Capsizing of Ships: Static and Dynamic Analysis of Wind Effect and Cost implications

by
Angelos Antonopoulos
B.S., Marine Engineering, Hellenic Naval Academy, 1998
SUBMITTED TO THE DEPARTMENT OF OCEAN ENGINEERING IN PARTIALFULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF

NAVAL ENGINEER
 and
 MASTER OF SCIENCE IN OCEAN SYSTEMS MANAGEMENT
 at the
 MASSACHUSETTS INSTITUTE OF TECHNOLOGY

JUNE 2006
© 2006 Massachusetts Institute of Technology. All rights reserved
The author hereby grants to MIT permission to reproduce and to distribute publicly paper and electronic copies of this thesis document in whole or in part in any medium now known or hereafter created

1

Signature of Author: \qquad
Mechanical Engineering Department, Center for Ocean Engineering May, 122006
Certified by:

 Thesis Supervisor
Certified by: \qquad Patrick J. Keenan Professor, of the Practice of Naval Construction and Engineering Thesis Supervisor
Certified by: \qquad \ldots Henry S. Marcus Professor of Marine Systems Thesis Supervisor
Accepted by:
 Michael Triantafyllou
Professor of Mechanical and Ocean Engineering

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

JUL 142006

Capsizing of Ships: Static and Dynamic Analysis of Wind Effect and Cost implications

By
Angelos Antonopoulos
Submitted to the Department of Ocean Engineering on May 12, 2006
in Partial Fulfillment of the Requirements for the Degrees of
Naval Engineer in Naval Architecture and Marine Engineering
And
Master of Science in Ocean Systems Management

Abstract

Capsizing of small vessels, such as commercial fishing vessels, is a frequent event. This phenomenon is generally associated with the combined action of storm seas, inadequate design parameter regulations, and dangerous operational procedures. In contrast, the capsizing of large ships is rare, but does occur. For these large vessels, more strict regulations exist to ensure safe operational procedures. While the storminess of the sea cannot be controlled, the navigation procedure can. Large offshore ships tend to navigate in a path to avoid forecasted severe weather, and in cases of stormy seas they temporarily operate at safe speeds and in the direction parallel to the waves.

The work presented in this thesis investigates the effect of the wind in rolling and finally capsizing a ship. For the purposes of mechanical analysis, realistic hull forms are used and fundamental issues associated with moments and forces imposed by the wind, are applied. The platforms are examined for several wind speeds that strike the ship at different angles. Both static and dynamic cases were examined. Under the assumption of general conditions, the angles of heeling in each case and the wind speeds that caused the ship to capsize are calculated.

Furthermore, a cost analysis associated with the total loss of the ship due to capsize is also reviewed. An existing worldwide database of vessel total losses, dating from 1960 to present, is used to calculate the costs per ship capsize. Some simplifications are inevitably used, because the cost implications of total ship losses have both direct and indirect portions that are difficult to quantify. In addition, the actual numbers that result from such a catastrophe are not generally available to the public and are not found in the open literature. Given these limitations, a preliminary analysis of the capsize-associated costs is performed for several types of commercial vessels.

Thesis Supervisor: Jerome H. Milgram
Title: Professor of Mechanical and Ocean Engineering

Acknowledgments

First, I would like to thank my thesis advisors, Professors Jerome H. Milgram, Patrick J. Keenan and Henry S. Marcus for their valuable support and guidance throughout my studies. I would also like to acknowledge all the professors at the Ocean Engineering Department that contributed to my education. Finally, I would like to express my gratitude to the Hellenic Navy for financially supporting my academic pursuit.

Finally I would like to thank my friend, Georgios Constantinidis and my co-partner Marianne Holt-Phoenix whose reviewing and commenting was very helpful to me.

