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Abstract: 
Effects of breaking various symmetries on optical properties in ordered materials have been 

studied. Photonic crystals lacking space-inversion and time-reversal symmetries were shown to display 

nonreciprocal dispersion relations, and to exhibit a remarkable set of symmetry-related properties. Even in 

ID, these materials are found to display indirect photonic band gaps, backward wave propagating modes 

(antiparallel phase and group velocities) which enable negative refraction at the air-crystal interface, ability 

to allow bending light with perpendicular magnetic fields, unidirectional superprism effects, etc. By 

calculating the complex photonic band structure, we show that the gap modes differ fhdamentally fkom 

the commonly assumed evanescent modes with purely imaginary wave vectors - solely due to symmetry, 

we show that the gaps of nonreciprocal photonic crystals have complex wave vectors with both imaginary 

components and non-zero, frequency dependent real components. This basic finding is further studied in 

the context of tunneling dynamics, by considering the problem of tunneling time for nonreciprocal photonic 

band gap barriers (the tunneling wave packet has an energy in the middle of the gap). It was found that the 

classical Hartman effect (independence of tunneling time on barrier length, beyond a certain length), 

previously implied as universal, is forbidden solely due to symmetry. Instead of a classical zero group 

delay, we find that tunneling wave packets with opposite spins display non-zero group delays, with 

opposite signs. Due to analogies based on symmetry, these results directly impact the problem of spin- 

polarized electronic tunneling in magnetized noncentrosymmetric semiconductors, such as GaMnAs or 

carbon nanotubes with applied axial magnetic fields. 

An interference lithography based fabrication process was developed to produce 2D and 3D 

quasiperiodically structured materials, which have long-range order but break translational symmetry. 

Multiple exposure interference lithography was used to fabricate 2D quasicrystals with feature sizes as 

small as 100nrn. Replica molding was used to fabricate transparent and conformable 2D quasiperiodic 

phase masks, which subsequently allowed the fabrication of 3D structured materials with quasiperiodicity 

by coherent diffiraction lithography. The effect of the higher point group symmetries of 2D quasicrystals on 

photonic band gap formation (TM polarized only) was studied by finite difference time domain 

calculations, and it was found that increasing the rotational symmetry does not always lead to wider gaps. 

Thesis supervisor: Edwin L. Thomas 
Title: Monis Cohen Professor of Materials Science and Engineering 
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List of Figures 

Figure 2-1 - Examples of 3D photonic crystals. (a) Face centered cubic crystals obtained by sedimentation 

of colloidal silica particles [I]; (b) Self-assembled double gyroid crystal from a polystyrene- 

polyisoprene diblock copolymer after the isoprene phase was selectively removed [2]; (c) 

"Woodpile" photonic crystal fabricated in silicon [3]; (d) Simple cubic lattice photonic crystal made 

in silicon [4]. 

Figure 2-2 - Analogies between atomic crystals and photonic crystals. Adapted from [I 11. See text. 

Figure 2-3 - 1D photonic crystal with a bilayer unit cell. 

Figure 2-4 - (a) Dispersion relation in a 1D photonic crystal showing formation of the first band gap and 

propagating modes in the photonic crystal (solid lines). Dashed lines represent the solutions in the 

case of a homogeneous material, the limit of equal dielectric constants in the two layers of the 

photonic crystal unit cell. (b) Definitions of the phase and group velocities. A wave packet (or pulse) 

is shown in order to emphasize that the phase velocity corresponds to the motion of phase fronts, 

while the group velocity gives the signal velocity, the velocity with which the pulse envelope 

propagates in space. 

Figure 2-5 - (a) Periodic dispersion relation solution for a 1D photonic crystal. The gray area indicates the 

reduced Brillouin zone. (b) Band structure of a 1D photonic crystal obtained either by folding the 

w(k,) solution belonging to k,=O into the reduced Brillouin zone, or by generating the upper bands 

using the periodicity of the dispersion relation, as shown in (a). 

Figure 2-6 - Calculated photonic band structures for 1D photonic crystals with bilayer unit cells and nl = 

1.5, and n2 = 2.2. (a) Photonic gaps form at all band crossing points in the case when the layers have 

the same thickness, dl = d?, similar to the conceptual diagram shown in Figure 2-6; (b) In the special 

case when the optical thickness of each layer is a constant (also called quarter-wave case) certain 

photonic bands remain degenerate instead of forming gaps. 

Figure 3-1 - Conceptual representation of the structural rotation throughout the unit cell of a 1D chiral 

photonic crystal showing the periodic, right-handed (RH) continuous twist along the z axis of an 

arbitrary vector with fixed orientation in the local material coordinate system. The spatial period L is 

defined for a fill 2.n rotation, +(z+L) = +(z) + 2.n. 

Figure 3-2 - Numerically calculated photonic band structure for axial propagation, w(k,, kx=k,,=O), at two 

orientations of the magnetogyration vector, gJlz (gray curves), and gllx (black curves). Inset shows a 

magnification of the photonic band structure near the bandgap. Note that the gJJx band structure is 

also valid for the case when no magnetooptic activity is present, describing a simple dielectric helical 

medium. 

Figure 3-3 - (b) Numerically calculated photonic band structure for axial propagation, dk,, kx=ky=O), 

when gJ Jz. The thick lines correspond to propagating eigenmodes. The evanescent modes are shown 



with thin lines, the darker ones for the real part of the wave vector, Re(k,), and the lighter lines for 

the imaginary part, Im{k,). (a) Transmission of plane waves propagating in the +z direction (y > 0) 

through a finite piece of the RH photonic crystal, showing the total transmissivities of LCP waves 

(TLL+TLR) and stop-band for RCP waves (TRR+TRL). The polarization conversion contribution 

(TLR=TRL) is scaled by a factor of 200, for visibility on the same plot; (c) same as (a), but the 

magnetogyration vector is reversed (y < 0), corresponding to an incident wave propagating in the -z 

direction. 

Figure 3-4 - Isofiequency sections through numerically calculated dispersion surfaces, cll(k&=O,k,); (a) 

Effect of magnetooptic activity (y > 0) on the isofrequency contours, when w = 0.65 [2zc/L] and the 

magnetogyration vector is parallel to the helical axis (gllz) ; (b) Isofiequency cuts at multiple 

frequencies, for constant magnetooptic activity (y = 0. I, gllz). 

Figure 3-5 - Isofiequency cut at w = 0.67 [2nc/L] through numerically calculated dispersion surfaces, 

ajk,ky=O,kz), when gllz (y =O.I), showing the directions of the Poynting vectors of four eigenrnodes 

that are phase matched to a particular value of the parallel wave vector, k,. 

Figure 3-6 - Isofiequency cuts through numerically calculated dispersion surfaces, w(kvk+=O,kz); (a) 

Effect of magnetooptic activity (y > 0) on the w = 0.65 [2z c/L] contours, when the magnetogyration 

vector is perpendicular to the helical axis (gllx) ; (b) Isofiequency cuts at multiple frequencies, for 

constant magnetooptic activity (y = 0.2, to exaggerate this qualitative effect, gllx). 

Figure 3-7 - Isofiequency cut at w = 0.65 [2z/L] through numerically calculated dispersion surfaces, 

cll(k,k+=O,kz), showing three different regimes of transmission when gllx ( y = 0.2 to exaggerate the 

effect graphically); (i) and (iii) depict normal refiaction at the air-photonic crystal interface; (ii) 

shows negative refiaction at the air-photonic crystal interface. 

Figure 4-1 - (a) dPBG at the anticrossing of bands with equal group velocities; (b) iPBG at the anticrossing 

of different vg bands, as seen in nonreciprocal PCs. The original bands are shown with dashed lines, 

the coupled propagating modes with solid, black curves and the expected real part of the gap modes 

with a thicker solid gray line. 

Figure 4-2 - (a) Reciprocal band structure with dPBG for a 1D PC breaking only T-R symmetry (EF = 1.72, 

y~ = 0. I,  E, = 1.52, 4 = 0 in Eqs. (2) and (3), see text); (b), (c) and (e) Magnification of the first gap 

region showing the original bands and the real and imaginary parts of the complex kgap solutions in 

the PBGs - note the vertical alignment at the edge of the first Brillouin zone. 

Figure 4-3 - (a), (b) Nonreciprocal band structure for a 1D PC breaking both S-I and T-R ( E ~  = 1.72, y~ = 

0.1, E, = 1.52, & = 0.02 in Eqs. (2) and (3), see text). (c), (d) and (e) show the gap mode solutions. 

Note the vertical (mirror) symmetry about k = 0 of Im(kgap) solutions and the different frequency 

dependence of the Re {kgap) solutions. 

Figure 4-4 - Tunneling time for RCP and LCP pulses with narrow frequency bandwidths centered in the 

gaps of the LCP and RCP bands shown in Fig. 4-2 (dPBG) and Fig. 4-3 (iPBG). In both cases the 



center frequencies are Q, LCP = 0.31 6 [2m/LPeriJ and Q, RCP = 0.31 1 [2m/LperiJ), with LWri& = 

486nm. 

Figure 5-1 - Quasicrystalline structures. (a) HRTEM phase-contrast atomic-resolution image of 

Zn6Mg3Ho decagonal quasicrystal viewed along the 10-fold rotation axis [www.jeol.com] and a 

photograph of a macroscopic (rnm scale) quasicrystal; (b) and (c) SEM pictures of photonic 

quasicrystal made by etching holes in a pattern given by a quasiperiodic tiling - Penrose in (b) (from 

[12]) and dodecagonal in (c) (from [13]); (d) and (e) calculated quasiperiodic light intensity patterns 

from interference of laser beams, showing 10- fold and 12-fold rotational symmetries (this work). 

Figure 5-2 - Spatial distribution of the total light intensity, I(x,y), pattern for (a) square crystal (N = 2 

exposures); (b) octagonal (N=4), (c) decagonal (N=5) and (d) dodecagonal (N=6) quasicrystals. The 

axes units are normalized to the laser wavelength, and higher intensities are plotted as lighter pixels. 

Figure 5-3 - Quasicrystalline structures with 18% fraction of a given component (white pixels) for the 

investigated rotational symmetries; the (X-1) series corresponds to I > I,,, while the (X-2) series to I 

< I, (X = a, b, c); (a) octagonal quasicrystal with IcuiImmimm = 67% in (a-1) and 33% in (a-2); (b) 

decagonal quasicrystal with Icu{Imarimum = 63% in (b-1) and 34% in (b-2); (c) dodecagonal 

quasicrystal with Icu{Immimum = 64% in (c-1) and 35% in (c-2). 

Figure 5-4 - (a) Octagonal, (b) decagonal, and (c) dodecagonal patterns with varying volume fractions of 

the white region (where I(xy) > I,,,), showing not only a continuous change of the size and shape of 

particular features, but also a discontinuous appearance of new structural features. Values of the 

corresponding I,,, are given in Table 5-1. 

Figure 5-5 - Generation of a 1D quasicrystal by projection from a 2D square lattice. The key requirement 

is for the (e.g. ID) axis E (onto which the projection is done) to be oriented at an irrational angle with 

respect to the translation vectors of the higher dimension (e.g. 2D) periodic structure. Adapted from 

11 11. 

Figure 5-6 - Examples of 2D quasicrystalline tilings. (a) octagonal quasicrystal; (b) decagonal quasicrystal 

and (c) dodecagonal quasicrystal. The patterns are centered with the high rotation axis at (53). 

Figure 5-7 - 18% fill fraction 2D quasiperiodic structures based on mathematical quasicrystalline tilings 

(for comparison with interference lithography structures shown in Figure 5-3). 

Figure 5-8 - Comparison between the location of the PBG via (a) photonic band structure (exact method), 

and (b) FDTD calculation of the LDOS at the center of a dielectric cylinder (approximate method) 

for a 2D triangular lattice with 10% dielectric rods with E = 6 in air. 

Figure 5-9 - Width of the 1st TM PBG in square and triangular 2D photonic crystals as a fhction of 

volume fraction, for dielectric (a) E = 4, (b) E = 6, (c) E = 8, and (d) E = 11.4 cylindrical rods 

surrounded by air. Each point on the plots represents an actual band structure calculation. 

Figure 5-10 - Gap maps from assembling the LDOS curves calculated at the point (0,O) in each shown 

structure, for fill fractions f = 0.05-0.16 (steps of 0.01), and 0.18-0.30 (steps of 0.02) for (a) 



octagonal, (b) decagonal, and (c) dodecagonal quasicrystals from interference, with an E =  6 

dielectric placed where I > I,,,. Small pieces of each PBG structure with 18% dielectric (white 

regions) are shown above each LDOS plot for emphasizing the structural differences between 

quasicrystals. Note that a = &ntederen,J2 = 1. 

Figure 5-11 - same as Figure 5- 10, but with E = 8 for the dielectric component (higher dielectric contrast). 

Figure 5-12 - Gap maps from assembling the LDOS curves calculated at the highest point group symmetry 

location in each structure at various fill fractions for (a) 2D triangular photonic crystal, (b) octagonal 

PROJ- PQC and (c) octagonal IL-PQC, all with E = 4 dielectric in air. Small pieces of each PBG 

structure with 18% dielectric (white regions) are shown above each LDOS plot for emphasizing the 

structural differences between quasicrystals. 

Figure 5-13 - same as Figure 5-12, but for a dielectric with E=  6. 

Figure 5-14 - Gap maps from assembling the LDOS curves calculated at various fill fractions for (a-1) IL- 

style and (a-2) PROJ-style 2D decagonal quasicrystal, and (b-1) IL-style and (b-2) PROJ-style 2D 

dodecagonal quasicrystal, all with E = 6 dielectric and air. Small pieces of each PQC with 18% 

dielectric (white regions) are shown next to each LDOS plot for emphasizing the structural 

differences between quasicrystals. 

Figure 5-15 - Same as Figure 5-14, with E = 8 dielectric and air. 

Figure 5-16 - Effect of a shift of the projecting plane in high dimensions. The projected Penrose-family 

2D quasicrystalline structural changes. (a) projection plane going the origin of the higher 

dimensional space, (b) shift with half a period in the hyperspace. See [ l  11. 

Figure 6-1 - IL with 5 beams arranged to produce a Penrose-like quasicrystal. (a) orientation of the k 

vectors corresponding to each beam; (b) orientation and relations between the difference vectors, 

A&/, that correspond to the pair-wise interference of any two of the 5 beams shown in (a). 

Figure 6-2 - Perspective and top-down views of the 2D decagonal QC intensity distributions obtained from 

IL with (a) 5 exposures with 72' rotations and (b) 5 beams separated by 72". In all cases, the axes 

are in units of the wavelength, h = 1, and the polarizations are out-of-plane and in phase. 

Figure 6-3 - 2D quasiperiodic pattern obtained from 3 exposures of line gratings with equal spatial periods 

(P = hl2 = 0.5, see Eq. 6-I), but oriented as shown in the inset figure (at 0°, 36' and 90" measured 

from x towards y). (a) Total intensity pattern; (b) Binarized intensity pattern obtained by 

thresholding at Ithreshoki = 75% I,,,, = 9; (c) horizontal profile at y = 0 for the total intensity pattern 

shown in (a); (d) horizontal profile at y = 0 for the binarized intensity pattern shown in (b). All 

dimensions are in units of h. 

Figure 6-4 - (a) A laser beam propagating in the xyz lab coordinate frame in an arbitrary direction k, with 

arbitrary amplitude and polarization given by El  and EZ; (b) Defnition the elezej coordinate system 

in relation with the xyz coordinate system. 



Figure 6-5 - IL configuration for fabricating Penrose-like 2D PQC (a) interference of five laser beams 

converging to a central point from the corners of a regular pentagon (i.e. the projections of the five k 

vectors in the sample plane are separated by 72'); (b) Five exposures of line gratings formed by IL 

with 2 beams, where the sample substrate is rotated with 72' after each exposure. 

Figure 6-6 - (a) Configuration of the Lloyd's mirror IL system built and shared by the MIT Nanostructures 

Laboratory; (b) Sample holder assembly, showing the rotation axis for changing the grating 

periodicity, and the axis around which the substrate is rotated during ME-IL; (c) Rotating the entire 

stage assembly changes the incidence angle and thus the periodicity of the recorded gratings. Adapted 

from [29]. 

Figure 6-7 - Dependence of volume fractions on the intensity cutoff level for 2D quasiperiodic patterns 

obtained from 4, 5, and 6 exposure IL. Representative pictures of the three types of 2D PQC 

structures at a few fill fractions are also shown in Figure 5.4. 

Figure 6-8 - Tri-layer resist stack. An optically absorbing antireflection coating (ARC) placed on top of 

the substrate is used to eliminate the reflection R2 from the bottom of the photoresist layer, such that 

only the interference between the TI rays is recorded. An optically thin interlayer (e.g. 20nm Si02) is 

placed between the photoresist and ARC layers for accurately capturing the photoresist pattern before 

transfer into the substrate. 

Figure 6-9 - Process flow for using ME-IL to fabricate 2D PQC samples, with SEM images of actual 

samples produced in the case of line gratings (one exposure). (a) the initial tri-layer resist stack is 

composed of 200nm photoresist, 20nm Si02 and 200nm organic ARC material, on a 1.5pm thermal 

oxide coated silicon wafer substrate; (b) the developed photoresist structure; (c) the Si02 interlayer is 

etched with CHF3 RIE using the photoresist as a mask; (d) the pattern is M e r  transferred into ARC 

by etching with O2 RIE using the thin Si02 caps as a mask; (e) the 2D quasiperiodic pattern is finally 

transferred to the Si02 substrate by CHF3 etching using the ARC as a mask; (f) the final 2D PQC 

sample is obtained by stripping the ARC mask with 0 2  plasma. 

Figure 6-10 - (a) Tri-layer resist stack structure: (from the top) photoresist, Si02 interlayer, ARC layer and 

substrate (1.5pm thermal oxide on silicon); (b) Effect of varying the thickness of the ARC layer on 

the reflectivity R2 h m  the bottom interface of the photoresist layer in the case of a 300nm period 

grating. The simulations used the refractive index data provided in Table 6-2. 

Figure 6-11 - Scanning electron microscope images at 30k magnification of Si02 line gratings obtained 

from photoresist patterns produced using two IL approaches. In (a) and (b) a single exposure of 

11.751ni.n (1 15nW laser power delivered at the sample plane) is performed. The same total dose is 

delivered in (c) as 4 exposures and in (d) as 5 exposures, but additional lmin delays are introduced 

between each exposure. It can be seen that the resulting gratings are virtually identical within the 

error limit of the SEM measurement. Measured duty cycles are 43% in (a), and 41% in (b), 39% in 

(c), and 41% in (d). 



Figure 6-12 - Top-down view SEM image of a Penrose-like decagonal 2D quasiperiodic pattern etched in 

Si02. Areas with local 5 and 10 fold rotational symmetries are emphasized, and a portion of a 

Penrose tiling pattern is overlayed on the sample image. The inset figure shows an edge-on SEM 

image of the same sample, where the height of the posts is 240nm. The structure was obtained by 5 

exposures with 36' rotations of 300nm period line gratings. 

Figure 6-13 - Top-down SEM images of 2D (a) octagonal, (b) decagonal, and (c) dodecagonal 

quasiperiodic structures in silica produced by ME-IL with N = 4, 5, and 6, respectively, exposures 

and rotations with 180°1N angles. Views of the central axis showing 8mm, 10- and 12mm point 

symmetry. 

Figure 6-14 - Effect of exposure dose on the recorded photoresist pattern for the case of a 2D decagonal 

quasicrystal from ME-IL with 5 exposures and rotations with 36'. The fiaction of substrate area 

covered with photoresist (gray areas in the figures) is 66% in (a), 44% in (b), and 30% in (c). 

Figure 6-15 - Comparison between SEM images of experimental photoresist patterns produced by ME-IL 

with (a) 5 exposures and 36' rotations, or (c) 6 exposures and 30" rotations, with computed intensity 

patterns approximating the experimental conditions, as (b) and (d). 300nm period line gratings were 

recorded in each exposure. 

Figure 6-16 - Large area, plan view SEM image of an octagonal 2D quasiperiodic silica structure obtained 

by 4 exposures of line gratings with 300nm periodicity, and subsequent rotations with 45'. 

Figure 6-17 - Coherent diffraction lithography (also known as phase mask lithography). The schematic 

shows an implementation for creating 3D nanostructured polymeric templates by recording the near 

field intensity pattern generated by an elastomeric, transparent, 2D periodic diffraction grating into a 

photoresist. From [40]. 

Figure 6-18 - (a) Elastomeric replica in PDMS of an octagonal 2D quasiperiodic silica grating. The depth 

of the topographical features is 4 5 k ,  (b) the difiaction spectrum obtained for a 632nm HeNe 

laser - imaged by projection on a paper screen placed at 5.2cm away from the PDMS grating (digital 

photograph captured by Mr. Marcus Dahlem, MIT EECS). 

Figure 6-19 - A sub-micron structured, 3D epoxy polymeric network with quasiperiodicy obtained by CDL 

with a transparent octagonal 2D quasiperiodic PDMS grating, exposed with the 361nm line of an Ar- 

ion laser. Representative local octagonally symmetric regions are indicated with green octagons. 

Figure 6-20 - (a) Schematic of a diblock copolymer molecule, formed by two chemically distinct polymer 

chains joined covalently. Polystyrene-b-polyisoprene is shown as an examle; (b) Bulk morphologies 

obtained in diblock copolymers as the volume fraction of a component is increased from 0 to 50%. 

Figure 6-21 - Block copolymer nanolithography. Formation of a nanopatterning mask after selectively 

removing a component from a self-assembled block copolymer thin film with either spherical or 

cylindrical morphology. 

Figure 6-22 - Plan view SEM images of representative 2D quasiperiodic array of posts used as templates 

for BCP self-assembly studies (a) 2D dodecagonal QC; (b) 2D octagonal QC. 



Figure 6-23 - SEM images of a monolayer of PS-PFS spherical morphology BCP, after O2 RIE, self- 

assembled on 2D quasiperiodic topographically patterned substrates with (a) 12-fold rotationally 

symmetric QC and (b) 8-fold rotationally symmetric QC. 

Figure 6-24 - MIT Nanoruler Project: 12" wafer patterned with 400nm period line gratings 

(http://web.mit. edu/newso~ce/2004/nanoruler-0128. html) 



List of Tables 
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Table 5-2 - Effect of dielectric cylinder radius on volume fraction in 2D PQC obtained from 2D 

quasiperiodic tilings as shown in Figure 5-7, calculated for a square sample of side 21a discretized 

with 32pointsla (a = 1, same sizes as used in the PBG simulations discussed in Section 5.3). For 

each symmetry, we also include the total number of cylinders contained in the 2 1x2 1 a computational 

box. 

Table 5-3 - 2D TM PBG results from LDOS calculations at the center of high point group symmetry, for 

2D square (4mm) and triangular (6mm) PC, and 2D 8mm, lOmm, and 12mm IL-PQC and, 

respectively, PROJ-PQC. The results correspond to a dielectric contrast of 8:1, at the fill fraction of 

15%, where the 2D PC have maximum PBG widths. 

Table 6-1 - Analysis of the uniqueness of the 10 general wave vector differences in Eq. (6-6) for the case of 

an equiangular spacing of the five beams (72" angle). The data in this table relates to Figure 6-1. 
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Table 6-3 - Reactive Ion Etching (RIE) process parameters. For all gases, the total flow rate was 15sccm. 



ACKNOWLEDGEMENTS 

I am writing this section last, in the early morning hours of the day following my 

PhD defense. I am not sure I will be able to fully capture in words the gratitude I feel for 

the life enriching experiences I have enjoyed throughout the past nine years while here at 

MIT, as an undergraduate of Courses 10 and 5 between 1997-2000, and then as a 

graduate student in Course 3. 

This section would not feel just without first acknowledging the mentorship of a 

few people from my undergraduate years, which have significantly shaped my later path 

at MIT. In particular, I am very thankful to Prof. Timothy Swager of the Chemistry 

Department for having offered me a place in his laboratory and my first real research job. 

Tim is an incredible scientist, and I feel fortunate for having been part of his lab. It was 

during the two years I spent working with him that my interest in the optical properties of 

materials has crystallized and ultimately led to my decision to join the PhD program of 

the DMSE at MIT. I am also very thankful to Prof. Robert Cohen of the ChemE 

Department, who was the first to teach me about polymer physics and offer genuine 

altruistic mentorship outside the classroom. I remember vividly the many conversations 

we had about graduate school and in particular about my desire to enroll in the ChemE 

Practice School. Bob is a wonderful individual, who cares deeply about the well being of 

his students. Last, but not least, I would like to acknowledge the late Dr. Michael Mohr, 

my undergraduate advisor. Mike remains to me the epitome of what a true Chemical 

Engineer is, and a reason for which I feel proud for still having some ChemE blood 

running through my veins. His passing away last year was a great loss for all of us that 

knew him. 

Among all at MIT, I am most grateful to Prof. Edwin Thomas, my PhD advisor. 

From all my mentors, Ned has been by far the most influential contribution to my 

academic development. I feel very fortunate for having worked with, and learned from 

Ned on so many occasions, and am very thankful for his continued support throughout 

the past years as my research grew out of the initial mold it was supposed to fill. Ned's 

personal example remains to me the standard for an insatiable appetite for good science, 



coupled with an outstanding intellectual bandwidth, and a sincere dedication for the 

success of his students. His unwavering support, and insightll feedback has allowed my 

research to truly bloom, and to reach boundaries that I could not have imagined when I 

joined his lab and the MIT DMSE. 

I would also like to acknowledge the support of Prof. Henry Smith, who 

welcomed me in the Nanostructures Laboratory and made possible a significant portion 

of the research conducted in this thesis. Furthermore, I would like to thank my thesis 

committee, Profs. Caroline Ross, Moungi Bawendi and Rajeev Ram for their help and 

feedback on my research. In particular, I am thankll to Rajeev for being one of the best 

teachers I have ever had. 

I have been fortunate over the past years to call myself the colleague and fiend of 

numerous people at MIT. Apologizing in advance to those that may not have been 

remembered at this early morning hour, I would like to acknowledge Vance Williams, 

Jinsang Kim, Chinedum Osuji, Chaitanya Ullal, Augustine Urbas, JongSeung Yoon, Sam 

Ha, Tae yi Choi, Ji Woong Park, Taras Gorishnyy , Rafal Mickiewicz, Joe W alish, Michael 

Walsh, Tim Savas, Joel Yang, Brian Cord, Jim Daley, Joy Cheng, Mihai Ibanescu, 

Marcus Dahlem, Joe Tracy, Dmitry Dinega. I thank you all. 

Among all, I am most thankll to my family. I thank my parents and brother for 

their continued love and support. I thank my wife Cristina for her love, patience and for 

believing in me, despite the long hours MIT took fiom our time spent together. I am 

most fortunate for having her besides me, and carry the deepest admiration for her inner 

strength and beauty. I am thankful to her for having given me a most beautill present 

four months ago, our first-born son. 

I dedicate this thesis to you, Cristina, my dear love. 



THESIS OVERVIEW 

Chapter 1. 

Thesis overview 

The central theme of this thesis has been the study of photonic band gap materials 

where certain symmetries are broken by design. The first half of the thesis focuses on a 

theoretical analysis of the basic features of light propagation and tunneling dynamics in 

1D photonic crystals simultaneously lacking time-reversal and space-inversion 

symmetries, the photonic analogs of noncentrosymmetric magnetic semiconductors. In 

the second part of the thesis, both theoretical and experimental results are reported for 2D 

photonic quasicrystals, a novel class of materials where translational symmetry is broken. 

Chapter 2 serves as an introduction to photonic crystals (PC), structured materials 

with a periodic spatial variation of the refractive index on the scale of the wavelength of 

light [I]. Since the first part of the thesis deals with fairly advanced theoretical problems 

in PC physics, we set out to provide in this chapter an overview of the basic concepts and 

tools used to understand the optical properties of PC. The material science perspective is 

first adopted, and pictorial examples of real PC materials are shown. We then adopt a 

physics view, and by considering the case of a 1D photonic crystal, we introduce 

Maxwell's equations and their solutions in periodic media. A strong emphasis is placed 

on the fundamental connections between PC physics and the physics of electronic wave 

propagation in atomic crystals. Dispersion relations and photonic band diagrams are 

introduced semiquantitatively, and their use for predicting PC properties is described. 
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Chapter 3 is the first of two chapters presenting the results of our theoretical 

investigations of light propagation in 1D periodic PC simultaneously lacking space- 

inversion (S-I) and time-reversal (T-R) symmetries. S-I symmetry is absent, for example, 

in PC having a noncentrosyrnmetric arrangement of their material constituents (e.g. 

helical, or spiral dielectric structures, the case investigated in Chapter 3), or in PC 

comprised of noncentros ymmetric material components (i. e. optically active materials, 

see Chapter 4). Similarly, including magneto-optically active material components in the 

unit cell can break T-R symmetry if the light propagation direction is not perpendicular to 

the material magnetization. The representative material systems that were studied are a 

1D periodic, dielectric helical medium with magnetooptic activity in Chapter 3, and a 1D 

periodic photonic crystal comprised of alternating layers with optical activity and with 

magnetooptic activity in Chapter 4. 

The initial motivation for this work has been our interest in understanding the 

physics of PC with nonreciprocal dispersion relations, o(k) # a(-k). While the vast 

majority of PC literature focuses on reciprocal systems, a 2001 publication by Figotin and 

Vitebsky [2] were first to report that nonreciprocal PC exhibit properties that significantly 

deviate from known optical properties. Figotin discussed the design of a 1D 

nonreciprocal PC that allows "freezing" light in one direction, while allowing free 

propagation in the opposite direction (an optical diode-like behavior enabled by 

introducing a mode with zero group velocity and zero group velocity dispersion at a 

fkequenc y for which the opposite propagation direction displays a normal propagating 

mode). In Chapter 3 we present a first comprehensive study of the optical properties of 

1D nonreciprocal PC, where we show that this class of PC exhibits in fact many more 
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remarkable PC properties as a sole consequence of symmetries, properties which are thus 

independent of the choice of materials, magnitudes of their optical constants, etc.. We 

introduced the concept of indirect photonic band gaps (edges not aligned in k-space even 

in ID, formed at the anticrossing of bands with different group velocities), and showed 

for the first time that 1D nonreciprocal PC will always display propagating eigenmodes 

with a negative group velocity in select frequency intervals (which is found to also allow 

for negative refraction at the air-PC interface). Furthermore, we show that the path of 

light inside such PC can be bent with perpendicular magnetic fields, similarly to the 

photonic Hall effect observed in uniform (i.e. non-periodic) materials with similar 

symmetries [3], and point out the presence of unidirectional superprism effects (large 

variations of the refraction angle for small changes of the incident angle or of the 

wavelength, but only for one direction, while normal refractive properties are displayed if 

the propagation direction or the material magnetization are reversed). These results are 

remarkable, since they arise as a consequence of symmetry, and because they extend our 

knowledge of optical properties and phenomena enabled by PC through the carell  

choice of material components and their arrangement inside the unit cell. 

During our studies of 1D PC breaking both S-I and T-R symmetries, we became 

increasingly aware of, and very interested in the consequences of the fact that optical 

properties arising solely from symmetry constraints should also apply in the electronic 

case, where the material periodicity is at the atomic scale. The electronic analog to our 

photonic crystal system is a noncentrosymmetric periodic atomic system containing, for 

example, magnetic atoms. Two prominent examples that fit this description are 

semiconductors with zinc-blende crystal structure (GaAs, CdTe, etc.) doped with 
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magnetic atoms (Mn in most cases) [4], and chiral carbon nanotubes in the presence of 

magnetic fields applied axially [ 5 ] .  Both these types of materials are subjects of intense 

investigation in the fields of spin electronics (spintronics) [6]. Thus, by using this 

photonic-electronic crystal analogy, we were able to bring to light some unique insights 

into the basic tunneling electronic properties of two very important classes of materials. 

Chapter 4 presents results from our investigations of the tunneling time problem 

in the case of spin-polarized particles traversing a barrier region lacking both S-I and T-R 

symmetries. The basic analysis of tunneling dynamics is conducted in the context of 

wave packets propagating across a barrier, which is used to describe both electronic and 

photonic tunneling due to analogies between Schrodinger's and Maxwell's equations [7, 

81. Even though tunneling is a classical problem that has been investigated for many 

decades, it remains presently an active subject for investigation, and a source of 

controversy (related primarily to explaining predicted and experimentally measured 

superlurninal group delays). While studying the band structures of our nonreciprocal 1D 

PC systems, it became clear to us that the classical features of tunneling dynamics cannot 

be exhibited in the absence of the two inversion symmetries. We find that the non- 

propagating, complex eigenmodes in the first photonic band gap are circularly polarized 

(analogous to spin-polarized electronic states), and that the gap eigenmodes are not 

described by the expected evanescent solutions (purely imaginary wave vector). Due to 

symmetry, the gap modes are shown to have complex wave vectors, with fkequency 

dependent and non-zero real components. This allowed us to show for the first time that 

symmetries alone forbid the universally assumed Hartman effect (independence of 

tunneling time on barrier length beyond a certain length) [7, 91. Instead, we find that, as 
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the barrier length is increased beyond a threshold, the tunneling time becomes linearly 

dependent on barrier length, and, moreover, that the sign of the group delay changes with 

the spin of the tunneling particle (i.e. the tunneling time can decrease with increasing 

barrier length). As will be discussed in Chapter 4, this unusual prediction of a negative 

group delay has been recently confirmed by an independent study of electronic tunneling 

in barriers of noncentrosyrnmetic semiconductors with out-of-plane magnetization (Znl. 

,Mn,Se and Cdl,MnXTe), which are electronic analogs to the 1D photonic cyrstal system 

studied by us [4]. 

In the second half of the thesis, we shift focus and examine the case of photonic 

quasicrystals (PQC), which are ordered materials without translational symmetry [ 101. 

This class of photonic band gap (PBG) materials has only recently been introduced [l l] ,  

and to this date it remains vastly unexplored by comparison with PC, both experimentally 

and theoretically [ 1 21. 

The theoretical development of PQC is significantly affected by the fact that the 

absence of translational periodicity does not allow one to employ the same theoretical 

tools as those developed for photonic crystals. As an example, since one cannot assume 

Bloch waves as solutions to Maxwell's equations, describing the propagation of light 

through PQC is a very poorly understood problem, with no easy solutions. The PBG 

properties of PQC PBG are somewhat easier to investigate, but these studies still place a 

very high demand on computational resources as a result of having to model large 

structures (since no representative small unit cell can be defined). The current interest in 

PQC lays in their promise for superior PBG properties compared to PC, arising from their 

intrinsic higher rotational symmetries which are known to lead to rounder dispersion 
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surfaces and thus to a potential increase of the PBG widths at a given refractive index 

contrast (or a reduction of the contrast required for a certain PBG width). Furthermore, 

the theoretical studies of PQC are also affected by a poor understanding of the choices for 

PQC structures - consider that in 2D, while all crystals can be classified as belonging to 

five Bravais lattices, an arbitrarily large number of N-fold rotationally symmetric PQC 

lattices could be defined. Adding to the complexity of the problem, current 

investigations of PQC properties are affected by the essential lack of systematic studies 

of any the problems presented above, which could guide current research in this young 

research field. 

