
Online Optimization in Routing and Scheduling

by

Michael Robert Wagner

M.Eng. in Electrical Engineering and Computer Science
Massachusetts Institute of Technology (2001)

B.S. in Electrical Engineering and Computer Science
Massachusetts Institute of Technology (2000)

B.S. in Mathematics
Massachusetts Institute of Technology (2000)

Submitted to the Sloan School of Management
in partial fulfillment of the requirements for the degree of

Doctor of Philosophy in Operations Research

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June 2006

(Massachusetts Institute of Technology 2006. All rights reserved.

A uthor S S.......o M
Sloan School of Management

May 18th, 2006

Certified by.................
Patrick Jaillet

Edmund K. Turner Professor
ThesisSupervisor

Accepted by........
........................ Orlin........James B. Orlin

Edward Pennell Brooks Professor of Operations Research
Co-director, Operations Research Center

ARCHIVES

A RSSACHUSETTS INSTU'iTE
OF TECHNOLOGY

JUL 2 4 2006

LIBRARIES
L___~~~~~~~~~~

2

Online Optimization in Routing and Scheduling

by

Michael Robert Wagner

Submitted to the Sloan School of Management
on May 18th, 2006, in partial fulfillment of the

requirements for the degree of
Doctor of Philosophy in Operations Research

Abstract
In this thesis we study online optimization problems in routing and scheduling. An
online problem is one where the problem instance is revealed incrementally. Decisions
can (and sometimes must) be made before all information is available. We design and
analyze (polynomial-time) online algorithms for a variety of problems. We utilize
worst-case competitive ratio (and relaxations thereof), asymptotic and Monte Carlo
simulation analyses in our study of these algorithms.

The focus of this thesis is on online routing problems in arbitrary metric spaces.
We begin our study with online versions of the Traveling Salesman Problem (TSP) and
the Traveling Repairman Problem (TRP). We then generalize these basic problems
to allow for precedence constraints, capacity constraints and multiple vehicles. We
give the first competitive ratio results for many new online routing problems. We
then consider resource augmentation, where we give the online algorithm additional
resources: faster servers, larger capacities, more servers, less restrictive constraints
and advanced information. We derive new worst-case bounds that are relaxations
of the competitive ratio. We also study the (stochastic) asymptotic properties of
these algorithms - introducing stochastic structure to the problem data, unknown
and unused by the online algorithm. In a variety of situations we show that many
online routing algorithms are (quickly) asymptotically optimal, almost surely, and we
characterize the rates of convergence.

We also study classic machine sequencing problems in an online setting. Specifi-
cally, we look at deterministic and randomized algorithms for the problems of schedul-
ing jobs with release dates on single and parallel machines, with and without preemp-
tion, to minimize the sum of weighted completion times. We derive improved compet-
itive ratio bounds and we show that many well-known machine scheduling algorithms
are almost surely asymptotically optimal under general stochastic assumptions.

For both routing and sequencing problems, we complement these theoretical deriva-
tions with Monte Carlo simulation results.

Thesis Supervisor: Patrick Jaillet
Title: Edmund K. Turner Professor

3

4

Acknowledgments

This dissertation represents the final chapter of my decade-long education at MIT

and there are many people to thank. I will do my best to acknowledge everyone.

First and foremost, I would like to thank my thesis advisor Patrick Jaillet. I

am deeply indebted to Patrick for his research guidance, generous support and true

interest in my well-being. I could not have had a better advisor. To be truthful,

words are not sufficient to express my gratitude. I am also grateful to the other

members of my thesis committee, Michel Goemans and Jim Orlin, for their help and

guidance over the years in academic as well as other affairs. I thank Andreas Schulz

for numerous occasions where he gave me great advice. I am also thankful for the

wonderful staff at the ORC - many thanks are due to Paulette and Laura for the

countless favors over the years. Thanks to Andrew and Veronica are also due. I also

thank Vladimir Barzov for implementing many of the algorithms in this thesis as well

as for collaborating on a couple of theoretical problems.

Of course, the creation of this thesis has been supported by the friendship of

many people over the years. In the ORC, I must especially thank Margr6t (I couldn't

have wished for a better officemate), Katy (fellow Course 6 alum), Juliane (aka

Blondie/Cookie) and Mike M (fellow ex-frat boy) for their true friendship and sup-

port over the last few years. Also, commiseration with Guillaume, Alex B. and Elodie

made the academic recruiting process bearable. Carol, Lincoln and Yann always con-

tributed to making the ORC a fun and social place and I am grateful. Finally, I must

not forget those who passed out of this place before me: special thanks to Agustin,

Nico and Jose (aka Mula) for their friendship and advice. Special thanks are due

to Jose for our fruitful research collaboration (which appears as Chapter 3 in this

thesis).

Friends outside of the ORC have also been a great source of strength throughout

the years. Ever since being undergrads together at MIT, I have truly valued the

friendship of Rita (the sister I never had), Dave (my academic partner in crime) and

Ramy (my Buddha advisor). Crystal, who escaped the East Coast years before me,

5

has been there for me through thick and thin and I am grateful for her support and

friendship. Thanks are due to Alex V. for always hosting me during my NYC jaunts

and for being a true friend. I thank Sandra, my Californian friend in Massachusetts,

for her friendship and support during my last couple of years on the East Coast.

Finally, I must mention and thank the Slack Pack, particularly Kup, Drunkard and

Big Daddy; these slackers were always there for me when I needed them.

Finally, there is family. This thesis would not have been possible without the

support. of my family. First, I must thank my grandfather, who first told me of a

magical place called MIT a lifetime ago. My entire Peruvian family has always been

behind me 100% and I am eternally grateful to them. I thank Maximina for her

support and excellent meals. I thank my Dad for always being there with a ready

ear. Finally, I thank my Mom, whose support and love always rose above the rest.

Cambridge, May 2006

Michael R. Wagner

6

Contents

1 Introduction

1.1 Applications of Online Optimization

1.2 Online Optimization Problems and Algorithms

1.2.1 Definitions.

1.2.2 Competitive Analysis .

1.2.3 Comparision with Complexity Theory

1.3 Literature Review .

1.3.1 Routing Literature Review

1.3.2 Machine Scheduling Literature Review

1.4 Thesis Outline and Contributions

1.4.1 Chapter 2: Online Routing Optimization Problems

1.4.2 Chapter 3: Online Machine Scheduling Problems .

1.4.3 Chapter 4: Resource Augmentation in Online Routing

1.4.4 Chapter 5: Stochastic Asymptotic Analysis

1.4.5 Chapter 6: Computational Results.

1.4.6 Chapter 7: Conclusion and Future Work

2 Online Routing Optimization Problems

2.1 Introduction
2.2 The Online TSP and Algorithm PAH

2.2.1 Polynomial-time Online Algorithms: PAH-p . . .

2.3 Generalized Online Routing I: Precedence and Capacity

and Algorithm PAH-G

33

. 33

. 34

. 36

Constraints

. 38

7

13

. . . 15

.. . 16

... 16

.. . 17

... 20

. . . 21

. . . 21

.. . 23

.. . 24

.. . 24

.. . 25

.. . 27

.. . 29

.. . 31

.. . 31

2.4 Generalized Online Routing II: Multiple Vehicle Routing and Algo-

rithm PAH-m

2.5 The Online TRP.

2.6 The Online k-TSP

3 Online Machine Scheduling Problems

3.1 Introduction

3.2 Preliminaries

3.3 A Deterministic Online Algorithm for PIrj I EwjCj

3.4 A Randomized Online Algorithm for PIrj I Ej wjCj

3.5 A Randomized Online Algorithm for PIrj,pmtnl Ej wjCj

4 Resource Augmentation in Online Routing

4.1 Introduction.

4.2 Information Resource Augmentation: Disclosure Dates

4.2.1 The Online TSP on R

4.2.2 The Online TSP on M

4.2.3 The Online TSP with Multiple Salesmen on M4

4.2.4 The Online TRP on M

4.3 Single Server Resource Augmentation

4.4 Multiple Server Resource Augmentation

4.4.1 Pure Speed Augmentation

4.5 Resource Augmentation for the Online k-TSP

4.5.1 Constraint Augmentation.

4.5.2 Speed Augmentation.

4.5.3 Combining Speed and Constraint Augmentation

5 Stochastic Asymptotic Analysis

5.1 Introduction.

5.2 Deterministic and Stochastic Convergence

5.2.1 Deterministic Convergence.

8

41

45

46

49

49

50

52

55

64

75

... . 75

... . 76

... . 77

... . 87

... . 91

... . 94

... . 98

... . 100

... . 104

... . 104

... . 105

... . 105
106

107

107

108

109

5.2.2 Stochastic Convergence

5.3 Online Routing Preliminaries

5.3.1 City Locations.

5.3.2 City Release Dates

5.3.3 Objectives

5.3.4 Useful Limit Results.

5.3.5 General Technique for Proving Asymptotic

5.3.6 On the Choice of Online Algorithm

5.4 Almost Sure Capacity Augmentation

5.5 The Online TSP with Precedence Constraints . .

5.5.1 Algorithms and Bounds

5.5.2 Order Statistic Release Dates

5.5.3 Renewal Process Release Dates

5.6 The Online TSP with Capacity Constraints . . .

5.6.1 Algorithms and Bounds

5.6.2 Order Statistic Release Dates

5.6.3 Renewal Process Release Dates

5.7 The Online TRP with Precedence Constraints . .

5.7.1 Algorithms and Bounds

5.7.2 Order Statistic Release Dates

5.7.3 Renewal Process Release Dates

5.8 Online Machine Scheduling Preliminaries

5.8.1 Stochastic Assumptions.

5.8.2 Technical Details.

5.9 Single Machine Minsum Online Scheduling

5.9.1 Online 11rj ,pmtnlI E wjC

5.9.2 Online lr j wjCj

5.10 Parallel Machine Minsum Online Scheduling . . .

5.10.1 Online Qlrj,pmtnlj Cj

5.10.2 Online Pirj j Cj 144

9

.

.

. ., . .

. . . . ·.

. · . . .

109

.... 111

.... 111

.... 112

113

113

115

115

116

117

117

120

123

124

124

125

128

128

129

133

.... 134

136

.... 136

137

.... 137

137

139

.... 140

140

6 Computational Results

6.1 Introduction

6.2 The Online TSP on R+..................

6 2.1 On Rates of Convergence and Regime Behaviors

6.3 The Online TSP on [0, 1]2

6.3.1 Fast Asymptotic Optimality

6.3.2 Intriguing Behaviors.

6.4 The Online TRP on [0, 1]2

6.4.1 Fast Asymptotic Optimality

6.4.2 Divergence

6.5 Online Machine Scheduling Problems

6.5.1 NAS

6.5.2 NASR

6.5.3 PASR

6.5.4 Observations

7 Conclusion and Future Work

7.1 Summary of Thesis.

7.2 Future Research

Bibliography

Appendix A

A.1 Technical Details Concerning Equation (3.5)

A.1.1 Existence of y E (0, 1).

A.1.2 Uniqueness of y E (0, 1).

A.1.3 Feasibility of f((a): m E (0, 1), Vm >

A.1.4 Calculation showing limm-,o m = 1 .

A.1.5 Calculation showing limm-0 Cm = 1 .

A.2 Technical Details for Chapter 5

.

.

.

.

.

.

10

145

145

145

148

153

153

153

156

157

158

158

159

160

162

163

165

165

166

169

177

177

177

178

178

178

178

179

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

List of Figures

3-1 The competitive ratio bounds 1 + Cm as a function of m. 59

3-2 The competitive ratio bounds 1 + ym as a function of m. 68

3-3 The competitive ratio bounds 1 + Cm and 1 + ym as a function of m. . 73

4-1 Sample trajectory of an optimal offline algorithm 78

4-2 Sample trajectory of the MRIN algorithm. 79

4-3 Sample trajectory of the MLIB algorithm. 80

6-1 Plots of P versus n. In all graphs, E[X] = 1. On the top, E[L] = 10;

in the middle, E[L] = 1; on the bottom, E[L] = 0.1. 147

6-2 Behavioral Regime 1 149

6-3 Behavioral Regime 2 150

6-4 Behavioral regime 3. 151

6-5 Upper bounds on the ratios of the cost of PAH to the optimal offline

cost, as a function of n. Each data point is the average of 20 trials.

The top plot considers release dates that are uniformly distributed on

[0, 1]. The bottom plot considers release dates that are generated from

a Poisson process of unit parameter 154

6-6 Upper bounds on the ratios of the cost of PAH to the optimal offline

cost, as a function of n. The top, middle and bottom plots consider

release dates that are uniformly distributed on [0, 5], [0, 8] and [0, 10],

respectively. These plots consist of single sample paths 155

6-7 Upper bounds on the ratios of the cost of SIOR to the optimal offline

cost, as a function of n. Each data point is the average of 20 trials. 157

11

6-8 Upper bounds on the ratios of the cost of SIOR to the optimal offline

cost, as a function of n. This output is a single sample path 159

12

Chapter 1

Introduction

The Traveling Salesman Problem (TSP) is one of the most intensely studied problems

in optimization. In one of its simplest forms we are given a metric space and a set

of points in the space, representing cities. Given an origin city, the task is to find

a tour of minimum total length, beginning and ending at the origin, that traverses

each city at least once. Assuming a constant speed, we can interpret this objective

as minimizing the time required to complete a tour.

The TSP is relevant in many settings. Usually, but not exclusively, the TSP is

useful in the solution of transportation problems, such as designing routes for buses,

the everyday routing of pickup/delivery trucks, designing transportation networks,

etc. Less obvious applications include Very Large Scale Integration (VLSI) design

and genome sequencing. The TSP is also central to the solution of more complicated

problems, such as fleet organization and routing, capacitated routing and many other

routing problems with various constraints.

The assumption that problem instances are completely known a priori is unrealistic

in many applications. Taxi services, buses and courier services, for example, require

an online model in which cities (points) to be visited are revealed over time, while the

server is en route serving previously released requests. Therefore, we are motivated

to consider online versions of the TSP. To make this notion more precise, we return

to the TSP definition where we minimize the time needed to visit all cities and return

to the origin. We also add the restriction that each city must be visited on or after

13

its release date; in this case the problem is known as the "TSP with release dates."

The online TSP is simple: Each city is only revealed at its release date, independent

of the salesman's location. Before a given city's release date, the online algorithm

is not aware that the city exists; furthermore, the number of cities is not known a

priori either. Note that, in general, we do not introduce any stochastic information;

there are no distributions nor forecasts for the city locations, release dates or even

the number of cities.

The focus of this thesis is on designing and studying algorithms for various online

problems in routing and scheduling. We analyze algorithms with and without compu-

tational efficiency requirements. In addition to the online TSP, we also study other

online routing problems, such as the online Traveling Repairman Problem (TRP),

where the objective is to minimize the weighted sum of times that cities are first vis-

ited, the online k-TSP, where the server must pick a subset of cities of size k to visit,

the online TSP with multiple vehicles, the online TSP with precedence and capacity

constraints, the online TRP with precedence constraints and several hybrids of these

problems. In most cases, we study the situation where city locations are elements of

a generic metric space of arbitrary dimension. We also study online machine schedul-

ing, focusing on multiple machine scheduling with the objective of minimizing the

weighted sum of job completion times.

We evaluate algorithms for these online problems using a variety of methods. We

use the competitive ratio, which is defined as the worst case ratio of the online al-

gorithm's cost to the cost of an optimal offline algorithm. An offline algorithm is

one that is provided with all the problem data a priori. We also consider resource

augmentation (only for online routing), where we give the online algorithm additional

resources. The motivation for resource augmentation is to preclude the worst-case in-

stances that induce unrealistic competitive ratios; in this way, the competitive ratios

we derive are more practical and meaningful. We quantify the improvement in com-

petitive ratio of giving the online algorithm additional resources, such as (a) advanced

information, (b) faster speeds, (c) additional salesmen/servers, (d) larger capacities

and other resource improvements. Finally, we also use the asymptotic competitive

14

ratio, which is loosely defined as a competitive ratio for "large" problem instances;

using this approach, we are able to show that, under certain conditions, many online

algorithms are (quickly) asymptotically optimal.

Outline: The rest of this chapter is organized as follows: In Section 1.1, we

further motivate our study of online optimization by discussing a number of applica-

tions. In Section 1.2 we give the general definitions and terminology used in online

optimization. In Section 1.3, we give a literature review of problems in online routing

and machine scheduling. Finally, in Section 1.4, we summarize the contributions of

this thesis.

1.1 Applications of Online Optimization

In this section, we discuss a number of applications of online optimization and the

related discipline of real-time optimization. Real-time optimization essentially stud-

ies the same type of problems that are studied in online optimization, but from a less

theoretical point of view. Essentially, real-time optimization solves problems where

the problem instance is again revealed incrementally, but the focus is on (fast) practi-

cal algorithms and heuristics that solve quickly and give good solutions, but without

theoretical performance guarantees.

We first discuss applications in routing and scheduling. FedEx and other courier

companies offer many real-time services. For example, FedEx provides same day

pickup and delivery. In many cases, there exist data for customers that request these

services and forecasts can be created to help in designing routes. However, in the case

where FedEx is beginning service in a new area, online and real-time optimization is

a more appropriate approach until data can be gathered about the customer base.

Another application is in the real-time fleet management where real-time information

is used to manage a fleet of vehicles; see Yang, Jaillet and Mahmassani [71]. A

third example comes from a rather new industry: Jet taxis. A jet taxi is a small jet

that serves regional airports; customers can request transportation from one airport

to another in real-time. Since this is a new industry, data is not yet available to

15

create forecasts of customer demand, so online and real-time optimization is again

appropriate for analyzing these problems. Management of a fleet of taxis can also

benefit from online analysis. Considering online machine scheduling, there are many

applications in manufacturing. For a very interesting example, consider the case study

presented in Ascheuer, Grotschel and Rambau [7]. Applications in warehousing also

exist: consider the real-time orders that amazon.com receives and must fill quickly

(e.g., customers requesting next day delivery).

There are also a number of applications of online optimization in computer science.

For example, paging in a memory system is one of the first applications of online

optimization. Searching an unknown domain for a prize is also popular (e.g., see

Jaillet and Stafford [42]); this latter problem has applications in robotics. Routing

and call admission in communications networks are also popular areas of research in

online optimization.

1.2 Online Optimization Problems and Algorithms

1.2.1 Definitions

An online optimization problem is one where the problem instance is revealed in-

crementally. Decisions can or must be made before the entire problem instance is

revealed. Any algorithm that gives a solution to an online problem is denoted an

online algorithm.

Let I denote a complete instance of an online optimization problem. We partition

I into a sequence of requests Hi: I = (1, a2,..., an). These requests are revealed

incrementally and collectively define the problem instance. In general, the number of

requests n is not known a priori. There are two main frameworks for revealing these

requests: sequentially and dynamically.

In the sequential model, when ai is revealed, a decision by the online algorithm

must be made before -i+l is revealed. The well-known online k-server problem (see

Borodin and El-Yaniv [18]) is of the sequential type.

16

Online problems under the dynamic model usually have a time component. In this

model, the requests are revealed dynamically over time, irrespective of the actions of

the online algorithm. The time that a request is revealed is denoted the request's

release date. In this thesis, we exclusively use the dynamic online model.

Definitions Applied to Online Routing

We briefly indicate how the above general definition of online optimization fits into our

study of online routing problems. Each request i is revealed to the online algorithm

at the request's release date. Additionally, each ai will consist of a set of cities

and possibly some extra data (e.g., city weights for the online Traveling Repairman

Problem). Note that if each ai consists of a single city, we have the online TSP. More

formal problem definitions will be found in the subsequent chapters.

Finally, a note on terminology. "Cities," "points," and "locations" are used inter-

changeably, as are "Salesman," "server" and "vehicle" (though we attempt to adhere

to common usage based on the underlying problem definition).

Definitions Applied to Online Machine Scheduling

We briefly indicate how the above general definition of online optimization fits into

our study of online machine scheduling problems. Each request ai is revealed to the

online algorithm at the request's release date. Each i will correspond to a job and

will consist of the job's weight and processing time. Again, more formal problem

definitions will be found in the subsequent chapters.

1.2.2 Competitive Analysis

We now describe a framework for evaluating the quality of online algorithms. For

simplicity, we consider only minimization problems. Central concepts in the analysis

of online algorithms are the notions of competitiveness and the competitive ratio.

An online algorithm is said to be r-competitive (r > 1) if, given any instance of the

problem, the cost of the solution given by the online algorithm is no more than r

17

multiplied by that of an optimal offline algorithm:

Costonline(I) < rCostoptimal(I), V problem instances I.

The infimum over all r such that an online algorithm is r-competitive is called

the competitive ratio of the online algorithm. An online algorithm is said to be

best-possible if there does not exist another online algorithm with a strictly smaller

competitive ratio.

We may also define asymptotic competitiveness when there is a natural notion

to the size of the problem. Let n Z+ index the size of the problem instance;

symbolically, In is a problem instance of size n. We can say that an online algorithm

is asymptotically r-competitive if there exists a no > 0 such that for all n > no,

COstonline(In) < rCostoptimal(In), V problem instances In.

We note that the competitive ratio is a worst case bound and some say it is too

pessimistic a measure for evaluating online algorithms. Throughout this thesis, we

provide relaxations of the competitive ratio for evaluating our online algorithms.

Randomized Online Algorithms

In this thesis, we also consider randomized online algorithms. A randomized algorithm

is a probabilistic distribution over a set of deterministic algorithms. Two runs of a

randomized algorithm on the same instance can result in two different outputs.

Competitive analysis considers other factors in the context of randomized online

algorithms. Implicit in the definition of the deterministic competitive ratio was the

notion of an offline adversary that gives the online algorithm a worst possible instance.

In other words, an offline adversary knows all details of an online algorithm and gives

an instance that induces the competitive ratio. When dealing with randomized online

algorithms, the definitions of the competitive ratio and competitiveness depend on

how much the adversary knows about the randomization. In all cases, we now compare

the online cost with an adversarial cost.

We introduce three adversaries that are used in the analysis of randomized on-

18

line algorithms. These adversaries are denoted the oblivious, adaptive-online and

adaptive-offline adversaries. We exclusively utilize the oblivious adversary in this

thesis; we define the other two adversaries for completeness.

The oblivious adversary knows the randomized online algorithm as well as the

distribution that underlies the randomness. However, the oblivious adversary has

no information about the realizations of the randomness underlying the randomized

algorithm. Therefore, the oblivious adversary creates a problem instance a priori

without seeing any of the actions of the online algorithm. The adversarial cost is

deterministic and equal to the optimal offline cost. In this case, in the definition

of the competitive ratio, we simply replace the cost of the online algorithm with its

expected cost:

E [Costonline(I)] < rCostoptimal(I), V problem instances I.

The adaptive-online adversary knows all probabilistic realizations of the random-

ized online algorithm up to the current time. In this case, the adaptive-online ad-

versary creates the problem instance in real time and must also serve the created

instance in real time. Therefore, the probabilistic adversarial cost is calculated online

and is not necessarily the optimal offline cost on the resulting instance. The definition

of the competitive ratio is modified as follows:

E [Costonline(I) - rCostadaptive-online(I)] < 0, V problem instances I;

note that we use Costadaptive-online(I) rather than Costoffline(I) in the definition of the

competitive ratio for the adaptive-online adversary.

The adaptive-offline adversary again knows all probabilistic realizations of the

randomized online algorithm up to the current time and creates the problem instance

in real time. However, the probabilistic adversarial cost is the optimal offline cost.

The definition of the competitive ratio is modified as follows:

E [COStonline(I) - rCostoffline(I)] < 0, V problem instances I.

19

We conclude this section with some standard implications taken from [18]. If

Cobliviou.s, Cadaptive-online and Cadaptive-offline are the competitive ratios for a given ran-

domized online algorithm against oblivious, adaptive-online and adaptive-offline ad-

versaries, respectively, then

Coblivious • Cadaptive-online < Cadaptive-offline.

Futhermore, we have the following results.

Theorem 1 ([18]) If there exists a c-competitive randomized online algorithm against

an adaptive-offline adversary, then there also exists a deterministic c-competitive on-

line algorithm.

Theorem 1 states that randomization does not help to improve competitive ratios

with respect to an adaptive-offline adversary.

Theorem 2 ([18]) If there exist a cl-competitive randomized online algorithm against

an adaptive-online adversary and a c2-competitive randomized online algorithm against

an oblivious adversary, then there also exists a randomized online algorithm that is

clc2-competitive against an adaptive-offline adversary.

1.2.3 Comparision with Complexity Theory

The study of online algorithms has many similarities to the study of approximation

algorithms. The design of online algorithms addresses the situation where there is

a limitation on information. Approximation algorithm design addresses the situa-

tion where there is a limitation on computational power. In both cases, a worst

case measure is usually applied: the competitive ratio and the approximation ratio,

respectively.

In this thesis, we consider both pure online problems, where we are not concerned

with computational issues, as well as problems where we are concerned with both

the lack of information and the lack of computational power. In this latter case, our

competitive ratios are also approximation ratios.

20

1.3 Literature Review

1.3.1 Routing Literature Review

The literature for the TSP is vast. The interested reader is referred to the books

by Lawler, Lenstra, Rinnooy Kan, Shmoys [53] and Korte and Vygen [49] for com-

prehensive coverage of results concerning the TSP. Probabilistic versions of the TSP,

where a different approach is used to represent limited knowledge of the problem in-

stance, have also attracted interest (e.g., see Jaillet [41] and Bertsimas [14]). Offline

routing problems with release dates can be found in Psaraftis, Solomon, Magnanti,

Kim [60] and Tsitsiklis [69]. We also mention two offline results that will play a

part in our analysis: the 3/2-approximation algorithm for the TSP in metric space

by Christofides [25] and the polynomial-time approximation scheme for the TSP in

Euclidean space by Arora [6].

A systematic study of online algorithms was given by Sleator and Tarjan [67], who

suggested comparing an online algorithm with an optimal offline algorithm. Karlin,

Manasse, Rudolph, Sleator [48] introduced the notion of a competitive ratio. Online

algorithms have been used to analyze paging in computer memory systems, distrib-

uted data management, navigation problems in robotics, multiprocessor scheduling,

etc.; see the books of Borodin and El-Yaniv [18] and Fiat and Woeginger [29] for more

details and references.

Research concerning online versions of the TSP and TRP have been introduced

relatively recently. Kalyanasundaram and Pruhs [44] have examined a unique version

of an online traveling salesman problem where new cities are revealed locally during

the traversal of a tour (i.e., an arrival at a city reveals any adjacent cities that must

also be visited). More related to our thesis is the stream of works which started with

the paper by Ausiello, Feuerstein, Leonardi, Stougie, Talamo [10]. In this paper, the

authors studied the online TSP version we consider here; they analyzed the prob-

lem on the real line and on general metric spaces, developing online algorithms for

both cases and achieving a best-possible online algorithm for general metric spaces,

with a competitive ratio of 2. These authors also provide a polynomial-time online

21

algorithm, for general metric spaces, which is 3-competitive. Subsequently, Ausiello,

Demange, Laura, Paschos [9] gave a polynomial-time algorithm, for general metric

spaces, which is 2.78-competitive. Jaillet and Wagner [43] gave a (2 + e)-competitive

polynomial-time algorithm for Euclidean spaces with dimension d > 2. Lipmann [54]

developed a best-possible online algorithm for the real line, with a competitive ratio

of approximately 1.64. Blom, Krumke, de Paepe, Stougie [15] gave a best-possible

online algorithm for the non-negative real line, with a competitive ratio of . This

last paper also considers different adversarial algorithms in the definition of the com-

petitive ratio.

Considering the online TRP, Feuerstein and Stougie [28] gave a lower bound of

(1 + vA2) for the competitive ratio and a 9-competitive algorithm, both for the online

TRP on the real line. Krumke, de Paepe, Poensgen, Stougie [51] improved upon this

result to give a (1 + x/2)2-competitive deterministic algorithm for the online TRP

in general metric spaces as well as a -competitive randomized algorithm, where

EO 3.64; in this thesis, we correct this result to O 8 3.86 (see also [52]).

Resource augmentation for online problems was introduced in [67]. These authors

show that it is possible for an online paging algorithm to have a constant competitive

ratio if it is given a constant fraction more cache locations than the offline algorithm.

Server resource augmentation was considered by Young [72] for the k-server prob-

lem and Kalyanasundaram and Pruhs [45] for the online weighted matching problem.

Kalyanasundaram and Pruhs [46] consider speed and processor augmentation in on-

line machine scheduling. In [43], information augmentation is present in the form of

disclosure dates; a similar approach was taken by Allulli, Ausiello, Laura [2] in the

form of a lookahead. Ausiello, Allulli, Bonifaci, Laura [8] also consider the behavior of

online routing algorithms as a function of the number of servers. Other frameworks

for addressing the limitations of the competitive ratio have also been introduced; see

Ben-David and Borodin [13], Koutsoupias and Papadimitriou [50] and Raghavan [61].

22

1.3.2 Machine Scheduling Literature Review

There has been an enormous amount of work on parallel machine scheduling. As we

do not intend to do a complete review of results in the area, let us only mention some

of the most relevant literature on online scheduling problems directly related to the

matter of this thesis.

To the best of our knowledge, the first deterministic online algorithm for

Plrj I Ej wjCj was given by Hall, Schulz, Shmoys and Wein [39]. They design a

(4 +)-competitive algorithm. Prior to this thesis, the best-known deterministic

algorithms for both Plrjl Ej wjCj and PIrj, pmtn j , wjCj were recently given by

Megow and Schulz [57] and are 3.28 and 2-competitive, respectively. They also show

that the former algorithm has a competitive ratio between 2.78 and 3.28 while the

latter analysis is tight.

Considering randomized algorithms, a (2.89 + e)-competitive algorithm for

Plrjl E wjCj, was obtained by Chakrabarti, Phillips, Schulz, Shmoys, Stein and Wein

[20]. Schulz and Skutella [64] give randomized strategies that are 2-competitive for

both Plrj,pmtnlj Z wjCj and Plrjly j wjCj. Related results have been obtained

by Chekuri, Motwani, Natarajan and Stein [22] and Phillips, Stein and Wein [58]

when the objective is to minimize the average completion time of the schedule. In

a more restricted setting, Chou, Queyranne and Simchi-Levi [24] consider the online

Plrjl j wjCj with lower and upper bounds on jobs' weights and processing times;

the authors prove that the online weighted shortest processing time heuristic is as-

ymptotically optimal. They even extend this to the problem QIrjl I Ej wjCj. Similar

results can be found in the papers by Liu, Queyranne and Simchi-Levi [56], Chou,

Liu, Queyranne and Simchi-Levi [23] and Kaminsky and Simchi-Levi [47].

We also mention some single machine scheduling results, as our work essentially

extends these analyses to the parallel machine case. Using the idea of a-points and

mean-busy-time relaxations, Goemans, Queyranne, Schulz, Skutella and Yang [35]

designed a deterministic 2.4143-competitive and a randomized 1.6853-competitive al-

gorithm for the online IlrjI Ej wjCj. A similar approach was taken by Schulz and

23

Skutella [63] to give a randomized 4 -competitive algorithm for 11rj ,pmtnl j wjCj;

Sitters [66] gave a 1.56-competitive deterministic algorithm for the same problem.

On the other hand, Anderson and Potts [4] provide a best possible deterministic

online algorithm for 11rjl Ej wjCj which has a competitive ratio of 2. Addition-

ally, Savelsbergh, Uma and Wein [62] perform an extensive computational study of

a number of heuristics and approximation algorithms for the offline single machine

problem 1rjl j wjCj. They conclude that LP-based approximation algorithms for

this problem perform very well.

Let us now discuss some lower bounds on the competitive ratios for certain prob-

lems. HIoogeveen and Vestjens [40] showed that there is no deterministic algorithm

with competitive ratio strictly better than 2 for 1 lrj I j wjCj. On the other hand

Stougie and Vestjens [68] showed that ~e is a lower bound on the competitive ra-

tio of online randomized algorithms for the same problem. In the parallel machine

case, Vestjens [70] proved that any deterministic algorithm for Plrj j wjCj (resp.

Plr j , pmtnl Ej, wjCj) has a competitive ratio of at least 1.309 (resp. 22). Seiden [65]

proved that any randomized algorithm for Plrj j wjCj has a competitive ratio of

at least 1.157. To the best of our knowledge, there are no specific lower bounds for

randomized algorithms for Plrj, pmtnl j wjCj.

Finally, we remark that all the machine scheduling problems considered in this

thesis admit polynomial time approximation schemes (offline) [1].

1.4 Thesis Outline and Contributions

1.4.1 Chapter 2: Online Routing Optimization Problems

In this chapter, we study a variety of online routing problems; we evaluate algorithms

using the classic competitive ratio and competitiveness notions. We first consider the

online TSP and present a best-possible online algorithm, with a competitive ratio of

2, given in [10]. We then give a polynomial-time generalization that is 2p-competitive,

where p is an approximation ratio for the TSP with no release dates.