This work is dedicated to the memory of my father, Antonios, whose efforts and principles guided me through all my life. Also, it is dedicated to my mother, Eleni, and my brother, Haris, whose existence fill up my life

Table of Contents

ABSTRACT 3
ACKNOWLEDGMENTS 4
TABLE OF CONTENTS 5
LIST OF FIGURES 7
LIST OF TABLES 8
CHAPTER 1: INTRODUCTION 9
1.1. Problem Statement 9
1.2. Thesis Outline 9
CHAPTER 2: THEORETICAL BACKGROUND 11
2.1. MECHANISMS OF CAPSIZING 11
2.2. Stability Curves Inadequacy 12
2.3. Floating Body Principles and Righting arm 12
2.4. Heeling arms 14
2.5. Statical Stability Curves 16
2.5.1. Definition and Characteristic Points 16
2.5.2. Dependency on the hull characteristics 17
CHAPTER 3: WIND EFFECT ON HULL 19
3.1. Hull Selection 19
3.2. Calculations Set up 21
3.3. Calculations 22
3.3.1. Projected Area Calculation 22
3.3.2. Calculation of the force and the moment applied by the wind 23
3.3.3. Ship Righting Moment Calculation 26
3.3.3.1. Evaluation of roll angle in static case 26
3.3.3.2. Evaluation of roll angle in dynamic case 26
CHAPTER 4: SIMULATION RESULTS 31
4.1. RESULTS WITH ZERO INITIAL CONDITIONS 31
4.1.1. Tumblehome Hull Form 32
4.1.2. Wall Sided Hull Form 34
4.1.3. Flare-Sided Hull Form 36
4.1.4. Discussion of the results 38
4.1.5. Validation of the code 40
4.1.5.1. Analytical Solution 40
4.1.5.2. Numerical Solution 43
4.2. RESULTS WHEN INITIAL CONDITIONS ARE NON ZERO 45
4.2.1. Tumblehome Hull Form 46
4.2.2. Wall Sided Hull Form 47
4.2.3. Flare-Sided Hull Form 48
CHAPTER 5: FUTURE STEPS 49
5.1. UNIFORM WIND 49
5.2. C_{D} CALCULATION 50
5.2.1. Model Set-Up 51
5.2.2. Wind Characteristics 51
5.2.3. Test Procedure 52
5.3. RISING OF WATERLINE AS THE SHIP HEELS 52
5.4. $\quad \mathrm{A}_{44} \mathrm{~B}_{44}$ EXACT CALCULATIONS 55
5.5. FORCES AND MOMENTS APPLIED BY THE WAVES 55
CHAPTER 6: COSTS ASSOCIATED WITH CAPSIZING 57
6.1. CAUSES OF CAPSIZING 57
6.2. IDENTIFICATION OF THE COSTS 58
6.2.1. Costs Applied to the Shipping Industry. 59
6.2.1.1. Seafarers and Passengers 59
6.2.1.2. Vessel Owners 59
6.2.1.3. Charterers / Shippers / Cargo Owners 60
6.2.1.4. Classification Societies 60
6.2.1.5. Shipbrokers 61
6.2.1.6. P\&I Clubs 61
6.2.1.7. Marine Underwriters 61
6.2.1.8. Banks and Financial Institutions 62
6.2.2. Costs outside shipping industry 63
6.3. VALUES OF SEVERAL DAMAGES 63
6.3.1. Value of Life 63
6.3.2. Value of Damage to Property. 64
6.3.3. Value of Environmental Damage. 66
6.3.4. Value of Cargo. 66
6.4. CALCULATIONS 68
6.5. ASSUMPTIONS \& FUTURE STEPS 70
6.6. CONCLUSIONS 71
REFERENCES 73
APPENDIX I: DATA USED FOR THE CONSTRUCTION OF RIGHTING ARM CURVES.. 75
APPENDIX II: CALCULATION OF THE INTEGRALS FOR ADDED MASS MOMENT OF INERTIA, A44 AND DAMPING COEFFICIENT, B44 85
APPENDIX III: MATHCAD © CALCULATIONS. 89
APPENDIX IV: MATLAB© CODE 105
APPENDIX V: TABLES OF ROLL ANGLES FOR ALL CASES WHEN INITIAL CONDITIONS ARE ZERO 113
APPENDIX VI: TABLES AND FIGURES OF ROLL ANGLES FOR ALL CASES WHEN INITIAL CONDITIONS ARE NON-ZERO 119
APPENDIX VII: DATA FOR BULK-CARRIERS LOSSES 131
APPENDIX VIII: DATA FOR GENERAL CARGO SHIPS' LOSSES 137
APPENDIX IX: DATA FOR PASSENGERS SHIPS/ RORO/ CONTAINERSHIPS LOSS 161
APPENDIX X: DATA FOR TANKERS 165
APPENDIX XI: CALCULATION OF COSTS FOR SEVERAL TYPES OF SHIPS 171

