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Abstract
Buyout options allow bidders to instantly purchase at a specified price an item listed
for sale through an online auction. A temporary buyout option disappears once
a regular bid above the reserve price is made, while a permanent option remains
available until it is exercised or the auction ends. Buyout options are widely used in
online auctions and have significant economic importance: nearly half of the auctions
today are listed with a buyout price and the option is exercised in nearly one fourth
of them.

We formulate a game-theoretic model featuring time-sensitive bidders with in-
dependent private valuations and Poisson arrivals but endogenous bidding times in
order to answer the following questions: How should buyout prices be set in order to
maximize the seller's discounted revenue? What are the relative benefits of using each
type of buyout option? While all existing buyout options we are aware of currently
rely on a static buyout price (i.e. with a constant value), what is the potential ben-
efit associated with using instead a dynamic buyout price that varies as the auction
progresses?

For all buyout option types we exhibit a Nash equilibrium in bidder strategies,
argue that this equilibrium constitutes a plausible outcome prediction, and study the
problem of maximizing the corresponding seller revenue. In particular, the equilib-
rium strategy in all cases is such that a bidder exercises the buyout option provided it
is still available and his valuation is above a time-dependent threshold. Our numerical
experiments suggest that a seller may significantly increase his utility by introducing
a buyout option when any of the participants are time-sensitive. Furthermore, while
permanent buyout options yield higher predicted revenue than temporary options,
they also provide additional incentives for late bidding and may therefore not be al-
ways more desirable. The numerical results also imply that the increase in seller's
utility (over a fixed buyout price auction) enabled by a dynamic buyout price is small
and does not seem to justify the corresponding increase in complexity.

Thesis Supervisor: Jr6mie Gallien
Title: J. Spencer Standish Career Development Professor
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Chapter 1

Introduction

As they were initially conceived during the last decade of the previous century, online

auctions were arguably suffering from two perceived drawbacks relative to posted

price mechanisms: waiting time and price uncertainty. In order to render these

auctions more attractive to time-sensitive or risk averse participants, many auction

sites have since introduced a new feature known as a buyout option, which offers

potential buyers the opportunity to instantaneously purchase at a specified price an

item put for sale through an online auction. Indeed Mathews (2003b) notes that "one

of the reasons eBay introduced [the buyout] option is that buyers wanted to be able

to obtain and sellers wanted to be able to sell items more quickly". Augmented with

this option, an online auction thus becomes a hybrid between an electronic catalogue

and a traditional auction.

Buyout options are now widespread and have significant economic importance: in

the fourth quarter of 2003 alone, fixed income trading (primarily from the buyout

option "Buy It Now") contributed $2 billion or 28% of eBay's gross annual merchan-

dise salel; other examples of buyout options include Yahoo's "Buy Price", Amazon's

"Take-It" and uBid's "uBuy it!". Remarkably, buyout options in these large auction

sites currently differ in one important aspect: eBay's "Buy It Now" option disappears

as soon as a regular bid above the reserve price is submitted, so it is called temporary;

in contrast Yahoo, Amazon and uBid's options remain until they are exercised or the

1 Source: http://investor.ebay.com/, see also Reynolds and Wooders (2003).

13



auction in which they are featured ends, so they are called permanent (Hidv6gi et al.

2003).

These observations motivate in our view the following questions: What is the

benefit associated with using a buyout option for a seller in an online auction? How

should the buyout price be set when doing so? Should a temporary or a permanent

buyout option be used? We design a game-theoretic model to answer these questions

in a stylized setting - the market environment and the auction mechanism we consider

are specified in §2.1 and §2.2 respectively, and we discuss the realism of the model in

§2.3. For this model, for both the temporary and permanent buyout option an equi-

librium in bidder strategies is characterized and the associated seller's optimization

problem is discussed. We extend next our analysis with the goal of answering the

following question: while all existing buyout options we are aware of rely on a static

buyout price (i.e. with a constant value), what is the potential benefit associated

with using instead a dynamic buyout price that varies as the auction progresses? The

main contributions of our research can be summarized as following:

1. Analysis for temporary and permanent buyout price auctions - We characterize

equilibrium strategies for temporary and permanent buyout price auctions in

§3.1.1 and §3.2.1 respectively, and analyze their robustness to perturbations

in strategy and payoff space (§3.1.2 for temporary and §3.2.2 for permanent).

We also conduct a simple empirical analysis, described in §5.3, to validate the

predictions of these strategies using bidding data from actual online auctions.

For limiting regimes of bidder arrival rate, and bidder and seller time sensitivity,

we derive optimal buyout prices for both options (§3.1.3 and §3.2.3).

2. Comparison of temporary and permanent buyout option - Our numerical exper-

iments, discussed in §5.1, suggest that the seller's expected discounted revenue

derived from an optimal permanent buyout option is larger than that obtained

with an optimal temporary option. Furthermore, the relative attractiveness for

the seller of a temporary buyout option decreases with the expected number of

bidders, whereas it increases in the case of a permanent option. The equilib-
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rium analysis however implies that the permanent option promotes late bidding

-- a fact that is also corroborated by bidding data obtained from online auction

websites - which may negatively impact the seller's revenue.

3. Dynamic buyout price - We analyze temporary and permanent dynamic buyout

price auctions - §4.1.1 (resp. §4.2.1) focuses on outcome prediction in the tem-

porary (resp. permanent) case and §4.1.2 (resp. §4.2.2) discusses the resulting

optimization problem. Our numerical experiments, discussed in §5.2, suggest

that the increase in seller's utility (over a fixed buyout price auction) enabled by

a dynamic buyout price is small and does not seem to justify the corresponding

increase in complexity - dynamic prices will be difficult to implement and may

be too complex for bidders to understand.

Chapter 6 contains the concluding remarks, and all proofs omitted from the main

text are included in the Appendix.

The results (1) and (2) can assist a seller in selecting the appropriate auction

mechanism (including the optimal buyout price, if required) based on his preferences

and the market environment for the product. The above results could also have

important auction design implications: for example, the outcome prediction for a

permanent buyout price auction advocates using an auction mechanism which would

allow bidders to submit "last-minute" bids in advance hence avoiding the hassle of

tracking the auction to place a bid near its end. This could however convert the

auction into a sealed bid second-price auction which may not be desirable; see Roth

and Ockenfels (2002) for a discussion on introducing the sniping option in an auction.

The conclusion (3) suggests that there is little advantage for the seller of introducing

a buyout option with time-varying price.

The following section in this Chapter reviews literature on auctions and buyout

prices.

15



1.1 Literature Survey

Auctions, in many different forms, are very widely used; a historical sketch of the use

of auctions is provided by Shubik (1983) - one of the most famous being an auction

of the entire Roman empire in AD 193. More recently government contracts, United

States Treasury bills, cars, arts and antiques have been auctioned (see Klemperer

(1999)). With the advent of online auctions, the list of items sold by auction has ex-

panded to include software, collectibles, electronic items, used books, concert tickets,

furniture, and almost everything else2 (also see Lucking-Reiley (2000)).

As a consequence of their importance and popularity, there is a significant body of

theoretical literature on auctions. A comprehensive but somewhat dated bibliography

of auction literature is provided in Stark and Rothkopf (1979) while more recent

surveys include Milgrom (1985), Milgrom (1989) and Klemperer (1999). McAfee and

McMillan (1987) discuss developments in the theory of bidding mechanisms restricting

to models analyzing, like we do, a single isolated auction. A critical discussion of

available models aiding competitive decision making in auctions- bidding strategy

for bidders and auction design for sellers - is presented by Rothkopf and Harstad

(1994).

1.1.1 Literature on Online Auctions

Introduced in 19953, online auctions have gained tremendous popularity - eBay, ar-

guably the biggest online auction website, had 135 million registered users and a

gross merchandize volume, which is the total value of everything sold on eBay, of

$34.2 billion in 20044. Lucking-Reiley (2000) traces the development of online auc-

tions describing transaction volumes, types of auction formats used, type of goods

auctioned, fee structure and the business model of various auction websites. There

has been much recent research activity seeking to answer the many new questions

posed by the emergence of online auctions; Pinker et al. (2003) characterize the state

2 http://en.wikipedia.org/wiki/Ebay
'Lucking-Reiley (2000)
4eBay 2004 Annual Report - http://investor.ebay.com/annual.cfm
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of research and present many open problems in this field.

Online auctions have several unique characteristics - for instance, unlike tradi-

tional auctions, a bidder in an online auction usually faces a random number of

bidders; in addition, online auctions are typically longer in duration. These features

impact bidder behavior raising new theoretical issues, which many papers seek to

answer. Taking a dynamic programming approach, Bertsimas et al. (2002) develop

a computationally-feasible algorithm to determine the optimal bidding strategy for

a potential bidder in a single unit auction assuming that bids from other bidders

are generated from a probability distribution which can be estimated using publicly

available bidding data. They also extend their results to multi-unit auctions. Ariely

and Simonson (2003) analyze bidding behavior focusing on two key aspects affecting

the decision making process: value-assessment and decision dynamics. They discuss

the effect of these two factors on bidder behavior at three key stages of an auction:

(a) beginning of the auction (bidder decides whether to participate or not), (b) bid-

ding during the auction and (c) bidding at the end of the auction. Park et al. (2005)

build an integrated model, based on bidders' willingness to pay at any given auction

round, of bidding behavior incorporating three main factors: which bidder placed a

bid, the timing of the bid and its amount. Similar, in spirit, to our model, Carare

and Rothkopf (2005) assume that bidders incur a fixed cost of waiting and returning

later to the auction. Unlike our research, however, they analyze a Dutch auction

mechanism deriving, in a simple two-bidder, two-valuation framework with transac-

tion costs, pure- and mixed-strategy Nash equilibria in bidder strategy in a Dutch

auction with a linear price function.

In a series of papers, Roth and Ockenfels analyze last-minute bidding in online

auctions. Roth and Ockenfels (2002) and Ockenfels and Roth (2002) provide empirical

evidence of late bidding and give strategic and non-strategic hypotheses justifying

the phenomenon while Ockenfels and Roth (2005) show that last-minute bidding

can occur at equilibrium in fixed price auctions if very late bids have a positive

probability of being rejected. In all their studies, they observe that auctions with a

floating deadline (see §2.3 for definition) experience lesser last-minute bidding than

17



fixed deadline auctions. Taking a different approach, Bajari and Hortacsu (2003)

rationalize late bidding by considering a model with common values where bidders

have an incentive to hide their private information by bidding at the last-minute.

Other aspects of online auctions are addressed by Segev et al. (2001) who model an

online auction as a two-dimension Markov chain (the two dimensions being the current

price and the number of bidders) to estimate the final selling price of a product. While

a significant number of online auctions offer multiple units, literature analyzing multi-

unit online auctions is fairly limited. In two papers Bapna et al. (2000) and Bapna

et al. (2001) study bidding strategies in multi-unit auctions classifying bidders as

opportunists, participators and evaluators based on when and how often they bid.

Pinker et al. (2001) formulate a dynamic program for solving the problem of allocating

inventory across several multi-unit auctions. They extend their model to develop a

framework where information from earlier auctions is utilized to update seller's beliefs

about bidder valuations and consequently improve the lot-sizing decisions.

Publicly available bidding data on auction websites has led to a number of empir-

ical studies on online auctions. Kaufmann and Wood (2004) investigate factors that

make bidders pay more for exactly the same item and find that items sold on week-

ends, items with a picture and items sold by experienced sellers tend to sell at higher

prices. A similar study by Lucking-Reiley et al. (2000) concludes that the auction

selling price is higher when the seller has higher feedback ratings and the auction is

longer. Several other papers including Houser and Wooders (2005), Melnik and Alm

(2002), Ba and Pavlou (2002) and McDonald and Slawson (2002) study the effect on

seller's feedback rating on auction outcome and conclude that seller ratings positively

affect the selling price. Durham et al. (2004) study the "Buy-it-Now" option offered

on eBay and find that seller reputation also has a significant impact on buyout price

auctions - sellers with higher reputation are more likely to offer the buyout option

and, the probability of option exercise increases with seller reputation. In another

study, comparing auctions with online catalogs Vakrat and Seidmann (1999) find

that, on an average, an item sells at significant discount (between 25% - 39%) when

offered via an auction as opposed to a fixed-price mechanism.

18



1.1.2 Literature on Buyout Price auctions

While the literature on auction theory, online and otherwise, is large, existing research

work on buyout prices is recent and relatively limited. Indeed, the comprehensive 1999

survey of the auction literature by Klemperer (1999) makes no mention of buyout

prices, and while Lucking-Reiley (2000) observes the use of buyout prices in his 2000

survey of internet auction practices, he points out that he is "[...] not aware of any

theoretical literature which examines the effect of such a buyout price in an auction."

Most papers written since on buyout prices consider models where, in contrast

with most actual online bidding interactions, the number of bidders is known in ad-

vance to all participants. Studying such a model with two risk averse bidders having

two possible valuations for an item, Budish and Takeyama (2001) show that augment-

ing an English auction with a permanent buyout price can improve the seller's profit.

Kirkegaard and Overgaard (2003) investigate the impact of a permanent buyout op-

tion when two bidders with multi-unit demand face two sequential auctions of one

item each. In the presence of two competing sellers they find that the one running

the first auction benefits from using a buyout option. When a single seller runs both

auctions, they show that his total revenue increases if bidders expect him to use a

buyout option in the second auction. In contrast, we consider an auction for a single

item run by a monopolistic seller, so that our model does not offer any insights on

the issues of competition between sellers, sequential auctions and multi-unit demand.

Other papers still assume that the number of bidders is known to all, but allow

that number to be arbitrarily high. In a model with n bidders, Reynolds and Wooders

(2003) focus on the effect of bidder risk aversion on seller revenue in auctions with a

buyout price (temporary or permanent). For either type of buyout option they find

that with risk-averse bidders an auction with the optimal buyout price increases the

seller's revenue. Hidv6gi et al. (2005) also find that, ill the presence of risk aversion by

either the bidders or the seller, such buyout price does increase the seller's revenue.

However in their model, where participants are not time-sensitive, bidders' utility

does not increase through the use of the buyout option. In a series of three papers

19



investigating variations of the same basic model, Mathews (2003b), Mathews (2004)

and Mathews (2003a) focuses instead on the temporary buyout option. Specifically,

he considers a fixed number of time-sensitive bidders with different arrival times, and

explicitly captures the fact that early bidders may prevent later ones from exercis-

ing the option. He shows that a risk averse or time-sensitive seller facing either risk

neutral or risk averse bidders will choose a buyout price ensuring that the buyout

option is exercised with positive probability; he also finds that, depending on the val-

uation distribution, the buyout option either makes all bidders weakly better off, or

low valuation bidders weakly better off and high valuation bidders strictly worse off.

Note that we do not investigate bidder welfare in the present paper. By assuming a

deterministic number of bidders, the papers mentioned above assume that every bid-

der knows with certainty upon his arrival how many competing bidders have already

arrived and how many others are yet to come before the auction closes, which we

believe to damage realism.

Furthermore, of all the papers analyzing buyout prices cited so far, the papers

by Mathews are the only ones that capture, as we do in our model, the timing of

bidder arrivals. That is, all others do not model the sequence in which bidders come

to the auction site, and thus ignore the impact of each bidder's arrival time on his

strategy. This is crucial as auction duration (and indeed the bidder arrival time) is an

important factor affecting bidder participation strategy in buyout price auctions as

illustrated by Wan et al. (2003) who, in a survey conducted by them, find that "38.7%

respondents agree that the duration of an auction is a consideration in choosing the

buyout option. 25% of the respondents replied that an auction with a long duration

(7 to 10 days) encourages them to use the "Buy It Now" option". The importance of

time sensitivity of auction participants on buyout exercise is also confirmed by eBay

- its user guidelines state the reduction in waiting time as the very first reason why

both sellers ("Sell your items fast.") and buyers ("Buy items instantly") would want

to use their buy it now feature s) - and, more generally, by the discussion forums of

experienced online auction users; below we list several examples:

5http://pages.ebay.com/services/buyandsell/buyitnow. html
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"This guide is for people that are tired of losing auctions at the last

second or for people who are just in a hurry to get their item. By using

the Buy-It-Now option, you can quickly find the best price for the item

you are searching for." - Reviews and Guides, eBay (2005)

"One of the best features to come along in quite awhile is eBay's "Buy

It Now" feature. This allows bidders to buy it immediately for a price

that you set. It's great for buyers who don't want to wait days until an

auction ends to see if theyve won. Sellers also benefit. I have sold items

within a half an hour by offering the "BIN" option." 6

"You can also sell in "Buy It Now" mode, where you establish a fixed

price, and the "auction" ends as soon as someone agrees to pay that

price. The fees are [t]he same as with standard auctions, but you could

sell multiple copies of the same item in the time it would have taken you

to run a single "standard" auction. [...] It's also good when you don't

want the delays of standard auctions or the uncertainties of a variable

auction price." - Seltzer (2004)

"Neither you nor the buyer needs to wait for the end of an auction

cycle - you get your payment sooner, and buyers get their merchandize

faster. This is a great way to move more merchandize, especially if you

have a product that's in demand."7

Moreover, by assuming that all bidders can potentially exercise the buyout option

irrespective of when they arrive, these papers do not capture a key feature of buyout

price auctions - a bidder arriving earlier can make the buyout option unavailable

to subsequent bidders by either exercising it (for both temporary and permanent

option) or placing a bid in the auction (for the temporary option only). This leads

to a material difference as we exhibit robust equilibrium strategies where bidders

arriving earlier in the auction do bid/buyout immediately on arrival.

6http://auction.lifetips.com/subcat/69131 /selling/special-features/index.html
7http://www.allbusiness.com/articles/BuyingSellingBusiness/3250-29-2806.html
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A model that ignores the arrival time of bidders also fails to capture the timing

of bids placed in the auction. This is crucial as last-minute bidding and, in general,

the timing of bids in online auctions has received considerable attention from both

theorists - Roth and Ockenfels (2002) provide strategic and non-strategic hypotheses

justifying late bidding - and practitioners - there are special softwares like eSnipe

and Last Minute Bidder8 which allow bidders to place bids at the last minute. Also,

auction sites frequently implement auction mechanisms that discourage late bids -

for example, Amazon and Yahoo use a floating auction deadline that automatically

extends if a bid is placed near the end of the auction; Amazon also offers a first

bidder discount of 10% to promote early bidding. Despite the importance of bid

timing, most of the literature analyzing bidder behavior in buyout price auctions

either assumes exogenous bidding times (Caldentey and Vulcano (2004), cited below)

or neglects the issue of bid times altogether (Budish and Takeyama (2001), Kirkegaard

and Overgaard (2003), Reynolds and Wooders (2003), Hidv6gi et al. (2005)). In

contrast, the time when bidders act after their arrival is endogenous in our model,

and we find in fact that with a permanent buyout option buyers submitting regular

bids are likely to do so only at the very end of the auction.

While the papers cited above analyze models with a deterministic number of

bidders, Caldentey and Vulcano (2004), who consider a multi-unit auction with a

permanent buyout option, assume like we do that bidder arrivals follow a Poisson

process whose future outcome is not known to participants. In addition, they also

assume that auction participants are risk-neutral and time-sensitive, and use in fact

the exact same utility functions we do. Unsurprisingly, they find, as in our research,

that bidder strategies characterized by a threshold depending on arrival time and

buyout price form an equilibrium. However, there are important differences between

their work and the analysis we develop for the permanent buyout option: The model

in Caldentey and Vulcano (2004) assumes that bidders are only informed about the

initial number of units and not the number of units remaining. In the single-unit

auction we investigate, this would correspond to bidders not knowing whether the

8See http://www.esnipe.com/ and http://www.lastminutebidder.com/
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item listed is still available or not. We assume instead that bidders have access to

this information, which is a material difference since the specific threshold strategy we

obtain as a result is different. In addition, as discussed above Caldentey and Vulcano

(2004) assume bidders to act immediately (bid or buyout) upon their arrival. We do

not however consider the multi-unit case here.

In summary, of all the papers cited above that analyze buyout prices, only Math-

ews (2004) models the arrival time of bidders and considers endogenous bidding times.

It however assumes a deterministic number of bidders and only analyzes the tempo-

rary buyout option. Reynolds and Wooders (2003) - which as we pointed out ignores

the impact of arrival and bid times - is the only paper we are aware of which at-

tempts to study like we do both temporary and permanent buyout options in the

same framework. Also, our model features more realistic information structure and

strategy space than all others discussed, and we believe to be the first to provide an

analysis of dynamic buyout prices.
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Chapter 2

Market Environment and Auction

Mechanism

In this chapter, we first describe our game-theoretic model, focusing on the market

environment in §2.1 and the auction mechanism in §2.2. We then discuss its realism

in §2.3.

2.1 Market Environment

We consider a monopolistic seller opening at time 0 a market for one item. From

that point on, he faces an arrival stream of potential buyers (or bidders) which is

non-observable per se, but is correctly believed by all participants to follow a Poisson

process with a known, exogenous and constant rate A. Bidders valuations (or the

prices at which they are indifferent between purchasing the item and not participat-

ing in the market) are assumed to follow an independent private values model - see

Klemperer (1999) for background. Specifically, each bidder has a privately known val-

uation, and all other participants initially share the correct belief that this valuation

has been drawn independently from a distribution with cdf F and compact support

[v, ] (define m = - v).

All participants are risk-neutral and time-sensitive. In particular, the utility of
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the seller when earning revenue R at time T is assumed to be

US(R, r) e-"R, (2.1)

where ac > 0 denotes his time discounting factor.

Likewise, a bidder arriving at time t > 0 with valuation v E [v, v] who purchases

the item at time T > t for a payment of x gets utility

U(v, t, T) e-(rt)(v - x), (2.2)

where p > 0 denotes his time discounting factor, assumed to be the same for all

bidders. A losing bidder is assumed to derive zero utility from the market.

2.2 Auction Mechanism

The basic market mechanism we consider is a second-price auction with a time-limited

bidding period [0, T]. That is, any bidder arriving at time t E [0, T] may submit a

bid at any time in [t, T], provided it is larger than any other he may already have

submitted (i.e. bidders are not allowed to renege on their purchasing offers). At time

T, the item is sold to the highest bidder who pays then a price equal to the second

highest bid; if only one bidder has submitted a bid by T the item is sold to him for

a price of v, and if there are no bids the item is not sold. Note that the lower bound

of the distribution support v thus effectively corresponds to a publicly advertised

minimum required bid (any bids lower than v are ignored).

In addition to all the other information described previously, every bidder is as-

sumed to know at every time r subsequent to his arrival the value of I., defined as

the payment that would be made by the winning bidder if the auction were instead

terminated at T. That is, I, is equal to (i) the second highest bid submitted over

[0, r] if there are at least two such bids; (ii) v if there is only one; and (iii) 0 if there is

none. As is the case on all auction websites we are aware of, we assume that It must

be truthfully revealed to any arriving bidder. For the ease of exposition, we however
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allow bids below the current second highest bid to be placed in the auction unlike

most auction sites. Notice that this does not affect the utility of either the bidders

or the seller: such a bidder gets zero utility (neglecting his bidding cost) whether he

bids or not while bids placed below the second highest bid clearly do not affect the

seller's revenue.

The basic auction mechanism just defined (or a closely related version of it) is

investigated for example in Vakrat and Seidmann (2001) and Gallien (2006). The

critical extension that we study in the present paper is the upfront addition by the

seller of a buyout price p, either temporary or permanent. Any bidder may exercise

that buyout option at any time between his arrival and the end of the auction T,

provided the option is still open then; this amounts to purchasing the item instan-

taneously at a price of p, effectively terminating the auction. A temporary buyout

option remains open from the beginning until its exercise or the first time that a

regular bid is submitted by any bidder, while a permanent buyout option remains

open until its exercise or the end of the auction. In line with observed practice, we

assume that all participants know at any point in time whether the buyout option is

still open.

Notice that we assume that bids higher than the buyout price can be placed in

the auction. While this is in line with practice - for instance eBay and Yahoo allow

bids above the buyout price - these websites do recommend that bidders must bid

lesser than the buyout price. For example, a help page on Yahool suggests bidders to

" [..] make sure to place your maximum bid below the buy price amount." Similarly,

placing a bid higher than the buyout price on eBay leads to the following warning

"Your maximum bid is above or equal to the Buy It Now price. We recommend you

simply purchase the item via Buy It Now." Notice that, even when the buyout option

is available, a bidder with valuation higher than the buyout price may find it optimal

to bid in the auction if he believes that he is likely to face very little competition from

other bidders, and, as a consequence, he will be able to obtain the product at a price

much lower than the buyout price (since the second highest bid is likely to be lower).

1http://help.yahoo.coim/help/us/auct/abid/abid- 15.html
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While we assume in Chapter 3 that the buyout price p remains constant through-

out the auction, we study dynamic buyout prices in Chapter 4. In the dynamic ex-

tension we consider then, the seller commits upfront to a function of time [p(t)]t[,,T ]

describing the evolution of the buyout price (either temporary or permanent) over

time, and that function is known to all bidders.

2.3 Model Discussion

Our model is motivated by the online auctions occurring on large auction sites such as

eBay and Yahoo; in that spirit Figure 2-1 includes a screenshot made on October 20,

2004 of an actual ongoing auction, along with pointers to the quantities in our model

representing some of its features. As can be seen in that example the buyout option

is still open although eight regular bids have already been submitted, indicating that

it is permanent as opposed to temporary.