24

We then introduce precedence and capacity constraints to the online TSP. We

design an online algorithm that has a competitive ratio of at most 2; the power of

this statement is that adding precedence and capacity constraints to the online TSP

does not increase the competitive ratio. Considering polynomial-time algorithms, a

modification to our algorithm is 2p-competitive, where p is an approximation ratio

for a simpler offline problem.

Next, we study multiple server routing problems (without precedence and capacity

constraints) and show results nearly identical to those just mentioned: We design new

algorithms with competitive ratios of 2 and at most 2p. Adding servers to the problem

statement does not increase nor decrease the competitive ratio with respect to the

online TSP.

We also present existing results for the online TRP and the online k-TSP from

the literature. For the online TRP, we present the (1 + v'2)2-competitive algorithm

given in [51] and for the online k-TSP, we present the 2-competitive algorithm given

in [9]. These results are presented here for comparison because we later generalize

them in our study of resource augmentation.

Research in this chapter is joint work with Patrick Jaillet.

1.4.2 Chapter 3: Online Machine Scheduling Problems

In this chapter, we study online machine scheduling problems; we again evaluate al-

gorithms using the classic competitive ratio and competitiveness notions. We exclu-

sively study parallel machine online scheduling, where we have m identical machines

on which to schedule n jobs. We study the minsum objective, where we minimize

the weighted sum of job completion times. We consider both preemptive and non-

preemptive situations. We study both deterministic and randomized algorithms. We

give improved competitive ratio bounds for all problems considered.

We generalize the ideas given in [35] for the single machine case to the parallel

machine problem Plrjl Ij wjCj. As in that paper, our algorithm simulates a preemp-

tive single machine scheduling problem on a virtual machine that is m times faster

(where m is the number of machines). As soon as a fraction ao of a given job has been

25

processed in the fast machine, the algorithm will put such a job in a FIFO queue

and will schedule it in the parallel machines at the first point in time at which a

machine is idle and all jobs with higher priority have been assigned. By choosing an

appropriate value of a, namely a = (- 1)/2, we can prove that our algorithm is

2.618-competitive, improving upon the 3.28-competitive algorithm given in [57]. Our

algorithm is deterministic and works online.

As in [35] we will show that the algorithm just described can be improved with

the help of randomization. Basically, instead of taking a fixed value of alpha for all

jobs, we can choose different aj's for different jobs, and moreover, choose these values

at random according to a given distribution. We give a randomized Qm-competitive

online algorithm for PIrjl Ej wjCj, where pm < 2 for all m > 1. Here, m denotes

the number of machines and om is obtained implicitly. Our result improves upon the

2-competitive randomized algorithms in [64]. In contrast to their work our algorithm

has the desirable property of being a list-scheduling algorithm and uses only one step

of randomization. The algorithm we present can be seen as the parallel machine

extension of the algorithm in [35] for a single machine. Indeed, the competitive ratio

that it achieves is 1.6853 for m = 1 (as in Goemans et al.); for m = 2,3 and 4 it is

1.8382, 1.8915 and 1.9184, respectively.

Following the algorithmic idea above, we present a randomized pm-competitive

online algorithm for Plrj,pmtnl Ej wjCj, where Pm < 2 for all m > 1. Again, m

denotes the number of machines and Pm is obtained implicitly. The reader may wish

to compare our result with the current best algorithm to date: the deterministic

algorithm in [57], which has a competitive ratio of 2 (and not better than 2) for any

number of machines. Additionally, our algorithm can be simultaneously seen as an

extension of the result in [57] and of the result in [63]. Indeed for a single machine, the

competitive ratio of our algorithm is 4/3, as in [63]; for two, three and four machines

it is 1.3867, 1.603 and 1.7173, respectively. In general we have that Pm < 2 - 1/m,

for m > 1.

Research in this chapter is joint work with. Jose Correa.

26

1.4.3 Chapter 4: Resource Augmentation in Online Routing

In this chapter, we study resource augmentation for online routing problems. We

give the online algorithm additional resources and we quantify the improvement in

the competitive ratio. We study advanced information, speed augmentation, vehi-

cle augmentation and constraint augmentation. In Chapter 5, we study capacity

augmentation under additional assumptions.

We introduce the notion of "disclosure dates," i.e., dates at which requests become

known to the online algorithm, ahead of the release dates (the dates at which requests

can first be served). In addition to providing more realism, the introduction of this

advanced information is a natural mechanism to increase the "power" of online players

against all-knowing adversaries in a competitive analysis framework. Note, also, that

these disclosure dates provide a natural bridge between online routing problems and

their offline versions - when all the disclosure dates are zero, we have the offline

problems; when all the disclosure dates are equal to their respective release dates, we

have the online routing problems considered so far in the literature, which we denote

the traditional online problems. In other words, we can vary the "online-ness" of the

problems with these disclosure dates.

By introducing disclosure dates, we have defined a new optimization problem:

the "online TSP with disclosure dates". We measure the quality of algorithms for

this problem using the competitive ratio; the denominator of this ratio is again the

optimal value of the TSP with release dates since disclosure dates are irrelevant in

the offline situation. For a variety of disclosure date scenarios, we give new online

algorithms and derive improved competitive ratios (with respect to the ratios for the

traditional online problems), which are functions of the advanced information. In

this way, we quantify the value of the advanced information given by the disclosure

dates. We almost exclusively consider the case where there is a "fixed amount" of

advanced notice for each city. In this case, we introduce a and , two convenient

problem parameters that relate the advanced information to the "dimensions" (time

and space) of the traditional online problems (exact definitions of a and / will be

27

given later); we quantify the value of the advanced information in terms of these two

parameters. We first detail our results for the online TSP. When cities are contained

on the non-negative real line, we give an algorithm that is max{l, 2 - a}-competitive

and we also prove that this result is best-possible for our disclosure date structure.

These results improve upon the -competitiveness of a best-possible online algorithm

in the traditional case. For the general situation, where cities belong to an arbitrary

metric space, we give an algorithm that is (2 -)-competitive. This result improves

upon the 2-competitiveness of a best-possible online algorithm for the traditional

metric case. We also show a similar result for the multi-salesman online TSP. Next,

we consider the online TRP. We analyze a deterministic algorithm and show it is

((1 + 2) 2 - a)-competitive, where (1 + /)2 is the best provable worst-case ratio

to-date for the traditional online problem (though this latter result is probably not

best-possible). We also give a very similar result for a randomized modification of

the previous algorithm; we show this variant is (- ~)-competitive, where 1 is

the traditional competitiveness result.

We :next consider speed and vehicle augmentation for generalizations of the online

TSP. For single server problems (with both precedence and capacity constraints) with

speed augmentation, we give a polynomial-time online algorithm with a competitive

ratio of at most 1 + (2p - 1)/y, where y > 1 is the speed of the online server (the

offline server moves at unit speed). For multiple server problems we consider speed

and server augmentation (without precedence and capacity constraints); we show that

the competitive ratio is at most 1 + p(l - (m - 1)0)/y + (p - 1)/y, where m is the

number of online servers (the offline has a single server) and X is a measure of the

problem data. If both online and offline algorithms have m servers at their disposal,

our algorithm is again 1 + (2p - 1)/y-competitive.

We then consider constraint augmentation for the online k-TSP. Recall that the

k-TSP problem consists of finding a subset of cities of size k to visit. The constraint

augmentation is as follows: the online algorithm is only required to visit a subset of

size k' < k where the offline must visit k cities. We also consider speed augmentation

for the online k-TSP. We again quantify the improvement in the competitive ratio.

28

Finally, let us mention that we are not certain our improved competitive ratios

are best possible. For the online TSP with disclosure dates, we are able to prove a

lower bound on the competitive ratio of (2- 2t). For the online TRP with disclosure

dates, we have no lower bounds. We do not have lower bounds for speed, vehicle and

constraint resource augmentation either.

Research in this chapter is joint work with Patrick Jaillet.

1.4.4 Chapter 5: Stochastic Asymptotic Analysis

In this chapter, we take a new approach to studying online routing optimization

problems. We introduce stochastic structures to the problem data that are unknown

and unused by the online algorithm. We study the "almost sure" properties of a

number of online algorithms for variants of the online TSP and TRP as well as

certain online machine scheduling problems; for the online TSP problems, we allow for

precedence and capacity constraints (but not both) and for the online TRP problems

we allow for precedence constraints.

We first consider capacity and speed augmentation (with no precedence con-

straints) when city locations are stochastic (and release dates arbitrary); we show

that our polynomial-time online algorithm has an asymptotic competitive ratio of at

most 1 + (pq)/(yQ) + (p - 1)/y, almost surely, where Q (q) is the capacity of the

online (offline) server.

The remaining results of this chapter consider the case when both city locations

and release dates are stochastic. These results are of a similar flavor, which we now

describe. We are given an online optimization problem and an algorithm to solve it

online. The problem data is stochastic, though unknown to the online algorithm. Let

the random variables Z denote the cost of online algorithm A and Zn the optimal

offline cost, both for a problem that is intrinsically of size n (e.g., number of cities for

the online TSP).

Trivially, we know that ZA > Z*. However, we show that, for a number of online

routing and scheduling problems under mild probabilistic restrictions, there exist

29

algorithms A such that
ZA

lim n = 1 a.s. (1.1)
n- oo Zn

In other words, we prove the almost sure asymptotic optimality of algorithms for

these online optimization problems. Our analysis may also be interpreted in a different

way. Let the random variable CA denote the cost of being online for algorithm A;

i.e., ZA = Zn + C. Next, consider the following restatement of Equation (1.1):

CA
lim n = 0 a.s.

n-o Zn

Intuitively, we show that the cost of being online grows at a rate (with respect

to problem size) that is strictly smaller than that of the optimal offline cost; i.e.,

CnA = o(Zn) a.s.

We show results of this type for a number of significantly different online routing

problems under a variety of stochastic assumptions. We also give the first asymptotic

optimality results for the online machine scheduling problems 1rj,pmtnl Ej wjCj,

1 1rjl E., wjCj, Qlrj,pmtnl Ej Cj and Plrjl Ej Cj.

We also characterize the speed of convergence. To better explain our approach, we

first give a simple example demonstrating our general technique. Let X1, ... , X be

i.i.d. random variables of zero mean and unit variance and let Sn = X 1 + ... + X. By

the Strong Law of Large Numbers, we know that Sn/n - 0 almost surely. However,

if we multiply Sn/n by v, by the Central Limit Theorem, we know that v/-Sn/n =

Sn/\/ - N(0, 1) in distribution. We then say that the convergence of Sn/n to 0 is

of the order 1/\/n in distribution (the weaker convergence of the two results).

We take a similar approach to characterize the rates of convergence of the online

algorithms that we study. We know that the ratio pn of the online algorithm's cost

to that of the optimal offline algorithm satisfies (p, , - 1) - 0, almost surely. We

then find the smallest value a, depending on the stochastic model, distribution and

algorithm utilized, such that n(pn - 1) -+ Z, where Z is either a non-zero constant

or non-degenerate random variable. We then say that the order of convergence is

n' - , either almost surely or in distribution.

30

Research in this chapter is joint work with Patrick Jaillet.

1.4.5 Chapter 6: Computational Results

In this chapter, we perform a computational study of the online TSP, TRP and cer-

tain machine scheduling problems. We show how the online algorithms perform on a

number of different problem instances. Additionally, we exhibit concretely the asymp-

totic optimality derived theoretically in Chapter 5. Interestingly, these computational

results also suggest that, in practice, the quality of the output of our algorithms will

be much better than what the theoretical bounds predict.

Research in this chapter is joint work with Patrick Jaillet and Jos6 Correa.

1.4.6 Chapter 7: Conclusion and Future Work

In this chapter we first summarize the thesis and then we give a number of directions

for further research.

31

32

Chapter 2

Online Routing Optimization

Problems

2.1 Introduction

We begin this chapter by recalling the definition of the TSP: We are given a metric

space and a set of points in the space, representing cities. Given an origin city, the

task is to find a tour of minimum total length, beginning and ending at the origin,

that traverses each city at least once. Assuming a constant speed, we can interpret

this objective as minimizing the time required to complete a tour. We may also

incorporate release dates, where a city must be visited on or after its release date;

in this case the problem is known as the "TSP with release dates." The problem

becomes online when cities are only revealed at their release dates.

Additional constraints can be added to the above salesman problems. We can

introduce precedence constraints where some cities must be visited before others.

The salesman can be considered a vehicle/server that transports packages. In this

case it is natural to introduce a capacity for the server; in other words, a server can

visit only a subset of all cities in a given tour and must traverse multiple tours in

order to serve all requests. Finally, we also consider the case where we have multiple

servers to control.

In this chapter we are concerned with online versions of the above mentioned

33

routing optimization problems. In our framework, the problem data is revealed dy-

namically over time, independent of the server's location, at release dates. The as-

sumption that problem instances are completely known a priori is unrealistic in many

applications. Taxi services, buses and courier services, for example, require an online

model in which locations to be visited are revealed over time, while the server is en

route serving previously released requests. The focus of this chapter is on studying

algorithms for a variety of online routing problems. These algorithms are evaluated

using competitive analysis and, in particular, the competitive ratio, which is defined

as the worst case ratio of the online algorithm's cost to the cost of an optimal offline

algorithm, where all data is known a priori.

We design online algorithms for new online routing problems and we derive new

competitive ratio bounds. A number of our competitive ratio results are the first for

certain online routing problems. We also study the competitive ratios of polynomial-

time online algorithms; in all cases we are able to relate the competitive ratio to the

approximation ratio of a simpler problem.

Outline: In Section 2.2 we present an algorithm from the literature for the online

TSP and we generalize it so that it can run in polynomial time. In Section 2.3 we

generalize the online TSP, allowing for precedence and capacity constraints; we design

and analyze algorithms for this new problem. In Section 2.4, we generalize the online

TSP by allowing for nmultiple salesmen; again, we design and analyze algorithms

for this new problem. Finally, in Sections 2.5 and 2.6, we present results from the

literature for the online Traveling Repairman Problem (TRP) as well as the online

k-TSP; these results are presented here for comparison because we later generalize

them ir: our study of resource augmentation in Chapter 4.

2.2 The Online TSP and Algorithm PAH

Let us first state the assumptions and definitions we utilize in this section.

1. City locations belong to some metric space M.

34

2. A. city is revealed to the salesman at its release date.

3. A city is ready for service at its release date. The service requirement at a city

is zero.

4. The salesman travels at unit speed or is idle.

5. The problem begins at time 0, and the salesman is initially at a designated

origin o of the metric space.

6. The online TSP objective is to minimize the time required to visit all cities and

return to the origin.

The problem data is a set of points (li, ri), i = 1, ... , n, where n is the number of

cities. The quantity li E M is the ith city's location. The quantity ri E I+ is the ith

city's release date; i.e., ri is the first time after which that city i will accept service.

We also let f = {1, ... , n}. We index the cities such that rl < r2 < ... < rn.

From the online perspective, the total number of requests, represented by the

parameter n, is not known, and city i only becomes known at time ri. Z will denote

the cost; of online algorithm A on an instance of n cities and Z is the optimal offline

cost on n cities (at times, the n term will be suppressed). Finally, define LTSP as the

optimal TSP (without release dates) tour length through all cities in an instance.

We now present the online algorithm Plan-At-Home (PAH), which was given in

[10], as well as a relevant theorem.

Algorithm 1: PAH

(1) 1Whenever the salesman is at the origin, it starts to follow an optimal route that

serves all the requests yet to be served and goes back to the origin.

(2) If at time ri, for some i, a new request is presented at point li, then it takes one

of two actions depending on its current position p:

(2a) If d(li, o) > d(p,o), then the salesman goes back to the origin where it

appears in a Case 1 situation.

35

(2b) If d(li, o) d(p,o), then the salesman ignores it until it arrives at the

origin, where again it re-enters Case 1.

Theorem 3 ([10]) The competitive ratio of PAH is 2. Furthermore, there does not

exist another online algorithm with a strictly smaller competitive ratio.

2.2.1 Polynomial-time Online Algorithms: PAH-p

We now give our first generalization of algorithm PAH ([10]), which we shall denote

PAH-p as all subroutines are polynomial-time.

Algorithm 2 : PAH-p

(1) Whenever the salesman is at the origin, it starts to follow a tour that serves

all cities whose release dates have passed but have not yet been served; this tour

is constructed using a p-approximation algorithm A that solves an offline TSP

(with no release dates).

(2) If at time ri, for some i, a new city is presented at point li, the salesman takes

one of two actions depending on the salesman's current position p:

(2a) If d(li, o) > d(p, o), the salesman goes back to the origin where it appears

in a Case (1) situation.

(2b) If d(li, o) < d(p,o), the salesman ignores the city until it arrives at the

origin, where again it re-enters Case (1).

Theorem 4 Algorithm PAH-p is 2p-competitive.

Proof Recall that r is the time of the last request, In the position of this request

and p(t) the location of the salesman at time t. We show that in each of the Cases

(1), (2a) and (2b), PAH-p is 2p-competitive.

Case (1): PAH-p is at the origin at time rn. Then it starts a p-approximate

tour that serves all the unserved requests. The time needed by PAH-p is at most

rn + PLTsP < (1 + p)Z* < 2pZ*.

36

Case (2a): We have that d(o, 1,) > d(o, p(rn)). PAH-p returns to the origin, where

it will arrive before time r + d(o, 1,). After this, PAH-p computes and follows a p-

approximate tour through all the unserved requests. Therefore, the online cost is at

most r + d(o, p(r,)) + pLTSP < rn + d(o, 1) + pLTsp. Noticing that r± + d(o, I,) < Z*,

we have that the online cost is at most (1 + p)Z* < 2pZ*.

Case (2b): We have that d(o, ln) d(o,p(r,)). Suppose PAH-p is following a

route that had been computed the last time it was at the origin. Note that

7R < pLTSP < pZ*. Let Q be the set of requests temporarily ignored since the last

time PAH-p was at the origin; Q is not empty since it contains I~. Let q be the

location of the first request in Q served by the offline algorithm and let rq be the time

at which q was released. Let PQ be the shortest path that starts at q, visits all the

cities in Q and ends at o. Clearly, Z* > rq + PQ and Z* > d(o, lq) + PQ.

At time rq, the distance that PAH-p still has to travel on the route before

arriving at o is at most R - d(o, lq), since d(o, p(rq)) > d(o, lq) implies that PAH-p

has traveled on the route R a distance not less than d(o, Iq). Therefore, it will arrive

at o before time rq + R - d(o, lq). After that it will follow a p-approximate tour TQ

that covers the set Q; letting 7T be the optimal tour over the set Q, we have that

TQ < pT6. Hence, the completion time will be at most rq + R - d(o, lq) + pT'. Since

T7 < d(0, lq) + PQ, we have that the online cost is at most

rq + - d(o, lq) + pd(O, lq) + pPQ = (rq + PQ) + R + (p- 1)(d(O, lq) + PQ)

< Z* + pZ* + (p - 1)Z*

= 2pZ*.

Applying well-known algorithms given in [25] and [6], we are able to give two

interesting corollaries.

Corollary 1 If we choose A as Christofides' heuristic, Algorithm PAH-p is 3-competitive.

This matches the 3-competitive polynomial-time algorithm given in [10]. However,

a polynomial-time algorithm with a competitive ratio of at most 2.78 was recently

37

given in [9].

Corollary 2 If M is Euclidean and we choose A as Arora's PTAS, for any e > 0,

Algorithm PAH-p is (2 + e)-competitive.

To the best of our knowledge, this is the first result for the online TSP in the Euclidean

metric space.

2.3 Generalized Online Routing I: Precedence and

Capacity Constraints and Algorithm PAH-G

We now consider routing problems where a single server must service a more complex

sequence of requests. The data for our problems is a set of points (li,ri, di), i =

1,... , n, where n is the number of requests and k(i) is the number of cities in request
i: li = (ll12 lik(i)) and di = (dl, di2,dik(i)). The quantity l E M, M an

arbitrary metric space, is the location of the jth city in the ith request. The quantity

ri E IR+ is the it h request's release date; i.e., ri is the first time after which cities in

request i will accept service. The quantity d E R+ is the demand' of city . The

server has a capacity Q; the sum of city demands visited on any given tour can be at

most Q; we assume d < Q for all i, j. Precedence constraints exist within a request;

i.e., for a fixed i, arbitrary precedence constraints of the form l - Ik (lq must be

visited before lk) can exist, for any j # k. The service requirement at a city is zero.

The server travels at unit speed or is idle. The problem begins at time 0, and the

server is initially at a designated origin o of the metric space. The objective is to

minimize the time required to visit all cities and have the server return to the origin.

From the online perspective, the total number of requests, represented by the

parameter n, is not known, and request i only becomes known at time ri. Z(Q)

denotes the cost of online algorithm A on an instance of n cities with server capacity

Q and Z(Q) is the corresponding optimal offline cost where all data is known a
1It is possible to generalize our capacity model to allow positive and negative demands as well

as different types of products being transfered. However, we study the current problem to limit the
complexity of the analysis.

38

priori. Z,=°(Q) is the optimal cost when all release dates are equal to zero; clearly,

Z=°(Q) < Z(Q). The problem instance underlying Z=°(Q), Z(Q) and Zn(Q)

will be clear from context. At times, the n term will be suppressed. Recall that

LTSP is defined as the optimal TSP tour length through all cities in an instance; i.e.,

LTSP =: Zr=0(Oc).

We give an online algorithm that generalizes PAH ([10]); we denote our algorithm

Plan-At-Home-Generalized (PAH-G). Recall that the competitive ratio of PAH is 2.

Algorithm 3 : PAH-G

(1) Whenever the server is at the origin, it calculates and implements a p-approximate

solution to Zr=°O(Q) over all requests whose release dates have passed but have

not yet been served completely.

(2) If at time ri, for some i, a new request is presented, the server takes one of two

actions depending on the server's current position p and the farthest location in

the current request l1:

l = arg max d(o, l)
{13 I1 <j<k(i)}

(2a) If d(l, o) > d(p, o), o) > d(p, o), the server goes back to the origin where it appears in

a Case (1) situation.

(2b) If d(l, o) d(p, o), the server ignores request i until it completes the route

it is currently traversing, where again Case (1) is encountered.

Theorem 5 Algorithm PAH-G is 2p-competitive.

Proof Recall that rn is the time of the last request and l = arg max{lj I l<j<k(n)} d(o, li).

We show that in each of the Cases (1), (2a) and (2b), PAH-G is 2p-competitive.

In Case (1) PAH-G is at the origin at time r. It starts traversing a p-approximate

set of tours that serve all the unserved requests. The time needed by PAH-G is at

most r + pZn°(Q) < (1 + p)Zn(Q).

39

Considering Case (2a), we have that d(o, In) > d(o, p). Then PAH-G goes back to

the origin, where it will arrive before time rn + d(o, In). After this, PAH-G computes

and follows a p-approximate set of tours through all the unserved requests. Therefore,

the online cost is at most r + d(o, l)+pZn` (Q). Noticing that rn+d(o, I) < Zn(Q),

we have that the online cost is at most (1 + p) Zn(Q).

Finally, we consider Case (2b), where d(o, l) < d(o,p). Suppose PAH-G is fol-

lowing a route R that had been computed the last time step (1) of PAH-G had

been invoked. R will also denote the actual distance of the route; we have that

7R < pZr=°(Q) < pZ*(Q). Let S be the set of requests that have been temporarily

ignored (from step (2b)) since the last time PAH-G invoked step (1). Let If be the

first location of the first request in S visited by the offline algorithm, and let rf be

the time at which request f was released. Let P be the fastest route that starts at

If, visits all cities in S and ends at the origin, respecting precedence and capacity

constraints. Clearly, Z*(Q) > rf + P* and Z*(Q) > d(o, If) + P.

At time rf, the time that PAH-G still has left to complete route R is at most

R - d(o, If), since d(o, p(rf)) > d(o, 1l) > d(o, If) implies that PAH-G has traveled

on the route 7? a distance not less than d(o, If). Therefore, the server will complete

the route 7? before time rf + R - d(o, If). After that it will follow a p-approximate

set of tours that covers the set S of yet unserved requests; let Ts denote the cost

of the optimal set of tours. Hence, the total time to completion will be at most

rf + 7 - d(o, If) + pTs. Since Ts < d(O, If) + P, we have that the online cost is at

most

rf + R - d(o, If)+pd(O, If)+ pPs = (rf + P)+ R + (p- 1)d(O, f)+(p-1)

< Z*(Q) + pzr=(Q) + (p - 1) Z*(Q)

< 2pZ*(Q).

As an example, if we consider the online capacitated TSP without precedence

constraints, we can apply the Iterated Tour Partition (ITP) heuristics given by Al-

tinkemer and Gavish [3] and Haimovich and Rinnooy Kan [38]. If d = 1 for all

40

i, j, there exists a ITP heuristic with approximation ratio p < (5/2 + 3/2Q). If de-

mands are arbitrary integers, there exists a ITP heuristic with approximation ratio

p < (7/2 - 3/Q).

Corollary 3 If we use an exact algorithm in step(1) for calculating an optimal offline

Zr=°(Q), Algorithm PAH-G is 2-competitive.

These results show interesting properties. First, it is possible to relate the compet-

itive ratio to the approximation ratio of a simpler but related optimization problem

Zr=°O(Q). Also, if we have access to exact algorithms for Zr=°O(Q), adding capacity

and precedence constraints results in no increase in the competitive ratio, with respect

to the online TSP.

2.4 Generalized Online Routing II: Multiple Vehi-

cle Routing and Algorithm PAH-m

We next consider routing problems with m identical servers. We do not consider

capacity or precedence constraints. The data for our multiple server problems is

closely related to that of the single server problems: the data is a set of points

(li,ri), i = 1,...,n where li E M (ri E IR+) is the location (release date) of the

i-th request. The service requirement at a city is again zero. The servers travel at

unit speed or are idle. The problem begins at time 0, and all servers are initially

at a designated origin o of the metric space. The objective is to minimize the time

required to visit all cities and have all servers return to the origin. Note that each

city only needs to be visited by a single server.

ZAn(m) denotes the cost of online algorithm A on an instance of n cities with m

identical servers and Z, (m) is the corresponding optimal offline cost where all data are

known a priori; we assume n > m. Z=°(m) is the optimal cost when all release dates

are equal to zero; clearly, Zn=°(m) < Zn(m). Note that Zr=°(m) is equivalently the

problem of finding a set of m tours, that collectively visit all locations, such that the

maximum tour length is minimized; e.g., see Frederickson, Hecht and Kim [30]. The

41

problen-l instance underlying Z,=°(m), ZI(m) and Z,(m) will be clear from context.

Finally, note that LTSP = Zr=O(l). The competitive ratio is defined similarly to the

single server case.

We again give an online algorithm that generalizes PAH ([10]); we denote our

algorithm Plan-At-Home-m-Servers (PAH-m).

Algorithm 4 : PAH-m

(1) Whenever all servers are at the origin, they calculate and implement a p-

approximate solution to Zr=°(m) over all requests whose release dates have

passed but have not yet been served.

(2) If at time ri, for some i, a new request is presented, the servers take one of two

actions depending on the request's location li and the farthest server's current

position p* (ties broken arbitrarily):

p* = arg max d(o, i)
{Pi l<i<m}

(2a) If d(li, o) > d(p*, o), all servers go back to the origin where they appear in

a Case (1) situation.

(2b) If d(li,o) < d(p*,o), all servers except p* return to the origin; server

p* ignores request i until it completes the route it is currently traversing,

where again Case (1) is encountered.

Theorem 6 Algorithm PAH-m is 2p-competitive.

Proof Recall that r is the time of the last request, the position of this request

and p*(t) the location of the farthest salesman at time t.

Case (1): All salesmen are at the origin at time r. Then they start implementing

a p-approximate solution to Zr=°(m) that serves all the unserved requests. The time

needed by PAH-m is at most r + pZr=°(m) < (1 + p)Z*(m).

Case (2a): We have that d(o, ln) > d(o, p*(rn)). All salesmen return to the origin,

where they will all arrive before time r + d(o, ln). After this, PAH-m computes and

42

follows a p-approximate solution to Zr=°(m) through all unserved requests. Therefore,

the online cost is at most rn+d(o, In) +pZr=°(m). Noticing that rn+d(o, In) < Z*(m),

we have that the online cost is at most (1 + p) Z*(m).

Case (2b): We have that d(o, 1n) < d(o, p*(rn)) and all salesmen, except p*, return

to the origin, if not yet already there. Suppose salesman p* is following a tour ?

that had been computed the last time it was at the origin. Note that R < pZr=°(m).

Let Q be the set of requests temporarily ignored since the last time a Case (1) re-

optimization was performed; since In E Q, Q is not empty. Let S C {1,...,m}

denote the set of salesmen that serve Q in the optimal offline solution. For j E S,

let li be the location of the first city in Q served by server j in the optimal offine

solutionr and let rj be the time at which this city was released. Let P , j E S, be the

set of paths, the j-th path starting from Ij , that collectively visit all the cities in Q

and end at the origin, such that the maximum path length is minimized (ties broken

arbitrarily). It is easy to see that Z*(m) > maxjEs{P} since the min-max-path

optimization has distinct advantages over the offline solution: (1) having the servers

start at cities Ij , (2) needing to only serve the cities in Q and (3) ignoring release

dates. If the servers start from the origin, the earliest time that server j can visit

city Ij is max{rj, d(O, li)}; by extension we have that Z*(m) > maxjEs(r + Pj} and

Z*(m) > maxjes{d(o, li) + Pi).

At time r, the distance that salesman p* still has to travel on the route 1? before

arriving at the origin is at most 1 - d(o, lj), since d(o, p*(rj)) > d(o, Ij) implies that p*

has traveled on the route R a distance not less than d(o, li). Therefore, it will arrive

at the origin before time r +7- d(o, Ij); note that since this is valid for any j, we can

say that, the salesman will arrive at the origin before time minjes{rj + R - d(o, lj)}.

Note that all other salesmen have already arrived at the origin. Next, a p-approximate

Zr=°(m) will be implemented on Q; let TQ denote the optimal maximum tour length.

Hence, the completion time of PAH-m will be at most minjEs{r + R- d(o, Ij)} + pTQ.

Now, note the following feasible solution for the final case (1) re-optimization: Use

only the set of salesmen S, force salesman j to first go to city lj and then traverse

path PI. Therefore, TQ < maxjes{d(O, Ij) + Pi} and we have that the online cost is

43

at most

min {rj + R - d(o, l)} + pmax {d(O, l) + P} .
jES jES

Letting k be the arg max of the second term, we have that the online cost is at most

rk + R - d(o, lk) + p (d(O, Ik) + P)

(rk + pik) + R + (p- l)d(o, k k) + (p- 1) pk

• Z*(m) + pZr=°(m) + (p- 1) (d(o, Ik) + 7k)

• 2pZ*(m).

As an example, we can apply the approximation algorithm for Zr=°(m) given by

Frederickson, Hecht and Kim [30] that has an approximation ratio p < 5/2 - l/m.

Corollary 4 If we use an exact algorithm in step(l) for calculating an optimal offline

Zr=°(m), the competitive ratio of PAH-m is 2.

Proof By choosing p = 1 in Theorem 6, an upper bound of 2 on the competitive

ratio is clear. We next provide a lower bound.

Define a metric space M as a graph with vertex set V = {1, 2, ... , n} U {o} with

distance function d that satisfies the following: d(o,i) = 1 and d(i,j) = 2 for all

i f j E V \ {o}. For simplicity, assume m divides n evenly.

At time 0, there is a request at each of the n cities in V \ {o}. If an online server

visits the request at city i at time t < 2 -1-c, for some small , then at time t + , am

new request is released at city i. In this way, at time 2 -1 the online servers still havem

to serve requests at all n cities and will finish at time (2 - 1) + 1 + 2(- 1) = 4-2.

Therefore, denoting CA as the online cost of an arbitrary online algorithm A, we have

that CA > 4 n - 2. The optimal offline servers, however, will be able to visit all

cities by time 2- . Therefore, by letting k = , we have that CA > 4k-2; taking kCOPT - 2k

arbitrarily large proves the theorem. ·

Again, it is possible to relate the competitive ratio to the approximation ratio

of a simpler but related optimization problem Zr=O(m). Also, if we have access to

44

exact offline algorithms for Zr=O(m), adding extra salesmen to the problem definition

results in no change (increase or decrease) in the competitive ratio, with respect to

the the online TSP.

2.5 The Online TRP

Thus far, we have been analyzing versions of the online TSP, where the objective is

arguably in the salesman's interest. We now consider another objective, the weighted

latency, which is an objective that is arguably in the cities' interest; additionally, we

are able to favor certain cities over others.