List Of Figures

FIGURE 1: EQUILIBRIUM OF FLOATING BODY 13
Figure 2: AlTERNATE CONDITIONS OF THE EQUILIBRIUM OF A FLOATING BODY 14
Figure 3: Effect of a beam wind 15
Figure 4: Characteristic points on a ship's curve of stability 16
FIGURE 5: DEPENDENCE OF THE SHIP STABILITY CURVE ON THE HULL FORM AND SHIP MAIN DIMENSIONS 17
FIGURE 6: SCHEMATICS OF THE HULL FORMS EXAMINED 19
Figure 7: RIGHTING ARM CURVES FOR THE LARGE INITIAL METACENTRIC HEIGHT (GM=2.0M) 20
Figure 8: Figure of DD(X) FOR THE CALCULATION OF PROJECTED TO THE WIND area 22
Figure 9: ANGLE OF ATTACK OF THE WIND WITH RESPECT TO THE SHIP 24
Figure 10: MOMENT APPLIED BY THE WIND ON A HULL 25
FIGURE 11: TWO DIMENSIONAL STRIP THEORY FOR THE CALCULATION OF A A_{44}, B_{44} 28
Figure 12: Beam of the waterplane area as a function of ship length 29
FIGURE 13: EQUILIBRIUM ROLL ANGLES FOR STATIC CASE (TUMBLEHOME GM=1.5M) 32
FIGURE 14: MAXIMUM ROLL ANGLES FOR DYNAMIC CASE (TUMBLEHOME GM=1.5m) 32
FIGURE 15: EQUiLIBRIUM ROLL ANGLES FOR STATIC CASE (TUMBLEHOME GM=2.0M) 33
FIGURE 16: MAXIMUM ROLL ANGLES FOR DYNAMIC CASE (TUMBLEHOME GM=2.0M) 33
Figure 17: EQUilibrium roll angles For static case (Wall Sided GM=1.5m) 34
Figure 18: MAXIMUM roll angles for dynamic case (Wall Sided GM=1.5m) 34
Figure 19: EQUilibrium roll angles For static case (Wall Sided GM=2.0m) 35
Figure 20: MAXIMUM ROLL ANGLES FOR DYNAMIC CASE (WALL Sided GM=2.0M) 35
Figure 21: EQUilibrium roll angles for static case (Flare Sided GM=1.5m) 36
Figure 22: MAXIMUM ROLL ANGLES FOR DYNAMIC CASE (Flare Sided GM=1.5m) 36
Figure 23: EQuilibrium roll angles For static case (Flare Sided GM=2.0m) 37
Figure 24: MAXIMUM ROLL ANGLES FOR DYNAMIC CASE (Flare Sided GM=2.0M) 37
FIGURE 25: DYNAMIC CASE MAXIMUM ROLL ANGLES FOR ALL HULL FORMS AND GMS AT $\Theta=90^{\circ}$ 39
Figure 26: Graphical representation of analytical solution 43
Figure 27: Graphical representation of the numerical solution 44
FIGURE 28: COMPARISON FOR DIFFERENT INITIAL CONDITIONS (TUMBLEHOME GM=1.5M) 46
Figure 29: COMPARISON FOR DIFFERENT INITIAL CONDITIONS (TUMBLEHOME GM=2.0M) 46
FIGURE 30: COMPARISON FOR DIFFERENT INITIAL CONDITIONS (WALL SIDED GM=1.5M) 47
Figure 31: Comparison for different initial conditions (Wall Sided GM=2.0m) 47
Figure 32: COMPARISON FOR DIFFERENT INITIAL CONDITIONS (FLARE SIDED GM=1.5M) 48
Figure 33: Comparison For different initial conditions (Flare Sided GM=2.0m) 48
Figure 34 : Wind speeds (KTS) at Various heights (m) above WL (Nominal speed 100KTS at 10m) 49
FIGURE 35: ARRANGEMENT FOR MODEL TESTS IN A WIND TUNNEL 51
Figure 36: Projected to The wind area as the ship heels 52
Figure 37: Effect of the rising of the waterline to the rolling of the ship 54
Figure 38: Fault tree for capsize 58
Figure 39: Deadweight percentage of totally lost vessels per ship category 69
Figure 40: Killed/Missing people percentage due to ship total loss per ship category 69
Figure 41: MaXimum Roll Angles For Dynamic Case (Tumblehome GM=1.5m) 124
Figure 42: Maximum Roll Angles For Dynamic Case (Tumblehome GM=2.0m) 124
Figure 43: Maximum Roll Angles For Dynamic Case (Wall Sided GM=1.5m) 125
Figure 44: Maximum Roll Angles For Dynamic Case (Wall Sided GM=2.0m) 125
Figure 45: Maximum Roll Angles For Dynamic Case (Flare Sided GM=1.5m) 126
Figure 46: Maximum Roll Angles For Dynamic Case (Flare Sided GM=2.0m) 126
Figure 47: Maximum Roll Angles For Dynamic Case (Tumblehome GM=1.5m) 127
Figure 48: Maximum Roll Angles For Dynamic Case (Tumblehome GM=2.0m) 127
Figure 49: Maximum Roll Angles For Dynamic Case (Wall Sided GM=1.5m) 128
Figure 50: Maximum Roll Angles For Dynamic Case (Wall Sided GM=2.0M) 128
Figure 51: Maximum Roll Angles For Dynamic Case (Flare Sided GM=1.5m) 129
Figure 52: Maximum Roll Angles For Dynamic Case (Flare Sided GM=2.0m) 129