In order to develop some basic understanding of the main factors affecting PBG 

properties in 2D PQC, in Chapter 5 we explore PBG properties in two types of 2D PQC 

while varying the symmetry of the lattice and the choice of structural features (related to 

fabrication method, similar to the choice of a basis given a crystalline lattice). In 

particular, we studied the formation of 2D complete TM PBG in two families of 2D 

quasicrystals with 8mm, lOmm, and 12mrn point group symmetries (local rotational 

symmetries N = 8, 10, 12), and used as a basis of comparison corresponding 2D PC 

(4mm and 6mm point group symmetries). For each of the three noncrystallographic point 

group symmetries, we examined the corresponding 2D PQC structures obtained fiom 

interference lithography by multiple exposures, and 2D PQC structures obtained by 

placing dielectric rods at the vertices of 2D quasiperiodic tiling patterns having the same 

three noncrystallographic point groups. While the few existing studies of the properties 

of 2D PQC focus on the latter type of PQC, no study to date attempts to systematically 

compare the various point group symmetries. Furthermore, currently there is only one 
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investigation of the properties of PQC kom interference lithography (in [13] the 

propagation of TM waves through 12-fold rotationally symmetric 2D PQC was used as 

indirect way to determine PBG properties). 

Due to computational power restrictions, we have focused our PBG studies on the 

calculation of the local density of states (LDOS) for TM polarized modes at a center of 

high rotational symmetry for the two families of 2D PQC, for each of the three point 

group symmetries, 8mm, lOmm, and 12mm. We have varied both the dielectric contrast 

and the fill fractions to construct PBG maps. To gain more insight into the importance of 

point group symmetry, we first compared the 2D square (4mrn) and hexagonal (6mm) 

lattice PC by using exact band structure calculations. While larger PBG are expected for 

more symmetric PC when keeping the same structural features constant (e.g. dielectric 

rods on square vs. triangular 2D lattices), we quantitatively showed that symmetry has to 

be considered in the context of the contrast (and vice-versa): the higher the refractive 

index contrast, the smaller the increase of the PBG width with increasing symmetry. It 

was found that complete 2D TM gaps form for all the considered quasicrystals, and that 

they have widths comparable to those found for 2D PC with 4mm and 6mm symmetries. 

Increasing the rotational symmetry at the LDOS monitor point in the investigated 2D 

PQC systems was not found to correlate necessarily with wider PBG. However, as a 

consistent trend across the range of parameters explored, the simulations showed that the 

2D quasiperiodic arrays of dielectric cylinders tend to display wider TM PBG than their 

interference lithography (IL) counterparts having the same point group symmetries but 

structures consisting of ensembles of various shapes and sizes of dielectric domains. The 
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decagonal IL-PQC was found to have significantly inferior complete 2D TM PBG than 

the octagonal and dodecagonal IL-PQC. 

The actual fabrication of PQC is another difficulty affecting the progress in this 

field. The few existing experimental studies of PQC optical properties have employed 

samples fabricated via electron beam lithography [ 14- 161. However, the interference of 

properly arranged laser beams is known to also produce quasiperiodic light intensity 

patterns [17, 181, and, to date, was reported on three occasions to allow fabrication of 

quasiperiodically structured patterns. In 2003, Wang et al. [19] interfered five beams of 

light to produce Penrose-like photoresist structures, followed in 2004 by Gauthier and 

Ivanov [20] who used two beam IL to expose multiple line gratings on a rotatable 

substrate, producing 8-, lo-, and 12-fold rotationally symmetric quasiperiodic structures 

with features sizes of a few microns. In 2005, Gorkhali et al. [21] used again five beam 

IL to record a Penrose-like structure in a liquid crystal containing photopolymer. These 

three reports are the first to experimentally confirm the expectation that IL can be used to 

produce quasiperiodically structured materials. 

In Chapter 6, we first present a theoretical analysis of the 2D quasiperiodic 

structures that are produced via either multiple beam IL (MB-IL) [19] or via multiple 

exposure IL (ME-IL) [20], and quantitatively show that, while having the same rotational 

symmetries, the resulting quasicrystalline structures are physically different. MB-IL is 

found to produce intensity patterns that are equivalent to the superposition of a certain 

number of 2D quasiperiodic patterns similar to those produced by ME-IL. For example, 

the superposition of five laser beams in MB-IL produces a total intensity pattern that is 

equivalent to the sum of two incommensurate quasiperiodic intensity patterns of the type 
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obtained fiom ME-IL, where each of the latter patterns is a sum of five rotated line 

gratings. The actual fabrication of 8-, lo-, and 12-fold rotationally symmetric samples 

via ME-IL was thus pursued next. We describe a practical implementation that has 

allowed us to fabricate 2D quasicrystalline samples uniformly over ultra large areas 

(square centimeters, but our approach can be scaled up to entire silicon wafer sizes), and 

with feature sizes as small as 100nm, a -lox smaller size compared to the only two 

existing literature reports on using IL to fabricate quasicrystals [19, 201. This reduction 

in size is significant, given the difficulties expected fiom the low contrast of the intensity 

patterns resulting fiom ME-IL. These results have been enabled by using an ultra-stable 

lithographic interferometer based on the Lloyd's mirror design (only one laser beam is 

present in the system), in conjunction with using an antireflection layer inside the 

photoresist stack, properly designed to maximize the fidelity with which the 

quasiperiodic pattern is recorded in the top photoresist layer. These experimental results 

prove for the first time that IL can produce 2D PQC with feature sizes and quality similar 

to those obtained fiom electron beam lithography, but in a much more economic fashion 

and with sample sizes that allow for a wider potential for practical impact. 

Towards the end of Chapter 6, we report on two projects enabled by our success 

in fabricating large area, high quality 2D quasiperiodic structures with sub-micron 

features. First, we designed and implemented a coherent diffiaction lithography based 

process for the fabrication of novel 3D sub-micron structured quasiperiodic structures, by 

recording the near field intensity pattern produced by transparent 2D quasiperiodic 

diffiaction gratings illuminated from the opposite side in a thick photoresist layer. The 

2D gratings that were used in this study were fabricated by replica molding 
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polydimethylsiloxane (PDMS) in 2D quasiperiodic topographically patterned silica 

substrates. PDMS is a material particularly advantageous for this fabrication method due 

to its low surface energy and ability to conform well over large areas of photoresist 

coated substrates. Second, preliminary results for the self-assembly of block copolymers 

with spherical monolayer morphology in thin films on 2D quasiperiodic topographically 

patterned substrates are presented. This study was initiated with the goal of gaining 

novel insight into the competition between crystalline and quasicrystalline structure 

formation in materials, and at this time remains a work in progress. 

In conclusion, this thesis has shown that a wide variety of opportunities exist for 

exploiting symmetries to enable useful and novel optical properties in photonic band gap 

materials. Thus, one the one hand, decreasing symmetry in 1D systems (i.e. breaking 

time-reversal and space-inversion symmetries) enabled a remarkable set of optical 

properties arising solely from symmetry reasons - indirect photonic band gaps containing 

nonpropagating modes with both real and imaginary wave vector components that were 

shown to forbid the classically assumed Hartman effect in tunneling, and lead to an 

opposite dependence of the photonic tunneling time on barrier length for the two opposite 

circular polarizations (or spins). The propagating eigenrnodes of these 1D periodic 

systems are also remarkable, as solely due to symmetry, a number of properties (that 

were not previously reported) were identified: backward wave propagation (opposite 

group and phase velocities, similar to negative refractive index materials), negative 

refraction at the air - 1D PC interface, and unidirectional superprism effects (previously 

only known in 2D and 3D systems). On the other hand, increasing symmetry in 2D 

systems (i.e. noncrystallographic higher rotationallreflection point group symmetry) 
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opened a window for the rational design of PBG structures with potentially improved 

band gap properties. A fist  systematic analysis of PBG properties in three quasiperiodic 

2D lattices was performed (8mm, lOmm, and 12- point group symmetries), with a 

focus on those structures produced by IL. Comparisons of PBG properties as obtained 

from FDTD calculations of LDOS at the center of high rotational symmetry suggest that 

2D quasicrystals with dielectric cylinders placed at the vertices of quasiperiodic tilings 

lead to more robust band gaps than their IL counterparts, and that, among IL 

quasicrystals, octagonal symmetry leads to the largest gaps at small volume fractions (f< 

0.1) and dodecagonal symmetry leads to the largest gaps at larger volume fractions (f > 

0.2). Although these results are preliminary and more detailed examinations are in 

progress, due to the lack of previous work in the literature they offer useful guidance for 

future investigations of PBG properties of quasicrystals. We have also used this insight 

to guide our experimental investigations, which resulted in the fabrication for the first 

time of 2D PQC from IL with feature sizes comparable to those of 2D PQC produced by 

electron beam lithography, but with significantly larger areas. 
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Massachusetts Institute of Technology 
Cambridge, Massachusetts, USA 

ibitaaalum. mit. edu 
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Chapter 2. 

Introduction to photonic crystals 

Photonic crystals are structured materials having a spatial distribution of the 

refractive index that is translationally periodic with a unit cell comparable in size with the 

wavelength of light. 

Figure 2-1 - Examples of 3D photonic crystals. (a) Face centered cubic crystals obtained by sedimentation 
of colloidal silica particles [I]; (b) Self-assembled double gyroid crystal from a polystyrene-polyisoprene 
diblock copolymer after the isoprene phase was selectively removed [2]; (c) "Woodpile" photonic crystal 
fabricated in silicon [3]; (d) Simple cubic lattice photonic crystal made in silicon [4]. 
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Figure 2-1 depicts a few examples of 3D periodic material structures. As will be 

explained in this chapter, as deceptively simple some of these structures may appear at 

first sight, they hold the key for a revolutionary control over light-matter interactions, 

because photonic crystals display optical properties fbndamentally different than those of 

their individual components. 

The beginning of photonic crystals as a research field is typically considered to 

coincide with two seminal publications fiom 1987 [5]. Eli Yablonovitch [6] pointed out 

the possibility of obtaining photonic band gaps and localized electromagnetic modes in 

3D structured materials, and of inhibiting spontaneous light emission for optoelectronic 

applications. In the same year, Sajeev John [7] independently discussed the strong 

localization of electromagnetic waves in disordered 3D photonic crystals with a high 

refractive index contrast. However, a much less acknowledged contribution to the 

development of photonic crystals is the outstanding work on wave propagation in 

periodic media fiom early in the 2oth century. To not only emphasize the importance of 

this theoretical foundation, but also to pay tribute to somebody whose vision and impact 

on science are truly remarkable, I would like to cite two paragraphs from the preface of a 

book written in 1946. 

'Some readers may be surprised or even disturbed at the mixture of 

problems assembled in this book. These problems actually extend from 

electrical engineering to electromagnetism and wave mechanics of the 

spinning electron, but the link connecting this variety of problems will 

soon be discovered in their common mathematical background. [ . . . I  

All problems discussed deal with periodic structures of various 

kinds, and they all lead to similar results: these structures, be they 

electric lines or crystal lattices, behave like band-pass filters. If 

energy dissipation is omitted, there is a sharp distinction between 

frequency bands exhibiting wave propagation without attenuation (passing 

bands) and those showing attenuation and no propagation (stopping bands). 
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These general properties are defined for an infinite unbounded medium, 

but they bear a very close relation to selective reflections shown by a 

bounded medium. A wave striking from outside may be partly reflected 

from the surface, if the second medium is able to transmit the 

corresponding frequency. The amount of reflection depends upon how well 

the media are matched at their common boundary. But when the frequency 

falls inside a stopping band of the reflecting medium, there is no longer 

any matching problem; the wave cannot be transmitted, and hence it must 

be totally reflected. This same explanation applies to electric filters, 

rest rays, anomalous optical reflections, and selective reflections of X 

rays or electrons from a crystal. " [ 8 ]  

The author of the above text is Leon Brillouin, who was introducing his book on 

wave propagation in periodic structures, published in 1946 [8]. In the case of the reader 

familiar with photonic crystals (PC) but not with the extent of Brillouin's contributions, 

the above citation may come as a pleasant surprise. It is remarkable to be able to learn 

from a book written so early about the essence of the definition, basic physics and even 

of a few applications of PC. For example, consider the concept of a photonic band gap 

and its consequences on light propagation. Brillouin teaches us that "infinite unbounded 

[...I periodic structures" can forbid the propagation of certain waves, if their energies fall 

in a range called "stopping band." These waves are explained to couple to evanescent 

modes ("those showing attenuation and no propagation"). Brillouin also goes on to 

explain how this property affects finite (real) crystals: waves with frequencies in the gap 

are completely reflected, while those outside the gap will be able to propagate after 

incurring a partial reflection at the interface with the incidence medium, depending on the 

phase matching at the interface. Furthermore, in another book [9], Brillouin teaches us 

about the importance and impact of structural periodicity on the phase, group and signal 

velocities of waves. Many of the features of these velocities described by Brillouin in [9] 

were recently rediscovered in the case of photonic band structures, and viewed with great 
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excitement as examples of the special properties of photonic crystals - slowing down the 

velocity of light with frequencies at band gap edges, superluminal group velocities (Le. 

greater than velocity of light in vacuum), negative group velocities, etc. 

It should be clear by now that photonic crystals represent another facet of solid 

state physics, where the fundamental problems of wave propagation in crystals 

(extensively studied in the context of electronic waves and semiconductors [lo]), are 

revisited in the context of electromagnetic waves propagating in the appropriate periodic 

materials, called photonic crystals. 

Since the first half of the thesis deals with fairly advanced theoretical problems in 

photonic crystals, we now provide a self-contained introduction to the theory of light 

propagation in photonic crystals. This introduction is complementary to existing texts on 

photonic crystals [5, 1 11, which tend to require a more advanced physics background than 

that of the average material scientist. 

2.1. The basics 

Westart with a brief introduction to light as an electromagnetic wave, and then to 

quantitatively connect material properties to the propagation of light in the case of a 

homogeneous medium. This theoretical basis is used in the following section, where 

light propagation in photonic crystals is studied. 

Just as fundamental as Newton's law or the second law of thermodynamics, the 

laws of electricity and magnetism established by James Clark Maxwell in 1873 [12] 
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describe the propagation of electromagnetic waves in any material, anywhere in the 

universe. Using vector notation, Maxwell's equations take the following form 

d 
Ampere's law VxH(r,t)=-D(r,t)+J(r,t) 

dt 
d 

Faraday's law V x E(r,t) = -- B(r, t) 
at 

Coulomb's law V D(r,t) = p(r,t) 
Gauss' law V B(r, t) = 0 

where the contribution of Maxwell was to add the displacement term dD(r,t) ldt to 

Ampere's law [12]. The space- and time-dependent quantities that appear in these 

equations are the electric field strength (E), magnetic flux density (B), magnetic field 

strength (H), electric displacement (D), electric current density (J) and electric charge 

density @). 

Together with constitutive relations (which describe the electromagnetic material 

properties), Maxwell's equations describe light propagation in any material system. In 

the simplest case of propagation in a homogeneous dielectric material with linear 

properties, the constitutive relations are 

where E and ,u are, respectively, the permittivity (or dielectric constant) and permeability. 

Isotropic materials are characterized by scalar E and p, while anisotropic materials can be 

described by tensorial quantities. 

The six equations comprised of Maxwell's equations, Eq. (2-I), and the above 

constitutive relations, Eq. (2-2), show all the electromagnetic quantities (e.g. J, E, D, H, 
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or B) are interdependent. That is why, for simple materials, it is possible to combine all 

these relationships into a single equation, formulated for a particular field of interest. The 

result for the electric field is known as the Helmholtz equation (or simply, the wave 

equation) : 

A similar equation can be derived for the magnetic field strength vector 

The above equation will be shown in the next section to be similar to 

Schrodinger's equation, and to thus allow a quantitative analogy between the propagation 

of light in photonic crystals, and the case of electronic wave propagation in atomic 

crystals [ l  11. 

Solutions to these differential equations are well understood from mathematics to 

be periodic, and that is why, given the context, we refer to them as electromagnetic 

waves. In the simplest case of a wave propagating in the z direction and polarized along 

the x direction, the electric field can be written as: 

E(r, t) = x Ex (z, t) 

Thus, the Helmholtz wave equation, Eq. (2-3), takes the form 
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From mathematics, the solution to the above differential equation is a wave, a 

function periodic in both space and time. As an example, consider a cosine function 

where the minus sign was chosen in order to describe a wave propagating towards +z as 

time increases, as discussed below. The constant w is called angular fkequency, and it is 

related to the temporal frequency (or simply, fkequency) f of this wave 

Similarly, the constant k is called spatial fkequency, and it is related to the 

wavelength h (i.e. spatial period) of the considered wave 

Thus, by using the general wave solution from Eq. (2-7) with the wave equation 

Eq. (2-6), we obtain a very important relation between the two frequencies, k and o 

The above result is called the dispersion relation, and it is extremely important for 

understanding how a wave propagates in a given material. This includes photonic 

crystals, even though in their case the relationship between w and k has to be often 

obtained numerically since explicit, analytic forms are inaccessible. Due to energy 

conservation, the frequency of an electromagnetic wave is almost always conserved 
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(except in nonlinear processes). Thus, by analogy with energy diagrams, E(k), in atomic 

crystals, the dispersion relation is typically written as dk) ,  rather than k(w). 

To showcase the importance of this relation, we end this section by presenting the 

rigorous definition of the refractive index of material. This is one of the most basic 

optical properties of materials, and it is typically described as the ratio between the 

velocity of propagation of a wave in vacuum, c, and the velocity of the wave inside the 

material, v 

However, one may be surprised that the refractive index does not appear in 

Maxwell's equations at all, and wonder how is it quantitatively affecting the propagation 

of light. The answer is that, in fact, the refractive index is a derived quantity, one that we 

prefer to use because of convenience. As shown before, the fimdamental material 

properties that enter Maxwell's equations are only the permittivity and permeability. 

The refractive index is more exactly defined as the ratio of the phase velocity, v,, 

of light propagating in vacuum and that in a particular material. The phase velocity is the 

velocity with which the constant phase fronts of a wave move in space. For the wave 

solution in Eq. (2-7), the velocity of a particular phase front (kz - u;l= constant ) is 

The result in Eq. (2-12) is very general, and it is a first example of the great 

importance of the dispersion relation. Using the a(k) solution derived for a 

homogeneous material in Eq. (2-1 O), we obtain that 
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We can now use the definition of refractive index based on the ratio of phase 

velocity in vacuum and that inside the material to find that 

where the relative permittivity and permeability are defined as 6, = d ~ o ,  and ,ur = @,DO. 

Although seemingly basic, this section has introduced very important concepts. 

Light propagation in any material is quantitatively described by Maxwell's equations in 

conjunction with the constitutive relations. Mathematically, the solution to the resulting 

system of differential equations is a wave, a function periodic in both space and time. 

The spatial and temporal frequencies, k = 2nlA and f = d 2 n ,  of the wave solution are 

related by the so-called dispersion relation, which couples k and w to material properties. 

Using this relation, the velocity with which phase fronts advance in a homogenous 

material was derived (phase velocity), and the definition of the refractive index was 

introduced. Thus, going back to the definition of a photonic crystal at the very beginning 

of the chapter, it is now clear that periodicity of the refractive index means a periodic 

arrangement of either of, or of both E and p. 
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2.2. Photonic crystals as semiconductors for light 

Photonic crystals are sometimes called semiconductors for light, because of the 

analogies between the physics of electromagnetic wave propagation in photonic crystals 

and the physics of electronic wave propagation in atomic crystals. As discussed in the 

first few pages of this chapter, these analogies are possible because of the underlying and 

more general problem of wave propagation in periodic media. In this section we 

introduce the optical properties of PC by employing a quantitative analogy with 

semiconductors. Just as in the previous section, the path towards the solution will start 

with a definition of the material system, followed by stating the equations that describe 

wave propagation in space-time. Then, appropriate guesses for the wave solutions are 

made, and the propagation equations are solved to yield, for example, the dispersion 

relation for the photonic crystal. 

As shown in Figure 2-2(a), both atomic and photonic crystals are periodic 

structures, however with the typical unit cells of interest differing in size by 3-4 orders of 

magnitude. Hence, while atomic crystals are known to Bragg scatter (i.e. reflect) X-rays 

(wavelength h - 10-'Om), photonic crystals interact strongly with much longer 

wavelengths, most typically in the visible and infrared regions of the electromagnetic 

spectrum (h - 10-~-10-~m). 
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Atomic crystal 
atomic periodicity 

unit cell size - 1 0-9- 1 0-lorn 

Photonic crystal 
refractive index periodicity 
unit cell size - 1 0-5- 1 0-7m 

(b) Eigenvalue Equation (Schriidinger) Eigenvalue Equation (Maxwell's) 

Electronic waves Electromagnetic waves 

Y (r,t) = Y (r) eid 

Bloch Theorem 

Electronic Band Structure, E(k) Photonic Band Structure, Nk) 

k k 
Figure 2-2 - Analogies between atomic crystals and photonic crystals. Adapted fiom [I 11. See text. 

The equations that govern electronic and electromagnetic wave propagation are 

shown in Figure 2-2(b). In order to enable an analogy with the quantum mechanical 
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treatment of electronic wave propagation based on the Schrodinger equation, it was 

shown that casting Maxwell's equations in terms of the magnetic field strength vector, 

H(r,t), leads to an analogous eigenvalue equation [ l l ]  (all the other fields, E, D, B, etc. 

can be derived using Eq. 2-1). The equation shown in Figure 2-2(b) is obtained from Eq. 

(2-4) assuming a time dependent exp(-id) harmonic fields and nonmagnetic materials, 

i.e. p,. = 1. It is important to remember that, while Maxwell's equations are fundamental 

and involve no approximations, solving the Schrtidinger equation in a real, multi-electron 

system always involves approximations due to the fact that electrons interact with each 

other, have mass, and are affected by a variety of potentials (electric, magnetic, etc.). 

Rigorously keeping track of all these interactions leads to a many-body problem that is 

unsolvable given current computing resources, hence the approximations mentioned. 

Such approximations are not typically needed for describing light propagation, since 

photons to not interact with each other in most materials (the exceptions are related to 

nonlinear optical processes [ 131). 

The effect of the atomic crystal structure on the propagation of electronic waves is 

captured in the Schriidinger equation by the periodic atomic potential, V(r), see Figure 

2-2(b). For electromagnetic waves, the role of the atomic potential is taken by the 

inverse of the spatially varying dielectric constant, i.e. the l l g r )  term. 

Due to particle-wave duality, electrons in atomic crystals are described as 

electronic waves, where a special quantity called electron wavefunction, Y(r,t) (a 

complex scalar field) is varying in both space and time (remember that this wavefunction 

is the central quantity in quantum mechanics [lo]). As discussed above and shown in 

Figure 2-2(c), the magnetic field strength vector, H(r,t), is used to describe wave 
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propagation in photonic crystals, and both Y(r,t) and H(r,t) are assumed to be time 

harmonic functions. 

The last piece of the puzzle before the actual solution to these equations is related 

to making an assumption for the spatial variation of the wave solutions in Eq. (2-15). 

Due to the translational periodicity of V(r) and 4 r )  in the two eigenvalue equations, the 

wave solutions obey the Bloch-Floquet theorem [ 10, 14, 151. As shown in Figure 2-2(c), 

in the photonic crystal case, the H(r) solutions take the following form 

H(r) = eikar uk (r) 

where the wave vector k is a linear combination of the reciprocal lattice vectors of the 

periodic structure and uk(r) is a periodic function in real space. More details about the 

reciprocal space of a periodic structure, and about the Bloch-Floquet theorem can be 

found in classic texts on solid state physics [lo]. 

At this point, both propagation equations can be solved. The actual solutions are 

not easy to obtain analytically for most cases, and in general the eigenvalue equations are 

solved numerically for each k vector [ 10, 1 1, 161. It should be mentioned that it is also 

possible to implement a solution by starting from the wave frequency, and then by 

solving for the allowed k vectors (this method will be used in Chapter 3 to study 1D 

photonic crystals) [17, 1 81. In both cases, what is obtained is a dispersion relation, d k ) ,  

which in graphical form is referred to as a band structure. Representative photonic and 
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electronic band structures are shown in Figure 2-2(d), using solid lines to denote 

propagating bands and highlighting the band gap regions with yellow. 

It is clear by now that the study of photonic crystals heavily benefits from a 

fbndamental connection with solid state physics, by sharing a common foundation - wave 

propagation in periodic media. 

2.3. Optical properties of photonic crystals 

As described in the previous section, in order to best understand the optical 

properties of photonic crystals one needs to think outside the typical boundaries of 

electromagnetic wave theory, and to try and adapt known results for the general problem 

of wave propagation in periodic media, extensively explored in the context of electronic 

wave propagation in crystals. 

Most (but not all!) of the information about the optical properties of photonic 

crystals is contained in the dispersion relation, d k ) ,  or the so-called photonic band 

structure. For example, given a frequency m, the dispersion relation can be solved to find 

out the wave vectors of the allowed propagating modes (real k) - i.e. in what directions is 

light allowed to propagate, and with what spatial frequencies (remember that this should 

also produce the effective refractive index displayed by the photonic crystal along this 

particular direction, by calculating the corresponding phase velocity). Both positive and 

negative k solutions are expected, since both forward and backward propagation should 

be possible at any frequency. However, what the dispersion relation does not tell us are 

the polarizations of these propagating modes - whether they are linear, circular, or have a 

general, elliptical polarization. This should not be surprising, since the dispersion 
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relation is the solution to an eigenvalue problem, while the polarizations of the 

propagating wave solutions are described by the corresponding eigenvectors. 

To better explain the importance and the information provided by the dispersion 

relation, consider the case of a 1D PC composed of two alternating layers with thickness, 

di, and dielectric constants 4, i = 1,2. 

w 
unit cell 

Figure 2-3 - 1D photonic crystal with a bilayer unit cell. 

The propagation of light waves along the periodicity direction, z in Figure 2-3, is 

described by a dispersion relation of the form 4 k ) .  While analytic results for w(k) can 

be obtained in particular cases [19], we adopt here a more revealing, graphical approach 

in order to explain the main properties of a 1D PC (which can be then generalized to 

higher dimensions). 

If the two dielectric constants are equal, the PC shown in Figure 2-3 becomes 

essentially a homogeneous material, and thus, in the limit of zero dielectric contrast (A& = 

61 - EZ), W(k) should also reduce to the solution for a homogeneous material, shown in 

Eq. (2-10). However, if A& + 0, it is guaranteed that a photonic band gap of width A o  

will open up in the 1D photonic band structure [ll] .  Note that the larger A&, the larger 

the A o  as well. Moreover, note that the photonic band gap forms at the edges of the 

reduced Brillouin zone, the region -n/L I k, I nlL, and that it holds for both propagation 
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directions - a wave with a frequency that falls inside the gap will not be able to propagate 

inside the crystal regardless of direction (+z or -z). 

Figure 2-4 - (a) Dispersion relation in a 1D photonic crystal showing formation of the first band gap and 
propagating modes in the photonic crystal (solid lines). Dashed lines represent the solutions in the case of a 
homogeneous material, the limit of equal dielectric constants in the two layers of the photonic crystal unit 
cell. @) Defmitions of the phase and group velocities. A wave packet (or pulse) is shown in order to 
emphasize that the phase velocity corresponds to the motion of phase fionts, while the group velocity gives 
the signal velocity, the velocity with which the pulse envelope propagates in space. 

As shown in the above figure with dashed lines, the u(kz) solutions for a 

homogeneous material are straight lines with slopes equal to cln, see Eqs. (2-12)-(2-14). 

Note that we use a subscript p to emphasize that np is the phase index (i.e. the refkactive 

index). Besides the phase velocity (v,), which is related to the motion of constant phase 

fronts, a group velocity (v,) can also be derived from the dispersion relation. As shown in 

' .! ' Figure 2-4(b), and discussed at iength by Brillouin [9], the latter deals with the velocity 
, . , . , *  * '-1 . . 4  - . . . . . . . .  . . . .  , , : ' ' 

1 . - ,  - . . . . . . . . . . . .  . : .  . .  . . 
. - . . 

' ".. - of signal (pulse) propagation, and can be shown to also equal the velocity of energy flow . , 

. , . . . . , . . , .  . - .  8 r 

- , . . . . inside the crystal [I 01. The &d grou'p Gelocities are defined as ., ,'. 
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Cr) C - - 
v ~ = - - -  

n~ 

where n, is called the group index, by analogy with n,, the phase (refractive) index. 

As shown in Figure 2-4(a), the impact of periodicity on the propagation of light is 

largest at frequencies adjacent to the photonic band gap because of the nonlinearity of the 

bands in these regions. Thus, unlike a homogeneous material, the combination of two 

materials in a PC has the ability to affect the velocity of light propagation as fbnction of 

the light frequency, structural period, and refractive indices of the respective materials. 

The most dramatic example of this concept is provided by the group velocity, which 

becomes zero at the band edges (v, is the local slope of the tangent to the photonic band). 

This reduction of the velocity with which energy flows through the material greatly 

enhances light-matter interactions such as optical gain, absorption, nonlinearities, etc. 

One of the consequences of structural periodicity and of the use of the Bloch 

theorem is that the dispersion relation solution should also be periodic. Using the fact 

that the reciprocal lattice vector in the 1D photonic crystal shown in Figure 2-3 is equal to 

2n/L, we have 

where N is an integer number. 

Graphically, this means that the V-shaped diagram plotted in Figure 2-4(a) should 

be repeated at every reciprocal lattice vector, 2dL, along the k, axis. 
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Figure 2-5 - (a) Periodic dispersion relation solution for a 1D photonic crystal. The gray area indicates the 
reduced Brillouin zone. (b) Band structure of a 1D photonic crystal obtained either by folding the Nk,) 
solution belonging to k,=O into the reduced Brillouin zone, or by generating the upper bands using the 
periodicity of the dispersion relation, as shown in (a). 

As shown in Figure 2-5(a), the periodicity of the system leads to periodic Hk,) 

solutions having the same period as the reciprocal lattice vector of the photonic crystal, 

2dL. However, as it can immediately be seen, this periodicity also allows a great 

simplification of the resulting fairly complicated band structure: only the region between 

-dL and NL needs to be considered, because the rest of the diagram can be generated by 
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translating this special area along the k, axis with integer multiples of the corresponding 

reciprocal lattice vector. This special region is called the reduced Brillouin zone, in 

honor of the same Brillouin cited early in the chapter. Using this simplification, we 

arrive at the typical form of a photonic diagram, shown in Figure 2-5(b). Note that the 

bands and band gaps in the reduced Brillouin zone are typically numbered from low to 

high frequency, for more conveniently referencing particular band structure features (e.g. 

a first photonic band gap forms between the first and the second band). 

A limitation of the conceptual photonic band structure shown in Figure 2-5 is that 

it assumed that photonic band gaps form at all the intersections between photonic bands. 

In reality that is not true, because some intersections do not produce gaps due to 

symmetry reasons (the photonic bands become degenerate at the intersection point). As 

an example, we calculated [17, 181 the photonic band structure of a real 1D photonic 

crystal composed of two layers with refractive indices 1.5 and 2.2, and show the results 

below. 
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V 

-0.5 -0.3 -0.1 0 0.1 0.3 0.5 
Bloch wavevector [2 x / L units] 

V 

-0.5 -0.3 -0.1 0 0.1 0.3 0.5 
Bloch wavevector [2 x / L units] 

Figure 2-6 - Calculated photonic band structures for 1D photonic crystals with bilayer unit cells and nl = 

1.5, and n2 = 2.2. (a) Photonic gaps form at all band crossing points in the case when the layers have the 
same thickness, dl = d2, similar to the conceptual diagram shown in Figure 2-6; (b) In the special case 
when the optical thickness of each layer is a constant (also called quarter-wave case) certain photonic bands 
remain degenerate instead of forming gaps. 

Figure 2-6 shows that, for a given material system (i.e. nl and nz), the choice of 

layer thicknesses (i.e. composition, or fill fraction) in the photonic crystal unit cell may 

significantly affect the photonic band structure. The comparison in Figure 2-6 contrasts 

the cases of equal physical thickness and of equal optical thickness (also called quarter 

wave stack, nidi = A0/4, where A. is a constant wavelength). Due to the more symmetric 

nature of the quarter wave stack, the second and the third band become degenerate at R, = 

0. Lastly, note that it is customary to use normalized units for the vertical (reduced 

frequency, 2nclL units) and horizontal axes (reduced wave vector, 2xlL units), such that 

the resulting photonic band structure becomes length independent (i.e. if the photonic 

crystal unit cell is doubled in length, keeping everything else constant, the plotted band 

structures will not change). 

In conclusion, this section demonstrates that most of the optical properties of 

photonic crystals can be obtained from the study of the dispersion relations. As an 
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example, the propagation characteristics of the allowed modes at a certain frequency can 

be described by using the phase and group velocity concepts, which are quantitatively 

related to a k ) .  The photonic band structure was introduced for a 1D photonic crystal as 

the graphical representation of the periodic ak,) solutions, and translational periodicity 

was used to explain the band structures in the reduced Brillouin zone. The formation of 

photonic band gaps at band intersections was described, and emphasized to depend on the 

symmetry of the structure. It was also explained that the o(k,) relation does not give a 

complete picture of how light propagates in photonic crystals - the polarizations of these 

eigenrnodes have to be obtained separately, by calculating the eigenvectors 

corresponding to the eigenvalues ( w  or k,, depending on how Maxwell's equations are 

solved). 

2.4. Conclusions 

This chapter attempted to provide a brief introduction to photonic crystals, 

formulated in a way that would allow a reader new to the field to understand the 

remaining chapters of the thesis. 

The key to understanding the great potential of photonic crystals to control the 

generation and propagation of light in materials in revolutionary new ways was explained 

to lie in the deep connections with solid state physics, and with the even more basic and 

older problem of wave propagation in periodic media. Using a 1D example, dispersion 

relations and photonic band structures were introduced as important tools in the study of 

the optical properties of photonic crystals. 
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Chapter 3. 

Light propagation in photonic crystals breaking 

space-inversion and time-reversal symmetries 

In this chapter we present the results of a theoretical investigation of the general 

properties of photonic crystals without time-reversal and space-inversion symmetries by 

examining the case of 1D periodic, lossless dielectric helical media with magnetooptic 

activity (MO-HM). We show that photonic band gap formation in the absence of these 

two symmetry elements leads to a remarkable set of properties: indirect photonic band 

gaps (edges not aligned in k-space), backward wave propagating eigenmodes (which 

allow for negative refraction), very unusual non-propagating modes in the gap (their 

complex valued wave vectors have frequency dependent, non-zero real parts, which do 

not change sign for opposite decay directions), anomalous propagation and group 

velocity based superprism effects. Particular properties of MO-HM are discussed in 

detail. 