In this section, we consider the online Traveling Repairman Problem (TRP) with

arbitrary weights. We first generalize our data: the problem data is now (li, r, wi), i =

1,. .. , n where wi E + are the weights of the cities. A city's weight is revealed along

with its locations at the city's release date.

Our objective is to minimize EiEr wiCi, where Ci is the completion time of city

i, the first time it is visited after its release date. Again, li E M, for any metric space

M.

We now present the algorithm INTERVAL given in [51] as well as a relevant

theorem. Note that algorithm INTERVAL is also valid for the online dial-a-ride

problem, a generalization of the online TRP.

Algorithm 5 : INTERVAL Phase 0: In this phase the algorithm is initialized.

Set L to be the earliest time when a request could be completed by an optimal

offline algorithm. We can assume that L > O, since L = 0 means that there are

requests released at time 0 with source and destination o. These requests are served at

no cost. Until time L, remain at the origin o. For i = 0, 1, 2,..., define Bi = A'i-L.

Phase i, for i = 1, 2,...: At time Bi compute a transportation schedule Si for the

set of yet unserved requests released up to time Bi with the following properties:

1. Schedule Si starts at the endpoint xi- 1 of schedule Si_l (we set xo = o).

2. Schedule Si ends at a point xi with an empty server such that d(o, xi) < Bi.

45

3. The length of schedule Si, denoted by l(Si), satisfies

l(Si) < { B i 1
Bi + Bil , i>2

4. The transportation schedule Si maximizes the sum of the weights of requests

served among all schedules satisfying 1-3.

If i = 1, then follow S1 starting at time B1. If i > 2, follow Si starting at time

PBi until time PBi+l, where p = (A + 1)/(A(A - 1)).

Theorem 7 ([51]) Algorithm INTERVAL is A(A + 1)/(A -)-competitive for any

A E (1, 1 + v2]. With A = (1 + V'), algorithm INTERVAL is (1 + v2)2-competitive2.

[51] also analyzed a randomized version of the above algorithm, which they denote

RANDINTERVAL. The only difference is in the initialization of the algorithm: L

A"L, where U is random variable uniformly distributed between 0 and 1.

Theorem 8 ([51]) Algorithm RANDINTERVAL is (A + 1)/ In A-competitive for any

A E (1,1 + V']. With A = (1 + A/), algorithm RANDINTERVAL is

(2 + v/2)/In (1 + xv)-competitive 3.

2.6 The Online k-TSP

In this final section we return to a variant of the online TSP, the online k-TSP. The

problem data is again (li, ri), i = 1, ... , n. We are also given an integer k E Z+ and

the objective is to choose a subset of cities of size k and minimize the time needed

to visit the cities and return to the origin. We present the algorithm Wait-and-Go

(WaG) given in [9]. Note that their algorithm is also valid for the online Quota-TSP,

2The range for A in this theorem was originally given in [51] as [1 + V', 3], which is incorrect
since p is required to be greater than or equal to one. This correction was given in [43]; see also [52]
and Chapter 4 of this thesis.

'The original result in [51], based on an incorrect range for A (see other footnote on this page),
was picking A = 3 as the best A, which resulted in 4/ ln3-competitiveness where 4/ln3 < (2 +
v/2)/ In (+ v/2). This correction was given in [43]; see also [52] and Chapter 4 of this thesis.

46

where each city has a demand and the objective is to cover a given quota of city

demands.

Algorithm 6 : WaG For any (partial) sequence a of at least k cities already pre-

sented to the server, compute the optimal value Z*(a). At time t = Z*(a) the algo-

rithm implements Z*(a).

Theorem 9 ([9]) The competitive ratio of algorithm WaG, in general metric spaces,

is 2. Furthermore, there does not exist another online algorithm with strictly smaller

competitive ratio.

47

48

Chapter 3

Online Machine Scheduling

Problems

3.1 Introduction

In this chapter, we study online versions of classic parallel machine scheduling prob-

lems. Given a set of jobs N = {1,...,n}, where each job j has a processing time

pj > 0, a weight wj > 0 and a release date rj > 0, we want to process these jobs on m

identical machines. We consider both non-preemptive and preemptive versions; in the

latter case, a job being processed may be interrupted and resumed later, possibly on

a different machine. Letting Cj be the completion time of job j in a given schedule,

we are interested in minimizing the weighted sum of completion times: EjeN wjC.

As we only consider online problems, jobs are not known until their respective release

date. In scheduling notation Graham, Lawler, Lenstra and Rinnooy Kan [36], we

consider online versions of Plrjl Ej wjCj and Plrj, pmtnl Ej wjC.

In online optimization we are dealing with limitations on information, contrast-

ing with the limitations on computational power in classic approximation algorithm

design. The standard measures of quality of online algorithms is the competitive

ratio and the notion of competitiveness. Similarly to the approximation guarantee

of an algorithm, the competitive ratio is defined to be the worst case ratio, over

all instances, of the cost output by the online algorithm to the optimal offline cost;

49

for more details, see Chapter 1, Section 1.2. In some situations randomization is a

powerful tool to obtain algorithms with better performance ratios. The competitive

ratio of a randomized online algorithm (against an oblivious adversary; see Chapter

1, Section 1.2) is defined as above replacing "the cost output by the online algorithm"

by the expected cost output by the online algorithm.

Outline: We begin in Section 3.2 by giving notation and existing results that are

utilized throughout this chapter. In Section 3.3 we design and analyze a deterministic

online algorithm for Plrj Ej wjCj. In Section 3.4, we analyze a randomized variant

of the previous algorithm for the same problem. Finally, in Section 3.5 we design and

analyze a randomized online algorithm for P rj, pmtnl Ej wjCj.

3.2 Preliminaries

According to [58] the a-point tj(a), 0 < a < 1, of job j in a given schedule is defined

as the first time an a-fraction of job j has been completed (i.e., the first time apj

has been processed). The general idea of our subsequent algorithms is to schedule

jobs on the mn machines by list-scheduling the jobs in the order of their a-points on

a virtual machine, which is "mn-times faster". Additionally, these algorithms may use

job-dependent a's to guide the schedule; in this latter case, we shall denote job j's

alpha, value as caj. The concept of a single fast virtual machine was apparently first

considered by Eastman, Even and Isaacs [27]. Recently, [22] considered a "preemptive

one-machine relaxation" where jobs are list-scheduled on parallel machines in order

of their completion times on a single virtual machine.

Another important ingredient in what follows is related to mean-busy-time relax-

ations of l rj[l E LjCj. The mean busy time AIj of job j, is defined as the average

point in time at which job j is being processed; see Goemans [34] and Goemans

[35]. Alternatively it call be computed as Mlj = Jo tj (a)da. Let p(S) = Y~ejsPj,

1w(S) = jes ,j and rmin(S)= minjEs{'rj}. Following [35] for a scheduling instance

I = {(p, ri, 'wi), 'i N} we define ZR(I) to be the value of mean busy time relaxation

50

for 1 rij, pmtnl Ej wjCj; i.e.:

ZR(I) min E WjM
jEN

subject to ZpMj > p(S) (rmin(S) + p(S)) , S C N.
jES

It was shown in [34] that ZR(I) can be obtained online by scheduling, at any point

in time, the available job j with the highest ratio wjl/pj. This schedule is called the

LP schedule.

Now, for an instance I = {(pi,ri,wi), i E N} of Plrj,pmtnlEwjCj with m

parallel machines, let Zm (I) be the value of the optimal schedule. Consider the

instance Im = {(i,ri, wi), i N} and let Z(I) = ZR(Im) i.e., the value of the

mean-busy-time relaxation on Im (note that this is equivalent to the value of the

mean-busy-time relaxation on instance I in a machine that is m times faster). Thus,

Zm(I) can be evaluated as:

ZR(I) = minE wjM
jEN

subject to pjMj > p(S) (rmin(S) + p(S)), S C N.
jES

The following lemma provides a simple, yet powerful, lower bound for

Plrj,pmtnl wwjCj. It is a particular case of a bound obtained in [24] in a more

general framework. It was also obtained in [64], expressed in terms of an equivalent

time-indexed relaxation.

Lemma 1 ([24],[64]) For any scheduling instance I, ZRm (I)+ Z(I)ZR 2 (I) \ j eN wjp j < Zm()

To finish this section let us review the concept of canonical decomposition [33]

and a useful formula to rewrite E wjMj [34] (see also [35]). For a set of jobs S,

consider a single machine schedule that processes jobs in S as early as possible.

This induces a partition of jobs in S into Si,..., Sk such that the machine is busy

exactly in the disjoint intervals [rmin(SI),rmin(SI) + p(Sj)], for I = 1,..., k. This

51

partition is the canonical decomposition of S. Also, a set is canonical if it equals its

canonical decomposition. Assume that wl/pl > .. > wn/pn > Wn+l/p+l = 0 and

let [i] = {1,..., i}. Consider S,.. ., Sk(i), the canonical decomposition of [i]; then for

any vector M = (M1, , Mn):

z7 w£lM· = (wi w i+l) pjMj = (i Wi+l E E pj jM ' (3.1)
Ew3Mj-- = Pi Pi+l i Pi+ljEN i=1 P jE[i] i=1 1 =1 jES

3.3 A Deterministic Online Algorithm for

Plrjl E wjCj

Consider the following online algorithm Non-preemptive a Scheduling (NAS), where

each job j is assigned a deterministic value of aj:

Algorithm 7: NAS

INPUT: A scheduling instance I = {(pi, ri, wi), i E N} which is revealed online,

and a vector a = {a,..., , a.

(1) Construct the preemptive LP-schedule on a single virtual machine m-times

faster (I In).

(2) At job j's aj-point tj(aj) in the virtual machine, it enters into a FIFO queue

for the m machines (job j is then scheduled the first time a machine is available

after all preceding jobs in the queue have started).

From now on, whenever we refer to the LP-schedule of instance I, we mean the

LP-schedule in a machine that is m times faster (or the LP-schedule of I). Consider

job j and let ?rk(aj) denote the fraction of job k that has been completed in the LP-

schedule by time tj (aj). Letting Cja denote the completion time of job j in algorithm

NAS when the vector ca = {al,..., an} is applied, we can show the following bound.

Bounds of similar flavor have been frequently used in the scheduling literature (e.g.,

see [35, 39, 58]).

52

Lemma 2

CT < tj(oj) + E Pk + (1--)pj.
m m

k:ak <lk (aj)

Proof The completion time of job j equals the time to enter the queue for the parallel

machines plus the waiting time in queue plus the processing time of job j.

The time to enter the queue is tj(aj), which is the aoj-point of job j in the single

virtual machine that is m-times faster.

The wait time in the queue can be bounded as follows: Consider all jobs that

entered the queue before job j, i.e., jobs belonging to the set {k # j : k < rk(cj)}

(which are all available for processing at time tj(aj) or earlier). Then the total time

that needs to be processed before job j in the m machines is at most Zkej:k<nk(aj) Pk-

Thus the first time that a machine will free up is at most:

t +Zj:ak<7k (a)Pk t)P 5 Pk,tj (a) + k:<k(j)Pk = tj(aj) - j +m m m
k:ak <7k (aj)

which is obtained by averaging the processing times of all jobs before j. Adding up

the previous term with the processing time pj gives the result. U

Our deterministic algorithm will perform best by taking a fixed value of a for all

jobs: aj = a, Vj. The following theorem is the main result of this section; we show

that our algorithm is 2.6181-competitive, which improves upon the 3.28-competitive

algorithm given in [57]. Its proof is an extension of the proof of Theorem 3.3 in [35]

to the parallel machine case.

Theorem 10 Algorithm NAS is max{1 + l, 2 + ar-competitive. In particular, for

a= -1 the schedule is (3+-compeititve (2 < 2.6181).2 2

Proof Consider a canonical set S = (1,..., 1 for the fast single machine. Fix a job

j E S and let TNk = N7k(a) represent the fraction of job k processed before tj(a). By

reordering the elements in S such that t(a) < ... < ti(a), we have that

Ij B) P (3.2)j-1
tj(l) - rmin(S) =- ?k- < + = S)QP($) + Pk (3.2)

m M m EN
kES k=j k=l =

53

Let C' be the completion time of job j output by algorithm NAS. Define R to be

the set of jobs such that tk(a) < rmin(S); note that Rn S = 0 and RU(1,. ., j} =

{k : a < %7k}. Thus, combining Lemma 2 with Equation (3.2) and then noting that

p(R) , rin(S), we get

(1 -- Ol 3- 1Cj < rmin(S) +--p(S) + Y() jPk

< (1 +-)rmin(S) + p(S) +(2 - aa m m

Multiplying by pj and summing over S we get

< (1 + -)rin (S)p(S) + p(S) 2

)
j-1

Pk +Pj.
k=l

Using the identity EjES Ekl PPk = p(S) 2
-_ E jspj2 we obtain that for any

canonical set S:

< (1+ -)rmin(S)p(S)a + (2 +)(S) 2

1 K max{l+-, 2+a} p (S)a (rmin (S)-

jES

p(S))
2m + EPj .2e /E

Assume now that the jobs are ordered such that w1/pl > '' > Wn/Pn > Wn+l/Pn+l =

0. Let us now bound the overall cost of the schedule using Equation (3.1) applied to

instance Im and the feasibility of Z(I):rruurrv~ ~ wr~U1~ ~~IULIY I R RI

E WjCa
jEN

n

i=1 m

Wi+l
Pi+1
m

k(i)

C=1jESI

1
< max{1+-,a

Pi Co
m

i i+1

i=l m m

54

1 1 j-1+-p(R) +-y pk + p ;
k=l

E pjC?
jES

(2 -a) -
E PjPk
jES k=l

2+ Epj
jES

pC?
jEES

k(i) ()

p=-1V
(rmin (S)

1
< max{1 +-,2+a

+p(Si)
+qm-m/

1

+2mE
jES'I

.afkl Wi PWi+l
i Pmi+

i=l m m

= max{l+-,2 + }o)(
i=1 m

Wi+ l
Pi+

m

)
pij

k(i)

1=1 jes

k(i)

E E (
1=1 jEl

Here, Mlj denotes the mean-busy-time of job j in the LP-schedule. Applying Equation

(3.1) again it follows that the previous quantity equals

1
max{1 + -, 2

of jEN
(Mj +)= max{1 + a,2 + (zm(I) +

and by Lemma 1 it follows that ZjEN wjC0 < max{1 + 1, 2 + a}Z m (I). Finally, we

recall that Zm (I) is a lower bound on the optimal offline cost of Plrjl Ej wjCj. ·

As in the single machine case, there are instances for which algorithm NAS gives

a schedule with cost as much as twice the LP lower bound; see, for example, [35].

However, we do not know whether our analysis is tight.

3.4 A Randomized Online Algorithm for

Plrjl Ej wjCj

Consider the following algorithm, which we denote as Non-preemptive a Scheduling

Randomized (NASR).

Algorithm 8 : NASR

INPUT: A scheduling instance I = {(pi, ri, wi), i E N} which is revealed online

and a distribution f.

55

1I)
jEN

I E Pj2~p,

(1) (Construct the preemptive LP-schedule on a single virtual machine m-times

faster (I In).

(2) Each aj is taken identically and independently from distribution f (a).

(3) At job j's cj-point tj(aj), it enters into a FIFO queue for the m machines (job

j is then scheduled the first time a machine is available after all preceding jobs

in the queue have started).

We start by proving that the uniform distribution already gives 2-competitiveness;

this matches the bound in [64] with a list-scheduling algorithm. The proof is very

similar to Theorem 3.4 in [35].

Theorem 11 NASR is 2-competitive when f () is the uniform distribution on (0, 1].

Proof Let Cja be the completion time of job j in the schedule given by algorithm

NASR. We apply Lemma 2 and first find a conditional expectation, holding aj con-

stant:

ELC P dak+pJ = t,() Pk(a)+p < 2(tj(aj)+)
kgAj k o

This implies that

E {Cj} j 2(tj(j) + lpj)deaj = 2(Mj + 1j

where Mj denotes the mean-busy-time of job j in the LP-schedule. Multiplying by

wj and summing over j we get

E wCj < 2 ZR(Im) + 2 wipi < 2 Zm (I),
which proves the result. iN

which proves the result.

56

We now turn to deriving improved bounds which will depend on the number of

machines. We show that by taking the aj from an appropriate distribution we can

improve on 2-competitiveness. Let us start by giving a refinement of Lemma 2.

Lemma 3

C; < tj(aj) + E 1 m m) k+ P
k: k <k(aj)

koj

Proof As in Lemma 2, the completion time of job j is equal to the time to enter the

queue for the parallel machines plus the wait-time in queue plus the processing time

of job j. The only difference in the bound we are attempting to prove here lies in the

in-queue waiting time. This can be bounded as follows.

Consider the set K of jobs that entered the queue before job j; i.e., K = {k:

0Ck < rk(j), k f j}. If at time t > tk(cOk) the fast machine is processing job k, then

at least one of the parallel machines is busy (maybe processing a different job). Thus,

at time tj(aj), the parallel machines have together processed at least EkEK(rk(j))-

cak)p. Now, the total processing requirement entered into the queue before job j

is ZkEKPk. Since we have just argued that by time tj(aj), the m machines have

processed EkEK(7k(aj) - aCk)m, the remaining processing requirement in the system

at time tj(aj) is at most

Epk - E(77k(oj) - k) m (± (aj)Pk.
kEK kEK m kEK m m

Using standard averaging arguments, the first time a machine will empty up to

process job j is at most EkEK (1 + k- 'm) PM. *

For a given job j, we partition N\ {j} into N1 and N2. N2 is the set of all jobs that

are processed between the start and completion of job j on the fast virtual machine

and N1 consists of any remaining jobs. For any k E N2, we let Pk denote the fraction

57

of job j that, in the LP schedule of I, is processed before the start of job k. This

implies Vk E N 2

rlk(j) =
0, cj < Uk

1, aj > k.-

Letting tj(0+) denote the start time of job j, we may then write

Pk OaPj
tj(aj) = tj(O+) + E k + j '

kEN2

Recalling that in the LP-schedule M = f t(a)da we have that

Mj = tj(O+) + E (1
kEN 2

Pk pj- k)P +
m 2m (3.3)

We can now rewrite Lemma 3 as

77k(aj)

m
Pkm

) m (2) Pk+(1 +
m m m) Pi.

kEN2

(3.4)

This bound will prove useful in the proof of the main result in this section.

For any m > 1, consider the following equation, which extends the equation in

Theorem 3.9 in [35] to an arbitrary number of machines:

In (1 + -1) _ + e(-'/m)(1+ 1--e(-'Y/m))((me(Y/m)-y e (Q/m)+ e(Y/m)+l - m) (35)
m m

For any finite value of m, it can be shown that equation (3.5) has a unique solution

y E (0, 1) (see Section A.1 in the Appendix). We set

-= n (1
m

1 -')+--- ,
m m m

for the unique value of -y that satisfies equation (3.5). It can also be shown that

6m E (, 1) for any finite m (see Section A.1 in the Appendix). With this, we can

58

1 +

m
C.? < t(0+)+ E

kEN1
Caklk(O3)

Competitive Ratios

1

1

E(

1 5 10 15 20 25
m

Figure 3-1: The competitive ratio bounds 1 + cm as a function of m.

consider the following distribution:

f(a) = c me(/m), < O < 6,
0, O.W.

where cm = (m (e' m/m - 1))-1. The main result is then the following.

Theorem 12 With f(co) as above, NASR is (1 + cm)-competitive.

The competitive ratio bounds (1 + Cm) < 2 are plotted in Figure 3-1. Our result

improves upon the 2-competitive randomized algorithms in [64]. The algorithm we

present can be seen as the parallel machine extension of the algorithm in [35] for a

single machine. Indeed, the competitive ratio that it achieves is 1.6853 for m = 1 (as

in Goemans et al.); for m = 2,3 and 4 it is 1.8382, 1.8915 and 1.9184, respectively.

To prove this theorem, we first need a series of technical lemmas.

Lemma 4 [; f(c)(+ -a rl-)da < Cml, V E [0, 1].
m m

59

Proof For Tr E [0,],

17I f(a)(I
0

+ --)dcm m = Cm [(m - r/)(e(/m) -)

+-(mrle(/) - m2e(t/m) + 2)
m

= Cm .

For E (m, 11],

/, f () (+ r -)d <

Lemma 5 (2- (1-E[a]))j
m

6
m a 6m

f(ac)(1 + - -)da = c,Sm < cml. ·
f((c + (1 - , E [1].

f(a)da < (Cm + 1) (1 -), V1p E [0, 1].

Proof We first find the expected value of ca; E[a] = (mcm + 1)6,, - m. Therefore,

2 (1-E[]) = 1
m n

We now turn to the other component. For , E [0, Sm],

1

f(a)dca = cm (e(6m/m) - e(/m)) .

Thus,

(2 1 Ea]))jf(a)dca (1
1

m + (mcm + 1)-
m

Cmtin (e(6 .m/m)

We ow use Equation (3.5) and calculate the portion

1 - -- + (mc + 1) 1 cm.m m
(3.6)

Define I = 1 + - - e(-'/m) and T = me(' /l)- ye(v/ n) +- Ie(7/"n) + 1 - m,m m m

so that the RHS of Equation (3.5) can be written as (l+-l) I.

that e(6/m') = e(+Y/)(1 + - _), we have that cm = e t/-)
Now, using the fact

Substituting this expression for c, in Equation (3.6) and replacing 6- with the
m

60

+ 1)--
m

_ e(-/m)) .

RHS of Equation (3.5), we have that

+ (mcm + 1) Cm
M = (1

: (1

= (1

1 e- (/m)

m
1 e- (Y/m)

m T

1

m
+ (e-(/m)

+ 1) e-(/m) e

+ 1) 1

e(- /m)T
)(1 + - m2)m

= (1- (- + e(-/) /m)
m m~

e-(v/m)
- (e-(v/m) + mX) e--Ym)

- (Cm + 1)e- (v /m) .

Consequently,

(2- (1 -E[a]))j1
2 m

f(a)da (cm + 1)e-(V/m)m (e(6 m/m)

= (cm+ 1)m (1 +

< (Cm + 1)m(1 +-

= (Cm + 1)(1 -).

_ ly _ e((A-V)/m))
m

m m

Lemma 6 1 +
E[a]

m

Proof A simple calculation yields

6me(6m/m)

m(e(6m/m) - 1)

2m6me(6m/m)

2m2(e(6m/m) -1)'

Turning to the RHS of the lemma, we see that

me(6m/m) - m + 1

Cm + 1 = m(e(m/m) - 1)

61

(1
1

m
e-(/m)

e-(7/m)

1 + E[a]
m (3.7)

_ e(A/m))

< (C.+ 1) a +

and consequently(cm +) (+ l)
m 2e(6m/m) - m 2 + me(am/m) + 1

2m 2(e(6m/m) - 1)

Examining the numerators of Equations (3.7) and (3.8) (and noting that the

denominators are positive), it is sufficient to prove m2e(6m/m) - m2 + me(6 m/m) + 1 >

2mme"(6 m/m); we demonstrate this as follows.

m2e (6m/m) - m2 + me(am/m) + 1 - 2m6me(6 m/m)

= (m2 + m - 2mm)e(6 m/m) - m2 + 1

> (m2 +m-2mm)(1 +)_ m2 1

- m(1 - m) + (6m) + (1 m)
> 0.E

Now we prove Theorem 12.

Proof of Theorem 12 First, we fix aj. Applying Equation (3.4) and Lemma 4 we

obtain:

E[Cj I aj] < tj(0+) + E " f (al k)(
kEN1

+ _ k) Pk dak
m m m

+ (21 - E[ak] Pk+ (1 + j)p
kEN2

a >k

< tj(O+) + Cm - + (2
kEN1

1-E[o])
kE

Caj

< (Cm + 1)tj(0 +) + (2 1 E[a]) E Pk
m m

kEN2
C j> k

-Pk- + (1 +--)pj
E N2>/k

+ (1 +)pj.i

The last. inequality follows from the fact that tj(O+) > -ZkeN, rk We now integrate

62

(3.8)

over a: and apply Lemmas 5 and 6 to find a bound on the unconditional expectation:

< (Cm + 1)tj(0+) + (2 -

< (Cm + 1)tj(0 +) + (cm

< (Cm + 1)tj(0 +) + (Cm

= (m 1) (Ctj(O) +

1-E[a].) E
m.

1

1u
ICUlV2 -"

+ 1) E (1 - Pk)Pk
mkEN

kEN2

+ 1) (1-
kEN2

E (1 -k) m
EN2

Pk)lk) -m

2m

f(ogj)Pkdaj + (1 +m
E[%j])p

m

+ (1 + EM])p

+ (Cm +l) 2m) Pi

(cm) (

where the last equality follows from Equation (3.3). Multiplying by wj and sum-

ming over j gives

E i wC] < (Cm+l) (ENWjMj
jEN

1

jEN

(Cm + l))(Z(I) +

_ (Cm + 1)Zm (I),

1

2 Z wjp
jEN)

which proves the result. A

The class of distributions we applied is optimal for our analysis. Essentially,

equation (3.5) is a sufficient optimality condition for our distributions and analysis

technique.

We can also prove that Cm < 1 for any finite m > 1 and limm O cm = 1 (see Sec-

tion A. 1 in the Appendix). Not surprisingly then, as m grows, f uniformly approaches

the uniform distribution on [0, 1].

63

E[Cja]
L_'r

3.5 A Randomized Online Algorithm for

Plrj, pmtnl j wjCj

We now consider the simpler preemptive case. Consider the following algorithm

Preemptive a Scheduling Randomized (PASR):

Algorithm 9 : PASR

INPUT: A scheduling instance I = {(p, ri, wi), i E N} which is revealed online

and a distribution f.

(1) Construct the preemptive LP-schedule on a single virtual machine m-times

faster (I - I).

(2) Draw a randomly from the distribution f (a).

(3) Apply preemptive list-scheduling in order of non-decreasing tj(a) on the m ma-

chines.

Repeating an observation from [63], we see that at any given time, the order of

the tj (c) of already released jobs can be found, even if the actual values of tj(a) are

not known. As an example, consider finding the order of tj(a) and tk(a) at a given

time t. If the values of both alpha points are known, the order is trivial. If one value

is known and the other is not, clearly the known value is at most t and the unknown

value is at least t. Finally, if both values are unknown, the smaller alpha point will

correspond to the larger ratio of weight to processing time.

It is interesting to note that if step (2) is replaced by "Take a = 1" the algorithm

becomes a deterministic online algorithm and it coincides with the 2-competitive algo-

rithm for Plrj, pmtnl Ej wjCj in [57]. On the other hand, if f is taken as the uniform

distribution in [0, 1], PASR is also 2-competitive (and this follows as a consequence

of the forthcoming analysis).

Let Cj denote the completion time of job j in the schedule output by algorithm

PASR. Consider job j. Define J as the set of jobs that start before job j in the

64

LP-schedule. For any k j, let Trk denote the fraction of job k that is completed

in the LP-schedule by time tj(O+). Note that rlk = 0, Vk J. We also have that

tj (O+) > EkEJT7km. Now, define K1 = {k I tk(a) < tj(O+)} and K2 = {k I tj(O+) <

tk(a) < tj(a)}. So K = K1 U K2 is the set of jobs that can preempt job j. Note that

jobs k E K2 preempt job j in the LP-schedule and are all processed in the interval

[tj(O+), tj(c)]. Consequently, tj(a) = t(O +) + ZkEK2 2a + Cp . The following bound

is central to our analysis.

Lemma 7

C < tj (a) + (1--a)pj + k (1 -k)k
m mm

kEJ,?k>a

Proof We first note that if the LP-schedule is busy, then at least one machine is busy

in the schedule defined by PASR. Thus, by time tj(O+), the LP-schedule will have

processed a total of kEK, r7ka and consequently, so will have the schedule defined

by algorithm PASR.

We now make some assumptions that can only increase the completion time of job

j: (1) Job j has not begun processing in the schedule defined by PASR at time tj(0 +)

and (2) jobs k E K2 are released at time tj(0+) (note that, originally, jobs in K2 were

released sometime in the interval [tj(O+), tj(a)]). While it is obvious that (1) will

only increase the completion time of job j, it is not immediately clear that (2) also

increases the completion time of job j. However, as we are dealing with preemptive

scheduling and as job j cannot finish before tj(ca), making jobs in K2 available earlier

only increases the times tj (x) for any 0 < x < 1 (since it was possible that job j found

some open machine in the interval [tj(O+), tj (a)]). Thus, job j's completion time can

only increase under assumption (2).

Thus, under Assumptions (1) and (2), at time tj(O+), the amount of available

processing that remains from K1 U K2 is at most EkEK 2 Pk + kEK (1 - km)Pk- Since

65

we have m machines, by standard averaging arguments, we have that

C; < tj(0+)+ E P
kEK 2

= t(0+)+ E p

kEK 2

= tj(O+) + e Pk
kEK2

(1
kEK1

+
kEJ,rj

p+ a
m

= tj(c) + (1-- a)Pj+
m

_ ke)Pk + p
m m

(1)Pk + Jmm~k>°t

+ (1-)Pi + E
kEJ,7k>a

kEJ,77k a

(m1) pm m

The next lemma generalizes a result in [63].

Lemma 8 Suppose there exists a distribution f(a) and a constant ym E (0, 1) such

that:

* maxaE[o,l] f(C!) < 1 + Ym.

* (1 -) f7 f(a)da < Ymr, V7 E [0, 1].

* 1- E{a} < 1+m-
m - 2

Then, Algorithm PASR is (1 + ym)-competitive.

Proof Using Lemma 7, we have that

E[C0] < E[tj(a)] + E[(1 -)pjm + E[(1-)].
mJ,kEJ,lk>-a

66

(1- -)-
m m

We bound each term individually:

E[tj(c)] = E[tj(O+) + tj(c) - tj(O+)]

= tj(O+) + f(a)(tj(a) - t(O+))da

< tj(O+) + (1 + m)(Mj - tj(O+)) = (1 + m)Mj - tj(O+);

E[(1- m)Pj]= (1 [])Pj < (1 +Y) 2;
= m 2

E[C (1 -)] = (1 rk))Pk f(a)d
kEJ,l7k>a k- EJ

- 7mlk- < 7tj(O+).
kEJ

Summing the terms it follows that

E[Cj?] < (1 + ym)Mj - ymtj(O+) + (1y + 7m) + mtj(O+) = (1 + Ym)(Mj + 2).

Multiplying by wj and summing over j, we conclude that

E[Z wjCja]
jEN

< (1 + 7m) wj(Mj + pj/2)
jEN

= (1 + 7 m)(ZR(I) + E wjpj/2)
jEN

< (1 + Ym)Zm(I).

Consider the following distribution for a for the case where we have m machines:

m2

() m (m-)2
(1 + Ym)

a E [O, m]

a E (m, 1],

where '7m = m6ym(m)' and &m E (0, 1].

Note that for m = 1, if we let 61 = 1, then 1 = and f is exactly the distribution

chosen in [63], which gives a (1 + yi) = 4-competitive algorithm. In the series of

lemmas and corollaries that follow, we find an optimal value 6 for all m > 2 and

show that the above distribution satisfies the conditions of Lemma 8, proving the

67

1

1

1

-I-

1

1

1

1

Competitive Ratios

2 5 10 15 20 25
m

Figure 3-2: The competitive ratio bounds 1 + Ym as a function of m.

main result of this section.

Theorem 13 Algorithm PASR is (1 + ym)-competitive for m 2.

The competitive ratio bounds (1 + y) < 2 are plotted in Figure 3-2. The reader

may wish to compare our result with the current best algorithm to date: the deter-

ministic algorithm in [57], which has a competitive ratio of 2 (and not better than 2)

for any number of machines. Additionally, our algorithm can be simultaneously seen

as an extension of the result in [57] and of the result in [63]. For two, three and four

machines the competitive ratio bound is 1.3867, 1.603 and 1.7173, respectively. In

general we have that (1 + 7Y) < 2 - /m, for m > 1.

Lemma 9 For m > 2 and V3m E (m(m 1)]I we have that

max f(a) < 1 + Ym.
oE[0,1

68

Proof Note that on (0, 6m], f(a) is increasing; consequently,

max
aE[O,6m]

f(a) = Ym (- 6m)2'

For a contradiction, assume Ym (mJm)2 > 1 + ym. This leads to (m - 1)62 + 2m6m -

mn2 > 0, which is only true for 6m > m(Vi-1) and 6m < m(vi+l) < 0, a contradiction.

Corollary 5 For m = 2 and V62 E (0, 2(v' - 1)], we have that

max
aE[O0,1]

Corollary 6 For m > 3 and Vr6, E (0, 1], we have that

max f(a) < 1 + ym.
ae[O,1]

We now present a result related to the second requirement of Lemma 8.

