-SET is not in APX (unless P = NP).

Proof. The result follows directly from Theorem 12. Since determining if achieving

zero errors is already hard, it is not possible to approximate the problem of minimizing

the number of errors to within a constant factor (because that would mean the decision

problem was easy). O

6.3 Estimation Algorithm

6.3.1 Pattern Generation

Given n aspects, there are 2 d(n) possible patterns of length d (taking into account

both positive and negative orientations-the presence or absence of an aspect). If we

restrict ourselves to patterns that actually occur in at least one of the m profiles in C,

this bound is reduced to m (). In either case, exhaustively enumerating all possible

patterns of all lengths is neither computationally feasible nor desirable. Instead we

generate all patterns that occur in C of length less than or equal to d = 3. (For just

acceptable patterns, we generate all patterns occurring in C+.) The justification for

this decision is similar to that given for LAD, namely that short expressions are more

likely to represent real patterns in the data and have good generalization properties.

6.3.2 Optimization Subject to Complexity Constraint

Given a set of patterns (positive, negative, or both), a complexity "budget", and an

objective function (measure of goodness), the task of determining which patterns to
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INSTANCE : Set of aspects A, set of profiles P, sets C+, C- C

P, set of (positive) patterns, scalar k

SOLUTION : Rule, i.e., a conjuction of patterns, with complex-

ity < k

MEASURE : Number of errors with respect to C+ and C-



include in a consideration rule can be solved using integer programming.

The following optimization problem minimizes the total number of errors (of both

types) induced by a decision rule with complexity less than or equal to k:

minimize E (1 - zi) + 
i:PiCC'+ i:PiEC-

subject to E j > zi
j:Tj matches Pk

Ej ITjyj k

Yj C {, 1}

zi {O, 1}

Zi

Vi (profiles)

Vj (patterns)

Vi (profiles)

where Tj is the jth pattern (or template), ITjl is the complexity (number of aspects)

of pattern j, yj is 1 if pattern j is included in the consideration rule and 0 otherwise,

and zi is 1 if profile i is matched by the consideration rule and 0 otherwise. In the

objective function, for profile i E C+, having zi = 1 (matched) results in no error,

while zi = 0 (not matched) results in an error. Similarly, for i E C-, zi = I (matched)

results in an error, while zi = 0 (not matched) results in no error.

6.4 SmartPhone Dataset

6.4.1 Benchmarks

As a compensatory benchmark, we use Strict LINMAP [62] augmented with cutoffs.

That is, after estimating a partworth vector, all values of a cutoff parameter a are

evaluated and the value that minimizes the number of training errors is selected.

We also consider LBA with cutoffs. After an optimal aspect order is found with

dynamic programming (or a heuristic), we select the a top aspects (to function as a

single acceptance rule) that induce the least number of errors on the training set.
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Figure 6-1: Rule-based Training and Test Error Rates

6.4.2 Results

We estimated Strict LINMAP with cutoffs (SLM), LBA with cutoffs (LBA), and rule-

based consideration rules for complexities ranging from 1 to 12. The consideration

rules were limited to acceptance rules, and the patterns consisted of intersections

of up to d = 3 aspects. The SmartPhone dataset included over 140 subjects that

performed consideration as part of their tasks (and also appeared to fully understand

the holdout tasks).

Figure 6-1 shows the training and test (holdout) error rates as rule complexity

ranges from 1 to 12. (Note that when a subject's consideration data was already

perfectly explained by a rule of size k, that same rule was treated as the best rule for

all larger complexities k + 1, k + 2, etc. The average complexity required to explain

all data perfectly was 5.2.).

As can be seen in the figure, the training error rate decreases quickly as the

complexity increases. Intuitively, it appears that with each new bit (aspect), the

number of errors decreases by a half. Though noisy (due to a smaller number of

profiles in the test set vs training set), the test error appears to decreases and then
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Method Train t Perfect t Test
SLM 0.998 0.965 0.688
LBA 0.938 0.211 0.730*
Rule2 0.923 0.092 0.716
Rule3 0.954 0.296 0.736*

tAll Training values (and Perfect values) significantly different from each other.

*LBA and Rule3 significantly different from SLM and Rule2. All tests at the

0.05 level.

Table 6.1: Comparison of Consideration Set Estimation Methods

level off (perhaps after a slight increase after complexity 3). We might expect (from an

understanding of overfitting vs generalization ability) that the test error rate should

begin to increase once an optimal complexity level was passed. However, it may

be that since the consideration data were perfectly explained after a relatively low

complexity anyway (5.2 aspects on average), there was less opportunity for overfitting.

Table 6.1 shows results for SLM, LBA, and rule-based for complexities 2 and 3.

(The mean number of aspects in the LBA with cutoffs rules was 3.1.) The columns

in the table represent the method, the average fraction of training profiles classified

correctly, the fraction of subjects with zero training errors, and the average fraction

of test profiles classified correctly.

Even though SLM fit the training data the best, it had the worst test performance.