Introduction 

While the theoretical foundation of photonic crystals (PCs) was developed as 

early as the 1930s, as evidenced by Brillouin's fundamental work on wave propagation in 

periodic media [I], it was only in 1987 when Yablonovitch [2] and John [3] first 
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suggested that PCs represent a revolutionary new framework for designing materials that 

can exert an exceptional control over the generation and propagation of electromagnetic 

(EM) waves. These special properties of PCs arise from the constraints on EM wave 

propagation imposed by a periodic spatial variation of at least one constitutive EM 

parameter (e.g. dielectric permittivity - - E , magnetic permeability p , etc.) throughout the 
- - 

structured matter embodying the PC. These constraints are most fundamentally related to 

the symmetry of the PC material structure, and also to the magnitude of the refractive 

index modulation [4]. 

In this article, we investigate the optical properties of structurally chiral, 1D 

periodic photonic crystals that exhibit magnetooptic activity in the presence of an 

external static magnetic field. Well known examples of structurally chiral, 1D periodic 

lattices are cholesteric liquid crystals [5]  (CLCs) and so-called chiral sculptured thin 

films [6, 71 (CSTFs), typically fabricated by vapor deposition at a glancing angle on a 

catalyst coated substrate that is rotated. More recently, interference lithography has been 

used to fabricate similarly structured polymeric templates [8]. These materials, also 

called dielectric helical media [9] (HM), are inhomogeneous and periodic along their 

helical axis. They are chiral due to their structural rotation around the helical axis, along 

which a locally constant dielectric tensor is continuously rotated in the plane 

perpendicular to this axis (see Fig. 1). Also, it is known that the application of an 

external static magnetic field will induce magnetooptic activity, generally much stronger 

in ferromagnetic than in paramagnetic or diamagnetic materials [lo]. Thus, one practical 

example of the material system theoretically investigated here can be fabricated by using 

a magnetooptical material precursor as the physical vapor deposition source in the 
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fabrication [7] of CSFTs, or by infiltrating a chiral structured polymeric template [8] with 

a sol-gel precursor for magnetooptic materials such as doped yttrium iron garnets, or 

various ferrites. For the purpose of our analysis, the material choice is less important, 

since we focus primarily on understanding the symmetry related consequences on 

photonic band structures, as both space-inversion and time-reversal symmetry are absent. 

A quantitative description of the dielectric helical medium with magnetooptic activity 

(MO-HM) considered in out study follows in Section 3.2, where the underlying 

electromagnetic constitutive relations are presented. 

The propagation of light in 1D periodic, MO-HM photonic crystals has been of 

increased interest over the past five years. Koerdt [ l  11, Eritsyan [12] and Gevorgyan [13] 

have studied the case when the static magnetic field is applied along the helical axis, and 

all three found evidence for nonreciprocal optical properties. More exactly, it was 

described that these periodic media produce different intensities of Bragg scattering (or 

transmission intensity) if either the propagation direction or the direction of the magnetic 

field is reversed. Lakhtakia [14] and Pickett [15] have theoretically studied wave 

propagation along the helical axis with a static magnetic field applied perpendicular to it, 

and found evidence for anomalous propagation and enhanced optical rotation arising 

from the cooperative action of magnetooptic activity and structural chirality. However, 

all of these existing studies focus on particular problems, without providing a clear 

picture of the general optical properties of this class of photonic crystals that break both 

space-inversion and time-reversal symmetries. 

Thus, in this chapter, we present our results of a comprehensive study of the 

optical properties of 1D periodic MO-HM photonic crystals. We employ both analytic 
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and numerical tools to determine the dispersion relation, d k ) ,  and the corresponding 

photonic band structure, as a way to gain insight into the optical properties of this 

periodic medium. We are able to validate that the dispersion relation can indeed be 

nonreciprocal, 4 k ) +  w(-k), and find that this holds for as long as the propagation 

direction is not perpendicular to either the helical axis or the static magnetic field. 

Moreover, by investigating the dispersion surfaces, we find optical properties that have 

not been previously reported. We show that the application of an external magnetic field 

leads to propagating eigenrnodes with opposite phase and group velocities (v,, v,) along 

the direction of the magnetic field. Waves with antiparallel phase and group velocities 

are called backward waves, and have been long known in the microwave literature [16] 

and more recently investigated in the context of left-handed materials [17]. We further 

show that, just as in the case of left-handed materials, the presence of backward waves 

can lead to the negative refraction of waves incident at the air - photonic crystal interface, 

when the helical axis of the MO-HM photonic crystal and the magnetic field have 

nonzero components along the interface in the incidence plane. Moreover, we find 

inflection points in the isofrequency contours that are uncharacteristic of 1D periodic HM 

without magnetooptic activity. These inflection points are the source of the previously 

reported anomalous propagation [14] and in practice can give rise to photon focusing 

caustics [18], or self-collimation phenomena [19]. Moreover, being inside the reduced 

Brillouin zone, the eigenmodes around these inflection points are propagating freely and 

display large changes of their group velocity directions for only small changes of the 

wave vector or frequency, similar to the previously reported superprism effect [20] in PC. 
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However, perhaps the most peculiar finding is that this class of photonic crystals 

can display indirect photonic band gaps, by analogy with electronic counterparts (here, 

band anticrossing leads to band edges that are not aligned in k-space). In this case, the 

band edges move away from k = 0 in the reduced Brillouin zone, so that the non- 

propagating eigenmodes in the band gap (with complex wave vectors) do not fit anymore 

the definition of evanescent modes (Re{k}=O, Im{k}+O). Even though we show that 

these modes still do not allow for a net power transport, besides an imaginary part, their 

wave vectors also have a freguency dependent nonzero real part, a peculiar fact since our 

material system is lossless. Furthermore, in one of the directions of "non-propagation," 

these band gap modes share a similarity with backward waves, as their Re{k} points 

oppositely to the direction of exponential decay (given by the sign of Im{k}). Thus, we 

finally make the argument that all of these findings represent universal optical properties 

of the general class of photonic crystals lacking space-inversion and time-reversal 

symmetries. 

This chapter is organized as follows. In Section 3.2, we present the constitutive 

relations that define the 1D periodic MO-HM photonic crystal. For clarity and 

perspective, we review in Section 3.3 the optical properties of homogeneous media that 

break space-inversion and time-reversal symmetries. In Section 3.4, we analytically 

examine the problem of wave propagation along the helical axis, and show the 

fundamental importance of the relative orientations of the static magnetic field inducing 

magnetooptic activity, the structural chirality axis and the wave vector direction. In 

Section 3.5, we describe the numerical approach we employed to calculate the photonic 

band structure for arbitrary propagation directions and magnetic field orientations, and to 
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calculate the transmission properties of finite portions of the crystal. Finally, we present 

in Section 3.6 a detailed analysis of the resulting photonic band structures and 

isofiequency contours for the different situations mentioned above. A note about 

notation in this chapter: vectors are in bold-face, second-rank tensors and matrices are in 

bold-face with two underlines, and we use the compact dyadic notation [21] to describe 

the elements of tensors and matrices. 

3.2. Constitutive Relations 

In this section we will present the constitutive relations that define 1D periodic, 

helical media with magnetooptic activity (MO-HM). Since we are interested in the 

symmetry-induced effects on the photonic band structure as both the space-inversion (S- 

I) and time-reversal (T-R) symmetries are broken, we make a few simplifying 

assumptions that, while not reducing the generality of the results, make the analysis more 

clear. First, we consider a dielectric helical medium, thus only the dielectric permittivity 

tensor ( 5 )  - is varying in space, while pr = 1. Second, we assume that the application of an 

external static magnetic field breaks T-R symmetry through magnetooptic effects, thus 

affecting the off-diagonal elements of the dielectric permittivity tensor. Similar 

considerations can apply to the magnetic permeability tensor (p), - particularly as a - 

function of the frequency of the electromagnetic waves of interest. However, it is known 

[22] that analogous results are obtained if working in either g - or - p frameworks, - 

therefore we develop our analysis around 5 - without sacrificing the generality of the 
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results. Lastly, we consider a lossless material system, thus neglecting the effects of 

linear and circular dichroism. 

Therefore, the electromagnetic constitutive relations of the linear, dielectric 

helical medium with magnetooptic activity analyzed in this chapter can be written as: 

In the above expression, gxyz(r) represents the spatially periodic dielectric 

permittivity tensor in the xyz laboratory coordinate frame. Choosing the periodicity 

direction along z (same as the helical axis), the dielectric tensor can be written in compact 

dyadic notation: 

E ( z ) = s ~ ( z ) . ~ , ~ . s ; ~ ( z ) + & ~ ~ ~ + ~ Y ~ ~ I  = xyz - - - 

where gref is the dielectric tensor in the reference material coordinate frame (assumed 

biaxial above, for generality), -z (z) is a rotation matrix, and g is the magnetogyration 

vector [lo]. This unit vector corresponds to the direction along which circular 

birehngence (or magnetooptic activity) is induced, and for most materials it points along 

the external static magnetic field. Without loosing generality, we chose to constrain g to 

lie in the x-z plane, with an orientation defined by a polar angle 0, measured from x, 

0 6 B, I 2x (see Eq. 2). As a reminder [21], the dyadic product of two vectors uv is equal 

to a square matrix with elements given by the scalar product uivj. 
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As written in Eq. 2, the gVz tensor shows that magnetooptic activity (Igl + 0) 

causes the locally biaxial, rotating gref - tensor to acquire anti-symmetric off-diagonal 

terms (iy g x 1,  - responsible for magnetooptic rotation), and to have its diagonal elements 

modified by a constant E, (usually [lo] much smaller than Gi, i =1, 2, 3). 

Finally, the structural rotation is quantified by the matrix =z S (z) , whose elements 

shown in Eq. 2 are defined in terms of the azimuthal rotation angle Kz) (see Figure 3-I), 

which is assumed here [23] to vary linearly with z: 

where q o  = *I is a parameter used to describe the right (+I) or left (-1) handedness of the 

HM. We will also employ a vector q, of magnitude q shown above, to describe the 

handedness of the structural rotation according to the right-hand rule (thus, for q o  = +I, q 

points along +z). 

The structural rotation is conceptually depicted in Fig. 1, where the orientation of 

an arbitrary vector in the material coordinate frame is traced along the periodicity axis, z. 

Note that we define the spatial period of this 1D photonic crystal as the length L along the 

z axis for which the dielectric tensor gxy, is rotated with a full angle of 271, since 

$(z+L)=$(z) + 2nq0 (see Eq. 3-3). 
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Figure 3-1 - Conceptual representation of the structural rotation throughout the unit cell of a 1D chiral 
photonic crystal showing the periodic, right-handed (RH) continuous twist along the z axis of an arbitrary 
vector with fixed orientation in the local material coordinate system The spatial period L is defined for a 
full 271 rotation, 4(z+L) = @(z) + 271. 

3.3. Electrodynamics of homogeneous media without time- 

reversal and time-inversion symmetries 

In this section, we review the main results of previous studies of EM wave 

propagation in homogeneous media that break space-inversion and time-reversal 

symmetry (or display both reciprocal and non-reciprocal chirality features). The purpose 

of this section is to identify those optical properties that are sufficiently general to allow 

analogies based on symmetry considerations with those of our system, 1D periodic MO- 

HM photonic crystals. 

A first category of studies revolves around the magnetochiral effect, related to the 

change of the optical properties of natural optically active media on the application of an 

external static magnetic field. More of a curiosity in physical chemistry with "no 

apparent practical use," as discussed in a recent review by Wagnihre [24], the 

magnetochiral effect is manifested as a very small, but measurable [25,26] change of the 
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refractive index of a chiral molecular medium when a static magnetic field is applied 

along the propagation direction of an incident wave. As expected from the Kramers- 

Kronig relations [27], the magnetochiral effect was predicted [28-301 and later 

experimentally shown to also manifest in both the absorption [31] and emission [32] of 

EM radiation. From a quantitative electrodynamics point of view, the optical properties 

of these non-magnetic materials in the presence of the static magnetic field are described 

[33] by the following constitutive equation: 

where w is the angular frequency of light, Bo is the external static magnetic field, and the 

frequency dependent parameters a; P, and y describe, in order, natural optical activity, 

magnetooptical activity and magnetochiral activity in homogeneous and isotropic media. 

A second set of investigations, comes from the microwave community's interest 

in the so-called "Faraday chiral media" [34]. Also called gyrotropic-gyrochiral [35], 

these are described as homogeneous materials (or homogenized composites) with both 

Faraday rotation and natural optical activity, as embodied by chiroferrites and 

chiroplasmas. Although conceptually similar to the above-described magnetochiral 

molecular materials, and, as we will describe later, with quite similar properties, 

electrodynamics in Faraday chiral media employs constitutive relations that are 

nonequivalent to those of Eq. (3-4). While the detailed form of the constitutive tensors is 

subject of discussions [36], the generally accepted constitutive relations for gyrotropic- 

gyrochiral media are of the following form: 
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where re is the isotropic optical activity parameter (or a second-rank tensor [36] for a 

fully bianisotropic medium), and the vector g is the magnetogyration vector (see Section 

3.2). Note that chiroplasmas are defined as having p = PI ,  while chirofemtes have 
- - - - 

E = &I, instead of the corresponding gyrotropic tensors shown above. - - - - 

It is very interesting to observe the similarities between the results from the two 

above-introduced research directions and the findings of the theoretical and experimental 

studies of inhomogeneous, periodic media [ l  1 -1 51. Leaving aside the differences arising 

from specific properties of the material systems (e.g. plasma frequency for chiroplasmas), 

from a qualitative point of view it seems that EM propagation in all of these types of 

materials has the same general features. Most prominently, in all cases it is reported that 

the optical properties are different if the propagation direction is reversed, i.e. the 

dispersion relation is nonreciprocal, w(k)#a(-k). This is experimentally proven in the 

case of magnetochiral molecular media beyond doubt, where the observed differences in 

the refraction [26], absorption [31] and emission [32] of waves in opposite directions 

along an external static magnetic field are intuitive consequences of the differences in the 

phase (v,) and group (v,) velocities for opposite propagation directions, since: 
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Thus, the nonreciprocal dispersion relation fbndarnentally leads to a set of optical 

properties regardless of the specific details of the material system, be it a homogeneous 

or an inhomogeneous periodic material. It might seem surprisingly simple, but this 

important relation allows one to qualitatively predict all the above-cited differences in the 

refraction, absorption, emission, optical rotation etc. of waves traveling in opposite 

directions. 

A particularly interesting observation was made by Engheta et a1 [34], who 

theoretically studied EM wave propagation in Faraday chiral media. The autors reported 

that, in chiroplasmas, certain circularly polarized propagating eigenmodes are backward 

waves, having phase velocities pointing opposite of the group velocity. This intriguing 

property is attributed by the authors to the competition between the gyration induced by 

the external magnetic field on the electrons of the plasma and the gyration induced by 

counter-rotating circularly polarized eigenmode. To the best of our knowledge, no other 

investigation of media that break both time and space inversion symmetry mentions this 

property. The work of Engeta et al. is very interesting because we find that backward 

waves are also possible in 1D periodic, MO-HM photonic crystals, as we show in Section 

3.6, which suggesting that, overall, the presence of backward waves is another symmetry- 

related property of this class of materials. 

3.4. Axial wave propagation: analytic dispersion relation. 

In this section we derive an analytic expression for the dispersion relation that 

describes wave propagation along the helical axis of a 1D periodic, MO-HM. Although 

analytic solutions of Maxwell's equations are very difficult to obtain for most periodically 
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inhomogeneous media, by limiting the wave propagation to only k=zk, (axial 

propagation, since qllz, see Eq. 3), and the magnetogyration vector to also point along the 

helical axis, gllz, it is possible to reach an analytic solution for u(kZ) as shown below. We 

follow the usual solution employed for uniformly rotating, 1D periodic media, treated in 

the most general case by Lakhtakia for helical bianisotropic media [9]. 

In a source-free space region, assuming exp(-id) time harmonic EM fields, 

Maxwell's equations can be reduced to: 

With the assumption of axial propagation, k=zkz, Eq. (3-7) further leads to: 

where df, denotes the second derivative with respect to z, and c is the speed of light in 

vacuum. 

Following the classic approach of deVries [37], we rewrite Eq. (3-8) in a 

coordinate frame that rotates with respect to the Cartesian lab coordinate frame, such that 

the transformed dielectric tensor becomes a constant (this coordinate transformation is 

known as the Oseen transformation [38]). Naturally, the rotating frame corresponds to 

the local material coordinate system, where the dielectric tensor is just: 

Note that the above expression is derived from Eq. (3-2), taking gllz and 

neglecting the effect of magnetooptic activity on the diagonal tensor elements, since it is 

known [lo] that << Erexii. This assumption is additionally justified because the small 
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contribution of zg to the anisotropy of the material is already captured in the model by 

using of a biaxial g r e f .  

The coordinate transformation for the electric field can be written as: 

where E1= (E; , E;, Ej)  is the electric vector in the rotating coordinate frame. 

Noting that for axial propagation E j  = 0 ,  after the coordinate transformation to 

the rotating frame, Eq. (3-8) leads to: 

where dz denotes the first derivative with respect to z. Note that the above result is 

general, and applies to any distribution of the structural rotation, &z). 

Substituting in Eq. (3-1 1) the linearly varying #z) from Eq. (3-3), we obtain: 

where % is the (i, j )  component of the permittivity tensor gref (note that ,512 = -iy = - E ~ I  if 

/gl + 0, see Eq. 3-9). 

Finally, solving Eq. (3 - 12) for nontrivial solutions yields the dispersion relation 

w(kz), very similar in form to that obtained by Eritsyan [12] for the case of cholesteric 

liquid crystals in the presence of an axial magnetic field: 
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The above equation is a very important result. The odd-powered product $,q 

represents the origin of the expected nonreciprocal optical properties. Even though in an 

implicit form, Eq. (3-13) shows that the frequency solutions Nk,) are affected by a sign 

change of any one of y, k, or q. This entails, for example, that electromagnetic waves will 

be subject to different dispersion relations as the propagation direction is reversed from 

+z to -z, i.e. ak,) # 4-k,), or that changing the sign of two of the three quantities, e.g. 

w(y, k,) = 4 - 5  -k,), will result in the same dispersion relation, and thus the same optical 

properties displayed by the material. Similarly, changing the handedness of the structural 

chirality (kq), or the direction of the magnetogyration vector direction (hg, equivalent to 

hfi, will also affect the Nk,) solutions. It can already be guessed that the presence of this 

pkZq term captures most of the optical properties reviewed in the previous section, but we 

postpone the detailed discussion of these issues to Section 3.6. 

3.5. Arbitrary wave propagation: numerical modeling with the 

transfer matrix method 

The analytic solution for the dispersion relation, outlined in the previous section, 

becomes hard to obtain for arbitrary wave propagation (k = xk, + zk,) and/or arbitrary 

orientation of the magnetogyration vector (see Eq. 2). For example, when gllx (an 

external magnetic field pointing along x and inducing magnetooptic activity), the 

elements of the dielectric tensor in the rotating coordinate frame, - E ' ,  are not constant - 
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anymore, so the system of differential equations in Eq. (3-1 1) becomes very difficult to 

solve analytically. 

A practical numerical approach for studying the optical properties of such 1D 

periodic photonic crystals is the transfer matrix method [39]. The strength of this method 

lies in allowing full characterization of the optical properties of both finite and infinite 

structures, in a relatively simple to implement mathematical framework. In the following 

sections we describe how this method was used to calculate the photonic band structures 

(propagating and evanescent eigenmodes in infinite crystals), and the reflection and 

transmission of waves from finite 1D periodic, helical media with magnetooptic activity. 

3.5.1. Bloch Solutions in Infinite I D  Periodic MO-HM Photonic Crystals 

In order to find the Bloch eigenmodes describing wave propagation in infinite, 1D 

periodic chiral photonic crystals with magnetooptic activity, we need to first derive the 

transfer matrix relating the electromagnetic field components across a translation unit 

cell, along the propagation direction. 

We begin by discretizing the spatially varying dielectric tensor gxyZ (z) along the z 

axis, and approximate it locally, in a particular interval (zj, zj+hj), by a constant 

= gxYz ( z )  . The local value of the dielectric tensor is evaluated by using the 

definitions in Eq. (3-2), where the rotation angle is the discretized quantity, Nz,) given by 

Eq. (3-3). The propagation of a wave of frequency w, restricted in the (x, z) plane (k = 

xkx + zk,), can be then conveniently described by Maxwell's equations written in matrix 

form [3 9,401 
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where Y (z) = [Ex (z), E, (z), Hx (z), H ,  (z)]' . Note that Eq. (3 - 1 4) represents a system 

of only four differential equations, because the choice of restricting the wave propagation 

in the (x, z) plane leads to algebraic (instead of differential) equations for the Ez and Hz 

field components. 

The elements of the matrix M(w,s - k) were calculated following the popular 4x4 

transfer matrix approach [39], and will not be reproduced here due to their complexity. 

The system of differential equations in Eq. (3-14), having constant coefficients, leads to 

the simple solution: 

Equation (3-15) represents the essence of the transfer matrix method, in which the 

vectors of the electromagnetic fields at two distinct positions along the propagation axis 

(here z and z+hj) are related by a square matrix. In our case, hj is the spatial 

discretization step for the rotating dielectric tensor. Thus, the matrix P . is: 
=J 

We note that Eq. (3-16) was numerically evaluated by employing the third 

method of the many reviewed by Moler [41], as implemented by the matrix exponential 

function in MATLAB @. 

By discretizing the spatial period L in N intervals of thickness hj=L/N, and 

recalling [22] that the boundary conditions for E and H fields require the vector Y(z) to 

be continuous across the boundaries of each of these N intervals, we obtain: 
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where P - is the transfer matrix relating the EM fields Y across an entire unit cell. 

Finally, the Bloch wave vectors can be obtained by solving: 

det - exp(ik,~)] = 0 

Solutions of the above equation typically yield four kz eigenvalues, which 

represent propagating eigenmodes in the PC if real-valued, or evanescent (exponentially 

decaying modes) if complex-valued. In the case of the usual reciprocal photonic 

crystals, the four eigenvalues are in fact two pairs of wave vectors with equal magnitudes, 

i.e. kZsE = -kZp3 and kz,z = -kz,4, which lead to identical dispersion relations regardless of the 

direction of propagation along a given axis, u(k) = 4-k). However, in light of the 

predictions of the analytic model for the materials considered here as described in Section 

3.4, we expect that Eq. (3-18) will yield four different kz solutions, numerically proving 

the case of nonreciprocal dispersion relations. 

It should be pointed out that the accuracy of the u(kz) solutions using this method 

based on a discrete representation of the structure improves with increasing the number 

of steps, N, used to approximate the real, continuously rotating structure. In our 

numerical studies, we chose a value of N = 90, which if fbrther increased did not result in 

a noticeable change of the u(kz) curves or of the eigenmodes' polarization states (both 

amplitudes and phase differences were examined). 
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3.5.2. Reflection and Transmission Coefficients of a Finite Thickness I D  

Periodic MO-HM Photonic Crystal 

The propagation of plane waves through finite size 1D photonic crystals can be 

easily described by building on the result for the transfer matrix of the unit cell, shown in 

Eq. (3-17). For a stack composed of Nperiods, the electromagnetic fields at the incidence 

and transmission interfaces of the finite stack are related by: 

where Yi, Yr and Y, describe the incident, reflected and transmitted fields, and Eta, 

is the transfer matrix for the entire finite crystal. 

Assuming linearly polarized incident waves, it is easy to derive [39] the 

transmission coefficients (and reflection coefficients, by analogy) as: 

where the subscripts s and p represent the two orthogonal linear polarizations, and i and t 

denote the incident and transmitted fields. 

A similar approach can be used to study the propagation in a circularly polarized 

eigenmode basis, by replacing the linear polarized fields in Eq. (3-20) with the equivalent 

[15] linear combination of right-hand (R) and left-hand (L) circularly polarized 

eigenmodes. For axial propagation, k=zk,, the two sets of eigenmodes are related by: 
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Thus, the reflection and transmission coefficients in the circularly polarized 

eigenmode basis can be derived by using the field transformation from Eq. (3-21) to 

replace the x and y components of the vectors Y in the transfer matrix equation (Eq. 3- 

19). The resulting matrix equation can be solved to yield similar coefficient matrices: 

where tLR, for example, is the transmission coefficient for a left-hand circularly polarized 

transmitted wave originating from a right-hand circularly polarized incident wave. 

Note that, regardless of the polarization framework chosen to describe the wave 

propagation through these non-dissipative photonic crystals, power conservation is 

always satisfied: 

where the subscripts i and j can be either s orp  (see Eq. 3-20), or, in the case of circularly 

polarized waves, either R or L (see Eq. 3-22). 

3.6. Effect of magnetooptic activity on the photonic band 

structure of 1 D periodic helical media 

In this section, we investigate the photonic band structure of 1D periodic, chiral 

photonic crystals in the presence of magnetooptic activity. We examine the effects of the 

magnetooptic activity strength (g in Eq. 3-2) and of the orientation of the 

magnetogyration vector (y in Eq. 3-2) with respect to the propagation direction (k). We 
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begin by presenting the photonic band structure, 4kz), for axial propagation (k 1 1  q = qz), 

and follow with an analysis of the isofiequency contours for understanding the optical 

response for arbitrary wave propagation (k = xk, + zkz). 

The computational tools we use in this section are numerically-obtained photonic 

band structures and isofiequency sections through the corresponding dispersion surface 

@,, kJ. We also calculate the transmission spectra for finite pieces of the photonic 

crystal (see Section 3.5). 

3.6.1. Photonic Band Structure of 1 D Periodic MO-HM with gllq. 

The analytic model presented in Section 3.4 has already shown that waves 

propagating parallel to both the chirality axis and magnetogyration vector are subject to 

nonreciprocal dispersion relations, u;(k)#u;(-k). This situation is depicted in Figure 3-2, 

where we show numerically calculated photonic band structures for the two main 

orientations of the static magnetic field, while keeping the propagation along the helical 

axis (kllqllz). The black and thin curves correspond to a perpendicular magnetogyration 

vector (klg, gllx), while the thicker and gray curves represent the kllg case. The first 

observation we make is that the photonic band structure for the k l g  case looks 

essentially identical to the band structure of a simple 1D periodic helical medium without 

magnetooptic activity (y = 0 in Eq. 3-2). Although we will discuss the subtle differences 

in Section 3.6.2, for now we also use this band structure as a reference for the y = 0 case. 
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Figure 3-2 - Numerically calculated photonic band structure for axial propagation, Nk,, k,=&=O), at two 
orientations of the magnetogyration vector, gllz (gray curves), and gllx (black curves). Inset shows a 
magnification of the photonic band structure near the bandgap. Note that the gllx band structure is also 
valid for the case when no magnetooptic activity is present, describing a simple dielectric helical medium. 

It is clear from Figure 3-2 that the presence of magnetooptic activity leads to 

nonreciprocal dispersion relations when kllgllq, because the band structure is not 

symmetric with regard to the center of the reduced Brillouin zone (k, = 0 vertical axis). 

To explain the effect of magnetooptic activity, it is worth to first analyze the photonic 

band structure of a simple dielectric helical medium (corresponding to y = 0 in the 

current analysis). It is known that the eigenmodes of a lossless 1D periodic helical 

medium are left- and right-hand circularly polarized (LCP and RCP) [37]. As magnified 

in the inset in Figure 3-2, only one polarization develops a photonic band gap. This is the 

origin of the circular Bragg scattering [37], when a circularly polarized wave of 

appropriate wavelength and with the same handedness as the structural rotation of the 

HM is completely reflected along the helical axis. To the contrary, all the counter- 
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rotating eigenmodes propagate freely through the photonic crystal, experiencing no 

scattering. 

Returning now to the case of MO-HM (y + 0), we find that, unlike the band 

structure, the eigenmode polarizations are not affected by magnetooptic activity - they are 

still circularly polarized away from the band gap, and linearly polarized at the gap edges. 

One example of the effects of magnetooptic activity on the band structure is that, for 

gllkllq, visually, a horizontal translation of the band gap edges occurs opposite to that of 

the degeneracy point at the intersection of the bands without a gap (modes with opposite 

CP than the handedness of the HM). A more physical explanation for how the 

nonreciprocal band structure forrns can be presented by on the basis of the observation 

that applying a static magnetic field along the helical axis affects the HM's circularly 

polarized eigenmodes in opposite ways. As it can be seen from the inset of Figure 3-2, 

the presence of magnetooptic activity causes the group velocity (v,, see Eq. 3-6) of the 

eigenmodes to either increase or decrease (the slope of a photonic band gets either steeper 

or shallower), depending on the particular modes' polarization handedness and direction 

of propagation. Importantly, these changes of band slopes (or v,) are reversed for when 

reversing the direction of the magnetic field (kg), the propagation direction (hk), or the 

structural handedness (hq), just as one would expect from Eq. (3-13). This is the 

qualitative reason for which the degeneracy point's horizontal shift is opposite to that of 

the band gap edges, since these two features belong to eigenmodes with different 

handedness. 

A more quantitative insight into the effect of magnetooptic activity when gllkllq 

can be obtained from the implicit dispersion relation derived in Section 3.4 (see Eq. 3- 
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13). It is useful to first recast this equation in terms of the normalized quantities used in 

Figure 3-2: 

where iii = o I(2n c I L) and kz = k, I(2n I L) are the normalized angular frequency and 

wave vector. 

Since kz represents Bloch wave vector solutions, its numerical value is bound 

between - 0.5 5 kz 5 0.5 while spanning the entire reduced 1D Brillouin zone. Thus, by 

neglecting fourth order terms, Eq. (3-24) can be solved [12] for the frequencies (i3, and 

N 

ijz ) and wave vectors ( k,,, and k,,, ) of the band edges (extremum points, dt5 I dkz = 0 ), 

yielding the following approximate solutions: 

where the two band edges correspond to (i=l, j=2) and (i=2, j=l) ,  with qo = k1 (helix 

handedness), and Gi and 5, are elements of the dielectric tensor written in the rotating 

material coordinate frame (gref  in Eq. 3-2). 

First, note that, in the absence of magnetooptic activity (y = 0), Eq. (3-25) 

predicts exactly the band gap features of simple helical media (e.g. cholesteric liquid 

crystals). The gap has the right width and position [37, 421, and it is located at kz = 0 (a 

consequence of reciprocity, in fact). Secondly, we remark that the results of Eq. (3-25) 
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agree very well with our numerically obtained band structures. It is now clear why the 

band edges appear to translate tlhorizontally": since (y/Ei)2 << 1, the vertical component 

of the shift of the band edge frequencies is not easily perceived visually fkom a plot like 

the one shown in Figure 3-2. This effectively horizontal translation scales linearly with 

the magnetooptic strength, in agreement with our numerical simulations. 

T . . r 

0.56 0.58 0.60 0.62 0.64 0.66 0.68 0.70 

Frequency, w [2 lr clL units] 

Figure 3-3 - (b) Numerically calculated photonic band structure for axial propagation, dk, k,=k,,=O), 
when gllz The thick lines correspond to propagating eigenmodes. The evanescent modes are shown with 
thin lines, the darker ones for the real part of the wave vector, Re{k,}, and the lighter lines for the 
imaginary part, Im{kz}. (a) Transmission of plane waves propagating in the +z direction (y > 0) through a 
finite piece of the RH photonic crystal, showing the total transmissivities of LCP waves (TLL+TWI) and 
stop-band for RCP waves (Tm+Ta). The polarization conversion contribution (Ta=Ta) is scaled by a 
factor of 200, for visibility on the same plot; (c) same as (a), but the magnetogyration vector is reversed (y 
< 0), corresponding to an incident wave propagating in the -z direction. 

To further interpret the photonic band structure in the kllgllq case we compare in 

Figure 3-3 the optical properties of this infinitely periodic photonic crystal structure with 

those of a corresponding finite structure. Note first that we show in Figure 3-3(b) both 
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the propagating eigenmodes (thick dark gray curves) and the decaying modes fkom the 

band gap (thin black line for the real part of the wave vector, Re{k,), and thin light gray 

for Im{kz)). At first sight, the band structure shown Figure 3-3(b) (similar to the inset of 

Figure 3-2, only with transposed axes) might suggest that in the frequency interval 

0.62 < w" < 0.64 there are no propagating eigenmodes in the -z direction. 

By employing the numerical transfer matrix model from Section 3.5, we have 

calculated the transmission curves of a corresponding finite MO-HM (NPeriOnS = 100, EII 

= 2.7225, 822 = 2.3409, y = 0.1, incidence and transmission media with E = ,/= ). 

We show in Figure 3-3(a) and (c) the frequency dependence of the total transmission of 

left-hand circularly polarized (LCP) waves (TLL + TLR = 1tLLf + ltLR12, see Eq. 3-22), and 

of the total transmission of RCP waves (TRR + TRL) for the two propagation directions 

(simulated by reversing the sign of y, per Eq. 3-13). It is evident from these two plots 

that the stop gap has the same width regardless of propagation direction, thus the 

supposition that there are no propagating modes in the -z direction for 0.62 < w" < 0.64 

has to be wrong. In fact, this apparent issue can be reconciled solely on the basis of the 

band structure shown in Figure 3-3(b) by realizing that, even if there is no propagating 

mode with kz < 0, one of the two modes still has a group velocity in the -z direction (e.g. 

see a). Related to this issue is also the fact at other frequencies, such as w,, there are 

three modes with kz < 0 versus only one with kz > 0. This should obviously not be taken 

as an argument for an unphysical situation when three distinct (orthogonal) eigenrnodes 

exist for propagation along -z. As before, one of the three modes at ma with phase 

velocity along -z has an opposite group velocity, pointing along +z: v, < 0 and v, > 0 at 

the point labelled kaP2 in Figure 3-3(b). Waves with antiparallel group and phase 



CHAPTER 3 

velocities have been long known in the microwave literature [16] as backward waves, but 

have recently become of great interest in the area of negative refractive index materials 

[17, 431, also called left-handed materials [44]. Although these type of waves have not 

been reported in previous investigations of helical media with magnetooptic activity, the 

present situation can be argued to be qualitatively similar to the backward waves found 

by Engheta et a1 in chiroplasmas [34], which, instead of a gap originating from band 

anticrossing, have a pseudo - band edge at the cut-off frequency (see Section 3.3). 

Engeta et al. argued that the competition of left-hand circular polarization with the right- 

hand induced current due to the applied magnetic field caused the phase velocity of these 

eigenmodes to change sign as the strength of the magnetooptic activity increases, while 

their corresponding group velocities did not change direction. The resemblance of this 

result to our observations, where structural chirality replaces molecular optical activity 

and a periodic dielectric constant leads to photonic band gaps, invites the conjecture that 

all media that break time-reversal and space-inversion symmetries with a mechanism for 

band gap formation will display backward waves in select frequency intervals. 

However, photonic crystals lacking space-inversion and time-reversal symmetries 

have additional special properties. To the best of our knowledge a new concept for 

photonic crystals, we find that, as long as these two symmetries are broken along the light 

propagation direction, a periodic dielectric contrast leads to the formation of indirect 

photonic band gaps, by analogy with electronic band gaps. Fundamentally, this could be 

qualitatively predicted from the fact that band anticrossing occurs at the intersection of 

photonic bands with dlfSerent group velocities, thus having to yield band edges that are 

not aligned in k-space. Although a bit hard to see on the plotting scale used in Figure 
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3-2 and Figure 3-3(b), this fact is proved quantitatively by our numerical results and by 

the approximate analytical solutions in Eq. (3-25). 