Auefoin Info Current second

Current Bid-

Buy Price:

Tine Left:

High Bidder:

vailable Qty:

4 of Bi:ds

Bid Increment

Locaiom:

ighest bid It

'ermanent
~uyout price p

Remaining
time (T-t)

v remaining

Opened: Oct 11 14:59 PDT

Closes: Oct 21 14:59 PDT Minimum required bid v

Starting Price: 

Figure 2-1: Snapshot of an online auction webpage

We first comment on our allocation mechanism. Online auction sites now typically

feature "proxy bidding" systems, allowing bidders to enter the maximum amount they

are willing to pay for the item. The system then submits bids on behalf of the bidder,

increasing his outstanding bid whenever necessary and by as little as possible to

maintain his position as the highest bidder, up until the maximum amount stated
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is reached2. As observed by Lucking-Reiley (2000), an online auction with a proxy

bidding system effectively amounts to a second-price auction, the payment mechanism

we assume.

For the closing rule, we assume a hard bidding expiration deadline similar to the

one used on eBay, whereas some other sites such as Amazon use instead a floating

deadline that automatically extends (within some limits) whenever a new bid close to

the current deadline is submitted. As pointed out in Roth and Ockenfels (2002), this

difference is material and eBay-like hard bidding deadlines account for a demonstrably

higher concentration of bids near the end of the auction. In principle, our model

allows to predict such surge of bids shortly before the end, because while we assume

exogenous bidder arrival times, their bidding times are endogenous. In fact, our

analysis in §3.2.1 confirms the intuition that last-minute bids seem more likely with a

permanent buyout option than with a temporary one. However, our model does not

capture some of the important reasons why last-minute bidding may occur: presence

of inexperienced (irrational) bidders; possibility that late bids may not reach the

auction site due to network transmission delays; informational value of bids when

the item being sold has a common value component... while we refer the reader

to Roth and Ockenfels (2002) for an excellent discussion and empirical study of this

phenomenon, we argue that factors such as the loss of last minute bids due to network

transmission capacity and the presence of inexperienced bidders may not remain as

prevalent in the long run, partly justifying these modeling choices (otherwise primarily

motivated by tractability considerations). As a result, truthful and immediate bidding

is a weakly dominant strategy in the model we assume for an online auction without

a buyout option.

Another feature of the market mechanism we consider is the possible presence of

a publicly announced minimum required bid, denoted "Starting Price" in Figure 2-1,

effectively captured in our model by the lower bound v of the valuation distribution

support. Note that this is distinct from what some auction sites (such as eBay) call a

"reserve price", which is likewise set by the seller as a minimum selling price for the

2See http://pages.ebay.com/help/buy/proxy-bidding.html for a detailed description.
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item but, in contrast with the minimum required bid we use, is not publicly announced

- when used by the seller, bidders are typically only informed that a reserve price has

been set for the auction, and whether or not it has already been met by any of the

existing bids. We assume that the seller does not use such concealed reserve price,

in part because this would entail some inference of its value by the bidders, and may

lead to further strategic interactions in the form of post auction negotiations between

the winning bidder and the seller.

Several limitations of our analysis also stem from the market environment we

consider. Our assumption that bidder arrivals follow a Poisson process seems more

realistic than assuming that the number of bidders is known to all with certainty,

and is partly justified by the classical Palm limit theorem on the superposition of

counting processes. Nevertheless, the assumption that its arrival rate is constant and

known to all participants (common to all other auction models assuming Poisson

bidder arrivals that we are aware of) is still a strong one. In practice, the arrival rate

of potential bidders to an auction could be variable; in particular, there may be a

high concentration of bidder arrivals at the beginning of the auction - such an arrival

process, for instance, can occur on auction websites, like eBay, that allow bidders

to track newly introduced auctions. The high arrival rate of bidders at the start of

the auction could be modeled by assuming that bidders arrive as a non-homogeneous

Poisson process with a high arrival rate at the beginning of the auction; while this

model is not analyzed in this thesis, our intuition suggests that most of the insights

of our work will also be applicable to such a model. In practice, the arrival rate of

bidders to a specific auction could also be endogenous, and depend for example on

the bidding activity it has generated to date; it would also be influenced by factors

such as advertising, the presence of a reserve price, the seller's feedback ratings, the

presence and quality of photographs describing the item, etc. Our assumption of a

constant known arrival rate saliently implies that bidders, including those arriving

early in the auction when only little bidding history is available, correctly synthesize

the impact of these factors when estimating how many competing bidders they are

likely to face.
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In reality, the estimations of both the arrival rate of competing bidders and the

distribution of their valuations may differ among participants. Intuition suggests

however that the items for which sellers are likely to use a buyout price that will be

exercised with some non-negligible probability should coincide with those for which

relatively substantial historical transaction data is available - this is also supported

by the results in Gallien (2006) showing the lower robustness of fixed prices relative to

auctions in the presence of market uncertainty. Because large auction sites make the

same extensive historical transaction data available to all participants, our assumption

of common beliefs seems legitimate as a first approximation in our view. We also

observe that the lower bound v of the valuation distribution support may correspond

in our model to a requested starting price, which (as can be seen on Figure 2-1, see

also discussion of reserve price above) is announced to all participants.

The structure assumed here for the utility functions of the seller and the bidders is

also used for example in Caldentey and Vulcano (2004) and Gallien (2006), and reflects

a priori the proposed time sensitivity and risk neutrality of participants. While all the

results in the paper have been derived for auctions with risk neutral participants, they

can be easily generalized for risk averse auction participants - see §3.1.1 for a detailed

discussion. The exponential time discounting that we assume for the seller applies

to a monetary income, so that his utility can be interpreted as a straightforward

net present value. As for the bidders, their exponential time discounting applies to

the difference between their valuation for the item and their payment; this plausibly

represents how a bidder may evaluate various actions (e.g. exercising the buyout

option or submitting a regular bid) with different waiting time implications. Finally,

our assumption that all bidders have the same time discounting factor is also a strong

one, since bidders in online auctions are frequently end-consumers who are unlikely

to share a single objective metric such as target ROI or reference interest rate when

assessing their dislike of waiting.

In summary, while our model does capture some of the key features of an online

auction, there are some others that it does not reproduce as faithfully. We point out

that an actual online auction is inherently a complex and random process involving
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multiple heterogeneous bidders with various incentives and rationality levels inter-

acting in a dynamic manner. As such, any tractable analytical model designed to

predict its outcome (including ours and every other one described in the literature)

must necessarily rely on fairly restrictive assumptions. Given our primary research

objective of understanding the differential impact of temporary and permanent buy-

out prices, we observe that several of these assumptions (e.g. common beliefs, bidder

arrival process) may not specifically impact our model predictions when one type of

buyout option is used as opposed to the other. From that perspective, we find it

reassuring that our results rationalize some of the actual practices of auction sites

using buyout options (see Chapter 6).
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Chapter 3

Static Buyout Prices

In this chapter, we analyze auctions where the price of the buyout option remains

fixed throughout the auction. We analyze a temporary buyout option in §3.1 and

then, in §3.2, discuss a permanent buyout option.

3.1 Temporary Buyout Option

It is assumed for this section that the seller uses a fixed temporary buyout price

p which disappears if a bid above the reserve price is placed in the auction. We

characterize an equilibrium in bidder strategy for a temporary buyout price auction

game (§3.1.1), analyze the robustness of the strategy (§3.1.2), and formulate the

seller's optimization problem and discuss its solution in some asymptotic regimes

(§3.1.3).
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3.1.1 Outcome Prediction

For any bidder arriving at time t with valuation v, consider the following family T[.]

of threshold strategies:

Buyout at p immediately if buyout option available and v > v(t)

T[v](v, t) : Bid v immediately if buyout option available and v < v(t),

Bid v at any time in [t, T] otherwise

(3.1)

where v: [0, T] - [, v] is a threshold valuation function. In the following we use the

same notation for a strategy and the symmetric strategy profile obtained when every

bidder plays that strategy, since no ambiguity arises from the present context.

Our main result in this section is the following which establishes the existence of

a threshold function vtmp such that [Vtmp] forms a Bayesian Nash equilibrium, and

also provides a characterization of that function.

Theorem 1. Define function vtmp as tmp(t) = min ((t), v) where v(t) is the unique

solution on [v, +oo) of the equation

(t)

V(t) - p e- ( +)(T- t) e\(T-t)F(x)dx. (3.2)

Then the symmetric strategy profile [Ytmp] is a Bayesian Nash equilibrium for the

online auction game with a temporary buyout price p.

In the equilibrium described in Theorem 1, the first incoming bidder compares

upon his arrival the relative attractiveness of the buyout option and that of a regular

bid, accounting for the likely competition resulting from the specific auction time

remaining then; the dynamic threshold vtmp valuation characterized in (3.2) corre-

sponds to the valuation of a bidder who at that time would be indifferent between

the two options. Note that strategy T[vtmp] and the associated equilibrium result just

stated do not provide a prediction of when the second and subsequent bidders will

submit their bid. That is, the timing of bid submissions for these bidders does not
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have any strategic implication within the strict boundaries of our model definition.

In practice however, it could be affected in various ways by features not captured

by our model; for example a high cost of monitoring the auction could hasten bid

submissions, while common value signaling could delay them - see §2.3 for a more

complete discussion and related references.

The result in Theorem 1 is obtained by first deriving, for an arbitrary threshold

function v, a best response strategy to profile T[v], that is a strategy maximizing

the utility of a bidder entering an auction where every other bidder uses strategy

T[v]. Specifically, denoting R(T[v]) the set of these best response strategies, we

characterize a threshold function vtmp such that T[vtmp] E R (T[v]). We further show

that T[vtmp] E 7 (T[vtmp]), establishing that the profile T[vtmp] constitutes indeed a

Nash equilibrium.

Indeed consider a bidder A with type (v, t) in an auction where every other bidder

uses strategy T[v], where v is an arbitrary threshold function. If A is not the first

bidder, the first bidder would have either placed a bid or exercised the option imme-

diately on arrival (following strategy T[v]), so that the buyout option is not available

to bidder A. In that case, bidder A's weakly dominant strategy is to bid his true

valuation v, as shown in Vickrey (1961). His bid submission time in [t, T] will not

affect his utility in any way, so that bidding v at any time in [t, T] constitutes then a

best response.

Suppose now that A is the first bidder, so that the buyout option is available to

him. Ve introduce the following notation for the three possible actions he may take

at time t:

bid(t): Bid in the auction at time t (in which case it is a dominant strategy for him

to bid his valuation v);

buy(t): Buyout at time t;

wait(t, T): Wait for - t time units before deciding to bid (if the auction is still

open) or buy out (if the option is still available).
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We define the utility of bidder A with type (v, t) and taking action a E {bid(t),buy(t),

wait(t, r)} as Ua(V, t). If bidder A chooses bid(t), i.e. bids immediately, the buyout

option disappears. Following strategy T[v], all subsequent bidders will bid their true

valuation. Denoting by N(t, T) the random number of bidders arriving in interval

(t, T] and N(t) the cumulative number of arrivals up to t, this implies:

E[Ubid(t)(v, t)jNt = O, N(t, T)] = e- (T - t) j F(x)N(tT)dx, (3.3)

and using the model assumption that N(t, T) is Poisson with parameter A(T - t), we

obtain the expected utility of the first bidders when bidding his valuation v upon his

arrival at t:

E[Ubid(t)(v, t)INt = 0] = e-(A+O)(T - t) e(T-t)F(x)dx (3.4)

- Bl(v, t). (3.5)

Conditional on A being the first bidder (i.e. Nt = 0), the utility from exercising

the buyout option immediately is:

E[Uby(t)(v, t) Nt = 0] = v-p (3.6)

The key to deriving bidder A's best response is the following Lemma, which es-

tablishes that bidder A's expected utility from acting immediately upon his arrival

(i.e. choosing either bid(t) or buy(t)) is always as large as that obtained from waiting,

i.e. E[Uwait(t,-) (v, t) Nt = 0]:

Lemma 1. E[Uait(t,)(v, t) Nt = 0] < max {Bl(v, t), v - p}

Proof. Let £ = {N(t, T) = 0} be the event that no bidder arrives in the interval (t, T).

In this case bidder A remains the first bidder so that

E[Ubid(T)(v,t)lNt = 0,] = e-(r-t)E[Ubid(,)(v,r)INT = 0]

= e-(T-t)Bl(v, ), (3.7)
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and the buyout option is still available thus

E[Uwait(t,r)(V, t) Nt = 0, ] = e- z(7- t) max {Bl (v, T), V - p}.

The complementary event £ = {N(t, T) > O} corresponds to one or more arrivals

occurring in the interval (t, T). In that case the buyout option is no longer available,

so that

E[Uwait(t,)(V, t)INt = 0,] = E[Ubid()(V, t)Nt = 0, ]

= e-('-)E[Ubid() (v, r) Nt = 0, ]. (3.8)

Note that the event & includes the event that one of the bidders who arrived during

(t, r) exercised the buyout option, in which case bidder A's utility is zero. The

expected utility of the first bidder A if he waits up to time r > t is thus

E[Uwait(t,r)(v, t) Nt = 0]

= e (r-t) ( max {BI(v, T), V -p p P(£) + E[Ubid(T)(v, T)INt = 0, ] P(f)) (3.9)

By the law of conditional expectation, we also have:

Bl(v, t) = E[Ubid(t)(V, t)lNt = 0, £] P() + E[Ubid(t)(v, t)lNt = O, £] P(8) (3.10)

Define g as the event that the first bidder, say B, arriving in (t, T) with type (VB, tB)

(where t B E (t,T)) has valuation V(tB) < VB < v. Notice that P(G6I) > 0; in

particular, P(G12) = 0 if v < v(tB) for all tB E (t, T). Then (3.10) can be rewritten

as:

Bi(v, t) = E[Ubid(t)(v, t)INt = 0, ] P(E) + E[Ubid(t)(v, t)lNt = 0, , G] P(G6) P(8)

+ E[Ubid(t)(v, t)lNt = 0, , ] P(61£) · P(E)

(3.11)
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where g is the complementary event.

Conditional on the event E (i.e. N(t, r) = 0), the expected utility of bidding is

same whether A bids at time t or r, i.e.

E[Ubid(t)(v,t)INt = 0, E] = E[Ubid(-)(v,t)lNt = 0,'] (3.12)

Now consider the case when the event g n £ occurs, i.e. the bidder B with type

(VB, tB) has valuation V(tB) < VB < v. If bidder A bids in the auction at time t then

the buyout option disappears and so B also bids in the auction; however if bidder A

waits up to r, then the buyout option is still present at time tB E (t, r) and bidder

B, following strategy T[v], exercises the buyout option. As a result, we have

E[Ubid(t)(V,t)lNt = 0,, ] > E[Ubid(,)(v,t)lNt = 0,£,5] = 0 (3.13)

where E[Ubid(t)(v,t)lNt = 0, E, ] > 0 since VB < v.

Additionally, conditional on the event C n 5 we have

E[Ubid(t)(v,t)lNt = O,£, ] = E[Ubid()(v,t)lNt = 0,£,G] (3.14)

This can be explained as follows: the event 5 implies that either

1. VB > v - In this case the expected utility from bidding is zero irrespective of

when bidder A bids,

2. VB < V(tB) - In this case bidder B, following strategy T[v], bids in the auction

immediately if A waits up to T and thus the buyout option disappears. If A

bids at time t then also the buyout option disappears and thus, irrespective of

when A bids, the buyout option is not exercised. Hence the expected utility

from bidding for A is same from both actions bid(t) and bid(r).
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Using (3.14), (3.12) and (3.13) in (3.11) we get

Bl(v, t) > E[Ubid(r)(v,t)]Nt = 0, ] . P() + E[Ubid(r)(v,t)Nt = O , ,g] P(GIE) P(E)

+ E[Ubid(r)(v,t)INt 0,= O, 5] P(1£) P(9)

= E[Ubid(,)(v, t)mNt = 0,E] . P(£) + E[Ubid(,)(v, t)lNt = 0, ]. P() (3.15)

Furthermore

e- (7- - t)Bl (v, T) > B1 (v, t), (3.16)

because while both sides of the above inequality have the same time discounting,

the right hand side is conditioned on Nt = 0 and the left hand side is conditioned

on N, = 0 (implying fewer competing bidders). Additionally, as indicated earlier

in (3.7), we have e-P('-t)Bl(v,T) = E[Ubid()(v,t)Nt = 0,£]. Equation (3.15) and

inequality (3.16) thus imply together that

E[Ubid()(V, t)INt = 0, ] < B1(V, t). (3.17)

Consider now the following two cases:

* Case 1: v-p < B(v,r)

Equation (3.9) becomes then

E[Uait(t,) (v, t)lNt = 0]

= e- O(-t)Bl(v, r) P(E) + e- (-t)E[Ubid()(v, )INt = O, 6] P(E)

= E[Ubid()(v, t)INt = 0, £]. P() + E[Ubid(,) (v, t)INt = 0, ] P(£)

< Bl(v, t) < max {Bl(v, t), v-p},

where the second equality follows from (3.7) and (3.8) and the first inequality

follows from (3.15).

* Case 2: v -p > B(v, r)
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In this case notice that

e-f(T-t) (v - p) > e- 3('-t)Bl(v, T)

> B,(v,t)

> E[Ubid() (v, t) Nt = O, ]

= e(-t)E[Ubid(,)(v,T,)INt = 0,6], (3.18)

where the second and third inequalities follow from (3.16) and (3.17) respec-

tively, and the final equality follows from (3.8).

Equation (3.9) thus implies

E[U,,it(t,r)(v,t)lNt = 0] = e-(r-t)((v -p)P(E) + E[Ubid()(v,UT)INt = , P(.))

< e-P(-t) (v - p) P(8) + e-(-t) (v - p) P(C)

= e-(T-t) (v - p)

< (v-p) < max{Bl(v,t),v - p},

where the first inequality follows from (3.18) and the second inequality from the

law of total probability.

Because cases 1 and 2 above are exhaustive, the proof is complete. [

We have thus established the best response for bidder A, if he sees the buyout op-

tion, is to act immediately upon his arrival. Defining now 6(v, t) A E[Ubuy(t)(v, t)INt =

0] - E[Ubid(t) (v, t) Nt = 0] as the expected utility difference from exercising the buyout

option and placing a bid immediately for the first bidder, equations (3.3) and (3.6)

imply

6(v, t) = v -p - e- ( + )(T- t) e(T-t)F(x)dx. (3.19)

Notice that (v, t) is continuous and differentiable on [, +oo) x [0, T], and it is
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increasing in v for all t E [0, T] since

36(v, t) 1- e(-/-(1-F(v))) (T-t) > O. (3.20)

Assuming without loss of generality that p > v implies that (v, t) < 0 for all

t E [0, T] which combined with (3.20) proves the existence of a unique v(t) E [v, +oo)

such that 6(9(t), t) = 0. Defining tmp(t) min ((t), ) and denoting 7R (T[v) the

set of best response strategies to the symmetric profile T[v], we have thus proven that

T[tmp] E R (T[v]). But because the characterization of vitmp provided by 6(9(t), t) =

0 does not depend on the choice of v as can be seen from equation (3.19), we also

have T[tmp] E R (T[vtmp]), that proving that T[vtmp] is a Bayesian Nash equilibrium

of the temporary buyout price auction game. This completes the proof of Theorem

1.

The following proposition provides a closed-form expression for the equilibrium

described in the statement of Theorem 1 for the special case of uniformly distributed

valuations:

Proposition 1. When bidder valuations are uniformly distributed on [v, v], the thresh-

old function Vtmp characterizing the Bayesian Nash equilibrium described in Theorem

is

'tmp(t) = mm (p- A(T ) (w( e (A+Z)(T-t)+(P-v)A(T-t) _(A+f)(T-t)) + e-(A+)(T-t)), )
(3.21)

where W is Lambert's W or omega function, i.e. the inverse of W * WeW.

Proof. In Appendix. O

Before discussing the robustness of the equilibrium strategy derived above, we

comment on the extension of the equilibrium results for the case when bidders are

risk averse. The structure of the equilibrium strategy derived above remains the same

if we assume, say, that bidders are risk averse with a CARA type utility function, i.e.
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a bidder with valuation v who purchases the item at price x gets utility

UR(V) 1 - e- r(v- x)

where r > 0 is the coefficient of risk aversion. Indeed under, certain technical condi-

tions, Theorem 1 can be extended to show that for a temporary buyout price auction

with risk averse bidders, a threshold strategy of the form T[.] defines a Bayesian Nash

equilibrium with a threshold function vip. We prove the following result.

Theorem 2. Let v(t) be the solution on [v, v], if such a solution exists, of the equation

le-r((t)-p)

=- eA(T-t) (eA(T-t)F((t)) _ e-r((t)-) - A(T - t) () e-r((t)-x)+A(Tt)F(x)f (x)dx)

(3.22)

Define function t()p as V()(t) = v(t) if (3.22) has a solution on [, v]; otherwise

Vmp(t) = V. Then if p is such that

p > - In(e-rv r | erX-T(lF(X))dx) (3.23)

the symmetric strategy profile T[Vtyp] is a Bayesian Nash equilibrium for the online

auction game with a temporary buyout price p.

The extra condition (3.23) on the buyout price is required to ensure that (3.22)

has at most one solution on [v, v]. Notice that (3.23) is only a sufficient condition

and indeed seems pretty strong - in all our numerical experiments even when this

condition was violated, the equation (3.22) had at most one solution on [v, v].

Proof of Theorem 2. Consider a bidder A with type (v, t) in an auction where every

other bidder uses strategy T[v], where v is an arbitrary threshold function. If A is

not the first bidder, the first bidder would have either placed a bid or exercised the

option immediately on arrival (following strategy T[v]), so that the buyout option is
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not available to bidder A. In that case, bidder A's weakly dominant strategy is to

bid his true valuation v. His bid submission time in [t, T] will not affect his utility in

any way, so that bidding v at any time in [t, T] constitutes then a best response.

Suppose now that A is the first bidder, so that the buyout option is available to

him. The result of Lemma 1 holds for risk averse bidders also thus proving that A's

expected utility from acting immediately upon arrival (i.e. choosing either bid(t) or

buy(t)) is always as large as that obtained from waiting. Thus the best response for

bidder A, if he sees the buyout option, is to act immediately upon his arrival.

The expected utility from bidding for risk averse bidders E[UbRd() (v,t) Nt = 0]

can be shown to be

E [Ubd(t) (v, t)Nt = 0]

=e A(T-t) A(Tt)F(v) -er(v) (T-t) e-r(v-x)+\(T-t)F(x)()d)

where f(x) = aOF(x) is the probability density function corresponding to the cdf

F(.). The utility from exercising the buyout option is given by E[Uby(t)(v,t)INt =

0] = 1 - e-r(v-P). We next derive a sufficient condition such that the equation

E [Uby(t) (v, t)INt = 0] = E[Ubd(t)(v, t)INt = 0] (3.24)

has at most one solution on [v, v].

Lemma 2. If
1 rv

P > log (e-r r erx-:\T(1-F(x))dx)
r

then (3.24) has at most one solution on [v,v ].

Proof. A sufficient condition for proving that (3.24) does not have multiple solutions

on [v, v] is that for any t E [0, T]

av E[Ubu,(t)(vt)INt = 0] > av E[Ubd(t)(v,t)INt = ], VV E [V,V]

43



Using the expressions for E[Ubuy(t)(v, t) INt = 0] and E[Uid(t)(v, t)INt = O] this condi-

tion can be rewritten as

erp > max e-A(T-t) [erv+A(T-t)F(v) - r erx+(T-t)F()dx (3.25)
vE [v,v]

i v

= erf - r er-A(T-t)(1-F(x))dx (3.26)

where the equality follows since the expression on the right hand side of (3.25) is

increasing in v. Since the right hand side of the inequality (3.26) is decreasing in

t it is sufficient to impose the condition at t = 0 thus completing the proof of the

lemma. °

Define function (r) as v(r) (t) = v(t) where v(t) is the solution of (3.24) if a
Vtmp tmp

solution exists on [v, 9]; otherwise vt(t) = . Combined with the fact that for p E

[v,'U],[UY(t)(, t) INt = 0] < E[Ubid(t)(v,t)INt = 0] proves that T[v,[p] E iZ(T[v]).

But because the characterization of v(') does not depend on the choice of v as can

be seen from equation (3.24), we also have T[rp] E 7Z (T[vTp]), thus proving

that T[vip] is a Bayesian Nash equilibrium of the temporary buyout price auction

game. C1

Consider any t where the threshold valuation (r) is such that

() (t), t) Nt = 0] = E[Ubid(t) ()p(t),t)INt = 0],

that is,

1- er(ltmp = E[Uj~d(t) (v,)(t), t) INt = 0].

Then, since UR(.) is concave, using Jensen's inequality, we have that

1 - e- r( <}mp (t ) -P ) < 1 - e- rE[Ubid(t)(V(} p(t t ) Nt=O]
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which implies that

Vrp(t) - p < E[Ubid(t)(Vt( )(t), t) Nt = 0]

This combined with (3.19) shows that vJt()p(t) < Vtmp(t) where vtmp(t) is the threshold

valuation for risk-neutral bidders with P = 0. Similarly if v() (t) = then for all

v E [v]

1 - e(v-) < E[Ubid(t)(v, t)lNt = 0]

< 1 - e - rE[Ubid(t)(vt)lNt=0]

where the second inequality follows again from Jensen's inequality. This implies that

for all v E [, v]

v - p E[Ubid(t)(v,t) Nt = 0]

which then means that tmp(t) = v. Thus for all t [0, T], () tmp(t);

intuitively, if bidders are risk averse then exercising the buyout option, which clearly

involves no risk (as opposed to bidding where both the price and success of getting

the product is uncertain), is much more attractive and hence the threshold valuation

for exercising the option is lower. The results for the permanent buyout price case,

derived in §3.2, can be similarly generalized for risk averse bidders.