Rule3 and LBA (which had 3.1 aspects on average) predicted holdout consideration

the best. It is interesting to note that Rule2 performed as well or better (though not

statistically significant) than SLM despite using only 2 bits of informations.

Finally, refer back to Figure 6-1. By complexity 12, the data of every subject

is perfectly explained. This is a higher rate than 0.965 achieved by SLM, which

indicates that the rule-based formulation was able to capture nonlinearities that the

linear compensatory method could not.

6.5 Discussion

Consideration is an important topic in consumer decision making. Choice sets in mod-

ern product categories (e.g., digital cameras and cell phones) appear to be growing in
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both size and complexity, and most consumers need to use some sort of simplification

to wade through them. Thus, analyzing consideration-then-choice is important for

understanding decision behavior.

We have proposed a technique for estimating consideration rules built up from

short logical expressions. Using integer programming, we were able to choose the

best patterns to include in a rule given a complexity constraint (budget). When

applied to the SmartPhone dataset, the rule-based approach outperformed a more

complex compensatory approach.

There are several possible reasons for the success of the simpler model. Using

concepts from machine learning, it could be that the simpler model was more robust

in the face of error. Even though the linear compensatory approach could model most

consideration behavior perfectly, having so much freedom in choosing the continuous

weights might have allowed it to fit the noise or error in the training data. Another

possible explanation is that the rule-based approach allows for nonlinear relationships

(e.g., interactions between aspects) to be modeled. However, the benefit from this

might have been slight for this dataset considering LBA performed on par with rules

of complexity 3.
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Chapter 7

Conclusion

7.1 Contributions

In this thesis, we have added to both the theory and practice of noncompensatory

decision processes. We introduced several new lexicographic models for consideration

and choice and a rule-based decision process for consideration. We also proposed a

constrained compensatory model that can help classify individuals as truly compen-

satory or not.

We formulated several noncompensatory inference problems and analyzed their

computational complexity. The polynomial nature of some of the problems was shown

by applying the theory of greedoid languages (for the first time in the field of mar-

keting science). The harder problems were shown to be not likely approximable to

within a constant factor.

Exact greedy algorithms were developed for the easy problems with greedoid struc-

ture, while exact dynamic programming algorithms were constructed for the hard

problems. In addition, several local search heuristics were analyzed in terms of effi-

ciency and the goodness of the bounds they could supply the dynamic programming

algorithm. Ultimately, it was shown that the exact DP method (with enhancements)

is robust and scalable. The very fast running times mean that researchers utilizing

the method will not be bogged down with computation. Furthermore, future appli-

cations where noncompensatory inference must be done on the fly (e.g., web-based

115



dynamic surveys) seem feasible.

Finally, the methods were tested on several datasets. Not only were the algorithms

found to be effective, but several interesting behavioral questions were explored.

7.2 Future Work

Further investigation into noncompensatory inference can proceed along several di-

mensions. Some of these topics have already begun to be taken up by other re-

searchers.

Clustering Similar to latent class methods in traditional conjoint analysis, it may

be beneficial to cluster respondents into several clusters and estimate a single

lexicographic strategy for each cluster. One possible way to perform the per-

cluster estimation would be to weight each possible pair of profiles according to

the observed preferences in the cluster and then solve the MIN WEIGHTED

ERRORS problem.

Nearest Neighbor Shrinkage In Hierarchical Bayes style approaches, population-

level information is used to improve individual-level estimation. A possible

extension to noncompensatory inference (similar to the previous point on clus-

tering) would be to adjust weights for profile pairs perferences to be a combina-

tion of the individual's observed preferences and those of other individuals that

are "close" by according to some metric.

Hybrid Decision Processes Perhaps the most interesting extension would be to

consider individuals with mixed or hybrid decision strategies, i.e., sometimes

noncompensatory and sometimes compensatory. It seems possible to estimate

a hybrid model that allows only a certain number of aspects to be lexicographic

with integer programming.
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Appendix A

Experimental Designs

A 32 x 20 design was generated in MATLAB with the following commands:

nr = 32;

nc = 20;

X = cordexch(nc, nr);

The design (with 1 and -1 recoded to 1 and 0) is given in Table A. The D-

efficiency and A-efficiency of the design (when coded in were measured with the

following commands:

deff = 1 / (nr * det(inv(X'*X))^(1/nc))

aeff = 1 / (nr * trace(inv(X'*X)) / nc)

yielding

deff = 0.97690

aeff = 0.95347

Inl a similar way, the 64 x 40 design shown in Tables A and A was generated. This

design had

deff = 0.97414

aeff = 0.94849
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00011000
01001000
1 1 0 1 1 1 1 0
10010100
0 1 0 1 0 1 1 0
1 1 1 10001
00010010
11000010
1 1 1 0 0 1 1

01001110
11010000
0 1 1 1 1 0 0 1
0 1 1 1 1 1 1 0
01100011
1 1 0 0 1 0 0
1 0 1 1 1 1 1

00001101
0 1 1 0 0 0 0 0
1 0 1 1 1 0 0 1
10001011
0 1 1 1 1 1 1 1
00000101
0 1 1 0 1 1 1