Lemma 10 For m > 2 and /6,m E (0, m(6ml1)], we have that~~~~M-1 4 ehaeta

(1 - 7) f(a)da _ 'a< 'V7) E [0, 1].

Proof For r7< 6,

(1 -) f(a)da = (1-M,"(, d 1 in r-I)

For q > 6m, we first calculate

If (o)do mr7 - mS, - m?7 + 62 + m6,mr

m - 6m(1 - 6m)

69

f(01) < I + -N

Multiplying the above integral by (1 -), we have that

(-m + (m - mm)T 2 + (m2 + m26m - 6m)rn + (-m26m + mn62)
m(m - m(1 - 6m))

Now, for a contradiction, assume (1 -) fo f(oa)dao > ymr; this leads to the

following inequality:

(-mn 6- m) 2+ (+ m2 - nm 26-)r77 + (-m26m + m2m) > mm(m - 6m)r,

or equivalently,

f(r) (m - m + mm)r72 - (m2 + (m - 1)62m) + (m2dm - m6m) < 0.

Now, f(r) < 0 is possible iff its discriminant is strictly positive. The discriminant

may be re-written as

(m2 + (m- 1)6)2 - 4(m - 6m + m6m)(m2Sm - m2m)

((m- 1)6m + 26m -m2) 2

Recall that in the proof of Lemma 9, we noted that the inequality (m - 1)6m +

2rn6m -- m2 > 0 is valid only for 6m > m(vm-1) and Sm < _m(VM+)1) this completes

the proof.

Corollary 7 For m = 2 and V62 E (0, 2(v- 1)], we have that

70

(1- 7 f'ada< YqVqE[,I 2) -d ~ ~lll I~j

Corollary 8 For m > 3 and V6m E (0, 1], we have that

(1 - Im) f(c)da < Ymrl, Vr e [0, 1].

Finally, we discuss the third requirement of Lemma 8; here we find an optimal

value of 6, for each m > 2. Consider the following lemma.

Lemma 11 The equation
E[ao] l + Ym

m 2
(3.9)

has an unique solution E m E (0, 1] for m > 2.

Proof We first drop the subscripts m from 6m and ymn. We may express E[a] as

E[a] = ym2 (-
M -- 5

m n))
1 - 62

(+) 2
2

Noticing that Y16=o = 0 and tyls1 = m-, we next calculate E[a] for 6 c {0, 1}:

1
E[] 16=o =2

2
and E[l1 6= = m + (m - 1)mln (M 1

M

(1 - E[a6
m 5=0

1

2m
and (1- E[a])

m = = (M- 1)ln(m()1

We also have that

1

2 and (1-2) 6=1

For m > 2, we

we can conclude
havethat (1) = > (2 =) a0d If (m-1)ln (m-l) < 1 X2m
that (1- E1)I= < (1+7) =1 and, consequently, there exists

6* E (0, 1] that satisfies the lemma. We now show this latter claim. Letting x = mrn

(note that m > 1 x > 1), we need to show that () < 2x, or equivalently,

71

Thus,

(2) 6=0

1--1-
2m

in () 2-1. Enlarging the range of x, we see that the inequality holds with equality

at x 1. The inequality would then be true iff the RHS increases faster than the

LHS. Taking derivatives, we need to show that < 2, which clearly holds for any

real x.

Finally, the uniqueness of the solution 6* can be seen by calculating a derivative.

Equation (3.9) may be re-written as

1 +y E[a]1= f+~2 m

the derivative of the RHS, with respect to 6, can be calculated to be strictly positive,

for any m > 2, confirming the uniqueness of 6*.

The proof of Lemma 11 also gives us the following corollary.

Corollary 9 For 6m < 6,
E[a] > 1 +ym1-
m 2

and for am > am,

E[a] < 1 +ym
m 2

Note that 62 0.4328 < 2(v2 - 1); thus the value of J6 satisfies Corollaries 5 and

7. Consequently, Lemma 8, Corollaries 5, 6, 7, 8 and Lemma 11 give us Theorem 13.

Finally, note that for m = 1, J6 = 0, which yields a deterministic algorithm (a = 0

with probability 1), which is not appropriate for our analysis. It has also been argued

in [63] that their choice of distribution is optimal for their analysis.

We conclude this section by noting that our analysis is optimal for our approach:

Since y7, is increasing in im, Corollary 9 and the third requirement of Lemma 8 show

that using 6m for m > 2 is the optimal choice of 6m for the distribution f(ca). Finally,

we plot both (1 + cm) and (1 + ym) for comparison in Figure 3-3.

72

Competitive Ratios
2

1.9

1.8

1.7

1.6

1.5

1.4

1.3
1 2 5 10 15 20 25

m

Figure 3-3: The competitive ratio bounds 1 + c, and 1 + 7y as a function of m.

73

/ .

I

I

:1

'i'

1 +cm: Competitive ratios of NASR

_ _ _ 1+: Competitive ratios of PASR
.

.-

.-

....
- -

- -

.-

74

Chapter 4

Resource Augmentation in Online

Routing

4.1 Introduction

Resource augmentation gives the online algorithm additional power by increasing its

resources. The motivation is to preclude pathological examples that give the worst-

case competitive ratio; with resource augmentation, we derive improved, more realistic

and meaningful competitive ratios.

We work with many types of resource augmentation: information, speed, capacity,

server and constraint augmentation. Information augmentation gives the online algo-

rithm advanced information about the problem instance. Speed augmentation gives

the online servers a faster speed than the corresponding offline servers. Capacity aug-

mentation gives the online server a larger capacity. Vehicle augmentation gives the

online algorithm more servers than the offline algorithm. Constraint augmentation

relaxes certain constraints for only the online algorithm.

Outline: In Section 4.2, we first consider information augmentation in the form

of disclosure dates; we study the online TSP, online TSP with multiple vehicles and

online TRP in a variety of metric spaces. In Section 4.3, we then study our generalized

(incorporating capacity and precedence constraints) single server routing framework

with speed augmentation (in Chapter 5, with additional probabilistic assumptions,

75

we study single server problems with both speed and capacity augmentation). In

Section 4.4, we then consider multiple server routing problems with both speed and

vehicle augmentation. Finally, we consider constraint augmentation for the online

k-TSP in Section 4.5.

4.2 Information Resource Augmentation: Disclo-

sure Dates

In this section, we study the online TSP, online TSP with multiple servers and the

online TRP under information augmentation. We accomplish this through the in-

troduction of city disclosure dates, times at which cities are revealed to the online

algorithm, ahead of the release dates. Let us first state the assumptions and mod-

ified definitions about the problems we consider in the section. We detail only the

single server online TSP and TRP; the multiple server online TSP is extended in a

straightforward manner.

1. City locations belong to some metric space M.

2. A city is revealed to the salesman (repairman) at its disclosure date.

3. A city is ready for service at its release date. The service requirement at a city

is zero.

4. The disclosure date for a given city is less than or equal to the city's release

date.

5. The salesman (repairman) travels at unit speed or is idle.

6. The problem begins at time 0, and the salesman (repairman) is initially at a

designated origin of the metric space.

7. The online TSP objective is to minimize the time required to visit all cities and

return to the origin.

76

8. The online TRP objective is to minimize the weighted sum of completion times,

where each city's completion time is weighted by a given non-negative number,

revealed at the city's disclosure date.

The data common to both the online TSP and online TRP is a set of points

(li, ri, qi), i = 1, ... ,n, where n is the number of cities. The quantity l E M is

the ith city's location. The quantity ri E RI+ is the ith city's release date; i.e., r

is the first time after which that city i will accept service. The quantity qi E +

is the ith city's disclosure date; i.e., at time qi, the salesman learns about city i's

request and its corresponding values li and ri. We let AJ = 1,..., n). We have that

ri > qi > 0, Vi E A. Finally, we let wi, i E J/ denote the non-negative weights on

the completion times of cities for the online TRP, which become known at times qi.

From the online perspective, the total number of requests, represented by the

parameter n, is not known, and city i only becomes known at time qi. ZA will

denote the cost of online algorithm A on an instance of n cities and Zn is the optimal

offline cost on n cities (at times, the n term will be suppressed). Finally, let rmax =

maxiEl(ri } and define LTSP as the optimal TSP tour length through all cities in an

instance.

4.2.1 The Online TSP on I +

In this section, we study the online TSP when the city locations are all on the non-

negative real line; i.e., M = R1+. We begin with an offline analysis.

We consider the offline TSP with release dates on the non-negative real line. For

this problem, [60] proposed an optimal strategy:

Algorithm 10 : Optimal Offline

(1) Go directly to city Imax = maxieA(l}.

(2) 1Wait at city Imax for maxiEg({maxO0, ri - 21max + li}} units of time.

(3) Proceed directly back to the origin.

77

The waiting time is calculated to ensure the salesman's return to the origin finds

each city ready for service. A closed-form expression for Z n is as follows:

Z n = 2lmax + max{max{O, ri- 2lmax + li}}

= maxmax {2i,ri + li}}.
iEN

* (relea date,locein)
o (disclosure date.ocation)

- Opimal Offine Trajectory
* OtlineOu

0/ o..::::-:e .\....···
i · · i i i···

0 1 2 3 4 5
time

Figure 4-1: Sample trajectory of an optimal offline algorithm.

Online Algorithms

In this subsection, we consider two online algorithms. The first considers the case

qi = ri, Vi E N and was first proposed and analyzed in [15], under the name of

Move-Right-If-Necessary. Subsequently, we present a generalization of this algorithm

for the case qi < ri, Vi E if.

The Move-Right-If-Necessary Algorithm: We assume that qi = ri, Vi E J\

and we consider the following online strategy hereafter called the Move-Right-If-

Necessary (MRIN) algorithm.

Algorithm 11 : MRIN

(1) If there is an unserved city to the right of the salesman, he moves towards it at

unit speed.

78

5

4

2

i

(2) If there are no unserved cities to the right of the salesman, he moves back

towards the origin at unit speed.

(3) Upon reaching the origin, the salesman becomes idle.

6

5

4

2

1

0

* (reIse date.locaflon)
o (dscksure datelocalon)

- MRIN
* ONine Optmum

0

0.....
6

::..

0 1 2 3 4 5 6
time

Figure 4-2: Sample trajectory of the MRIN algorithm.

The cost of the MRIN algorithm on an instance of n cities is denoted by ZMRIN

We have the following theorem from [15].

Theorem 14 ([15]) ZMRIN < 3Z Vn

We also have a hardness result which can be obtained from the analysis in [15].

Theorem 15 ([15]) Let p be the competitive ratio for any deterministic online al-

gorithm for the online TSP on I+. Then p > 2.

Thus, MRIN is a best-possible online algorithm (restricted to the case where

qi = ri, Vi E Ar).

The Move-Left-If-Beneficial Algorithm: We now consider the case where

qi < ri, Vi E JVr. Notice that by ignoring the existence of requests until their release

dates, MRIN can be applied again and will yield the same competitive ratio of 3/2.

However, a natural adaptation of MRIN does benefit from the disclosure dates. Thus,

we define the Move-Left-If-Beneficial (MLIB) algorithm.

79

Algorithm 12 : MLIB

(1) If there is an unserved city to the right of the salesman, he moves towards it at

unit speed.

(2) if there are no unserved cities to the right of the salesman, he moves back

towards the origin if and only if the return trajectory reaches all unserved cities

on or after their release date; otherwise the salesman remains idle at his current

location.

(3) pon reaching the origin, the salesman becomes idle.

5

4

a
V2

i

0

* (rleas dat,locabon)
o (dscloure datskoalon)

- MLIB
* Ons um

o0········

0 1 2 3 4 5
time

Figure 4-3: Sample trajectory of the MLIB algorithm.

The cost of the MLIB algorithm on an instance of n cities is denoted by ZMLIB

We would like to emphasize that the MLIB algorithm applied to an instance where

qi = ri, Vi E nA is indistinguishable from the MRIN algorithm applied to the same

instance. In addition, the MLIB algorithm applied to an instance where qi = 0, Vi E

Jif is also indistinguishable from the optimal offline algorithm. In this sense, MLIB

fully incorporates the advanced information of the disclosure dates. In the next

subsections, we first analyze the MLIB algorithm for a special case and then we give

a general analysis.

80

Equal Amounts of Advanced Notice

In this subsection, we first give some technical results for the general case. Then

we introduce a special structure for the disclosure dates and we show that MLIB is

best-possible while MRIN is not.

Lemma 12 Z M L IB < maxi~Er {max {qi + 21i, ri + i))}} .

Proof Suppose ZLIB = Z > maxiEN {max {qi + 21i, ri + 1i}}. Consider the final

segment of the MLIB salesman's trajectory; i.e., the segment of the trajectory where

the salesman returns directly to the origin without changing direction or waiting. We

can fully describe this segment of the trajectory as xt = z - t, t E [to, z] for some to,

the time the salesman begins his final return. Note that it is possible that to = z.

We have two cases to consider at time to:

Case (1): At t, the salesman was moving away from the origin toward a city k

and reached it at to such that to > rk. City k is the rightmost unserved city at time

to and the salesman then starts the xt trajectory, returning to the origin, reaching

each unserved city along the way on or after its release date. Since the salesman was

moving away from the origin, the worst possible location for him to be when city k

was disclosed was the origin. So the salesman should arrive at city k at time no later

than qk + lk. Thus Xto = k, for some to < qk + Ik, implying that z = Ik + to < qk + 21k,

which contradicts our assumption.

Case (2): The salesman has just finished waiting at some point, possibly the

origin, so that the xt trajectory reaches all cities on or after their release date. Thus,

3m such that xt = 1m, for t = rm, where rm [to, z]. Consequently, z = 1m + rm,

which again contradicts our assumption. m

We now prove a proposition that simplifies the subsequent analysis. This propo-

sition depends on the concept of an "ignored city," which is defined as follows: An

ignored city is viewed to have never existed; i.e., it will not be taken into account

when calculating the online and offline costs.

81

Proposition 1 For any instance of the online TSP on R+ that has both a request

away from the origin and a request at the origin, ignoring the latter will not decrease

the ratio ZMLIB/Zn.

Proof Let ZMLIB denote the cost if the request at the origin was ignored. If the

release date of the request at the origin is later than 2MLIB, the proposition is trivially

true. C)therwise, the behavior of MLIB is not affected by the request, but the optimal

solution value may decrease by deleting it. ·

When all cities are located at the origin, we have that Z M LIB = Z*. The above

proposition allows us to make the following assumption without a loss of generality

(for our intention of proving upper bounds on competitive ratios).

Assumption 1 li > 0 for all i E f.

We now consider the situation where the online salesman receives a fixed amount

of advanced notice for each city in a problem instance. In particular, there exists a

constant a E [0, rmax] such that

qi = (ri - a)+ , Vi E Nr,

where (x)+ = max{x, 0}. Noting that LTSP = 21max, we have the following theorem.

Theorem 16 ZMLIB < max 1, - Z,, where = LT

Proof From Lemma 12, we have that

zMLIB < max {max ({q + 2li, ri + li}}. (4.1)

Define S = i E A I qi > 0}; note that for i E S, qi = ri-a. If S = 0, ZMLIB = Zn

trivially. Otherwise , we write the RHS of Equation (4.1) as

max{max max q + 21i, ri + i}, max {max {21, ri + li}}},
iES iEf\S

82

which is less than or equal to max{maxiEs {max {qi + 21i, ri + li}}, Z}. Let us as-

sume maxiEs {max {qi + 21i, ri + li}} > Z,; otherwise ZMLIB = Z, and we are done.

We can now re-write Equation (4.1) as ZM LIB < maxiEs {max {qi + 21i, ri + li}}. The

latter term can be re-written as

max {ri + i + max {(li - a), O}} < max {ri + i + max {(lma - a), O}} .
iE- iES

Now, if a > Imax, we have that ZMLIB < maxiEs {ri + li}, which implies that ZMLIB =

Z., and the first part of the lemma is proved. Now, considering the case where

a < lmax, we have that

ZMLB < max {ri + li + max {(Imax - a), O}}

= max {ri + li} + (lmax - a)
iES

< Z + (ma - a).

We re-write (max - a) as vlmax, where v = < 1. Note that vlmax < Zn

Thus, ZMLIB < Zn + (max - a) = Z + lmax (1 + -) Zn = a) Z and

this completes the proof of the second part of the lemma. ·

Recalling that is the best-possible competitive ratio in the traditional setting,

we say that the value of the disclosure dates is a. We now show that MLIB is in fact

a best-possible algorithm in this situation.

Theorem 17 Let A be an arbitrary deterministic online algorithm with cost ZA on

an instance of n cities. Then Vn, there exists an instance of size n where the online

cost is at least (- a) E [1, 3] times the optimal offline cost, where a = a/LTsp.

Proof We first consider the case where n > 2. Generate an instance of (n - 1) cities

arbitrarily and let ZA_1 be the online cost of this algorithm on these (n - 1) cities;

i.e., algorithm A serves all (n - 1) cities and returns to the origin at time t = ZnA-

At this time, city n becomes known to algorithm A:

(ln, rn, qn) = (a + Z_ a +n- Z 1, Zn- 1).

83

Note that ,max = In = a + ZA_l since ZA_ > Zn-1 21i, Vi < n. Considering

algorithm A, its salesman is at the origin at time qn. Thus,

ZA > q, + 21n = 3ZA_1 + 2a.

Considering the optimal offline algorithm, we have that Z* = max{Z_,- 2(ZA_1 +

a)} = 2(ZA_ + a), since A > Z* Note that Z, > 0 by Assumption 1. Thus,

ZnA ZA> 1+ Z
Zn 2(ZA 1 + a)

A
1+ n-

21max

lmax - a
= 1+

2lmax
3 a

2 2lmax

Note that by construction, a < lmax and, consequently, 3 - E [1 32].

Finally we consider the case where n = 1. Let x > a, q = x - a, r = x and

I = x. Assuming that the online algorithm does not move when no cities have been

disclosed, we have that ZA > (x - a) + x + x = 3x - a. The optimal offline cost is

Z* = 2xr and ZA/z* > 3/2 - . ·

Notice that disclosure dates do not affect MRIN; a single city instance where

r = 1 still induces an online cost which is times the optimal offline cost. We thus

have the following corollary:

Corollary 10 Algorithm MLIB is a best-possible online algorithm under the restric-

tion qi = (ri - a)+, Vi cE N. In addition, algorithm MRIN is not best-possible.

In-Depth Online Analysis of MLIB Under General Disclosure Dates

In this subsection, we give a general result (of a technical nature) for the MLIB

algorithm and we also present an interesting example where advanced information is

actually detrimental. We first introduce some definitions:

84

Definition

I. 6 = min {}, where Ss(n) = {j qj + 21j = maxiEr {max {qi + 21i, ri+ li}}}
jeS 6(n) lj

2. = mill {-}, where S,(n) S(n) n{j I qj > 0}.
jES,(n) qj

3. h- = mill {q}, where S(n) = Sa(n)n{j r > o}.
jES, (n) j

Theorem 18

1. If either or both of the sets S,(n) and S~(n) are empty, then Z MLIB = Z .

2. Otherwise, ZMLIB < (1 + min 2 1 })Zn-
2'2' 1 +i;

3. In addition, when well defined, (1 + min{ - }) < -.2'2' 1+- -2

Proof We first analyze the second part of the theorem, where S,(n) and S,(n) are

both non-empty. We let m be the index that attains the minimum in the definition

of 6; i.e., q = 61m. By Lemma 12 and Equation (4.1), we have that

Zk
M

LIB < qm + 21m

(+ 2)1,,n

6
< (1 +)Z,.

2

Let p be the index that attains the minimum in the definition of ,; i.e., lp = qp.

By Lemma 12 and Equation (4.1), we have that

Z'ILIB < qp + 21p

l+r(1+)(qp + tp)
< (1 +)Z

85

Finally, we let k be the index that attains the minimum in the definition of 7; i.e.,

qk = 7yrk. By Lemma 12, we have that

ZMLIB < qk+ 2lk

= rk + 21k.

We consider three possibilities:

(1) If k > rk, we have that 2 1k + 7rk < (2 + y)lk < (1 +)Z

(2) If k < (1 -)rk, 21k + rk < lk + rk < Z.

(3) If (1 - 7)rk < Ik < rk, we can let Ik = (1 -)rk for some "' E [0, y]. After some

simple algebra, we see that

21k + ark = (rk + lk) + () lk < Z + lk < (1 +)Z ,,
(1 -)

where the first inequality holds because the function fy (b) = (v-) attains a maximum

of y (when M = 0) on the domain [0,y], since y < 1. Thus, Z M L B < (1 + 2Z As

the previous analyses were mutually exclusive, we may conclude that, if S,(n) and

S,(n) are both not empty, ZMLIB < (1 + mint{, , 1+)Z.

We now analyze the first part of the theorem. We have that either or both S,(n)

and S,(n) are empty. We first consider the case where the superset S(n) = 0. In

this situation, there exists a city j s.t. rj + lj = maxiEsv {max {qj + 21i, ri + li}}. By

Lemma 12 and Equation (4.1) we have that

ZMLIB < rj +

< Zn-

Recalling that ZMLIB > Zn, we conclude that ZMLIB = Z*. Now, assume S6(n)

contains at least one element. If S,(n) is empty, then = 0. The analysis that

results in Equation (3.9) proves that ZMLIB < Z'. Thus, ZLIB = Zn. Now, if S(n)

is empty, rj = 0, Vj E S(n). This again implies that 6 = 0 and, consequently,

LIB _=

86

We conclude by analyzing the third part of the theorem. Since min{6, nE} < 1

(also < 1), (1 + min{, 6, ') < .

Since the best-possible online algorithm, with no disclosure dates, has a competi-

tive ratio of , we say that the value of the disclosure dates is

min{ , }), if and y are well defined

1 o n W.

To conclude our analysis of the online TSP on the nline TSP on the non-negative real line, we

provide an example where the advanced information of the disclosure dates is actually

detrimental.

Example: Consider the two city instance where q1 = 0, r = 11 = 1, q2 = r2 = 2

and 12 = 1. This instance induces the following costs: ZMRIN(2) = 3 and ZMLIB(2) =

4.

However, we have conducted computational experiments that confirm the intu-

itively clear superiority of MLIB over MRIN on average; please see Chapter 6.

4.2.2 The Online TSP on M

We now consider the general case where cities belong to a generic metric space M.

Let d(.,) be the metric for the space and o the origin. We consider the value of

advanced information, for the structure qi = (ri - a)+, Vi E , providing lower and

upper bounds on the competitive ratio. The proof of our first result consists of simple

modifications of the proof of Theorem 3.1 in Lipmann [55].

Theorem 19 Any p-competitive algorithm for the online TSP on a metric space M,

with qi := (ri - a)+, i E A, has p > 2/(1 + a), where a = a/LTsp.

Proof Define a metric space M as a graph with vertex set V = {1, 2,..., n} U o}

with distance function d that satisfies the following: d(o, i) = 1 and d(i, j) = 2 for all

i j E V \ {o}.

87

At time 0, there is a request at each of the n cities in V \ jo). If an online server

visits the request at city i at time t < 2n - 1 - e, for some small , then at time t + ,

a new request is disclosed at city i.

In this way, at time 2n - 1 the online server still has to serve requests at all n

cities; furthermore, at time 2n - 1, all cities have only been disclosed, not necessarily

released. Therefore, the online cost is at least the corresponding value in the situation

where all cities have been released by time 2n - 1. This latter value is at least 4n - 2.

Therefore. denoting ZA as the online cost of an arbitrary online algorithm A, we have

that ZA > 4n - 2.

The optimal offline server will also have some difficulty with the differences be-

tween the disclosure dates and release dates. We first note that, had the cities been

released at the above mentioned times, rather than disclosed, the optimal offline cost

would have been 2n. We now exploit the structure of the disclosure date/release date

relationship: by waiting a units of time at any disclosed city, the city's release date

will arrive. Therefore, it is clear that Z* < 2n+a. Finally, by noting that LTSP = 2n,

we have that
ZA 4n - 2 2 2
Z* -2n+a 1 + a 2n+a

Taking n arbitrarily large proves the theorem. ·

Now, we give the first of two generalizations of the 2-competitive online algorithm

PAH ([10]). We call our algorithm Plan-At-Home-disclosure-dates (PAH-dd).

Algorithm 13: PAH-dd

(1) Whenever the salesman is at the origin, it starts to follow a tour that serves

all cities whose disclosure dates have passed but have not yet been served; this

tour is constructed using an algorithm A that exactly solves an offline TSP with

release dates.

(2) If at time qi, for some i, a new city is presented at point li, the salesman takes

one of two actions depending on the salesman's current position p:

88

(2a) If d(li, o) > d(p, o), the salesman goes back to the origin where it appears

in a Case (1) situation.

(2b) If d(li, o) < d(p, o), the salesman ignores the city until it arrives at the

origin, where again it re-enters Case (1).

Theorem 20 Algorithm PAH-dd is (2 -)-competitive, where a = LTSP'

Proof Let p(t) be the position of the salesman at time t. Let us consider the state

of the algorithm at time q, the final disclosure date.

Case (1): The salesman is at the origin at time q,. Let T be the tour, calculated

by algorithm A at time q,, that visits all unserved cities; for simplicity, we let T also

denote the duration of the tour. Letting ZPAH-dd denote the online cost of our new

algorithm, we have that

zPAH-dd = qn + T

= rn +T-a

< Z* + (T-a)
= z*+(-f

where the last inequality is by T < Z*. Inserting the obvious bound T < a + LTSP

proves the theorem for this case.

Case (2a): We have that d(o, l,) > d(o, p(q,)) and the salesman returns to the

origin, arriving before time q + d(o, In) = r + d(o, i) - a. Once at the origin, the

salesman uses algorithm A to compute a tour T'. Clearly, r + d(o, In) < Z*. Thus,

we have that

ZFAH-dd < rn + d(o, ln) + (- a) < Z* + (1- 1 --- * = (2)z*.I1±a I+a

Case (2b): We have that d(o,l,) < d(o,p(q,)). Suppose that the salesman is

following a route R that had been computed the last time he was at the origin.

89

Clearly, R < Z*. Let Q be the set of cities temporarily ignored since the last time

the salesman was at the origin. Let j be the index of the first city in Q that is visited

by the optimal offline algorithm. Let PQ be the shortest path starting from location

lj at time rj, visiting all other cities in Q, while respecting the release dates, and

terminating at the origin. Clearly, rj + PQ < Z*.

Since city j was ignored when it was disclosed, we have that d(o, Ij) < d(o, p(qj)).

Thus, at time qj the salesman had already traveled at least a distance d(o, Ij) on R

and will complete 7? at the latest at time t = qj + 1 - d(o, Ij). Next, the salesman

will compute TQ, a tour covering Q.

At time t, consider an alternate strategy that first goes to city j, possibly waits

for city j to be released, and then follows the shortest path through the cities in Q;

this latter path is at most PQ. Clearly, TQ will finish before this alternate strategy

finishes. Next, notice that the completion time of TQ is also the completion time of

PAH-dd; therefore, we have that

ZPAH-dd < max{tR+d(o, lj),rj}+PQ

= max {tr + d(o, lj) + PQ, rj + PQ}

< max{t + d(o,j) + PQ, Z

= max{qj + R +PQ,Z *}

= max {(rj + PQ) + (- a), Z*}

< max Z* + (1 + Z Z*)

= (2 -- Z*.

Since the best-possible algorithm for the online metric TSP has a competitive

ratio of 2, Theorems 19 and 20 indicate that the value of the disclosure dates is at

least 1+ and no more than 2a

90

4.2.3 The Online TSP with Multiple Salesmen on M

In this section, we investigate the value of advanced information for the multiple

server case. We utilize the problem definitions from Chapter 2, Section 2.4. We

add disclosure dates to the problem data in the natural way. We again consider the

special case where there exists a constant a > 0 such that qi = (ri - a)+ where

(x)+ = max{0,x}. We define an appropriate algorithm to take advantage of the

disclosure dates, which we denote Plan-At-Home-m-servers-disclosure-dates (PAH-

m-dd).

Algorithm 14: PAH-m-dd

(1) Whenever all servers are at the origin, they calculate and implement an exact

solution to Z*(m) over all requests whose disclosure dates have passed but have

not yet been served completely.

(2) If at time qi, for some i, a new request is presented, the servers take one of two

actions depending on the request's location li and the farthest server's current

position p* (ties broken arbitrarily):

p* -- arg max d(o, pi):
(pi I 1<i<m}

(2a) If d(li, o) > d(p*, o), all servers go back to the origin where they appear in

a Case (1) situation.

(2b) If d(li, o) < d(p*, o), all servers except p* return to the origin; server

p* ignores request i until it completes the route it is currently traversing,

where again Case (1) is encountered.

Theorem 21 Algorithm PAH-m-dd is (2-)-competitive, where = a/Zr=O(m).

Proof Let p* (t) be the position of the farthest server at time t. Let us consider the

state of the algorithm at time qn, the final disclosure date.

91

Case (1): All servers are at the origin at time qn. Letting T denote the cost of the

final Case (1) re-optimization, we have that

zPAH'mdd < qn + T

= rn+T-a

< Z*(m) + (T-a)

= Z*(m)+ (1-)T

< Z*(m)+(l)Z*(m).

Inserting the obvious bound T < a + Zr=°(m) proves the theorem for this case.

Case (2a): We have that d(o, ln) > d(o,p*(qn)) and the servers return to the origin,

arriving before time qn + d(o, 1,) = r + d(o, 1,) - a. Once at the origin, the servers re-

optimize; let T' denote the cost of this re-optimization. Clearly, rn + d(o, l) < Z*(m).

Thus, we have that

ZPAH-d cI rn + d(o, ln) + (T'- a) < Z*(m) + (1 +---)Z*(m) = (2-)Z*(m).1±a 1±a

Case (2b): We have that d(o, In) < d(o,p*(rn)) and all servers, except p*, return to

the origin, if not yet already there. Suppose server p* is following a tour T that had

been computed the last time it was at the origin. Note that 1Z < Z*(m). Let Q be

the set of requests temporarily ignored since the last time a Case (1) re-optimization

was performed; since l, E Q, Q is not empty. Let S C {1,..., m} denote the set of

servers that serve Q in the optimal offline solution. For j E S, let IJ be the location

of the first city in Q served by server j in the optimal offline solution and let rJ be

the time at which this city was released. Let PJ, j E S, be the set of paths, the j-th

path starting from lj, that collectively visit all the cities in Q and end at the origin,

such that the maximum path length is minimized. As was argued in the proof of

Theorem 26, Z*(m) > maxjEs{rj + PQ} and Z*(m) > maxjes{d(o, Ij) + P}PQ

At time qJ, the distance that salesman p* still has to travel on the route 7Z before

arriving at the origin is at most R -d(o, ii), since d(o, p* (qj)) > d(o, ij) implies that p*

92

has traveled on the route 7 a distance not less than d(o, lj). Therefore, it will arrive at

the origin before time qJ +R- d(o, li); note that since this is valid for any j, we can say

that the salesman will arrive at the origin before time minjES{qi + 7- d(o, Ii) }. Note

that all other salesmen have already arrived at the origin. Next, a re-optimization

will be implemented on Q; let TQ denote the maximum tour length. Hence, the

completion time of PAH-m-dd will be at most minjES{qj + R - d(o, lJ)} + TQ. Again,

TQ < maxjes{d(O, Ij) + Pi} and we have that the online cost is at most

min{qj + - d(o, li)} + max{d(O, J) + PQ}.
jES jES

Letting k be the arg max of the second term, we have that the online cost is at most

k + d 1k) + d(O k) + p k= (r k + pk) + (R - a)- 2 1+o a

Theorem 22 Any p-competitive algorithm with q = (ri - a)+, Vi E Af, has p >

2/(1 + a), where o = a/Zr=°(m).

Proof Define a metric space M as a graph with vertex set V = 1, 2,..., n} U o}

with distance function d that satisfies the following: d(o, i) = 1 and d(i, j) = 2 for all

i $ j E V \ {o}. For simplicity, assume m divides n evenly.

At time 0, there is a request at each of the n cities in V \ {o}. If an online server

visits the request at city i at time t < 2m -- 1 - , for some small , then at timem

t + , a new request is disclosed at city i. In this way, at time 2n - 1 the onlinem

servers still have to serve requests at all n cities, some of which are only disclosed

and not; released. If all cities were released, the online servers could finish at time

(2m - 1) + 1 + 2(m - 1) = 4 - 2; therefore this is a lower bound for the online cost

when cities have only been disclosed. Denoting ZA as the online cost of an arbitrary

online algorithm A, we have that ZA > 4n - 2. The optimal offline servers, however,

will be able to visit all cities by time 2 n + a. Therefore, by letting k = n and notingm m

93

that Z.=°(m) = 2k, we have that

ZA 4k - 2 2 2> =
Z* -2k +a l+a 2k +a'

taking k arbitrarily large proves the theorem. E

4.2.4 The Online TRP on M

Thus far, we have been analyzing versions of the online TSP, where the objective is

arguably in the salesman's interest. We now consider another objective, the weighted

latency., which is an objective that is arguably in the cities' interest; additionally, the

weights may be chosen to favor certain cities over others.