3.1.2 Equilibrium Refinements

An important observation concerning Theorem 1 is that the equilibrium T[v] it spec-

ifies is not unique. Indeed, for any w > 0 one may choose a threshold function

v: [0, T] - [v, v] such that the strategy T(w) [v] defined as

Buyout at p immediately if buyout option available and v > v(t)

T() [v] (v, t) Bid v after min(w, T - t) time units if buyout option available and v v(t),

Bid v at any time in [t, T] otherwise

(3.27)
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also constitutes an equilibrium. That is, in the equilibria T(w) [v] with w > 0, a bidder

finding the buyout option still available when he arrives may wait for some time before

submitting a bid. We next argue that, in contrast to T[v], such an equilibrium does

not survive two equilibrium refinement techniques, and therefore does not provide a

robust outcome prediction.

While our model assumes all bidders are rational and have the same utility func-

tion, in practice a bidder in an online auction faces bidders with different preferences,

bidding experience and levels of rationality, and he may be uncertain about the payoff

function of the other bidders. To incorporate this uncertainty, we assume that there is

some randomness associated with bidders' payoff functions and test which strategies

still define an equilibrium of the buyout price auction game under this perturbation;

see Harsanyi (1973) and van Damme (1987) for a discussion of games with perturbed

payoffs. Another technique used to refine the set of equilibria in incomplete informa-

tion games is the concept of trembling hand perfection which we also discuss in this

section.

Payoff perturbations

Let G denote the online auction game with a temporary buyout option described

in §2.2 and §2.1. We consider perturbations in the payoff function (see van Damme

(1987)) and define G(E) as a game identical to G except that with a small probability

> 0 an arriving bidder is desperate, meaning that his utility from the auction with

a type (v, t) is described instead by

+M if he obtains the item at t;

UD(v, t) = -M if he bids in the auction; where M > 0. (3.28)

0 otherwise,

In words, desperate bidders greatly value the item auctioned, have an outside alter-

native with negligible value, and cannot wait under any circumstances; the dominant

strategy for a desperate bidder is obviously to exercise the buyout option if it is

available and to not participate at all otherwise. This specific perturbation seems
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appealing, because it may reveal the limiting impact of irrational bidders or bidders

with different time sensitivities that our model otherwise assumes away (see §2.3).

We prove the following result:

Theorem 3. The game G() does not have any Bayesian Nash equilibrium where

a non-desperate bidder, who arrives when the buyout option is present, waits before

bidding (e.g. plays T()[- ] with w > 0). In addition, there exists a threshold function

V(p: [0, T] -- [v, v] such that for non-desperate bidders the strategy profile T[vJ(p,] is

a Bayesian Nash equilibrium of the game G( ), and lim_ 0 Vtp = Vtmp where tmp is

defined in Theorem 1.

Proof. Suppose a bidder, say A, arrives in the auction when the buyout option is

present. If A is desperate then his strictly dominant strategy is to exercise the buyout

option immediately and thus any strategy where he waits cannot be an equilibrium

of the game G( ) .

Now suppose A is not desperate and is indeed of the type (v, t). We next show that

the utility from bidding immediately is strictly greater than the utility from waiting

for w units of time (where 0 < w < T - t) and then bidding, i.e. in the notation

of Theorem 1, E[Ubid(t)(v, t)lB] > E[Ubid(t+)(v, t)lI3] for all w E (0, T - t] where B

denotes the event that the buyout option is present when A arrives. The utility

from bidding is calculated assuming the subsequent non-desperate bidders follow any

arbitrary strategy while the desperate bidders follow their dominant strategy which

is to exercise the buyout option immediately, if available, and to not participate in

the auction otherwise. Notice that, as before, bidders are assumed to be rational and

thus if, and when, they choose to bid in the auction they will bid their true valuation

(which is their weakly dominant strategy since this is a second-price auction).

Similar to the proof of Theorem 1, using the law of conditional expectation, we

have:

E[Ubid(t)(V, t)lB] = E[Uid(t)(v, t)IB, D] P(DIB) + E[Ubid(t)(v, t)lB, D] P(1DlB)

(3.29)
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where D denotes the event that the buyout option is exercised by a desperate bidder

if bidder A waits up to time t + w. Notice that the event {first bidder arriving in

(t, t + w) is desperate} C {/DIB} and thus we have

P(DIB) > P(first bidder arriving in (t, t + w) is desperate) > 0 (3.30)

Since desperate bidders do not participate in the auction if the buyout option is

not present, we have

E[Ubid(t)(v, t) , D)] > E[Ubid(t+w)(v, t) IB, D)] = 0 (3.31)

Bidder A bids in the auction at t + w, if it is still open, and hence the buyout

option surely disappears at t + w. Thus no desperate bidders arriving in the interval

(t + w, T] participate in the auction. In addition if the event D does not occur then it

implies that no desperate bidder arriving in the interval (t, t + w) participates in the

auction. Thus the presence of desperate bidders does not affect the expected utility

of bidder A if the event D occurs and hence the analysis used to obtain (3.15) can be

essentially repeated, with minor modifications to incorporate the fact that subsequent

bidders follow some arbitrary strategy, to get:

E[Ubid(t) (V, t) B, ] E[Ubid(t+w)(V, t)IB, D] (3.32)

Using (3.32), (3.31) and (3.30) in (3.29), we obtain

E[Ubid(t)(v, t)lB3] > E[Ubid(t+w)(v, t)lB, D] P(VI ) + E[Ubid(t+W)(V, tIB, D] P( IB)

(3.33)

= E[Uid(t+) (v, t) 1B] (3.34)

which proves that bidder A is strictly better off bidding immediately. Thus any

strategy where a bidder, who arrives when the buyout option is present, waits for w

units of time (w > 0) is not a Bayesian Nash equilibrium of G() .
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The second result of the theorem involves characterizing a threshold function v

such that the strategy where the non-desperate bidders play T[v] is a Bayesian Nash

equilibrium of the game G( ) .

If the first bidder arriving in the auction is desperate then his dominant strategy is

to exercise the buyout option immediately and the auction ends. Otherwise if the first

bidder, say A and of type (v, t), is non-desperate then the analysis of Theorem 1 can

be repeated exactly to show that the best response strategy of A is to bid immediately

if his valuation v < v() (t) and to exercise the buyout option immediately otherwise.

The threshold valuation '( = min(O(t), ) where (t) is the unique solution in

[v, +oo) of J0(t)
v(t) - p = e ( 1- )+)(Tt) eA(1-)(Tt)F(X)dx, (3.35)

which is same as (3.1) except that A is replaced by A(1-e) since the arrival rate of non-

desperate bidders in the game G(e) is A(1-e). Thus the strategy T[Uv(] is a Bayesian

Nash equilibrium of G(e) and, in addition, as e - 0, the right hand side of (3.35)

converges to the right hand side of (3.1) and it follows that limeo Vtmp t 1 mp. I

The intuitive explanation for Theorem 3 is that when the first bidder decides

to bid in the auction he is strictly better off bidding immediately and remove the

buyout option then, because this prevents any subsequent desperate bidders from

participating. The equilibrium f[vtmp] characterized in Theorem 1 is thus the limit

of a sequence of equilibria corresponding to perturbed versions of the original game.

Let S denote the set of all strategies where, if a bidder decides to place a bid

in the auction, he bids his true valuation. This is without loss of generality since S

only excludes strategies where there are bidders who start with a low bid and then

increment their bid, in one or multiple steps, up to their true valuation. However,

an auction with a temporary buyout price becomes a standard second price auction

once a bid is placed, and under the assumption that bidders' valuation is private, a

strategy where bidders bid in multiple steps (up to their true valuation) is equivalent

to a strategy where they bid their true valuation in one step (which belongs to S).

Theorem 3 implies that in any equilibrium of G(E) a bidder, who arrives when the
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buyout option is present, acts (bids/buyout) immediately and we have already shown

that in such a case his choice is determined by the threshold vtmp. Once a bid has

been placed in the auction, it becomes a standard second-price auction and for all

subsequent bidders a weakly dominant strategy is to bid their true valuation. Hence

this proves that, among the strategies in S, the strategy I[vtmp] is the unique equi-

librium of a temporary buyout price auction that is robust to the payoff perturbation

discussed above.

Another standard robustness test for outcome prediction is to consider the concept

of trembling-hand perfect equilibrium (Fudenberg and Tirole 1991).

Trembling hand Perfection

In games of incomplete information, Fudenberg and Tirole (1991) argue that the

concept of subgame perfection is not very useful "since the players do not know the

others' types, the start of a period does not form a well-defined subgame until the

players' posterior beliefs are specified, and so we cannot test whether the continuation

strategies are a Nash equilibrium". Two solution concepts often used for such games

are the notions of Perfect Bayesian equilibrium and sequential equilibrium both of

which explicitly consider players' beliefs about what has transpired in the game be-

fore their move. We instead use the notion of a trembling-hand perfect equilibrium

("perfect equilibrium") which is a related but stronger concept, see Mas-Colell et al.

(1995), than both Perfect Bayesian and sequential equilibrium.

A perfect equilibrium requires that the strategies be the limit of totally mixed

strategies and that, subject to the requirement that it must put at least a minimum

weight (must tremble) on each pure strategy on the converging sequence, each player's

strategy is (constrained) optimal against his opponents' (which includes trembles

themselves) (see Fudenberg and Tirole (1991), Selten (1975)). In other words, it

entails that strategies should be optimal even if there is a small probability that

other players exhibit off-equilibrium path behavior ("tremble"). These trembles may

arise due to players' irrationality or inexperience or due to a mistake when playing

the strategy.

50



Recall that a weakly dominated strategy is one that leads to at most as much payoff

as the strategy that dominates it. An important property of a perfect equilibrium, as

noted by Morrow (1994), is that a "perfect equilibrium eliminates [weakly dominated

strategies] because there is a small chance that a tremble will lead [a] player to a node

where the dominating strategy produces a better outcome for the player".

Notice that the auction game in question is not finite because a bidder can poten-

tially visit the auction site infinite number of times before bidding or exercising the

buyout option. However since the utility of a bidder is a function only of his initial

arrival time and the timing of his bid (or buyout exercise), his intermediate arrivals

to the auction can be ignored. Thus the set of pure strategies of a bidder can be

assumed to be exercise buyout option immediately, bid true valuation immediately,

exercise buyout option at some later time (if available), bid true valuation at some

later time} where if the bidder chooses to act (bid/buyout) at some later time then

the exact time may be chosen either immediately on his first arrival or after repeated

arrivals to the auction site.

Considering the normal (or strategic) form representation of the above game (with

the modified strategy space), we argue heuristically that the strategy T(W)[.] for any

w > 0 does not satisfy the perfectness concept while the strategy T[vtmp] does. The

intuitive justification of this observation is that if a subsequent bidder has a pos-

itive probability of exercising the buyout option even though he gains a negative

utility from this action, then the first bidder is strictly better off bidding immedi-

ately and thus making the buyout option unavailable to future bidders. In other

words, by bidding immediately the first bidder protects himself from the possibility

that a subsequent bidder may exercise the buyout option by mistake or because he is

irrational/inexperienced.

We use the following equivalent definition of a perfect equilibrium, due to Myerson

(1978),:

Definition 1. Strategy profile a' of a strategic form is an e-perfect equilibrium if it

is completely mixed and for all players i and any strategy si, if there exists a strategy

st with utility ui(si,a i) < Ui(s, a_i), then ua(si) < . A perfect equilibrium is
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any limit of u-perfect strategy profiles a' for some sequence e of positive numbers that

converge to 0.

We seek to characterize an e-perfect equilibria of the auction game with the above-

defined strategy space. Consider a bidder, say A, of type (v, t) who arrives when the

buyout option is present. If bidder A chooses to bid his true valuation in the auction

at some later time r(> t) then his utility can be written as:

E[Ubid(r)(V, t)lB] = E[Ubid(7)(v, t)IB, E]P(EIB) + E[Ubid()(v, t)IB, 9]P(EjB) (3.36)

where £ is defined as the event that a bidder with valuation less than v exercises the

buyout option in interval (t, r) while B is the event that the buyout option is present

when bidder A first arrives (at time t).

As we are seeking an e-perfect equilibrium, all players are assumed to play totally

mixed strategies and under this assumption P(£jB) > 0 and consequently P(EIB) < 1

for all T > t. Furthermore if £ occurs, the utility of bidder A is zero since the

buyout option is exercised by another bidder and thus E[Ubid() (v, t) B, £] = 0. Using

a sample path argument it can be easily shown that E[Ubid(r)(v, t)IB, C] is equal to

bidder A's expected utility from bidding his true valuation in the auction immediately

E [Ubid(t) (V, t) 1].

We thus have that

Et [Ubid(-)( (, t) B] = Et[Ubid() (V, t) B, £]P(EIB) < Et[Ubid(t)(v, t)lB]

i.e bidding immediately leads to a strictly higher than bidding at some later time in

the auction.

Similarly if the bidder chooses to exercise the buyout option at some later time

r(> t) (if available) his utility is

E[Ubuy()(v, t)lB] = E[Ubuy(r)(v, t)IB, £]P(ElB) + E[Ub,,,y()(V, t)jB, £]P(jB) (3.37)

where we now define £ as the event that the buyout option is exercised in the interval
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(t,r) by another bidder; B is as defined before. Clearly E[Ubuy(, )(v,t)B, £] = O

since the buyout option is exercised by another bidder while E[Ubuy()(v,t)lB, ] =

e-((T-t)(v - p) since the bidder waits for (r - t) units of time and then exercises the

buyout option at price p. We thus have

E[Ub,(r)(v, t)lB] = e- (,-t)(v - p)P(EIB) (3.38)

< (v - p) = E[Ub.y(t)(v, t) IB] (3.39)

i.e. exercising the buyout option immediately leads to a strictly higher utility than

exercising the buyout option at a later time.

Thus, by definition, any e-constrained equilibrium a' will have

a' (bid true valuation at some later time) < c, and

a (exercise buyout option at some later time, if available) < e.

Hence taking the limit as e -+ 0 implies, in particular, that there is no perfect

equilibrium of the auction game of the form T(w) for any w > 0.

Analysis similar to the proof of Theorem 1 can be repeated to show that for any

c > 0 there exists an -constrained equilibrium a' of the form:

(1 - 36(e), (e), (e), 6(e)) if buyout option present, E[Ubid(t)(v, t)l6] > v - p

0a(v,t) = (6(e), 1- 36(e), (e), (e)) if buyout option present, E[Ubid(t)(V, t)IB] < v-p

(0, y, , 1 - y) if buyout option not present

where 0 < (e) < e and y E (0, 1). The quadruplet vectors are the probabilities with

which the strategies {exercise buyout option immediately, bid true valuation immedi-

ately, exercise buyout option at some later time (if available), bid true valuation at

some later time} are mixed. When bidders play oa, the expected utility from bidding
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if the buyout option is present, can be bounded as following:

E[ e- (T-t) F()N(tT)+6()N(t)dx] < E[Ubid(t)(, t)lB]

< E [e"·-#(T-t) |F(X)N(tT)dX]

where N(O, t) (resp. N(t, T)) is the number of bidders arriving in the interval (O, t)

(resp. (t,T)). Hence in the limit as - 0,

E[Ubid(t)(v, t) Il3 E [e(Tt ) l F()N(tT)dx]

and thus a - [vt,,mp] which shows that Ti[vtmp] is a perfect equilibrium.

Thus we have shown that in any perfect equilibrium a bidder who arrives when

the buyout option is present acts (bids/buyout) immediately and indeed his choice

is determined by the threshold tmp. Once a bid has been placed in the auction,

it becomes a standard second-price auction and for all subsequent bidders a weakly

dominant strategy is to bid their true valuation. Hence this proves that the strategy

T[vtmp] is indeed the unique trembling-hand perfect equilibrium, among the strategies

in S, for an auction with a temporary buyout option.

These observations support in our view the use of equilibrium [vtmp] in the

remainder of this analysis as a predictor for the outcome of an online auction with a

temporary buyout price.

3.1.3 Seller's Optimization Problem

We now consider the revenue maximization problem faced by the seller, using the equi-

librium characterized in Theorem 1 as a prediction of the game's outcome. Specif-

ically, we seek to determine the temporary buyout price p maximizing the seller's

expected discounted revenue E[Utsp(p)] when all bidders follow strategy T[vtmp] de-

fined by (3.1) and (3.2). Note that p is the only decision variable we consider here (see

Vakrat and Seidmann (2001) and Gallien (2006) for optimization studies focusing on

the decision variables T and v).
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Making the dependence of Vtmp on p explicit from now on and conditioning on

both the arrival time and the action of the first bidder, the problem can be stated

mathematically as

maxE[UtSp(p)] T= eTEt [max(v, (2) 5l vtmp(p t)]F(vtmp(p t))e-'tdt
p = VN(tT)+l) IV1 • tmp(P, t)]F(tmp(p, t))Aetdt

+ e-atp(l - F(vt p(p,t)))Ae-ttdt, (3.40)

where the expectation Et in the first integrand is with respect to the number N(t, T)

of arrivals in interval (t, T] of a Poisson process with rate A and the second highest

value N(tT)+1 among N(t, T)+1 independent draws vl, ..., vN(t,T)+1 from the valuation

distribution with cdf F, where by convention v(2) = 0 - note that the first and second

integrals in (3.40) correspond respectively to the seller's expected revenue when the

first bidder submits a regular bid upon his arrival and when he exercises the buyout

option.

While solving analytically the optimization problem (3.40) in the general case ap-

pears to be particularly challenging, computing a numerical solution Ptmp to this prob-

lem through a line search over p is relatively straightforward: for each value of p, one

may numerically solve (3.2) for Vtmp(p, t), then estimate E[Utsmp(p)] through Monte-

Carlo simulation by generating repeated random bidder arrival streams (vi,tl),

(v2 , t2), ...}. This is the method we implement to obtain the numerical results we

report in §5.1.

In the remainder of this subsection, we discuss the solution of the optimization

problem (3.40) in some limiting regimes of a, / and A.

Let g : [0, oo) -- [0, oo) be any function satisfying lim g(x) - 0 and fi

[0, oo) - [O, oo), i E 1,2} be functions such that lim_0o fi(x) - 0. Define buyout

price p = argmaxpp(l - F(p)) and pi = argmaxpp(l - F(p)) + vF(p). Here, and

in the remainder of this subsection, it is assumed that the distribution function F(.)

is strictly increasing on [v, v] and is such that p5 and p are unique. It can be easily

shown that p > pi.

Now consider a market environment when the bidder arrival rate is high (A -. oo).
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We first derive the asymptotic optimal buyout price for the case when seller sensitivity

is low ( = g(A)). We will use the following lemma.

Lemma 3. Consider a continuous function h(p, A) : X x [0, oo) -- [0, oo) where X =

[v, v] and let p*(A) = arg maxpEx h(p, A). Suppose h(p, A) is such that lim,, h(A, p)

h(p) (in the sup norm) where h(p) is also continuous on the set X. Then if h(-) has

a unique maximizer p* = arg maxpex h(p), lim_,, p* (A) - p*.

Proof. We show that for any > 0 there exists A, 6 such that for all A > A,

h(p*, A)-h(p,A) > Vp (p*-e,p* +e)

hence proving that p*(A) - p* I < e for all A > A.

Consider an e > 0. We have

h(p*, A) - h(p, A) = h(p*, A) - h(p*) + h(p) - h(p, A) + h(p*) - h(p)

> -h(p*, A) - h(p*)l - h(p, A) - h(p)( + h(p*) - h(p) (3.41)

Now since h(p) is continuous and p* is the unique maximizer, there exists 61 > 0

such that

h(p*) - h(p) > 61 p (p*-e, p* + e) (3.42)

Also since lim) _r h(A,p) - h(p) in the sup norm, 3 a A > 0 such that VA > A

Ih(p*,A)- h(p)l < 61/3 Vp E [v,v] (3.43)

Substituting (3.42) and (3.43) in (3.41), we obtain that for any p (p* - E, p* + e)

h(p*, A) - h(p, A) > -61/3 - 61/3 + 61 = 61/3

Setting 6 = 61/3 completes the proof. O
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Now, notice that we have:

lim Vtmp(p, t) -- p Vt
A-*oo

lim Et[max(v, v (2)+i)1 < itmp(Pt)] A-W o N(t,T)+I } V < tmp(P, 

Using the above and the fact that a = g(A), the seller's revenue can be written as

lim E[UtS p(p)] = lim ( e-g(\)TvF(p)Ae-\'dt + Cg(A)tAr 0 urn e-(A)U)F(p)e-tdt + e-9()tp(1 - F(p))Xe-xtdt

= VF(p) + p(l - F(p))

The function r(p) = F(p) + p(l - F(p)) is uniquely maximized at v and this

implies, using Lemma 3, that in the case a = g(A), limx ooPtp .

A similar argument can be used to show that when the seller sensitivity is high

(a = 1/g(A)) the optimal buyout price converges to P in the limit as A - oo.

We next analyze a market environment where the bidder arrival rate is small,

bidders have high time-sensitivity (A - 0, fi = /f 2(A)) and the seller's sensitivity is

low, i.e. a = f(A). The analysis for the case when a = 1/fi(A) is similar.

Since - o the threshold valuation Vtmp(P, t) -- p, and in addition since the

bidder arrival rate A -+ 0, we have Et[max(v, v(t,T)+l)lvl < 'Utmp(P,t)] - v. Now

notice that in this case the seller's revenue approaches zero in the limit as A - 0 and

so we instead consider the following ratio

E[UtmP(P)] li (ef° (A)T vF(p) + e-fl()tp(- F(p)))Ae -Atdt

A-0 E[Utsmp(P)] A-0 T (e-fl(A)TvF(P) + ef1()t(1 - F(P)))Ae-tdt

vF(p) + p(l - F(p))
vF(P) + P(1 -F(P))

By definition P uniquely maximizes the function g2(p) = p(l - F(p)) + vF(p) and

hence it is also the unique maximizer of the function 2(P). Thus, using Lemma 3, in

the case : = /f 2(A) and a = f(A), the optimal buyout price converges to P in the

limit A -- 0.
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Finally, we consider the regime when (a = 1/fl(A), 3 = f2(A),A -- 0). It turns

out that Lemma 3 is not applicable in this case and so we prove the convergence of

the optimal solution using basic principles. Indeed we show that for any e > 0 there

exists a A > 0 such that for all A < 1/A, IPtmp(A) - v < thus proving that the

optimal buyout price converges to v in this regime.

Consider an > 0. Recall that vtmp(p,t) = min((p,t),v) where (p,t) is the

solution of (3.2). Notice that when /3 = f 2(A) (recall that limxAof 2(A) - 0),

limx_0 o (p,t) - o, Vt E [0, T) if p > v. Thus there exists a Al > 0 such that

for all A < 1/A1 we have (p,t) > , Vt E [0,T),p > v + e. This implies that

Vtmp(p, t) = v, Vt E [0, T) and p > v + e.

For A < 1/A1 , and any p > v + c, consider the ratio

ESm (p) Jo e aTEt[max- N(t,T)+l)]Vl < tmp(p,t)]Ae-\tdt

ES (v)oT e- ~e-Atdt
vjeoT e-Te-tdt v _aT v -aT

< T = e + -ae
v 0 e-te-xtdt V vA

Now since a -= 1/f(A) and limxo f(A) -* 0, we obtain that a - o as A - 0.

Also notice that lim_,~ xe - x - 0 and thus 3A 2 > 0 such that for all A < 1/A2

e-T < 1/2 and -e-e < 1/2
v vA

Thus for all < min(;-, !2) we obtain that

ES (p)
Etmp(P) < 1 VP v + 

hence proving that ptmp(A) E [v, v + ). Setting A = 1/ min(;, ~) completes the

proof.

The results derived above can be summarized as following:

The case Pt*p -- v effectively amounts to using a fixed price mechanism, since

no bidding activity will ever occur then; this is optimal for a highly time-sensitive
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A - oA
*A) - a = fi(A),3 = 1/f2 (A) P Pt*m Pa = g() AMP

a=1/g(A) IPtmpP a= 1/fl(A),, = 1/f 2(A) Ptmp-v
C= = l/f,(A), = f2(A) P*p --

Table 3.1: Optimal buyout price in asymptotic regimes

seller facing a relatively small expected number of bidders (i.e. a - 00o, A 0) all

of whom have little time-sensitivity ( - 0). Indeed, a seemingly large number of

auction listings on eBay now feature only a "Buy It Now" option and no "Place Bid"

option, providing anecdotal evidence for the relevance of this case in practice. On

the other extreme, for low a and high A, the optimal buyout price Ptmp = V, which

is equivalent to an auction without a buyout option since the buyout price is never

exercised, i.e. a seller with relatively high market power and low time-sensitivity finds

it beneficial to not use any buyout option at all and only rely on a traditional bidding

mechanism - there are clearly many examples of such sellers on auction sites as well.

These results are thus reminiscent of those obtained by Harris and Raviv (1981),

who study a mechanism design model in which the seller should use an auction when

demand exceeds supply but a posted price otherwise (see also Gallien (2006)). In

our model, the relative values of the seller's and bidders' time sensitivity (a and 3)

and the expected number of bidders A effectively capture the ratio between supply

and demand and the seller's market power, and the hybrid mechanism relying on

both bidding and posted price enabled by the buyout option makes for a continuous,

smoother transition between those two mechanisms.

The case when both a and A are high (a = 1/g(A), A - oc) corresponds to a seller

who faces a high demand but is very time-sensitive. Such a seller could obtain almost

v for the product if he is willing to wait; however his high time-sensitivity means that

he gets almost zero utility from selling the product at time T. He thus offers a buyout

option with a price P which is chosen such that the expected revenue obtained from

the event that the buyout option is exercised by the first bidder is maximized.