1 0 1 1 1 1 1 0
00000011
11010101
10101100
10101010
11000101
10011001
00110100
10100110

1000010
0 (011010
1010110
1 ( 0 0 0 0 1

0011111
0111010
1111001
1110100
1110011
0101001
0100101
101 1001
1101101
1001100
1101011
0100010
1110111
0000110
0101100
0001111
1000000
0111000
0010111
001 1000
1100000
1011100
1110100
0010001
0000001
1001111
0100110
1001010

01000
00101
10001
0 0 1 0 0

01010
10100
10111
00010
01000
11000
11101
01011
00100
01101
10011
01111
11100
10010
00000
00111
10110
00010
10001
11001
11001
11110
01011
11110
00001
11010
01111
01100

Table A.1: 32 x 20 experimental design
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01101010110110
10101110111000

0 1 0 111 0 0 1 0 1 1 0

1 0 0 00 1 1 0 0 111 0 0
111 0 0 1 0 0 0 0 0 0 1

01110011 101001
0 1 0 00 1 0 0 0 1 0 111

01110101101000
10110011010100

0 1 111 0 1 0 1 11 1

11111010100101
0 0 0 11 0 0 1 0 111 0 0

1011 1101000010
00011001110010
11011111110000
11011110000111
00001111101101
11001011011011
00111011010111
01010110101100
1001 1000001111
01001001110100

0 1 0 1 0 1 1 1 1 1 0 0 1

11100001101110
00110000001111
11101000001100
00000000110001
1 0 0 0 00 11 0 11 0 11

11101100001110
1 0 11 1 0 0 1 0 1 0 1 0

01 0 0 1 0 1 0 1 0 11 0 0

0 1111100011001

1111
0101
1010
0011
0101
1110
0000
1010
0110
0 1 0
0001
0100
0110
1101
1001
1110
1100
0011
1001
1000
0010
0110
1100
1111
0100
1001
0000
1010
1100
0000
0010
01110 1 1 1

0010
0110
1111
1111
1101
0111
1010
1110
0111
1001
1011
1000
0000
1101
1010
1011
0111
0001
0100
0101
0110
0011
1100
1000
1011
0001
0000
1010
0010
0000
1100
00110 1 1

101101101110011
110110101010100
001010011001100
111100000100101
100010001010011
011010000000011
101111100010010
100111101110111
110111000101010
100000110111011
010011110100000
100000011001010
111100111100100
101111010110000
101000001001011
010110001110101
111 (0 111 0 111111 0
001110100111000
000110100000101
100101011000000
111011110000111
000001000000110
011101111100001
1 0 1 0 1 0 0 0 0 0 0 11 0 1

101100101010100
010110011010011
011110001101111
110011001011000
001111010101010
000001000110001
011100000111100
001001011011101

011
000
011
101
110
000
010
111
111
101
011
001
110
101
111
011
001
101
100
110
111
100
111
011
101
101
011
110
110
001
010
110

Table A.2: First half of 64 x 40 experimental design
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001000011
101101000
111000111
000011001
101001 100
010111000
011101100
100100111
100101010
000000110
001000100
000000100
110111111
000101000
011100000
000011001
001101001
11011011 0
001111110
000110100
010000110
010010001
011111101
111010010
110011000
010100011
100111000
101010000
100001111
010011011
100101010
110101111

00111100110
01100011111
1 1 1 0 1 0 1 0 1

01000010011
10000110111
0 1 0 1 0 1 0 0 0 0 1
1 0 11 0 0 0 0 1 0

001101 1 0 0 1 0
100100001 10
0001 1 1 0 1 0 11
0 1 0 1 1 0 0 1 111
1 0 1 1 1 1 1 1 0 0 0
1 0 1 0 1 1 0 1 0 0 1
10101110100
00000111100
01001010110
00110111001
010111 10001
11101000101
01101000100
01100110111
10011010010
0100100
0000000
0011001
1101101
1100111
0111110
0100000
1111011

1110
1000
1111
1101
1010
1100
1001
1100

00111000001
11101011110

00010011
11010100
11010010
00010110
10111101
11111011
01100000
10101001
01000111
00011111
01100010
11110111
00110110
00001010
00101110
11100101
11011101
01000100
10000001
00111101
11000011
10001011
00011011
11101111
00110001
01101110
01010011
10000100
01101011
00100101
10100010
01011001

0011011011
0101111100
1001110010
1101111010
1011001000
0011011000
1110000100
0100010100
0011101101
1100101000
0011001110
0011110100
0001001010
1111000111
0000010010
0010000011
0000100011
0011110111
0110111010
1001101101
1101000001
0101101110
0001110101
0111101000
0111110011
1101011000
1000010001
1101000000
1110110110
1110110000
0100100011
0111001010

Table A.3: Second half of 64 x 40 experimental design
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10
01
1 1

00
10
01
10
00
1 1

11
00
10
10
01
10
01
00
00
10
11
01
00
1 1

01
10
10
00
10
10
11
1 1
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