The presence of indirect photonic band gaps has quite intriguing consequences. 

We discuss here the potentially most interesting feature of this class of photonic crystals 

from a theoretical standpoint, arising from the subtler problem of non-propagating modes 

inside the indirect photonic band gap. A common assumption is that the eigenmodes in 

the gap represent evanescent waves [22], defined as waves with complex wave numbers 

having zero real parts and non-zero imaginary parts (in 1 -D, Re{kz)=O and Im{kz)+O). 

However, as shown in Figure 3-3(b), we find that in the case of MO-HM the Re{k,) of 

these non-propagating eigenmodes is not only non-zero, but also frequency dependent. 

This is very peculiar due to the fact that the material system is lossless (see Eq. (3-2), 

easy to show that the lossless condition [22] is satisfied at any value of z, gxyz = (gxYz)+, 

where the superscript + denotes transpose and complex conjugate). Fortunately, the 

transmission spectra simulations in Figure 3-3 (a) and Figure 3-3(c) sustain the physically 

expected fact that these non-propagating modes do not transport power, temporarily 

solving this apparent contradiction. Referring to Figure 3-3(b), it is also evident that at 

any frequency in the photonic band gap, e.g. a, there will be two non-propagating 

modes decaying in either +z or in the -z directions (given by the sign of their Im{k,)). 

However, the interesting aspect is that one of these two modes has an exponential decay 

direction that is opposite from that of the phase front movement, just like backward 

propagating waves (here the mode decaying in the +z direction has Im(kz) > 0 and 

Re{kz) < 0). Lastly, we remark that on top to being non-zero, the real parts of the Bloch 

wave vectors in the gap are also frequency dependent, to the best of our knowledge a 
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novel concept with regard to the features of the non-propagating modes of photonic band 

gaps. Although the frequency dependence in our case is very small, in practice its 

existence might still be probed by photon tunneling experiments at frequencies from the 

gap of these photonic crystals. This rich problem of the non-propagating eigenmodes in 

indirect photonic band gaps is addressed in the next chapter, but it should be clear by now 

that photonic crystals without time-reversal and space-inversion symmetries display very 

unusual general properties (arising solely from having translational periodicity, refractive 

index contrast, and an absence of the two inversion symmetry elements). 

OS2O [ (8) - y =  0 0 = 0.65 [ ~ R c / L ]  

Parallel wave vector, kx [2n/ L units] 

Figure 3-4 - Isofrequency sections through numerically calculated dispersion surfaces, w(kx,ky=O,kz); (a) 
Effect of magnetooptic activity ( y  > 0) on the isofrequency contours, when o = 0.65 [ 2 z  c/L] and the 
magnetogyration vector is parallel to the helical axis (gllz) ; (b) Isofrequency cuts at multiple frequencies, 
for constant magnetooptic activity ( y = 0.1, g 1 lz). 

Having described the case of axial propagation with kllgllq, we now address the 

problem of non-axial propagation with arbitrary propagation in the x-z plane (k = xk, + 

zk,), keeping gllqllz. The complete dispersion surface w(k, k,=O, k,) that corresponds to 
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the band structure 4kX=O, k,=O, kz) of Figure 3-2 is shown as isofiequency contours 

(sections through the 3D surface at particular frequencies) Figure 3-4. It can be seen in 

Figure 3-4(a) that magnetooptic activity with gllz causes the contours to shift along z as 

compared to those for y = 0 (a simple HM). As in the case of axial propagation (Figure 

3-2), this z-translation is opposite for left- and right-handed circularly polarized 

eigenmodes. As shown in both Figure 3-4(a) and Figure 3-4(b), this translation leads to 

formation of band anticrossing at the intersection of contours corresponding to 

eigenmodes with opposite handedness (note that, for kx # 0, the eigenrnodes become 

elliptically polarized). There, the resulting isofrequency contours have an inflection point 

and are highly nonlinear. This large nonlinearity allows for significant changes of the 

direction of the group velocity for small changes of the fkequency or of the wave vector 

of a wave propagating through this MO-HM (v, points along the normal to the 4 k )  

contour, Eq. 3-6). The large sensitivity of v, for small variations of either k or w has 

been previously described in other photonic crystals and represents the basis of the so- 

called photonic crystal superprism effect [20], which allows the fabrication of highly 

dispersive optical devices on the tens of microns length scale and thus a potential for 

important uses in microphotonic devices. 

As already described earlier in this section, in certain frequency intervals, waves 

propagating along the helical axis could be described as backward waves, having 

oppositely pointing group and phase velocities. We find that this remains true even for 

non-axial propagation as long as k is not perpendicular to both the helical axis and 

magnetogyration vector. We show in Figure 3-5 the isofrequency section at i3 = 0.67 

through the same dispersion surface analyzed above (gllqllz), and the group velocities of 
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the eigenmodes phase matched to a particular value of the parallel wavevector kx. As 

shown on the graph, there are four propagating modes, (a)-(d). The three eigenmodes (a), 

(b) and (d) all have v,*v, > 0 (i.e. they are normal waves, where the energy flows in the 

same general direction as k). However, eigenmode (c) has the features of a backward 

wave (vg,,*vp,, < 0). The general conclusion that can be drawn from these observations is 

that magnetooptic activity causes MO-HM to exhibit propagating eigenmodes that have 

opposite phase and group velocities along the direction of the magnetogyration vector. 

Parallel wave vector, kx [2 z/ L units] 

Figure 3-5 - Isofiequency cut at c ~ ,  = 0.67 [2xc/L] through numerically calculated dispersion surfaces, 
w(k,4=0,kz), when gllz ( y  =0.1), showing the directions of the Poynting vectors of four eigenmodes that 
are phase matched to a particular value of the parallel wave vector, k,. 
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3.6.2. Photonic Band Structure of I D  Periodic MO-HM with glq. 

Having analyzed in the previous section the case when time-reversal and space- 

inversion symmetries are broken simultaneously in a MO-HM having its helical axis (q) 

parallel to the magnetogyration vector (g, describing magnetooptic activity), we now 

examine the consequences of having g lq .  

In the case of axial propagation (kl lq), one would qualitatively predict a reciprocal 

photonic band structure, since only space-inversion symmetry is broken along the 

propagation direction. The same prediction can be made by examining the analytic 

solution for the dispersion relation when kllql lz (see Section 3.4). In this case, Eq. (3-12) 

shows that only the % elements (i, j = 1, 2) of the dielectric tensor affect the u(kz) 

solution. When glz ,  magnetooptic activity involves off-diagonal tensor elements that 

couple the z components of the EM fields with their x andor y components, depending 

on the direction of g (see Eq. 3-2). Thus, when glz ,  the q terms in Eq. (3-12) will not 

be affected by magnetooptic activity. Indeed, as shown in Figure 3-2, the numerically 

calculated photonic band structure of a MO-HM with g l q  is reciprocal, and it is in fact 

identical to that of the corresponding HM (y = 0), just as predicted. Note that we used 

this numerical approach since the analytic procedure presented in Section 3.4 fails due to 

the fact that the vector g, while static in the xyz coordinate frame, becomes a rotating 

vector after the Oseen transformation, and introduces to z-dependent dielectric tensor 

elements in the system of differential equations shown in Eq. (3-1 1). Although with no 

effect on @A, magnetooptic activity does affect the propagating eigenrnodes by altering 

their polarization, which is no longer circular. 
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OS2O[ (a) - y =  0 w = 0.65 [2z c/L] 

Parallel wave vector, kx [2n/ L units] 

Figure 3-6 - Isofiequency cuts through numerically calculated dispersion surfaces, dkX,&=O,k,); (a) 
Effect of magnetooptic activity ( y >  0)  on the w = 0.65 [2lrc/L] contours, when the magnetogyration vector 
is perpendicular to the helical axis (gllx) ; (b) Isofiequency cuts at multiple frequencies, for constant 
magnetooptic activity ( y  = 0.2, to exaggerate this qualitative effect, gllx). 

In order to learn more about the optical properties of the MO-HM with g lq ,  we 

have calculated the full dispersion surface 4 k ,  k, = 0, k,) for gllx and q(lz, and show in 

Figure 3-6 representative isofi-equency cuts. As depicted in Figure 3-6(a), magnetooptic 

activity (y > 0) causes again a translation of the contours along the magnetogyration 

vector direction. As observed before, this translation is opposite for the two types of 

propagating eigenrnodes (with different polarization handedness). Furthermore, as 

observed in the previous section for gllq, we find again that magnetooptic activity causes 

the MO-HM to display propagating eigenmodes with opposite group and phase velocities 

along the magnetogyration vector (gllx in this case). To better understand the 

consequences of this fact, we show in Figure 3-7 a single isofi-equency contour 

(i3 = 0.65). The region labeled (ii) represents eigenmodes with the property that vg,,*v,, 

< 0. This is quite remarkable, since it predicts that a wave incident fi-om air will couple 
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into a MO-HM photonic crystal on the same side of the surface normal, assuming that the 

surface is perpendicular to the helical axis, q. This is very similar to the negative 

refraction predicted at the interface between air and left-handed media [17, 43, 441 or 

certain types of photonic crystals [20], in contrast to the usual situation when the 

refraction occurs on the opposite side of the normal (see (i) and (iii) in Figure 3-7). 

Lastly, another interesting consequence of the fact that the isofrequency contours 

shift along the x-direction as the strength of the magnetooptic activity increases is given 

by the fact that the directions of the group velocities are deflected towards the direction 

of the magnetic field. For example, it can be seen from Figure 3-6(a) or Figure 3-7 that a 

wave (here with w" = 0.65) propagating along the helical axis (kllq, k, = 0) will have vgllz 

for y = 0, shown in Figure 3-6(a), but in the presence of magnetooptic activity with gllx, 

while still having kllz, its group velocity will be deflected towards the x axis (and away 

from the phase velocity direction, obviously). Essentially, this result bears a resemblance 

to the electronic Hall effect, where a magnetic field applied perpendicular to the 

propagation direction results in a lateral deviation (in the case of electrons, this deflection 

is due to the Lorentz force, F = qvxB). 
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-0.20 
-0.5 -0.3 -0.1 0 0.1 0.3 0.5 

Parallel wave vector, k, [2n/ L units] 

Figure 3-7 - Isofiequency cut at w = 0.65 [2 z /L ]  through numerically calculated dispersion surfaces, 
a(kmk,,=O,kz), showing three different regimes of transmission when gllx (y = 0.2 to exaggerate the effect 
graphically); (i) and (iii) depict normal refraction at the air-photonic crystal interface; (ii) shows negative 
refraction at the air-photonic crystal interface. 

3.7. Conclusions 

In this chapter we attempted to provide a unifylng view of the general optical 

properties of photonic crystals that simultaneously break time-reversal and space- 

inversion symmetries. We studied the representative case of a 1D periodic, dielectric 

helical medium with magnetooptic activity. Space-inversion symmetry is broken due to 

the structural chirality of this photonic crystal. Similarly, time-reversal symmetry is 

broken by the presence of magnetooptic activity (spontaneous, or induced by an external 

magnetic field) for any propagation direction that is not perpendicular to the 

magnetogyration vector that describes the MO activity. 
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We have analyzed the analytic dispersion relation for propagation along the 

helical axis, and numerically-derived photonic band structures and their isofrequency 

sections in representative cases for the magnetogyration vector orientation with arbitrary 

light propagation directions. We confirmed that the dispersion relationship becomes 

nonreciprocal, w(k) + 4-k) ,  if the time-reversal and space-inversion symmetries are 

simultaneously broken along the wave vector direction. Due to the existence of a 

photonic band gap, the nonreciprocal band structure exhibits a set of interesting and 

intriguing features, which have not been reported in the previous investigations of similar 

periodically inhomogeneous materials. For example, immediate consequences of a 

nonreciprocal dispersion relation include presence of backward wave eigenmodes 

(opposite phase and group velocity, here only along the magnetogyration vector 

direction), and indirect photonic band gaps, by analogy to electronic band gaps in atomic 

crystals. We find that the presence of backward waves can allow for negative refraction, 

when the corresponding waves are incident from a normal, right-handed material on the 

interface with the photonic crystal. Furthermore, the variation of the magnetooptic 

strength causes a shift of the dispersion surfaces along the field direction and a deflection 

of the propagating modes' group velocity directions towards the same axis. 

A fascinating consequence of indirect photonic band gaps is that the non- 

propagating modes in the gap have wave vectors with frequency dependent non-zero real 

parts, while the material components are lossless and they still do not not transport any 

power, thus having to be categorized for now as a pseudo-evanescent type. Furthermore, 

regardless of the frequency inside the band gap, one of the two decaying modes always 

has Re{k)-Im{k) < 0, which resembles backward waves since the phase change is 



CHAPTER 3 

opposite to the direction of energy flow. This problem will be hrther explored in the 

next chapter, and, as it will be shown there, it will open an extremely valuable window 

into understanding the propagation of electrons in the atomic crystals that are analogous 

to the photonic crystal system investigated here - e.g., a magnetically-doped (or 

magnetized) noncentrosymmetric atomic crystal, such as gallium arsenide based 

materials (e.g. with manganese dopants), or chiral carbon nanotubes with applied axial 

magnetic fields. 

Since the properties outlined above were found to arise solely due to symmetry 

reasons, the absence of time-reversal and space-inversion symmetries, we conjectured 

that these properties will be displayed by any photonic crystal as long as these 

symmetries are broken simultaneously (thus for a given chiral photonic crystal, inducing 

magnetooptic activity will always lead to these effects, i.e. their magnitude will be 

material dependent, but their existence is guaranteed). 

In terms of the optical properties specific to 1D periodic helical media with 

magnetooptic activity, we have also found evidence for anomalous wave propagation and 

superprism effects, due to the large variation of the direction of the group velocity around 

inflection points introduced upon anticrossing of certain photonic bands. 
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CHAPTER 4 

Chapter 4. 

Tunneling time for barriers lacking space- 

inversion and time-reversal symmetries 

As it was discussed in the previous chapter, photonic crystals that simultaneously 

lack space-inversion and time-reversal symmetries display many remarkable properties. 

One of the interesting observations made in Chapter 3 was related to the characteristics of 

the nonpropagating eigenmodes in the photonic band gap of such a photonic crystal 

system. This problem is further explored in the current chapter, because the nature of 

these modes is intimately related to a very important problem in physics, tunneling - the 

traversal by a particle (photon, electron, etc.) of a region of physical space where the 

particle is not allowed to propagate in the first place. This corresponds to an electron 

tunneling across an insulating gap between two metallic electrodes, or to light traversing 

a finite region of space filled with a photonic crystal displaying a band gap at the 

frequency of the incoming light waves. 

A particularly important motivation for this study is the analogy between atomic 

and photonic crystals, described in more detail in Chapter 2. By studying the tunneling 

of a photon through such a photonic crystal, we gain insight into the analogous problem 

of an electron tunneling in an appropriate atomic crystal barrier. Since we find that, in 

the absence of the two inversion symmetries, the eigenmodes of the photonic crystal are 

circularly polarized, the corresponding electronic case is embodied by spin-polarized 
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electronic tunneling in a semiconductor that is both noncentrosyrnmetric (no space- 

inversion symmetry) and magnetized (no time-reversal symmetry). Immediate examples 

that come to mind are manganese-doped gallium arsenide (i.e. the zinc-blende crystal 

structure is noncentrosymmetric), or chiral carbon nanotubes with an applied axial 

magnetic field. These two types of material systems are, incidentally, subjects of 

significant research activities in the present, such as for spin electronics (spintronics) and 

nanoelectronics. Thus, the results of our theoretical study offer an original and insightful 

view into a research problem of great importance presently. 

We find that breaking space-inversion and time-reversal symmetries along the 

tunneling axis causes the tunneling (phase) time to become dependent on both the length 

of the barrier, and on the spin of the tunneling wave packet. For photons, corresponding 

photonic crystal barriers exhibit circularly-polarized eigenrnodes and indirect photonic 

band gaps (iPBG), inside which the complex, non-propagating solutions (kgap) have 

frequency dependent nonzero real parts - remarkably different from the usually assumed 

evanescent solutions, which are purely imaginary (i.e. of the form kgap=ik). The 

tunneling (phase) time in finite barriers is found to correlate with the group-like velocity, 

I/vg = dRe{kgap}/dw, of the iPBG modes in the photonic crystal. The sign of the group 

delay is found to change with the spin of the tunneling particle. 
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4.1. Introduction 

The estimation of the time required for tunneling across a barrier is of practical 

importance because it provides an upper limit for the operating speed of tunneling-based 

devices. Although old, this problem remains today controversial due to an insufficient 

understanding of tunneling dynamics. Theoretical predictions and experimental evidence 

show that, for example, tunneling is superluminal (group velocity exceeds that of light in 

vacuum, c), yet without violating Einstein's causality [I-41. The superluminality is 

caused by the fact that as the length of a tunnel barrier is increased beyond a certain 

point, the tunneling time remains constant and thus the corresponding velocity quickly 

exceeds c. This phenomenon is often called the Hartman effect [5], and has been shown 

first in a microwave experiment [6] and in the same year confirmed with laser pulses [7]. 

Today, the Hartman effect is widely accepted as one of the most fundamental features of 

the tunneling dynamics for both waves and particles [I-41 to the point that even a 

universal tunneling time has been introduced [2]. The only known deviations from this 

behavior arise when particular frequency-dependent factors are introduced, such as 

material absorption [8] and dispersion, or tunneling of wave packets with large 

momentum spreads [9]. 

In this chapter we study the problem of tunneling time in 1D barriers that break 

simultaneously space-inversion (S-I) and time-reversal (T-R) symmetries, and show that 

solely due to symmetry reasons the tunneling dynamics deviates fundamentally from the 

expected behavior. Particularly, the Hartman effect is forbidden, which is remarkable 

since the absence of the two inversion symmetries is a frequency independent factor - the 
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tunneling time not only becomes dependent on barrier length, but also on the spin of the 

tunneling wave packet. By studying an appropriate photonic tunneling case, we further 

show that one of the spins will always tunnel with a negative time delay, because for this 

spin the barrier supports pseudo-evanescent photonic band gap modes with a negative 

group-like velocity (thus, the longer the barrier the shorter the tunneling time). 

This study sheds light on issues not only of scientific importance (i.e. effects of 

inversion symmetries on tunneling dynamics), but also of practical relevance. In the 

electronic case, spin-polarized tunneling is currently a very important area of spintronics 

[lo]. Our results thus give new valuable insight into the operation of those 

magnetotunneling junctions that break both S-I (e.g. due to a noncentrosymmetric barrier 

material) and T-R symmetries (e.g. external magnetic field, or intrinsic material 

magnetization) along the tunneling axis. A prominent example of such a spintronic 

device is a junction with a noncentrosymmetric barrier material that may also be 

magnetically doped, such as manganese-doped gallium arsenide (GaAs), the "model" 

magnetic semiconductor. With one exception, previous investigations of the spin- 

dependent tunneling time in GaAs-related systems take into account the absence of S-I, 

however T-R is not broken due to the magnetization being perpendicular to the tunneling 

axis (in-plane magnetization of the electrodes with out of plane tunneling) or due to 

absence of magnetism entirely [ 1 1, 121. A few months ago, after we submitted for 

review and publication a manuscript with the results reported in this chapter [13], Guo et 

al. [14] reported on a study of electronic tunneling in magnetic semiconductor 

heterostructures (based on Cdl,MnxTe and Znl,MnxSe) with magnetic fields applied 

along the tunneling direction, which independently confirmed some of our observations 
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in the photonic case. Another relevant example is that of carbon nanotube based 

magnetic tunnel junctions [15] with an external magnetic field applied axially. 

4.2. Gap states in nonreciprocal photonic crystals 

In order to study the effects of the absence of the two inversion symmetries, we 

focused on photonic tunneling through a 1D photonic crystal (PC) excited in the center of 

its first photonic band gap. We showed in Chapter 3 that 1D PCs lacking both S-I and T- 

R develop indirect photonic band gaps (iPBG) due to their nonreciprocal dispersion 

relations, w(k) + w(-k), and support propagation and tunneling via spin-polarized 

eigenmodes (i.e. circularly polarized, CP) [16]. One of our initial goals was to 

understand the hndamental differences between tunneling in PC barriers with iPBGs and 

in those with direct photonic band gaps (dPBG), the latter being to the best of our 

knowledge the case analyzed in virtually all published studies of photon tunneling 

dynamics [I-41. Any such difference will have to stem from the nature of the non- 

propagating gap modes - this is because the tunneling time has been shown to be directly 

related to the phase change experienced by photons while traversing the barrier [2, 51, 

which in turn is connected to the real part of the tunneling mode's k-vector. The 

propagation of the peak of a pulse is described by the group velocity, which generally 

may be defined as: 
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where w is the angular frequency, k is the spatial fiequency, and 4 is the phase change 

upon transmission through a barrier of length Lbarrier (b  = Re {k} Lbarrier). 

The main difference between dPBG and iPBG is qualitatively illustrated in Figure 

4-1. At the anticrossing of bands with equal and opposite group velocities it can be 

argued that the real parts of the k-vectors of the resulting dPBG gap modes, Re {kgap}, fall 

on a vertical line joining the two band edges, which for purely evanescent modes should 

further be identical to zero. Based on Eq. (4-I), this argument is an agreement with the 

classical view that tunneling is "instantaneous" (with no phase change) because in this 

case tunneling takes place with infinite group velocity. However, as shown in Figure 

4-l(b), the nonreciprocal group velocities of media with w(R) + 4-k), arising from the 

simultaneous absence of S-I and T-R, result in an iPBG as the band anticrossing lead to 

band edges that are not aligned vertically in k-space. Unlike dPBG, then the Re{kgap} 

solutions of iPBG become fiequency dependent (end points have to match the band 

edges). Note that this qualitative argument is supported by numerical photonic band 

structure calculations of real systems as described below. Thus, at this point we will only 

mention an inviting conjecture based on Figure 4-l(b): in the case of iPBG, tunneling 

cannot become "instantaneous" (i.e. vg + a) as in the Hartrnan effect [ 5 ] .  
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Figure 4-1 - (a) dPBG at the anticrossing of bands with equal group velocities; (b) iPBG at the anticrossing 
of different v, bands, as seen in nonreciprocal PCs. The original bands are shown with dashed lines, the 
coupled propagating modes with solid, black curves and the expected real part of the gap modes with a 
thicker solid gray line. 

4.3. Tunneling phase time in nonreciprocal photonic barriers 

The model PC investigated in this chapter is a lossless 1D PC composed of 

alternating optically active (chiral) and Faraday active (magnetooptic) layers, lacking 

both S-I and T-R symmetries for propagation along the periodicity direction. The 

constitutive relations of an optically active material are: 

where E, is the isotropic dielectric constant, and 5;. is the isotropic chirality admittance 

(or optical activity parameter) responsible for absence of S-I [17]. 

The Faraday active layer is described by the following constitutive relations: 
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where y~ is the Faraday activity parameter, responsible for the absence of T-R. This is a 

purely magnetooptic (or gyroelectric) material with a magnetization along the z axis, 

where the usually small effect of the magnetization on the (3,3) element of g, is 

neglected. For convenience, we use quarter-wave-like layer thicknesses, 

di =/2,1(4&) i = F ,  c .  Note that the choice of ;lo is not important, as in our 

numerical studies we use normalized frequencies (a  in 2m/L units) and wavevectors (k 

in 2 d L  units), where L is the PC period (L = dF + d,). 

In order to estimate the tunneling time through the 1D PC barrier, we use the 

group-delay (or phase time) formalism because of its acceptance following from both 

photonic experiments [I] and theoretical results for the more general quantum 

mechanical tunneling problem [2], including spin-polarized electronic tunneling [ 1 1 1. 

Although other models for the tunneling time are available, under our assumptions of a 

photonic crystal with lossless and non-dispersive components, the tunneling phase time is 

known to be equal to the tunneling time calculated from more complex models, such as 

the Green function approach [18], and thus a perfectly valid choice. Furthermore, we 

used the 4x4 transfer matrix method [19] (also described in more detail in Chapter 3, 

Section 3.9,  because it allows the study of both finite and infinite structures - we can 

thus solve for the properties of a finite, multilayer photonic barrier, and also for the 

eigenmodes of the photonic crystal, in order to understand what states are available at the 

frequencies of the tunneling wave packet. In the latter case, both propagating and non- 

propagating eigenmodes can be obtained by solving for the complex band structure. 

For the estimation of the spin-polarized tunneling time we first calculate the 

complex transmission coefficients in a finite multilayer photonic barrier for right-hand 
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(R) and left-hand (L) CP waves, ~ R R  and ~LL,  where e.g. ~ R R  describes RCP transmission 

with spin conservation (see Section 3.5.2 in Chapter 3, or [16] and references therein). 

We then use in Eq (4-1) the corresponding frequency-dependent transmission phase 

change, &(w) = arg(t(w)), and obtain the tunneling phase time, z, for waves tuned to the 

mid-gap frequency (m) for each spin 

4.4. Results 

To emphasize the effects of the simultaneous absence of the two inversion 

symmetries and of the differences between dPBG and iPBG, we first present the case of a 

1D PC lacking only T-R symmetry. More exactly, we examine the 1D PC introduced 

above where the chiral layer is replaced by a dielectric isotropic layer (Eq. 4-2 with 5, = 

0 and E, + E~) .  This case is also related to the Larmor clock approach to tunneling time 

[20]. From the start, we expect reciprocal dispersion relations since only T-R is absent. 

For propagation along the z axis, the eigenrnodes are LCP and RCP, as shown in 

Figure 4-2(a), where the bands are labeled according to the phase difference between the 

x and y components of their electric field eigenvectors - qbEY = 90'). Please note the 

expected reciprocity, w(k) = 4-k), even if Faraday nonreciprocity is present (this 

describes the change of polarization handedness upon reversal of the propagation 

direction, while phase and group velocities remain unchanged). We also show in Figure 

4-2(b) that the two band gaps are direct and aligned at the edge of the Brillouin zone. 
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The non-propagating complex solutions inside the gaps are also CP, and their 

corresponding real and imaginary parts, Re{kgap} and Im{kgap}, are plotted in Figure 

4-2(c) and (d). Note that these numerical results support very well the qualitative 

argument illustrated in Figure 4- 1 (a). 

-0.5 -0.3 -0.1 0 0.1 0.3 
Bloch wave vector, k [2dL units] 

. . . .  

. . . . . . . . ~  ...... .r.l . # , 

............ 
. . . .  . . . .  

(c) 1 ; 1 ; (d) i . . .  
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Bloch wave vector, k [2dL units] 

Figure 4-2 - (a) Reciprocal band structure with dPBG for a 1D PC breaking only T-R symmetry ( E ~  = 1.72, 
y~ = 0.1, E, = 1.52, 4 = 0 in Eqs. (2) and (3), see text); (b), (c) and (e) Magnification of the first gap 
region showing the original bands and the real and imaginary parts of the complex k,,, solutions in the 
PBGs - note the vertical alignment at the edge of the first Brillouin zone. 

We now present the case of a PC with iPBGs, the 1D periodic structure 

introduced earlier, with a bilayer period formed by a magnetooptic layer and an optically 

active layer. The first band gap region for propagation perpendicular to the interfaces (z 

axis) is shown in Figure 4-3(a) and (b): the nonreciprocity of the m(k) solutions is 

evident. At a particular fkequency, reversing the propagation direction leads to 
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eigenmodes with different phase and group velocities, even though their polarization 

remains circular. 

n 
-0.44 -0.4 0.4 0.44 

rn 

-3 Bloch wave vector, k [2dL units] 

Bloch wave vector, k [2dL units] 

Figure 4-3 - (a), (b) Nonreciprocal band structure for a 1D PC breaking both S-I and T-R (EF = 1.72, y~ = 

0.1, E, = 1.52, 4 = 0.02 in Eqs. (2) and (3), see text). (c), (d) and (e) show the gap mode solutions. Note 
the vertical (mirror) symmetry about k = 0 of Im(kgap) solutions and the different fiequency dependence of 
the Re (kgap) solutions. 

Being interested in tunneling, we now proceed to examine the non-propagating 

solutions in the iPBGs. The real and imaginary parts of the gap solutions, Re{kgap) and 

Irn {kgap}, are plotted separately in Figure 4-3(c), (d), and (e). As it was qualitatively 

predicted in Figure 4-l(b), note that Re{kgap) solutions are indeed frequency dispersive 
. - . . . .  . . . . . . . . .  . . . - - . .  

. . . . .  . . , . 

' and nonzero. . . Furthermore, for each gap, the two kgaP solutions are pseudo-ev&escent; 
. . * ,  . . . . . . . . .  . . .  . . . . . . . .  . . - -  - -  . - .  - -  . 

. . .  . 1 . . - * .  . . 

being complex conjugate with Re{kgap} # 0. This can be seen in Figure 4-3(c) and (e), 
. - 

where the Re{kgaP} . . solutions . are . doubly - . -  degenerate, while Figure 4-3(d) shows that, for . , h ,  

. . . - .  . . . .  . . . . -  , - .  . . . . 
. . . . ,  . 0 

each gap, the Im{kgap) curves are symmetric with respect to the k = 0 axis. It is 
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important to point that such complex gap modes do not carry a net average power flux, 

fact confirmed by our numerical TMM calculations of RCP and LCP reflectivities that 

are found to approach 100% inside their respective band gaps [16] (also shown in 

Chapter 3, Figure 3-3, for the case of a nonreciprocal 1D periodic, magnetooptic helical 

medium). 

To study the effect of the type of photonic band gap (dPBG vs iPBG) on the 

tunneling time, we consider the normal-incidence case and calculate the complex CP 

transmission coefficients and the corresponding phase changes, &,RCP = arg(tRR) and bpLCP 

= arg(tLL), for finite 1D stacks of varying numbers of periods, Npriods. To reduce the 

effect of resonances due to the incidence and transmission interfaces, we also assume that 

the dielectric constants of the incidence and transmission media are equal to the 

geometric average of the dielectric constants of the two layers in the photonic crystal 

E, = = J E ~ E ,  . 

We show in Figure 4-4 the calculated tunneling time for waves with RCP and 

LCP polarizations tunneling through finite barriers of varying length. Note that each 

circularly polarized wave is chosen to have a frequency centered in the middle of its 

corresponding photonic band gap (m, RCP = 0.311 [2m/L] and m, LCP = 0.316 [2m/L]), 

which numerically happen to be the same for both the dPBG (6 = 0, y~ # 0) and iPBG 

(gc ;. 0, y~ # 0) cases considered here. 



CHAPTER 4 

number of periods 

Figure 4-4 - Tunneling time for RCP and LCP pulses with narrow frequency bandwidths centered in the 
gaps of the LCP and RCP bands shown in Fig. 4-2 (dPBG) and Fig. 4-3 (iPBG). In both cases the center 
fiequencies are Q, LCP = 0.3 1 6 [2 m/Lperiod and Q, RCP = 0.3 1 1 [2 m/Lperiod), with Lperiod = 486nrn. 

Examining the above figure, it can be seen that, in the dPBG case without T-R, 

the Hartman effect applies for both circular polarizations (or spins), just as expected by 

analogy with the Larmor clock approach to tunneling time [16] (estimation of the 

tunneling time by introducing Faraday activity artificially in a tunneling barrier). 

However, in the case of iPBGs the Hartman effect does not seem to apply anymore. It 

can be seen in Figure 4-4 that the tunneling time becomes dependent on the barrier length 

in a specific way for each CP handedness. The tunneling time for RCP modes (solid 

triangles in Figure 4-4) increases with bamer length, while the result for the LCP band 

gap is counterintuitive: the longer the barrier, the shorter the tunneling time (solid circles 

in Figure 4-4). As unexpected as this observation might seem, it is in perfect accordance 

with the predictions of the photonic band structure calculations. It can be seen in Figure 

4-3(d) that for k > 0 (+z propagation) there are two gaps, for each CP band. However, 

while there are two decay constants, Im (kgap), as expected in the k > 0 region, see Figure 

4-3(d), the slopes of the corresponding real parts of the kgap solutions have opposite signs. 
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The wider gap, corresponding to RCP modes and centered at = 0.311, has its Re(kg,} 

solutions in the k < 0 region and a positive slope, while the narrower gap, corresponding 

to LCP and with a = 0.316, has Re{kgap) solutions in the k > 0 region and a negative 

slope. Thus, tunneling inside the RCP gap proceeds with a positive group-like velocity, 

vg > 0, while in the case of the LCP gap vg < 0. This is why we believe that the LCP 

tunneling time decreases with increasing barrier length in Figure 4-4. Supporting this 

claim, we also numerically observe that the slopes dRe(kgap}/dw in Figure 4-3(c) and (e), 

corresponding to the case of an infinite PC, predict very well the saturation values of 

d7/dLbarrier for both the LCP and RCP curves (e.g. at NperiOnS > 30), calculated for finite 

structures (which are still superluminal). This suggests that tunneling takes places via 

well defined modes having group-like velocities of the form given in Eq. (4-1). 

4.5. Conclusions 

In conclusion, we have shown that tunneling of spin-polarized wave packets in 

barriers that lack space-inversion and time-reversal symmetries differs significantly from 

the expected behavior. Particularly, the Hartman effect is forbidden, as the tunneling 

time not only depends now on barrier length but also on the spin of the tunneling particle. 

In the case of a "model" 1D photonic crystal barrier, the origin of this behavior is 

found to be the indirect nature of the photonic band gaps, because the gap modes are now 

pseudo-evanescent with frequency dispersive, nonzero real parts of their complex wave 

vectors. We find that the tunneling phase time for finite structures correlates with the 

group-like velocity of the gap modes, l/vg = dRe{kgap)ldo. While one of the spins 

tunnels with an expected positive group delay, the other spin will exhibit a negative 
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group delay by tunneling with a group-like velocity opposite to the exponential decay 

direction (Im {kgap) *dddRe {kgap) < 0) that corresponds to the tunneling direction. 

These results also offer useful insight for practical applications relying on 

discriminating between opposite spins during tunneling, by showing that the choice of a 

barrier length does not only affect tunneling probabilities, as well known [21], but may 

also affect the balance between spin-polarized tunneling fluxes due to an opposite 

dependence of tunneling time on the bamer length for the two spins. 

Electronic analogs of the photonic case studied in this chapter include a number 

of tunneling-based spintronic devices under active investigation currently, such as 

magnetotunneling junctions with magnetized noncentrosymmetric barrier materials (e.g. 

Gal,MnxAs, or other magnetically doped semiconductors with a zinc-blende crystal 

structure), or semiconducting chiral carbon nanotubes with applied axial magnetic fields. 
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Chapter 5. 