In this section, we consider the online TRP with arbitrary weights. Our objective

is to minimize EiejNViCi, where Ci is the completion time of city i, the first time

it is visited after its release date, and the wi are arbitrary non-negative weights.

Again, i E A4M, for any metric space M and we consider the situation where qi-

(r - a)+ , Vi E M.

A Deterministic Online TRP Algorithm for General M

Let A == (1 + vA), bo = min{rj I rj > a) and bi = Aibo. Also, let bi = bi- a. The

definition of bo ensures that bl > 0, which is necessary for step 1 of BREAK to be

feasible. The latter bi parameters are the breakpoints where the online algorithm

BREAK (to be defined shortly) will generate some re-optimization. Our algorithm

is a generalization of the (1 + vr) 2-competitive INTERVAL given in [51], which re-

optimizes at times bi. Let Qi, i > 1 denote the set of cities released up to and

including time bi; clearly Qi C Qi+l, Vi. Note that at time bi the online repairman

knows Qi. Let Ri denote the set of cities served by algorithm BREAK in the interval

[bi, bi+l] and R i the set of cities served by the optimal offline algorithm in the interval

[bil, bi]. Finally, let w(S) = EiES wi.

Algorithm 15 : BREAK 1
1Note that BREAK is not a polynomial-time algorithm since step 2 requires the exact solution

94

1. Remain idle at the origin until time b1.

2. At time bl1 calculate a path of length at most b1 to serve a set of cities R1 C Q1

such that w(R 1) is maximized.

3. At time bi, i > 2, return to the origin and then calculate a path of length at

most bi to serve a set of cities R, C Qi \ Uj<i Rj such that w(Ri) is maximized.

This algorithm is easily seen to be feasible - actions in iteration i are completed

before actions in iteration (i + 1) are to begin. We begin our analysis of algorithm

BREAK with the following lemma, which generalizes a result in [51]. Our proof of

this lemma is quite different from that of [51] and follows the proof of a similar result

in the machine scheduling literature (see [39]).

Lemma 13 For any k > 1, Eik= w(Ri) > ik= w(R).

Proof Consider iteration k > 2 and let R = U/=1l R \ U 11 RI. If a repairman were

at the origin at time zero, he could serve all the cities in the set R by time bk.

NoW, consider an online repairman at time bk. Suppose he knew the set R. Then

by returning to the origin, taking at most bk-1 time units, the repairman could serve

the cities in R by time bk + bk-1 + bk = bk+l (equality since a = (1 + AV)). Thus, in

iteration k, the repairman could serve cities of total weight w(R).

Unfortunately, the repairman does not know R since the R* are not known until

all cities are released. However, the repairman's task is to find a subset of S =

Qk \ Uk-ll Rl. Since Qk U 1k=l R, S D R, and the online repairman is able to choose

a subset of S to serve in iteration k of total weight at least w(R), since choosing R

as the subset is a feasible choice. A similar argument holds for k = 1.

95

of the NP-hard Orienteering Problem [16].

Now, for any k,

w(Rk) > w(R)

= EJeU=, R~ \U
k

= E w(R)
1=1

k

1=1

k

= w(R*)
1=1

Wj

1- R1

E
j(U,= R) n(uk- Ru)

i~Uf R)

k-1

-Ew(R1),
1=1

which gives the result. ·

The following corollary is evident from Lemma 13.

Corollary 11 Suppose the optimal offline algorithm visits the last city in its tour in

interval (bp-1, bp] for some p > 1. Then the online algorithm BREAK will visit its

last city by time bp+1.

We now give the main theorem of this section.

Theorem 23 Algorithm BREAK is ((1+)2-)-competitive, where a = LTSP

rmaxand =

Proof of Theorem 23 We begin by stating Lemma 6 from [51]: Let ai, bi E R+,

for i 1, . . ., p. If= ai = i=1 bi and EP'l ai > EiPl bi for all 1 < p' < p, then

P for any non-decreasing sequence .. < Applyingji= aIia!i -i=I ribi for any non-decreasing sequence 0 < 71 < . < p. ApplyingFM i=~~~~~~~~~~~~~~~~~~~~~~'

96

wj

this lemma, we have that

p

zBREAK < bk+lw(Rk)

p

•E bk+lW(Rk)
k=1

p

<= bk+l -a)w(R)
k=1p

= (2 bk - a)w(R*)
k=l

p

= Z (A 2bkl-a)w
k=l IER

p

< E (A2C -a)wl
k=l IERk

where Cj the the completion time of city I by the optimal offline algorithm. Now,

suppose there exists 7 such that (A2C - a) < yC[t, V1. Then, algorithm BREAK

would be -competitive. It is clear to see that Ay = A2 a is the smallest such value

to satisfy the requirements, where Cax = maxiEA{C7 }. Thus, algorithm BREAK is

(A2 - ca)-competitive. Finally, using the fact that Cax < rmax + LTSP, we achieve

the result.

Since the best deterministic algorithm to date (INTERVAL) for the online metric

TRP is (1 + i2)2-competitive, we say that the value of the disclosure dates is

A Randomized Online TRP Algorithm for General AM

We may also define a randomized algorithm BREAK-R as algorithm BREAK with

the following substitution: bo H AUbo, where U is a uniform random variable on

[0, 1]. We have the following theorem for this randomized algorithm; its proof is quite

similar to that of Theorem 23 and is omitted.

Theorem 24 Algorithm BREAK-R is (- `+ -)-competitive, where a L =

a and e ; 3.86.
rmax

97

Remark 1 To the best of our knowledge, algorithms INTERVAL and RANDINTER-

VAL ([51]) are the best online algorithms to-date for the online TRP, regardless of

the metric space; i.e., we are not aware of any algorithms that improve these results

for any simpler metric spaces, such as R+ or R. Therefore, we do not have any new

results specific to these particular metric spaces.

A Correction to a Previously Published Result

When a = 0, algorithm BREAK-R corresponds to a realization of the A-parameterized

online algorithm RANDINTERVAL, given in [51] and summarized in Chapter 2. The

values of A for which RANDINTERVAL is a feasible algorithm were given incorrectly

in [51]: The given range A E [1 + v, 3] should have read A (1,1 + vf/] since

the algorithm requires (+l) > 1. This led to an erroneous result that stated that

RANDINTERVAL was -competitive, - 3.64. Using the correct range for A, it

is straightforward to see that RANDINTERVAL is O-competitive, where (9 m 3.86.

These corrections were originally reported in [43] and are remedied in [52].

A Final Note on the Online Dial-A-Ride Problem

Finally, note that Theorems 23 and 24 also hold for the online Dial-A-Ride problem,

which is a generalization of the TRP. Instead of a customer (city) requesting a visit,

a customer requests a ride from a source location to a destination location. The

completion time of a customer is the time that the customer reaches the destination.

The subroutine in the BREAK algorithm that calculates paths maximizing the weight

of served customers must simply be modified to incorporate the new requirements of

a customer.

4.3 Single Server Resource Augmentation

We now return to the setup of Chapter 2, Section 2.3, where we consider the online

TSP with precedence and capacity constraints. In this section, we present a result

for algorithm PAH-G, which was defined in Chapter 2, under speed augmentation.

98

The online algorithm has a single server with a speed y > 1. The offline algorithm

has a single server of unit speed. Online and offline servers have identical capacities

Q.

Theorem 25 Algorithm PAH-G is (1 + (2p - 1)/y)-competitive.

Proof Recall that r~ is the time of the last request and = arg max l<j<k(n) d(o,).

We show that in each of the Cases (1), (2a) and (2b), PAH-G is (1 + (2p- 1)/y)-

competitive.

In Case (1) PAH-G is at the origin at time rn. It starts traversing a p-approximate

set of tours that serve all the unserved requests. Since the online server has speed y,

the time needed by PAH-G is at most rn + pZn=O(Q)/y < (1 + p/y)Zn(Q).

Considering Case (2a), we have that d(o, n) > d(o, p). Then PAH-G goes back to

the origin, where it will arrive before time r + d(After this, PAH-G computes

and follows a p-approximate set of tours through all the unserved requests. Therefore,

the online cost is at most rn+ d(*) +pZnr =(Q)/y. Noticing that rn+d(o, ln) < Zn(Q)

and 2d(o,[i) < Zn=°(Q), we have that the online cost is at most

dlo l) = (Q) 1
r + -P n~ _ < Z(+ -1 d) + (Q)

< (1+ (2p 2)) Z (Q)

Finally, we consider Case (2b), where d(o, l[) < d(o,p). Suppose PAH-G is fol-

lowing a route R that had been computed the last time step (1) of PAH-G had

been invoked. will also denote the actual distance of the route; we have that

1? < pZr=°(Q) < pZ*(Q). Let S be the set of requests that have been temporarily

ignored (from step (2b) of algorithm PAH-G) since the last time PAH-G invoked step

(1). Let If be the first location of the first request in S visited by the offline algorithm,

and let rf be the time at which request f was released. Let P7 be the fastest route

that starts at If, visits all cities in S and ends at the origin, respecting precedence

and capacity constraints. Clearly, Z*(Q) > rf + P7 and Z*(Q) > d(o, lf) + P.

At time rf, the time that PAH-G still has left to complete route R is at most

99

(7Z-d(o, If))/y, since d(o,p(rf)) > d(o, 1l) > d(o, If) implies that PAH-G has traveled

on the route R a distance not less than d(o, If). Therefore, the server will complete the

route R before time rf + (R - d(o, lf))/y. After that it will follow a p-approximate

set of tours that covers the set S of yet unserved requests; let Ts denote the cost

of the optimal set of tours. Hence, the total time to completion will be at most

rf + (7?. - d(o, lf))/y + pTs/y. Since Ts < d(O, If) + Ps, we have that the online cost

is at most

rf +R- d(o, f) + d(O, If) + P

= (rf + ;) + + (d(, If) + P 1 P

< Z*(Q) + r=O(Q) + (P-l)Z*(Q)

< (1 + Z*(Q).

Since p, y > 1, max {1 + , 1 + 2p-,1 + (2p-+l) } =1 + 2p- and the theorem
is proved. ·

Corollary 12 If we use an exact algorithm in step(1) for calculating an optimal

offline Zr=°(Q), Algorithm PAH-G is (1 +)-competitive.

4.4 Multiple Server Resource Augmentation

We continue our follow up from Chapter 2, but now consider Section 2.4, where we

consider the online TSP with multiple salesmen (without precedence and capacity

constraints). In this section, we present a result for algorithm PAH-m, which was

defined in Chapter 2, under speed and vehicle augmentation.

We give the online algorithm m identical servers, each with a speed y > 1. The

offline algorithm has a single server of unit speed.

Next, we make an observation: If all the city locations are closely clustered, there is

little benefit to using multiple vehicles. Therefore, we make an assumption that allows

100

us to circumvent this fact; we then prove a useful lemma that uses this assumption.

Assumption 2 There exists 3 > 0 such that for all i,j {O,..., n}, i # j,

d(li, Ij) > i,

where lo denotes the origin.

Lemma 14 Under Assumption 2, Zr=°(m) < Zr=(1) - (m -1).

Proof 'We consider a feasible solution to Zr=°(m): For servers 1,..., m- 1, we assign

them each the (m - 1) locations closest to the origin. For vehicle m, we assign it the

remaining n -m + 1 locations; clearly Zr=°(m) equals the distance traveled by server

m. Since distances between locations are at least /3, server m will require at most a

distance of LTSP - (m - 1)3 to serve the remaining locations.

Next, we define a measure of the value of the lower bound 3. Let

= s
LTSP

note that, since LTSP > (n + 1)3, we have < 1 There exist instances such that

this last inequality is tight, the most obvious being the metric space where d(li, lj) -=

for all i t j. We now present and prove the main results of this section.

Theorem 26 Under Assumption 2, the competitive ratio of Algorithm PAH-m is at

most

1+P (1 - (m -1) O) + P

Proof Let rn be the time of the last request, I, the position of this request and p*(t)

the location of the farthest salesman at time t.

Case (1): All salesmen are at the origin at time rn. Then they start implementing

a p-approximate solution to Zr=°(m) that serves all the unserved requests. Applying

101

Lemma 14, the time needed by PAH-m is at most

r+ P zr=°(m) < Z*(1)+ P (Zr=O(l) P (1-(m 1))) Z*(1).

Case (2a): We have that d(o, I,,) > d(o,p*(rn)). All salesmen return to the origin,

where they will all arrive before time r + d(o, l)/y < r, + d(o, Il). After this, PAH-

m computes and follows a p-approximate solution to Zr=o(m) through all unserved

requests. Therefore, the online cost is at most r + d(o, 1,) + Zr=o(m). Noticing

that r + d(o, 1,) < Z*(1) and applying Lemma 14, we have that the online cost is at

most (+ (1 - (m- 1))) Z*(1).
Case (2b): We have that d(o, 1,) < d(o, p*(rn)) and all salesmen, except p*, return

to the origin, if not yet already there. Suppose salesman p* is following a tour 71 that

had been computed the last time it was at the origin. Note that R < pZr=°(m) and

Zr=°(m) < Z*(m) < Z*(1). Let Q be the set of requests temporarily ignored since

the last time a Case (1) re-optimization was performed; since In E Q, Q is not empty.

Let S C {1,..., m} denote the set of salesmen that serve Q in the optimal offline

solution. For j E S, let 1 be the location of the first city in Q served by server j in the

optimal offline solution and let rj be the time at which this city was released. Let P,

j E S, be the set of paths, the j-th path starting from lj, that collectively visit all the

cities in Q and end at the origin, such that the maximum path length is minimized

(ties broken arbitrarily). It is easy to see that Z*(m) > maxjss{PQ} since the min-

max-path optimization has distinct advantages over the offline solution: (1) having

the servers start at cities lj, (2) needing to only serve the cities in Q and (3) ignoring

release dates. If the servers start from the origin, the earliest time that server j can

visit city li is max{r, d(O, lj)}; by extension we have that Z*(m) > maxjES{r + Pi}

and Z*(m) > maxjes{d(o, j) + P} .

At time r3 , the distance that salesman p* still has to travel on the route R7 before

arriving at the origin is at most R1 - d(o, lj), since d(o,p*(rj)) > d(o, lj) implies that

p* has traveled on the route 7 a distance not less than d(o, lj). Therefore, it will

arrive at the origin before time rj + R-d(o,lj); note that since this is valid for any j, we
-Y

102

can say that the salesman will arrive at the origin before time minjES{r j + -d(oI) }.

Note that all other salesmen have already arrived at the origin. Next, a p-approximate

Zr=O(mn) will be implemented on Q; let TQ denote the optimal maximum tour length.

Hence, the completion time of PAH-m will be at most minjes{rj + R-d(l) } + TeQ.

Now, note the following feasible solution for the final case (1) re-optimization: Use

only the set of salesmen S, force salesman j to first go to city Ij and then traverse

path P. Therefore, TQ < maxjEs{d(O, Ij) + Q} and we have that the online cost is

at most

min r + - d(o,) + p max d(O,) + P
js a J ? jes Y a

Letting k be the arg max of the second term, we have that the online cost is at most

rk Z- d(o,lk) + p (d(O, lk)+ ppk

(rk + pk) + 1 + P)d(o,kk) + - 1) P

• Z*(m) + Pzr=o(m)+ (P1) (d(o, lk) + pk)

< P (Z`=°(1) - (m - 1)) + Z*(1)

< (1 + P (- 1)) + P)

Corollary 13 Under Assumption 2, if we use an exact algorithm in step(1) for cal-

culating an optimal offline Zr=°(m), Algorithm PAH-m is (1 + (- (m --

competitive.

A stronger (though dependent on n) parallel development is also possible. We

first give an improvement to Lemma 14.

Lemma 15 Under Assumption 2, Zr=°(m) < Zr=°(1) n(-_m)

Proof For simplicity, assume n/m E N. Let I = n(m- 1)/m. Note that 1 satisfies

the following equation: < n- 1. Next, we assign l/(m - 1) locations to each

of the first (m - 1) servers and then assign (n - 1) to server m. We do this in

103

the following way: Pick the l/(m - 1) locations that form the shortest tour and

assign this tour to server 1. Out of the remaining locations, find the next l/(m - 1)

locations that form the shortest tour and assign to server 2. Repeat until vehicle

(m - 1). Therefore, vehicle m will have the longest tour of all vehicles. Consequently,

Zr=o(m) < Z=°(1)- lp = Zr=O(1) n(m-l). ·

Using this refinement, we have the following result.

Theorem 27 Under Assumption 2, the competitive ratio of Algorithm PAH-m is at

most

p (1 n(m-1) +p-
Y m ~7

Corollary 14 Under Assumption 2, if we use an exact algorithm in step(1) for calcu-

lating an optimal offline Zr=°(m), Algorithm PAH-m is (1 + 1- n(m 1)))

competitive.

4.4.1 Pure Speed Augmentation

Theorem 28 If both online and offline algorithms have m servers, the competitive

ratio of Algorithm PAH-m is at most

2p - 11+
ly

Proof Repeat the proof of Theorem 26 but replace all instances of Z*(1) with Z*(m)

(all bounds remain valid) and do not apply Lemma 14.

Corollary 15 If we use an exact algorithm in step(1) for calculating an optimal

offline Zr=°(m), Algorithm PAH-m is (1 + 1 -competitive.

4.5 Resource Augmentation for the Online k-TSP

We now return to Chapter 2, Section 2.6, where we presented an online version of

the k-TSP, which deals with finding a subset of size k of the n cities such that the

makespan is minimized.

104

4.5.1 Constraint Augmentation

We consider constraint resource augmentation. In this case, the online server is

required to visit k' cities while the offline server must visit k cities, where k' < k.

We prove a result of the form ZA < pZ* - rn, where the improvement of resource

augmentation is in the term.

Recall that Algorithm WaG, defined in Chapter 2, has a competitive ratio of 2.

We have the following result, where ZGk'aG is the online cost for k' cities and Zk is the

optimal offline cost for k cities:

Theorem 29 Under Assumption 2,

-k "I k - 2(k - k')O.

Proof Sketch Using algorithm WaG, we clearly have ZWaG < 2Zk*,. Considering

the offline problems with k' and k cities, we note that the second server must serve

(k - k') additional cities; each additional city adds at least travel time. Therefore,

Zk > Z*, + (k - k') f,

and we attain our result. ·

4.5.2 Speed Augmentation

We study the case where the online server has speed 7y 1, the offline server has unit

speed and both the online and offline servers must visit k cities.

Theorem 30 Under Assumption 2,

Zk < 2Z -(k + 1) (1 -) .

Proof Sketch At time t = Z*, the online server begins implementing the offline

solution. Note that all release dates of cities to be visited have passed. The slower

105

offline server must travel at least a distance of (k + 1)P and takes at least (k + 1)P

units of time to do this. Considering the fast online server, it must travel at least the

same distance, but since it travels at speed y, it will take at least (k + 1)P/y units

of time.. Therefore, from time t, the online server will have an advantage of at least

(k + 1)3 (1)- . We let L, and L denote the time required for the online and offline

servers, respectively, to visit the chosen cities. Consequently, we have that

Zk<aG = t + L < t + L- (k + 1) (--) < 2Z1-(k + 1)(1--) .

4.5.3 Combining Speed and Constraint Augmentation

The nature of the two above results allows us to simply combine them.

Corollary 16 Under Assumption 2,

ZWaG < 2Zk - ((k ' + 1) (1) + 2(k- k')) .

106

Chapter 5

Stochastic Asymptotic Analysis

5.1 Introduction

In this chapter, we study online optimization problems from a new perspective: We

introduce stochastic structure to the problem data. However, the online algorithms

are unaware of this structure and do not use this information in any way; stated dif-

ferently, we use these stochastic assumptions as a tool to study the behavior of online

algorithms in a novel manner. We exclusively utilize the asymptotic competitive ratio

and the corresponding notion of an algorithm being asymptotically competitive. If

random variables ZA and Zn* are the costs of an online algorithm A and an optimal

offline algorithm, respectively, on an instance of size n (e.g., the number of cities in

the online TSP), we say that A is almost surely asymptotically c-competitive if there

exists n0 such that for all n > no, ZAI/Z, < c, almost surely. The majority of the

results in this chapter show that, under certain stochastic assumptions, there exist

algorithms A where c = 1, almost surely; i.e., we can show that there exist algorithms

that are almost surely asymptotically optimal.

We also characterize the rate of convergence to optimality. Knowing that the

ratio Pn of the online algorithm's cost to that of the optimal offline algorithm satisfies

(pn - 1) - 0, almost surely, we then find the smallest value a, dependent on the

stochastic model, distribution and algorithm utilized, such that n(pn - 1) - Z,

107

almost surely l, where Z is either a non-zero constant or non-degenerate random

variable. We then say that the order of convergence is n- , almost surely.

We show results of this type for a variety of problems. We begin by studying single

server online routing problems. First, we introduce stochastic structure to city loca-

tions; under this framework, we show a capacity augmentation result (c.f. Chapter 4).

Then, we add stochastic structure to the release dates and consider the online TSP

with precedence constraints, the online TSP with capacity constraints and the online

TRP. For these problems, we present algorithms that are almost surely asymptotically

optimal. We then consider online machine scheduling problems. Introducing stochas-

tic structure to release dates and processing times, we show that well-known online

heuristics for a variety of parallel machine problems are almost surely asymptotically

optimal.

Outline: In Section 5.2 we review the different notions of stochastic convergence.

In Section 5.3, we introduce the stochastic assumptions and models we utilize for

the routing problems we study. In Section 5.4 we present a capacity augmentation

result under limited stochastic assumptions. In Section 5.5 we study the online TSP

with precedence constraints and show that there exist algorithms that are almost

surely asymptotically optimal. We show similar results in Section 5.6 for the online

TSP with capacity constraints and Section 5.7 for the online TRP with precedence

constraints. In Section 5.8, we introduce the models and stochastic assumptions we

utilize in our asymptotic study of online machine scheduling problems. In Section 5.9

we study single machine scheduling problems and in Section 5.10 we study parallel

machine scheduling problems.

5.2 Deterministic and Stochastic Convergence

In this section we review deterministic convergence as well as the different notions of

stochastic convergence (i.e., convergence of random variables).

1We also utilize other modes of stochastic convergence, such as convergence in mean.

108

5.2.1 Deterministic Convergence

Let l1, x2, ... denote a sequence of real numbers. We say that limn-oo xn = c if, for

any > 0, there exists n, such that for all n > n

In - C < E.

We use xn - c as shorthand for limoo Xn = c.

5.2.2 Stochastic Convergence

We now consider the case where our sequence is random. Let X 1, X2,... denote a

sequence of random variables and let Fx, denote the CDF of Xi. We are interested

in the notion of stochastic convergence:

lim X = C,n-oo (5.1)

where C could also be a random variable with distribution Fc. In this section,

we summarize the notions that make Equation (5.1) precise. For more details, see

Grimmett and Stirzaker [37].

Convergence in Distribution

We say that X, - C in distribution if, for all t,

lim Fxn (t) = Fc(t).

Note that the latter limit is (point-wise) deterministic. The Central Limit Theo-

rem is an example of convergence in distribution.

109

Convergence in Probability

We say that X, - C in probability if, for any > 0,

lim ?[IX X- C I > e] = O.n-oo

Note that the latter limit is deterministic. The Weak Law of Large Numbers is

an example of convergence in probability.

Convergence in probability implies convergence in distribution; i.e., if Xn -- C in

probability, then Xn - C in distribution.

Almost Sure Convergence

We say that X n - C almost surely (a.s.) if

P [lim Xn = C] =1.

The Strong Law of Large Numbers is an example of almost sure convergence.

Almost sure convergence implies convergence in probability and, hence, convergence

in distribution.

Convergence in Mean

We say that Xn - C in mean if

lim IE [IXn - C] = 0.n--oo

Note that the latter limit is deterministic. The Strong Law of Large Numbers is

also an example of convergence in mean. Convergence in mean implies convergence

in probability and, hence. convergence in distribution.

110

5.3 Online Routing Preliminaries

In this section, we first define the stochastic routing models that we utilize in this

chapter 2. Note that we only study single server problems in this chapter. We then

discuss the problem objectives and give a few classic limit results that we utilize in

our analysis. Finally, we give a short discussion on our general technique for proving

asymptotic optimality as well as comments on the choice of online algorithms.

5.3.1 City Locations

Let us briefly review the setting of our online routing problems. In an online routing

problem, an online server must dynamically design paths or tours though a set of

cities while respecting any constraints and minimizing a given objective. Unless

otherwise stated, we assume the online and offline servers can move at a maximum of

unit speed. Cities' existence and locations are revealed through a series of requests,

which occur at time epochs denoted release dates (more on release dates in the next

subsection). A request defines a set of cities and a precedence order in which the

cities must be visited. Let there be n requests, each of which is revealed at its release

date; furthermore, n is not known to the online server.

Let each request consist of m cities, which must be served in a given order. Com-

paring with the framework described in Chapter 2, Section 2.3, we let k(i) = m for all

i. Unless otherwise stated, we assume capacities are infinite in this chapter. Consider

request k which consists of m cities L', L , . .., L'. The cities must be served in the

given order; i.e., location L' must be visited before L' for i < j. These requirements

are denoted the precedence constraints. There are no precedence constraints across

different requests, only within a single request. When m = 1 we say the request is

simple; this situation will correspond to either the online TSP or TRP, depending on

the objective. We now make some stochastic assumptions.

Assumption 3 For each i E {1,..., m}, L, L, ... , Lt must be independently iden-
2Let us emphasize again that while the problem data is stochastic, the online algorithm does not

have any information about the models nor the distributions.

111

tically distributed from a distribution of compact support in d > 2 dimensional Euclid-

ean space. Additionally, L and L' must be independent for all i, j, k, (except, of

course, when i = j and k =).

Remark 2 Note that the distribution for L', L L.... L needs not be the same as the

distribu tion for Lj , LJ ... Li for i $ j. The support for the individual distributions

do not even need to overlap.

Let LS p denote the shortest tour through the locations {L, ... , L for each

i e {1..., m}. Finally, we define d(L 1, L2) to be the Euclidean distance between

locations L1 and L2 and let o denote the origin.

5.3.2 City Release Dates

We now discuss the release dates of the requests. We let Rk denote the time that

the k-thl request is revealed; thus, Rk < R for k < . At time R, the problem

instance is completely revealed. We introduce two natural probabilistic structures for

the release dates. We first consider a structure that is motivated by the uniformity of

the requests and the second structure is motivated by the common use of the Poisson

process in modeling arrivals over time.

Order Statistics

We take a somewhat myopic approach in defining our first release date structure. We

assume that the release date of each request is a realization of a generic non-negative

random variable Y > 0; i.e., the unordered release dates are independently identically

distributed from a given distribution. As our model requires all order (Rk < R1 for

k <), the k-th release date is the k-th order statistic:

Rk = Y(k),

where Y' > 0, k = 1,..., n are i.i.d. random variables and Y(l) _ Y(2) <, _ Y(,).

Let py and a, denote the mean and variance, respectively, of the random variable

112

Y.

Renewal Processes

For our second structure, we consider a generic renewal process which is motivated

by the usefulness of the Poisson process in modeling arrivals over time. Define non-

negative i.i.d. random variables Xi > 0 to be the time between the (i - 1)th and i th

release date. We then define the release dates as follows:

Rk = ZXi;
i=l

note that Rk+l = Rk + Xk+l for all k. Let ,ux and oa denote the mean and variance,

respectively, of the random variable X.

5.3.3 Objectives

The objectives that we minimize are makespan and latency, motivated by the TSP

and TRP, respectively. The makespan is the time required to visit all locations,

respecting precedence constraints, and return to the origin. This objective may be

interpreted to be in the server's interest. The latency is defined as the weighted sum

of completion times = wiCi (wi > 0, Vi), where the completion time of request i

is the first time its m elements have been visited. The latency may be interpreted to

be in the requests' interest.

5.3.4 Useful Limit Results

Under Assumption 3, we have the following well-known result by Beardwood, Halton

and Hammersley [12]. This theorem, as well as generalizations of it, will prove central

to our analysis.

Theorem 31 ([12]) For each i {1,. . . ,m} there exists a constant d,f, > 0 such

that

lim L cTSP
n- n(d-1)/d - Cd3 f i

113

almost surely and in mean, where fi is the absolutely continuous part of the distribu-

tion of L,... ., L' and d > 2 is the dimension.

Next, we present two results that are akin to the Central Limit Theorem, but are

for maxima as opposed to sums. As defined above, let Y(n) = maxl<i<n Y; here, we

consider only the case where the support of the Y random variables is [0, oo). Let

Fy be the CDF of the Yi random variables. These results were originally given by

Gnedenko [32]; we give the version presented in Chapter 2 of Galambos [31].

Theorem 32 ([32]) If there is a constant y such that, for all x,

lim 1 - Fy(tx)lim = x-7
t-oo 1- Fy(t)

then there exists a real sequence (bn) > 0 such that

lim Y(n) < exp x
n loo bn - O. o.w.

The normalizing constants (bn) can be chosen as bn = inf{z 1 - Fy(x) < i}.

Before presenting our next result, we must define R(t) = (1 - Fy(t))-l f0 (1 -

F (y))dy.

Theorem 33 ([32]) If my < co and, for all real x,

li - Fy(t + xR(t)) _= e
t- oo 1- Fy(t)

then there exist sequences (an) and (bn) > 0 such that

lim P Y(n) - a < x = exp(-e-X).
n-oo bn

The normalizing constants (an) and (bn) can be chosen as an = inf{x I 1-Fy(x) < 1}

and bn -= R(an).

114

It has been shown (see [31]) that these two limit results are the only two possible

for the maximum of unbounded random variables.

5.3.5 General Technique for Proving Asymptotic Optimality

We now describe the general technique we use to prove our results. In most cases,

the random variables Zn, Z and CA Z A - Zn are difficult to characterize. To

prove asymptotic optimality, we then consider lower and upper bounds. We find

random variables Fn and G, such that Z, > F, and ZA < F + G,, which also

implies CA < G~. Consequently, A < G (whenever F, > 0) and we prove that

limn -ox, G = 0.

In our analysis, one of the random variables Fn and Gn will be associated with the

release dates of the problem and the other will be associated with the city locations.

The essence of our proofs is that a meaningful function of the release dates does not

grow (as a function of problems size) at the same rate as a meaningful function of

the city locations.

5.3.6 On the Choice of Online Algorithm

Finally, we discuss the choice of algorithm. While we believe these convergence results

will hold for a number of intelligent online algorithms, we concentrate on generic

greedy algorithms (also called RE-OPT strategies in many papers). As an example,

we state the greedy strategy for the online TSP: At any given release date (a new city

enters the instance), the server will re-optimize and follow the shortest path, from its

current location, through all unserved points and finally terminating at the origin. In

other words, at any release date, the greedy strategy assumes the instance is complete

and re-optimizes. More details are provided later for specific greedy strategies.

The analysis for the greedy algorithms will not assume any computational limita-

tions; i.e., we assume we can solve NP-hard problems optimally. However, whenever

possible, we extend our results to polynomial-time online algorithms.

115

5.4 Almost Sure Capacity Augmentation

We return to the setup of Chapter 2, Section 2.3, with the addition that city locations

satisfy Assumption 3 and the restriction that each request consists of a single city (i.e.,

no precedence constraints). In other words, each request consists of a city location,

release date and demand; city locations are stochastic while the release dates and

demands are arbitrary. We now let the online algorithm have a single server with a

capacity of Q and a speed y > 1. The offline algorithm has a single server of unit

speed with capacity q < Q. Q and q are constants. We begin with a lemma.

Zr= (Q) qLemma 16 If m = 1 and 0 < E[d(o,L)] < oc, then lim 0 (Q) almost
n-- Z= 0 (q) Q'

surely.

Proof Since Q and q are constants, we can apply the results of [38], which state that

Znr=(Q) 2E[d(o, L)] and Zn =°(q) 2E[d(o,L)]
n Q n q

almost surely. Taking the limit of the ratio gives the result. ·

Theorem 34 If m = 1 and 0 < E[d(o, L)] < oo, then the asymptotic competitive

ratio of Algorithm PAH-G is at most 1 + Pq + , almost surely.
' fyQ y

Proof The proof is very similar to that of Theorem 25; we highlight only the differ-

ences.

Case (1): The time needed by PAH-G is at most rn + pZ=°(Q)/y < Zn(q) +

pZn=°(Q)/-y. By Lemma 16, this upper bound is asymptotically equal to Zn(q) +

PQ Z= (q) < (1 + q)Zn(q), almost surely.