Next consider a market environment where demand for the auctioned item is low

but the bidders are highly time-sensitive ( = 1/f2(A), A 0). In this case a bidder
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could obtain the product at v by bidding in the auction; however since P is high the

bidder gains almost zero utility from getting the product at the end of the auction

and thus is willing to exercise the buyout option if the buyout price is lesser than his

valuation (i.e. vtmp(p, t) -- p). A seller with a high time-sensitivity ( = 1/f(A))

gets zero utility from selling the product at time T and thus offers a buyout option

with price P which, as before, maximizes the expected revenue obtained from the

event that the first bidder exercises the buyout option. If instead the seller has low

time-sensitivity (a = f(A)) then he can wait up to the end of the auction to sell the

product and hence finds it optimal to offer a higher buyout price P > P.

One regime not covered above is when a = f(A), f = f 2(A) and A - 0 which

corresponds to a case when both the seller and the bidders have low time-sensitivity

and the bidder arrival rate is small. For this case, it can be shown that, in the limit

A - 0, the seller is indifferent between choosing any buyout price p E [v, v] since all

prices lead to the same utility for the seller.

Approximate optimal buyout price

We next derive an approximate closed-form expression for the optimal temporary

buyout price Ptmp when valuations are uniformly distributed and bidders are impa-

tient, that is - +oo. This limiting case for the bidders' time sensitivity is of

special interest because it may also reflect a form of strong risk aversion, which may

be realistic in some settings - see §2.3 for a related discussion. Concretely, it is char-

acterized by bidders who will always exercise an open buyout option if their valuation

is larger than the buyout price: for those bidders, the more distant and risky prospect

of purchasing the item through the auction, even at a much lower price, is never more

attractive than securing a purchase immediately. Formally, the equilibrium threshold

function now specializes to Vtmp(p,t) = min(p, v), which we can directly substitute

in (3.40). When valuations are uniformly distributed, an explicit expression for the

term Et[max(v, v (t,T)+1)Jvl < p] can be derived (see appendix). As a result, (3.40)

becomes then a concave maximization problem in one variable. As a second approx-

imation, we now ignore the information that the first bidder's valuation is less than
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the threshold when computing the expected auction price conditional on the buy-

out option not being exercised in the first integral of (3.40). Formally, this can be

stated as Et[max(v, v(t,T)+l)lVl < tmp(p, t)] - Et[max(v, (2 tT))] which seems

intuitively a good approximation when the expected number of bidder arrivals AT

is larger than five or six, at which point the relative impact on the expected second

highest valuation that a single one of them is probabilistically smaller becomes neg-

ligible. Substitution in (3.40) and a straightforward calculation yield the following

expression for the seller's approximate discounted revenue:

E[tSp(p)]p(l-F(p))A( - e- (A+)T) +e (p) v- -eT)
E- e- CTF (p) V - 1 + 2mATA + a AT

(3.44)

where F is the cdf of a uniform distribution on [v, v] - the first term in (3.44) cor-

responds to the expected discounted revenue from the exercise of the option, while

the second corresponds to the expected discounted revenue from the basic auction

mechanism. Note that the function defined on [0, +oo) and obtained by substituting

F(p) with P-v in (3.44) is concave, coincides with E[US mp(.)] on [v, v] and achieves its

unique maximum on [0, +oo) at

V(1 e-AT) - 2m(1 - (1 + AT)e - AT)

2 + e2T ( - e-(+a)T)

Consequently, it is easy to show that the buyout price t*p in [v, ] maximizing

E[USmp(p)] on [0, +oo) is given by

v if < v
Ptmp = i v (3.46)

p ifv<P<v_

We have found that in a wide variety of environments the performance of the ap-

proximate optimal buyout price Pt*p characterized by (3.46) is close to that of the

optimal buyout price Pt*mp computed numerically through Monte-Carlo simulation -

the numerical results testing the sub-optimality of the approximate optimal buyout
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price Stmp are provided in Chapter 5.

3.2 Permanent Buyout Option

We assume now that the seller uses a fixed permanent buyout price p. The equilibrium

analysis is provided in §3.2.1, the robustness of the strategy is discussed in §3.2.2 while

the seller's optimization is formulated in §3.2.3.

3.2.1 Outcome Prediction

For any bidder with valuation v arriving at time t and observing then a current

second-highest bid It (see §2.2 for definition), consider the following family P[.] of

threshold strategies:

ul(v, t, It) : Buyout at p immediately if v > v(t, It)

Bid v at time T if v < v(t, It)

where v : [0, T] x [v, ] U {0 -- , v] is a continuous function. Note that the action

of bidding at time T in the definition of P[.] is clearly a theoretical limit, and would

correspond in practice to submitting a bid as close as possible to the end of the

auction with the goal of denying other bidders the opportunity to respond.

In this subsection, we prove the following result which establishes the existence of

a threshold function Vprm such that the symmetric strategy profile P[vprm] constitutes

a Bayesian Nash equilibrium of the permanent buyout price auction game, and also

provides a characterization for prm.

Theorem 4. Consider a maximal solution v(.) of the following functional equation

on [0, T] +oo):

(t) - p = Et [e (T- t) (J t F( ( )) F(X)N(tT)dx) , (3.48)

where the expectation Et is with respect to the number N(t) and epochs t, ..., tN(t)
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of arrivals in [0, t) of a non-homogeneous Poisson process with rate AF(i(r)) for

E [0, t), and number N(t, T) of arrivals in (t,T] of a Poisson process with rate

A. Let v(t,I) be a continuous extension of v(.) to [0, T] x [v, i] U {0} such that

2(t, 0) = (t) and b(t, I) is non-increasing in I for all t, non-decreasing in t for all

I, and define vprm(t, I) = min ((t, I), V). The symmetric strategy profile P[Vprm] is

a Bayesian Nash equilibrium for the online auction game with a permanent buyout

price p.

Denoting by R ([v]) the set of best response strategies to the profile where every

other player follows strategy P[v] we first establish that P[Vprm] e TR (P[vprm]) if and

only if vprm(t, 0) is the solution of the following functional equation:

1 1i=1i(t) -p t [ ( l N(t) F( min(t), )) F() t)] ' ()
where the expectation Et is with respect to the number N(t) and epochs t1,..., tN(t)

of arrivals in [0, t) of a non-homogeneous Poisson process with rate AF((Tr)) for

T E [0, t), and number N(t,T) of arrivals in (t,T] of a Poisson process with rate

A. The most challenging part of the proof then consists of proving the existence of

a solution to (3.49); to do so we establish that a generalization of Schauder's fixed

point theorem applies to an appropriately defined functional space and continuous

mapping on that space.

Consider a bidder A with type (v, t) and information It in an auction where all

other bidders play strategy P7[v], where v: [0, T] x [v, ] U {0} -- , v-] is a continuous

function such that v(t, 0) is non-decreasing in t and v(t, I) is non-increasing in I

for any t. The requirement that v(t, I) be non-decreasing for I fixed is intuitive:

from the auction still running at time t it can be inferred that vi < v(ti, Iti) for all

bidders i with type (vi, ti) observing a current second-highest bid Iti < I upon their

arrival in (0, t). Consequently as t increases with I fixed, the expected final second

highest valuation among all bidders decreases, thus increasing the expected utility

from bidding in the auction relative to exercising the buyout option; this effect is

compounded with the reduced relative discounting of the utility from bidding as t
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increases. The requirement that v(t, I) be non-increasing in I for every t is likewise

easily interpreted: holding t fixed, a higher value of I implies that the expected second

highest bid in the auction is higher, which lowers the expected utility from bidding

relative to exercising the buyout option.

We first derive bidder A's utility if he bids his true valuation at time T. Following

strategy P[v] all other bidders also bid at T and thus I, = 0, Vr E [0, T). Now

bidder A wins the auction if no bidder exercises the buyout option and if every

bidder has a valuation less than bidder A's valuation, i.e. the event {A wins} =

{V, < min (v(r, 0), v) for every bidder (VT, r, O)} where the notation VT indicates the

valuation of a bidder arriving at time r. Also, since the auction is open at t, it can

be inferred that all bidders (v,, T, 0) with r E (0, t))have valuation v, < v(T, 0) and

thus the arrival rate of bidders at any T E (0, t) is AF(v(r, 0)). Then probability that

A wins the auction is

P( tiIN,=l) 1 ti ) = T N(t) F(min(v(ti, 0), v)) N(t,T)

( i i=l , t i =li= H F-; H f F(min(v(t,O),v)),
i=l F ' i=1

(3.50)

where N(t) is a counting process denoting the number of bidder arrivals in (O,t)

in a non-homogeneous Poisson process with arrival rate A(r) = AF(v(r, 0)), Vr E

(0, t); and {ti}(t) are the corresponding arrival epochs. N(t, T) is a counting process

denoting the number of arrivals in (t, T] in a Poisson process with arrival rate A

and ti=lT) are the arrival epochs. The first term of the product in (3.50) is the

probability that the event {vti < min(v(ti, 0), v)lvt, < v(ti, 0)} occurs for all bidders

arriving in (0, t). The second term is the probability that the valuation v of every

bidder arriving in (t, T] satisfies v < min(v(ti, 0), v). Here, and in the remainder of

the paper, we assume that if k = 0 then Hk=l1() = 1.

Conditional on bidder A winning, the distribution of the highest bid, v( 1), among

the other N(t) + N(t, T) bidders arriving at epochs {iiNt) and {Ii}N(tT) is:

N(t) F(min(v(ti, O), x)) N(t,T) F(min(v(tj, O), x))
Fv()lA wins,tiN(1)idN(:T)(X) = Hi= F(min(v(ti, O),v)) j F(min(v(tj,O),v))
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for all x E [0, v]. Using the above distribution function, we have

E[v(1)IA wins, t {,N(t), tiN(t,T) = (1 - F ()lA iN(,) lN(tT) (i ) dx

= v , Fv()A wins,{ti ),N(tT) (x)dlx,

and thus the expected discounted utility from bidding at T for bidder A is

N(t) F(min(v(ti, O), x))
E[Ubid(T)(V, t 0)] = E [e-(T t) ( l ( ((, 0), X))

i=1 F(v(ti, 0))
N(t,T)

x 17 F(min(v(tj,O),x))dx)] (3.51)
j=1

where the expectation on the right hand side is over ItiN(t) nd side is over l T)

The rest of the derivation proceeds as follows: We first show using Lemma 4 that

if bidder A bids in the auction he must do so at time T, and next prove that the

bidder is weakly better off making a decision immediately in Lemma 5. Consequently

we derive, in Lemma 6, the best response strategy R(P[v]) of a bidder when all

other bidders play P[v] and then characterize a threshold function prm such that

P[vprm,] E R(P[vprm]) thus establishing that P[vprm] is an equilibrium strategy.

Lemma 4. E[Ubid()(v,t, 0)] < E[Ubid(T)(V,t,O)] for all t < < T.

Proof. This result is a direct implication of the assumption that prm(t, It) is non-

increasing in It and admits the following justification: while bidding earlier does not

increase the utility of a bidder it reveals information about his valuation to other

bidders, who can use it this information their advantage. More formally suppose that

the bidder A bids immediately, i.e. r = t while all other bidders, following strategy

P[v], bid at T and hence I, = v, Vw E (t, T). Then the probability that the bidder

A wins, from (3.50), is

N(t) F(min(vrm(ti, O) v)) N(t,T)

Pr (A wins {t}' {^ (t =T)) = F (minpr(ti, O) ) F(min(vpr(ti, v),v)),
i=1 1prm(ti,) i=
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and the corresponding expected utility from bidding for bidder A is:

E[Ubid(t)(v, t, O)] = E e-3(T-t) ( j (m(prm(t 0) X))
=- F(vprm(ti,-))

N(t,T)

X t- F(min(vprm(tj,v),x))dx)] (3.52)
j=1

Since threshold v(t, I) is non-increasing in I, we have

F(min(vpm(tj, v), x)) < F(min(vprm(tj,0),x)) Vj = 1,2,..,N(t,T) (3.53)

Comparing (3.52) with (3.51) using (3.53) we obtain

E[Ubid(t) (V, t, 0)] < E[Ubid(T) (v, t, 0)]

If the first bidder bids at some t < T < T then I, = v, Vw E (T, T) and then the

above analysis can be repeated to obtain

E[Uid(,) (v, t, 0) < E[Ubid(T)(V t 0)]

More generally if bidder A places any bid in the auction (not necessarily his true

valuation) at time ( < T) then I, > 0 and the threshold valuation in (, T) is lower

than if A bids at time T. Thus the probability that the buyout option is exercised

by a bidder in (, T) is higher, and since bidder A gets zero utility in such an event

he will not bid in the auction at any time r < T. Moreover if a bidder is bidding at

time T then his weakly dominant strategy is to bid his true valuation.

We next establish that bidder A is weakly better off making a decision immediately

upon his arrival, i.e. he instantaneously decides either to exercise the buyout option

immediately or place a bid in the auction at time T.

Lemma 5. When facing bidders who follow strategy PS, bidder A is weakly better
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off making a decision immediately i.e.

E[Uwait(t,T)(v, t, 0)] < max {E[UbU(t)(v, t, 0)], E[Uid(T)(v, t, O)]}

Proof. Here we give an intuitive argument: a formal proof can be constructed on the

lines of the proof of Lemma 1. We have already proven in Lemma 4 that if a bidder

decides to bid in the auction he must do so at time T and thus his expected utility

from bidding is independent of when he makes the decision to bid. Indeed if we let

E[Uid(T) (v, t, 0)] denote the utility of a bidder of type (v, t, 0) who waits up to time

r(r > t) and then decides to place a bid in the auction at time T, then it can shown

that

E[U(T)((v, t, 0)] = E[Ud(T)(, t, 0)]

where recall that E[Ubid(T) (V, t, 0)] denotes the utility of a bidder (v, t, 0) who decides

immediately to place a bid at time T.

Additionally while the buyout price remains constant throughout the auction,

waiting decreases the bidder's utility from exercising the buyout option because of

his time-sensitivity. Thus, if a bidder waits before making a decision, his expected

utility from bidding remains constant, but the utility from exercising the buying

option decreases and so he is weakly better off making a decision immediately. O

Thus we have shown, in Lemma 4 and Lemma 5, that the bidder A must choose,

at time t, one of the two actions {bid(T), buy(t)}. We now show that the best response

strategy R(P[v]) to p[v] is indeed a threshold strategy.

Lemma 6. The best response strategy to 'P[v] is

R(P [V]) (V, t, 0)' :Buyout at p immediately if v > min (,v1](t, 0), v)

Bid v at time T if v < min ( (t, 0), v)

where /[ (t, O) is such that

E[Ubuy(t)(i[,](t, O), t, 0)] = E[Ubid(T)([v]J(t, O), t, 0)] (3.54)
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Notice that Lemma 6 only specifies the equilibrium path behavior of bidders. The

best response strategy is completely specified by choosing a continuous threshold

function i[,I (t, I) which is non-increasing in I for all t and such that 5[] (t, 0) satisfies

(3.54).

Proof. The derivative of the expected utility from bidding E[Ubid(T)(v, t, 0)] with re-

spect to v is

a E[Ubid(T)(Vt, t, 0)] =
Ov

ELO- (t0) V)) Fmin(v(j, 0), v))dx) (3.55)
F1F(v(ti, 0)) II 

For every realization of N(t), N(t,T), {t}N(t) and tji=ltT), the term inside the ex-

pectation on the right hand side of (3.55) is non-negative and less than 1. Thus

0 < vE[Ubid(T)(v,t, 0)] < 1 for all v E [, +oo) and t E (0,T).

The utility from exercising the buyout option E[Uby(t)(v, t, 0)] v - p and thus

0 < a E[Ubid(T)(v,t,O)] < 1 = E[Uu(t)(v,t, 0)]. (3.56)

Assuming, without loss of generality, that p > v we get E[Uby(t)(v, t, 0)] = v-p <

0 = E[Ubid(T)(v, t, 0)]. This together with (3.56) implies that there exists a unique

valuation v[,](t, 0) > v such that

E[Ubwy(t) (f[] (t, 0), t, 0)] = E[Ubid(T)([] (t, 0), t, 0)], (3.57)

where the notation v[ (t, 0) indicates the dependence of this valuation on strategy

P[v] and the fact that this corresponds to the case when I = 0.

Thus a bidder (v, t, 0) with v < [ld(t, 0) bids in the auction at time T since

E[Ubuy(t)(v, t, 0)] < E[Ubid(T)(v, t, 0)]. On the other hand if v > v[,(t, 0) then

E[Uby()(v, t, 0)] > E[Ubid(T)(V, t, 0)]
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and thus it is profitable for bidder A to exercise the buyout option.

Next we characterize a continuous threshold function vprm(t, I) such that vprm (t, 0)

is non-decreasing in t, vpr,,(t, I) is non-increasing in I for all t and is such that

'P[Vprm] E R(P[vprm]) (3.58)

Now notice that R(P[vp,,,]) is also a threshold strategy and indeed (3.58) holds, if

vpm(t, I) = min (i[vprm](t, I), v) for all t, I.

For I = 0 substituting vprm(t,0) = min ([prm](t,0), ) in (3.54) implies that

[vprml(t, 0) = v(t) where v(t) must satisfy

~(t) N(t) X~min(~(ti),2)) N(t,T)
~(t)-p~ = EtX)(;tV(v ][I F(min((tj),x))dx)] (3.59)

i=1 j l(ti)) I=

for all t E [0, T].

For I > 0, choosing any v[,prm] (t, I), which is non-increasing in I for all t, suffices

and so we set 5[vprm](t, I) = vprm(t, I).

We thus obtain that if a threshold function prm,(t, I) is non-increasing in I for

all t and prm(t, 0) = min ((t), v) is non-decreasing in t where v(.) is the solution of

(3.59) then the corresponding strategy P[vpm] defines an equilibrium. We next prove

the existence of vprm.

Firstly consider the following equation obtained by substituting F(min(5(tj), x))

with F(x) in (3.59) for all bidders arriving in the interval (t, T]:

v(t) - p = Et [e-(T-t) ( t) ( t) F(min(V(ti), x)) N(T) (3.60)6t p= l F(t)F d] (3.60)
i=1 (j=i(t 31

Notice that the right hand side of (3.60) at any time t depends only on [(7T)]TE[o,t)

while the right hand side of (3.59) is the function of [(T)]e[o,T]. However if the

solution v(t) to (3.60) is non-decreasing in t then min(5(tij), x) = x for all x E [, v(t)],

tj E (t, T] and thus v(t) also solves (3.59). We next show that (3.59) has a solution.
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Lemma 7. For any E > 0, there exists a solution to (3.60) in the interval [0, T - e].

Proof. Define

G()(t) = Et [e(t) ) F(min(( t),x)) Fmin t ) N(t,T) dx)
j=l

Using this notation, (3.60) becomes

+(t) = G(q)(t), (3.61)

which we seek to solve on the interval [0, T - e].

To prove the existence of a solution of the above equation, we use the following

theorem (Theorem 4.1 of Smart (1974)) which is a slight generalization of Schauder's

fixed point theorem, Schauder (1930).

Theorem 5 (Smart (1974)). Let M be a non-empty convex subset of a normed

space 13. Let T be a continuous mapping of M into a compact set KA C M. Then T

has a fixed point.

Using the above theorem, we show that (3.61) has a solution on the interval

[0, T - e] for any E > 0. For M > 0 let F be the set of continuous functions with

domain [0, T -e] and range [v, q] (q > v) that satisfy the following Lipschitz condition

I3(t') - (t) < Mjt' - t; t', t E [0, T - E] (3.62)

Let K = {G(¢)IJ E F}, i.e. G maps the set F to IC. We first prove the following

lemma.

Lemma 8. If q > P-e-6v and M > then KC C F.

Proof. In Appendix. []

Thus if we choose q > -eO-s- and M > e- (2A+2lq the operator G maps to

C F. We next show that the set KC is compact in C where C is the space of

continuous functions with domain [0, T - E].
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Lemma 9. K is compact in C.

Proof. Firstly notice that since q > pP--O- it follows from Lemma 8 that G(q)(t) < q

for all 0 E and t E [O, T -].

It follows from (A.22) (in the proof of Lemma 8) that for any > 0 and all

It- t' < /M

IG(4b)(t') - G(0)(t)I < MIt'- t < V E F; t, t' E [0, T - E], (3.63)

proving that the set K = {G(q)l E F} is equicontinuous on the interval [0, T - ]

(§7.22 in Rudin (1976)). The compactness of set KC then follows from the Arzelh-Ascoli

Theorem (Theorem 3 (3.I) in Kantorovich and Ailov (1964)). O

We next show that the operator G is continuous on the set F.

Lemma 10. G is continuous on the set F.

Proof. In Appendix. []

Thus G is a continuous mapping of Y (which is non-empty and convex) into a

compact set K C F and hence, by Theorem 5, G has a fixed point, i.e. there exists

a solution to the equation (3.61) on the interval [0, T - e]. [

Since Lemma 7 holds for any E > 0, it proves that a solution to (3.60) exists on

the interval [0, T). We next show that v(t) satisfying (3.60) on the interval [0, T), is

non-decreasing in t. For that we first need the following result. Let E[H(v, t)] be the

right hand side of (3.60), i.e.

N(t[t) [) F(min(O(ti), x)) N F()d)] (3.64)

E[H(v, Q = Et le- O(T-t) v )) ]J F (x)dx)] (.4
i=1 F ( (ti)) j=1

Lemma 11. Et[H(v,t')] > Et[H(v,t)] fort' > t; t,t' E [0, T).

Proof. Let t' > t for some t, t' E [0, T). Suppose that there are k bidders in (0, t)

and I bidders in (t,T] and they arrive at time 0 < tl < t2 < .. < tk < t and
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t < tl < t2 < .. < tl < T respectively. Suppose also that j of the 1 bidders (O < j < I)

arrive in the interval (t, t').

Then from (3.64), we have

E[H(v, t')Ik, l,j,{t~})=l , {ti}=l] = e-(T-t')( ( [ I =lF(min(i(ti), x))

l= F(min((ti))) I F(x)dx)
Hi=iF(S(ti)) i +

For this arrival stream of bidders, H(v, t) is:

}i=,}i=1]e-P(T) =l F (min(S(ti)FX))I )
E[H(v, t)l k, , {tij, k 1 e fTt) JVH =1 (t)) (xd

Sin F_ Hk= F((ti)) i=1 ))

Since F(min((ti),x)) > F(x) fori = 1, j and e- (T- t ) > e- ,(T -t), we have

E[H(v, t')lk, I, j, kti)kl jlj=l > E[H(v, t)lk, 1, t{ti}=, {tj}ji=1] (3.65)

The inequality (3.65) is true for any realization of the random bidder arrival

process and, hence, the inequality holds if we take the expectation over the arrival

process. Thus, we have

E[H(v, t')] > E[H(v, t)]

We next use Lemma 11 to prove v(t) is non-decreasing in t.

Lemma 12. The solution v(t) of (3.60) is non-decreasing in t.

Proof. By definition of D(t), we have

v(t) - p = E [H( (t), t)] (3.66)

Assume for contradiction that (t) < (t - dt) for some t E [0, T) and dt > 0 (and
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such that t - dt E [0, T)). Then there exists dv > 0, such that

v(t) = (t - dt) - dv (3.67)

Using Lemma 11, we have

E[H((t), t)] > E[H((t), t - dt)] (3.68)

Substituting (3.67) in (3.66) and using (3.68), we get

v(t - dt) - dv - p = E[H((t - dt) - dv, t)] (3.69)

> E[H((t - dt) - dv, t - dt)]

By the definition of O(t - dt), we have

d(t - dt) - p = E[H((t - dt), t - dt)] (3.70)

Using (3.70) in (3.69), we get

E[H(O(t - dt), t - dt)] - E[H(O(t - dt) - dv, t- dt)] > dv

However, by arguments similar to those in the proof of Lemma 6, it can be shown

that E[H(v, t)] < 1 for t E [0, T), which contradicts the above result. Hence v(t) is

non-decreasing in t.

Thus we have shown that (t), satisfying (3.60) on the interval [0,T), is non-

decreasing in t. Next, consider any function ,,prm(t, I) which is non-increasing in I

and satisfies vprm(t, 0) = min ((t), v) where v(t) is the solution of (3.59) (and (3.60))

on the interval [0, T). Then Lemma 12 shows that vpr,,(t, 0) is non-decreasing in t, and

by Lemma 6 the corresponding strategy P[vprm] satisfies P[v,,pm] E R(P[V,,pm]), thus

defining a Bayesian Nash equilibrium for an online auction game with a permanent
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buyout price p. This proves Theorem 4.

Note that Theorem 4 only provides a stringent characterization of the equilibrium

threshold function value Vprm(t, I) for I = 0. This is because when all bidders fol-

low strategy P[v] then on the equilibrium path It = 0 for all t in [0, T), since all

bidders not exercising the buyout option only bid then at time T. Indeed, equation

(3.48) specifies quantitatively the valuation for which an incoming bidder should be

indifferent between exercising the option and submitting a regular bid, accounting

for the information about the valuations of potential competing bidders provided

by the presence of an open buyout option. Other values of vprm(t, I) correspond

to off-equilibrium path behavior, and are only required to satisfy the monotonicity

properties discussed above. For the special case where valuations follow a uniform

distribution, the following proposition shows that the characterization of the equi-

librium threshold function stated in Theorem 4 specializes to a nonlinear first-order

differential equation:

Proposition 2. When bidder valuations follow a uniform distribution with cdf F

on [, V], the threshold function vlprm characterizing the Bayesian Nash equilibrium

described in Theorem 4 satisfies Vprm(t, 0) = min ((t), v) where (t) is the unique

solution on [0, T] of the differential equation

di(t) ( + (1 - F((t))))((t)- p) (3.71)
dt 1 (a+>(1-F (v,(t)))) (T-t)

with initial value tmp(0) as defined in (3.21).