Photonic band gaps in 2D quasicrystals 

This chapter marks a shift in the focus of the thesis towards materials with 

quasiperiodic structures, which break translational symmetry. In the current chapter we 

explore the optical properties of 2D photonic quasicrystals (PQC), a class of photonic 

band gap (PBG) materials that has been introduced only seven years ago. The current 

interest in PQC is related to their intrinsic high rotational symmetries, which are known 

to lead to rounder dispersion surfaces and thus to offer a potential for obtaining larger 

complete PBG at a given refractive index contrast (or to lower the contrast required for a 

certain PBG width). However, while promising, the PQC field remains largely 

undeveloped by comparison with photonic crystals (PC). As discussed in the next 

section, very few experimental papers have been published, and the few existing 

theoretical studies address the optical properties of various choices of PQC structures. To 

better understand the difficult problem related to the choice amongst quasiperiodic 

structures, consider that, while 2D crystals can be classified in only five distinct Bravais 

lattices, an infinite number of 2D quasicrystalline structures can be theoretically defined 

(e.g. consider only the case of N-fold rotationally symmetric structures, where N can be 

arbitrarily large). Thus, while a few PQC lattices have been the subjects of preliminary 

studies, much remains to be done. Particularly important at this early stage in the field of 

PQC seem to be systematic studies that would identify the more promising quasiperiodic 
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structures, those with a combination of both desired optical properties and also suitability 

for efficient fabrication. 

In this chapter, we explore two basic but key problems that provide insight into 

the potential usefulness of PQC: the effects of systematically varying the point group 

symmetry (related to the maximum local rotational symmetry displayed by the 2D PQC, 

8-, lo-, and 12-fold in this work), and the effects of choosing different types of PQC 

structures for each of these point group symmetries (related to the method of fabrication, 

dielectric cylinders placed on a quasiperiodic tiling pattern, or dielectrics patterned by 

interference lithography). These are important questions because, in practice, one has a 

choice of fabricating a wide variety of quasiperiodic structures and currently there are no 

published guidelines as to which structures have better photonic band gap properties, if at 

all. In particular, we try to understand the properties of quasiperiodically structured 

materials made with interference lithography (IL), because this fabrication platform 

allows efficient large area patterning of structures with readily tunable symmetries, and 

thus offers a great potential for practical applications (2D PQC based on quasiperiodic 

tilings have been made with electron-beam lithography, which severely limits the 

experimentally achievable sample sizes). 

Next, in Chapter 6, we present an experimental study on the actual fabrication of 

large-area, 2D quasiperiodically structured materials using interference lithography, and 

the design of, and preliminary results for the fabrication at the sub-micron level of 3D 

quasiperiodic structured material using coherence diffraction lithography. The small 

feature size enables these structures to be potentially used as photonic band gap materials, 

and for novel microstructured composite materials with improved mechanical properties 
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arising from the combination of high rotational symmetries and the absence of crystal 

(fracture) planes in quasicrystals. 

5.1. Introduction 

By definition, quasicrystals break translational periodicity while maintaining a 

well-defined and long-range ordered structure, as evident from their diffraction spectra 

consisting of sharp peaks [I]. As a class of materials, quasicrystals have only been 

known since 1984, remarkably the year of both the first experimental observation of 

quasicrystalline atomic order by Shechtman et al. [2] working on metal alloys, and of the 

independent theoretical report of Levine and Steinhardt [3] that introduced quasicrystals 

as a new class of ideal atomic structures. The discovery of these materials sent waves 

through a number of fields, particularly in crystallography where the notion of a 

crystalline state being evidenced by the presence of sharp peaks in the diffraction pattern 

(reciprocal space) had to be fundamentally altered. Just three years later in 1987, 

photonic band gap (PBG) materials were taking stage as a new branch of solid state 

physics, due to the seminal works of Yablonovitch [4] and John [5], which announced 

profound opportunities for engineering light-matter interactions in this new class of 

artificial optical materials. Although photonic crystals (PC) are typically described as 

analogs of atomic crystals (where the atomic periodicity is replaced by the periodicity of 

the refractive index on length scales comparable with the wavelength of light) it was only 

in 1998 when the photonic analog of a particular atomic quasicrystalline arrangement was 

first reported. Chan et al. [6, 71 studied a 2D octagonal quasiperiodic structure and were 

first to show that photonic quasicrystals (PQC) can also display photonic band gaps. The 
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formation of band gaps in the absence of translational periodicity did not come as a 

surprise, since both electronic and photonic band gaps were known to exist even in 

amorphous materials, due to short-range order [8]. However, the main importance of 

Chan's report is, arguably, the fact that the quasicrystalline order was introduced as an 

alternative approach for enabling PBG in structures with well defined geometries and 

thus with a clear path towards the optimization of their properties through systematic 

variation of structure. 

The current interest in PQC lies in their ability to exhibit local rotational 

symmetries higher than those of crystals. A higher rotational symmetry is associated 

with rounder dispersion surfaces [9], which has the potential to enable larger photonic 

band gaps at a given refractive index contrast, or to lower the refractive index contrast 

required for a particular width of the photonic band gap. Due to their translational 

symmetry, crystals (2D and 3D) can only exhibit I-, 2-, 3-, 4- and 6-fold rotation axes 

(2n, n, 2n/3, n/2, and n/3 angles) [lo]. Quasicrystals, on the other hand, can exhibit 

much higher rotational symmetries: 8-, lo-, and 12-fold rotation axes have been observed 

in atomic quasicrystals [I], and even higher rotations are possible in mathematical 

quasicrystalline tilings [ l  11 (theoretically up to infinite rotational symmetry in the 2D 

pinwheel tiling). 
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Figure 5-1 - Quasicrystalline structures. (a) HRTEM phase-contrast atomic-resolution image of 
Zn6Mg3Ho decagonal quasicrystal viewed along the 10-fold rotation axis [www.jeol.com] and a photograph 
of a macroscopic (mm scale) quasicrystal; (b) and (c) SEM pictures of photonic quasicrystal made by 
etching holes in a pattern given by a quasiperiodic tiling - Penrose in (b) (from [12]) and dodecagonal in (c) 
(from [13]); (d) and (e) calculated quasiperiodic light intensity patterns from interference of laser beams, 
showing 10-fold and 12-fold rotational symmetries (this work). 

Figure 5-l(b-e) shows some types of quasiperiodic structures, including those 

currently being investigated as potential PBG materials. The few existing theoretical and 

experimental studies to date have focused on the case of mathematical quasiperiodic 

tilings. The first PQC paper by Chan et al. in [6] examined 2D octagonal tilings. Figure 

5-1(b) shows the case of a 2D decagonal (Penrose) tiling from the work of Notomi et al. 

[12], and Figure 5-l(c) shows the case of a 2D dodecagonal PQC from the work of 

Zoorob et al. [13]. Finally, in Figure 5-l(d) and (e) we show predicted structures from 

the interference of laser beams designed to produce the same rotational symmetries as the 

two shown quasiperiodic tilings but with very different detailed geometries. In the case 

of PQC from interference lithography, there is only one publication in 2005 by Gauthier 
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and Mnaymneh, where the propagation of TM polarized waves through finite portions of 

dodecagonal 2D PQC made via interference lithography was computationally 

investigated in order to understand PBG formation [14]. This study is particularly 

important for this chapter, since as described below, we are going to investigate in much 

greater detail the same family of PQC (including the system studied in [14]) 

As presented in the next chapter, our main interest is with the fabrication and 

properties of quasiperiodically structured materials made with interference lithography 

(IL), because this fabrication platform allows efficient large area patterning and thus 

offers a great potential for practical applications (PQC based on quasiperiodic tilings 

require electron-beam lithography for practical implementations, an expensive and very 

slow process, thus greatly limiting possible applications). Due to the large number of 

quasiperiodic structures that can be fabricated by IL, and the lack of prior investigations 

of their corresponding PBG properties, in the present chapter we identify and 

theoretically study a number of important and previously unanswered basic problems 

related to PBG formation in 2D quasicrystals. 

First, we study the effects of point group symmetry on PBG formation by 

examining in particular 8-, lo-, and 12-fold rotationally symmetric 2D PQC from IL 

(8mm, lOmm, and 12mm symmetries). In two dimensions, point group symmetries are 

limited to rotation axes and reflections (mirror lines). For crystals, there are 10 point 

groups (1, m, 2, 2mm, 3, 3m, 4, 4mm, 6, 6mrn). For quasicrystals, the number of point 

groups is infinite, consisting of rotation axes of degree N and mirror lines passing through 

the point of the rotation axes (N, Nm, Nmm types). The point group symmetry of the 

structure influences the resultant physical properties. For example, Von Neumann's 

Ill 



CHAPTER 5 

principle states that the symmetry of any physical property of a crystal (as signified by 

the tensor representing that physical property) must be at least as high as the point group 

symmetry of the crystal. In PC and PQC, the key characteristic for band gaps is the the 

"roundness" of dispersion surfaces in reciprocal space and thus the formation of complete 

gaps for a given refractive index contrast [9]. Examples for the importance of symmetry 

on the formation of PBG include reports of larger TM gaps in 2D hexagonal lattice PC 

(6mm point group symmetry) compared to 2D square lattice PC (4mm symmetry) [15], 

and recently the report of complete 2D PBG in a dodecagonal 2D PQC (12mm 

symmetry) that exceed the gap widths of known 2D PC [13]. However, while able to 

exhibit arbitrary higher rotational symmetries, PQC lattices are yet to be investigated 

systematically in order to establish the importance of these symmetries in the context of 

the absence of translational periodicity. Thus, we set out to investigate PBG formation in 

quasiperiodic structures with 8-, lo-, 12-fold rotational symmetries (point groups 8mm, 

lOmm, and 12mm), focusing primarily on the those produced by IL due to our practical 

interest in large area fabrication (see Figure 5-1). Our investigation not only impacts the 

theoretical understating of symmetry effects on PBG formation, but, equally important, 

also offers a first guide for understanding the potential properties of 2D PQC made with 

IL, given that only one previous investigation exists in this area (which examined 

transmission spectra for TM propagation in a 12-fold rotationally symmetric 2D 

quasicrystal [ 141). 

The second problem studied in this chapter is related to the choice between types 

of quasicrystal structures available for a given symmetry. As shown in Figure 5-l(b) and 

(c), one way a PQC can be obtained from mathematical quasiperiodic tilings is by placing 
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cylindrical rods with a given radius at the vertices of the tiling. A second type of 

quasicrystal that we study is obtained from IL, as shown in Figure 5-l(d) and (e). While 

the two kinds of quasiperiodic lattices display similar rotational symmetries, their 

structural features differ greatly and thus they are expected to display different PBG 

properties. 

The next subsections present in the IL model we used to generate the 2D PQC 

structures that were investigated, and the finite-difference time domain (FDTD) 

computational electrodynamics approach used to study PBG formation. 

5.2. Quasiperiodic structures in 2D 

In order to computationally study PBG properties in 2D quasicrystals, methods 

need to be first developed for the numerical generation and representation of the 

structures of interest, as well as for the realization of such structures in actual material 

systems. 

5.2.1. Quasiperiodic 2D structures from interference lithography (IL) 

For the purpose of PBG formation studies, the numerical representation of PQC 

structures is achieved by starting with a model for predicting the 2D spatial distribution 

of light intensity, I(x,y), that is obtained during the interference of laser beams arranged 

properly in space. The restriction of the analysis to the 2D case is mainly for clarity, as it 

is easy to generalize the interference to 3D space [16]. As further presented in the next 

chapter, two different approaches for obtaining quasiperiodic interference patterns exist - 

either interference of multiple beams (e.g. 5, 8 or 12 beams for deca-, octa- or 
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dodecagonal quasicrystals) [17, 181, or multiple exposures of line patterns from 2-beam 

interference, with sample rotations after each exposure (e.g. N = 4, 5 or 6 rotations with 

xlN angles for octa-, deca-, and dodecagonal quasicrystals) [19]. Although the resulting 

structures obtained from these two approaches have the same point group symmetry, as 

shown quantitatively in Chapter 6, Section 6.2.1, the structures are significantly different. 

The reason for this is because multiple beams IL (MB-IL) results in a superposition of 

multiple 2D quasiperiodic patterns with more than one value of fringe spacing. For the 

purpose of the studies presented in this chapter, we choose to focus on the multiple 

exposure structures, because they are the simplest structures that capture all the symmetry 

and structural features of IL PQC. 

The model used for calculating the corresponding spatial distribution of the light 

intensity, I(x,y), in the sample plane is easily derived considering the intensity pattern 

obtained from interference of two TE polarized laser beams is [16] 

I2 (r) = 21; (1 + cos(Ak r + ~ 4 ) )  (5-1) 

where the two beams are assumed to have the same intensity, lo, and Ak = k2 - kl and A@ 

are the difference of their wave vectors and phases. To focus on understanding the 

structural features of quasicrystals made via the multiple exposure of line gratings 

approach, we further assume the two interfering beams in Eq. (5-1) are 

counterpropagating in the (x,y) plane, in-phase, polarized out-of-plane (El lz), and that the 

total intensity pattern is just the sum of the set of latent intensity patterns that would be 

recorded experimentally in a photoresist layer. Assuming I. = 1 and N exposures, the 

total light intensity distribution becomes 
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N 

~ ( x ,  y) = c (2 + 2 cos(2 x ko cos oj + 2 y ko sin 8,)) 
j=1 

where ko = 2xlA, and A= wavelength of the laser. The orientation of each exposed line 

grating is described by the polar angle 4 as measured from x towards y, assuming a 

common origin. Note that we assumed 4 = ( j -  l)*xlN. 

2 Beam IL Multiexposure 

ylh 
4 

0 2 4 6 8 1 0  0 2 4 6 8 1 0  

xlh xlh 

Figure 5-2 - Spatial distribution of the total light intensity, I(x,y), pattern for (a) square crystal (N = 2 
exposures); (b) octagonal (N=4), (c) decagonal (N=5) and (d) dodecagonal (N=6) quasicrystals. The axes 
units are normalized to the laser wavelength, and higher intensities are plotted as lighter pixels. 

The resulting intensity distributions I(x,y) for N = 2, 4, 5 and 6 exposures with 

n/N rotations are shown in Figure 5-2, where the lighter pixels represent higher intensity 

values. When N=2, the resulting structure is simply a translationally periodic, square 

lattice with U2 period. The evident higher rotational symmetries of the octagonal (N=4), 
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decagonal (N=5), and dodecagonal (N=6) quasiperiodic pattems imply the lack of 

translational periodicity. It is important to realize that these i(x,y) pattems do not yet 

represent the actual quasiperiodic structures generated in interference lithography. If a 

positive (negative) photoresist is used, the high intensity regions will increase (decrease) 

the solubility of the resist in the developer solution. Thus, a positive photoresist will 

adopt the structure obtained by cutting the I(x,y) landscape at a particular intensity value 

(level set), Icut (which corresponds to the experimental exposure dose), and keeping only 

the regions where the light intensity was smaller than this threshold, I(x,y) < Icut. Thus, 

by varying the parameter I,, we can numerically represent structures with different fill 

fractions that can be generated from a particular interference lithography configuration by 

varying the exposure dose. 
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8- fold 

(a- 1 ) 

Figure 5-3 - Quasicrystalline structures with 18% fraction of a given component (white pixels) for the 
investigated rotational symmetries; the (X-1) series corresponds to I > I,,, while the (X-2) series to I < I,, 
(X = a, b, c); (a) octagonal quasicrystal with Icu{ImaI,,mum = 67% in (a-1) and 33% in (a-2); (b) decagonal 
quasicrystal with ICudImaYimum = 63% in (b-1) and 34% in (b-2); (c) dodecagonal quasicrystal with 
Icu{Im,imum = 64% in (c-1) and 35% in (c-2). 

It is important to notice the differences between quasicrystal structures with a 

given volume (area) fraction (1 8%), as presented in Figure 5-3. In order to obtain a given 

volume fraction, one could place the dielectric material in the regions with I(x,y) > ICut at 

high values of I,,,, shown in Figure 5-3(a,b,c-I), or place the dielectric in the regions 

I(x,y) < Icut with low values of I,,,, shown in Figure 5-3(a,b,c-2). While the octagonal 

structure seems very similar in both of these situations, the decagonal and dodecagonal 
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structures exhibit different structural features depending on whether they are generated at 

intensity values higher or lower than the I,,, that leads to the desired volume fraction. 

While exploring the effects of varying the threshold intensity, it became clear that 

besides the expected change in volume fractions, these quasiperiodic patterns displayed 

significant changes of their structures. By contrast, in the case of a 2D square lattice such 

as that in Figure 5-2(a) changing I,,, leads to a continuous change in the diameter of the 

holes (rods), without e.g. changing the number of rods (holes). For quasiperiodic 

patterns, we observe that variations of I,,, lead to not only a change in the size of existing 

structural features, but also to significant changes of their shape and, most importantly, to 

the appearance or disappearance of certain structural features (and a more "fragmented" 

overall appearance). Connectivity of the dielectric material is important for maximizing 

PBG as a result of a tradeoff. TM polarized gaps are favored by arrays of individual 

(disconnected) dielectric domains, while TE PBG tend to become wider in more 

connected structures [9]. In our studies we focus on TM PBG, and thus the concern with 

the structural features observed in 2D PQC from IL is not as much related to having a 

''fragmented" appearance (which may favor wider gaps), but with the effect of the size 

distribution of these structural features. 
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Figure 5-4 - (a) Octagonal, (b) decagonal, and (c) dodecagonal patterns with varying volume fractions of 
the white region (where I(x,y) > Ic,,), showing not only a continuous change of the size and shape of 
particular features, but also a discontinuous appearance of new structural features. Values of the 
corresponding Ic,, are given in Table 5-1. 
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Table 5-1 - Values of I,,, and corresponding dielectric volume fractions of 2D quasicrystals from IL 
where dielectric material is generated in regions with I(x,y) >I,,, see Figure 5-4. 

f Icut Imaximum 

(area fraction) OCTAGONAL DECAGONAL DODECAGONAL 

Figure 5-4 shows structures with four distinct area fractions between 5 to 30% for 

each type of quasicrystal of interest - octagonal, decagonal and dodecagonal (their 

corresponding I,,, values are listed in Table 5-1). The purpose of this figure is to show 

the important property that varying the area fraction in a quasicrystal made by 

interference lithography is accompanied by significant changes of the pattern structure. 

The consequences of this fact will become important later in this chapter, when the 

formation of PBG in PQC is quantitatively investigated. 

Lastly, we note that the type of quasicrystals described in this section will be 

referred to as IL-PQC, to emphasize that their structure is produced by interference 

lithography, and to distinguish from PQC obtained by placing cylinders on the vertices of 

tiles in quasiperiodic tilings (labeled PROJ-PQC, see next section). This nomenclature 

allows us to more clearly distinguish between the different types of 2D PQC throughout 

this chapter. 

5.2.2. Quasiperiodic 2D structures from quasiperiodic tilings 

Existing theoretical and experimental work in the area of PQC focuses on 

quasicrystals obtained by placing dielectric rods or air holes at the nodes of a 

mathematical quasiperiodic tiling [6, 12, 13, 201. It is interesting to note that, although 
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the most famous quasicrystalline tiling is the Penrose type, the first 2D PQC paper 

examined the case of a tiling with octagonal symmetry [6] .  

Our interest in the formation of PBG in PQC based on tilings was motivated by an 

interest to directly compare quasicrystals fkom interference lithography to them, and to 

thus learn about the importance of the choice of quasiperiodic structure for the formation 

and extent of PBG. Thus, in this section we outline the computational method used for 

generating 2D quasiperiodic tilings with point group symmetries similar to those 

described in the previous section. 

Although it is beyond the scope of the current thesis to explore in great detail the 

mathematical representation of 2D quasicrystals, we note that studying quasiperiodicity 

involves rather complex and quite intellectually stimulating problems. Consider that the 

typical 2D quasicrystalline tilings (e.g. with local 8-, 10- and 12-fold rotation axes) can 

be obtained by projecting a translationally periodic lattice fkom a higher dimensional 

space (typically a simple cubic lattice) onto a physical 2D or 3D space. For example, 

Penrose tilings can be generated by projecting a 5D cubic lattice onto a plane, and 12-fold 

rotationally symmetric (dodecagonal) tilings can be generated by a similar projection, but 

now from 6D [ l  11. This projection approach can be more easily understood, if described 

in the case of generating a 1D quasicrystal fkom a 2D square lattice. 
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Figure 5-5 - Generation of a 1D quasicrystal by projection from a 2D square lattice. The key requirement 
is for the (e.g. 1D) axis E (onto which the projection is done) to be oriented at an irrational angle with 
respect to the translation vectors of the higher dimension (e.g. 2D) periodic structure. Adapted from [l 11. 

To obtain a 1D quasiperiodic lattice, the projection method requires starting from 

a higher dimensional space, here just 2D. Quasiperiodicity requires the orientation of the 

axis onto which the projection is done (E in Figure 5-5)  to be at an irrational angle from 

the translation vectors of the 2D lattice. Also, only the lattice points contained in a finite 

thickness "shell" around the considered axis (shown with dashed lines in Figure 5-5) are 

projected. As an example, the Fibonacci sequence can be generated with this method, if 

the slope of the line E is related to the golden mean, r = (1 + &) 12. 

While it is more difficult to graphically describe the method of projecting a lattice 

fiom high dimensional spaces onto a 2D physical space, it is essentially similar to the 1D 

quasicrystal example presented above. For the purpose of this thesis, a computer code 

provided by Dr. Mihai Ibanescu from the research group of Prof. John Joannopoulos 

from the MIT Physics department was used to generate a text file containing the 

coordinates of the vertices in quasiperiodic lattices with desired rotational symmetries 

(vertices shown as circular dots in Figure 5-6). The code uses the same projection 

algorithm as described in Chapter 5 of [ l  11. 
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Figure 5-6 - Examples of 2D quasicrystalline tilings. (a) octagonal quasicrystal; (b) decagonal quasicrystal 
and (c) dodecagonal quasicrystal. The patterns are centered with the high rotation axis at (5,5). 

Typical results of the projection method are shown in Figure 5-6, where the high 

rotational symmetry axis for each type of quasicrystal is located at the center of the plots. 

Note that a tiling pattern is obtained by joining the vertices of the quasiperiodic tiling 

patterns, just as expected. For 8- and 10-fold rotational symmetry, quasiperiodic tilings 

are formed fiom two unique tiles, while for the case of 12-fold rotational symmetry at 

least three tiles are needed [21]. Below we show the corresponding quasiperiodic 

structures obtained by placing dielectric rods at the vertices of these three quasi-lattices, 

where the rod diameter has been chosen to give 18% fill £?action, to allow direct 

comparison with the corresponding IL-PQC structures shown in Figure 5-3. 
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Figure 5-7 - 18% fill fraction 2D quasiperiodic structures based on mathematical quasicrystalline tilings 
(for comparison with interference lithography structures shown in Figure 5-3). 

To complement the data in Table 5-1, we show next the effect of the dielectric 

cylinder radius on the volume fraction of 2D PQC from quasiperiodic tilings. 

Table 5-2 - Effect of dielectric cylinder radius on volume fraction in 2D PQC obtained from 2D 
quasiperiodic tilings as shown in Figure 5-7, calculated for a square sample of side 21a discretized 
with 32pointsla (a = 1, same sizes as used in the PBG simulations discussed in Section 5.3). For each 
symmetry, we also include the total number of cylinders contained in the 2lx21a computational box. 

(area fraction) OCTAGONAL DECAGONAL DODECAGONAL 
(5 13 cylinders) (52 1 cylinders) (54 1 cylinders) 

5% 0.1 159 0.1 163 0.1 143 
11 0.1735 0.1723 0.1694 
18 0.22 17 0.2208 0.2 160 
30 0.2858 0.2847 0.28 10 

Lastly, we note that the type of quasicrystals described in this section will be 

referred to as PROJ-PQC, given that their structure is obtained by the projection method. 

5.3. FDTD for computing photonic band gap frequencies 

The absence of translational periodicity in photonic quasicrystals makes the 

theoretical prediction of their optical properties much more difficult than in the case of 

photonic crystals. Translational periodicity in PC enables the use of Bloch's theorem, 
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and allows optical properties to be derived by examining a small portion of the crystal, 

typically the translational unit cell of the structure using periodic boundary conditions, or 

the reduced Brillouin zone in the reciprocal space [9,22]. In PQC, by definition, there is 

no translational unit cell and thus computational investigations of optical properties have 

to approximate the properties of the entire structure based on examining finite but larger 

size pieces of the quasicrystal. 

The finite difference time domain (FDTD) approach to solving Maxwell's 

equations is particularly well suited for investigating PBG formation in quasicrystals, 

because it allows modeling of the optical properties of materials with arbitrary size, 

shape, and composition. The essence of this numerical method is the discretization of 

both spatial and temporal derivatives in Maxwell's equations, followed by the evaluation 

of the resulting algebraic equations [23]. To illustrate this concept, consider a wave 

propagating along the z axis in a material with dielectric constant E, and polarized along 

x. For this case, the propagation is described by the following differential equation 

In FDTD, the above equation is numerically evaluated by employing a finite 

difference approximation for both the spatial and temporal derivatives, which in its most 

simple form reduces to 

EX(z,t+At)-EX(z,t) = -- 1Hy(z+k,t)-Hy(' , t)  
At & Az 

While the above equation illustrates the concept behind FDTD, it is important to 

keep in mind that more sophisticated finite difference formulas can be used in practice, 
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and that the algorithm for stepping in time can be quite complicated when solving 

Maxwell's equations [23]. In all cases, the accuracy of the FDTD solution ultimately 

relies on the choice of the temporal and spatial steps, At and Az. The smaller these two 

parameters are, the more accurately the material structure and time varying 

electromagnetic fields are represented, and the better the final solution. Accuracy in 

FDTD is thus obtained at the expense of a larger size and of a longer duration of the 

numerical simulation. 

In our studies, we have used the MIT Electromagnetic Equation Propagation 

(MEEP) FDTD simulation engine developed in the research group of Prof. John 

Joannopoulos from the Physics Department at MIT by Dr. David Roundy and Dr. Mihai 

Ibanescu, both of whom we acknowledge for their help and access to this software. 

Currently, the development of MEEP is continued at MIT by Prof. Steven Johnson. 

MEEP was also recently released as freely available software [24]. 

Since the goals of our investigation revolve around developing a basic 

understanding of the effects of symmetry and quasicrystal type on PBG formation, we 

choose to focus on PBGs for TM polarization. The FDTD approach we use is similar to 

that used by Chan et al. in their study of octagonal PQC [6, 71, except that due to 

computational constraints and the large problem space that will be explored, we have 

restricted the calculations to the local density of states (LDOS) at the center of high 

rotational symmetry of the 2D quasicrystals introduced above. A superior approach is to 

average LDOS at many locations in the 2D PQC structure of interest, but doing so 

requires very large computational resources. By integrating over a unit cell in a PC, the 

total density of states @OS) can be obtained [22] - of course, PQC do not have a unit 
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cell, and thus a much larger area would need to be surveyed in order to obtain the total 

2D DOS. Nevertheless, as previous studies of gap formation in amorphous 

semiconductors have shown, LDOS calculations can have the similar predictive power as 

total DOS calculations if only the gap formation is of interest. For amorphous silicon, 

Allan and Joannopoulos [25] have shown that LDOS at arbitrary choices of atoms in the 

amorphous lattice differ only in the number of the propagating modes, while the gaps 

remain of similar magnitudes and, in fact, comparable to those in crystalline silicon. 

Similar observations were also made in the case of amorphous compound 

semiconductors, where at least two different atoms are present in the lattice. Yndurain 

and Joannopoulos [26] have calculated the LDOS in amorphous 111-V semiconductors, 

and their results show that LDOS curves at either Ga or As atom locations display the 

same gaps. The effects of a different local environment in amorphous semiconductors on 

the gaps predicted fiom LDOS are understood to include possible appearance of defect 

states in the gaps at certain energies - the gap edges, on the other hand, remain essentially 

unchanged (e.g. see Figure 6 in [26]). 

Since, with one exception [14], no previous studies exist for IL-PQC, we have 

decided to base our current survey on gap formation as predicted by LDOS at the point of 

high rotational symmetry to gain insight into the general effects of point group symmetry 

(8mm, lOmm, and 12mrn) and quasicrystal type (IL- and PROJ-PBG) at various 

dielectric contrasts (8 = 4, 6, 8, and 10 dielectric in air) for a range of fill fkactions (0 to 

30%). Besides the analogy with LDOS in amorphous semiconductors, discussed above, 

our choice was also motivated by other previous studies of photonic quasicrystals. Della 

Vila et al. also employed LDOS calculations at a central point, in a Penrose-type 2D 
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PQC, and discussed that the observed PBG properties were not affected by the location of 

the monitor point [20]. Wang et al. [27] examined DOS and LDOS in 2D PROJ-PQC 

and found that, for frequencies in the PBG, the LDOS was zero across the entire PQC 

structure, which suggests again that the location of the monitor point may not 

significantly affect the location of photonic gaps in 2D PQC as numerically determined 

by FDTD. Furthermore, as shown below, we employed the same FDTD computational 

method used for our PQC studies to obtain the LDOS at a center of high rotational 

symmetry in 2D triangular (6mm) and square (4mm) PC, and confirmed that the 

predicted PBGs agree very well with the exact predictions based on band structure 

calculations. The intuition derived fiom these results offers a useful guide for future 

investigations, where particular structures of interest would be characterized in more 

detail (not only LDOS averaging to obtain the total DOS and to understand propagating 

properties as well, but also investigating TE gaps for example, to search for complete 2D 

PBG). 

Thus, the numerical representations of the quasiperiodic structures of interest for 

our studies introduced in Section 5.2 were first implemented as C++ routines. The 

structure generating hct ions are then passed to the MEEP FDTD engine, where a 

random magnitude, out-of-plane electric field component (El(z for TM polarization) is 

first initialized across the entire structure, using perfectly reflecting boundary conditions. 

The choice of initializing a random magnitude electric field was made in order to excite 

all the possible modes of propagation in 2D, so that any PBG that will be observed will in 

fact be a complete TM PBG (for any propagation direction in 2D from the chosen point) 

[6, 71. The simulation is then performed for a long enough duration, and the electric field 
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is monitored at a point of high rotational symmetry in the structure, which is positioned in 

the computational box such that dielectric resides in the center of structures such as those 

shown in Figure 5-4 and Figure 5-7, where LDOS will be calculated (this offers a basis 

for comparing among various 2D PQC). By taking the Fourier transform of this time- 

varying electric field trace, we finally obtain a numerical approximation to the local 

density of states (LDOS) at this particular location, which allows us to determine the 

location of the photonic gaps. 

In order to increase the accuracy of the FDTD simulations and to capture the fine 

structural details of IL-PQC (see Figure 5-4), we chose a small spatial discretization step, 

Ax = Ay = al32, where a is a parameter equal to 1 (this parameter is used for 

normalization purposes, such that the units of both structural dimensions and 

electromagnetic wave frequencies are described as function of a). The temporal step, At, 

is not independent, but in FDTD is set for numerical stability purposes using the Courant 

condition [23] 

where c is the speed of light in vacuum. Thus, in our simulations At = (1164)*(alc). 

To gain an understanding of the effect of symmetries on PBG formation, we 

chose to calculate the LDOS at a monitor point located at a center of high rotational 

symmetry, using a FDTD simulation with size, resolution and duration similar to those 

employed in previous publications [6, 7, 201. Thus, for 2D IL-PQC we investigate 

structures similar to those shown in Figure 5-3(a-I), (b-1) and (c-1), and for 2D PROJ- 

PQC we focus on the case of dielectric rods placed at the vertices of the quasi-lattice, as 
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shown in Figure 5-6 and Figure 5-7. The size of the array and duration of FDTD 

simulations were increased until the observed gaps in the LDOS curves were not affected 

anymore. For all the results reported in this chapter we have used 512,000 time steps, 

which corresponds to a total simulation time of 8000(alc). Similarly, the computational 

box was a square with a side equal to 21a (more than twice the size of the structures 

shown in Figure 5-3 and Figure 5-7, and slightly larger than in [6,7]), . 

To verify the ability of the FDTD LDOS calculations to predict PBG formation, 

we have first examined 2D photonic crystal structures, since in this case the location of 

PBGs can be independently obtained from photonic band structure calculations. For this 

purpose, we have used the "MIT Photonic Bands" (MPB) software [28], also developed 

by the group of Prof. Joannopoulos at MIT. We find that for both triangular and square 

lattice 2D PC, the FDTD simulations with MEEP predict PBG locations that are 

essentially the same as those predicted by MPB. In Figure 5-8 we show a direct 

comparison between the TM photonic band structure and the TM 2D-LDOS calculated 

with FDTD for a 2D triangular lattice of dielectric rods with E= 6 embedded in air. 



PHOTONIC BAND GAPS IN 2D QUASICRYSTALS 

I 
I....  ....( 
B . . . .  
. . . . d  

Figure 5-8 - Comparison between the location of the PBG via (a) photonic band structure (exact method), 
and (b) FDTD calculation of the LDOS at the center of a dielectric cylinder (approximate method) for a 2D 
triangular lattice with 10% dielectric rods with E = 6 in air. 

The size of the square computational box chosen for the above FDTD simulation 

results, and for all the other results reported in this chapter, was 21a. In the case of 2D 

photonic crystals, a is chosen to be equal to the period of the structure. For the IL-PQC 

shown in Figure 5-4, we choose a to be equal to the spatial period of each grating written 

in the multiple exposure method (since a = 1 in the computer code, this amounts to using 

A = 2 in Eq. 5-2, since the period of a line grating obtained fkom interference of two laser 

beams is U2). Lastly, for the PROJ-PQC shown in Figure 5-7, a was chosen to equal the 

length of the side of the tiles forming a 2D quasiperiodic pattern. Thus, for example, the 

distance between the center of high rotational symmetry to the nearest set of rods is taken 

to be a = 1. Varying the volume fraction of the 2D PQC structures is achieved by 

changing I,, for 1.-PQC (see representative data in Table 5-1) and the normalized radius 

of the cylinders for PROJ-PQC (r/a, see representative data in Table 5-2). 
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In summary, an FDTD approach for studying PBG formation was implemented 

similarly to a previous studies [6,7,20], using the MIT MEEP FDTD engine. The FDTD 

predictions were tested against exact results from photonic band structure calculations for 

2D square and triangular PC, and a set of optimum simulation parameters were identified. 

These include a spatial discretization step Ax = Ay = (1132)*a, temporal step At = 

(1/64)*(alc), box size with L, = L, = 21a, and a total simulation time equal to 8000alc 

(512,000 time steps), where a = 1 and c is the speed of light in vacuum. 

5.4. Effect of point group symmetry on PBG formation in IL-PQC 

It is known that crystals with higher rotational symmetries have rounder 

dispersion surfaces in reciprocal space [8]. Furthermore, in photonic crystals, rounder 

dispersion surfaces are also associated with lager complete photonic band gaps [9]. That 

is why the higher rotational symmetries characteristic of quasicrystals have sparked an 

immediate interest in these structures for PBG applications. The first report of a PQC 

examined a 2D octagonal quasicrystal [6] and theoretically showed that a complete TM 

PBG can be formed. Two years later, in 2000, Zoorob et al. [13] reporting on a 

combined theoretical and experimental investigation predicted formation of a complete 

PBG (both TM and TE polarizations) for a 2D dodecagonal quasicrystal. The 

investigated 2D PROJ-PQC were fabricated with electron-beam lithography. 