Case (2a): Applying Lemma 16, we have that the online cost is almost surely at

most

df/o, 1 , Zr=(Q) 2p - y + 1l
rn +)+ p (Q) < Zn(q) + () Z=°0 (Q)

y -Y 27

Zn* (q) + (- y +) (2) Z=0:(q)

< (1+(2p-+ 1) (q)) (q

116

Case (2b): Since Z*(Q) < Z*(q), the online cost is almost surely at most

Z*(Q)+ Pzr:(Q)± (P- 1) Z*(Q) < Z*(q) + Pzr=o(Q)+ (P- 1) Z*(q)

Z*(q) + Pq zr=o(q)+ (-1) *(q)

< i+ p + Z*(q).

Since p,y > land Q > q > 0, max { + - 1+ (p-1, 2+) (1) } =
1 + iq + -1 and the theorem is proved. ·

Corollary 17 If we only have capacity augmentation, the asymptotic competitive

ratio of Algorithm PAH-G is at most p(l + q/Q), almost surely.

5.5 The Online TSP with Precedence Constraints

In this section, we again consider the setup of Chapter 2, Section 2.3 with some

modifications. First, both online and offline servers have infinite capacities (which

renders demands inconsequential). Next, we allow the data of the problem to be

fully stochastic, as outlined in Section 5.3. Recall that the stochastic models of this

chapter require each request to have the same number of cities (k(i) = m for all i).

Note that these models also require that the precedence constraints be an ordered list

covering all cities in a request. When m = 1, we study the online Traveling Salesman

Problem (TSP) and when m = 2 we study an online version of the makespan-objective

Dial-a-Ride problem.

5.5.1 Algorithms and Bounds

We begin by defining a greedy strategy for the makespan objective, which we denote

as Greedy-Makespan (GM).

Algorithm 16 : GM At any release date, calculate a path P of shortest length that

satisfies the following constraints:

117

1. P starts at the current server location and ends at the origin o.

2. All unserved requests are visited and the precedence constraints are respected.

The server then traverses the path P at unit speed, until the next release date (if any).

We give two useful bounds for the online and offline costs.

Lemma 17

Zn > max {Rn, max LTsP}

and
3 m m i

ZnGM < min Rn + L 21Rn + LTSP .
i=l i=l

Proof We first discuss the lower bounds on Zn. Clearly, Zn > R,, the release date

of the last request. Next, since for a given i E {1,... , m} the locations L.,... ,L

must be visited, the server must travel at least LSp, the shortest tour through these

locations. As the server travels at unit speed,

Zn > max LSP
1<i<m

We now consider strategy GM. At time Rn, the greedy server will optimize a path,

from its current location through all remaining unserved points and finally returning

to the origin. This greedy path will not take longer than the following alternate

strategy: at time R, the server returns to the origin and then completes m tours

in order. The first tour visits the locations L, ... , Li and takes Li p units of time,

since the server travels at unit speed. Then the server traverses Lsp followed by

L3sp and so on, up to Lmsp . Clearly this is a feasible strategy. Thus strategy GM's

cost may be bounded:
m

ZGM < R + + LT (5.2)
i=l

where x is the time required for the inital return to origin at time Rn. Since the server

travels at unit speed, clearly x < R,. Finally, the GM strategy will never allow the

118

server to proceed past the maximum city location; this gives

x < max max {d(o, L)} < max L < 1<i<m 1j<n 3 -<i<m 2s T2 i=1
which gives the result. ·

Note that GM is not a polynomial-time strategy, since for even m = 1 we must

calculate a Hamiltonian path. We now give a polynomial-time algorithm Greedy-

Makespan-Polynomial (GMP) that gives a result almost as strong as Lemma 17.

Algorithm 17: GMP At any release date Rj

1. Return to the origin.

2. For each i E {1,...,m} calculate a tour using Christofides' heuristic [25] to

visit any unserved locations in {L ... , L }.

3. Traverse the tours in the order 1, 2,..., m at unit speed, until the next release

date (if any).

We have a corollary for algorithm GMP, which is easily seen by replacing Equation

(5.2) in the proof of Lemma 17 with ZGMP < Rn + X + 3 E=l LP

Corollary 18

ZGMP < min + 2 Lsp, 2Rn + LTsp

Finally, we consider algorithm PAH-p for the online TSP (i.e., m = 1), which was

presented in Chapter 2. Using an argument similar to that in the proof of Lemma

17, we attain the following result.

Lemma 18

ZnPAH-p < Rn + 2pLTsp.

119

Next we study each of the release date structures. We consider only m = 1 un-

der the order statistic structure since our techniques were not successful for m > 1.

Fortunately, under the renewal process structure we were able to prove an asymp-

totic optimality result for any m. Furthermore, for this latter structure, we show

asymptotic optimality results for both polynomial-time algorithms GMP and PAH-p.

5.5.2 Order Statistic Release Dates

We only consider m = 1. We begin by stating the main result of this subsection.

Theorem 35 If m = 1 and a2 < oc, then

zGM
lim = 1
n-o Zn

almost surely and in mean.

To prove Theorem 35, we begin with a useful lemma concerning Rn.

Lemma 19 ([11]) If IE[Y] < co, r E N, then lim (n) O0 almost surely and in
n- n5

mean, for any 6 > 1.

Proof See the Appendix, Section A.2.

Proof of Theorem 35 As outlined in the Introduction, we find random variables Fn

and Gn such that Z* > Fn and ZM < Fn + G,. We then prove that lim,, Gn - 0.

Now, with m = 1, we define F, = LTSP and Gn = 2Rn, in accordance with Lemma

17. We prove the result for almost sure convergence; the proof for convergence in

mean is identical. By Theorem 31, we have that there exists a cd > 0 such that

limln oF = Cd almost surely, and consequently, lim, n d-)/ = - almost

surely. By Lemma 19 and the fact that a2 < o, we have that limnl_ GDO = 0 almost

surely for any 6 > 2; we let 6 = d1 for any d > 2. Multiplying the two latter limit

results, we attain limnO Gn = 0 almost surely, which proves the theorem. Fn -

120

Remark 3 If m > and we had choosen Fn = LiTp, it would have no longer

been neccesarily true that Zn > Fn and our proof technique fails. Also, unfortunately,

we were not able to attain a similar result for GMP (or PAH-p), even for m = 1, as

choosing Fn = 3LTSP does not necessarily satisfy Zn > Fn.

We now characterize the rates of convergence as described in the introduction to

this chapter.

Bounded Y

We consider the situation where there exists a positive constant 0 s.t. P{Y < 0} = 1

and consequently I{R < 0} = 1, for all i. By choosing the smallest such 0 we can

conclude that

lim Rn = 0 a.s.
n-oo

Therefore, by choosing a = 1 and using Theorem 31, we have that

lim n(d-1)/d R _ 0
n - oo LTSP Cd'

a positive constant. We then say that the convergence is n -(d-l)/d almost surely.

Unbounded Y

We now consider the case of unbounded Y; i.e., the CDF Fy(y) < 1 for all finite y. As

the value of a will now depend on the distribution used, we consider two examples,

each exemplifying the use of Theorems 32 and 33.

Example 1: Let Y have a Pareto distribution; i.e., Fy(y) = 1-() v, y e> 0. In

our proof of convergence, we required a finite second moment of the random variable

Y, which implies that y > 2. Applying Theorem 32, we have that

lim 1 - Fy(ty)

1 21 - F(t)

121

Next, we calculate the normalizing constants,

bn = inf{y I i - Fy(y) <-1 = inf{yn
1

< -} = enl/Y
n

Consequently, -R converges in distribution to a non-degenerate random variable

Z. Thus, by multipying Gn by na, where a = d-l 1 > 0, we get

Rn Zlim n =-,
neoo LTSP Cd

a non-degenerate random variable. We say that the convergence is n(d), in

distribution.

Example 2 We apply Theorem 33 with another example. Let Y be an Exponen-

tial random variable with unit parameter; i.e., Fy(y) = 1 - e- y. We first calculate

R(t) = 1. Next, we see that

1 - Fy(t + yR(t))
1- Fy(t)

e-(t+y)
= lim = e- Y,

t-oo e- t

so the condition of the theorem is satisfied. We now calculate the normalizing con-

stants:

a, = inf{y I 1 - Fy(y) < 1}
n

= inf{yy I -} = ln(n)
n

and b = R(an) = 1.

Consequently, Rn - In(n) converges in distribution to a non-degenerate random

variable Z. Thus, by shifting the random variable R- by In(n) and then muitiplyingLTSP LTSP

by n' with a = 4_1, we get

lim n (Rn - ln(n) Z
n-oo LTSP Cd

a non-degenerate random variable. We then say that the convergence is n-(d- 1)/d, in

distribution.

122

lim
t-oo

5.5.3 Renewal Process Release Dates

We begin by stating and proving the main result of this subsection:

Theorem 36 If 0 < lix < oo, then

z G M

lim = 1
n-o Z*

almost surely and in mean. Furthermore, the rate of convergence is n- l/d, almost

surely and in mean, respectively.

Proof To prove this result, we first find appropriate random variables Fn and Gn:

We assign Fn = Rn and Gn = 3 Em=l Li SP, in accordance with Lemma 17. Again,2 i=1 TSP

we prove the theorem for almost sure convergence; the proof for convergence in mean

is identical.

By Theorem 31, we have that, in dimension d, there exist positive constants c > 0

such that limn -o~ , = cd almost surely. Thus,

lim)/d - Cd, a.s., (5.3)

3 · m F.where Cd = i=l cd. By the Strong Law of Large Numbers, we have that lim,n

limnrc Ein =l Xi = IX almost surely. Since x > 0, we see that

n 1
lim - , a.s. (5.4)

n-oo Fn tux

and, multiplying Equations (5.3) and (5.4), we see that limn /dG = Cd almost

surely (this proves the rate of convergence). Finally, since limn2 _ - = O, we

conclude that limno G = 0 almost surely.

By substituting G, = 2 Eim LTSP in the proof of Theorem 36, we have the

following corollary for the polynomial-time algorithm GMP.

123

Corollary 19 If 0 < MIx < oo, then

zGMP
lim n = 1

n-o Z*

almost surely and in mean. Furthermore, the rate of convergence is n-l/d, almost

surely and in mean, respectively.

Finally, by substituting Gn = 2pLTSP in the proof of Theorem 36, we have the

following corollary for the polynomial-time algorithm PAH-p (for the online TSP,

where rm = 1).

Corollary 20 If 0 < x < oc, then

zPAH-p
lim = 1
n--oo Z*

almost surely and in mean. Furthermore, the rate of convergence is n- l /d, almost

surely and in mean, respectively.

5.6 The Online TSP with Capacity Constraints

In this section, we again consider the setup of Chapter 2, Section 2.3 with some

modifications. First, each request consists of a single city: k(i) = m = 1 for all i;

in effect, we eliminate the precedence constraints. Next, we allow the data of the

problem to be stochastic, as outlined in Section 5.3. Request demands di may or may

not be stochastic. Both online and offline servers have a capacity Q. Stated simply,

we consider the online problem where a single server of capacity Q must serve simple

requests, whose city locations and release dates are stochastic. We first study the

case where the demands di are arbitrary and then we let the demands be stochastic

as well.

5.6.1 Algorithms and Bounds

We define an online algorithm for this problem: Greedy-Capacitated-Routing (GCR).

124

Algorithm 18 : GCR Whenever a new request is released, immediately return to

the origin, calculate an optimal set of tours to visit the remaining unserved requests

and begin traversing the tours (in arbitrary order) at unit speed.

Lemma 20

Zn(Q) > max {Rn, Z7=0(Q)

and

ZnG (Q) < min 2Rn + Z (Q), Rn + 2LTSP + Z (Q)

Proof Similar to the proof of Lemma 17. ·

Next, we consider both release date structures and give conditions under which

we can show almost sure asymptotic optimality of GCR. We limit our discussion to

requests being located in the two dimensional Euclidean plane; otherwise, Assumption

3 still holds, with m = 1.

5.6.2 Order Statistic Release Dates

We have two main results for this subsection. The first result is

Theorem 37

If di = 1, Vi, Q is constant, 1y < o and E[d(o, L)] > 0, then

zGCR (Q)
lim Z,1

n-eo Zn(Q)

almost surely.

* If di = 1, Vi, lim-,, -- and J. < oo, then

zGCR(Q
lim (1

most surely.(Q

almost surely.

125

This theorem is proved in part by using the following result given in [38].

Theorem 38 ([38])

* If di = 1, Vi and Q zs constant, then

lim Zn (Q) 2E[d(o, L)]
n-oo n Q

almost surely.

* If di = 1, Vi and limnT O = oo, then there exists a constant a > 0 where

zr=o(Q)
lirm n =a

n-*00O

almost surely.

Proof of Theorem 37 We prove the first part of the theorem first. We take Fn =

Zr=°0 (Q), Gn = 2Rn and show that limno Gn = 0 almost surely. We first decompose

the argument of the limit:

G, __ n Y(n)

F~ ~~~n V~~n(almost n

Using the first part of Theorem 38, we conclude that zr(Q) a2E[d(o almost

surely. Since y < 00, Lemma 19 shows that n) - 0 almost surely. We now prove

the second part of the theorem and use the same random variables for F" and Gn.

Again, we decompose the argument of the limit:

-n =2Z r=0(Q))()

Using the second part of Theorem 38, we conclude that -V n almost surely.Zn-O(Q) a st surely.

Since u < o, Lemma 19 shows that - 0 almost surely. ·

We now discuss the rates of convergence. If the Y random variable is bounded,

then we can say the order of convergence is n- 1 and n -1 /2 almost surely, for the first

126

and second parts of Theorem 37, respectively. We consider two examples (previously

mentioned) to illustrate the convergence for unbounded Y. If Y is a Pareto random

variable of parameter y, then we can see that the convergence rates are n-(1-) and

n-(2-¼), in distribution, for the first and second parts of the theorem, respectively.

If Y is Exponential, of arbitrary parameter, we see that the convergence is n-l1 and

n-1/2 , in distribution, respectively.
Next, we consider a more general version of the online TSP with capacity con-

straints. We begin by normalizing all capacities and demands so that Q = 1 and

di < 1, Vi. We now allow the demands di to be random variables, i.i.d. from a distri-

bution on [0, 1]. Under these conditions, the following result was proved by Bramel,

Coffman, Shor and Simchi-Levi [19] and it will prove useful in showing another as-

ymptotic optimality result.

Theorem 39 ([19]) There exists a constant > 0 such that

lim Zn (Q) = 2qE[d(o, L)]
n-oo n

almost surely.

The second result of this subsection is the following.

Theorem 40 If py < co and IE[d(o, L)] > O, then

zGCR(Q)
lim __

n-oo Z (Q)

almost surely.

Proof We take F, = Zr=°(Q), G, = 2R, and prove that lim,,n, o_ = 0 almost

surely. We rewrite Gn = 2(Zr=(Q) (n). Using Theorem 39, we conclude that

Z=0(Q) (2qIE[d(o,L)])- ' almost surely. Since y < oo, Lemma 19 tells us that

Yn 0 almost surely.
n

If Y is bounded, the convergence rate is n-l almost surely. Otherwise, we again

consider the Pareto and Exponential distributions. Under the Pareto distribution, the

127

convergence rate is n-(1I-), in distribution and under the Exponential distribution,

the convergence rate is n - 1, in distribution.

5.6.3 Renewal Process Release Dates

Our main result for this subsection is the following.

Theorem 41 If di = 1, Vi, limn -c, = oo and O < x < oo, then

lim zn(Q) 1
n-m Z* (Q)

almost surely. Furthermore, the rate of convergence is n-1 / 2 , almost surely.

Proof We take F = Rn, Gn = LTSP + Zn=°(Q) and prove that limn, oo = 0

almost surely. We first decompose the argument of the limit:

G, (n (1 LTSP Zr=(Q) 1
Fn E=l X, 2 V

By the Strong Law of Large Numbers, we have that x , Ix almost surelyn

and since x > 0, rn -n L almost surely. By Theorem 31, we have that there

exists c > 0 such that P - c almost surely. By Theorem 38, we have that

a - a almost surely. Finally, since 2 is a finite constant and 0, the

theorem is proved. ·

5.7 The Online TRP with Precedence Constraints

In this section, we consider the setup of Chapter 2, Section 2.5 with some modifica-

tions. Each single city request is generalized to be a multiple-city request according

to the model described in Section 5.3. We allow the data of the problem to be fully

stochastic, as also outlined in Section 5.3. Recall that the stochastic models of this

chapter require each request to have the same number of cities. Note that these mod-

els also require that the precedence constraints be an ordered list covering all cities

in a request.

128

We study online routing problems where the objective is to minimize the latency,

i.e., the sum of weighted completion times n-l wiCi where wi > 0, Vi. The com-

pletion time of a request is the first time that all its m elements has been visited (of

course, respecting the precedence constraints). Note that when m = 1 we have the

online Traveling Repairman Problem and when m = 2, we have an online version of

the latency-objective Dial-a-Ride problem. We now make the following assumption

that simplifies the subsequent analysis.

Assumption 4 There exist values 0 < w < Q such that w < wi < Q, Vi.

The lower bound of w in Assumption 4 simply eliminates cities with zero weight,

cities which would not have been counted in the objective function cost anyway. The

upper bound of Q is intended to eliminate the pathological case where a single city

has an arbitrary large weight which dominates the objective function cost.

5.7.1 Algorithms and Bounds

We define the strategy Greedy-Latency (GL) for these problems, followed by two

polynomial-time strategies.

Algorithm 19: GL At any release date, calculate a path P of minimum latency

that satisfies the following constraints:

1. P starts at the current server location.

2. All unserved requests are visited and the precedence constraints are respected.

3. If there are no unserved requests, remain idle at the current location (not nec-

essarily the origin).

The server then traverses the path P at unit speed, until the next release date (if any).

We next define the polynomial-time strategy Greedy-Latency-Polynomial (GLP)

for the special case where m = 1 and wi = 1, Vi.

129

Algorithm 20: GLP At any release date, use a p-approximation algorithm for

minimizing latency to find a path P beginning at the current server location and

visiting all unserved requests. Then the server traverses P at unit speed, until the

next release date (if any). If there are no unserved locations, remain idle at the

current location (not necessarily the origin).

Remark 4 To the best of our knowledge, there are no approximation algorithms for

the arbitrary weight case. Also to the best of our knowledge, the approximation algo-

rithm (for the unit weight case) with the smallest ratio p to date is the one given by

Chaudhuri, Godfrey, Rao and Talwar [21], which has p < 3.6.

Finally, we give a simple polynomial-time algorithm for the general case: Serve-

In-Order-Received (SIOR).

Algorithm 21 : SIOR Serve in the order received; i.e., visit the locations in the

order:

L L,. L,..,LL,,L,,rL,...,Lm.

When there are no known unserved locations, remain idle at the current location.

We now derive useful bounds for the costs of these algorithms, as well as for the

optimal offline cost, in a series of lemmas and corollaries. We consider separately the

cases m = and an arbitrary value of m.

We first consider the case where m = 1. We need an additional definition for the

statement of the first lemma. Let LTRP = wil iC* be the optimal value of the

latency for the locations L1, ... , L, when all release dates are zero.

Lemma 21 If m = 1, Zn > LTRP and ZGL < 2Rn Hi- 1 wi + LTRP

Proof The lower bound on Zn* is clear. Now we consider the server (repairman) at

time R,,. Consider an alternate strategy where the server returns to the origin and

then servers all cities optimally; this strategy clearly has a larger latency than GL

since GL does not necessarily return to the origin at time Rn and may have already

130

served some cities. The initial return to the origin of this alternate strategy takes

at most Rn time since the server moves at unit speed. The (alternate) server then

proceeds on the optimal path that minimizes the latency through all n cities. The

completion time of request i in the alternate strategy is 2Rn + Ci, which implies that

the cost of GL is at most 2R ,inl wi + LTRP. ·

The following corollary is immediate.

Corollary 21 If m = 1 and wi = 1, Vi, Z GL P < 2nR, + pLTRP.

We now consider the situation where m is arbitrary.

Lemma 22

n n m
Zn > wRj and ZGL< Rj + 3 LTSP)

j=1 j=1 i=l

Proof We begin with the lower bound on Zn. Clearly, the optimal completion time

of each request is at least its release date; thus we have Zn > Ejn wjRj.

We now show the upper bound on ZnGL by induction on the number of requests

n. For n = 1 (subscripts are supressed), with L° = o, it is clear that

ZGL = w(R+

< w(R+

< w(R+

= w(R+

Ed(Li--1 Li)

i=l

: (d(vL-', o) + d(o, Li))
i=1

E 2d(o,L))
i=1
m

i=1

Now, assuming ZL 1 < Ejn-1 w (Rj + 3 Em= LSp(n - 1)), LSP(n - 1) being

the shortest tour through the locations Li,.... L, and noting that Li S(n-1) <

131

Ls p(rn) La Lp, we shall prove the result for n. Define Cm7l as the (projected)

maximum completion time of all requests in the instance of (n - 1) requests. We first

find an upper bound on C.ma. Recall that GL performed a re-optimization at time

R,_ 1. Consider an alternate server that, at time R_, first returned to the origin

before proceeding to visit all unserved requests; this return takes at most

1 Mi=1max max d(o,L)}< max -L's < L p

time. Once the alternate server reaches the origin, it first travels through the locations
2L 2 2{LI,.. , L..}, then {L .. , L _} and so on until {Lm,.. . ,Lm }. This takes at

most Ei=1 Lsp time. Since Cnmal for GL is clearly at most the respective value for

this alternate strategy, we have that

m 3 m

Cnla < Rn 1 + LTSP < Rn + 2 LTSP
i=1 i=

Re-optimizing at time Rn will result in a latency value that is no more than that

of the following strategy: Wait until requests 1,..., (n - 1) have all been served

and then serve request n. Letting Cn denote the completion time of request n in

this virtual strategy and noting that at time Cmal the server is at a location L,

j E {1,..., n- 1}, we have that

ZGL < GL + W CzLGL

= ZLG + C ma

= Zn-1 "]+ Wn Cn-1

< Zln- + Wn Cn-

< Zn- + Wn Cn~-

< Z%_Li +w -n Cn1ai

m

+ d(Lj, LI) + E d(L -, L)
i=2

± d(Lm, o) + d(o, L1) + , (d(i-1, o) + d(o, L))\ \ n I n
i=2

1 m
+ -LmSp + 5 2d(o, Ln))

i=1

1m m \

i=1

132

GL f , max 3 Li SPn-1 + Wn n-1 2 E - TSP

Zn + wn (Rn + 3 LTSP)

applying the inductive hypothesis proves the lemma. ·

The proof of Lemma 22 also directly applies to strategy SIOR:

Corollary 22

ZsIOR < W Rj + 3 LTSP
j=l i=l

5.7.2 Order Statistic Release Dates

Our main result for this subsection is the following.

Theorem 42 If m = 1, wi = 1, i, E[Y3] < cc and L1,...,Ln are uniformly

distributed in [0, 1]2, then
ZGL

lim n =1
n-00 Z n

almost surely.

In order to prove this result, we need the following result by Bompadre, Dror and

Orlin [17].

Lemma 23 ([17]) The cost LTRP of the (offline) minimum latency problem (with

unit weights) when n cities are uniformly distributed in [0, 1]2 is Q(n3/2) almost surely.

Proof of Theorem 42 We first find appropriate random variables Fn and Gn. By

Lemma 21 we let F, = LTRP and G = 2nR~. By Corollary 23, we have that

LTRP = Q(n3/2) almost surely. Since LTRP is almost surely positive, we may conclude

that T 1p = 0(-/) almost surely. For any e > 0, we have that LRP = (nn3/2) almost

133

surely. Equivalently, we have that lin-oo, = 0 almost surely, for any < .LTRP 0

Next, we decompose the limit:

G _ 2nY(,) n4 /3 Y(n)
F, LTRP LTRP n1/3'

Taking limits, with y = 4 and applying Lemma 19 (with r = 3 and 6 =), proves

the theorem. ·

Remark 5 We actually only require that there exists E > 0 such that E[Y2+] < o

to prove the above theorem.

Remark 6 Unfortunately, we were unable to prove a similar result for GLP. Corol-

lary 21 and the proof of Theorem 42 suggest choosing F, = pLTRP. But since p > 1,

it would have no longer been necessarily true that Zn > F,.

We have not been able to say anything about the rate of convergence in this

case, since the only information we know about the asymptotic behavior of LTRP, the

optimal classic TRP cost, is a lower bound of Q(n3/2) almost surely.

5.7.3 Renewal Process Release Dates

After giving a useful lemma, we state and prove the main result of this subsection.

Lemma 24 ([11]) If E[X4] < oo, then for any k > 0,

lkX1 + 2kX2 + 3kX 3 + .. + nkXn X
limnk+1

n-oo nk+l k + 1 '

almost surely.

Proof See the Appendix, Section A.2. ·

Theorem 43 If x > 0 and E[X4] < oo, then

ZGL
lim n = 1
n s oo Zn

almost surely. Furthermore, the rate of convergence is n-l/d, almost surely.

134

Proof We assign Fn = jn=l wjRj and Gn = 3 (w) (m) in accor-jj l Wj Ei----L~$p), in accor-

dance with Lemma 22. Showing limo, G = 0 almost surely proves the theorem.

We first bound (using Assumption 4) the argument of the limit:

Gn 3 (j1W = wj) (3n im L 3 l L
n j=1 wjRj - Ej= Rj

We now express the sum of release dates in terms of the X random variables:

n n i n n n n

, = EEX 3 = SEX 3 = (n-j + 1)X = EjXj,
i=1 i=1 j=1 j=1 i=j j=1 j=1

where the last equality follows (almost surely) from the fact that the Xj random

variables are i.i.d. Next, we take limits and apply Lemma 24 with k = 1 and Theorem

31:

3Q Em L 3nQ E 1 L3na ,i=l LiTSP ii=l TSP
nj=wZ Rj En jXj

3Q n2 m L'i
(V Ej=(z2ix.) Vn(d-l)/d nl/dW) () ()(0),

almost surely, and the convergence is proved. Finally, by noting that n1/d Gn cd >

0, we attain the desired rate of convergence. ·

Since the upper bound on the cost of SIOR is identical to that of GL (c.f. Lemma

22 and Corollary 22), we have the following corollary for the polynomial-time SIOR.

Corollary 23 If Lux > 0 and E[X4] < oo, then

ZSIOR
lim -n 1
n-oo00 Zn

almost surely. Furthermore, the rate of convergence is n- l / d, almost surely.

135

5.8 Online Machine Scheduling Preliminaries

In this section, we study the asymptotic properties of online algorithms for a number

of machine scheduling problems whose offline versions are NP-hard. We are given

a set of n jobs, each with a processing requirement pi > 0, a weight wi > 0 and a

release date ri > 0. We consider scheduling jobs on (1) a single machine, (2) parallel

identical machines and (3) parallel uniform machines (i.e. machines have different

speeds). The objective is to schedule the jobs on the machine(s) to minimize the

weighted sum of completion dates ,j wjCj. We shall consider both preemptive and

non-preemptive problems. In scheduling notation [36], we study online versions of

1lrj,pmtnI j wjCj, 11rjl j wjCj, Qlrj,pmtnl Ij Cj and Plrjl j Cj. Recall that

P indicates parallel identical machines and Q indicates parallel uniform machines of

different speeds. Let sl > s2 > Sm > 0 be the speeds of the machines in the Q

case; in the P case, sj = 1, Vj. Job i on machine j will take pilsj time to complete.

We analyze a number of well-known algorithms from a new perspective. In partic-

ular, we make very general probabilistic assumptions on the problem data; no specific

distributional assumptions are made. Under these assumptions, we show that these

algorithms are almost surely asymptotically optimal. The main motivation for this

research is to provide an explanation of the excellent performance some of these al-

gorithms exhibit computationally as well as in practice. Additionally, our research

suggests that untested online algorithms will perform well in practice.

5.8.1 Stochastic Assumptions

We introduce an underlying probabilistic structure to the problems, which is unknown

and unused by the online algorithms, and use these probabilistic assumptions as a tool

to study deterministic problems. Furthermore, we do not assign a specific distribution

to the data, but rather a very general class of distributions.

We let the processing requirements Pi be modeled as i.i.d. non-negative random

variables Pi with common distribution fp. We let the weights be i.i.d. non-negative

random variables Wi with common distribution fw. Finally, we let the release dates

136

be i.i.d. non-negative random variables Ri with common distribution fR. We also de-

fine R(n) = maxl<i<n Ri to be the release date of the final job and P(n) = maxl<i<n Pi

the largest processing requirement. Note that no other assumptions about the distri-

butions fp, fW and fR are needed.

5.8.2 Technical Details

We mention a useful result.

Lemma 25 ([11]) Let {Xi} and {Yj} be two sequences of i.i.d. random variables.

If E[X 2] < oo and E[Y2] < co, then

nim - EjC=1Yi v E[X]E[Y]lim 2 - a.s.
n-* c n 2

Proof See the Appendix, Section A.2. ·

5.9 Single Machine Minsum Online Scheduling

In this section, we consider online versions of the single machine scheduling problems

l(rj,pmtnl jwjCj and llrjI X j wjCj; offline versions of both these problems are

NP-hard.

5.9.1 Online Irj,pmtnl yJj wjCj

Consider the preemptive Weighted Shortest Processing Requirement (WSPR) heuris-

tic, which is an online algorithm: At any point in time, among the known unfinished

jobs, process the one with the highest ratio Wi/p,. Note that the WSPR heuristic

solves 1 Ej w3,Cj, and consequently 1 Ipmtnl Ej wjCj, exactly; see Pinedo [59] . We

begin by stating the main result for this subsection.

137

Theorem 44 If E[R] < oo, IE[P] > 0, E[W] > 0, E[P2] < o, and E[W2] < o0, then

the WSPR heuristic is almost surely asymptotically optimal for the online version of

1rj , prntn Ej wjCj.

Proof Let ZWSPR be the random variable denoting the cost of WSPR on an instance

of n jobs under the probabilistic conditions of the theorem. Let Zn be the random

variable denoting the optimal offline cost for 1 lrj, pmtnj Ij wjCj. Finally, let ZR be

the random variable for the cost of the relaxed problem 1 pmtnI Ej wjCj, which is

solved optimally by the WSPR heuristic; clearly Z < Zn.

At time R(n), the release date of the final job in the instance, assume that no

processing has been done; clearly, this will only increase the online cost of WSPR.

Therefore, under this assumption, at time R(n), the WSPR heuristic essentially sees

the problem llpmtn I Ej wjCj (i.e., all release dates are equal to zero). Consequently,

we have that
n

Zn < R(n) Wj + Z. (5.5)
j=l

Considering the ratio of online to offline costs, we have that

ZSPR < R(n) Zj= Wj + Zn
R Wj

R1+ Zj W1-i-

Next, in order to compute Zn , we re-order the indices on the W and P random

variables such that
W, W2 Wn

P1 -P 2 - - Pn

this operation is without loss of generality since the two sequences of random variables

(Pi), and (W,) are i.i.d. This re-indexing allows us to find a closed-form expression

for 1pmtni Ej wjCj. The completion time of the first job processed, job 1, is P1; the

completion time of job 2 is P1 + P2 ; the completion time of job k is P1 + '"* + Pk.

138

Therefore, the cost of llpmtnl Ej wjCj is

n j

Zn =W W3 E P.
j=1 i=1

We again consider the ratio of the cost of WSPR to the optimal offline cost:

z 'SP R R(n) Ej= Wj 1 R(n) j= (5.6)
< 1 + 1 + (5.6)

n n ZP=1 Wj Z- Pi

Next, we decompose the fraction in the RHS of Equation (5.6), take limits as

n -- oo and, using Lemma 19, the SLLN and Lemma 25, we have that:

R(n) Lj R(n) j= j n
=i n n

Ej=1 Wj E=i Pi j= Wj Pi

(E)([w) E[W]E[P]

0,

zWSPR
almost surely. Therefore, lim , = 1 almost surely, which means that WSPR

n-oo ZO

is almost surely asymptotically optimal for the online version of 1 rj, pmtnl j wjC.

5.9.2 Online 1rj Ej wjCj

A non-preemptive version Non-preemptive Weighted Shortest Processing Requirement

(NWSPR) of WSPR is easily defined: Whenever the machine is available to process

a job, if there remain unprocessed jobs, choose the job with the highest ratio wi/pi.

We are able to prove the exact same result as Theorem 44:

Theorem 45 If E[R] < oo, E[P] > 0, E[W] > 0, E[P2] < oo, and E[W2] < oo, then

the NWSPR heuristic is almost surely asymptotically optimal for the online version

of lrjl Ej wCi.

The proof of Theorem 45 is very similar to that for Theorem 44; we highlight only

the differences.