Proof. In Appendix. O

3.2.2 Equilibrium Refinements

We next discuss the robustness of the outcome prediction provided by the equilib-

rium P[Vprm] characterized by Theorem 4. An important observation is that for the

permanent buyout price auction game there exist equilibrium strategies other than
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the ones characterized by strategy P[v]. Indeed for any threshold function v which

satisfies the conditions of Theorem 3, and is such that v(t, I) > p, Vt, I, it can be

shown that a strategy

Buyout at p immediately if v > v(t, It)

P[v](v,t, It): Bid v at time T if < v < (t, It) (3.72)

Bid v at any time in [t, T] if v < p

which is same as P[v] except that a bidder with valuation v < p bids in the auction

at any time subsequent to his arrival (as opposed to bidding at time T as imposed

by P[v]), also constitutes an equilibrium. Notice that a bidder of type (v, t, I), with

utility function as defined in §3.1, who has a valuation v < p gets negative utility from

exercising the buyout option for any t and I thus justifying the condition v(t, I) >

p, Vt, I.

As in the temporary case, we next argue that unlike P[.] the equilibria specified by

strategy P [.] are not robust to some specific payoff perturbations. Indeed suppose that

with a small probability an arriving bidder is cautious meaning that his participation

behavior is characterized by a threshold function vP(t, I) which is such that vP(t, 0) =

min ((t), v) and vP(t, I) = v, VI > 0, t. Such a bidder behaves like a normal bidder

(with utility function as in §3.1) when no bids are placed in the auction, i.e. when

I = 0; however once there is any bidding activity he exercises the buyout option

immediately irrespective of the buyout price. Analysis similar to the proof of Theorem

3 in the temporary case shows that in the presence of such bidders the permanent

buyout price auction game does not have any Bayesian Nash equilibrium where normal

bidders play P[.]; indeed this payoff perturbation filters out any equilibrium strategy

where a bid is placed before time T. However, a strategy where the normal bidders

play P[Vp,rm] still constitutes an equilibrium of the perturbed game and thus the

strategies characterized in Theorem 4 are the only equilibria that survive the above

payoff perturbation.

Unlike the temporary analysis, the concept of trembling-hand perfection does not
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filter out any equilibria in the permanent case and so that analysis is omitted.

3.2.3 Seller's Optimization Problem

As in §3.1.3 we now turn to the revenue maximization problem faced by the seller.

Specifically, we seek to determine the permanent buyout price p maximizing the

seller's expected discounted revenue E[UpSm(p)] when all bidders follow strategy P[,,,prm]

defined by (3.47) and Theorem 4.

We now make the dependence of prm on p explicit and denote by vprm(P, t) the

value of the threshold function on the equilibrium path (i.e. the variable It = 0 is omit-

ted). In equilibrium, the arrivals of bidders who will exercise the buyout option follow

a non-homogeneous Poisson process with instantaneous rate (1 -F (vprm (p, t))), and

we denote its counting measure by Nby. Likewise, the arrivals of bidders who will

wait until the end of the auction to submit a bid follow a non-homogeneous Poisson

process with instantaneous rate AF(vprm(p, t)), and we denote its counting measure

by Nbid. As a result, the probability that the buyout option will not be exercised is

P(Nuy(T) = 0) = exp(-A T (1 - F(vprm(p, t)))dt), and the problem can be stated

as

maxE[Usm(p)] eAtpA(l - F(vprm(p, t)))e-Jo (1F( p(P ')))dt

+ e-A loT (1-F(iv, V)'v • Vprm(tp,) Vimax(v, 

(3.73)

where the expectation E is with respect to the number Nbid(T) and epochs tl, ..., tNbid(T)

of arrivals in [0, T] of the second Poisson process defined above, and second highest

value (2) among Vl,..,N(T) (by convention v(2) = (2) = 0), where the i-thVNbid(T) V0 = VT

valuation vi follows a distribution with cdf Fi(v) = F(v)/F(vpm(p, ti)). The first

term in (3.73) is equal to the seller's expected discounted revenue from the option,

while the second term is the expected discounted revenue from regular bidding, which

only occurs if the buyout option is not exercised.

The challenge of finding analytically the optimal permanent buyout price Prm
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solving (3.73) seems even greater than with a temporary option. In the special case

where valuations are uniformly distributed however, the seller's expected discounted

revenue E[US,m(p)] corresponding to a given buyout price p can be easily estimated

through Monte-Carlo simulation by solving the differential equation (3.71) character-

izing ,,prm using standard numerical methods, then generating many random bidder

arrival streams {(vl, tl), (v2, t2), ...}. A line search can then be performed to estimate

the value Prm maximizing E[USrm(p)], which is the method we follow in the numerical

experiments described in §5.1.

Similar to the temporary case, we next analyze the solution of the optimization

problem (3.73) in some limiting regimes of a, ,3 and A. It turns out that except the

case when a = 1/fi(-), A - o, in all other regimes the asymptotic optimal price

of a permanent buyout option is same as the corresponding price of the temporary

option (shown in Table 3.1) so that the interpretation provided for t*mp in §3.1.3

also applies here. When a = /fi(), A --, cc the optimal permanent buyout price

depends on limx,r a/A. Recall that the function fi is such that limx-o fi (x) -, 0;

if in addition it satisfies the condition that limA-o i = limAx,oo 1/fi() = k then it

can be shown be shown that the optimal buyout price Pprm - p*(k) where p*(k) is defined

as the maximizer (assumed unique) of P( on the interval [, v]. Notice that

limk-o p* (k) - , i.e. in a market environment where the arrival rate A approaches

infinity but the seller's sensitivity a goes to infinity faster than A, the seller finds

it optimal to choose a buyout price which maximizes his expected revenue from the

event that the first bidder exercises the buyout option (same as that for a temporary

option). In this case, because the seller is highly time-sensitive he obtains negligible

utility from waiting for a subsequent bidder, and so maximizes the revenue he can

obtain from the first bidder. For a less time-sensitive seller where fi is such that

k - 0, the optimal buyout price p*(k) --* . In this case because A goes to infinity

faster than a, the seller is willing to wait for a small period of time, and since a lot

of bidders arrive in this interval the seller can charge a much higher buyout price.

For comparison purposes, we now consider the special case of problem (3.73)

when valuations are uniformly distributed and participating bidders are impatient,
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i.e. - +oo. Their buyout threshold valuation vpm(p,t) = min(p,v), and the

seller's revenue maximization problem (3.73) can then be expressed as the following

max pA( - F(p)) (1 e - aT - : T(1- F (p))
pE[,v] + (1 - F(p))

+ e-aT-T(1-F(p)) (p( - e-AT) - 2 AT (1 AT - ATAT)) (3.74)

where F(p) = pv, Vp e [v,]. The optimization problem (3.74) is a nonlinear

program in one variable which is straightforward to solve numerically.
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Chapter 4

Dynamic Buyout Prices

In this chapter, we study the mechanism obtained when the buyout price, both tem-

porary (in §4.1 and permanent (in 4.2), is no longer constant but instead varies over

the length of the auction according to a pre-announced trajectory [P(t)]tl[o T] . While

we are not aware of any actual auction site currently implementing such a feature,

our goal is to develop a theoretical analysis providing some prediction for what the

outcome of such mechanism is likely to be, and bound the maximum expected revenue

achievable by the seller when setting this buyout price trajectory optimally.

4.1 Temporary Buyout Option

For a restricted set of buyout price trajectories we derive equilibrium strategies for

a temporary buyout price auction game in §4.1.1 and discuss the associated seller's

problem of maximizing expected discounted by optimally choosing the buyout price

trajectory in §4.1.2.

4.1.1 Outcome Prediction

In an auction with a temporary buyout price following a dynamic trajectory [p(t)]te[O,T]

consider the extension of strategy T[v] obtained for any function v: [0, T] --+ [, v]
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by substituting p(t) with p in the first line of (3.1):

Buyout at p(t) immediately if buyout option available and v > v(t)

T[v](v, t) : Bid v immediately if buyout option available and v < v(t);

Bid v at any time in [t, T] otherwise

(4.1)

for notational simplicity we will still refer to the resulting strategy as T[v]. The

following result establishes that any non-decreasing continuous threshold function v

can be supported by some price trajectory in equilibrium:

Theorem 6. For any non-decreasing continuous function v : [0, T] -~ [v, ], define

function p: [0, T] - [v, v] as

V(t)

p(t) = v(t) - e- ( +P)(T- t) e(T-t)F(X)dx. (4.2)

The symmetric strategy profile T[v] is then a Bayesian Nash equilibrium for the auc-

tion with temporary buyout price trajectory [p(t)]te[oT].

Theorem 6 can be interpreted as following: any threshold function v that is con-

tinuous and non-decreasing with time corresponds to a buyout price trajectory such

that the strategy profile T[v] forms an equilibrium. In fact, the negative of the sec-

ond term in the right-hand side of (4.2) represents the expected utility that a bidder

arriving at time t and having a valuation equal to the threshold would obtain by

submitting a regular bid (as opposed to exercising the buyout option). Therefore,

(4.2) expresses that the buyout price p(t) it defines is such that a bidder arriving

at time t with a valuation equal to the threshold v(t) would be indifferent between

submitting a regular bid and exercising the buyout option (provided it is still open)

at that price. However, setting the buyout price p(t) according to (4.2) is only a

necessary condition in general, and would not eliminate alone the possibility that a

bidder could benefit from waiting beyond his arrival before choosing between these

two options - this could occur for example if the buyout price is known to substan-

tially decrease in the future, and would give rise to a competitive optimal stopping

80



situation in which strategy T[v] would not form an equilibrium. Theorem 6 actually

establishes that in a temporary buyout price auction no rational bidder will ever find

such wait to be more profitable a priori than acting immediately when the target

valuation threshold is non-decreasing over time. Note that this does not imply that

the buyout price itself is non-decreasing - in fact, for a constant valuation threshold

v(t) = E [v, v], which satisfies the conditions of Theorem 6, the price trajectory

defined by (4.2) is decreasing. Only, in the incoming bidders' assessment it does not

decrease fast enough for the possible utility increase derived from waiting to strictly

overcome time discounting and the risk associated with the arrival of another bidder

while the option is still open.

The result in Theorem 6 can be proven as following: Consider any bidder, say

A, with type (v,t). Assuming other bidders play fT[v] with any continuous non-

decreasing threshold function v, we show that A's best response strategy is to himself

play T[v] if

p(t) = v(t) - E[Ubid(t)(v(t), t) Nt = 0]

= (t) - e-(+)(T - t) v eA(T-t)F(x)dx

for all t E [0, T]. This proves that T[v] is a Bayesian Nash equilibrium for the auction

with temporary buyout price trajectory [P(t)]t[o,T] defined above.

If A is not the first bidder, the first bidder (following strategy T[v]) would have

either bid in the auction or exercised the buyout option immediately and hence the

buyout option is not available to bidder A. In that case, the auction progresses as

a standard second-price auction and A's weakly dominant strategy is to bid his true

valuation.

If A is the first bidder and the buyout option is available to him then he can either

act immediately - exercise the buyout option or place a bid - or wait in the auction.

The following lemma derives a condition that the threshold function v must satisfy

to ensure that the first bidder is weakly better off immediately.

Lemma 13. When other bidders follow strategy T[v] in an auction with a temporary
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dynamic buyout price, the first bidder is weakly better off acting immediately i.e. the

utility from acting immediately is at least as much as from waiting, if and only if the

threshold valuation v(t) is non-decreasing in t for all t E [0, T).

Proof. Suppose the first bidder is of type (v, t). If the bidder waits up to time r(r > t),

his expected utility, using the notation in the proof of Theorem 1, is

E [Uait(tv, t)(Vt)IN = 0 = -(T-t)(max {Bl(v, ),v -p(r)} P(C)

+ E[Ubid(T)(v, r)Nt = 0, £] P()) (4.3)

Then using (3.15), we get

E[Uwait(t,.)(v, t) INt = 0]

< e(T-t) (max {v- p() -E[Ubid(r)(VTr)N = 0],O0} P(£)) + Bl(v, t)

(4.4)

Now the first bidder of type (v, t) makes a decision immediately if he cannot gain

by waiting, i.e. if

max{v - p(t), Bl(v, t)} > E[Uwait(t,r)(v, t)INt = 0] Vr > t (4.5)

Indeed for the result of the lemma to hold in general, this condition must be true for

all v E [v, i] and t E [0, T]. Thus, we enforce the following constraint, for all v E [, v];

t, [0, T] and r > t

max{v - p(t), Bl(v, t)}

e-3(T-t) (max{v -p(T)-E[Ubid()(v,T)lNT = 0],0O} P(&)) + Bl(v,t)
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which can be rewritten as

max {v-P(t) - E[Ubid(t)(v, t)lNt = 0], 0}

> e-(T-t)(max{v-p(T) -E[Ubid()(v,r)INT 0],0}P()) (4.6)

where by definition Bi(v, t) = E[Ubid(t)(v, t)INt = 0]. By (4.4), the constraint (4.6)

implies the condition (4.5) and thus if (4.6) holds then the first bidder is weakly better

off acting immediately.

For an arbitrary t and T(r > t), consider the following two cases:

1. v < (t) : In this case bidding is more attractive to the first bidder at time t,

i.e. we have v - p(t) - E[Ubid(t)(v, t)INt = 0] < 0. Thus the constraint (4.6)

becomes

O = max {v - p(t) - E[Ubid(t)(v, t) INt = 0], 0}

> e-(T-t) (max v -p(r) - E[Ubid(T)(v, ) INT = 0], } P ())

which holds if

v - p(T) - E[Ubid(T)(v, r)IN, = 0] < 0 Vv < v(t) (4.7)

Now notice that v - p(r) - E[Ubid(7)(v, r)IN = 0] is increasing in valuation v

since

a-v - p(r) - E[Ubid()(v, T)IN = 0] = 1 - e(A(1- F(v))+)(T -r ) > 0

and thus it is sufficient to impose the condition (4.7) at v = v(t). This gives

v(t) - p(r) - E[Ubid(7)(V(t), T)N,T = 0] < 0

Substituting v(t) = p(t) + E[Ubid(t)(v(t), t)INt = 0], the condition that the first

bidder must be better off acting immediately than at time T > t can be re-
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written as

p(T) - p(t) > E[Ubid(t)( (t), t) Nt = 0] - E[Ubid()((t), 7)I N = 0] (4.8)

2. v > v(t): In this case v -p(t) - E[Ubid(t)(v, t)lNt = 0] > 0. Thus (4.6) becomes

V -p(t)-E[Ubid(t)(V, t) I Nt = 0 > (-(T )P(£) (v-P(T)-E[Ubid(r)(V T) N = ])

for all v > v(t). Using the fact that P(£), the probability of no arrival in

the interval (t, T), is e - x ( ' - t) the above condition can be expressed as, for all

V > V(t),

p(r) - e(XA+)(T-t)p(t) > e(A+O)(-t )E[Ubid(t)(v,t) Nt = ] - E[Ubid(r)(v, ) INr= 0]

+ v ( 1- e(A+ )( - t) )

which is equivalent to

p(T) - e(A+O)(7-t)p(t)

> sup (e(t+)(r-t)E[Ubid(t)
v>v(t)

(V, t)lNt =0] - E[Ubid(,)(, T)IN = 0]

+ v(1 -e(+)-))
=e(A 3 )(Tt)E[UBid(V(t), t)] - E[UBid(V(t), T)] + V(t)(l _ e(1+O)(7 t)) (4.9)

where the equality follows from the fact that the supremum of the above ex-
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pression occurs at v = v(t). To see this notice that for all v E [, v]

'v (eA+3) (t)E[Ubid(t) (V, t)Nt = 0] -E[Ubid()(vr)NT = 01 + v(1 - e(A+O)(Tt)))

= e -( A+O)(T- r) (eA(T- t)F(v) _ eA(T- 7)F(V)) + 1 - e(A+)(T- t)

= e-(A+P)(T-r)eA(T-T)F(v) (eA(r - t)F(v) _ 1) + 1 - e(A+ )(r-t)

< (e(+,3)(-t) - 1) (e-(A(1-F(v))+)(T- ) - 1)

<0

where the first inequality follows since AF(v) < A + P.

Substituting v(t) = p(t) + E[Ubid(t)((t),t)lNt = O] in (4.9) we get

p() - p(t) > E[Ubid(t)(v(t), t)INt = 0] - E[Ubid(T)((t), 7)IN = 0]

which is same as the condition (4.8) obtained in Case 1.

Thus first bidder is weakly better off acting immediately if for all t, T E [0, T], T > t

p(r) - p(t) > E[Ubid(t)(v(t), t)INt = 0] - E[Ubid(T)( (t), 7)INr = 0] (4.10)

Substituting p(t) = v(t) - E[Ubid(t)(v(t), t)lNt = 0] in (4.10) gives the condition

v(r) - w(t) - E[Ubid()(v(T), )IN, = 0] + E[Ubid(,)(V(t), )N = 0] > 0 (4.11)

for all T, t E [0, T], r > t. By setting r = t + At (At > 0) we get that (4.11) holds if

and only if for all t E [0, T)

lim (v(t + At)- (t)) (1 -a E[Ubid(t+At)(v, t + At)lt+At = 0 (t))av

It can be easily shown that E[UBid(v, t) INt = 0] ()1, v [, +oo), t [T)

and thus (4.12) holds if and only if v(.) is non-decreasing in t for all t E [0, T).

We have thus shown that if v(t) is non-decreasing in t then the first bidder does
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not gain by waiting provided the other bidders play the strategy T[v]. We now prove

the other direction, i.e. if the first bidder is weakly better off acting immediately then

the threshold valuation v(t) is non-decreasing in t.

Assume, for contradiction, that v(t) is not non-decreasing in t and indeed there

exists an interval [tl, t2] C [0, T] such that

v(t) < v(tl) Vt E (t l, t2] (4.13)

We now show that if (4.13) holds then there exists a case when the first bidder is

strictly better off waiting in the auction. Indeed suppose that the first bidder, say A,

with type (v(tl), t) waits up to time r = t + e (where t < T < t2). Then his utility

from the auction, as derived in (3.9), is

E[Uwait(tl,r) (V(tl), t)lNtl = 0]

= e-(T-t) ((max {Bl(v(tl), r), v(ti) - p(Tr)}P() + E[Ubid(r)(v(tl), ) Nt = 0, EP( ))

(4.14)

where, recall that the event = {N(tl, r) = 0 and £ denotes the complimentary

event.

If the event E occurs then the buyout option is still available at time r. Further-

more since v(tl) > v(r), i.e. v(tl) - p(r) > B(v(tl),7r), bidder A will choose to

exercise the buyout option at time r.

Next, by defining 5 as the event that the first bidder, say B, arriving in (tl, r)

with type (B, tB) (where tB E (tl, r)) has valuation V(tB) < VB < v(tl), (4.14) can

be rewritten as

E[Uwait(tl,r)((tl), t)lNt = 0]

=e - (r
T

- tl) ((v(tl)- p(r)) P(£) + E[Ubid()(V(tl), 7)INt, = , g] . P(gIE) P(£)

+- E[Ubid(r)(v(t1 ), T)lNt = 0£,,] P(61E). P(£))

(4.15)
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where g denotes the complimentary event.

Bidder A's utility from the auction if he acts immediately is Bi(v(ti), tl) which

can be rewritten as:

B l((tl), tl)

= E[Ubid(tj)(V(tl),tl)lNt = 0, £]P(£) + E[Ubid(ti)(V(tl),tl)lNt = , £, ]P(91)P(g)

+ E[Ubid(tl)(V(tl), tl) Nt = , g, g]P(6 I)P(g) (4.16)

Let A denote the difference in utility of bidder A if he waits up to time r as opposed

to acting immediately at tl, i.e. A = E[Uwait(tl,)(v(tl),tl) Ntl = 0] - BI(v(tl),tl),

then subtracting (4.16) from (4.15) we get, using (3.13) and (3.14)

A = (e- (Tt)(v(tl)- p()) - E[Ubid(tl)(V(tl), tl)lNtl = 0,]) P(E)

-E[Ubid(t1)(v(tl), tl)lNtl = 0, £, g] P(g1E) P(E) (4.17)

Now substituting p(T) = v(T) - E[Ubid(Tr)(V(T), T) N- = 0], the first term of (4.17)

becomes:

e- B(r- t l) (v(tl) - p(r)) - E[Ubid(tl)(V(tl), tl)INt, = 0, ]

= e -(r-ti)(v(ti) - v(7)) + e-1(r-tl)E[Ubid(T)(V(T), 7T)INT = 0]

- E[Ubid(t)(V(tl), tl)lNt = 0,E]

= e (rt1) (v(ti) - v(T) + E[Ubid()(v(T), T)NT = 0] -E[(Ubid()(V(tl), T)IN, = 0])

>0 (4.18)

where the second equality follows since (3.13) and (3.8) imply that

E[Ubid(t)((tl),tl)INt = 0, ] = E[Ubid(T)((tl),tl) Nr = 0]

= e -(-tl)E[Ubid(T) (V(tl), T) NT = 0]

The inequality in (4.18) follows since v - E[Ubid(T)(v, T)lNr = 0] is increasing in v
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for all r and v(tl) > v(r). Now since P(£) = 1 - Ac + o(c) and P(E) = Ae + o(c), we

obtain that there exists an > 0 such that A > 0. This implies that

A = E[Uwait(t,,)(v(tl), tl)lNt = 0] - Bl(v(tl),t l ) > 0

where r = t + e. Thus bidder A is strictly better off waiting for c > 0 units of time

which is a contradiction, thus proving that if the first bidder is weakly better off

acting immediately then the threshold valuation v(t) is non-decreasing in t. [I

Since v(t) is assumed to be non-decreasing in t, the above lemma implies that bid-

der A will either exercise the buyout option immediately or place a bid in the auction

immediately. Now notice that the buyout price p(t) = v(t) - E[Ubid(T)((t), t)lNt = 0]

is such that

Uiv(t)(v(t), t) = E[Ubid(t)(v(t), t)lNt = 0] (4.19)

Additionally, as in the static buyout price case, the excess utility function

6(v, p(t), t) = v -p(t) - E[Ubid(t)(v, t) Nt = 0]

is increasing in valuation v. Combining this with (4.19), bidder A's best response

strategy is to exercise the buyout option immediately if v > v(t) and bid his true

valuation immediately otherwise.

Hence, A's best response strategy to [v] is to himself play T[v] and since bidder

A is arbitrarily chosen, it proves that T[v] is a Bayesian Nash equilibrium of an

auction game with temporary buyout price p(t) = v(t) - E[Ubid(T)(v(t), t)lNt = 0] for

t E [0, T] thus proving Theorem 6.

Note that, as is the case with static buyout options, there may exist other equilibria

for the temporary buyout price games besides those characterized here. In contrast

with the static buyout case unfortunately, we have not been able to develop any

formal robustness results rationalizing the use for outcome prediction of these specific

equilibria among all possible ones. We do however make the observation that the

following form of reciprocal holds for Theorem 6: for every continuous valuation
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threshold curve v that is strictly decreasing with time on some interval, there exist

bidders whose best response to the symmetric profile T[v] (resp. P[v]) will not be

T[u] (resp. P[v]). This suggests that any equilibrium we may be ignoring is likely to

involve strategic and possibly risky waiting behavior relative to exercising the buyout

option, which in practice may be unattractive to some bidders for reasons that our

model does not capture (e.g. cost of auction monitoring efforts).

4.1.2 Seller's Optimization Problem

In this subsection we study the maximum expected discounted revenue achievable by

the seller through the choice of a temporary or permanent buyout price trajectory

[p(t)]te[o,T], using the equilibria characterized in Theorem 6 as a prediction of the

game outcome.

An important implication of Theorem 6 is that, within the range of equilibria con-

sidered, finding an optimal price trajectory [p(t)]te[o,T] exactly corresponds to finding

its associated continuous and non-decreasing threshold function v: [0, T] -- [, v] sub-

ject to (4.2). Denoting by C+ the set of all such functions, for v E C+ and [p(t)]te[oT]

given by (4.2), the seller's expected discounted revenue conditional on the first bidder

arriving at t = t when all bidders follow strategy T[v] is given by

Utmp( (t),t) E[USp(v)tl = t] = eT Et [max(v, (2)) < 

+ e at v(t)- e (>A+f)(Tt) e(T-t)F(x)dx) (1 - F(v(t)))

(4.20)

where the expectation Et in the first integrand is with respect to the number N(t, T)

of arrivals in interval (t, T] of a Poisson process with rate A and the second highest

value VN(tT)+1 among N(t, T)+1 independent draws v1, ..., VN(t,T)+1 from the valuation

distribution with cdf F, where by convention v2) = 0 - note that the first and second

integrals in (4.20) correspond respectively to the seller's expected revenue when the

first bidder submits a regular bid upon his arrival and when he exercises the buyout
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option. Note that the instantaneous buyout price p(t) has been substituted with the

right-hand side of (4.2), and that the notation utmp(v(t), t) introduced shows explicitly

that the right-hand side of (4.20) only depends on the value of v at t. The seller's

revenue maximization problem can thus be stated as

Zmp A sup E[USmp(v)] = sup j Utmp(V(t),t)Ae-;tdt. (4.21)
VEC+ vEC+

We next establish that a discretized version of problem (4.21) provides an upper

bound for the seller's maximum expected discounted revenue Ztmp just defined.

Indeed consider the following problem:

Ztmp sup E[UtSmp(v)] = sup U tmp(v(t), t)Ae-tdt (4.22)

where C+ denotes the set of all non-decreasing functions v: [0, T] -- [v, v].

Clearly C+ C C+ and thus Ztmp > Zt*mp. The compactness of set C+ follows from

the Helly compactness theorem (§7.9 in Ewing (1985)). In addition it can be shown

that the objective function of (4.22) is continuous over CO+ and thus there exists a

M* E C+ that achieves the optimal utility Ztmp. We first prove the following result.