Only a few months ago, a first article investigating the optical properties of IL- 

PQC was published, where Gauthier et al. [14] computationally showed that TM PBG 

can also form in 2D dodecagonal quasicrystals made by interference lithography. Thus, 

while IL-PQC have a clear potential for higher impact in applications due to their low 
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fabrication cost and access to ultra-large device areas (e.g. entire 12" silicon wafers), 

there is currently no study directed towards developing a basic understanding of the 

effect of point group symmetry and dielectric volume fiaction on PBG formation that 

would allow the experimental efforts to focus only on the most promising material 

structures. Furthermore, another important and yet absent study is a direct comparison of 

the PBG properties of IL-PQC to those of PROJ-PQC, given the structural differences 

that were presented in Section 5.2. 

In the current section we will thus focus on investigating symmetry effects on the 

formation of TM PBG in 2D quasicrystals made by interference lithography, and 

continue in the next section with a comparison of the importance of quasicrystal type on 

PBG formation, for each of the investigated point group symmetries. In all studies, we 

assumed structures composed of a dielectric material and air, where the dielectric fill 

fiaction and contrast were varied in order to construct TM photonic gap maps [9]. 

5.4.1. Effect of symmetry on 2D TM PBG formation in 2D PC 

To better understand the importance of point group symmetries, we first examine 

the case of 2D photonic crystals because their PBG properties can be efficiently obtained 

fiom band structure calculations. We have thus used the MPB software [28] to study the 

formation of the lowest order TM PBG in 2D square (4mm point group) and triangular 

(6mm point group) photonic crystals consisting of dielectric rods in air. Note that the 

structures of both PC can be obtained by similar IL-based techniques as described for IL- 

PQC in Section 5.2.1, when N = 2 (square PC) and N = 3 (triangular PC). Both the radius 

and the dielectric constant of the cylinders have been varied, and by calculating the band 

structure for each case we tracked the evolution of the first TM PBG in both crystals. 
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Figure 5-9 - Width of the 1st TM PBG in square and triangular 2D photonic crystals as a function of 
volume fraction, for dielectric (a) E = 4, (b) E = 6, (c) E = 8, and (d) E = 11.4 cylindrical rods surrounded 
by air. Each point on the plots represents an actual band structure calculation. 

The effects of the dielectric contrast and fill fraction on the first TM PBG for both 

2D PC are shown in Figure 5-9. The quantity that is plotted is the gap width, defined as 

Am - - CYlpper - Yower gap width = 
meenter (@upper +  lower ) 12 

where mcenrer is the frequency in the center of the gap, and aPPer and mower are the 

frequencies of the upper and lower gap edges. 

The results in Figure 5-9 quantitatively show that a higher point group symmetry 

leads indeed to larger PBG. The plots also show that the importance of rotational 

symmetry diminishes with increasing dielectric contrast, and that the maximum gap 

widths are obtained for the two families of PC at very similar fill fractions for a given 
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dielectric contrast. For dielectric rods with E = 4 in air, a maximum gap width of 9% is 

obtained in a 2D square lattice PC with fill fraction of 0.21 (corresponding cylinder 

radius is r/a = 0.26) - however, using the same contrast and fill fraction, a 2D triangular 

lattice (r/a = 0.25) allows a maximum gap width of 22%, more than twice that of the 

square lattice. For comparison, consider now the high dielectric contrast case shown in 

Figure 5-9(d): for 6 = 11.4, the gaps are much wider and they still appear at similar fill 

fractions - however, changing from a square lattice to a triangular one leads to an increase 

of the gap width from 38% to only 47%, a much smaller increase than the more than 2x 

factor observed for E = 4. Villeneuve and Pichk [15] studied PBG in PC with air 

cylinders on square and triangular lattices at a particular refractive index contrast, and 

also found that the triangular lattice led to larger PBG than the square lattice. These 

quantitative results agrees with a qualitative speculation that, a higher dielectric contrast 

leads to a higher repulsion of dispersion surfaces near band edges in reciprocal space (i.e. 

origin of larger gaps in the first place), which results in rounder (more spherical in 3D, or 

circular in 2D) dispersion surfaces. Therefore, qualitatively one would expect that the 

impact of rotational symmetry is diminished if the dispersion surfaces are already 

somewhat rounded off as a consequence of a high dielectric contrast in the PBG 

structure. 

The results of this case study of 2D photonic crystals provide useful insight 

towards understanding the effect of point group symmetry in the formation of PBG. 

Importantly, the results suggest that quasicrystals can become a very important class of 

materials for enabling PBGs in practical applications, since most optically transparent 

materials that are commonly available do not typically have very large refractive indices - 
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it is exactly in this regime of lower dielectric contrast where increasing rotational 

symmetry was found to lead to the largest improvement of 2D TM complete PBG widths 

in photonic crystals. 

5.4.2. Effect of symmetry on 2D TM PBG formation in 2D IL-PQC 

We now proceed to investigate PBG formation in IL-PQC with 8-, 10- and 12- 

fold rotational symmetries. These structures were introduced in Section 5.2.1, and are 

also shown in Figure 5-4 at various fill fractions. PBG formation is studied again for the 

case of TM polarized modes, and, instead of band structure calculations, we now employ 

the FDTD approach discussed in the previous section for calculating the LDOS at a 

center of high point group symmetry. Both dielectric contrast and fill fractions were 

varied, using similar values as those used in the Cfold and 6-fold dielectric cylinder PC 

study. Typical results are shown in Figure 5-10, where each plot is constructed from 

individual LDOS traces calculated at the central point of the IL-PQC, for 19 values of the 

fill fraction (f = 0.05-0.16 in steps of 0.01, and f = 0.18-0.30 in steps of 0.02). 
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volume fraction 

Figure 5-10 - Gap maps from assembling the LDOS curves calculated at the point (0,O) in each shown 
structure, for fill fractions f = 0.05-0.16 (steps of 0.01), and 0.18-0.30 (steps of 0.02) for (a) octagonal, (b) 
decagonal, and (c) dodecagonal quasicrystals from interference, with an E =  6 dielectric placed where I > 
I,,,. Small pieces of each PBG structure with 18% dielectric (white regions) are shown above each LDOS 
plot for emphasizing the structural differences between quasicrystals. Note that a = AnIe+ren,62 = 1. 

The results shown in Figure 5-10 correspond to 8mm, lOrnm, and 12mm point 

group symmetry IL-PQC at a relatively low dielectric contrast of 6 = 6 versus air, where 

the 2D LDOS curves calculated at various volume fractions have been plotted on the 

same graph in 3D, with color indicating the value of the LDOS. Note that the frequencies 

are normalized to the parameter a, assumed here to be equal to the spatial period of the 

line gratings obtained if only two laser beams would be interfering (a = ;V2 = I in the 

FDTD code; also see Eq. 5-2). It is clear from this figure that complete 2D PBG for TM 

polarizations also form in the cases of octagonal and decagonal quasicrystals, in addition 

to dodecagonal PQC. For the latter PQC, the recent report of Gauthier and Mnayrnneh 

[14] already predicted TM PBG formation based on a study of TM wave propagation 

through finite 2D PQC, but, unfortunately, we cannot compare our results to those in [14] 

because the authors used absolute wavelengths and finite size PQC and omitted to 
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include the wavelength used to generate the IL-PQC (thus it is not possible to normalize 

the location of their observed spectral gaps for comparison purposes). The most striking 

result in Figure 5-10 is that decagonal symmetry does not (by far) seem to lead to as good 

PBG properties as the other two quasicrystals. 

1 0 . 1 L  -- I 0.1' 
I 0.2 0.25 0.3 0.05 0.1 0.15 0.2 0.25 0.3 0.05 0.1 0.15 

volume fiaction 

Figure 5-11 - same as Figure 5-10, but with s= 8 for the dielectric component (higher dielectric contrast). 

A higher dielectric contrast is investigated in Figure 5-1 1 (E = 8 dielectric in air). 

As before, the 10-fold rotational symmetry seems to not be conducive to large TM 2D 

PBG in IL-PQC. While at lower fill fractions (f< 0.1) the octagonal symmetry provides 

the largest complete TM PBG, at larger fill fractions (f > 0.2) the dodecagonal IL-PQC 

exhibits the largest gaps. Furthermore, both octagonal and dodecagonal IL-PQC display 

larger PBG at small fill fractions than the square and triangular 2D PC investigated in 

Figure 5-9 (for f = 0.05 and E =  6, quasicrystals have a 2D complete TM gap with widths 

Adacenter 20-25%, while the square lattice PC has Adacenter 4% and the 2D 

triangular PC has Aw/cccenter 16%). 

These results indicate that increasing the point group symmetry in 2D IL-PQC 

does not lead to a clear trend in terms of the width of the observed 2D complete TM 
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PBG, as was the case in 2D photonic crystals. Thus, in practice, one may need to check 

all rotational symmetries to find the quasiperiodic structure that offers the best properties 

for a particular set of material parameters preferred in the application (dielectric contrast, 

fill fraction, etc.), instead of directly targeting e.g. the highest rotational symmetry 

structure. 

A possible explanation for the absence of a clear trend for the effect of increasing 

the point group symmetry on PBG width can be obtained from studies of electron 

propagation in atomic quasicrystals. Understanding the conduction properties of all 

quasicrystals is a nontrivial problem because in the absence of translational periodicity 

one cannot use the Bloch wave formalism, which allowed the definition of conduction 

states as extended modes with well defined group velocities (or electronic effective 

masses). In atomic quasicrystals, electron conduction is described on the basis of 

wavehctions that are partially localized, but which contribute to conduction by a 

tunneling-like transport between regions in the quasicrystal structure that are locally 

similar [I]. To better understand this concept, consider Figure 5-2 - there, the high 

rotation axis is centered in the image for the three quasicrystals. Note that the cluster 

structure found around this high symmetry point can be found at other locations, arranged 

around the center of the image with the same local (but not global) rotational symmetry. 

It can be observed in Figure 5-2 that, while the same laser wavelength was used to 

produce all structures (A = 2), the distance between these local rotational symmetry 

clusters changes among the three quasicrystalline patterns. Thus, a possible explanation 

for the observed poor PBG properties of the decagonal structure compared to octagonal 

and dodecagonal IL-PQC may be an unfavorable combination of the decagonal cluster 
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size and inter-cluster distance that is more conducive of photonic transport rather than 

localizing these TM polarized modes. 

In conclusion, we have shown that 8mm, lOmm and 12mm point group symmetry 

IL-PQC also allow for 2D complete PBG for TM polarized modes, based on LDOS 

FDTD calculations at a center of high rotational symmetry in each quasiperiodic 

structure. The study of TM band structures in 2D PC with 4mm and 6mm symmetries 

has confirmed that increasing rotational symmetry indeed leads to wider PBG, and 

showed quantitatively that this effect diminishes if the dielectric contrast is increased. 

However, further increasing the rotational symmetry in IL-PQC was found to not lead to 

a clear trend: 10-fold rotational symmetry had significantly inferior PBG forming 

properties when compared to both 8mm and 12mm point group cases. Both octagonal 

and dodecagonal IL-PQC displayed a larger first TM PBG than square and triangular PC 

at small dielectric fill fractions (f < 0.10), with the octagonal quasicrystal overall 

providing a slightly wider PBG than the dodecagonal IL-PQC. At larger fill fractions, f > 

0.20, the largest TM PBG was obtained for the dodecagonal IL-PQC. Unlike PC, the 

observed differences of PBG formation amongst IL-PQC were not significantly large 

even for low dielectric contrasts where rotational symmetry is expected to matter most. 

These results are useful because they show that, in practice, for maximizing TM 

photonic band gaps the experimentalist may focus on the octagonal structure rather than 

IL-PQC with tempting higher rotational symmetries. This is especially useful, since as it 

will be described in the next chapter of the thesis, octagonal quasicrystals also have 

fabrication advantages stemming from an increased contrast of the interference pattern, 

and robustness in interference lithography when compared to the other two investigated 
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IL quasicrystals. Nevertheless, it should be noted that these results are preliminary, as it 

would be desirable to average LDOS over a multitude of points in the PQC structure and 

obtain a quantity similar to a total density of states. Comparing the total DOS of the 

various IL-PQC may be the most definitive way to assess the importance of the point 

group symmetries in PQC. 

5.5. Comparison of PBG formation in 11-PQC and PROJ-PQC 

Having found in the previous section that 8mm and lOmm quasicrystals 

fabricated by interference lithography can also display sizeable complete 2D TM 

photonic gaps, we shift our attention now to the broader problem of the importance of the 

choice of quasicrystal type on PBG formation. In particular, we are interested in 

comparing the IL-PQC structures presented in the previous section to quasiperiodic 

tilings (PROJ-PQC) chosen such that they have the same three point group symmetries. 

The goal is to understand the effect the detailed quasicrystalline structure has on the PBG 

formation at a given symmetry. Besides the natural scientific interest, this is an important 

problem to consider also fiom practical reasons. While IL-PQC offer significant cost 

advantages over PROJ-PQC, for applications requiring small area devices (e.g. in 

integrated photonics) both types of PQC could be fabricated with minimal cost 

differences, and performance would then be the main distinguishing element. 

As in the previous section, due to computational constraints, we focus the analysis 

on TM photonic band gaps. Since these gaps are known to be maximized in PC by using 

an array of dielectric cylinders, we examine 2D quasiperiodic structures with dielectric 

material in the center of high rotational symmetry, as shown in Figure 5-4 for IL-PQC 
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and in Figure 5-7 for PROJ-PQC. PBG formation is explored by calculating the LDOS at 

this center of high point group symmetry using the FDTD approach discussed in Section 

5.3. Since PROJ-PQC consist of dielectric rods placed at the vertices of a quasiperiodic 

tiling, the case of the 2D triangular lattice photonic crystal with dielectric rods was 

included in this study to allow for a more relevant direct comparison between PBG 

formation in photonic crystals and quasicrystals. Frequencies in the LDOS spectra are in 

2nc/a units, where, for proper comparison, a in the PC is equal to the lattice period, in the 

PROJ-PQC is taken to correspond to the distance between the center rod and the first set 

of 8, 10, or 12 nearest neighbors (i.e. equal to the side of a tile in the quasiperiodic 

lattice). In the case of IL-PQC, a is equal to the spatial period of a line grating that would 

be obtained fiom two interfering beams with the same wavelength used to create the 

quasicrystals (a = W2 = 1). 

The first case we discuss is that of 8rnm point group symmetry. Figure 5-12 

shows a direct comparison of the 2D LDOS calculated at various fill fractions for the 

cases of a 2D triangular lattice PC, and octagonal PROJ-PQC and IL-PQC, all using a 

dielectric material with E = 4 embedded in air. 
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Figure 5-12 - Gap maps from assembling the LDOS curves calculated at the highest point group symmetry 
location in each structure at various fill fractions for (a) 2D triangular photonic crystal, (b) octagonal 
PROJ- PQC and (c) octagonal IL-PQC, all with E = 4 dielectric in air. Small pieces of each PBG structure 
with 18% dielectric (white regions) are shown above each LDOS plot for emphasizing the structural 
differences between quasicrystals. 

The results in the above figure show that the octagonal PROJ-PQC has a complete 

TM PBG that is wider and with sharper edges than in the case of the IL-PQC. 

Nevertheless, with the exception of low fill fractions (f < 0. lo),  it is interesting to note 

that neither of the two quasicrystals leads to gaps significantly wider than the triangular 

lattice 2D PC. To further gain insight into this problem we next examine the case of a 

higher dielectric constant, E = 6. 
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Figure 5-13 - same as Figure 5-12, but for a dielectric with E= 6. 

The results in Figure 5-13 show that for 8mm point group symmetry, PROJ-PQC 

exhibits larger 2D complete TM PBG than IL-PQC. Nevertheless, as before, the data 

suggests that increasing the rotational symmetry from 6-fold as in the shown PC to 8-fold 

as in the two studied PQC structures does not lead to significantly wider PBGs. 

Since for the two dielectric contrasts investigated above, the octagonal PROJ- 

PQC displayed larger 2D TM PBG than the corresponding IL-PQC, we next compare the 

remaining two types of quasicrystals, decagonal and dodecagonal. Our goal is to 

understand if there is a systematic difference between TM PBG formation in PROJ-PQC 

and IL-PQC that is independent of point group symmetry. 
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Figure 5-14 - Gap maps from assembling the LDOS curves calculated at various fill fractions for (a-1) IL- 
style and (a-2) PROJ-style 2D decagonal quasicrystal, and (b-1) IL-style and (b-2) PROJ-style 2D 
dodecagonal quasicrystal, all with E = 6 dielectric and air. Small pieces of each PQC with 18% dielectric 
(white regions) are shown next to each LDOS plot for emphasizing the structural differences between 
quasicrystals. 

The results in Figure 5-14 point to a number of interesting facts. First, the 

importance of the quasiperiodic structure for a given point group symmetry is greatly 

emphasized in the case of 10-fold rotational symmetry. While the decagonal IL-PQC 

shown in Figure 5-14(a-1) has multiple narrow TM PBGs, (separated by what could be 

bands of defect modes) the corresponding PROJ-PQC, where one places cylinders at the 

vertices of the tiling displays a significant, and well-defined complete 2D TM PBG 

across the entire range of volume fiactions explored in Figure 5-14(a-2). Interestingly, 

for dodecagonal rotational symmetry, the IL-PQC displays a complete 2D TM band gap, 
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shown in Figure 5-14(b-I), with a very similar absolute width as in the case of the 

corresponding PROJ-PQC shown next to it. However, since in the case of the 

dodecagonal IL-PQC the gap is centered at a smaller frequency, in relative terms the IL- 

PQC seems slightly superior to the dodecagonal PROJ- PQC, according to Eq. (5-6). 

To gain m h e r  insight into the importance of the quasiperiodic motifs at a fixed 

point group symmetry, we next repeat the calculations using a higher dielectric contrast. 

IL-PQC PROJ-PQC 
f a-21 

0.- - - 0.1 
0.05 0.1 0.15 0.2 0.25 0.3 0.05 0.1 0.15 0.2 0.25 0.3 

volume fraction volume fraction 

volume fraction volume fraction 

Figure 5-15 - Same as Figure 5-14, with E = 8 dielectric and air. 

The results shown in Figure 5-15 confirm the key observed PBG formation 

differences between decagonal IL-PQC and PROJ-PQC. For this symmetry, 

corresponding IL-PQC structures are shown in Figure 5-4(b) at various volume fkactions, 
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and a representative PROJ-PQC structure is shown in Figure 5-7(b). The LDOS 

calculations at the specific high point group symmetry locations and for a variable 

dielectric contrast presented in this section support the conclusion that, in the case of 

decagonal rotational symmetry, the more "fragmented" nature of 2D photonic 

quasicrystals made via IL leads to inferior PBG properties than a quasiperiodic array of 

uniformly sized dielectric rods as in a PROJ-PQC. 

However, Figure 5-15 also shows that the wider distribution of feature sizes and 

shapes from an IL-PQC does not always lead to an inferior TM PBG compared to 

corresponding PROJ-PQC structures with the same point group symmetry. While this 

was the case for octagonal PQC (small differences, see Figure 5- 12 and Figure 5-1 3), and 

clearly the case for decagonal PQC as discussed above, we see in Figure 5-15 that the 

situation is reversed for the dodecagonal case. At low fill fractions (f < 0.10), the 

absolute gap widths are similar for both IL-PQC and PROJ-PQC, but due to its lower 

center frequency the dodecagonal IL-PQC has a slightly larger relative gap width. At 

larger fill fractions, e.g. f > 0.15, the 12mm IL-PQC displays a wider gap in both absolute 

and relative terms than the dodecagonal PROJ-PQC. Therefore, no clear correlations 

between rotational symmetry and PBG width seems to exist across the entire range of 

dielectric volume fractions explored, when only the formation of complete 2D TM PBG 

is considered. 

5.6. Summary and Conclusions 

The focus of this chapter has been to gain insight into the opportunities for 

employing quasiperiodicity in the design of photonic band gap materials. Due to the 
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fundamental physics of wave propagation in periodic media developed over the past 

century that enabled analogies with atomic crystals, photonic crystals represent today the 

main approach for designing materials with photonic band gaps. Materials with 

quasicrystalline atomic packing have been known for a relatively short time (discovered 

in 1984), and their photonic analogs have only been introduced in 1998. The absence of 

translational periodicity in quasicrystals prohibits predicting their optical properties using 

the well-developed theoretical tools of solid state physics that enabled rapid progress in 

photonic crystals. While, by comparison, the field of photonic quasicrystals is largely 

undeveloped, recent results have stimulated an increasing attention towards this class of 

structures. By not being subject to the rotational symmetry limitations of crystals, 

quasicrystals may offer a path towards the rational design of structures with higher 

symmetries and thus the potential to enable larger photonic band gaps in known material 

platforms. 

In the current chapter, we have focused on two basic, and previously unexplored 

problems. First, we have analyzed the importance of point group symmetry on photonic 

band gap formation in 2D in quasiperiodic structures produced by interference 

lithography using an approach based on multiple exposures of line gratings. As it will be 

shown in the next chapter (experimental study), this type of photonic quasicrystal has 

great fabrication advantages for large area devices as compared to quasicrystals based on 

tiling patterns, and to date there is only one theoretical investigation published earlier in 

this year (2005) for the case of 12-rnm IL-PQC [14]. We first examined the cases of 4- 

and 6-fold rotationally symmetric photonic crystals (i.e. placing a dielectric cylinder at 

site l a  in p4mm and p6mm lattices), by calculating photonic band structures for TM 
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polarization in arrays of dielectric rods in air. We showed quantitatively that increased 

rotational symmetry does indeed lead to wider complete TM photonic band gaps, but this 

effect is weaker as the refractive index contrast increases. We attribute this observation 

to a competition between dielectric contrast and point group symmetry towards rounding 

the dispersion surface in reciprocal space - if either of the two factors is very strong, and 

the dispersion surface has already been substantially rounded, increasing the other factor 

will not lead to as great of an increase of the PBG width. We have then conducted 

numerical FDTD simulations to calculate the 2D LDOS for 8-, 10- and 12-fold 

rotationally symmetric quasicrystals at the highest global point group symmetry location 

in the structure, at varying dielectric contrasts and fill fractions. We have focused on TM 

polarized eigenmodes, and examined the LDOS for the case of the center of high 

rotational symmetry residing in the dielectric material (e.g. similar to the photonic crystal 

case, with dielectric rods in air rather than a dielectric matrix with air holes type of 

structures). Our findings indicate that in this case, there is no clear correlation between 

point group symmetry and the width of the complete 2D TM PBG in the PQC structures 

produced by interference lithography. We found that decagonal IL-PQC have 

significantly inferior PBG properties than octa- and dodecagonal IL-PQC. We have 

attributed this finding to a combination of structural features in the decagonal case that is 

unfavorable towards localizing TM modes (size of decagonal clusters, intercluster 

distance, and size&shape distribution of the dielectric domains spanning the distance 

between such clusters). The octagonal IL-PQC proved to display slightly larger gaps 

than in the dodecagonal IL-PQC at small fill fractions (f < 0.10), with the situation 

reversed at high fill fractions (f> 0.2). 
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The second problem we investigated was the comparison of TM PBG properties 

of 2D IL-PQC to PROJ-PQC, obtained by placing equal diameter cylinders at the vertices 

of 2D quasiperiodic tilings. This comparison is important because it allows a better 

understanding of the potential impact of PQC as photonic band gap materials, by 

separating the effects of point group symmetry from the effect of the choice of 

quasiperiodic motifs. We again conducted FDTD numerical simulations of the 2D TM 

LDOS, and included in our comparisons the two types of PQC and also finite 2D 

triangular PC structures (which are known to have some of the largest TM PBG in 2D for 

crystals [9]). We found that for both 8mm and lOmm point group symmetries, the PROJ- 

PQC displayed wider gaps than the corresponding IL-PQC, regardless of the dielectric 

contrast or fill fraction. This was attributed to a better ability of the PROJ-PQC lattice to 

localize light as resulting from the use of equal diameter dielectric cylinders (contrasting 

with IL-PQC, which consists of dielectric domains with a variety of sizes and shapes at a 

given fill fraction). However, in the case of dodecagonal rotational symmetry it was 

found that the situation is reversed, with the IL-PQC and PROJ-PQC displaying similar 

gap widths in absolute terms, but with the IL-PQC offering a wider gap in relative terms, 

due to its lower gap center frequency. 

Although not conclusive, in order to allow a future reference point, we summarize 

the above results for a representative case of a dielectric contrast 8:1, choosing a 

dielectric fill fraction of 15%, for which the TM PBG in 2D PC with 4mm and 6mm 

symmetries is maximum (see Figure 5-9), a "worse case scenario" for the investigated 

PQC. 
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Table 5-3 - 2D TM PBG results from LDOS calculations at the center of high point group symmetry, 
for 2D square (4mm) and triangular (6mm) PC, and 2D 8mm, lOmm, and 12mm IL-PQC and, 
respectively, PROJ-PQC. The results correspond to a dielectric contrast of 8:1, at the fill fraction of 
15%, where the 2D PC have maximum PBG widths. 

Structure complete al- a p p e r  aen t e r  A d a e n ,  definition of a 

TM PBG? [2ncla] [2nc/a] [2nc/a] 

2D square PC Yes 0.303 0.397 0.350 27.0% PC period 
2D triangular PC Yes 0.310 0.457 0.383 38.3% PC period 

8mm IL-PQC Yes 0.288 0.395 0.342 3 1.3% grating period* 
1 Omm IL-PQC no (?) grating period: 
12mm IL-PQC Yes 0.303 0.407 0.355 29.3% grating period 

8mm PROJ-PQC Yes 0.345 0.495 0.420 35.7% side of tile** 
1 Omm PROJ-PQC Yes 0.344 0.487 0.416 34.4% side of tile** 

12mm IL-POC ves 0.335 0.485 0.410 36.6% side of tile** . 
* for IL-PQC, a is chosen to be equal to the period of the line grating written in each exposure (multiple 
exposure approach is assumed). Thus a = U2, where il is the wavelength of the interfering laser beams 
(See Eq. 5.2, and Figure 5-10). This choice insures that in the case of two exposures at 90°, producing a 
2D square lattice, with a period equal to a. 

** for PROJ-PQC, a is chosen to be equal to the side of the tiles composing the quasiperiodic tiling pattern 
(for all 8mm, 1 Omm, and 12mm symmetries, the tiles are regular polygons). 

Even if the results presented in this chapter are based on LDOS calculations at a 

single location of high point group symmetry, and should thus be improved in the future 

by averaging LDOS over many locations in 2D PQCs, they still contribute significantly 

towards our current understanding of the basic effects of point group symmetries on PBG 

formation and width in 2D quasicrystalline structures obtained from interference 

lithography and from mathematical quasiperiodic tilings. 



CHAPTER 5 

5.7. Future Directions 

Given the long duration of the FDTD simulations conducted during the studies 

presented in Chapter 5, we have restricted our numerical investigations to TM polarized 

PBG. It is of great interest to continue the analysis for TE polarizations as well, and then 

to determine if there are overlaps between the TM and TE photonic gaps. Studying the 

formation of complete PBG for both polarizations is very important, because photonic 

quasicrystals from IL can be fabricated over ultra-large areas with reasonable costs and 

thus, if they would also offer complete 2D PBG at low refractive index contrasts, they 

could significantly impact practical applications (e.g. integrated photonics, light emission 

management in organic or inorganic semiconductor LEDs, etc.). In the case of 12-fold 

rotational symmetry, PQC obtained fiom quasiperiodic tilings have already be shown in 

the literature to exhibit complete gaps for both polarizations that are larger than in 

photonic crystals [13]. However, the impact of this result is greatly limited in practice 

due to the need to use electron-beam lithography for sample fabrication. 

Another direction of future research should include an investigation of the more 

subtle problem of quasiperiodic tiling uniqueness. Photonic quasicrystals based on such 

tilings represent the subject for the majority of the few existing investigations in the PQC 

area. Nevertheless, we have been unable to determine exactly from these articles the 

recipes used to generate a particular 2D tiling pattern, onto which dielectric cylinders are 

then placed. This is a concern, since none of the papers we have seen [6, 12, 13, 291 

mentions the fact that a family of quasiperiodic structures can be obtained for a given 

rotational symmetry when using most quasiperiodic generation methods [ l l ] .  For 
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example, using the projection method to generate a decagonal quasiperiodic tiling can 

lead to a variety of structures, out of which only a few (but not only one) can be 

rigorously identified as Penrose (as opposed to Penrose-like) tilings [ll]. To show this, 

we have used the projection method and have varied the position of the plane in high 

dimensional space along its normal direction, onto which the high dimensional lattice is 

projected. This concept can more easily be understood by examining Figure 5-5, where a 

variety of 1D quasicrystals will be generated by moving the line E along its normal, and 

then projecting the appropriate points from the 2D plane. 

Figure 5-16 - Effect of a shift of the projecting plane in high dimensions. The projected Penrose-family 
2D quasicrystalline structural changes. (a) projection plane going the origin of the higher dimensional 
space, (b) shift with half a period in the hyperspace. See [l 11. 

The importance of the location of the plane onto which the high dimensional 

lattice is projected, is depicted in Figure 5-16. While the two quasicrystal tilings shown 

in Figure 5-16 are composed of the same two tiles of the Penrose lattice, and both 

structures exhibit a 10-fold rotational symmetry in reciprocal space, local environments 

differ significantly. This problem should be investigated in the hture, in order to 

determine which factor has a greater influence on photonic band gap properties - long- 

range quasiperiodicity, andlor the variety of possible local environments in a given QC 
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pattern. Especially relevant for the studies reported in this chapter, it would be useful to 

compare LDOS calculated at the centers of maximum point group symmetry with an 

estimate of the total DOS based on averaging LDOS over many locations in the PQC 

structure. 

Another problem that warrants further investigation is related to the location of 

the dielectric cylinders on PQC based on tilings. We have investigated in the current 

chapter the case of placing cylinders at the vertices of patterns such as shown in Figure 

5-16(a), but one could envision placing the rods in the center of the tiles, of substituting 

air or dielectric for the two types of tiles, etc. 
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Chapter 6. 

Fabrication and applications of 2D and 3D 

quasiperiodic sub-micron structured materials 

from interference lithography 

As discussed in the previous chapter, quasiperiodically structured materials 

represent a novel class of photonic band gap (PBG) materials. By comparison with 

photonic crystals (PC), the progress in the area photonic quasicrystals (PQC) has been 

much slower. While PC enjoyed an explosive growth after their introduction in 1987 by 

Yablonovitch [I] and John [2], the first report of PBG formation in a quasiperiodic 

material structure, by Chan and coworkers in 1998 [3], has been followed by a much 

smaller number of investigations to date. This slower growth rate is arguably the result 

of two key problems specific to PQC. The first problem has been discussed in the 

previous chapter, and it is related to difficulties in developing a fundamental theoretical 

framework for understanding and predicting light propagation in PQC (e.g. the lack of 

translational periodicity forbids the use of Bloch's theorem, band structure calculations, 

etc). The second problem is experimental, and arguably related to an insufficient 

understanding of the available choices of quasicrystalline structures and associated 

fabrication techniques. As an example of the complex choice of PQC structures [4, 51, 

consider that all 2D crystals can be classified into five distinct Bravais lattices [6], while 

2D quasicrystals with N-fold rotational symmetry can be defined for arbitrarily large N, 
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and that for certain values of N more than one quasicrystal lattice has to be considered 

[7]. The choice of fabrication techniques available for PQC is impacted by their 

structural complexity (note that by "photonic", we imply that the PQC structures of 

interest are those with features comparable in size with the wavelength of visible and 

near-IR light). The few existing studies of optical properties of PQC have employed 

electron beam lithography (EBL) for fabricating 2D structures [8, 91, because EBL allows 

writing arbitrary patterns with a very high resolution (enabled by focusing an electron 

beam to a spot size of a few nanometers). However, the serial nature of EBL, wherein a 

2D pattern is built pixel by pixel by exposing a resist to the electron beam at the 

nanoscale, greatly limits the progress of experimental studies - EBL is not only time 

consuming and restrictive of sample sizes to sub-millimeter dimensions, but it also 

requires the use of expensive equipment. 

In this chapter, we focus on using a different and more promising approach for the 

fabrication of PQC structures based on interference lithography (IL), also referred to as 

holographic lithography in the literature [lo- 121. Using a multiple exposure IL approach, 

we fabricated 2D PQC with 8-, lo-, and 12-fold rotational symmetries similar to those 

described in Section 5.2.1. What distinguishes our results from those reported in the only 

two existing publications on quasiperiodic patterning with IL [13, 141, is a -lox 

reduction in the feature size to -100nrn, better pattern quality, and a much larger sample 

size (typical is 1-2 cm2, but our technique can be easily extended to patterning of up to 

12" wafers using other available IL tools, such as the scanning beam interference 

lithography tool developed at MIT [15]). Thus, we show that IL can be used to produce 

PQC that are not only comparable in quality with those fabricated via EBL, but that IL 
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may become the key technique for fabricating PQC samples large enough to impact a 

wider range of future applications. We end the chapter with a presentation of initial 

results for two kinds of applications. First, we develop a coherent diffraction lithography 

(CDL) based approach [16] for the fabrication of novel 3D sub-micron quasiperiodically 

structured materials by using transparent, conformable polydimethylsiloxane diffraction 

gratings fabricated by replica molding from 2D PQC silicon oxide substrates. Second, 

the self-assembly of block copolymer thin films on quasiperiodic topographically 

patterned substrates is discussed, as a potentially valuable path towards understanding the 

competition between crystalline and quasicrystalline structure formation in materials. 

6.1. Introduction 

IL has emerged over the past five years as a highly versatile and capable tool for 

the fabrication of 2D and 3D PC [ l  1 , 17- 191, because interfering multiple laser beams 

can readily produce 2D and 3D periodic light intensity patterns with unit cells 

comparable in size to the wavelength of visible and infrared light. The rapid acceptance 

of IL as a potentially complete platform for the fabrication of PC has been catalyzed by 

the availability of photosensitive materials and corresponding laser sources, and, most 

importantly, by a well developed knowledgebase of the crystallography of optical lattices 

produced by laser interference [20]. Indeed, outside the field of photonic crystals, 

interference of multiple laser beams has been studied for at least two decades as a means 

of creating periodic electromagnetic energy landscapes for trapping atoms in high 

vacuum systems [2 11, or colloidal particles in liquid media [22]. Subsequently, Berger, 

Gauthier-Lafaye and Costard were first to report in 1997 the use IL for the fabrication of 
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PBG materials - by interfering 3 laser beams, they produced a 2D triangular lattice PC 

afier transferring the resulting photoresist pattern into gallium arsenide (GaAs) [lo, 231. 

However, it was not until 2000 when IL truly gained recognition as an important tool for 

PC fabrication - Campbell et al. reported in Nature on the use of 4 beam IL for the 

fabrication of a 3D PC with the desired diamond-like dielectric network, and showed 

experimental results for a R 3rn structure 3D PC [ l  11. While the theoretical concept of 

using 4 beam interference to produce 3D PC with FCC, BCC, etc. lattices was known 

fiom as early as 1995 [24], the key merit of the report of Campbell et al. is to have 

experimentally proved the usefulness of IL as a platform for actually fabricating PC. 