139

Proof First, note that Z is the optimal solution for both 1 pmtnI Ej wjCj and

11II jwjCj, since these two problems are essentially identical. Equation (5.5) is

modified to become

n

ZWSPR < (R(n) + P(n)) Zd Wj + Zn
j=1

The reason for this modification is because at time R(n), we can not relate NWSPR's

actions to the problem 1 1 Yj wjCj, since it might be busy processing some job. But

after Pn) = maxl<i<n Pi time, we are certain that the machine has finished whatever

job had been in progress at time R(n). Therefore, at time R(n) + P(n), assuming that

no job has been processed, NWSPR "sees" the problem i ll j wjCj. The only other

significant modification is the final decomposition:

(R(n) + P(n)) Z=l'j (R(n)P@n)) (zP=1) W n2)
yn JW3 E j pI:I WJ=1 W·j 2 Pi n n V n Wj p

(O + 0) (E[W]) 2
E[W]E[P]

=0,

almost surely. The rest of the proof remains identical. ·

5.10 Parallel Machine Minsum Online Scheduling

We consider online versions of the parallel machine scheduling problems

Qlrj , prntnl yj Cj and PIrj Ej C j; offline versions of both these problems are NP-

hard.

5.10.1 Online Qrj,pmtnl j Cj

Consider the Shortest Remaining Processing Requirement on Fastest Machine (SRPR-

FM) heuristic, which is also an online algorithm: At any given time, the job with the

shortest remaining processing requirement is assigned to the fastest machine, the job

140

with the second shortest remaining processing requirement is assigned to the second

fastest machine, and so on. Note that the SRPR-FM heuristic solves Qlpmtnj Ej Cj

exactly; see [59].

The reason that we only consider unit weights is that even Plpmtnl Ej wjCj is

NP-hard and our technique for proving asymptotical optimality would break down,

since we would require a closed form expression for the optimal cost of this NP-hard

problem.

Theorem 46 If E[R] < o, E[P] > 0, and IE[P2] < o, then the SRPR-FM heuristic

is almost surely asymptotically optimal for the online version of Qlrj, pmtnl ,j Cj.

Proof Let ZnS R PR-FM be the random variable denoting the cost of SRPR-FM on an

instance of n jobs under the probabilistic conditions of the theorem. Let Z, be the

random variable denoting the optimal offline cost for Q rj, pmtn Ej Cj. Finally, let

ZR be the random variable for the cost of the relaxed problem Qlpmtnl Ej Cj, which

is solved optimally by the SRPR-FM heuristic; clearly ZR < Z'.

At time R(n), the release date of the final job in the instance, assume that no

processing has been done; clearly, this will only increase the online cost of SRPR-FM.

Therefore, under this assumption, at time R(n), the SRPR-FM heuristic essentially

sees the problem Qlpmtnl Ej Cj. Consequently, we have that

ZRPR-F < nR(n) + Z2. (5.7)

Considering the ratio of online to offline costs, we have that

ZSRPR-FM nR(n) + Zn < (n
Zn Zn

RnR)

Next, we wish to compute a lower bound on Z;~. Clearly, the optimal cost of

Plpmtnl Ej Cj, when all machines have speed s (the fastest machine), is a lower

bound; we now analyze this latter problem. Note that the non-preemptive Shortest-

141

Processing-Requirement (SPR) 3 heuristic solves Plpmtnl Ej Cj exactly; see [59].

Defining N = {1, ... , n} as the set of all jobs, note that the SPR heuristic will induce

a partition of N into N1, N2 , .. , Nm, where Ni is the set of jobs that are completed

on machine i; clearly n = Eiml Nil. Therefore,

ZnZ > CSPR = CSPR
jEN i=1 jENi

Now, consider Ni for any i E {1,..., m}. We re-name the indices for Pj, j E Ni

such that

P1 < P2 < - < PNi.

Considering machine i, the completion time of the first job processed, job 1, is P1;

the completion time of job 2 is P1 + P2; the completion time of job k is P1 +'" + Pk.

Therefore, the cost contribution of machine i is

INI j

CSPR = EEPk/s
jENi j=1 k=l1

and, consequently, the optimal cost of Plpmtnl Ej Cj is

m INil j

E EPkSl.i=1 j=1 k=l

Now, let x E I m be defined as x = (INl, IN2l,.., INml) and e E RIm be defined

as the vector of ones. By the Cauchy-Schwarz Inequality, n = x'e < lxl Ilell and,

consequently, n2 < 1xll12 lle112 = (m=l Nil2) (mn). Thus,

m

< n- 2m ,Vi 2. (5.8)
i=l

3 Whenever a machine is available to process a job, choose the job with the shortest processing
requirement.

142

We again consider the ratio of the cost of SRPR-FM to the optimal offline cost:

zSRPR-FM

zn
<14-nR(,)
_- , ZR <1+ nR(n)sl

(5.9)

Next, using Equation (5.8), we bound and decompose the fraction in the RHS of

Equation (5.9):

nR(n)sl

i=l lj=1 E=l Pk

m lINI 22)

= (R(n)

n ()
< (R(n) nJ

m

mE
1=1

(m sNil 2

/i= INj=1 Ek=l = k

("3=-1 E= Pk
(5.10)

Now, notice that if n -- oco, for each 1 E {1,...,m}, INJ - oc almost surely.

Consequently, for each , as NI --+ oo, by Lemma 25 (with Wj 1, Vj) we have that

I , I Ej= Pk E[P]

INt1
2 2

and therefore

almost surely.

IN 1l2 2

E1> E~j= Pk E[P]

Consequently, as n - oo, by applying Lemma 19, we have that

Equation (5.10) satisfies

m1E = l =l PI -1 (0) 2m 2sl =) 0,E[P] /
Z SRPR-FM

almost surely. Thus, lim n RPR = 1 almost surely, which means that SRPR-FM
n- o Zn

is almost surely asymptotically optimal for the online version of Qlrj, pmtnl Fj Cj.

U

143

nR(,) -
Yi=l kIN =l Pk

(n)nJ

I: 1 I:IN,,l c'=

5.10.2 Online PlrjI Ejj Cj

Consider the non-preemptive Shortest Processing Requirement (SPR) heuristic, which

is also an online algorithm: whenever a machine is available to process a job, choose

the job with the shortest processing requirement. Note that the SPR heuristic solves

PIl j Cj exactly; see [59]. The reason that we only consider problems with unit

weights is that Pl j wjCj is NP-hard and our technique for proving asymptotical

optimality would break down, since we would require a closed form expression for

the optimal cost of this NP-hard problem. Our main result for this section is the

following.

Theorem 47 If E[R] < oo, E[P] > 0, and IE[P2] < oo, then the SPR heuristic is

almost surely asymptotically optimal for the online version of Plrj I Ej Cj.

The proof of Theorem 47 is very similar to that for Theorem 46; we highlight only

the differences.

Proof First, note that any part of the proof relating to the Q class of machines is no

longer needed. Next, note that ZnR is the optimal solution for PI }Ij Cj. Equation

(5.7) is modified to become

zSPR < (R() + P()) + ZZ-

The reason for this modification is because at time R(n), we can not relate SPR's

actions to the problem PII Ej Cs, since some machines might be busy processing

some jobs. But after P(n) = maxl<i<n Pi time, we are certain that the machines have

finished whatever jobs had been in progress at time R(n). Therefore, at time R(n) +

P(n), assuming that no job has been processed, SPR "sees" the problem PI Ej Cj.

The only other significant modification is the final decomposition, which results in:

n n '=) E = S Pk - 0 =0]

almost surely. The rest of the proof remains identical. ·

144

Chapter 6

Computational Results

6.1 Introduction

The research presented in this thesis thus far has been theoretical in nature. This

chapter is intended to provide a complementary computational study of a subset of

the algorithms studied previously. There are a number of interesting questions that

simulation can answer. First, we can investigate properties of the competitive ratio.

For example, is the worst case ratio usually or rarely attained in practice? We can

also investigate the average performance of an algorithm. We can exhibit concretely

the results of Chapter 5. We are able to see very precisely the speed of convergence

to optimality. Under certain stochastic inputs, the convergence is extremely fast.

We also consider a scenario where we were unable to prove an asymptotic optimality

result: Algorithm SIOR under i.i.d. release dates. Under this scenario, we show that

SIOR exhibits computational divergence, i.e. unbounded ratio of online to offline

costs.

6.2 The Online TSP on RI+

In this section, we present computational results for the online TSP on R+. We sim-

ulate the algorithms MLIB and MRIN under the following probabilistic assumptions:

city locations are i.i.d. random variables and the release dates form a general renewal

145

process. In particular, we let the city locations Lk be exponential with parameter

AL (so that city locations are not bounded) and the city inter-arrival times Xk be

exponential with parameter Ax. Hence, we consider a time Poisson process where the

release dates Rk satisfy Rk = Ek-i Xi and Rk = Rk-1 +Xk. The city disclosure times

Qk = FkRk, where the Fk are i.i.d. random variables that are uniformly distributed

on [0, 1].

We now explain our simulation setting: We let Pn equal the actual ratio of the

online cost to the optimal offline cost. We estimate the expected value of pn for a

range of cities. In particular, we plot our estimate Pn of E[pn] versus the number of

cities n for n = 1,.. ., 250. In order to find the estimate Pn, for each n we run the

MLIB and MRIN algorithms on 2500 random problem instances, and then take the

average.

With respect to the precision of our computational experiments, the standard

error for n, is defined as = i Unfortunately, we do not know p,,, but we can

bound it in the following way. Note that Pn is a random variable that is restricted

to be within the interval [1, 3]. It is a simple exercise to see that the variance of

Pn is maximized when Pn is equal to either 1 or , each with probability '. The

corresponding maximum standard deviation is . Thus, On < G = 0.005. Note

that this bound on the precision is a conservative one.

We present an array of results which consists of three graphs that each plot our

estimates of Pn for MLIB and MRIN together, for a variety of values of AL and Ax.

Let us consider Figure 6-1, where in all cases, E[X] = 1. We first notice, that in all

cases, the online algorithms are asymptotically optimal. We then notice, that for all

three choices of parameters, MLIB's online cost converges to the optimal offline cost

faster than that of MRIN, supporting our believe that MLIB typically outperforms

MRIN. For the case where E[Lj = 10, we see that both online costs seem to converge

for 1 < n < 20. For 20 n 100, MRIN's performance deteriorates. MLIB's

performance is also slightly perturbed for this range, but not so much as MRIN. For

n > 100, MRIN's performance resumes converging. Note that MLIB's performance

is much more robust and does not deteriorate very much at all. For the case where

146

1.25

1.2

1, 1.15

" 1.1

1.05

E(L) = 10; E(X) = 1

10 10' 10

E(L) = 1: E(X)= 1

The MRIN algorithm
- The MLIB al1ogthm

1.25

1.2..