Lemma 14. The function Utmp(V*(t),t) is decreasing in t for t E [0, T], where v*(t)

is the solution of (4.22).

Proof. We proceed by first proving that utmp(v, t) is decreasing in t for t E [0, T].

Indeed consider the partial derivative of Utmp(V, t) with respect to t

-tUtmp(, t) o-a(v- E[Ubid(t)(v, ttNt = 0]) (1- F(v))

+e+ e-t (- E[Ubid(t) (V,t)INt = 0]) (1-F(v))

e-c F(v a Et [max(v, (2)+ e F(v)Et[maxt N(t,T)+l)V1 < v]

Now notice that E[Ubid(t)(v, t)INt = 0] is increasing in t while Et[max(v, v(t,T)+ 1)v1 <

v] is decreasing in t. Using this in the above expression yields that °Utmp(V, t) < 0

and thus utmp(v, t) is decreasing in t.
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Now assume, for contradiction, that utmp(v*(t), t) is not decreasing in t and indeed

there exists an interval [t1, t 2] C [0, T] such that

Utmp(V*(t),t) < Utmp(V*(t2),t 2 ) Vt E [tl,t 2]

and thus

Ut mp(V* (t), t)dt < Utmp(V*(t2), t2)dt = Utmp(V*(t2),t 2)(t 2 - tl) (4.23)

Consider the following valuation trajectory

=(t) v*(t 2 ) Vt e [t1 ,t 2]

v* (t) otherwise

Since v*(ti) > v*(t2), E Co+ and is thus feasible for the problem (4.22). Hence

since v* is the optimal solution of the problem (4.22), the utility obtained from

using threshold valuation v must be less than or equal to the optimal utility. Since

i(t) = v*(t) for all t [tl, t2], the optimality of v* implies

Utmp(V* (t), t)dt > Utmp((t),t)dt

t2

= y Utmp( V* (t 2), t)dt

> Utmp(V*(t2), t2)dt = Utmp(V*(t2), t2)(t 2 -tl)

where the second inequality follows since utmp(v, t) is decreasing in t. This contradicts

(4.23). 0

For any partition r - (j)j{O... m} of [0, T] into m subintervals such that To = 0 <

T1 < ... < Tm = T, let Arj A j+ - j for j E {O ... , m - 1} and Ar maxj At be
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the mesh size of r. Define a discretized problem

m-l
Ztmp(T) max u utp(vj, T7j)Ae--A ' T(.j )

("J)jEto.....m}) =0 (4.24)

subject to: v < vj-1 < j < v for all j E {1,...,m}

Then we have

m-l Ti+

Ztmp = jutmp(v*(T), )Ae-'dT = E| Utmp(y*(T), )Ae-T d
i=o i
m-l

< E utmp(V (Ti), ri)Ae-\TiAr
i=O

< Ztmp(T),

where the first equality follows by definition of v*. The first inequality follows from

Lemma (14), while the second inequality follows since {vi = *(ri)}i=O,l,..,m-1 is a

feasible solution to the discretized problem (4.24). Thus Zt*mp < 2tmp < Ztmp(T) and

hence the solution to (4.24) provides an upper bound on the seller's revenue from a

temporary dynamic buyout price auction.

From a practical standpoint, the discretized problem (4.24) provides a way to

construct an upper bound for the seller's maximum expected discounted revenue

by solving a nonlinear program. Note however that the function utmp appearing in

the objective of (4.24) may not be always easy to express analytically, because of

the expectation Et in (4.20). Also, we do not provide here any description of the

relationship between the mesh size of a partition r (or size of nonlinear program

(4.24)) and the quality of upper bound Ztmp(T). For our numerical experiments in

§5.2, we focus on the special case of uniform valuations, for which a closed-form

expression for utmp is readily derived.
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4.2 Permanent Buyout Option

The equilibrium analysis for a permanent buyout price auction game with a dynam-

ically priced buyout option is provided in §4.2.1 while we formulate and discuss the

seller's optimization problem in §4.2.2.

4.2.1 Outcome Prediction

In an auction with a permanent buyout price following trajectory [p(t)]te[oTl, for any

function v : [0, T] x [, v] U {0} - [v, v] we consider the extension of strategy P[v]

obtained by substituting p(t) with p in the first line of (3.47):

Buyout at p immediately if v > v(t, It)
P[v](v,t, It) ' B (4.25)

Bid v at time T if v < (t, It)

and keep using the same notation. In this subsection, we prove the following result

which is the exact analogue of Theorem 6 for the case of a permanent buyout option:

Theorem 7. For any continuous function v : [0, T] x [v, ] U {0} - [, ] such that

v(t, 0) A v(t) is non-decreasing in t and v(t, I) is decreasing in I for all t, define

function p: [0, T] [, ] as

p(t) = v(t) - e-(T-t)E t l (F )dx (4.26)
[J_ (t) rN(t) F(min(v(ti)) (F(x)) 'dx] (4.26)

where the expectation Et is with respect to the number N(t) and epochs t, ,tN( t)

of arrivals in [0, t) of a non-homogeneous Poisson process with rate \F(v(T)) with

r E [0, t), and number N(t,T) of arrivals in (t,T] of a Poisson process with rate

A. The symmetric strategy profile P[v] is then a Bayesian Nash equilibrium for the

auction with permanent buyout price trajectory [p(t)]tE[o T].

As in the proof of Theorem 6, we prove that P[v] is a Nash equilibrium by showing

that the best response strategy of an arbitrarily chosen bidder to P[v] (with a non-

decreasing threshold function v) is to himself play P[v] if the buyout price p(t) is set
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to be

p(t)_~t)_e ~(· t)E [~v(t v (t) II=) F(min(y(ti), x))F )N(t,T)dxp(t) = v(t) - e 3 (T t)Et i= F ((t)) (F(X)) X

for t E [O.T].

Indeed consider any bidder A with type (v, t) and information It = 0. Since the

threshold function v(t, I) is assumed to be decreasing in I for all t, Lemma 4 shows

that bidder A is weakly better off bidding at T.

We next show that bidder A cannot increase his utility by waiting before making

a decision.

Lemma 15. When other bidders follow strategy P[v] in an auction with a permanent

dynamic buyout price, a bidder is weakly better off acting immediately, i. e. utility from

acting immediately is at least as much as from waiting, if and only if the threshold

valuation trajectory v(t) is non-decreasing in t for all t E [0, T).

Proof. Consider the bidder A who has type (v, t, 0). To ensure that he makes a deci-

sion immediately, we enforce the constraint that his utility from acting immediately

must be at least as much as the utility he obtains from waiting in the auction. Recall

that we have already shown, in Lemma 4, that if a bidder decides to bid in the auction

he must place a bid at time T and thus bidder A's utility from the auction if he makes

a decision immediately is max {Uby(t)(v, t),E[Ubid(T)(v, t, 0)]}.

Suppose A waits up to time r(r > t) and define £ as the event that the buyout

option is not exercised in (t, r), i.e. every bidder (, t, 0) arriving in the interval (t, 7)

has valuation v < v(ti). Then, if E[Ubd(T)(vt,0)] denotes the expected utility from

bidding for a bidder who arrives at time t, waits up to time T (r > t) and then decides

to place a bid in the auction at time T, we have

E[Ubi(T ) (v, t, 0)£] = e-(-t)E[Ubid(T)(, , 0)] (4.27)

since if the event £ occurs, the buyout option is still present at time r. Furthermore

since no bids are placed in the auction the information bidder A receives at time
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T, IT = 0. Thus apart from the waiting cost incurred by bidder A, the situation

is equivalent to a case where bidder A arrives to the auction at time T. Another

consequence of this argument is that

E[Ubid(T)(v, t, 0)1£] = e- 3(-t)E[Ubid(T)(V, T, 0)] (4.28)

The complementary event £ corresponds to the arrival of a bidder (, t, 0) with

e (t, T) and valuation > v(t). Such a bidder, following strategy P[v], exercises

the buyout option and so E[Ub(d(T)(v,t,O)&] = 

Thus the utility from waiting up to time T is:

E[Uwait(t,r)(V, t, O)] = e(-t) max {v-p(T), E[Ubid(T)(v, T, O)]} P(£) (4.29)

Using the law of conditional expectation, we have

E[Ubid(T)(V, t, 0)] = E[Ubid(T)(v, t, 0)£E] P(s) (4.30)

where again E[Ubid(T)(v, t, 0)I] = 0.

Using (4.30) and (4.28), the utility from waiting up to r can be rewritten as

E[Uwait(t,r)(V, t, 0)]

=- e -( - t) max {v - p(r) - E[Ubid(T)(V, , 0), 0] P() + E bid(T)(V, t, O)]

Thus a bidder of type (v, t, 0) makes a decision immediately if and only if

max {Uby(t)(v, t), E[Ubid(T) (v, t, 0)]} > E[Uwuait(t,,)(V, t, 0)] VT > t,

which can be expressed as

max {v -p(t)- E[Ubid(T)(V, t,O)],O} > e(T - t) max {v-p(r)- E[Ubid(T)(V, T, )],O}P(£)

(4.31)

Indeed no bidder in the auction has an incentive to wait, if and only if the condition
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(4.31) holds for all t,T E [O, T], and v [v,v].

For some r > t, consider the following two cases:

1. v < (t) : In this case bidding is more attractive to the bidder at t, i.e. we have

v - p(t) - E[Ubid(T)(V, t, 0)] < 0. Thus the condition (4.31) becomes

0 = max {v - (t) -E[Ubid(T)(V t, 0) ], 0

> C -) max {v - p(T) -E[Ubid(T)(v, T, 0)], O P(S)

which holds if and only if

V - p(T) - E[Ubid(T)(V, 7, 0)] < 0 Vv < (t) (4.32)

Now notice that

0 (v-p(T) - E [Ubid(T)(V, T, 0)])

- Q(Tt) N(t) F(min((t, v) N(t,T)
= 1 - E e- (T- t) . = 4 F(i(ti) I =)) I

Hi-l F(v(ti)) j=l
F(min(v(tj),v))] > 0

i.e. v - p() - E[Ubid(T) (v, T, 0)] is non-decreasing in valuation v and thus it is

sufficient to impose (4.32) at v = v(t). This gives the condition

v(t) - p(T) - E[Uid(T)(V(t), r, 0)] < 0,

which, on substituting v(t) = p(t) + E[Ubid(T)(v(t), t, 0)], becomes

p(r) - p(t) > E[Ubid(T)(v(t), t, 0)] - E[Ubid(T) (v(t), T, 0)] (4.33)

2. v > v(t) : In this case v - p(t) - E[Ubid(T)(V, t, 0)] > 0. Thus we need

> (t)
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Using (4.30) and (4.28), the above condition can be expressed as

v - p(t) > e-P(T-t)(v - p(T)) P(£) Vv > (t) (4.34)

which can be re-written as

P(r) - e-('-t) p P(t) > v( - e -)e-p(T-t7(6) - -p(£) p J
Vv > v(t)

Now since e-P(-(t)P() < 1 the right hand side decreases with v and hence it

is sufficient to impose (4.34) at v = v(t). This gives

Substituting v(t) = p(t) +E[Ubid(T)(v(t), t, 0)] and using (4.30) and (4.28) in the

above condition we get

p(r) - p(t) > E[Ubid(T)(v(t), t, 0)] - E[Ubid(T)(v(t),T, 0)]

which is the same as the condition (4.33) obtained in Case 1.

Thus, no bidder waits before making a decision if and only if V r, t E [0, T], r > t

p(r) - p(t) > E[Ubid(T)(v(t), t, 0)] - E[Ubid(T)(V(t), 7, 0)] (4.35)

Substituting p(t) = iv(t) - E[Ubid(T)(v(t), t, 0)] in (4.35) gives the condition

(7-) - v(t) - E[Ubid(T)(V(T), 7, 0)] + E[Ubid(T)(V(t), -, 0)] > 0 (4.36)

for all r, t E [0, T],r > t. By setting = t + At (At > O0) in the above condition we

get that (4.36) holds if and only if for all t E [0, T)

- a E[Ubid(T)(V, t + At, 0)] Iv=v(t)) 0.
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We have shown earlier that E[Ubid(T)(V, t, 0)] < 1, Vv E [v,+oo),t E [0,T) and

thus (4.37) (and hence (4.36)) holds if and only if v(.) is non-decreasing in t for all

tE [0, T). °]

Therefore bidder A immediately decides whether to bid or exercise the buyout

option. Now the buyout price is chosen such that

Ubv(t) (v(t), t) = E[Uid(T)(v(t), t, 0)] (4.38)

This combined with the fact that the excess utility function

6(v, p(t), t) = Ubuy(t)(v, t) - E[Ubid(T)(v, t, 0)]

is increasing in valuation v implies that a bidder with valuation v > v(t) exercises

the buyout option immediately while a bidder with v < v(t) will choose to bid his

true valuation at time T.

Thus bidder A's best response strategy to P[v] is to himself play P[v] and since the

choice of the bidder was arbitrary this proves that for any non-decreasing threshold

function v, P[v] is a Bayesian Nash equilibrium of an auction game with permanent

buyout price p(t) = v(t) - E[Ubid(T)(v(t), t, 0)]. This concludes the proof of Theorem

7.

4.2.2 Seller's Optimization Problem

Similar to Theorem 6, Theorem 7 also implies that, within the range of equilibria con-

sidered, finding an optimal price trajectory [p(t)]t[o0, exactly corresponds to finding

its associated continuous and non-decreasing threshold function v : [0, T] - , v]

subject to (4.26).
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The seller's revenue maximization problem can be stated as

sup E[Up(rm()] = e- ap(t)A(1 - F(v(t)))e'd (4.39)

+ e-AfoT (1-F(v(t)))dteaTE[11Nbid(T)>O } max(v, VNbd(T))IVi < V(ti) Vi]

subject to (4.26), (4.40)

where the definition of E, Nbid(T), {tl, .., tNbid(T)) and d(T) is the same as in (3.73).

We will denote by Zp*m the optimal value defined by (4.39)-(4.40). Similar to our

analysis for the temporary case, we now develop an upper bound for Z.m. Firstly,

observe that the price trajectory p(t) appearing in (4.39) and given by (4.26) satisfies

ap(t) < v(t)-e (Tt)Et (F(V (t)))N( t) ] -p(t) t) (4.41)

where the right-hand side of the first inequality is obtained by substituting v(t) with

v(ti) in (4.26). This is because the second term in (4.26) corresponds to the expected

utility of a bidder submitting a regular bid equal to his valuation v(t) upon his arrival

at t when every competing bidder already arrived at time ti < t is known to have

a valuation lower than v(ti). In contrast, the modified version in (4.41) corresponds

to the same expected utility when competing bidders already arrived are only known

to have a valuation lower than v(t). Because v E C+ so that v(ti) _ y(t) for all

ti < t, the bidder considered faces more competition in the scenario underlying that

modified version and his expected utility is therefore smaller, justifying that p(v(t), t)

defined in (4.41) is indeed an upper bound. Note also that the notation p(v(t),t)

introduced reflects that this quantity only depends now on the value of v at t instead

of the entire trajectory (v(r)),,t of v up to t as in (4.26). The function defined as

h(v(t), t) eat ((v(t), t)A(1 -F(v(t))e(l-()))

provides thus an upper bound for the integrand in the first term of (4.39). In addi-

tion, the expected seller revenue from regular bidding when no buyout price is used
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(E[1{N(T)>O} max(v, VN(T))]) constitutes an upper bound for the corresponding quan-

tity with a permanent buyout price in the second term of (4.39), which establishes

the following bound:

Z;rm < Zprm - (sup h(Y(t),t)dt + e- . T (1-F(1(t)))dte-aTE[l(N(T)> max(, 2T))])

(4.42)

While the bound Zpm just defined is the optimal value of a calculus of variations

problem and is thus difficult to compute in the general case, the following proposition

shows that a discretized version of (4.42) that is easier to solve still provides a valid

upper bound for Z*prm'

Proposition 3. Consider any partition r A (j)je{o...m} of [0, T] into m subintervals

such that ro 0= < < ... < m = T, define ATj j+l - rj for j E 0, ..., m - 1}

and let AT - maxj Aj be the mesh size of T. Then Zm < Zprm < Zprm(T) where

m-l
Zprm() max E h(Yj,j)Tj

-~-em} jO

+e =( () e-TE[1{N(T)>O} max(v, V (T))1

subject to: vj-l < vj for all j E {1,...,m}

v <o, ,m < v.
(4.43)

Proof. Consider the following problem

Zprm A sup (T h(v(t), t)dt + e- o ( (1-F((t)))dte aT E[1N(T)>o max(v, VN(T))] 

(4.44)

which has the same objective function as (4.42) but the supremum is taken over the

set C +. Clearly C+ C Co+ and thus Zprm < Zprm < Zprm. The objective of (4.44)

can be shown to be continuous and then since the set C+ is compact there exists a

solution v* E C+ which attains the maximum utility Zprm.

Lemma 16. The function h(v*(t), t) is decreasing in t for t E [0, T] where v*(t) is

the solution of (444).
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Proof. It is easily seen that h(v, t) is decreasing in t for t E [0, T] since p(v, t), defined

in (4.41), is decreasing in t. Now, assume for contradiction that there exists an

interval [tl, t 2] c [0, T] such that

h(v*(t), t) < h(v*(t 2), t2) Vt E [tl, t2]

and thus

t2 t2
h(v*(t), t)dt < h(v*(t2), t2)dt = h(v*(t 2),t 2 )(t 2 - t1 ) (4.45)

Consider the following valuation trajectory

V*t) (t2) Vt E [t,t 2]

v* (t) otherwise

Since v*(tl) > v*(t2), e Co+ and is thus feasible for the problem (4.44). Hence

since v* is the optimal solution of the problem (4.44), the utility obtained from

using threshold valuation Ci must be less than or equal to the optimal utility. Since

v(t) = v*(t) for all t ~ [tl, t 2], the optimality of v* implies

|h(v*(t), t)dt + e-A lo (I-F(*t)))dteaTE[1{N(T)>O} max(, VN(T))

> 1: h(O(t) t)dt+e-AJO (1-F(P(t)))dte- CTE[l{N(T)>o} max( vT)) (4.46)

Additionally since, by definition, v(t) > v*(t) it follows that

e-A FoT (1-F(,-tt TF(t)))dt < e-l (1-F((t)))t447)e < e- j0 ~~~~~~~~~~~(4.47)
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and thus (4.46) implies that

t2 ft2

h(v*(t), t)dt > h(i(t), t)dt

= ft2 h(v*(t 2), t)dt

> J h(v*(t 2), t2)dt = h(v*(t 2), t2)(t 2 - tl)

where the second inequality follows since h(v, t) is decreasing in t. This contradicts

(4.45). a

Then for partition r defined in the statement of the proposition, Lemma 16 implies

that
T m-1

h(v*(), )dr < h(v*(r),r i)Ai (4.48)
i=O

Additionally since v*(t) is non-decreasing in t, we have for all i = 1, .., m

-e 1 l1 (1-F(v *()))d < e-(1-F(,*(i)))ATi1 (4.49)

Combining (4.48) and (4.49) we get

m-l
Zprm h(*(T-i), Ti)AT i + e (1-F(v* (Ti)) ) Ai-1 eaTE[1{N(T)>O} max(v, VN(T))]

< Zprm(T)

where the second inequality follows since {v = v* (i)}i=,1,..,m_ 1 is a feasible solution

to the discretized problem (4.43). [1

The upper bounds Zprm or Zprm(T) are not as good as their analogue Ztmp(r)

for the temporary case; this is because the substitutions leading to (4.41) and (4.42)

above are relatively coarse. Consequently, the resulting bound proved too loose to

support any assertive statement, as evidenced by the fact that the piecewise constant

solution obtained by solving the discretized problem for the permanent case performed

significantly worse in all our simulation experiments than all other policies tested,
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including not using a buyout price at all. As a result, the experimental results we

report for dynamic permanent buyout prices in Chapter 5 are not quite as conclusive

as for dynamic temporary buyout prices.
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Chapter 5

Empirical Analysis, Numerical

Results and Comparative

Discussion

In this chapter, we present results of our numerical analysis comparing the equilibrium

threshold function, optimal buyout price and seller revenue in temporary and per-

manent static buyout price auctions (§5.1). The seller's utility in a dynamic buyout

price, static buyout price and standard auction (without a buyout price) is compared

in §5.2. Next we validate our model predictions by empirically testing two hypothe-

ses, suggested by the outcome prediction in temporary and permanent static buyout

price auctions, with bidding data from eBay and Yahoo (§5.3).

5.1 Static buyout prices

In this section we compare the equilibrium behavior, optimal buyout price and seller's

revenue associated with the temporary and permanent buyout options, drawing on

both numerical experiments and our theoretical insights from Chapter 3. In all exper-

iments in this section we assume that valuations are uniformly distributed on [50, 500]

and the auction duration is T = 16.
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5.1.1 Equilibrium threshold valuation functions

A first insightful exercise is to compare the bidders' equilibrium buyout threshold

functions vtmp and vprm (see statements of Theorems 1 and 4) corresponding to the

same buyout price and market environment. For illustration purposes, Figure 5-1

shows a plot of these two functions for the specific case Ptmp = Pprm = 350, A = 0.25,

T = 16, P = 0.03.

0

Ce

a)
`5
M9

0 4 8 12 16
Bidder arrival time

Figure 5-1: Equilibrium threshold valuation in temporary and permanent buyout
price auction

A first observation is that both curves shown in Figure 5-1 are non-decreasing:

either type of buyout option remaining open as time goes by indicates reduced com-

petition among bidders participating in the auction and therefore progressively makes

the buyout option less attractive relative to submitting a regular bid, so that fewer

bidders will decide to exercise it. The temporary threshold function tmp does lie

above the permanent threshold function prm however, suggesting that the effect just

described is less pronounced with a permanent option than with a temporary option.

Indeed, when participants follow the equilibrium strategy '[vtmp] described by (3.1)

and Theorem 1, the fact that a temporary option is still open when a bidder arrives

indicates to him that he is the first bidder and that the only competition he is likely
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to face should he submit a regular bid will come from bidders who are yet to arrive.

On the other hand, under the strategy profile P[,,p,m] described by (3.47) and The-

orem 4, if a permanent option is still open when a bidder arrives he can only infer

that all the bidders who have already arrived have valuations lower than the value

of the threshold valuation at the time of their respective arrivals. Consequently, for

such a bidder the decision to submit a regular bid appears less attractive relative to

exercising the buyout option than it is for a bidder facing an open temporary option

in circumstances that are otherwise the same. As a result, with identical buyout

prices more bidders will tend to exercise a permanent option than a temporary one.

Finally, note that the initial values tUtmp(O) and vprm(O) shown in Figure 5-1 are iden-

tical, which is intuitive but can also be established analytically by calculating the

right-hand sides of (3.2) and (3.49) for t = 0.

5.1.2 Approximate temporary buyout price

In an auction with a temporary buyout price with bidders having a finite time-

sensitivity A, we propose using the approximate optimal price, 1t*mp, as derived in

equation (3.46), and assess its sub-optimality. Let E[UtSmp(p3mp)] and E[UtSmp(pmp)]

denote the seller's expected utility from an auction with temporary buyout price

Pt*mp and Pt*p respectively, where the optimal price Pt*p is obtained by performing a

simulation-based line search as discussed in §3.1.3. The seller's expected utility from

the basic auction mechanism without a buyout price the seller's expected utility,

described in §2.2, is denoted by E[UnSb].

In Table 5.1, we compare AUS mp[(ptmp) ( = EUtnp(p)-E[US] x 100) and AUs[(*p)] (tMP tMP (_ E[Unb] tmp

E[UtMP(t Mp4)r -E[USb] x 100), the percent increase in seller's utility (over an auction with-

out a buyout price), achieved by introducing a buyout option with price Pt*p and Pt*p

respectively, for different arrival rates A and buyer time sensitivity P (with a = 0.03).

From the table, it is evident that Pt*p performs well if the average number of

bidders in the auction (AT) is high. However for low values of AT the increase in

seller's utility achieved by using the approximate buyout price is significantly lower
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AT 2 4 8
0 0.01 0.03 0.05 0.01 0.03 0.05 0.01 0.03 0.05

AUs[(Ptmp)] 10.8% 16.0% 19.7% 11.2% 13.1% 14.6% 10.2% 10.4% 10.4%
AUSV[(tmp)] 2.0% 10.5% 16.3% 9.2% 11.8% 13.8% 9.9% 10.2% 10.3%

Table 5.1: Percent utility increase achieved by temporary optimal and approximate
buyout price

than the maximum achievable.

5.1.3 Temporary and permanent optimal buyout prices

Dependence of optimal buyout price on c, P and A

We examine the variation of optimal static temporary buyout price with bidder arrival

rate, and bidder and seller time-sensitivity. Similar to the last subsection, the optimal

buyout price Ptmp is obtained by performing a simulation-based line search; here, and

in the remainder of this section, for all values estimated by simulation, the true value

is within 1% of the estimate with 95% confidence.

The temporary optimal buyout price Ptmp as a function of a and P is plotted

in Figure 5-2 and 5-3 respectively. The two graphs confirm the intuition that the

optimal buyout price increases with the bidder arrival rate. Figure 5-2 also suggests

that the optimal buyout price decreases with seller time sensitivity (i.e. increasing a)

- a more time-sensitive seller would prefer selling the product at a lower price early

in the auction rather than waiting for the auction to end.

Furthermore, it can be observed from Figure 5-3 that the optimal buyout price

increases with i; a more time-sensitive bidder would be willing to pay a higher price

for obtaining the product earlier.

The numerical results for the optimal permanent buyout price are similar and

hence omitted.