First, an appropriately designed 3D light intensity pattem was recorded in a 

photopolymer to create a sub-micron structured, porous polymeric structure (itself a 3D 

PC), and then this polymeric template was infiltrated with a titania precursor, and 

calcined such that 3D PC with higher refractive index contrast (titania vs. air) was 

obtained [l l] .  Thus, what makes IL a true platform is the fact that the design and 

recording of the desired structure can be separated from the processing constraints of the 

high refkactive index materials needed for large PBG (since the polymeric structure can 

template the deposition of precursors for a number of high index materials, such as 

titania, silicon, etc., and in the end be replaced by air after removal of the polymer 

through pyrolysis). The flexibility of IL for controlling the structure of 3D PC was later 

confirmed quantitatively by Cai et al. who showed that all fourteen Bravais lattices in 3D 

can be obtained by varying the directions of the 4 laser beams [25], and by Ullal et al. 

who introduced a level set based approach for finding the directions, polarizations and 
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amplitudes of the 4-beams that can lead to 3D PC with any of the 230 space group 

symmetries [26]. 

More recently, IL has also attracted attention for the fabrication of photonic 

quasicrystals. It was known from early work on optical trapping of colloidal particles 

[22] and fi-om acoustic wave experiments [27] that interference of 5 beams converging to 

a single point fi-om the comers of a regular pentagon (72' between successive beams) 

leads to a 10-fold rotationally symmetric, Penrose-like quasiperiodic pattern. However, it 

was not until 2003 when Wang et al. [14] published the first report on recording in a 

photopolymer a 2D quasiperiodic light intensity pattern produced by interfering 5 laser 

beams equally spaced at 72' around a central point. One year later, in 2004 Gauthier and 

Ivanov reported on an alternative approach for using IL to create 2D quasiperiodic 

photoresist patterns, where multiple line gratings produced by 2-beam IL were recorded 

with subsequent substrate rotations after each exposure to produce 8-, 10- and 12-fold 

rotationally symmetric 2D quasicrystalline structures [13]. A third report on using IL for 

fabricating PQC was published in 2005, where Gorkhali et al. [28] used the same 

multiple beam approach as Wang et al. [14] to record a 2D Penrose-like quasicrystalline 

structure in a liquid crystal containing photosensitive polymer system, yielding an electric 

field tunable Penrose quasicrystal structure. 

In this chapter, we further extend the use of IL for the fabrication of both 2D and 

3D PQC. We first theoretically compare the multiple beam and multiple exposure IL 

approaches for the fabrication of 2D PQC, and quantitatively show that the resulting 

interference patterns are not equivalent, but they have the same rotational symmetries. 

Moreover, we theoretically show that at least 3 laser beams (or 3 exposures) are needed 
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to produce a 2D quasiperiodic structure (i.e. without translational periodicity). This 

result is important not only for theoretical reasons, but also for experimental reasons 

since it provides a simple route for the fabrication of translationally aperiodic 2D 

patterns. 

While the reports of Wang et al. [14] and Gauthier and Ivanov [13] 

experimentally prove the concept that IL can produce 2D quasiperiodic structures, their 

experimental results consist of materials with features on the few-micron scale and thus 

do not yet enable applications requiring PBG for visible or telecommunication (1.5 5 p) 

wavelengths. To scale down the IL process for the fabrication of PQC with smaller 

feature sizes, one needs to address two important issues, besides e.g. the trivial reduction 

of the laser wavelength. First, there is the material science problem related to capturing 

the intensity pattern in a photoresist given the low contrast in the light intensity 

distribution resulting from the use of multiple beams or of multiple exposures, which 

becomes an even bigger problem as the desired feature size of the PQC is made smaller. 

Second, there is an optical design problem that relates to the stability of the interference 

pattern, which is key for multiple exposures and a requirement for accurate pattern 

generation in the photoresist at small length scales. We demonstrate a multiple exposure 

approach to fabricate ultra-large area 2D photonic quasicrystals with 8-, lo-, and 12-fold 

rotational symmetries and feature sizes as small as 100nrn. The accurate fabrication of 

our samples at this small length scale, was enabled by the use of an ultra stable Lloyd's 

mirror interferometer (its inherent high stability arises from the fact that there is only one 

laser beam in the system [29]), the use of an optically absorbing antireflection coating 
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underneath the photoresist for accurately recording the low contrast interference pattern, 

and using a short wavelength laser (325nm HeCd UV laser). 

6.2. Quasiperiodicity and IL: theoretical problems 

In this section we analyze a number of theoretical problems that are relevant for 

understanding how quasiperiodicity is obtained fiom interfering light waves (which are 

by defhition, translationally periodic), and for predicting the physical PQC structures 

that can be obtained from IL. In Section 6.2.1 we quantitatively compare the multiple 

exposures and the multiple beams approaches for IL. In Section 6.2.2 we present an 

analysis of the minimum number of beams (or exposures) for 2D quasiperiodicity, which 

is found to be 3. Finally, in Section 6.2.3 we present a general model for predicting the 

3D light intensity pattern produced by interfering an arbitrary number of beams with 

arbitrary polarizations and directions. 

6.2.1. Theoretical comparison of multiple beams IL vs multiple exposures IL 

for 2D PQC fabrication 

It is currently known that quasiperiodicity can be produced in IL with both 

multiple laser beams (MB-IL) [14,30] and with multiple exposures of line gratings (ME- 

IL) [13]. In this section we show quantitatively that the two techniques are not 

equivalent, but that both can result in 2D quasiperiodic lattices with similar rotational 

symmetries. 

We begin the analysis by assuming that both ME-IL and MB-IL approaches use 

the same laser wavelength, and that the beams propagate in the sample plane, to simplify 
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the expressions to be derived. As shown in Chapter 5, Section 5.2, the spatial distribution 

of the intensity pattern obtained after N exposures of line gratings is equal to the sum of 

the intensities produced from the interference of 2 beams: 

where P = A 12 is the spatial period of the line gratings (A = laser wavelength), A4j is 

the phase difference between the two beams in exposure j, and the vector Pj is a unit 

vector along the periodicity direction of each line grating, e.g. Pi = x cos Bj + y sin Bj 

with the angle Bj measured from x towards y in the sample plane. 

In the case of MB-IL, we first need to calculate the total electric field resulting 

from the superposition in the sample plane of the M beams, and then to derive the 

expression for the intensity distribution. To simplify the expressions that will be 

calculated and still capture the effects of interfering M beams, we further assume that all 

the beams have the same amplitude and out-of-plane polarization. Thus, the total electric 

field at a position in space is 

where Eo is the wave amplitude, and #j is an arbitrary phase term. 

The resulting intensity pattern distribution is proportional to the modulus of the 

complex electric field 
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Thus, the final intensity pattern I(r) is described by 

To be able to more clearly compare the 2D QC fiom MB-IL and ME-IL, we 

continue the analysis for the specific case of 10-fold rotationally symmetric QC. This 

type of 2D QC can be obtained fiom either N = 5 exposures with rotations of 72" (or 36" 

as it will be shown below), or fiom the interference of M = 5 beams converging to a 

central point fiom the comers of a regular pentagon (i.e. the M beams are also separated 

by 72"). 

Thus, continuing the analysis for the case of MB-IL with M = 5, Eq. 6-4 leads to 

the following expression for the total intensity distribution: 

where I. is the intensity of a single beam ( Io  oc E: ), and Ak jl = kl - k and 

Using the properties that Ak jl = -Ak@ , A = - A j  , and noting that 

Akj = AgbJ = 0 ,  the 25 terms in the double sum above are reduced to a constant term 

plus 20 cosine terms, which, due to symmetry, further reduce to only 10 independent 

cosine terms. 
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I(r)  = 1 ~ ( 5 + 2 c o s ( ~ k ~ ~  *r)+2cos(Ak13 -r)+2cos(Ak14 *r)+2cos(Ak15 or)+ 

2 cos(Ak23 r )  + 2 cos(Aku r) + 2 cos(Akz5 r )  + 
2 cos(Ak34 r )  + 2 cos(Ak35 r )  + 
2 cos(Ak45 r)) 

note that the 10 phase differences A#jZ have been omitted for clarity, as they will not 

change the conclusions of this analysis (the rigorous result in the above equation would 

be to use COS(A~ jl r + A#jl ) terms). 

We now include in the analysis the fact that the 5 beams that we are considering 

here are not arbitrarily oriented, but are arranged in a precise fashion. 

Figure 6-1 - IL with 5 beams arranged to produce a Penrose-like quasicrystal. (a) orientation of the k 
vectors corresponding to each beam; (b) orientation and relations between the difference vectors, A ~ J ,  that 
correspond to the pair-wise interference of any two of the 5 beams shown in (a). 

The result of Eq. 6-6 is described graphically by Figure 6-1. The intensity pattern 

obtained from the interference of any 5 beams shown in Figure 6-l(a) can be described 

by a superposition of 10 line gratings corresponding to the 10 Akjl difference vectors. 

However, by taking into account the special orientation of the beams for the case of a 

decagonal 2D QC, it can be observed that the lengths of these 10 difference vectors are 
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equal to either IAkjj+ll or to lAkjj+21. Moreover, the 5 difference vectors corresponding to 

each of these two lengths can be arranged such that, put end to end they form a pentagon. 

This is easiest to see for the case of the Akjj+1 set, see Figure 6-l(b). To make this point 

clearer, we summarize this argument in Table 6-1. 

Table 6-1 - Analysis of the uniqueness of the 10 general wave vector differences in Eq. (6-6) for the case 
of an equiangular spacing of the five beams (72" angle). The data in this table relates to Figure 6-1. 

wave vector difference, equivalent wave direction 
Akjl vector difference (parallel to) 

Thus, both Figure 6-1 and Table 6-1 show that the interference of 5 laser beams 

equispaced around a central intersection point with 72' is equivalent to the superposition 

of two sets of five line gratings, corresponding to two types of difference vectors, Akjj+1 

and Akjj+2. Each set consists of gratings having the same spatial periodicity (21~/lAk~j+~l 

and, respectively, 21~/lAk~j+~l), and rotated about a center point by 7 2 O ,  just as it was 

described above in the case of ME-IL. 

The final expression for the intensity distribution obtained in the interference of 5 

laser beams thus becomes 
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where the spatial periods PI and PII are defined as 

and 

2, A 
= A * 0.52 ... , h is the laser wavelength, and the angle 

' 1~kj,j+21= 6- 
4, measured from x towards y, gives the orientation of each of line grating, 4 = 0, 72, 

144,216, and 288". 

By fiuther noting the special relation between the two spatial periods, PI = 7PII, 

where z = (1 + &) 1 2 = 1.6 1 ... is the golden mean, we conclude on a quantitative basis 

that the spatial distribution of the intensity of light resulting from interference of five 

beams can not be equivalent to the intensity distribution obtained from superposing five 

line gratings, rotated with the same 72". However, in both cases, the final rotational 

symmetry of the intensity distribution remains decagonal. 

The differences between the structures obtained fi-om ME-IL and MB-IL for 

decagonal QC are presented graphically in Figure 6-2. The numerical computations 

assume the same wavelength, and equal amplitude, out-of-plane and in-phase electric 

field polarizations for all the laser beams. The more expanded aspect of the MB-IL 

structure shown in Figure 6-2(b) agrees with the fact that the spatial periods PI and PII, 
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see Eq. (6-7), are larger than the spatial period P of the line gratings written in the ME-IL 

approach, see Eq. (6-1). 

Five line gratings Five simultaneous beams 

(a-1) (b-1) 

Figure 6-2 - Perspective and top-down views of the 2D decagonal QC intensity distributions obtained from 
IL with (a) 5 exposures with 72" rotations and (b) 5 beams separated by 72". In all cases, the axes are in 
units of the wavelength, h = 1, and the polarizations are out-of-plane and in phase. 

The analysis presented in this section can be easily generalized to the case of 2D 

octagonal and dodecagonal QC. In all cases, the multiple exposures IL approach (with 4 
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or 6 exposures) produces 2D quasiperiodic patterns that have the same rotational and 

mirror symmetries but a different lattice compared to the case of multi-beam IL (with 8 

or 12 beams). 

6.2.2. Minimum number of beams (or exposures) for 2D quasiperiodlcity 

It is usefbl to consider now answering the question of what is the simplest IL 

approach leading to a 2D quasiperiodic pattern. Answering this question will also 

provide an answer to the more basic question of how is quasiperiodicity obtained from 

the interference of waves, which by definition are translationally periodic. 

The key concept to be considered is that of superposition of incommensurate 

oscillations. This is easiest understood in ID, where the sum of, for example, two cosine 

terms will become a 1D aperiodic function if the ratio of the periods of the two 

oscillations is an irrational number such as f i  , & , & or z = (1 + &) 12 , etc.. Thus, 

two spatial periods are incommensurate if their ratio cannot be expressed as a ratio of two 

integers. 

2z 2n 
f (x) = COS(- X) + COS(- x) 

P P& 

wherefix) is an ID aperiodic hct ion,  andp is an arbitrary spatial period. 

To generalize this concept for generating 2D quasiperiodic variations from IL, it 

is immediately evident that more than two beams or exposures need to be considered, 

since any combination of two beams will result in a 2D translationally periodic pattern. 

As we will show next, three beams (or three exposures) are sufficient to produce a 

quasiperiodic pattern as long as the third beam is appropriately oriented. If we denote the 
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wavevectors of each beam with kl, k2 and k3, the following conditions need to be 

satisfied in order to obtain a 2D quasiperiodic pattern 

k3 ki - = irrational number 
lki l 

where i = 1,2. This result can be understood as insuring that the third beam, k3, leads to 

quasiperiodicity along both kl and k2 directions, such that the resulting lattice will 

become quasiperiodic in 2D. Note that, by analogy, the same consequences are present 

if, instead of wave vectors ki, the translation vectors belonging to each exposure in ME- 

IL are used (e.g. P vectors in Eq. (6-1). 
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10 15 20 
horizontal position 

Figure 6-3 - 2D quasiperiodic pattern obtained from 3 exposures of line gratings with equal spatial periods 
(P = hl2 = 0.5, see Eq. 6-I), but oriented as shown in the inset figure (at 0°, 36" and 90" measured fiom x 
towards y). (a) Total intensity pattern; (b) Binarized intensity pattern obtained by thresholding at zthreshold = 

75% I,, = 9; (c)  horizontal profile at y = 0 for the total intensity pattern shown in (a); (d) horizontal profile 
at y = 0 for the binarized intensity pattern shown in (b). All dimensions are in units of h. 

Figure 6-3 shows the example of a 2D quasiperiodic pattem that was obtained 

fkom the superposition of 3 line gratings oriented at 0, 36 and 90" from the x axis (unit 

vectors Pi (i =1,2,3) pointing along the translational periodicity directions are shown in 

the inset figure). Since the periodicity of total intensity pattem in Figure 6-3(a) is 
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difficult to assess visually, we have also binarized this intensity landscape by applying a 

threshold (white pixels if I(xJ) > JhreShold = 75% Immimum) and also shown in Figure 6-3(c) 

and (d) corresponding total and binarized profiles along the x axis for y = 0. Although 

these intensity profiles show repeating patterns, a more carell  examination should reveal 

that translational periodicity is absent along x. The quasiperiodicity of the profile along x 

can also be quantitatively understood by first observing that, along this direction, the 

intensity profile is a superposition of the intensity oscillations produced by PI and P3 

(since P2 is normal to x). The ratio of the periods of these two oscillations can be shown 

to be an irrational number related to the golden mean, s : 

Thus, the intensity profile along the x axis (at y =0) shown in Figure 6-3(c) is 

quasiperiodic because it is produced by the superposition of two oscillations with 

incommensurate periods. In a similar fashion, it can be proved that the 2D intensity 

profile shown in Figure 6-3(a) is quasiperiodic along any direction in the xy plane. 

In conclusion, we have shown in this section that the smallest number of beams 

(or exposures) that allows producing 2D quasiperiodic IL patterns is three. This result 

may prove to be very useful for applications where the only requirement for the IL 

pattern is to be 2D quasiperiodic, and to use the smallest number of beams. 

6.2.3. Theoretical model for interference lithography in 30  

The last theoretical problem that we consider is the prediction of the 3D light 

intensity distribution obtained from the interference of an arbitrary number of beams, 
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with arbitrary directions and polarizations. This model will be extremely useful when 

exploring for 3D structures with particular features (e.g. connectivity, volume fraction, 

etc.) or when trying to model an experimental situation, where many beams are 

interfering simultaneously. 

We assume that N beams are interfering in a 3D volume. Each beam j has an 

arbitrary orientation, kj, polarization and amplitude Ej and phase 4j, and we fhther 

assume that the interference medium is isotropic such that E l k .  The total electric field 

becomes 

The resulting intensity pattern is simply given by 

The difficulty arises when actually trying to evaluate the above expression, since 

the vectors Ej, while perpendicular to their respective kj vectors, point in arbitrary 

directions. Thus, to calculate the intensity I(x,y,z), the x, y and z components of all Ej and 

kj vectors need to be first determined. To simplify this task, it would be beneficial to 

implement in this 3D IL model of a straightforward way for describing the polarization of 

each beam. 

A advantageous solution we adopted to deal with this relative difficulty was to 

borrow fiom the solution of Maxwell's equations in the kDB system [31]. This solution 

simplifies the problem of solving the system of differential equations in the xyz (lab) 

coordinate system, by expressing all the electromagnetic quantities in a new coordinate 
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system formed by the k, D and B vectors, called the kDB system, in order to reduce the 

number of differential equations that need to be solved. In a similar fashion, we adopt a 

right handed coordinate system for each laser beam in our 3D IL problem, with unit 

vectors el, e2 and e3 chosen such that: 

where El and E2 are the two electric field eigenvectors that describe the 

polarization state of the considered beam in the elere3 system. Thus, it becomes very 

easy now to define arbitrary polarizations, since El and E2 are orthogonal to each other 

and both are orthogonal to k (optically isotropic interference medium). To make this 

coordinate system unique, the unit vector e2 is assumed to lie in the plane formed by the 

unit vectors z and e3, .from the xyz and, respectively, ele2e~ coordinate systems. 

Figure 6-4 - (a) A laser beam propagating in the xyz lab coordinate flame in an arbitrary direction k, with 
arbitrary amplitude and polarization given by El and E2; (b) Definition the ele_le3 coordinate system in 
relation with the xyz coordinate system 
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To calculate the total intensity pattern, we start by assigning El=Elel, E2=E2e2 

and k = ke3 for each beam in the ele2ej coordinate system based on the desired 

polarizations and wavelength. We then use the polar (8) and azimuthal ($) angles to 

describe the propagation direction of each wave in the xyz coordinate system, as shown in 

Figure 6-4. At this point, we can solve for the xyz components of the electric field vector 

corresponding to each beam: 

where - T is a coordinate transformation matrix having the following elements [3 11 - 

sin 4 cos 9 cos 4 sin 9 cos 4 
cosOsin4 sinesin# 

- sin 8 cos 9 1 
Finally, using Eq. (6-1 1) and Eq. (6-12), we arrive at the total intensity 

distribution in the xyz coordinate system. The actual computation can be very easily 

implemented in MATLAB@, which then allows plotting of the 3D data in a variety of 

useful ways. 

The advantage of this model stems fkom its ability to allow a very clear definition 

of the polarization state of arbitrary oriented beams, which then allows complete 

flexibility for modeling 3D IL with an arbitrary number, orientations, polarizations and 

amplitudes of beams propagating in 3D. Multiple exposures can be readily simulated 

using this approach by summing the individual intensity distributions produced for each 

exposure. 
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6.3. Fabrication of large area 2D quasicrystals by multiple 

exposure interference lithography 

6.3.1. Introduction 

As discussed in the previous section, 2D quasiperiodic structures can be obtained 

fiom both the interference of multiple laser beams, and fiom multiple exposures with 

subsequent rotations of line gratings produced by IL with 2 beams. 

1 
Figure 6-5 - IL configuration for fabricating Penrose-like 2D PQC (a) interference of five laser beams 
converging to a central point from the corners of a regular pentagon (i.e. the projections of the five k 
vectors in the sample plane are separated by 72"); (b) Five exposures of line gratings formed by IL with 2 
beams, where the sample substrate is rotated with 72' after each exposure. 

Although we have successfully implemented in our laboratory both MB-IL and 

ME-IL methods for fabricating 2D PQC samples, we focused on ME-IL due to a number 

of advantages over MB-IL, related to sample size and easy reconfiguration for fabricating 

quasiperiodic structures with different rotational symmetries. While MB-IL offers the 

greatest flexibility for creating structured materials with IL (the number, directions, 

intensities, and polarizations of the interfering beams can be independently controlled), 

its practical uses as typically implemented [ l l ,  141 are limited because of the time- 

consuming setup step required when the number of beams or the sample periodicity need 

to be changed. In our laboratory, we used a continuous wave 532n.m Coherent Verdi 

laser to generate 5 beams, which were then overlapped into the photoresist layer to 
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produce decagonal 2D quasicrystalline samples. Since at least N-1 half wave plates and 

polarizing cube beam splitters are needed to generate and adjust the power for N beams, 

and then at least one more wave plate is needed for controlling the polarization of each of 

the interfering beams, the cost of the optical components and the experimental setup time 

become limiting for implementation of 8 or 12 MB-IL and the fabrication of octagonal 

and dodecagonal 2D quasicrystals. Another optics related problem we had to deal with 

was related to the small diameter (4-5rnrn) and the Gaussian profile of the output beam of 

our laser, which produced samples with limited sizes and radial gradients of the volume 

firaction in the recorded structures. Additional difficulties we encountered were related to 

the need to prepare in-house a photoresist mixture sensitive to 532nrn, since no 

commercial resists were found (most are designed for UV). We followed the method of 

Yang et al. [19] to prepare a 532nm resist, by mixing appropriate amounts of SU-8 epoxy 

with a photoacid generator and a photosensitizer that has a strong absorption at 532nm 

(rubrene from Sigma-Aldrich Inc., or H-NU 535 from Spectra Group Limited), all 

dissolved in cyclopentanone. Although we were successll in obtaining decagonal 

quasiperiodic structures fi-om our 5-beam IL setup, the difficulties related to the optical 

setup constraints, and to the un-optimized, experimental photoresist mixture lead us to 

focus our efforts on ME-IL. 

In this section we present our work on the implementation of ME-IL for the 

fabrication of 2D PQC structures with 8-, lo-, and 12-fold rotational symmetries. While 

the proof of concept for this ME-IL approach has been published in 2004 by Gauthier et 

al. [13], our results show for the first time that IL can produce 2D-PQC of similar quality 

and small feature sizes as those made by electron-beam lithography (EBL) [8, 9,321. We 
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have been able to fabricate 2D PQC samples with feature sizes as small as 10- (a 

-lox reduction factor compared to Gauthier et al.) over areas as large as -2cm2. Scaling 

down the feature size in the IL process was possible by using a Lloyd's mirror 

interferometer with a 325nm HeCd laser, which offers by design highly stable 

interference fringes (only one laser beam is present in the system, unlike typical 2 beam 

setups such as that shown in Figure 6-5(b) and used in [13]). The stability of the Lloyd's 

mirror IL, together with using a specially designed antireflection coating underneath the 

photoresist layer, allowed a very accurate recording of the low contrast intensity patterns 

produced by ME-IL. Our approach can be extended for the fabrication of 2D PQC 

patterns over entire 12" wafers, by using other lithographic interferometer systems 

currently available at MIT [ 1 51. 

These results show that IL is a key technique for fabricating 2D PQC large 

enough to impact practical applications, unlike EBL which produces samples < lmm2. 

The successfbl production of large area 2D PQC samples enabled us to M e r  develop a 

coherent diffraction lithography method that uses transparent 2D PQC as diffraction 

gratings to produce novel quasiperiodic 3D sub-micron structured polymeric templates 

(by recording the near field intensity pattern produced by the 2D PQC gratings, as it will 

be presented in the next section). This is a significant achievement, since 3D PQC have 

been yet to be fabricated at optical length scales - a first experimental study of the 

properties of 3D PQC has been reported only this year by Man et al. [33], who found 

large band gaps in the microwave regime for macroscopic 3D quasiperiodic polymeric 

networks with millimeter size features, fabricated with stereolithography. 
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6.3.2. The Lloyd's mirror lithographic interferometer 

Introduced in the 1830's by Humphrey Lloyd, the presently called Lloyd's mirror 

interferometer consists of a very simple physical setup - a mirror is used to deflect a 

portion of a single light beam such that interference fringes are produced on a sample 

plane due to the interference between the mirror-deflected and the non-deflected rays, 

respectively. 

electronically actuated shutter with timer 

d 

stage 6 
\ 

I substrate holder ! 

2 meters 

& rotation axis to vary 
I the grating period 
I 6-12- - 

sample rotation axis 
I I for multiple exposures 

Figure 6-6 - (a) Configuration of the Lloyd's mirror IL system built and shared by the MIT Nanostructures 
Laboratory; (b) Sample holder assembly, showing the rotation axis for changing the grating periodicity, 
and the axis around which the substrate is rotated during ME-IL; (c) Rotating the entire stage assembly 
changes the incidence angle and thus the periodicity of the recorded gratings. Adapted fiom [29]. 

The Lloyd's mirror IL setup that was used in our research was built by Dr. 

Michael Walsh of the MIT Nanostructures Laboratory (NSL) as part of his M.Sc. thesis 

research [29] under the guidance of Prof. Henry (Hank) Smith, director of the NSL. This 
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IL system has been originally designed as a versatile IL tool for the fabrication of line 

gratings with periods varying from -17Onm to -2000nm, and its quality has made it an 

important tool in the NSL. The beam source is a 40mW 325nm HeCd laser outputting a 

single TEMOO mode (i.e. a 2D Gaussian profile). As shown in Figure 6-6, the laser beam 

is passed through a spatial filter, and expanded over a distance of 2m. Although the 

phase fronts are in fact spherical, their large radius of curvature (2m) allows a very 

uniform interference pattern at the sample plane. The output of the laser is linearly 

polarized, and the optical setup in Figure 6-6 is designed such that the polarization is TE 

at the sample plane (for a maximum contrast of the exposed line gratings). The sample 

stage assembly is placed on a high accuracy rotation stage, in order to change the 

periodicity of the recorded line gratings. By rotating this stage, and thus changing the 

incidence angle 8, see Figure 6-6(c), it is easy to vary the period P of the recorded line 

gratings 

Another key component of the sample stage assembly is the ultra-flat aluminum 

mirror, which is positioned perpendicular to the sample plane. The sample holder can 

accommodate entire 4" wafers, and a rotation stage has been added to it so that samples 

can be rotated between exposures. We have also added to the original setup an electronic 

shutter with a timer, for an accurate control of the exposure time (the original setup uses a 

manually actuated shutter). 

The Lloyd's mirror IL setup has a number of strengths that make it especially 

suitable for the fabrication of 2D PQC via ME-IL. Its most important feature is the high 
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stability of the interference fiinges produced at the sample plane. Since only one laser 

beam is present in the system, any fluctuations caused by air currents, temperature 

variations, etc. encountered along the propagation direction affect equally the interfering 

rays (consider than in a typical two beam IL setup (also called Mach-Zender) any 

differences between the 2 arms leads to translations of the interference pattern on the 

sample plane, reducing the achievable contrast). The Lloyd's mirror IL setup is only 

sensitive to air currents in the small space between the mirror and the substrate, and to 

vibrations of the entire stage assembly. To eliminate these problems, the entire setup is 

housed on an optical table covered completely with a plastic enclosure. 

6.3.3.2D QPC fabrication issues: contrast in Multiple Exposure IL 

As it was shown in Figure 6-2, the quasiperiodic intensity distributions produced 

by IL consist of fairly complex landscapes having moderate contrast levels. To gain a 

better understanding of the practical consequences of this reduced contrast, we 

investigated the dependence of 2D QC volume (area) fkaction on an intensity cutoff level 

applied to the computed intensity pattern (directly related to the exposure dose in 

experiments) for ME-IL with 4, 5 and 6 exposures (corresponding to 8-, lo-, and 12-fold 

rotationally symmetric 2D QC patterns). The volume fractions were calculated by 

evaluating i(x,y) using Eq. (6-1) across a 2D computation domain of size 2Ox20h with 40 

points per h, and then finding the fkaction of pixels in this 800x800 grid that have 

intensities greater than a particular threshold level. 
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Figure 6-7 - Dependence of volume fractions on the intensity cutoff level for 2D quasiperiodic patterns 
obtained from 4,5, and 6 exposure IL. Representative pictures of the three types of 2D PQC structures at a 
few fill fractions are also shown in Figure 5.4. 

The above figure shows that the larger the number of exposures, the more rapidly 

changing the volume fraction of the 2D QC structure becomes as the exposure dose is 

increased. For example, while in the case of 4 exposures all the volume fractions could 

be generated by varying ImtodImax between 5 and 88%, in the case of 6 exposures these 

volume fractions are generated in a significantly narrower range of ICUtodImm values, from 

-28% to 85%. 

Thus, it is expected that small changes of the experimental exposure dose will 

cause larger variations of the 2D QC fill fractions the larger the number of exposures. In 

order to more accurately capture the complex, feature rich QC patterns expected from 

ME-IL in the photoresist, we have designed an antireflection coating to minimize the 

reflection from the bottom interface of the photoresist, since even small changes of the 

laser intensity inside the resist are expected to significantly affect the resulting 2D QC 

patterns. 
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6.3.4. Fabrication process: the tri-layer resist process and materials 

Given the sensitivity of the quasiperiodic patterns produced by ME-IL to 

exposure doses, we have implemented in our experiments the so-called tri-layer resist 

process [34]. In this process, two specially designed layers are added between 

photoresist and substrate in order to increase the nanoscale fidelity of the recorded 

structure. 

Pattern transfer 
int erlayer 

Substrate 

// 

Figure 6-8 - Tri-layer resist stack. An optically absorbing antireflection coating (ARC) placed on top of 
the substrate is used to eliminate the reflection R2 fiom the bottom of the photoresist layer, such that only 
the interference between the T, rays is recorded. An optically thin interlayer (e.g. 20nm Si02) is placed 
between the photoresist and ARC layers for accurately capturing the photoresist pattern before transfer into 
the substrate. 

The two layers added between the photoresist and the substrate are an 

antireflection coating (ARC) and a pattern transfer layer. The function of the ARC is to 

minimize the reflection Rz at the bottom interface of the photoresist layer, as shown in 

Figure 6-8 (this kind of ARC should not be confused with typical ARCS that are designed 

to minimize the top reflection, R1). The second layer is an optically thin pattern transfer 

interlayer that is placed between the ARC and the photoresist layers in order to improve 

the fidelity with which the quasiperiodic pattern is transferred into the substrate. This is 

achieved by choosing an interlayer material that is not affected by typical etching 

processes used for structuring both the photoresist and the ARC layers. The most 
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common choice, also used by us, is a silica (SOz) interlayer [29,34] - dry etching is used 

to "project" the photoresist structure into the -20nrn thin SiOz layer (e.g. RIE with CHF3 

or CF4 gases), and then this structure is transferred into an organic-material based ARC 

layer using RE with O2 plasma. Thus, the photoresist acts as a dry etch mask for the 

Si02 interlayer, which then becomes the etch mask for the organic ARC, which in the end 

is the mask used to etch the quasiperiodic pattern into the substrate. 

- /Positive photoresist 

I Interference I 4 

0, plasma 

Figure 6-9 - Process flow for using ME-IL to fabricate 2D PQC samples, with SEM images of actual 
samples produced in the case of line gratings (one exposure). (a) the initial tri-layer resist stack is 
composed of 200nm photoresist, 20nm Si02 and 200nm organic ARC material, on a 1.5pm thermal oxide 
coated silicon wafer substrate; (b) the developed photoresist structure; (c) the SiOz interlayer is etched with 
CHF3 RIE using the photoresist as a mask; (d) the pattern is further transferred into ARC by etching with 
0 2  RIE using the thin SiOa caps as a mask; (e) the 2D quasiperiodic pattern is finally transferred to the 
Si02 substrate by CHF3 etching using the ARC as a mask; (0 the final 2D PQC sample is obtained by 
stripping the ARC mask with O2 plasma. 

The clean room fabrication process we used to prepare 2D PQC samples with 

various rotational symmetries is shown above. The materials and deposition details are 
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summarized in Table 6-2. Please note that a positive rather than a negative photoresist 

was chosen, in order to be able to more accurately capture the smaller features recorded 

in the photoresist as the exposure dose is increased, as shown in Figure 5.4 (negative 

resists are a better choice for recording holes-in-resist types of patterns). 

Table 6-2 - Materials, deposition techniques and their refractive indices used in the tri-layer process 
outlined in Figure 6-9 (list in order of deposition). 

Label Material Deposition Refractive index 
at 325nm* 

substrate 1.5pm thermal oxide on silicon, n/a Si: 4.68-2.031' 
from WaferNet Inc. Si02: 1.48 

ARC AZ BARLi Coating, from Clariant - spin coat, 6500rpm 1.55-0.141' 
Corporation. (thickness -2OOnm**) 

- bake 90sec at 17S°C 

interlayer silicon oxide, Si02 - e-beam evaporation 1.48 
(thickness 15-2Onm) 

photoresist*** PFI-88 A2 (positive resist) from - spin coat****, 4000rpm 
Surnitomo Chemical Co. Inc. (thickness -2OOnm) 1.79-0.021' 

- bake 90sec at 90°C 
* measured using spectroscopic ellipsometry by Dr. Michael Walsh, fiom [29]. 
** ARC thickness is changed according to the period to be recorded, such that the reflection at the 

bottom interface of the photoresist minimized (see Figure 6-10). The reported thickness value 
corresponds to 300nm period lines. 

*** a photoresist adhesion promoter is first spun on the Si02 interlayer (hexamethyl disilazane, HMDS, 
which forms a hydrophobic trimethyl-siloxane self-assembled monolayer coating on Si02). Without 
this adhesion promoter the photoresist pattern dewets in the developer solution. 

**** the photoresist is developed with a tetramethyl ammonium hydroxide aqueous-based solvent, 
Microposit CD-26 from Rohm&Haas. 

The refi-active index data shown in Table 6-2 is used to calculate the thickness of 

the ARC layer for a desired line grating periodicity. The incidence angle can be 

determined using Eq. (6-16), and then a simple transfer matrix technique [29, 351 can be 

used to calculate the reflectivity at the bottom interface of the photoresist (R2, shown in 

Figure 6-8) from the upper propagating component of the electric field inside the 

photoresist layer. ARC thicknesses for which Rz c 5% should be used for obtaining line 

gratings with good vertical profiles. 
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@) R2 (2OOnm BARLi) = 1.2% 
20 
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Figure 6-10 - (a) Tri-layer resist stack structure: (from the top) photoresist, SiOz interlayer, ARC layer and 
substrate (1.5pm thermal oxide on silicon); (b) Effect of varying the thickness of the ARC layer on the 
reflectivity R2 from the bottom interface of the photoresist layer in the case of a 300nm period grating. The 
simulations used the refractive index data provided in Table 6-2. 

The RIE dry etching steps shown in Figure 6-9(b)-(f) were performed in the 

Nanostructures Laboratory class 100 clean room using a PlasmaTherm 790 Series System 

VII (1 3.56MHz RF source) with the following process parameters. 

Table 6-3 - Reactive Ion Etching (RIE) process parameters. For all gases, the total flow rate was 15sccm. 