1.15

1.05 '

~~~~~~~~~~~~~~~~0.95

10 10' 10

E(L)= 0.1; E(X) 1
1.3

The MRIN algorithm
The MLIB IgrIthm

1.25

1.2

11.10

1.1

1.05 '

10
°

101 10'

Figure 6-1: Plots of Pn versus n. In all graphs, IE[X] = 1. On the top, IE[L] = 10; in
the middle, E[L] = 1; on the bottom, E[L] = 0.1.

147

The MRIN algorithm
- The MLIB algonhm

---
I



E[L] = 0.1, the convergence for both algorithms is very fast; for n = 10, both online

costs are very nearly equal to the offline cost. Finally, we consider the case E[L] = 1.

Note that for n small, the performance of both MRIN and MLIB is worse than their

respective performances in the other two cases. Otherwise, the convergence is rather

fast for this final case.

Let us conclude with a discussion of this intriguing phenomenon, where the initial

(n = 1) ratios are largest when E[L] = 1 (i.e., AL = 1) and decrease when we

either increase or decrease AL. This phenomenon can be explained by noting that the

inter-arrival times have the same parameter value: Ax = 1. Consider the following

instance motivated by the equality of the parameters AL and Ax: (1, r, q) = (1, 1, 1).

The online cost of MLIB and MRIN on this instance is 3 while the optimal offline

cost is 2. This is a worst case instance. Consequently, the equality of the above

parameters is reasonably seen to be the culprit for the high initial ratios of online to

offline cost. Using a similar realization argument, one can argue that the ratio will

be lower in the other cases. In conclusion, these results have showed that, for all

combinations of parameters considered, MLIB outperformed MRIN on average.

6.2.1 On Rates of Convergence and Regime Behaviors

While we have shown computationally that the online costs converge to the optimal

offline costs, we have not provided any rates nor descriptions of the convergence. To

proceed further, we consider three regimes: (1) E[L] > E[X], (2) E[L] << E[X] and

(3) E[L] E[X]. For each of these regimes, we consider behaviors for n "small,"

"moderate" and "large."

In Figures 6-2, 6-3 and 6-4, we present sample trajectories for both algorithms

under each of these nine cases. Distributional parameters are evident from the graphs

in Figures 6-2-6-4. Note that for n to be classified as either small, moderate or

large is subjective. We have attempted to choose values so that the resulting sample

trajectories are informative.

We first consider Regime (1). When n is small, we have that E[L] > E[R] =

nE[X]. In this case, as the salesmen are traveling to the first disclosed/released city,

148



Numbre ot c0les n = 10; E[L] = 10. E[X]= 1

* (release datelocation)
o (disclosure date location)

MRIN
- MLIB
* OlNne Optimum

0 10 20 30 40 50 60
ime

Number ol cities n = 100. E[L] = 10: E[X] = 1

* (release date,locaton)
o (dsclosure date,location)

. MRIN
- MLIB
* Offlne Optimum

°·oQ t I't.O N, * 
.A ..........

°9|Xs4,, ,, , , , 

bt''°'::::'''^ 
.,S! w$o > "

20 40 60 80 100 120 140 160
time

Number of ctles n = 500; E[L = 10: E[X] = 1

(release date,locatlon)
o (dlsclosuredate,locahon) I
* MRIN

- MLIB
* OlflpneOpt.mum

0 100 200 300 400
time

500 600

Figure 6-2: Behavioral Regime 1

149

60

50

40

0 30

20

10

O

160

140

120

100

860

60

40

20

0

600

500

400

300

200

100

0 F
II JII: 4 

I

A 
_

T.

I-



Numberof cities n = 2, E[L] = 0.1; E[X] = 1

* (release datelocaton)
O (dsclosure date,locatlon)

MRIN
- MLIB
*01 Ole Opmum

"""' I.. .. -- 1 1·

0 02 04 06 0.8 1 12 14 16
tlime

Number of cities n = 10, EIL] = 0.1; E[X] = 1

* (release date.location)
o (disclosure date,location)

... MRIN
- MLIB
* Ofline Optmum

2 3 4 5 6
hme

Number of cites n = 50; E[L] = 01, E[X] = 1

* (release date,locatlon)
o (disclosure date locatlon)
- MRIN

- MLIB

* Otffline Optimum

0 10 20 30 40
time

so50 60

Figure 6-3: Behavioral Regime 2

150

16

14

12

o 8

0.6

0.4

02

0

60

50

40

n30

20

10

-- -- ·

I I I I~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

6

5

4

2

1

c :
_

:

O _



Number of ctes n = 10 E[L] = 1, E[X] = 1

r · (release datelocation) 
(disclosure datelocation)
MRIN

- MLIB
* Offline Optimum

0 2 4 6
time

8 10 12

Numberof cites n = 100, E[L] = 1, E[X] = 1

(release datelocation)
o (disclosure dae,locatlon)
... MRIN

- MLIB
* Offllne Optimum I

0 20 40 60
time

80 100 120

Number of cities n 500; E[L] = 1 E[X] = 1

(release datelocation)
o (dlsclosure datelocaon)

MRIN
MLIB

* Offlne Optimum

0 100 200 300 400 500

Figure 6-4: Behavioral regime 3.

151

12

10

8

120

100

80

60

20

500

400

300

200

100

0

(. I . . _

I I I I I I I

.... I .. -J ................ I .



all other cities are released. The resulting trajectory is to simply go to the maximum

city location Lmax and back. Due to the disclosure dates, MLIB is expected to have

a slight advantage. The costs of both online algorithms as well as the optimal offline

algorithm are approximately 2Lmax. Thus, in this case, we expect that MLIB and

MRIN perform rather well with respect to the optimal offline algorithm. When n is

moderate, Lmax is on the same order as Rn. In this case, it is not clear what will

happen. However, a single city instance where R 1 = L1 induces the worst possible

online cost for MRIN: ZMRIN = 3Z1 . Consequently, we are led to believe that in this

sub-regime the online algorithms (at least MRIN) will not perform very well. We saw

computationally that MRIN does not perform well for this sub-regime, but MLIB is

more robust and performs rather well. When n is large, a limit argument applies:

Lmax is small with respect to Rn and the online costs converge to the optimal offline

cost. To summarize, under Regime (1) conditions, we expect the online salesmen to

perform well for n small and n large, while for n moderate, the online performances

of MRIN and MLIB might deteriorate; this agrees with our computational studies.

Figure 6-2 corresponds to Regime (1).

Considering Regime (2), we expect that both MRIN and MLIB salesmen would

return to the origin between visiting each city. This situation is equivalent to a series

of one-city instances. Note that in this case, MLIB is expected to always outperform

MRIN. However, we also see that both online costs and the optimal offline cost are

approximately equal to Rn. Even though MLIB is expected to always outperform

MRIN in this case, both algorithms will perform well with respect to the optimal

offline algorithm. Thus, we expect rather good performance overall under Regime

(2). Figure 6-3 corresponds to Regime (2).

Finally, the behavior of Regime (3) can be seen to be similar to Regime (1) under

moderate n, but for Regime (3) the behavior occurring for n small. For larger n, the

same limit argument applies. Figure 6-4 corresponds to Regime (3).

152



6.3 The Online TSP on [0, 1]2

The majority of our simulations for the online TSP consider algorithm PAH (which

has a competitive ratio of 2). This algorithm is appealing because its main subroutine

calls for solving a classic TSP. For this subroutine, we utilize the powerful Concorde

[5] TSP solver. Consequently, these results are of a practical interest.

6.3.1 Fast Asymptotic Optimality

We consider the following probabilistic situations. City locations are uniformly dis-

tributed on the unit square [0, 1]2. We consider a specific generator for each of the

release date structures. We first simulate the case where city release dates are uni-

formly distributed on [0, 1] and then we simulate the case where the release dates are

generated from a Poisson process of parameter 1. For each value of n, we simulate 20

trials and then plot the average ratio of the cost of algorithm PAH to a lower bound

on the optimal offine cost: ZPAH
on the optimal offline cost: Pn ma{R LL }; therefore, the plots are conservative.

We also superimpose polynomial functions on the simulation results, which agree with

the predicted rate of convergence. These ratios are presented in the top and bottom

plots of Figure 6-5, respectively.

We now briefly discuss the precision of our simulation results. Clearly p, > 1. It

can be be shown that p, < 3. Noting that p, is a random variable, it can be seen

that the standard deviation of p, is maximized, equaling 1, when p, E {1, 3}, each

with probability . Our simulation studies estimate the expected value of p,, so the

standard error of our estimate, using 20 trials, can be bounded: n-A < 1

0.23. Finally, note that these bounds are conservative.

6.3.2 Intriguing Behaviors

We now consider the situation where the city locations are uniformly distributed on

[0, 1]2 and the release dates are uniformly distributed on [0, c], for c E {5, 8, 10}. In

Figure 6-6, we see some intriguing sample paths.

153



2

1.9

1.8

1.7

1.6

1.5

1.4

1.3

1.2

1.1

2

1.9

1.8

1.7

1.6

1.4

1.3

1.2

1.1

1

) 20 40 60 80 1C

0 20 40 60 80 100

Figure 6-5: Upper bounds on the ratios of the cost of PAH to the optimal offline cost,
as a function of n. Each data point is the average of 20 trials. The top plot considers
release dates that are uniformly distributed on [0, 1]. The bottom plot considers
release dates that are generated from a Poisson process of unit parameter.

154

v- Simulation results

- - - - 1 + 1.3n- /2

I\

k o

I i Simulation results
-- -- 1+3n- 1 + 0.1n-12

I I 1 I~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

1
30



2

1.95

1.9

1.85

1.8

1.75

1.7

1.65

1.6

1.5

1.

S

10 20 30 40

0 50 100 150 200 250 300 350

Figure 6-6: Upper bounds on the ratios of the cost of PAH to the optimal offline cost,
as a function of n. The top, middle and bottom plots consider release dates that are
uniformly distributed on [0, 5], [0, 8] and [0, 10], respectively. These plots consist of
single sample paths.

155

o | f

fi' I I I I

.

1

1

1

1

1

1

1

1

1



We now offer an explanation of this behavior; we focus our discussion on the

case where the release dates are uniformly distributed on [0, 10]; a similar argument

applies to the other cases. Note that the peak occurs when the number of cities is

approximately n z 175. We assume that for this value of n, the TSP tour behaves

asymptotically as predicted by the Beardwood, Halton and Hammersley [12] result.

Thus,

LTsp(n) x hatv x 10.

Notice that for n = 175, Rn 10 also. So at the peak, the final release date is

approximately equal to the optimal (classic) TSP tour length; i.e., Rn LTSP; we

also believe that this is the reason for the peak. Now, note that the plots in Figure

6-6 were produced by outputting the ratio of PAH to the lower bound on Zn,:

zPAH

max{(R, LTsp(n)}'

Therefore, computationally, the cost of PAH at the peak is approximately equal

to Rn + LTSP, which is similar to upper bounds that have been proved; this (more or

less) explains the ratio of approximately 2. The reason we get a peak is because of the

asymptotic behavior of Rn and LTSP as a function of n. We know that LTSP = 0E(x/n)

a.s. For i.i.d. release dates uniform on [0, c], for some c > 0, we have that Rn = 0(1)

a.s.; for renewal process release dates, we have that Rn = e(n) a.s. This explains the

peak and also explains why we sometimes see a peak and at other times we don't.

Finally, we mention that we see similar behaviors in other scenarios. When the

release dates are generated from a Poisson process of appropriate parameter, we see

similar behaviors. Additionally, these behaviors are not dependent on the algorithm

PAH - we see similar behaviors for algorithm GMP as well.

6.4 The Online TRP on [0, 1]2

We now turn to the online TRP and we simulate algorithm SIOR.

156



2

1.8

1.6
simulation results

- - - 1+(1.75)n-1 +(0.1)n-1/2
1.4

1.2 -

-
0 20 40 60 80 100

Figure 6-7: Upper bounds on the ratios of the cost of SIOR to the optimal offline
cost, as a function of n. Each data point is the average of 20 trials.

6.4.1 Fast Asymptotic Optimality

We again consider the probabilistic scenario where city locations are uniformly dis-

tributed on the unit square [0, 1]2 and the city release dates are generated from a

Poisson process of unit parameter. We consider the case where wi = 1, Vi. For

each value of n, we simulate 20 trials and then plot the average ratio of the cost of
ZSIORalgorithm SIOR to a lower bound on the optimal offline cost: R; therefore, the

plots are conservative. We also superimpose polynomial functions on the simulation

results. We see that the rate of convergence is as predicted by the theory ( ); fur-

thermore, it is interesting to note that the actual speed of convergence for SIOR (an

online TRP algorithm) is faster than that for PAH (an online TSP algorithm) under

the same probabilistic setup.

Unfortunately, we are unable to say much regarding the precision of these exper-
zSIORiments since we do not have a constant upper bound on Zn R. However, we do

believe our results are very accurate. These ratios are presented in Figure 6-7.

157



6.4.2 Divergence

To conclude our computational studies on online routing problems, we consider al-

gorithrn SIOR under the following probabilistic assumptions: City locations are uni-

formly distributed on the unit square [0, 1]2 and the city release dates are uniformly

distributed on [0, 1]. Recall that we were unable to attain an asymptotic optimality

result for algorithm SIOR under these assumptions. Computationally, in Figure 6-8,

we see a divergence of the upper bounds on the ratios of online to offline costs (nothing

can be said of the actual ratios). Consequently, our proof technique will not suffice in

this situation. We suspect it is not possible to attain an asymptotic optimality result

under these conditions.

We now offer an explanation of this phenomenon. Considering algorithm SIOR,

we are able to write the completion times of the cities in recursive form. Clearly, C1 =

Rl+d(o, L1). By the definition of SIOR, for k > 1, Ck = max(Ck-l, Rk}+d(Lk-l, Lk)

Since, in the current situation, the release dates and city locations are comparably

distributed, we expect that Ck > Rk for all k. Therefore, if this effect compounds, we

see that Z S IOR will grow faster than 1 Ri and this would explain the divergence.

Returning to the case where the release dates are generated from a Poisson process,

the convergence can be intuitively explained by noticing that for large enough k,

Ck Rk, since the release date terms will dominate the costs.

6.5 Online Machine Scheduling Problems

To conclude this section, we present a computational study of the online machine

scheduling algorithms from Chapter 3 when the problem data is randomly generated.

To the best of our knowledge, this study is one of the first computational investiga-

tions of LP-based scheduling algorithms; particularly, we believe it is the first that

considers online algorithms as well as the first to consider multiple machines. We are

aware of only one other paper [62] which investigates a similar topic. These authors

perform an extensive computational study of a number of heuristics and approxima-

tion algorithms for the single machine problem 1 rjl Ej wjCj (the offline version).

158



n
0 20 40 60 80 100

Figure 6-8: Upper bounds on the ratios of the cost of SIOR to the optimal offline
cost, as a function of n. This output is a single sample path.

As in their work, our results suggest that the practical performance of LP-based

scheduling algorithms is much better than what theory predicts.

We let the data for each job be independent realizations of uniformly distributed

random variables: ri ' U[0, R], Pi U[O, P] and wi U[0, W], for i = 1,. .. , n.

We now describe our general approach. We first fix the parameters R, P and

W and vary m and n. Then, we fix m and n and vary R, P and W. For each

set of parameters we run 1000 trials to give the mean, max and standard deviation

(presented in this order) of the ratio of the cost of the online algorithm (NAS, NASR

or PASR) to the lower bound given in Lemma 1.

6.5.1 NAS

We first fix R = P = W = 10 and study the effect of changing m and n.

159

- 1



Next, we fix P = W = 10 and let R depend on n; specifically, we let R = n for

n E {10,100,500}. We also vary m as before: m E {1,10,25}.

Finally, we fix m = 10 and n = 100 (the middle case) and vary R, P and W in

the following set {1, 10}; we present the 8 results below.

(R, P) = (1,1) (R,P) = (1,10)

W = 1 (1.1057,1.1139,0.0026) (1.1579,1.1776,0.0053)

W = 10 (1.1057,1.1157,0.0025) (1.1583,1.1784,0.0054)

(R, P) = (10, 1) (R, P) = (10, 10)

W = 1 (1.0799,1.0915,0.0040) (1.1578,1.1876,0.0061)

W = 10 (1.0799,1.0928,0.0041) (1.1581,1.1816,0.0061)

6.5.2 NASR

We first fix R = P = W = 10 and study the effect of changing m and n. The

expected competitive ratio for m = 1, m = 10 and m = 25 are 1.6853, 1.9673 and

160

n = 10 n = 100 n = 500

m = 1 (1.2226,1.4321,0.0421) (1.0283,1.0433,0.0019) (1.0056,1.0063,0.0001)

m= 10 (1.3275,1.5293,0.0559) (1.1579,1.1842,0.0063) (1.0421,1.0449,0.0009)

m = 25 (1.3308,1.5548,0.0614) (1.2613,1.2866,0.0076) (1.0871,1.0943,0.0017)

R = n = 10 R = n = 100 R = n = 500

m = 1 (1.2226,1.4321,0.0421) (1.0463,1.0958,0.0111) (1.0131,1.0252,0.0031)

m = 10 (1.3275,1.5293,0.0559) (1.0526,1.0677,0.0045) (1.0112,1.0128,0.0005)

m = 25 (1.3308,1.5548,0.0614) (1.0521,1.0674,0.0045) (1.0110,1.0123,0.0004)



1.9869, respectively.

Next, we fix P = W = 10 and let R depend on n; specifically, we let R = n for

n E {10, 100, 500}. We also vary m as before: m E {1, 10, 25).

Finally, we fix m = 10 and n = 100 and vary R, P and

{1, 10}; we present the 8 results below.

W in the following set

(R, P) = (1,1) (R,P) = (1,10)

W= 1 (1.1080,1.1190,0.0028) (1.1553,1.1711,0.0053)

W= 10 (1.1079,1.1207,0.0027) (1.1551,1.1739,0.0052)

(R, P) = (10,1) (R. P) = (10,10)

W= 1 (1.0808,1.0945,0.0046) (1.1535,1.1766,0.0065)

W= 10 (1.0812,1.0951,0.0047) (1.1533,1.1772,0.0066)

161

n = 10 n = 100 n = 500

m = 1 (1.2140,1.5575,0.0569) (1.0336,1.0429,0.0026) (1.0075,1.0083,0.0002)

m= 10 (1.3186,1.5094,0.0574) (1.1536,1.1849,0.0065) (1.0415,1.0449,0.0009)

m = 25 (1.3331, 1.6013,0.0607) (1.2574, 1.2835,0.0081) (1.0863,1.0918,0.0016)

R = n = 10 R=n = 100 R = n = 500

m = 1 (1.2140,1.5575,0.0569) (1.0449,1.0903,0.0098) (1.0121,1.0238,0.0030)

m= 10 (1.3186,1.5094,0.0574) (1.0517,1.0717,0.0044) (1.0109,1.0124,0.0004)

m = 25 (1.3331,1.6013,0.0607) (1.0516,1.0685,0.0045) (1.0109,1.0123,0.0005)



6.5.3 PASR

We first fix R = P = W = 10 and study the effect of changing m and n. The

expected competitive ratio for m = 1, m = 10 and m = 25 are 1.3333, 1.8961 and

1.9595. respectively.

n = 10 n = 100 n = 500

m = 1 (1.0887,1.5016,0.0650) (1.0015,1.0091,0.0013) (1.0000,1.0004,0.0000)

m = 10 (1.2678,1.3957,0.0461) (1.0430,1.0756,0.0110) (1.0015,1.0038,0.0006)

m = 25 (1.3081,1.4914,0.0559) (1.1515,1.2112,0.0160) (1.0117,1.7732,0.0242)

Next, we fix P = W = 10 and let R depend on n; specifically, we let R = n for

n E {10, 100, 500}. We also vary m as before: m E {1, 10, 25}.

Finally, we fix m = 10 and n = 100 and vary R, P and W in the following set

{1, 10}; we present the 8 results below.

(R, P) = (1,1) (R,P) = (1,10)

W = 1 (1.0037,1.3452, 0.0108) (1.0065, 1.0095,0.0007)

W = 10 (1.0034,1.0048,0.0003) (1.0065,1.0094,0.0007)

(R, P) = (10, 1) (R, P) = (10, 10)

W 1 (1.0220,1.0662,0.0029) (1.0433,1.5628,0.0199)

W - 10 (1.0219,1.0316,0.0023) (1.0436,1.0815,0.0117)

162

R = n = 10 R = n = 100 R = n = 500

m = l (1.0887,1.5016,0.0650) (1.0107,1.0595,0.0071) (1.0028,1.0189,0.0019)

m = 10 (1.2678,1.3957,0.0461) (1.0426,1.0540,0.0037) (1.0090,1.0105,0.0004)

m = 25 (1.3081,1.4914,0.0559) (1.0486,1.0634,0.0040) (1.0102,1.0114,0.0004)



6.5.4 Observations

* For all three algorithms, as m increases, the mean and max increase.

* For all three algorithms, as n increases, the mean and max decrease.

* Statistically, it seems that NAS and NASR are comparable.

* C)ver 1000 trials, the max ratio of NASR never exceeded the expected compet-

itive ratio.

* Over 1000 trials, the max ratio of PASR did exceed the expected competitive

ratio (e.g., m = 1, n = 10).

163



164



Chapter 7

Conclusion and Future Work

In this chapter we first summarize the thesis and then we briefly discuss some open

problems and directions for future research.

7.1 Summary of Thesis

In Chapter 1 we began by motivating online optimization in routing and scheduling.

We then gave an overview of online optimization and methods for analyzing online

algorithms. Next, we gave a literature review covering relevant work in online routing

and scheduling. Finally, we gave an outline of the thesis which detailed the main

contributions.

In Chapter 2 we considered versions of the online TSP, TRP and k-TSP. We

began by giving a new polynomial-time online algorithm for the online TSP. We then

introduced the online TSP with precedence and capacity constraints and designed

an algorithm for this problem. Next, we introduced the online TSP with multiple

vehicles and designed an algorithm for this problem as well. Finally, we gave the

definitions of the online TRP and k-TSP.

In Chapter 3 we considered online machine scheduling problems. We began by de-

signing and analyzing a deterministic online algorithm for the PIr3j I wjCj problem.

Next, we designed and analyzed randomized online algorithms for the PIrj wjCj

and PIrj, pmtnl E wjCj problems.

165



In Chapter 4 we studied resource augmentation for online routing problems. We

first studied information augmentation, in the form of disclosure dates; we applied

disclosure dates to the online TSP, online TSP with multiple vehicles and the online

TRP. We then considered speed augmentation for the online TSP with precedence and

capacity constraints. Next, we studied speed and vehicle augmentation for the online

TSP with multiple servers. Finally, we studied speed and constraint augmentation

for the online k-TSP.

In Chapter 5 we applied stochastic asymptotic analysis to a variety of online rout-

ing and scheduling problems. We first proved an almost sure capacity augmentation

result for the online TSP with capacity constraints. We then gave algorithms that are

almost surely asymptotically optimal for the online TSP with precedence constraints,

the online TSP with capacity constraints and the online TRP with precedence con-

straints. We also characterized the rate of convergence to optimality for these algo-

rithms. Finally, we proved similar results for a number of online machine scheduling

algorithms.

In Chapter 6 we provided Monte Carlo simulation results for the online TSP,

online TRP and numerous online machine scheduling problems.

7.2 Future Research

There are a number of directions that the research in this thesis can be extended. We

mention a few here.

* Consider the online TSP. The first interesting question to ask is what happens

if we are not required to visit all cities in an instance. In other words, we allow

for accept and reject decisions. This creates new difficulties however - it is easy

to create (small) instances that induce an infinite competitive ratio. Therefore,

we are at a loss for how to evaluate algorithms that allow for accept and reject

decisions. New measures are needed and this is an interesting research question

in its own right. If successful in creating a meaningful measure, it would also

make sense to introduce prices for the cities. In other words, we can ask at

166



what price are we willing to visit a city. This opens the door to online revenue

ranagement. Also, clearly, this approach is not only limited to the online TSP.

* An open problem of interest to the author is the competitive ratio for the online

TRP. In [28] and [51], respectively, a lower bound of (1 + v) _ 2.41 and an

upper bound of of (1 + Jv) 2 z 5.83 are given for the competitive ratio of

the online TRP. The author believes that the greedy strategy GL (simplified

appropriately for the online TRP) defined in Chapter 5 has a competitive ratio

of 3, but a rigorous proof has been elusive. The author also believes that simple

modifications to GL can result in a competitive ratio of (1 + v/2), a best-possible

online algorithm.

* Another interesting idea is to combine an online problem explicitly 1 with game

theory. Consider the situation where we have multiple salesmen that compete for

cities. Whichever salesman arrives first to a dynamically revealed city receives

a reward for that city. Interesting questions can be asked: What is an optimal

strategy? Does a Nash Equilibrium exist? This research problem was first

discussed with Nicolas Stier.

* Along the lines of the disclosure dates studied in Chapter 4, we can study

questions about the value of varying degrees of information about the problem

instance. Consider the online TSP where each city i requires service that takes

a certain amount of time si. Many different online problems can be defined: (1)

si is revealed at a city's release date, (2) Arrival at a city reveals si, (3) Arrival

at, a city reveals a probabilistic distribution for si and (4) The value of si is not

known until the salesman has finished service. Additionally, preemption can

also be introduced in a number of ways (e.g., preempt and resume where the

salesman left off or preempt and start over). Another variant of the online TSP

is to give a distribution for the city location at the city's disclosure date (the

city's actual location is revealed at the release date).

1The adversarial model in online optimization is implicitly game theoretic.

167



* Finally, online optimization has traditionally been a tool of computer science

and its use in operations research is rather new. It would be interesting to apply

online optimization to other classic operations research problems.

168



Bibliography

[1] F. Afrati, E. Bampis, C. Chekuri, D. Karger, C. Kenyon, S. Khanna, I. Milis,

M. Queyranne, M. Skutella, C. Stein, and M. Sviridenko. Approximation schemes

for minimizing average weighted completion time with release dates. In Proceed-

ings of the 40th IEEE Symposium on Foundations of Computer Science (FOCS),

pages 32-43, 1999.

[2] L. Allulli, G. Ausiello, and L. Laura. On the power of lookahead in on-line vehicle

routing problems. In Proceedings of the Eleventh International Computing and

Combinatorics Conference, pages 728-736, 2005.

[3] K. Altinkemer and B. Gavish. Heuristics for delivery problems with constant

error estimates. Transportation Science, 24:295--297, 1990.

[4] E. Anderson and C. Potts. On-line scheduling of a single machine to minimize

total weighted completion time. Mathematics of Operations Research, 29(3):686-

697, 2004.

[5] D. Applegate, R. Bixby, V. Chvtal, and W. Cook. Concorde software for solving

tsp. http://www.tsp.gatech.edu/concorde.html.

[6] S. Arora. Polynomial-time approximation schemes for euclidean tsp and other

geometric problems. Journal of the ACM, 45(5):753-782, 1998.

[7] N. Ascheuer, M. Grotschel, and J. Rambau. Combinatorial online optimization

in practice. Optima, 57, 1998.

169



[8] G. Ausiello, L. Allulli, V. Bonifaci, and L. Laura. On-line algorithms, real time,

the virtue of laziness, and the power of clairvoyance. working paper, University

of Rome "La Sapienza", January 2006.

[9] G. Ausiello, M. Demange, L. Laura, and V. Paschos. Algorithms for the on-line

quota traveling salesman problem. Information Processing Letters, 92(2):89-94,

2004.

[10] G. Ausiello, E. Feuerstein, S. Leonardi, L. Stougie, and M. Talamo. Algorithms

for the on-line travelling salesman. Algorithmica, 29(4):560-581, 2001.

[11] V. Barzov. Urop research summary. working paper, MIT Operations Research

Center, 2004.

[12] J. Beardwood, J. Halton, and J. Hammersley. The shortest path through many

points. Proceedings of the Cambridge Philosophical Society, 55:299-327, 1959.

[13] S. Ben-David and A. Borodin. A new measure for the study of on-line algorithms.

Algorithmica, 11(1):73-91, 1994.

[14] D. Bertsimas. Probabilistic Combinatorial Optimization Problems. PhD thesis,

Massachusetts Institute of Technology, 1988.

[15] M. Blom, S. Krumke, W. de Paepe, and L. Stougie. The online tsp against fair

adversaries. INFORMS Journal on Computing, 13(2):138-148, 2001.

[16] A. Blum, S. Chawla, D. Karger, T. Lane, A. Meyerson, and M. Minkoff. Approx-

imation algorithms for orienteering and discounted-reward tsp. In Proceedings of

the 44th Annual IEEE Symposium on Foundations of Computer Science, pages

46--55, 2003.

[17] A. Bompadre, M. Dror, and J. Orlin. Probabilistic analysis of unit demand

vehicle routing problems. working paper, MIT Operations Research Center,

September 2004.

170



[18] A. Borodin and R. El-Yaniv. Online Computation and Competitive Analysis.

Cambridge University Press, first edition, 1998.

[19] J. Bramel, E. Coffman, P. Shor, and D. Simchi-Levi. Probabilistic analysis of the

capacitated vehicle routing problem with unsplit demands. Operations Research,

40(6):1095-1106, 1992.

[20] S. Chakrabarti, C. Phillips, A. Schulz, D. Shmoys, C. Stein, and J. Wein. Im-

proved scheduling algorithms for minsum criteria. In Automata, Languages and

Programming (ICALP), pages 646-657. Springer LNCS 1099, 1996.

[21] K. Chaudhuri, B. Godfrey, S. Rao, and K. Talwar. Paths, trees and minimizing

latency. In Proceeding of the 44th Annual IEEE Symposium on Foundations of

Computer Science, 2003.

[22] C. Chekuri, R. Motwani, B. Natarajan, and C. Stein. Approximation techniques

for average completion time scheduling. SIAM Journal on Computing, 31:146-

166, 2001.

[23] C. Chou, H. Liu, M. Queyranne, and D. Simchi-Levi. On the asymptotic opti-

mality of a simple on-line algorithm for the stochastic single machine weighted

completion time problem and its extensions. Operations Research, 2005. To

appear.

[24] C. Chou, M. Queyranne, and D. Simchi-Levi. The asymptotic performance ratio

of an on-line algorithm for uniform parallel machine scheduling with release dates.

Mathematical Programming, 2005. To appear.

[25] N. Christofides. Worst-case analysis of a new heuristic for the traveling salesman

problem. Management Sciences Research Report 388, Carnegie-Mellon Univer-

sity, February 1976.

[26] J. Correa and M. Wagner. Lp-based online scheduling: from single to parallel

machines. In Proceedings of the 11th Integer Programming and Combinatorial

Optimization Conference (IPCO), pages 196-209. Springer LNCS 3509, 2005.

171



[27] W. Eastman, S. Even, and I. Isaacs. Bounds for the optimal scheduling of n jobs

on m processors. Management Science, 11:268-279, 1964.

[28] E. Feuerstein and L. Stougie. On-line single-server dial-a-ride problems. Theo-

retical Computer Science, 268(1):91-105, 2001.

[29] A. Fiat and G. Woeginger. Online Algorithms: The State of the Art. Springer

Verlag LNCS State of the Art Survey, 1998.

[30] G. Frederickson, M. Hecht, and C. Kim. Approximation algorithms for some

routing problems. SIAM Journal on Computing, 7(2):178-193, 1978.

[31] J. Galambos. The Asymptotic Theory of Extreme Order Statistics. Robert E.

Krieger Publishing Company, 1987.

[32] B. Gnedenko. Sur la distribution limite du terme maximum d'une s6rie al6atoire.

Annals of Mathematics, 44:423-453, 1943.

[33] M. Goemans. A supermodular relaxation for scheduling with release dates. In

Proceedings of the 5th Integer Programming and Combinatorial Optimization

Conference (IPCO), pages 288-300. Springer LNCS 1084, 1996.

[34] M. Goemans. Improved approximation algorithms for scheduling with release

dates. In Proceedings of the 8th Annual ACM-SIAM Symposium on Discrete

Algorithms (SODA), pages 591-598, 1997.

[35] M. Goemans, M. Queyranne, A. Schulz, M. Skutella, and Y. Wang. Single

machine scheduling with release dates. SIAM Journal on Discrete Mathematics,

15:165-192, 2002.

[36] R. Graham, E. Lawler, J. Lenstra, and A.H.G. Rinnooy Kan. Optimization and

approximation in deterministic sequencing and scheduling: a survey. Annals of

Discrete Mathematics, 5:287-326, 1979.

[37] G. Grimmett and D. Stirzaker. Probability and Random Processes. Clarendon

Press, second edition, 1992.

172



[38] M. Haimovich and A.H.G. Rinnooy Kan. Bounds and heuristics for capacitated

routing problems. Mathematics of Operations Research, 10:527-542, 1985.

[39] L. Hall, A. Schulz, D. Shmoys, and J. Wein. Scheduling to minimize average

completion time: off-line and on-line approximation algorithms. Mathematics of

Operations Research, 22(3):513-544, 1997.

[40] J. Hoogeveen and A.P.A. Vestjens. Optimal on-line algorithms for single-machine

scheduling. In Proceedings of the 5th Integer Programming and Combinatorial

Optimization Conference (IPCO), pages 404-414. Springer LNCS 1084, 1996.

[41] P. Jaillet. Probabilistic Traveling Salesman Problems. PhD thesis, Massachusetts

Institute of Technology, 1985.

[42] P. Jaillet and M. Stafford. Online searching. Operations Research, 49:501-516,

2001.

[43] P. Jaillet and M. Wagner. Online routing problems: value of advanced informa-

tion as improved competitive ratios. Transportation Science, 2006. To appear.

[44] B. Kalyanasundaram and K. Pruhs. Constructing competitive tours from local

information. Theoretical Computer Science, 130(1):125-138, 1994.

[45] B. Kalyanasundaram and K. Pruhs. The online transportation problem. In

Proceedings of the European Symposium on Algorithms, pages 484-493, 1995.

[46] B. Kalyanasundaram and K. Pruhs. Speed is as powerful as clairvoyance. Journal

of the ACM, 47(4):617-643, 2000.

[47] P. Kaminsky and D. Simchi-Levi. Asymptotic analysis of an on-line algorithm

for the single machine completion time problem with release dates. Operations

Research Letters, 29:141-148, 2001.

[48] A. Karlin, M. Manasse, L. Rudolph, and D. Sleator. Competitive snoopy caching.

Algorithmica, 3:79-119, 1988.

173



[49] B.. Korte and J. Vygen. Combinatorial Optimization, Theory and Algorithms.

Springer, second edition, 2002.

[50] E. Koutsoupias and C. Papadimitriou. Beyond competitive analysis. SIAM

Journal on Computing, 30(1):300-317, 2000.

[51] S. Krumke, W. de Paepe, D. Poensgen, and L. Stougie. News from the online

traveling repairman. Theoretical Computer Science, 295:279-294, 2003.

[52] S. Krumke, W. de Paepe, D. Poensgen, and L. Stougie. Erratum to "news from

the online traveling repairman". Theoretical Computer Science, 352:347-348,

2006.

[53] E. Lawler, J. Lenstra, A.H.G. Rinnooy Kan, and D. Shmoys. The Traveling

Salesman Problem, A Guided Tour of Combinatorial Optimization. John Wiley

& Sons Ltd., 1985.

[54] M. Lipmann. The online traveling salesman problem on the line. Master's thesis,

University of Amsterdam, 1999.

[55] M. Lipmann. On-line Routing. PhD thesis, Technische Universiteit Eindhoven,

2003.

[56] H. Liu, M. Queyranne, and D. Simchi-Levi. On the asymptotic optimality of

algorithms for the flow shop problem with release dates. Naval Research Logistics,

2004. To appear.

[57] N. Megow and A. Schulz. On-line scheduling to minimize average completion

time revisited. Operations Research Letters, 32:485-490, 2004.

[58] C. Phillips, C. Stein, and J. Wein. Minimizing average completion time in the

presence of release dates. Mathematical Programming, 82:199-223, 1998.

[59] M. Pinedo. Scheduling: Theory, Algorithms, and Systems. Prentice Hall, second

edition, 2002.

174



[60] H. Psaraftis, M. Solomon, T. Magnanti, and T. Kim. Routing and scheduling

orn a shoreline with release times. Management Science, 36(2):212-223, 1990.

[61] P. Raghavan. A statistical adversary for on-line algorithms. Online Algorithms,

DIMACS Series in Discrete Mathematics and Computer Science, 7:79-83, 1992.

[62] M.W.P. Savelsbergh, R. Uma, and J. Wein. An experimental study of lp-based

approximation algorithms for scheduling problems. INFORMS Journal on Com-

puting, 17:123-136, 2005.

[63] A. Schulz and M. Skutella. The power of a-points in preemptive single machine

scheduling. Journal of Scheduling, 5:121-133, 2002.

[64] A. Schulz and M. Skutella. Scheduling unrelated machines by randomized round-

ing. SIAM Journal on Discrete Mathematics, 15:450-469, 2002.

[65] S. Seiden. A guessing game and randomized online algorithms. In Proceedings

of the 32nd ACM Symposium on Theory of Computing, pages 592-601, 2000.

[66] R. Sitters. Complexity and approximation in routing and scheduling. PhD thesis,

Eindhoven University of Technology, 2004.

[67] D. Sleator and R. Tarjan. Amortized efficiency of list update and paging rules.

Communications of the ACM, 28(2):202-208, 1985.

[68] L. Stougie and A.P.A. Vestjens. Randomized algorithms for on-line scheduling

problems: how low can't you go? Operations Research Letters, 30:89-96, 2002.

[69] J. Tsitsiklis. Special cases of traveling salesman and repairman problems with

time windows. Networks, 22(3):263-282, 1992.

[70] A.P.A. Vestjens. Online machine scheduling. PhD thesis, Eindhoven University

of Technology, 1997.

[71] J. Yang, P. Jaillet, and H. Mahmassani. Real-time multivehicle truckload pickup

and delivery problems. Transportation Science, 38:135-148, 2004.

175



[72] N. Young. The k-server dual and loose competitiveness for paging. Algorithmica,

11.(6):525-541, 1994.

176



Appendix A

A.1 Technical Details Concerning Equation (3.5)

In this section, we first discuss Equation (3.5):

In (1 + i_ + 
m m m

e(-/ ( + - - e /m)) (me(1/m) - e(Y/m) + 1 e(/m) +1 - m)

m m

and we then discuss some details concerning 6m and cm.

A.1.1 Existence of y E (0, 1)

We show that, for any finite m, there exists y E (0, 1) that satisfies Equation (3.5).

Let

1(y)= In (1 + - +--
m m

and

e(-&/m) (1 + - -e/m)) (me/m) ( - ye(Y/m) + 1 + - m)
m m

We have that (0) = In (1 + ) and r(0) = 1; note that for finite m, (0) < r(O). For

y = 1, we have that 1(1) = 1 and r(1) = e(- l/m) (1- e(- l /m)) ((e(l/m) - 1)(m - 1)

+ 1 el/)) < 0, thus, 1(1) > r(1). As both l(y) and r(-y) are continuous functions of

y, it is clear that there exists a value of y E (0, 1) such. that 1(y) = r(y).

177



A.1.2 Uniqueness of y E (0, 1)

Define x = (1 + 1- _ )e(7/m ) > 0; Equation (3.5) can then be written as

xlnx 1
x- = m-Y + - ( - 1)e- ( /m)

Let I(-y) = xn and r(-y) = m -y + - (m - 1)e- ( /m). Note that:X-- ;- ad()-+m

dl(y)
dy

dl (y) dx
dx dy

x - 1 - lnx (1 - y)e( 'Y/m)
(X-1) 2 2 -°>0
(X - 1)2 2

dr(y) 1 m - (/m)dr(, - -1+ e(y/m) <0.
d? m

Consequently, there is an unique solution to Equation (3.5).

A.1.3 Feasibility of f(a): m E (0, 1), Vm > 1

Using the notation and analysis from above, we have that m satisfies: 0 < ml(0) <

6m < mrl() = 1.

A.1.4 Calculation showing limm,, 6, = 1

Observing that ml(0) = m In( (1 + m) and applying l'H6pital's Rule,

1
lim mln(1+ -)

m- oo r
= lim ) - =.

m2

A.1.5 Calculation showing limmo Cm = 1

Note that y E (0, 1); we have that

1/m= lim 1/
m-o e(7/m)(1 + . -m) - 1

_. : -1/m 2-- oo e(/ m)(2 -) + (1 + M 2 ;2 l +- -)e('Y/m)
(by l'H6pital's Rule)

= 1.

178

lim c,
m-oo

. .



A.2 Technical Details for Chapter 5

The results in this section are by Vladimir Barzov.

Lemma 19: Almost Sure Convergence ([11]) If E[Y'] < o, r N, then

lim Y(n) = 0 almost surely, for any 6 > 1. Moreover, the inequality does not alwaysn-oo n - r
1

hold for 0 < 6 < -.r

Proof If An = {IXnI > n6} and Bm = Un>,, An then it is sufficient to prove

lirnm P(B) = 0.
m-oo

(A.1)

Notice that

IP(Bm) = 1 - (!Bm) = 1 - =1- (A.2)( n!An)n>m

Notice that for n = m we have

= IP(Xm < m6) = IP
( m )n Y < cfmd 

(A.3)= F(em6)m

where F(y) is the distribution function of Y. Also, for n > m we have

n-l

< cn6 n
i=m

Xi < i) = (Yn< cn 6 ) -

= F(en6), (A.4)

since X < i6 < n6 and Xi < Xn for i < n. Now, to prove (A 1), we use (A.2) where

we plug in (A.3) and (A.4), so we want to show

lim !AP An !Ai)
n=m i=m

= lim F(em6 )m~m- noom
n=m+lF(fnS)) = 1.

179

P (!An !Ai = (]Am,
i=m

(A.5)

= X

H P !An n lAin-
n=m i=m

· !lnAi=m



Let A(y) = 1 - F(Y), so A(y) - 0 as y - oo. Taking logarithms on both sides in

(A.5), we are left to show

lim (m In(1 - A(em 6 )) + ln(1 - A(en))) = 0.
n=m

n=m+l

Since -n( -1 as A
A

- 0, for some A0 and for all 0 < A < A0 we have

-2 < ln(1 - A)-2 < A

and since A(en6) -- 0 as n oo we have that for big enough m and all n > m the

following holds:

-2A(en 6 ) < ln(1 - A(en6)) < 0.

Therefore, to prove (A.6), it is sufficient to show that

lim mA(cem 6 ) = 0
m- oo

and
00

moo 1
n=m+l

(A.7)

For all y > 0, denote z = ( )1 and

9(Z) = A(Ez) = A(y). (A.8)

We now use the fact that E[Yr] < oo, and since Y > 0, it follows that for some

constant C,

c C _> F'(y)yrdr =

= L0 dA(y)dy

-A'(y)y'dy =

00 -9'(z)dzrerzdy =

= e -g'(z)zrdz. (A.9)

180

(A.6)



For every n and from r6 > 1, we have hence

C er -g'(z)zr'dz > c] -g'(z)zdz > en -g'(z)dz = erng(n),

so we set M = Ce-r and have M > ng(n) for all n.

Now, for any z E [n, n + 1) and again from r6 > 1 we have zr* > z > n. Combined

with (A.9), this gives us that for all n

n+l kl1 n
c > Er k -g'(z)dz = r k(g(k) - g(k + 1)) =

k=O k=O

= er ((g(1) - g(2)) + 2(g(2) - g(3)) + 3(g(3) - g(4)) +... + n(g(n) - g(n + 1))) =

= E (9(l) + (2) + (3)) +. + g(n) - ng(n + 1)) >
n

> -crM + r Z g(k), (A.10)
k=O

since as we showed, M > ng(n) > ng(n + 1) for all n. This shows that the series

5 g(n) is bounded by M + e-rC = 2M and therefore converges to some real number
71

Co. This has two consequences: First, we have that the partial sums of 5 g(n)
n

converge to Co and hence
00

lim 5 g(n) =0,
n=m+1

which proves the second part of (A.7).

Second, from (A.10) we have also that the series E n(g(n) - g(n + 1)) is bounded,

hence convergent (all terms are positive) and so

n

lim E k(g(k) - g(k + 1)) = C2
k=O

for some constant C2. Therefore,

n n

ng(n 1) = E g(k) - E k(g(k) - g(k + 1)) - C2 - C1,
k=O k=O

181



as n - oc. Obviously then C2 > C1. However, if it was the case that C2 > C1, then

for large enough n, say n > m we would have had

C- C1
ng(n) > ng(n + 1) > 2 = > 0,

so
m-l oo

, g(n) > + 0 n
n n=O n=m+l

which is a contradiction. This shows that in fact C2 = C1 and so ng(n + 1) converges
n

to 0. Therefore, ng(n) = (n - 1)g(n) 1 x 0 = 0 as n -- oc. This proves then-i
first part of (A.7).

1 1
We now show that the restriction 6 > - is in fact tight. Consider some 0 < 6 < -r r

and take = 1 for simplicity. If

F(y) =) 1

~(1)

y< 

, y> 1

This distribution satisfies E[Yr ] < co as

1 (y
as r---1 <-1. 1

6

lim = . We have
l-o0 n

)yrdr = y- - yrdy=
1 6

Jlyr-a-ldy < oo

lowever, as we will show, lim
n-*oo

> 0,
n6

so it cannot be that

1 n -
P(Y, < n) = F(n6 ) = 1 - - =n n

so

< n = f P(Yn
n>m

< n6) =m-1
?7/

m m+1- x x = 0.m+1 m+2

182

(00P n (Yn
n=m



This shows that

lim P n( < n ) = I1,
n=m 

so we do not have almost sure convergence of n- to 0 and hence of to 0. The

proof is complete. N

Lemma 19: Convergence in Mean ([11]) If E[YT ] < oo, r E N, then lim (n) = O
n-00f n6

1
in mean, for any 6 > 1. Moreover, the inequality does not always hold for 0 < 6 < -.- --~~~~~~r r

Proof Let F(y) be the cumulative distribution of Y. If there exists a number N

such that F(N) = 1, then 0 < Yn < N and so 0 < Xn < N for each n. We then have

IE[Xn] < N r, so clearly E [ -( 0 as n --+ oo.

Now, consider F(y) < 1 for all y > 0. We have that the cumulative distribution

Gn(x) of Xn is given by F(x) n, as

(X < x) = &i=x)
Therefore,

E[X] = G'(x)xrdr =

= F(x) x F(x) x ... F(x).
n-times

o00

nF(x)n-lF'(x)xrdx.

Now, let e > 0 be arbitrary. Since oo > E[Yr], for some constant M we have

M = E[Yr] = j F'(y)rdy.

Since this integral converges to M, there exists N such that

F'(y)y"dy > (1 - )M, J F'(y)yrdy < cM.
N

Now, since F(N) = y < 1, for some large enough m we have F(N) m < e and therefore

for all n > m and x E [0, N] we have

e > F(N)- Ž F(N)n-m F(X)n- l (A.13)

183

(A.11)

M JN (A.12)



Then, from (A.11), (A.13), and finally (A.12), we have

E[X;] = njTli~~I o
rulro

F(x) -F'(x)xrdx =

= N F(
= n F(x)n-lF'(x)xrdx + n

O N
F(x) n-F'(x)xdx <

N F'(x)xrdx +1 x F'(x)xrdx = ne n I0
JN

F'(x)xrdx <

< neM + neM < 2nMe.

Therefore, from 6r > 1, we have for all n > m that

o0< E [(X)]
n

_ E[X]
n6r

Since was an arbitrary positive number, it follows that

E [( )] = 0

We now show that the restriction 6 >

and let
0,

F(y) =
1-

1
- is in fact tight.r

Consider some 0 < 6 <

y< 

(Y)"
, y > 1

This distribution satisfies E[Y'] < oo because

J00
oo

J 1y- -lyrdy=
J

F'(y)yrdr =
oo dy 1<c

J -yr 6 ldy < oo
J/ 

since r -- - 1 < -1. However, from (A.11) we have
J

xrdF(x)n.E[Xi;] =j nF(x)n-lF'(x)xrdx =

184

cF' (x)xrdx + n
fAT

2nMc
< 2nM < 2M.

n

1

r



We set z = x5, x > 1, so F(x) = 1-- and therefore

[ -1 - -n 1- 
1Xn] zdrd I - I zrn I - 2 d =)*=i cw, x n

j° (Z- 1) n-

J z1+1-6r dz.
(A.14)

Now, since lim (1n-- 
1

= -, for some m and all n > m we have
e

1

2e

Therefo-re, for z > n we have
( 1 n-l
I -

> - 71 > I nJ-
1

> - and hence
- 2e

-n-1(z -l) - > -- 2e

Now, from (A.14) and (A.15) we get that for all n > 'm

_~x~] (Z _- _Y
-

_ _ (z- _)
n

E [Xn- = n - I)zn+l-1r dz > n (Zn-1- r dz >

72 n° n-1 
> -e z- dz = n
- 2Ce zn+l-6r 2e

Therefore, for all n > m holds

J z- 2 +srdz

E[X]
n7rE[(Xn 

1 nSr
> 2e

- nSr

2n 2e

2e 2e

1

2e'

so lim E[( )] O. 
--Lemma 24 ([11]) I X 4] < , then for any 

Lemma 24 ([11]) If E[X 4] < oo, then for any k 0,

lim
n-oO

1kX1 - 2kX2 + 3kX3 + ± * + nkXn
nk+1

185

(A.15)

k+x

I -

n -

n-n/



almost surely.

Proof Obviously, we can only consider X with mean zero, because the transformation

X - will preserve both the fourth moment condition and what we have to prove

So we want to show that

jkX1 + 2kX2 + ... + nkXnan - - - -~ 0 a.s.,
where E[U,] = 0. We now state the following lemmas:

Lemma 26 There exists a constant c, such that for all n

c
E[Un4] < 2

Lemma 27 If Pn(E) = P(IB n - B > ) satisfies A P(E) < c00 for all e > O, then

Bn - B

almost surely.

The proof of Lemma 26 follows and Lemma 27 is a standard result.

Proof of Lemma 26: Since E[Xi] = 0 and Xi, Xj are independent for i $ j, we

can see that only the fourth powers Xi4 and the coupled squares X2Xj2 will survive

the operator E after removing the brackets of

E [ lkX ... nkXn 4]E[Un] E [(1 X1 + *k + n X ]

1 (14k + 24k + ... + n4k)E[X 4 ] + 4k+4 ik [X2 ]

1 4
4k+4 (n4k x n)E[X4]+ 4 n+ 4 (n2 x n2 kn2k)E[X2]2 - E[X] E[X 2 2 c

n 3 n 2 n2ik+ 2k + .+ nk 11We use the fact here that lin 
n-OC nk+1 k + 

186



for all n and some big enough constant c. The proof of Lemma 26 is complete.

From Markov's inequality applied to U4 > 0 and from Lemma 26, we have

Pn = IP(Un > ) = p(U4 > 4 )< E[U 4 412

Cl

n2

C
for some constant cl = 4. Therefore,

00 00

n=l n=l

for some constant c2. Therefore, applying Lemma 27 with B = Un, B = 0, we get

Un- 0 as desired. ·

We now prove a lemma that is needed in the proof of Lemma 25.

Lemma 28 ([11]) Let X be a distribution with E[X4] < o. If Xn v X, n = 1, 2,...

are i.i.d., then

lim nX1 +- (n - 1)X2 + X3 + .''' + Xnlio 
n-*oo n2

E[X]
2 '

a.s.

Proof Notice that

nXl (n -1)X 2 + .. + X n (n + 1) Xl + X 2 + . .- X Xl + 2X2 + . .* + nXn

n2 n n n2

The first sum converges to E[X] from the law of large numbers, and the second
]E[X]

one to [] from Lemma A.2 applied with k = 1.
2

E[X] E[X] 
E[X] 2 2

2 2

The difference converges to

Lemma 25 ([11]) Let {Xi} and {Yj be two sequences of i.i.d. random variables. If

1E[X2] < oo and IE[Y2] < oc, then

lim =l X i=i Y
n-*co n2

E[X]E[Y]
2 ,a.s.

187

l



Proof Let E[X] = u, IE[Y] = v, both of which exist for obvious reasons. Define

Cn
n2 =u + v, + w,

where
n

E (Xi
i=l

Un =

i)

- ) (Y - v)
j=l

(X - ) + 2(X2 - ) + ... + n(Xn - )
n2

and
nY + (n - 1)Y2 + + Yn

Wn = t- 2
n2

We can directly apply Lemma A.2 (with k = 1) to show Vn - 0 a.s. since the variable

in question, X - , satisfies E((X - L)4] < oc and E[X - ] = 0. Next, from Lemma
v /LV

28, we have W - almost surely. To prove that lim C,= it only remains to
2 n-*oo 2

show lim Un = 0. For simplicity of notation, consider E[X] = / = 0, IE[Y] = v = 0,
n--oo

so that
Y1X1 + (Y1 + Y2)X2 + + (Y1 + ' + Yn)Xn

n2

Notice that E[Un] = 0 as Yi and Xj are independent. Next, if we denote Sk = ik= Y,

we have

En2U) 4 SX= E [s + s2X2 + . .. + 
E[(n2 ]=ElE 4 4 4

n

E[X4 ] E E[S4] + 61E[X2]2

i=1

S
1•i<j~n

E
1<i<j<n

S2S2Xi2X32] =
s;sx f

E [S2Sj2] ,

as all Xi are independent and so only the even powers of Xi would remain. Next,

k

E[S4] = E[YI4] +6
i=1

kE[Y4] + 6 E[Y2]2k(k + 1) < c k 2
2

188

(A. 16)

E
1<i<j<k

(A.17)

-

E i 2E[2] =



for some constant cl, so for the first part of (A.16) we have

i=1 i=1

for some constant c2. Next, if 1 < i < j < n, denote j = Sj - Si. Notice that Si

and Aij are independent and mean zero. Then

E[S,2Sj] = E[S?(Si + 2SiAij + A)] =

= Ers4] + 2E[S,3Ai] + E[S 21z] =

= E[s4] + 2E[S]IE[Aj] + E[S2]E[Tjr] =

= E[S] + 0 + i(j - i)E[Y2]2 < Cli2 + n2IE[Y2]2 < c3n2

for some constant C3. Therefore, the second sum in (A.16) satisfies

6E[X2 ]J2 E [2Sj2s] < 6E[X 2]2 ) c 3 n2

l<i<j<n
< C4n 4

for some constant 4. Now, from (A.16), we have

C4 4 C4
E[U4] < 8=4T8 Ti4

Therefore, from Markov's inequality,

Pn IP(Un > ) = I(U 4 > 4) < E[U 4] < C4
-4 -- c 4n 4'

This shows that
00

z Pn < 0
n=1

and hence from Lemma 27, applied to Bn = U, B = 0, we have Un - 0 a.s. 

189

IE[X4] E E[S] < [X4] c 2 < Czn3