Comparison of optimal permanent and temporary buyout prices

We next compare the optimal permanent and temporary buyout prices for the special

case when participating bidders are impatient, i.e. 3 -+ oo. The optimal temporary
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Figure 5-2: Optimal temporary buyout price (/3 = 0.03)

buyout price is obtained by solving numerically the concave problem obtained when

substituting the impatient bidder condition in (3.40), while the optimal permanent

buyout price is obtained by solving numerically the special case of (3.73) when val-

uations are uniformly distributed and bidders are impatient. It can be observed,

from Figure 5-4, that the optimal price is higher for a permanent option than for a

temporary one; our explanation follows from examining the individual terms of the

equation for the seller's total expected discounted revenue

E[pe-abu1 buyout]P(buyout)+E[e- T l{N(T)> max(v, V(T)) no buyout]P(no buyout),

(5.1)

where the first term is the expected discounted revenue from the buyout auction

(rbuy denotes the conditional buyout exercise time), while the second is the expected

discounted revenue from regular bidding. For a given buyout price p, the permanent

buyout option is exercised with higher probability and, conditional on its exercise,

later on average than the temporary option (it may be exercised by other bidders

besides the first one). This suggests that the price maximizing the first term alone

in (5.1), which is a unimodal function of the buyout price, will be larger with a
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Figure 5-3: Optimal temporary buyout price (a = 0.03)

permanent option than with a temporary one. Figure 5-1 also indicates that for any

given buyout price both the expectation and the probability forming the expected

revenue from bidding (second term in (5.1)), which is increasing in the buyout price,

will be smaller with a permanent option than with a temporary one. The buyout

price value at which the marginal decrease in expected buyout revenue equals the

marginal increase in expected bidding revenue in (5.1) should thus be higher with

a permanent option than with a temporary option. Finally, note that the higher

the seller time-sensitivity a, the larger the difference between the conditional buyout

revenues Epe-abnuvbuyout] for permanent and temporary options, explaining the

larger difference between optimal permanent and temporary buyout prices observed

in Figure 5-4.

Notice, that in the limiting regime where a, A -- oo with k = lim , we showed

in §3.1.3 and §3.2.3 that the asymptotic optimal temporary and permanent buyout

price is p~ = argmaxpp(l - F(p)) and p*(k) = argmaxp p(1-F(p)) respectively. Thek+l-F(p)
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Figure 5-4: Optimal temporary and permanent buyout prices with impatient bidders

optimality of p and p*(k) imply that

P(1 - F(P)) > p*(k)(l - F(p*(k))) and p*(k)(1 - F(p*(k))) > P(i - (P))k + Il- F(p*(k)) - k + 1 - F(P)

which can be combined to show that p*(k) >_ for all k. Thus, for the regime

a, A - oo, this proves analytically the observation, from Figure 5-4, that the optimal

buyout price is higher for a permanent option than a temporary option.

5.1.4 Gain in seller's utility enabled by a buyout price

Our last set of experiments focuses on the seller's relative gain in utility from an

auction with temporary and permanent buyout options over an auction with no buy-

out price, that is (E[UtSp(ptmp)] - E[USb])/E[USb] or (E[UpS, m(ppm)] -E[USb])/E[U s ,

where E[Utsp(ptmp)] and E[UpSm(p;p,)] denote the seller's expected utility from an

auction with optimal temporary and permanent buyout options respectively, and

E[USb] the seller's expected utility from the basic auction mechanism without a buy-

out price. As described in §3.1.3 and §3.2.3 respectively, the optimal buyout prices
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Ptmp and P;rm are obtained by performing a simulation-based line search.
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Figure 5-5: Relative increase in seller's utility from a temporary buyout option (/3 =
0.03)

The results from these experiments are plotted in Figure 5-5, 5-6, 5-7 and 5-

8, which show the seller's relative utility increase for both option types in various

environments. A first observation is that, as intuition suggests, the relative gain from

both types of buyout option generally increases with both the seller's time sensitivity

a and the bidders' time sensitivity d - the possibility of selling the item earlier is

more valuable for a time-sensitive seller, and bidders with a high time-sensitivity are

willing to pay more if they can get the product earlier. Figures 5-7 and 5-8 suggest

however that the impact of the bidders' time sensitivity on the relative utility gain

from a buyout option becomes insignificant when the expected number of bidders

AT becomes moderately large, which partly justifies the approximation P - +oo

discussed in §3.1.3 and §3.2.3. On the other hand, the expected utility gain from a

buyout option always seems to increase substantially with the seller's time sensitivity,

independently of the expected number of bidders. Our interpretation is that while

the seller's time sensitivity directly impacts his utility, the effect of the bidders' time
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Figure 5-6: Relative increase in seller's utility from a permanent buyout option (/5 =
0.03)

sensitivity is more indirect in that it only affects the bidders' relative preference

between the buyout option and the regular online auction, without otherwise affecting

the seller's discounted revenue from either alternative. Moreover, when the number

of bidders is large, affecting the probability that a single one of them will exercise the

buyout option for a given time-sensitivity /3 becomes relatively easier.

Another important finding is that the optimal seller's utility derived from a per-

manent buyout option is always larger than that obtained with a temporary buyout

option, as can be seen from comparing the vertical scales in Figures 5-5 and 5-7 with

those in Figures 5-6 and 5-8; although unable to show this analytically, we have more

generally observed this in all the experiments we have conducted besides the ones

reported here. Within the strict boundaries of our model definition, a permanent

buyout option seems like a more powerful instrument than a temporary one, because

it allows to leverage the time-sensitivity of all participating bidders as opposed to

only the first one. This interpretation ignores some of the features of actual online

auctions that our model does not capture however, and we come back to this issue in

Chapter 6.
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Figure 5-7: Relative increase in seller's utility from a temporary buyout option (a =
0.03)

Finally, we observe that while the increase in seller's utility achieved by intro-

ducing a temporary buyout option (Figures 5-5 and 5-7) is decreasing in the bidder

arrival rate, with a permanent buyout option the exact opposite occurs (Figures 5-6

and 5-8). Our interpretation is that since a temporary buyout option is only available

to the first bidder, its relative impact diminishes in an environment with a high ex-

pected number of participants. On the other hand, a permanent option is potentially

available to all arriving bidders and thus its relative impact does increase with the

expected number of bidders.

5.2 Dynamic buyout prices

In this section we compare, under different market environments, the seller's utility

from a dynamic buyout price auction with the utility achieved from an auction with a

static buyout price. As before, for all numerical experiments, we assume that bidder

valuations follow a uniform distribution with support [50,500] and the auction runs

for T = 16 units.
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Figure 5-8: Relative increase in seller's utility from a permanent buyout option ( =
0.03)

Let E[UtS p(P'mp)], E[UpS.m(prm)]) and E[USb] be as defined in §5.1. Like before

these terms are estimated by simulation and are such that with 95% confidence the

true values are within 1% of the estimate. For both temporary and permanent option,

we also analyze a special case of the seller's revenue maximization problem where

the seller's revenue is maximized over the set of fixed threshold valuation functions,

i.e. v(t) = v for all t. In this case the optimal fixed temporary (resp. permanent)

threshold valuation V*mp (resp. vrm) is determined by numerically solving the concave

maximization problem in one variable obtained from (4.21) (resp. (4.39)-(4.40)). In a

slight abuse of notation, let E[UtS p(vtmp)] and E[UpSrm(V;rm)] denote the corresponding

expected utility of the seller in a temporary and permanent buyout option auction

respectively.

For the case of a temporary buyout option we compare E[Uimp(t'mp)] and E[Usmp(vtmp)]

with the upper bound Ztmp(T) (derived in §4.1.2) where r is a partition of [0, T] such

that ATj = T/500, Vj E {0, 1, .., 499}. As observed from Table 5.2, in case of a tem-

porary buyout price the increase in utility obtained from both a fixed buyout price

auction and a fixed threshold valuation auction is very close to the upper bound. Thus
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a 0.01 0.03
AT 4 8 16 4 8 16

E[Utmp(Ptmp))-E[Unb] 2.87% 2.07% 1.49% 12.89% 10.34% 8.79%
E[U~b]

E[Utmr(vtmr)l E[U b] 3.65% 2.02% 1.40% 13.64% 10.31% 8.60%
E[USb] 

ZtmP()-E[USb] 4.13% 2.87% 3.05% 13.91% 10.78% 10.38%
E[U__s_

Table 5.2: Utility increase achieved by fixed and dynamic temporary buyout prices

in this case allowing for a dynamic buyout price leads to an insignificant increase in

the seller's utility.

a 0.01 0.03
AT 4 8 16 4 8 16

E[Uprm(Pprm)-E[Unb] 6.55% 5.78% 6.88% 23.43% 25.22% 30.08%
E[USb]

E[Uprm(V;rm)I-E[Ulb] 7.30% 6.68% 7.49% 24.57% 26.13% 30.47%
E[Ufb]

Zprm(T)E[Unb] 22.71% 25.06% 32.28% 42.84% 50.87% 69.84%
E[UV,]

E[UpSrm((P)ij .. ,m))]-E[Ub] 2.82% -1.54% -7.97% 20.73% 17.58% 14.54%
E[u11 _____

Table 5.3: Utility increase achieved by fixed and dynamic permanent buyout prices

For a permanent buyout option, we compare E[USrm(P,,m)] and E[USm(v,,rm)]

with the upper bound Zprm(r) (defined in Proposition 3) where r is a partition of

[0, T] such that Arj = T/100, Vj E 0, 1,.., 99}. Let (j)jE0,..,1oo0 be the threshold

valuation achieving the upper bound Zprm(T) in (4.43). Observe from Table 5.3

that for a permanent buyout option, the fixed threshold valuation auction leads to

a slightly higher utility than a fixed buyout price auction but both are significantly

lesser than the upper bound. However, as mentioned in §4.2.2, in this case the upper

bound Zpm(T) tends to be loose - a claim that is somewhat justified by the fact

that in all cases E[Ur m((ij)j{o0,..,100})], the seller's utility from using the valuation

(ij)jEo.. ,100}, is much lesser than E[UpSm(Vprm)].
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5.3 Empirical Analysis of Bidding Data

Recall that we prove, in Theorem 1, that the following equilibrium strategy,

Buyout at p immediately if buyout option available and v > v(t)

T[v](v,t): Bid v immediately if buyout option available and v < v(t),

Bid v at any time in [t, T] otherwise

(5.2)

defines a Bayesian Nash equilibrium of a temporary buyout price auction game for

an appropriately chosen threshold function v. Notice that the strategy T[v] suggests

that the first bidder must act immediately in the auction while the remaining bidders

can bid at any subsequent time after their arrival. In contrast, for an auction without

a buyout price our model makes no predictions about the bid times - the weakly

dominant strategy for bidders in this case is to bid their true valuation at any time

subsequent to their arrival. This thus implies the following hypothesis which we test

using bidding data from eBay auctions:

Hypothesis 1: The first activity (bid/buyout) in a temporary buyout price auction

occurs earlier than in a standard auction (without a buyout price)

For a permanent buyout price auction we show, in Theorem 4, that a Bayesian

Nash equilibrium is defined by

Buyout at p immediately if v > v(t, It)

Bid v at time T if v < (t, t)

where v is a suitably chosen threshold function. Notice that the strategy P[v] requires

that all bids be placed just near the end of the auction. On the other hand, as

mentioned earlier, our model makes no predictions about the bid times in an auction

without a buyout price, thus suggesting the following hypothesis which we test using

auction data from Yahoo:

Hypothesis 2: The average bid time in a permanent buyout price auction is higher

than in a standard auction (without a buyout price)
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In practice, bidding in online auctions is affected by several factors including other

competing auctions, reserve price (Lucking-Reiley et al. (2000)), starting price (Wan

et al. (2003), Lucking-Reiley et al. (2000)), seller's feedback ratings (Durham et al.

(2004), and other papers studying seller reputation cited in §1.1), level of bidders'

rationality and experience and their different incentives and, in all likelihood, the

bidding data we collect depends on some or all of these factors. However, for the

purpose of this analysis we assume that the difference in bid times (as observed

below) is a consequence primarily of the presence of a buyout price.

For testing the hypotheses we collect bidding data on auctions belonging to the

Consumer Electronics category which have the string "iPod"l in their title. This

criterion gives data on auctions for iPods and its accessories (including headphones,

iPod skins, chargers, cases); this market was chosen for several reasons:

1. The volume transacted is high as compared to other products

2. Most of these items are available through fixed price mechanisms and hence

bidder valuations should have well defined upper and lower bounds

3. Furthermore, these items will most likely have little or no common value and

so the independent private valuation assumption should hold for bidders par-

ticipating in such auctions

A software program written in Perl, running on the Windows platform is used

to collect data from auction websites. On eBay, which employs a temporary buyout

price auction mechanism, once a bid is placed in the auction information about the

presence of a buyout option and the buyout price disappears, and hence to obtain this

information an auction needs to be tracked from the beginning. As a result, we use a

Perl script which visits the eBay website every ten minutes and gathers information

about all auctions, belonging to the market segment described above, which began in

the last ten minutes and where no bids were placed. Once the auction is complete, the

script revisits the auction site to gather the timings of all bids placed in the auction.

1The search is not case-sensitive
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Unlike eBay, collecting data by tracking newly introduced auctions would take a

prohibitively long time on Yahoo since the number of open auctions in the market

segment of our interest that satisfy certain conditions on the buyout price, starting

price and winning bid (see §5.3.2) are very small. Instead we use a Perl script that

visits the Yahoo auction website and collects bidding data on closed auctions that

belong to the market segment specified above. However in the case of Yahoo, which

employs a permanent buyout price auction mechanism, while information about the

presence of a buyout option and its price is available after the auction has closed,

only the actual auction ending time, and not the scheduled ending time (which is

required for calculating the auction duration), is observable for a closed auction. For

auctions where the buyout price is exercised, the auction ending time is the time of

buyout price exercise and is usually different from the scheduled ending time, which

is not observable, and hence we ignore data from such auctions. Ignoring auctions

where the buyout price is exercised introduces a bias in the data which is discussed

in §5.3.2.

For both eBay and Yahoo auctions, we collect the following data:

* Auction ID

* Starting time of the auction

* Scheduled auction ending time

* Auction duration (= Starting time - Scheduled ending time)

* Buyout price (if option is present) (bp)

* Time of buyout exercise (if option is present and exercised)

* Starting price (sp)

* Winning bid (wb)

* Bid times of all bids placed in the auction
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Instead of recording the actual bid (or buyout) time, we calculate, for every bid,

the following fraction:

Bid Time - Starting time of the auction
ff= Auction Duration

which is the time elapsed in the auction (expressed as a fraction of the auction du-

ration) before the bid is placed. This normalizes the bid times thus allowing for

comparison across auctions with different durations.

5.3.1 eBay Data

A sample of 48,499 auctions starting and finishing between January 17, 2006 and Jan-

uary 31, 2006, that belonged to the market segment mentioned earlier was collected.

There was bidding activity in 11,520 of these auctions, of which 6,561 were buyout

price auctions while the remaining were standard second-price auctions without a

buyout price. We exclude from this dataset all auctions where the buyout price (bp)

is too close to the starting price (sp) ( < 1.25), since in such a case the auction ef-

fectively becomes a fixed price mechanism. Auctions where the buyout price is much

higher than the winning bid wb, in particular ~ < 0.8 are also filtered out, since in

such cases the buyout price may be set too high for any bidder to ever exercise it. No-

tice that, while the winning bid is a random variable depending on the bidder arrival

process and bidder valuations, we assume that for auctions of the above category the

variance of the winning bid is low enough so that it serves as a good indicator of the

"actual price" of the auctioned item. We thus consider buyout price auctions where

P > 1.25 and Ub > 0.8 which imply that 'b > 1 - this is the criterion we use forSp - bp - Sp -

selecting auctions without a buyout price.

In Figure 5-9, the first activity time is plotted as a function of the winning bid

for auctions without a buyout price. While it may not be obvious from the plot, it

turns out that the first bid time is negatively correlated with the winning bid with

a correlation factor of -0.6947 and an almost zero p-value (Matlab returns a 0 p-

value). While we do not report the results here, the first activity time is negatively
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Figure 5-9: First activity time as a function of winning bid

correlated with the winning bid in buyout price auctions also. Furthermore, in our

dataset almost 90% of the buyout price auctions have a winning bid of less than $30

- these usually correspond to auctions for iPod accessories which, in most cases, are

much cheaper than iPod music players. As a consequence, for the purpose of this

analysis we only consider auctions where the winning bid is less than $30. Table 5.4

summarizes the descriptive statistics of the data. The row timel represents the first

bid time in auctions without a buyout price and the first activity time (bid/buyout)

in buyout price auctions.

Auctions without buyout price Auctions with buyout price
(3417 auctions) (1954 auctions)

Mean Std. Dev. Mean Std. Dev.

Duration (days) 2.2721 0.0349 2.4390 0.0471
sp ($) 2.7354 0.0704 2.3474 .7430
bp ($) NA NA 4.0678 0.1059
wb ($) 5.5482 0.1256 4.9275 0.1140
timel 0.8694 0.0042 0.7811 0.0067

Table 5.4: Summary of auction data with wb < $30, b > 1.25, and 'b > 0.8sp - bp 
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Observe that the average time of the first activity in auctions without a buyout

option is higher than in buyout price auctions. The two sample t-test gives a p-

value of 2.75 x 10-27 implying that the hypothesis, that the average first activity

time in buyout price auctions is lower than the first bid time in auctions without a

buyout price, can be accepted. Furthermore, the average winning bid in buyout price

auctions is lower and, since the first bid time tends to decrease as the winning bid

increases, adjusting the data to ensure that the average winning bid is same for both

cases would further lower the average first activity time in buyout price auctions (or

alternately increase the average first bid time in auctions without a buyout price).

While we restrict the above analysis to auctions where the winning bid is less than

$30, we next study the effect of considering different cutoffs on the winning bid (it is

still required that P > 1.25, and wb > 0.8) - in particular, we calculate the mean first

activity time and winning bid for auctions with a winning bid of less than $10, $20 and

so on. The results are summarized in Table 5.5 and the corresponding plot is provided

in Figure 5-10. In the table, we specify the mean values of timel (where, as before,

timel is the first activity time) and wb (the winning bid); the standard deviation of

the mean of timel is within 1% of the tabulated value in all cases. Observe, in Table

5.5, that in the last four rows (winning bid < $200, $300, $400 and $500) while the

buyout price auctions have a higher mean first activity time as compared to standard

auctions, the mean winning bid is much lower. Thus, since the first activity time

is correlated with the mean winning bid, a comparison of first activity times is not

meaninful in these cases.

Observe, from Figure 5-10, that for the same mean winning bid, the average first

activity time is lower in buyout price auctions than in standard auctions, and that

the average first activity time decreases with an increase in the mean winning bid.

In a separate analysis we find that in our dataset, the buyout option is exercised in

about 53% of the auctions in which it is present with a mean exercise time, expressed

as a fraction of the auction duration, of 0.7617 (standard deviation = 0.0064). The

presence of a buyout option thus decreases the waiting time of the auction participants

to about three-fourths of what they would have experienced if the buyout option was
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Winning [ No buyout price Buyout price
bid < Number timel wb($) Number timel wb($)

10 2696 0.892 2.284 1742 0.796 3.577
20 3183 0.877 4.172 1916 0.787 4.532
30 3413 0.866 5.568 1954 0.781 4.928
40 3537 0.856 6.570 1965 0.779 5.093
50 3646 0.848 7.766 1975 0.777 5.318
60 3714 0.839 8.621 1982 0.775 5.500
70 3764 0.832 9.362 1996 0.771 5.927
80 3821 0.824 10.332 2011 0.767 6.450
90 3882 0.815 11.500 2019 0.767 6.762
100 3918 0.810 12.257 2028 0.764 7.161
125 3968 0.803 13.548 2035 0.763 7.521
150 4065 0.791 16.559 2054 0.757 8.748
200 4461 0.740 30.659 2098 0.748 12.355
300 4833 0.690 46.807 2102 0.746 12.764
400 4935 0.678 53.153 2102 0.746 12.764
500 4948 0.676 54.130 2102 0.746 12.764

Table 5.5: Mean first activity time for different winning bid cutoffs

not present.

5.3.2 Yahoo Data

A sample of 1,475 closed Yahoo auctions belonging to the category "MP3 Players"

and having the word "iPod" in their description was collected on January 18, 2006

- this gave us around six months of auction data with the earliest auction having

been completed in July 2005. Recall that in this case we only collect data on closed

auctions, and, among auctions with a buyout price, we restrict our analysis to those

where the buyout price is not exercised. Notice that this biases the data since we are

more likely to get auctions where the buyout price is higher than what bidders expect

to pay for getting the product. We partially correct this bias by only considering, as

in the earlier case, auctions where the ratio of the winning bid to the buyout price is

high enough ( > 0.8); as before, we also ignore auctions where the buyout price is

too close to the starting price by requiring that bP > 1.25. Notice that this implies

that among buyout price auctions we only consider those auctions where b > 1 -sp -
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Figure 5-10: Plot of mean first activity time with mean winning bid in a temporary
buyout price auction

this is also the criterion used for selecting auctions without a buyout price.

Recall that for permanent buyout price auctions, we test the following hypothesis:

Hypothesis 2: The average bid time in a permanent buyout price auction is higher

than in a standard auction (without a buyout price).

Similar to the eBay analysis, in Figure 5-11 we plot the average bid time as a

function of the winning bid for auctions without a buyout price. It can be observed

from the plot that the average bid time decreases as the winning bid increases; indeed

it turns out that average bid time is negatively correlated with the winning bid with a

correlation factor of -0.3593 (p-value 1.1289 x 10-5). Although, we do not include the

result here, a similar negative correlation is also observed in buyout price auctions.

The median winning bid in the complete Yahoo data (including auctions where

the buyout option is exercised) is $152.51, as compared to $5.95 in the eBay auction

data, which presumably happens since the search for the string "iPod" on Yahoo leads

to more auctions where iPod's are sold as opposed to some of its accessories which

are usually cheaper. Indeed it turns out that almost 95% of buyout price auctions
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Figure 5-11: Average bid time as a function of winning bid

satisfying the above criterion (buyout option not exercised, b > 0.8, > 1.25)

have a winning bid greater than $100 and hence we restrict our analysis to auctions

where the winning bid is greater than $100. The important statistics of the restricted

dataset are summarized in Table 5.6; time is the average bid time of all bids placed

in an auction.

Auctions without buyout price Auctions with buyout price
(184 auctions) (45 auctions)

Mean Std. Dev. Mean Std. Dev.
Duration (days) 3.3082 0.1810 2.6728 0.1528

sp ($) 108.5840 6.9045 183.5527 60.4369
bp ($) NA NA 318.7093 75.1084
wb ($) 180.3127 6.1154 268.9649 60.1669
time 0.8072 0.0125 0.8301 0.0179

Table 5.6: Summary of auction data with wb > $100, bp > 1.25, and b > 0.8sp - bp

Observe that the average bid time in buyout price auctions is higher than in

auctions without a buyout price. However, a two sample t-test returns a p-value of

0.1493; thus, while the data suggests that bids arrive later in a permanent buyout
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price auction as compared to an auction without a buyout price, the result is not

very conclusive. However, observe that the average winning bid is higher in buyout

price auctions, and hence the average bid time would further increase for buyout price

auctions (or alternately, decrease for auctions without a buyout price) if the data were

adjusted to ensure that the average winning bid is same for both cases. Due to the

limited amount of data we have on Yahoo auctions, the analysis for different winning

bid cutoffs is not meaningful in this case.

One of the primary reasons the result of the data analysis in the permanent case is

not as conclusive as in the temporary case is that some Yahoo auctions use a slightly

different auction mechanism than that assumed in this paper; in particular, while we

assume a fixed auction end time, some Yahoo auctions have a floating deadline that

extends if a bid is placed near the end of the auction. The presence of a floating

deadline may alter bidding strategy - in particular notice that the strategy "bid just

near the end of the auction" cannot be played because whenever a bid is placed in the

auction, the deadline is automatically extended; see also Roth and Ockenfels (2002)

who empirically test the effect of a floating deadline on bid times. The primary

motivation of bidding late in an auction with a buyout price is to prevent bidders

from utilizing the information provided by one's bid; however, in an auction where

the deadline extends when a bid is placed, other bidders always get some time to

respond to a bid irrespective of when it is placed, thus decreasing the incentive of

bidding late in the auction. Furthermore, as discussed before, our data is biased

towards auctions with a buyout price which is higher than what bidders expect to

pay for getting the product. As mentioned above, an important reason why bidders

bid late in a permanent buyout price auction is that information about their valuation

may cause other bidders to exercise the buyout option; however, a very highly priced

buyout option has a small probability of exercise, and hence decreases the incentive

of bidding late.

In summary, the empirical analysis suggests that, in a temporary buyout price

auction, Hypothesis 1 can be accepted with a high degree of confidence; in the per-

manent case, while Hypothesis 2 seems to hold, the test is not as conclusive. As
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mentioned before though, this simple empirical analysis does ignore other factors

that impact bidder behavior. However, an extensive study of these factors is beyond

the scope of this thesis.
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Chapter 6

Conclusion

We have presented in this thesis a stylized game-theoretic model allowing to study

the relative impact of temporary and permanent buyout options, two features in-

creasingly widespread in large online auction sites. An important model prediction is

that with both temporary and permanent options, bidders who exercise the buyout

option will do so immediately upon (or shortly after) their arrival. Furthermore, with

a temporary option the first bidder to submit a regular bid will also do so immedi-

ately upon arrival, but with a permanent option all regular bids should be submitted

shortly before the end of the auction. Indeed econometric analysis of actual bidding

data obtained from eBay and Yahoo indicates that on an average the first bid in a

temporary buyout price auction arrives earlier than in a standard auction while the

average bid time in a permanent buyout price auction is higher than in a standard

auction. Note that our model does not provide any prediction for when regular bids

from the second and subsequent bidders will be submitted in an auction with a tem-

porary buyout option. In practice, the timing of bid submissions is also affected in

various ways by features not captured here; for example a high cost of monitoring the

auction could hasten bid submissions, while common value could delay them. How-

ever, our model does suggest that the marginal impact of a permanent buyout option

relative to a temporary one is to delay the first bid (presumably a negative for the

seller if bidding activity may be attracting more bidders), and concentrate bidding

activity near the end of the auction. From that perspective, we find it remarkable

129



that Amazon's online auction site, one of the largest with a permanent buyout op-

tion, also features a rule whereby the first bidder is offered a 10% discount on the

final selling price should he win the auction. This obvious incentive for early bidder

involvement, which is not used on any site with a temporary buyout option we are

aware of (most prominently eBay), lends support in our view to the robustness of our

model predictions.