Material to be 
etched 

Gas Pressure DC Bias / Power Etch rate 

Si02 cHF3 10 mTorr 300V / 150W -27nmlmin 

ARC 02/He (1 :2) 7 mTorr 250V / 130W -6Onm/min 

ARC removal 02/He (3 : 1) 25 mTorr 160V / 75W - 1 OOnmlmin 

6.3.5. Results 

The processes and materials described in the previous section were used to 

fabricate a variety of 1D and 2D structured samples on both silicon and silica substrates. 

To showcase the stability of the Lloyd's mirror IL setup, we first report the results 

of an experiment where line gratings were written in two ways - one shot exposures of a 

particular dose, and, secondly, by delivering the same dose over multiple exposures with 
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delays introduced between each successive exposure in order to increase the time elapsed 

between the beginning and the end of the recording step. 

2 exposures 
pL "' --. : 
@r'-. -me < 

c ,-.-- 
,r. 3 .tiU Ism 

Figure 6-11 - Scanning electron microscope images at 30k magnification of Si02 line gratings obtained 
from photoresist patterns produced using two IL approaches. In (a) and (b) a single exposure of 11.75min 
(1 15nW laser power delivered at the sample plane) is performed. The same total dose is delivered in (c) as 
4 exposures and in (d) as 5 exposures, but additional lmin delays are introduced between each exposure. It 
can be seen that the resulting gratings are virtually identical within the error limit of the SEM measurement. 
Measured duty cycles are 43% in (a), and 4 1% in (b), 39% in (c), and 4 1% in (d). 

In the Lloyd's mirror setup, the laser power delivered to the sample is very low, 

due to the long expansion length (2m) of an already low power output (-35-40mW 

typically). It should be mentioned that this laser has no output power adjustment, so the 

recording dose is controlled by varying the exposure time. Using a Newport Optical 

Power Meter 1830C calibrated for 325111x1, we typically measured about 200nW at the 

sample plane, but, probably due to the age of the HeCd laser, the delivered power tends 

to fluctuate between experiments (the highest power in our experience at the sample was 

about 280nW). In the experiment shown in Figure 6-1 1 the power was 1 15nW and one 



CHAPTER 6 

exposure of 11.75min was used to produce the Si02 line gratings shown in (a) and (b). 

Two more samples were prepared by allowing one minute between successive exposures, 

while maintaining the same total dose of 11.75*115(min*nW), for the cases of 4 and 5 

exposures. For all samples, the periods of the line gratings transferred into the Si02 

substrate were measured to be almost identical, fluctuating around 3 0 7 ~ 1 ,  fiom SEM 

images at lOOk magnification. Similarly, the duty cycles (ratio of linewidth to period) 

were measured to be 43% and 41% for the single exposure experiments shown in Figure 

6-1 1 (a) and (b), and 39% (c) and 4 1 % in (d). Since instability of the fringes would have 

resulted in an increase of the measured linewidth, we can conclude that the MIT 

implementation of the Lloyd's mirror IL system is highly stable. No significant drift on 

the few nanometer scale could be detected even for the longest experiment of -16min, in 

the case of 5 exposures shown in Figure 6-1 1 (d). 

We now proceed to present our results for the fabrication of 2D quasiperiodic 

structures using ME-IL. As previously mentioned, N = 4, 5, and 6 exposures with nlN 

rotation angles produces a 2N-fold rotationally symmetric 2D quasiperiodic structure (the 

factor of 2 is due to the mirror symmetry of the line gratings). The photoresist patterns 

are transferred into the substrate, typically Si02, using the process described in Figure 

6-9. In Figure 6-12 we first show perhaps the most recognizable 2D quasiperiodic 

structure, the Penrose-like lattice with 10-fold rotational symmetry, obtained by 5 

exposures with rotations of 300nm period line gratings. 
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Figure 6-12 - Top-down view SEM image of a Penrose-like decagonal 2D quasiperiodic pattern etched in 
SiOz. Areas with local 5 and 10 fold rotational symmetries are emphasized, and a portion of a Penrose 
tiling pattern is overlayed on the sample image. The inset figure shows an edge-on SEM image of the same 
sample, where the height of the posts is 240nm. The structure was obtained by 5 exposures with 36O 
rotations of 300nm period line gratings. 

The above figure experimentally prove& the remarkable correspondence of the 2D 

decagonal quasiperiodic structure produced by IL and a mathematical Penrose tiling, 

comprising two rhomboidal motifs (acute angles of 36' and 72'). Structural defects can 

also be seen throughout the pattern, e.g. as occasional, incompletely closed circular 

features. This is an inevitable result of capturing in the photoresist a low contrast 

interference pattern. Insufficient contrast causes photoresist traces to be left on the 

substrate after developing (e.g. the dose delivered at certain locations is not high enough 

to complete the photochemistry leading to solubilization in developer solution). Any 

such defects are unfortunately projected into the Si02 interlayer, and maintained with 

high fidelity throughout the entire fabrication process shown in Figure 6-9. 
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Nevertheless, the uniformity of the structure is remarkably high. The advantage 

of ME-IL over MB-IL for fabricating 2D QPC with various rotational symmetries is 

presented in the next figure, where three kinds of quasicrystals were readily fabricated 

just by changing the number and corresponding angles of rotations. In all three cases, 

line gratings with 300nm periods were recorded in each exposure. 

Figure 6-13 - Top-down SEM images of 2D (a) octagonal, (b) decagonal, and (c) dodecagonal 
quasiperiodic structures in silica produced by ME-IL with N = 4, 5, and 6, respectively, exposures and 
rotations with 1 80°1N angles. Views of the central axis showing 8mm, 1 Omm, and 12mm point symmetry. 

As expected, changing the exposure dose allows to readily vary the volume (fill) 

fraction of the resulting 2D quasiperiodic structures. 

Figure 6-14 - Effect of exposure dose on the recorded photoresist pattern for the case of a 2D decagonal 
quasicrystal from ME-IL with 5 exposures and rotations with 36'. The fraction of substrate area covered 
with photoresist (light gray areas in the figures) is 66% in (a), 44% in (b), and 30% in (c). 

A comparison between the photoresist patterns produced by IL and simulated 

intensity patterns is shown next. A good correspondence between the experimental and 
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predicted structures is obtained by varying the intensity threshold applied to the total 

intensity distribution predicted by Eq. (6-I), and plotting I(x,y) - Ilhreshold. 

Figure 6-15 - Comparison between SEM images of experimental photoresist patterns produced by ME-IL 
with (a) 5 exposures and 36" rotations, or (c) 6 exposures and 30" rotations, with computed intensity 
patterns approximating the experimental conditions, as (b) and (d). 300nrn period line gratings were 
recorded in each exposure. 

Perhaps the greatest advantage of ME-IL stems from its ability to allow 

fabrication of 2D quasiperiodic structures over very large areas. While, for practical 

reasons, our typical samples were square pieces of silicon wafers with -1-2cm sides, IL 

tools have been developed at MIT that can pattern entire 12" wafers [15]. As an 

example, we next show a large area SEM image of a 2D octagonal quasicrystal fabricated 

by 4 exposures with 45' rotations. 
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Figure 6-16 - Large area, plan view SEM image of an octagonal 2D quasiperiodic silica structure obtained 
by 4 exposures of line gratings with 300nrn periodicity, and subsequent rotations with 45'. 
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6.4. Towards Applications 

Having considered opportunities related to fiuther studying issues such as the 

optical properties of 2D quasiperiodic materials, the influence of controlling the spatial 

coherence between successive exposures, the fabrication of samples with rotational 

symmetries larger than 12-fold, etc., we decided instead to focus on two other problems 

with potential for higher impact. As described in this short section, we attempted proof- 

of-concept experiments and obtained initial success in employing the 2D PQC patterns 

we fabricated as gratings for the fabrication of 3D sub-micron structured samples. Such 

quasiperiodic 3D structured materials have not been previously reported. We have also 

conducted initial experiments on a fascinating problem, related to hstrating a self- 

assembling block copolymer system forming a translationally periodic morphology with 

p6mm symmetry by causing the self-assembly of a monolayer of the spherical 

microdomains to occur on a quasiperiodic topographically patterned substrate (see Figure 

6-21). This line of research has also put us in a position to recognize that a properly 

chosen 2D array of posts could facilitate not only local ordering, but also help impose a 

unique global orientation of the block copolymer morphology over entire wafers up to 

12" in size, a highly sought goal in the field of block copolymer nanolithography [36-391. 

6.4.1. Fabrication of quasiperiodically structured 30 materials by coherent 

diffraction lithography with 2D quasiperiodic transparent phase masks 

As mentioned in the introduction of this chapter, photonic quasicrystals still 

represent a very young class of photonic band gap materials. Only recently, some 

quasicrystals have been shown to exhibit PBG properties superior to photonic crystals 

and to exhibit other interesting optical properties in 2D [8, 9, 321. It is thus believed that 
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3D PQC may become very important candidates as 3D PBG materials [33]. However, 

theoretical investigations of the properties of PQC in 3D are very difficult due to the 

absence of translational symmetry (as a consequence, computationally prohibitive studies 

of large enough 3D structures are required to gain quantitative insight into the properties 

of this class of PBG materials). Offering an experimental solution to these difficulties, 

only a few months ago, Man et al. published an experimental investigation of PBG 

properties in 3D quasicrystalline materials [33] arguing that an easier path forward is to 

fabricate actual samples on the millimeter scale and probe them with microwaves. While 

this study represents a significant step forward towards developing an understanding of 

the potential optical properties of 3D photonic quasicrystals, the connected-rods structure 

investigated is close to impossible to fabricate at the optical length scale. 

In this section we present a natural extension of our fabrication of 2D PQC 

samples, which allows access to novel quasiperiodic 3D structured materials with feature 

sizes on the scale of the wavelength of light. The significance of this path is related to 

the fact that by varying the structure of the 2D PQC (easily achieved with IL and planar 

processing), a wide variety of 3D quasiperiodic structures could be rationally designed. 

Since the resulting structures can be accurately predicted by modeling the IL process, it is 

conceivable that they could be then optimized for particular applications, such as e.g. 

enabling a complete 3D PBG at optical wavelengths. 

The general approach we took is known in the literature as coherent diffraction 

lithography (CDL) [16], phase mask lithography [40], or as near-field nanolithography 

[41]. While we prefer to refer to this method as CDL, regardless of the name used to 

describe it, its essence remains the same - a transparent 2D diffiaction grating is 
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illuminated kom behind, and the near field light intensity pattem produced in the vicinity 

of the topographically structured side is captured in a photoresist layer. By using thin or 

thick resist layers, both 2D [16] and 3D samples [40] can be fabricated. 

Figure 6-17 - Coherent diffraction lithography (also known as phase mask lithography). The schematic 
shows an implementation for creating 3D nanostructured polymeric templates by recording the near field 
intensity pattern generated by an elastomeric, transparent, 2D periodic diffraction grating into a photoresist. 
From [40]. 

While, as a technique, CDL is limited to only producing select families of 3D 

structures, it has significant practical advantages as a low cost patterning tool that can 

employ light sources with low coherence (e.g. W lamps), and cheap, elastomeric 

diffiaction gratings (e.g. polydimethylsiloxane, PDMS, borrowing fiom the 

nanostructured stamp-making expertise developed in the field of soft-lithography [42]). 

Our goal is to employ transparent, 2D quasiperiodic diffraction gratings to create 

3D structured materials with quasiperiodicity, by recording the near field intensity pattem 

produced when a laser beam passes through the difkaction grating. The actual 
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implementation of CDL for our case is relatively simple. 2D PQC gratings are patterned 

into a thick thermal oxide layer on silicon wafers using the multiple exposure with 

sample rotation IL approach described in the previous section. Following typical 

procedures for creating PDMS stamps from nanostructured master patterns for soft- 

lithography [42], we use the resulting hard material 2D quasiperiodic diffraction gratings 

as molds for creating an elastomeric replica in PDMS (prepared by casting a liquid 

precursor, Sylgard 184 from Dow-Coming). The silica surfaces of the 2D PQC gratings 

are first treated with a vapor-deposited perfluroro allcyl trichlorosilane to lower the mold 

surface energy and to thus facilitate the release of cured PDMS gratings (i.e. we fabricate 

more than one PDMS grating from a given master). PDMS is a very useful material for 

CDL, because of its excellent transparency across the visible and into the UV region, and 

because PDMS diffraction gratings easily conform on resist coated substrates to create a 

good optical contact and thus allow recording the near field intensity pattern onto large 

area substrates. 

r----- - 
5 p m  

Figure 6-18 - (a) Elastomeric replica in PDMS of an octagonal 2D quasiperiodic silica grating. The depth 
of the topographical features is 450nm; (b) the diffraction spectrum obtained for a 632nm HeNe laser - 
imaged by projection on a paper screen placed at 5.2cm away from the PDMS grating (digital photograph 
captured by Mr. Marcus Dahlem, MIT EECS). 
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To test the CDL approach for fabricating 3D quasiperiodic structures, a 361n.m 

line of an Ar-ion laser was used to expose 5 micron thick films of a commercial SU-8 

2005 photoresist (from MicroChem Inc.) through a series of 2D octagonal quasiperiodic 

PDMS gratings with varying volume fractions. A representative SEM image of the 

surface of a PDMS diffraction grating, and a photograph of its diffraction spectrum 

obtained with a HeNe laser are shown in Figure 6-1 8. While all the SU-8 structures we 

recorded with CDL from PDMS stamps also produced diffraction spectra with the same 

octagonal symmetry (indicative of the fact that the quasiperiodic structure has been 

recorded in the volume of the epoxy resist), it has been a challenge to find the right 

combination of the exposure dose, post exposure bake and development times that would 

produce high quality bicontinuous air-epoxy 3D structures. 

Figure 6-19 - A sub-micron structured, 3D epoxy polymeric network with quasiperiodicy obtained by CDL 
with a transparent octagonal 2D quasiperiodic PDMS grating, exposed with the 361nm line of an Ar-ion 
laser. Representative local octagonally symmetric regions are indicated with green octagons. 
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While currently this project remains a work in progress, by exploring this large 

experimental parameter space in collaboration with Ms. Taeyi Choi (MIT DMSE), we 

have already been able to obtain open 3D quasiperiodic structures with octagonal 

symmetry, proving our initial hypothesis that a 2D quasiperiodic structure can be used to 

fabricate quasiperiodic 3D structured materials by CDL. Such a 3D structure is shown in 

Figure 6-19, and it was obtained for a 361nrn exposure through the PDMS stamp shown 

in Figure 6-18(a) for 23sec at a power level of 8.5pW, followed by a 7min postbake step 

in a 65°C oven, 3min cool-down, and 1.5min development in cyclopentanone at room 

temperature. 

While CDL should clearly allow the fabrication of a wide range of 3D 

quasiperiodically structured materials provided their respective 2D PQC gratings are 

available, the practical implementations will require a tedious optimization. Based on our 

experience with the fabrication of 2D PQC structures, and the difficulty of low contrast in 

interference patterns, it is predictable that CDL-based methods may end up requiring 

processing in a very narrow window of experimental parameters in order to obtain a 

desired 3D airlpolyrner bicontinuous structure. Too better understand the contrast issue, 

consider that the near field light intensity distribution that is used in CDL to pattern the 

photoresist, could be treated as a superposition of all the far field diffracted orders - since 

each order consists of 8, 10, or 12 beams depending on the quasicrystal (e.g. see Figure 

6-18), the large number of total beams simultaneously interfering in the near field will 

lead to a reduced contrast in the final 3D intensity pattern. A last observation we make is 

related to the fact that there appears to be no theoretical tools for predicting the intensities 

of each diffracted order for a given transparent 2D quasiperiodic stamp. This precludes 
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using simple models for predicting the 3D intensity pattern, such as that presented in 

Section 6.2.3, which is a big disadvantage for experiments, given the large sensitivity of 

quasicrystal volume fraction on exposure dose previously observed for the 2D case. 

However, as previously mentioned, this work is still in progress. We have also 

been collaborating with Mr. Marcus Dahlem and Prof. Erich Ippen of the MIT EECS 

department to image the 3D near field intensity pattern in the vicinity of the PDMS 

stamps using a home built near field optical microscope (NSOM). This kind of 

measurement may become the experimental answer to the hard problem of theoretically 

predicting the resulting structure from a phase mask a function of exposure dose. In 

principle, one could pass through the PDMS a laser wavelength that produces the same 

number of diffracted orders in air as the experimental recording wavelength produces in 

the photoresist. By scanning a xyz volume in the near field, one could quickly gain an 

understanding of the connectivity of the resulting 3D intensity patterns as a function of 

PDMS stamp structural features (fill fraction and height of the 2D quasiperiodic 

topographical features). Ultimately, one would still need to optimize the exposure and 

postexposure processing steps, but NSOM seems the right tool for channeling these 

efforts towards only the more promising samples. 

6.4.2. Self-Assembly of block copolymers thin films on 2D quasiperiodic 

topographically patterned substrates 

A second line of investigation we pursued, that was enabled by the 2D 

quasiperiodic samples we fabricated, is related to the problem of constraining a material 

that prefers to adopt a translationally periodic structure to self-assemble on a substrate 

with topographical features arranged in 2D quasiperiodically. 
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Figure 6-20 - (a) Schematic of a diblock copolymer molecule, formed by two chemically distinct polymer 
chains joined covalently. Polystyrene-b-polyisoprene is shown as an examle; (b) Bulk morphologies 
obtained in diblock copolymers as the volume fraction of a component is increased from 0 to 50%. 

One particular application for which block copolymers (BCP) have been widely 

investigated in the recent past is nanopatterning. BCP nanolithography refers to the use 

of block copolymers composed of blocks with different etch properties (i.e. one block can 

be selectively removed), to pattern substrates with the structure formed by a BCP self- 

assembling in thin films [36-391. 
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Figure 6-21 - Block copolymer nanolithography. Formation of a nanopatterning mask after selectively 
removing a component from a self-assernbled block copolymer thin film with either spherical or cylindrical 
morphology. 

Thus, there is currently a large interest for understanding and controlling the 

process of self-assembly of BCP in thin films. Nevertheless, our initial motivation to 

study self-assembly on quasiperiodic topographically patterned substrates was a different 

one - we were fascinated with the problem of how would a material that normally adopts 

a translationally periodic structure organize when constrained with quasiperiodic 

boundary conditions. Furthermore, we had hoped that using 2D quasicrystals with 

different rotational symmetries, particularly 12-fold, may allow for interesting 

consequences given the 6mm symmetry of a BCP thin film with a monolayer spherical 

microstructure. 
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Figure 6-22 - Plan view SEM images of representative 2D quasiperiodic array of posts used as templates 
for BCP self-assembly studies (a) 2D dodecagonal QC; (b) 2D octagonal QC. 

Typical quasiperiodic structures that were used for BCP self-assembly studies are 

shown in Figure 6-22, and were fabricated by exposing a positive photoresist with large 

enough doses to produce small diameter posts. These are fbrther transferred into the 

1.5micron thick thermal oxide layer of a silicon wafer. The height of the posts is chosen 

to correspond to a BCP sphere monolayer thickness (see Figure 6-21). In our studies, we 

have used a polystyrene-b-polyferrocenyldimethylsilane (PFS, 47: 1 5 kglmol), whose 

self-assembly and processing were extensively investigated at MIT [37-391. BCP films 

with thickness of 55nm were deposited by spin coating from 1.5wt% toluene solutions 

onto quasiperiodic substrates comprised of 55nm tall posts, such as those shown in Figure 

6-22. These films were annealed for at least 72hrs at 140°C under vacuum, and then O2 

plasma treated for 45sec (6mTorr Oz, 90W) to selectively remove the PS block and 

provide good contrast in SEM. 

Unfortunately, our investigations of this material system have only produced 

typical hexagonal packings of the BCP spheres. Given the small sphere size of the BCP 

(-28nm diameter spheres, -45nm center to center distance), it is conceivable that the 
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quasiperiodic features that are just too far apart to properly interact with the BCP 

nanostructure (i.e. the posts on the quasiperiodic lattice are decoupled). 
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Figure 6-23 - SEM images of a monolayer of PS-PFS spherical morphology BCP, after O2 RIE, self- 
assembled on 2D quasiperiodic topographically patterned substrates with (a) 12-fold rotationally symmetric 
QC and (b) 8-fold rotationally symmetric QC. 
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This project, however, is still work in progress. Since scaling down the 2D 

quasiperiodic structures in ME-IL is limited by the 325111x1 HeCd laser wavelength 

employed by the Lloyd's minor interferometer, a higher molecular weight block 

copolymer would offer a solution to producing samples where the posts and the polymer 

spheres are comparable in size. In this case, only a few spheres can fit in the spaces 

between the quasiperiodically distributed posts, maximizing the effect of the template on 

the self-assembling BCP. 

An unexpected and very fortunate result of this study has been the realization that 

properly configured 2D mays of posts offer a logical path towards guiding the self- 

assembly of spherical and standing-up cylindrical morphology BCPs in thin films over 

entire wafers, when the 2D post may is formed by interference lithography. Given the 

early stage of this project, and the IP issues, it will not be further pursued in the thesis. 

6.5. Conclusions 

Figure 6 2 4  - MlTr Na~)ruler Project: 12" wafer patterned with 400x1111 period line gratings 
(http:/heb.mit.eddnaoso~~d2004/t~tnotl~ler-0128.html) 
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Interference lithography was explored in this chapter as a highly versatile tool for 

the fabrication of 2D quasiperiodic structures. We have first considered a number of 

theoretical issues associated with understanding the quasicrystalline structures that can be 

produced by interfering multiple beams or by multiple exposures with substrate rotations. 

It was shown that these two situations are not equivalent, and that the interference of 

multiple beams leads to a superposition of multiple and incommensurate quasiperiodic 

lattices, while maintaining the same overall rotational symmetry of the structure. The 

generation of 2D quasiperiodicity in IL was explained on the basis of incommensuration 

of translationally periodic intensity variations produced in the interference of light. A 

class of 2D quasiperiodic structures produced from a minimal number of beams or 

exposures was explored, and shown to require at least 3 beams or 3 exposures. 

Experimentally, we have focused on interference lithography with multiple 

exposures and rotations of the sample and showed that this technique represents a very 

powerful tool for the fabrication of 2D quasiperiodic structures. We were able to 

fabricate 2D quasicrystals with 8-, lo-, and 12-fold rotational symmetries having feature 

sizes as small as 100nm, with overall sample sizes of a few square centimeters. For the 

first time we show that IL can be used to fabricate 2D photonic quasicrystals with 

features sizes and quality comparable to those obtained from electron beam lithography. 

Building on the successful fabrication of 2D quasiperiodic structures, we pursued 

novel 3D sub-micron structured quasiperiodic materials fabricated by coherent diffraction 

lithography (capturing the near field intensity pattern produced by a transparent 2D 

grating into a thick resist layer). This class of materials is currently of high interest, since 

the remarkable properties of quasicrystals are yet to be measured in 3D due the lack of 
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available materials - fabricating 3D quasiperiodic materials with sub-micron features has 

not yet been reported in the literature. While our preliminary results still require 

optimization, they prove the feasibility of this experimental approach. 

Much remains to be done in the area of quasicrystals. A particularly important 

need exists in understanding the symmetries of the structures that are available 

experimentally. Many types of quasicrystals can be fabricated, and theoretical guidance 

is needed for focusing the experimental efforts at this early stage of the field. Great 

opportunities must lie ahead, and introducing experimental methods for the fabrication of 

a variety of quasicrystals is a first step forward taken in this thesis. 
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Chapter 7. 

Thesis conclusions and future research directions 

In this last section, I will outline what I consider to be the main accomplishments 

presented in this thesis, and finish with a list of future directions of research that should 

be fiu-ther explored. 

7.1. Overview of research accomplishments 

The central theme of this work has been to study structured materials where 

certain symmetries are absent, with a particular focus on the case when the size of the 

structural features is comparable to the wavelength of light. 

The first part of the thesis examined a class of 1D periodic photonic crystals 

where both space-inversion and time-reversal symmetries are broken. Space inversion 

symmetry is absent in non-centrosymmetric photonic crystal structures such as those 

obtained by either using centrosymmetric materials in a noncentrosymmetric arrangement 

(e.g. helical, or spiral structures), or by using noncentrosymmetric materials (i.e. optically 

active materials) in the photonic crystal unit cell. Similarly, time-reversal symmetry is 

broken by including magneto-optically active material components in the photonic 

crystal. As described in Chapter 3, a number of remarkable properties were found for the 

first time for this class of photonic crystals as a direct consequence of the absence of the 
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two inversion symmetries, properties that are independent of the particular choice of 

materials, magnitude of their optical constants, etc.. These consequences include 

formation of indirect photonic band gaps, propagating eigenmodes with negative group 

velocity (backward waves), negative refraction at the air-photonic crystal interface, 

unidirectional superprism effects, and bending the path of light by perpendicular 

magnetic fields (photonic Hall effect). 

While seemingly a very abstract theoretical problem, by focusing our analysis 

only on those properties that arise from symmetry constraints, our results impact a wide 

range of practical problems. The remarkable set of properties identified for the 

nonreciprocal photonic crystal system introduced in Chapter 3 are general, and should 

thus be present in other material systems as well. A notable example, due to the 

electronic-photonic crystal analogy, is the propagation of spin-polarized electrons in 

appropriate semiconductors and semiconductor heterostructures. Electronic systems that 

display both noncentrosymmetry and magnetization include semiconductors with zinc- 

blende crystal structure (e.g. gallium arsenide, etc.) doped with magnetic atoms 

(manganese most often), or chiral carbon nanotubes with axial magnetic fields. This 

class of semiconductors is currently under active research, and results such as those 

presented in Chapter 4 on tunneling time dynamics offer new perspectives on the 

underlying physics in these materials. 

The results in Chapter 4 may represent the most valuable contribution of this 

thesis - we show that the nonpropagating modes inside an indirect gap formed at the 

anticrossing of modes with different group velocities are fundamentally different than the 

usually assumed evanescent modes. Our analysis, for a noncentrosymmetric, axially 
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magnetized barrier material, reveals that these gap modes have complex wave vectors 

that, in addition to the usual imaginary components, also have non-zero real components 

that change with frequency. This finding is significant because typical quantum 

mechanical treatments of spin polarized particle tunneling in such barrier materials 

assume a purely imaginary (evanescent) wave vector (e.g. Ref. 14 in Chapter 4). One 

particular consequence of the nature of these gap modes was described in the context of 

the tunneling time of a spin-polarized particle, which was found to not obey the classical 

Hartrnan effect. The tunneling time becomes dependent on barrier length, with a group 

delay that changes sign according to the spin of the tunneling particle. 

The remaining part of the thesis focuses on the study of 2D and 3D sub-micron 

structured quasiperiodic materials, where the symmetry being broken by design is 

translational symmetry enabling locally higher point group symmetries. 

Chapter 5 presents the results of a theoretical analysis of the opportunities offered 

by quasiperiodicity in the design of photonic band gap materials, motivated by the high 

rotational symmetries available in quasicrystals. Given the paucity of literature on this 

problem, particularly the lack of systematic studies that could guide research in this area, 

we undertook an ambitious task - to understand the effects of symmetry and of 2D 

quasicrystal type on the formation of photonic band gaps. Two quasicrystal types were 

investigated, those obtained from interference lithography (IL-PQC) and those obtained 

by placing dielectric rods on mathematical quasiperiodic lattices (PROJ-PQC). For each 

quasicrystal type, three point group symmetries were investigated: 8mm, l o r n ,  and 

12mm. Given the computational resource restrictions imposed by the need to simulate 

large area quasicrystals, we decided to examine only TM photonic band gaps by 
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calculating the local density of states at a center of high rotational symmetry as a function 

of dielectric contrast - both low and high contrasts were investigated of 4: 1, 

6: 1, 8: 1, and 10: 1). To establish a baseline, we first studied the effect of point group 

symmetry in 2D photonic crystals (4mm and 6mm: square and hexagonal lattices), for 

which it was found that a higher symmetry does indeed lead to wider 2D complete TM 

band gaps, but that this effect becomes weaker as the refractive index contrast increases. 

In the case of the quasicrystals, the results of this preliminary study did not allow us to 

extract a similar, clear correlation between point group symmetry and the width of the 

complete 2D TM photonic band gaps, as determined from LDOS curves at the center of 

high point group symmetry. In the case of the 2D IL-PQC, while both octagonal and 

dodecagonal IL-PQC displayed a well defined lowest order PBG gap, the decagonal 

symmetry was found to display many narrower gaps in the same frequency range. At 

lower fill fractions (f< 0.10) the octagonal IL-PQC displayed slightly wider gap than the 

dodecagonal PQC, with the situation reversed at higher fill fractions (f > 0.20). 

Furthermore, when comparing IL-PQC with PROJ-PQC, it was found that both 8mm and 

lOmm PROJ-PQC displayed wider gaps than the corresponding IL-PQC, with the 

situation reversed for the case of 12mm symmetry. However, all these differences are 

small enough (5-10%) to not allow us to draw definitive conclusions until a later time 

when data for a total DOS will be obtained by averaging the LDOS over multiple 

locations in the PQC structures. 

Our studies of quasicrystals continued in Chapter 6, where interference 

lithography methods for fabricating 2D quasicrystals are quantitatively analyzed and 

experimentally implemented. We first considered a number of theoretical issues 
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associated with understanding the physical quasicrystalline structures that can be 

produced by interfering multiple beams or by multiple exposures with substrate rotations. 

It was shown that these two situations are not equivalent, and that the interference of 

multiple beams leads to a superposition of multiple and incommensurate quasiperiodic 

lattices, while maintaining the same overall rotational symmetry as also obtained from 

multiple exposures. A class of 2D quasiperiodic structures produced from a minimal 

number of beams or exposures was explored, and shown to require at least 3 beams or 3 

exposures. Experimentally, we used interference lithography with multiple exposures 

and rotations of the sample substrate to fabricate 2D quasicrystals with 8-, lo-, and 12- 

fold rotational symmetries having feature sizes as small as lOOnm and overall sample 

sizes of a few square centimeters. For the first time we show that IL can be used to 

fabricate 2D photonic quasicrystals with features sizes and quality comparable to those 

obtained from electron beam lithography. 

Building on the successful fabrication of 2D quasiperiodic structures, we pursued 

the fabrication of novel 3D sub-micron structured quasiperiodic materials by coherent 

diffraction lithography (recording the near field intensity pattern produced by a 

transparent 2D grating into a thick resist layer). This class of materials is currently of 

high interest, since the remarkable optical properties of quasicrystals are yet to be 

explored in 3D due the lack of available materials - fabricating 3D quasiperiodic 

materials with sub-micron features has not yet been reported in the literature. While our 

preliminary results still require optimization, they prove the feasibility of this 

experimental approach. Another proof-of-concept experimental study that was attempted 

and reported in Section 6.4.2., was related to a very interesting scientific problem related 
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to the effect of a quasiperiodic topographically patterned template (obtained fiom 2D IL- 

PQC) guiding the self-assembly of a block copolymer (BCP) in a thin film, when the 

BCP normally produces a sphere monolayer morphology (2D hexagonally packing, 6mm 

point group symmetry). In particular, we have investigated the effect of the point group 

symmetry of the IL-PQC, choosing 8mm and 12mrn in particular. Although the 

experimentally available diblock copolymer system, polystyrene-b- 

pol~errocenyldimethylsilane (PS-PFS), had a molecular weight that led to inconclusive 

conclusions (the IL laser constrained, smallest achievable average distance between the 

topographical features of the IL-PQC was too large compared to the BCP period), this 

study has put us in an unique position to realize that templates with properly designed 2D 

mays of topographical features could potentially become key for guiding the self- 

assembly of BCP over ultra large areas. Controlling the alignment of the BCP 

microdomains further enables use l l  applications of the BCP material in 

nanolithography. This work is in progress, and due to ongoing IP issues, will not be 

explored fiuther in the thesis. 

7.2. Future research directions 

The research presented in this thesis has brought us to realize that, while we were 

able to shed light on a number of important problems, much remains to be done in order 

to completely explore all the implications of our findings. 

In the areas explored by Chapters 3 and 4, we believe that more remains to be 

learned about the propagation of spin-polarized electrons in semiconductor 

heterostructures by exploiting the analogies with the photonic crystal case. While we 
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have only suggested this analogy, we have not rigorously explored the electronic case. 

Recent studies of analogous electronic systems [I] indicate that some of our predictions 

are correct (e.g. negative group delay predicted for spin polarized electrons tunneling in 

magnetized noncentrosymmetric semiconductor heterostructures), and thus that all the 

other symmetry-related observations presented in Chapters 4 and 5 should also apply in 

the case of electrons propagating in appropriate semiconductors (e.g. nonreciprocal effect 

of the magnetic field on the velocity of propagation of electrons, particularly interesting 

for carbon nanotubes, where an axial magnetic field should allow tuning the conductivity 

in a forward and backward direction). 

In the area of quasicrystals, future opportunities must likely exist for 3D 

bicontinuous quasicrystalline networks. These opportunities include pursuing photonic 

band gap properties (still a big computational challenge), and applications that rely on the 

improved mechanical properties of these materials (in the absence of translational 

periodicity, there are no crystal planes along which fractures can propagate, etc.). We 

have showed that coherent diffraction lithography is a very economical method for 

producing large area, 3D structured quasiperiodic materials. However, the optimization 

of this method is not trivial, both experimentally and theoretically (i.e. prediction of the 

near field intensity pattern for a given quasiperiodic transparent mask). 

Another promising direction in the area of 3D structures with quasiperiodicity 

involves creating a hybrid 3D material composed of quasiperiodic 2D slabs. These slabs 

would be stacked to form a 3D structure with a refractive index changing either 

periodically or quasiperiodically along the direction normal to the layers. Such a 

structure would be readily accessible experimentally, because very capable planar 
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processing solutions can be borrowed from the semiconductor industry toolbox. This 

approach has been previously used to construct 3D photonic crystals, based on 

fabrication of 2D photonic crystal slabs and controlling the alignment between individual 

layers [2]. Due to the absence of translational periodicity, an inviting speculation is that 

using 2D quasicrystal slabs in this stacking approach may enable 3D photonic band gaps 

that are insensitive to the alignment of individual quasicrystalline layers. This would 

clearly greatly reduce the costs associated with fabricating the 3D structures, since the 

typical alignment on the lOOnm scale or less used in 3D layered photonic crystals would 

not be necessary anymore. 

Lastly, a problem that was only briefly touched upon in the last section of Chapter 

6, was that related to studying basic self-assembly of block copolymers (BCP) that adopt 

translationally periodic structures (e.g. 2D hexagonally packed spheres or standing-up 

cylinders), when constrained in thin films on quasiperiodic topographically 2D patterned 

templates. Future studies along these lines could offer more insight into how atomic 

quasicrystals form, a problem still poorly understood today in material science. It would 

be of interest to explore higher molecular weight BCPs, such that the size of the 

topographical features is comparable to the size of the BCP in order to increase the effect 

of the template on the self-assembling system. As alluded to in the previous section, 

other 2D structured templates offer similarly interesting opportunities for controlling 

BCP self-assembly, with applications in nanofabrication. 
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