We also consider the seller's problem of finding the buyout price, either tempo-

rary or permanent, maximizing his expected discounted revenue. While this problem

seems difficult to solve analytically in the general case, we present a method for

efficiently computing its solution using simulation. For limiting values of bidder ar-

rival rate, and bidder and seller time-sensitivity we derive asymptotic optimal buyout

prices for both the temporary and permanent option. Besides being potentially useful

in practice, these optimal buyout price expressions have mechanism design implica-

tions. Specifically, in our model where the relative values of the seller's and bidders'

time sensitivity and the bidder arrival rate effectively capture market power and the

ratio between supply and demand, a very time-sensitive seller facing bidders with

little time-sensitivity, and a low bidder arrival rate should use a fixed posted price,

while a time-insensitive seller facing a high bidder arrival rate should bypass the buy-

out option and only use a regular auction mechanism; the hybrid mechanism and

smooth transition enabled by a buyout option is appropriate for a range of market

environments between those two extremes.

Our numerical experiments confirm the intuition that the optimal permanent buy-

out price is higher than the temporary buyout price in a given market environment,

and that both increase with seller and bidders time-sensitivities. Likewise, the relative

increase in seller's utility from using a buyout option increases with both seller and

bidders time-sensitivities, although its dependence on the bidders' time-sensitivity

vanishes as the expected number of bidders grows; a distinguishing feature is that the

relative attractiveness for the seller of a temporary buyout option decreases with the

expected number of bidders, whereas it increases in the case of a permanent buyout

option.
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Finally, in all our experiments we found that the seller's expected discounted rev-

enue derived from an optimal permanent buyout option was larger than that obtained

with an optimal temporary option. Notice, however, that our numerical experiments

assume the same bidder arrival rate for both auctions; while this assumption is reason-

able in our model with a single isolated auction, it might be violated if bidders have

multiple auctions to choose from and one auction type is more preferable than the

other. For instance, since a permanent option is available at all times in the auction

until exercised, a bidder in a permanent buyout price auction is constantly exposed to

the possibility of losing the auction because the buyout option is exercised by another

bidder. This may discourage bidders from participating in a permanent buyout price

auction, who may instead prefer either a standard auction without a buyout price or a

temporary buyout price auction where they can make the buyout option disappear by

placing a bid. This would thus suggest that, everything else being equal, the bidder

arrival rate in a permanent buyout price auction will be lower than in an auction with

a temporary option. Furthermore, our equilibrium analysis suggests that all bidders

must wait up to the end of the auction to place a bid in a permanent buyout price

auction. In a market where the same item is sold via multiple auctions, some of these

waiting bidders may balk on finding better offers for the same product elsewhere,

thus also reducing the effective bidder arrival rate in a permanent option. Addition-

ally, the higher incentives for late bidding associated with the permanent option may

also negatively impact the seller's revenue. For these reasons, the numerical results

just mentioned do not justify in our view an unambiguous recommendation to always

use a permanent option over a temporary one, except perhaps for very time-sensitive

sellers in environments with a high expected number of bidders, the conditions under

which the predicted difference in expected discounted revenue was largest in our ex-

periments. This nuanced interpretation also seems justified by the continued use by

eBay (the largest and arguably most successful auction site currently operating) of a

temporary buyout option.

Finally, our study also provides tentative answers to the question of how much a

seller would stand to gain from using a buyout price varying dynamically according
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to a pre-determined trajectory as the auction progresses. While our results are not

quite as conclusive in the permanent case as in the temporary one, they still suggest

that the potential revenue increase enabled by such dynamic buyout price is small,

seemingly not justifying the associated implementation complexity and possible neg-

ative reactions from bidders; the fact that to the best of our knowledge no dynamic

buyout price has ever been used in any actual auction site may also be corroborating

our findings.

There are several interesting extensions of this work that are worthwhile consid-

ering. While focusing on the seller's perspective seemed justified in this first study

because sellers typically choose auction sites and parameters, it would be valuable to

explore the impact of buyout options on bidders' utilities. Another possible direction

is to extend our analysis to the case of multi-item auctions, and also consider dy-

namic buyout prices that would not be pre-determined but rather modified according

to actual bidding activity during the auction.
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Appendix A

Appendix

A.1 Proof of Proposition 1

Proof. Let v(t) be the solution of

v(t) - p = e-( A+ )(T - t)
i (T-t)( )d

v .L)d

me-( t) A(T

which is the same equation as (3.2) except that F(x) has been replaced by x2. The

solution of (A.1) is given as:

-e-(XA+)(T-t)+ (P-v)A(T-t) -(A+))(T-t))i(t) = p ( - t) W (- + e-(A+O)(T-t))

If f(t) < for some t then (3.2) and (A.1) are equivalent since F(x) = §Q, Vx E

[v, v] and (t) = (t). It thus follows that tmp(t) = i(t) = min(v(t), v).

If i(t) > v for some t then we have((f) t) 
i)(t) e- (A+)(T-t) eA(T-t) (m_) dx < '(t) - (A+O)(

(t)

)V
eA(T-t)F(x) dx
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since F(x) < -, Vx E [v, +oo). Furthermore, notice that

v- e- ( +)(T-t) e(T-t)( -M)d

is increasing in v for all t and this combined with the fact that 5(t) is the solution of

(A.1) implies that v(t) > v(t) > v. Thus vtmp(t) = - = min(O(t),v) = min(O(t),v).

A.2 Expression for Et[max(v, tT)±1) v1 • p]

We derive here an explicit expression for the expected revenue given that the first

bidder arrives at time t and has valuation v < p (and thus bids in the auction). It

is assumed that bidder valuations are uniformly distributed with support [v, v].

Recall that N(t, T) which is the number of bidders arriving in the auction in the

interval (t, T] is a Poisson random variable with parameter A(T - t). Now, let I be

the number of bidders who have a valuation greater than p. Then the probability

mass function of I is

pI i) = (N(t, T) V-p)i(p_ v)N(,T)-i (A.2)

where we have assumed without loss of generality that p E [v, i]. Notice that 0 < I <

N(t, T) (since the first bidder has a valuation less than p). For uniformly distributed

valuations the expected revenue, as a function of N(t, T) and I, is

2(p-v) I 0
P N(t,T)+2 

Et[max(, VN(t,T)+1)IV1 < p, N(t, T),I] = N(t,T)+l 1 (A.3)

T 2(+p) 2 < I N(t, T)
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Thus taking the expectation over I and N(t, T) we obtain

Et [max(v, t.(2) )V 1 pEUN(tT)+i)7v1 < P] =

Z> E Et[max(v, v)(tT+l)Vl < p; N(t, T)
n=O i=O

-A(T-t)(A(T - t))l
= n, I = i]pI(i)

n!

(A.4)

Evaluating the double summation, we get

= e-A(T-t) (VeA(T-t)

2m

(A(T - t))2 (1 - f

2m (eA(T-

A(T-t) (f -) (e(T - t )(1- f ) -

-P A(Tt)(1f) _+ A(T -t )(1 -f) _
)\~~~¢(T-t)(1-f) _

where f -= '-P

A.3 Proof of Lemma 8

Proof. For any ,t E [0, T - ] we have

v < p < G(O)(t) < p + e-O(q - v)

Clearly if q > P'-j-o then G(O)(t) [v, q] for all E F, t

show that for any ¢ E F

E [0, T - E]. Next we

(A.6)

Indeed for any ¢ E F and t E [0, T - e) consider

(t) (t)

i=1

F (min(0(ti), x))
F ((ti))

N(t,T)

j=1
(A.7)

where recall that the expectation Et is with respect to the number N(t) and epochs
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t) _ 1)

- (T- t)(1- f))

1))

(A.5)

Et [max (v, v(2)I1)IZ1 1)

I G (0) (t - G Q)(t') < Al I - t'l t, t' E [, T - l]



tl, ..., tN(t) of arrivals in [0, t) of a non-homogeneous Poisson process with rate AF(i(t)),

and number N(t, T) of arrivals in (t, T] of a Poisson process with rate A.

Let

-,3(T-t) N(t) F min(Otti), X)N(t,T)
E[H ((t), t)] = G()(t)-p = E[e(Tt) (l F(min((ti) x)) N (x)T) dx)

Now to calculate E[H(q(t), t)], we condition on the number of arrivals in the

interval (t, t + At) where At > 0 and small and is such that t + At < T - .

For the sake of brevity, let

({t}N(t)) =- F(min(k(t2 ), x))F (Oi~Ntt) )) (A.8)
i=1

First suppose that there was arrival in (t, t + At); an event which has probability

AAt since the arrival process is Poisson with rate A. Then the conditional expectation

is:

E[H(¢(t),t)JN(t, t + At) = 1] =

EE[e-(T-t)( rF({ti}N(t)) x F(x) x F(x)ldx)]P(N(t + At,T) = I) (A.9)
/=0

Note that here we first calculate the expected utility given N(t + At, T) = and then

sum over all possible 1. The expectation Et on the right hand side is over N(t) and

ti't N(t)

Now if there was no arrival in (t, t + At), an event which has probability (1 -

AAt + o(At)) where o(At) indicates any function f(At) such that limAt 0 f() = 0,

we get:

E[H(O(t), t)|N(t, t + At) = 0] =

E [e-(T-t) ( r ({ti}fiNl)) x F(x)'dx)] P(N(t + At, T) = I) (A.10)
1=0
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The probability of more than one arrival in an interval of length At is o(At) and

thus the unconditional expectation of H(O(t), t) becomes:

E[H((t), t)] = E [H((t), t)IN(t, t + At) = 1] x (At)

+ E [H(4(t), t)N(t,t + At) = 0] x (1 - xAt) + o(At) (A.11)

Substituting for the terms, we get

E[H(q(t), t)] =

(I E [e-O(T-t) l r({ti}fI)) F(x)F(xdx) ] P(N(t + At, T) = )) (\At)

+( I E [eF(Tt)(i| ( {ti}ff(t) ) F(x)ldx)] P(N(t+At, T) = )) (1-AAt)+o(At)
1=0

(A.12)

Similar to the above analysis, we next condition on the number of arrivals in (t, t')

to evaluate E[H(O(t'))], where for ease of exposition the notation t' = t + At is used.

Now suppose that there is arrival in the interval (t, t'). For small At, the proba-

bility of this event is AF(O(t))At, since the arrival process at t is non-homogeneous

Poisson with rate AF(¢(t)). We then have:

E[H(¢(t'),t')jN(t,t') = 1] =

E [e(T) (r F(min((t),x)) F(x)dx) ] P(N(t', T) = I)

(A.113)

Now if there was no arrival in (t, t'), an event with probability (1 - AF(q(t))At +

137



o(At)), we get:

E[H(O(t'), t') N(t, t') = )] =

3 E [e-3(T-t') ( | ({ti}N(t)) x F(x)ldx)] P(N(t', T) = 1)

The unconditional expectation of H(O(t'), t') is:

E[H(O(t'), t')] = E [H((t'), t')|N(t, t')= 1)] (F(O(t))At)

o] ( - AF(O(t))At) + o(At)

Substituting for the terms we get:

00

E e-(T-t')
1=0 (J_ (tJtJN() F(min((t),x))

i~-l F(O(t))

[e ({tjN=l())F(x)dx)]P(N(t T)[·''''J/' l~iir") ~ rld)](,_v',7= l)(1-AF(O(t))at) +o(At)+xE
1=0

(A.16)

By the definition of the function G we have
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(A.14)

(A.15)

F(x)ldx)] P(N(t', T) = ) (F(O(t))At)

G(O (t') - G(O (t) = E[H((t'), t') - E[I-1((t), t)]

+ [H (O ('), t') N(t')



Substituting (A.12) and (A.16) in the above expression we obtain

G(S) (t') - G() (t) =
=0

1=0

+EE l[e-O(T-t') ( / r({tiiNl )F(x)ldx)] P(N(tl, T )
1=0

.1=v _ _i=
/=0 _

= 1)(1-AF((t))(At)+o(t)

P(N(t', T) = )) (AAt)

- AAt) + o(At)
DOC

1=0

(A.17)

Simplifying the above expression we get the following bound

IcG()(t') - G(o)(t)l <

f E [e- ,T (j)(t) ( N(t)'
1=0 E ~-o(T-~')I I'i=l 

1=0

+ ( t ))
J Mt

00

1=0

+ ( E [e-/3(T-t')
1=0

t (ti))F(x)ldx)]P(N(t T)=)

) F(min(O(t), x))F(x)l- F(x)+l) dx)] x

x P(N(t',T) = )(AAt)

P(N(t', T) =

+ AAt(1 -F((t))) 

+ AAt 5 E [e -/ (T- t')
0

+ (e- (T-t')

i=l E [e-(Tt') P(N(t', T) = 1)

0

y(t)

-e- (T-t))E[H(O(t), t)] + o(At)

Now noting that t, t' < (T - ) and H(¢(t), t) < qVt E [O, T - E], the above bound
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F(min((t), )) Fx'x]PNtT :1(FOt)t

P (N (t', T = )) (I

F (Itifft) ) F(x)ldx) ] P(N(t', T = )i=1

E F ~~~~i=1

C-O(T-t) ( "(') r, ( f ti I N(t) )F(x)ldx)]
I i=1



can be further simplified to obtain

IG()(t')-G(¢)(t) < e- (2qAAt+2I0(t')-(t) \At+l (t')-¢(t) +(eAt-1)q) +o(At)
(A.18)

Since q E J we have I0(t') - 0(t) I< M t' - t, t, t E [0,T - E]. Using this and

rearranging terms to obtain

IGc()(t') - G(/)(t) < e-< (q(2A + 3) + M)At + o(At) (A. 19)

Thus if we choose M > e- (q(2A + 3) + M), which can be rearranged to obtain

l > -e (2A+)q a tM2 > i-IeT0, we get that

IG(0)(t') - G(4,)(t)l < AJI(t' - t) (A.20)

where 5 = sup

0.

> o () < M - e(2)q. Notice that > 0 since lim, 0 -(6)l~-zx~ 

Since is independent of t, it follows from (A.20) that

JG(O)(t') - G(O)(t)l < lIt' - tl VIt' - t I <; t,t' E [0, T -]

where 3 is as defined above.

Now for any t, t' E [0, T - ], assuming without loss of generality that t' > t, we

have

IG()(t') - G(O)(t)l < G(O)(t') - G(O)(t' - )1 + .. + IG(O)(t' - 0) -G()(t)l

< M1 a + ... + l' - - t = Alt' - t

where n = Ltj j. The second inequality follows from (A.21).

Thus we have shown that for any E F

IG(O)(t') - G(O)(t)I < /It' - tl (A.22)

140

(A.21)

V O t - t 6 t, t E [, T - E]

Vt, t' E [, T - El



This combined with the fact that for all E F

G(0)(t) E [v, q] Vt E [0, T- ] (A.23)

implies that the set K = {G(O)J E F}) C F. EO

A.4 Proof of Lemma 10

Proof. Let o denote the sup norm, i.e.

e(, ) = Omax e (t)- l(t)[ (A.24)O<t<T-e

Let > 0 be given. For any , E F, t E [0, T - E] we have

JG(O)(t) - G(4')(t)l < Et e(T-t) ( (n F(min((t), x))

- F(min ~(t),x )) N(t,T)Fj min ( ) Xij), )) fj7 F(x)dx)
i=1 F )) j=1

+ E[ () F(min((t),x)) F(x )dx (A.25)
J (t) i=1 ((ti)) j=1

where N(t) (resp. N(t)) is the number of arrivals in a non-homogeneous Poisson

process with rate AF(q(T)) (resp. AF(4(r))) for T E (0, t), and the corresponding

arrival times are given by {t.iN(t) (resp. {ti}N(t)). N(t,T) is the number of arrivals

in the interval (t, T] of a Poisson process with arrival rate A.

If we assume that all bidders in (t, T] bid in the auction, the first term on the right

hand side of (A.25) can be interpreted as the difference in the expected utility for a

bidder with valuation ¢(t) if every bidder of type (v, r) with r E (0, t) has valuation

v < (r) as opposed to having valuation v < (r). This term is positive only if there

is one or more arrival in the interval (0, t) in a non-homogeneous Poisson process with

rate A IF(q$(7-)) - F(O(r)) . Now since F is a given continuous function for any > 0
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there exists a 6(;) > 0 such that for all 0, 7P E F, (b, ) < (n)

IF(q()) - F(O(T))I <K VT E [O, T-E]

Thus the rate AIF(b(r)) - F(O(r))I can be upper bounded by AK for all E

[0,T - e] if (, 'O) < (s). Now probability that there is one or more arrival in

the interval (0, t) in a Poisson process with rate AK is AKt + o(n). Thus probability

of at least one arrival in the interval (0, t) in a non-homogeneous Poisson process

with rate AF(q(r)) - F(O(r)) I can be upper bounded by Ant + o(K). In addition

an arrival in the above mentioned process can lead to a difference in expected utility

which is bounded above by q. Hence the first term in (A.25) can be upper bounded

by q(Ant + o(n)). In addition since F(min(b(ti), x)) < F(f(ti)) and F(.) < 1 the

second term of (A.25) is bounded above by l(t) - (t). We thus get

IG(O)(t) - G(O)(t)l < q(Ant + o(K)) + {(t) - (t)l

< q(AKT + o(K)) + V(, a)

Define nl = q and K2 = sup(KJlo() < /3q) (2 > 0 since limo 0O(K)/K -- 0)

and let = min(rl, n 2 ). Thus for 6 = min(6(n), e/3), we have for all E, F E F such

that (b, ) < 6

p(G($), G()) = sup IG()(t) - G(O)(t)l < q(AKT + o(K)) + p(0, b)
tE[O,T-]

< /3 + E/3 + /3 = 

and hence the operator G is continuous on the set F. [1
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A.5 Proof of Proposition 2

Proof. Let v(t) be the solution of (3.60), i.e.

vO(t) - p = E [e (T- t) ( ( ) F(m((t) F(x)dx (A.26)
i=1 F ((ti)) 3=1

for all t E [0, T - E] for some E > 0 and small.

As discussed in the proof of Theorem 4 (t) is non-decreasing in t and thus it

follows from (3.51) that the expected utility from bidding for a bidder with type

(v, t, 0), assuming other bidders follow strategy P[v], is

Et[Ubid(T)(V,t, )] = E e- (T- t)( r (mi((t) F(x)dx)
-=1 F (b (Q) j=1

Thus (A.26) can be restated as:

v(t) - p = Et[Ubid(T) ((t), t, 0)] (A.27)

for all t E [0, T- ].

For any t, (t + At) E [0, T - E], (.) must satisfy

13(t + At) - '(t) E [Ubid(T)((t + At), t + At, O)] - E [ubid(T)((t), t, 0)] (A.28)
At At

Consider a bidder A with type ((t), t) and information It = 0. Since the auction

is running at time t, all bidders of type (vi, ti, 0) arriving in the interval (0, t) have

valuation vi < y(ti). Thus for bidder A the arrival process of other bidders is:

1. Non-homogeneous Poisson process in (0, t) with arrival rate (T) = AF(perm(T))

for T E (0, t)

2. Homogeneous Poisson process in (t, T] with arrival rate A.

Now to calculate E[Ubid(T)(O(t), t, 0)], we condition on the number of arrivals in
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Figure A-1: Threshold valuation p,,.m

the interval (t, t + At). To reduce notational complexity, let

r ({ti}N(t)) = (t) F(min(5(ti), x))
F (5 (ti)) (A.29)

Suppose that there was arrival in (t, t +At); this event has probability AAt+o(At),

where o(At) indicates any function f(At) such that limat,0o f(t) = 0, since the arrival

process is Poisson with rate A. Then the conditional expected utility is:

E[Ubid(T)( (t), t, O)N(t, t + At) = 1] =

ZE[e-(Tt)( riF({ti}iNt)) x F(x) x F(x)ldx)]P(N(t + At,T) = ) (A.30)
1=0

Note that here we first calculate the expected utility given N(t + At, T) = I and then

sum over all possible 1. The expectation Et on the right hand side is over N(t) and

Now if there was no arrival in (t, t + At); an event which has probability 1 - AAt +
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o(At), we get:

E[Ubid(T)(i(t), t, O)IN(t, t + At) = 0] =

E[e i(Txt)(t i}=) x F(x)'dx)]P(N(t+At,T) =1) (A.31)

The probability of more than one arrival in an interval of length At is o(At) and

thus the unconditional expected utility from bidding becomes:

E[Ubid(T) ((t), t, O)] = E[Ubid(T)(i(t), t,O)IN(t,t + At) = 1] x (At)

+ E [Ubid(T)((t),t, O) N(t, t + At) = ] x (1- AAt) + o(At)

(A.32)

Substituting for the terms, we get

E[Ubid(T)(5(t), t, )]

= E [efTt) (jl r(t ({ti}N=()) F(x)+dx)] P(N(t + At, T) = ) (AAt)
1=0

+ EE [e4 (Tt)( F ( {ti} N(t) )F(x)dx)] P(N(t + At, T) = )(1 - AAt) + o(At)
1=0

(A.33)

Similar to the above analysis, we next condition on the number of arrivals in (t, t')

to calculate E[Ubid(T) (V(t'), t', 0)], where to reduce notational complexity the notation

t' = t + At is used.

Consider a bidder B with type ((t'), t') and information It, = 0. Since the auction

is running at time t', all bidders of type (vi, ti, 0) arriving in the interval (0, t') have

valuation vi < i)(ti). Thus for bidder B the arrival process of other bidders is:

1. Non-homogeneous Poisson process in (0, t') with arrival rate A(r) = AF((r))

for T E (0, t)

2. Homogeneous Poisson process in (t', T] with arrival rate A.
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Now suppose that there is arrival in the interval (t, t'). For small At, the prob-

ability of this event is AF(v(t))At + o(At), since the arrival rate at t is AF(v(t)).

Therefore:

E[Uid(T)((t'), t', O)IN(t, t') = 1] =
00

E [e-0(Tt')
1=0

(JV(t)(
{tiN(t)) F(min(v(t), x))

2i=-1 J F(v(t)) F(x)'dx)]P(N(t',T) = l)

(A.34)

If there was no arrival in (t, t'), an event with probability (1 - AF(O))At + o(At)),

we get:

E[Ubid(T) ((t'), t', O)|N(t, t') = 0)] =

E[e-(T-t') jI(t') F ({ti}(t)) F()dx)]
1=0 

P(N(t', T) = )

Since the probability of more than one arrival in an interval of length At is o(At)

the unconditional expected utility is:

E[Ubid(T)((t'), t', 0)] = E [Ubid(T)((t'), t', O)IN(t, t') = 1)] (F(i(t))At)

+ E [Ubid(T)( (t ), t, O) IN(t, t) = O] (1 - AF(v(t))At) + o(At)

Substituting (A.34) and (A.35) in the above expression we get:

E [Ubid(T) ((t'), t, 0) =

E E [e,-m(T-t') (

+J] E [e3(T-t')1=0

/=0

I (t'), (Itif) )F(minP(t)t)) )]P= (D(t))
( r ({ti}Nt)F(x)ldx) ]V~

P(N(t', T) = 1) (1-AF(O(t))At) +o(At)

(A.36)

Consider now the error associated with substituting F(min(v(r),x)) with F(x)
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= I)(F(i(t))At)



in the first term of the right hand side of (A.36). The substitution effectively assumes

that one bidder has valuation in the interval [v, (t')] instead of [v, v(t)]. When

calculating the maximum valuation among the bidders, this assumption can lead to

a difference d(v(t), (t')) which is bounded as follows:

0 < d(5(t),v(t')) < (t') - (t) < M(t'- t)

where we have used the fact that (.) satisfies the Lipschitz condition for constant M.

Thus if we let T to be the first term in equation (A.36) and Tl' be the corresponding

approximate expression, then we have

0 < T - T1 E E e- (T - tt))] x Pr(N(t', T) = ) * AF(Vperm(r))At

< e-P(T-t')MAF(i(t)) (At)2

and the error due to the approximation is thus o(At).

Thus (A.36) can be rewritten as

E[Ubid(i(t'), t')] = E [e-(T-t') ( j F(x)l+ldx)] Pr(N(t', T) = )(AAt)
1=0

+ (E[e-(T-t)( F(x)ldx)] Pr(N(t', T) = )(1 - AF((T)) At) +o(At)

(A.37)

Subtracting equation (A.33) from equation (A.37), dividing by At and taking the

limit At - 0, we get, after simplification,

div(t) (P + A(1- F(v(t)))) ((t)- P)
dt 1 6-(i+A(1-F(V(t)))) (T-t)

Recall that bidder valuations are assumed to be uniformly distributed and thus

F(x) = x-V for x e [v, ].

Substituting t = 0 in (A.26), we get the initial value for the above differential
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equation

V(0) = P-T ( W (-e-(P+)T _-(P - v)AT+ me-( +)T ) _(+
where as before W is Lamberts W function.

where as before W is Lambert's W function.
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