List of Tables

TABLE 1: DYNAMIC CASE ROLL ANGLES AS A RESULT OF SEVERAL WIND SPEEDS AT $\Theta=90^{\circ}$ 38
TABLE 2: STATIC CASE ROLL ANGLES AS A RESULT OF SEVERAL WIND SPEEDS AT $\Theta=90^{\circ}$ 38
TABLE 3: TOTAL LOSSES OF SHIPS (1989-1999) 57
TABLE 4: DIRECT COSTS OF SHIP TOTAL LOSS FOR RESPECTIVE PARTIES 62
TABLE 5: CALCULATION OF COST PER FATALITY USING DIFFERENT ESTIMATIONS 64
Table 6: Total outlays in 2006 US \$ for bulk Carriers (Ro-Ro, Passenger Ships, Containerships INCL.) 65
TABLE 7 : TOTAL OUTLAYS IN 2006 US \$ FOR TANKERS (LNG, LPG INCL.) 65
TABLE 8: MAJOR COMMODITIES CARRIED BULK CARRIERS, CONTAINER AND GENERAL CARGO SHIPS 67
TABLE 9: MAJOR COMMODITIES CARRIED BY TANKERS AND LNGS 68
TABLE 10: CUMULATIVE DATA FOR SHIP ACCIDENTS PER TYPE FOR THE PERIOD 1960-2005 68
TABLE 11: AvERAGE COSTS PER ACCIDENT FOR EACH CATEGORY 70

Chapter 1: Introduction
 1.1. Problem Statement

Traveling at sea can result in casualties that lead to loss of life and money. Furthermore, in many occasions, maritime accidents can lead to serious environmental pollution. Fire, explosion, collision, grounding, and/or machinery breakdown are the main causes of ship capsize and eventual sinkage, primarily due to loss of stability through reduction of reserve buoyancy.

Human factor is considered the most important cause of casualties at sea. This is usually encountered in the form of underestimation of several environmental conditions and ignorance of safety rules. Nobody can however ignore the significant role of the environmental conditions that a ship will face. Fog for example is an important factor that lowers the visibility and in many cases led to grounding or collision. Despite the many advances made in the area of radar and other electronic navigational aids, collisions and groundings continue to occur every year. It is hoped, however, that technological advances will in the near future reduce such occurrences.

Among the environmental factors that can cause capsizing of a ship or a boat, extreme weather conditions are dominant. In particular, the combined effect of wind and waves can lead to an excess roll angle, water on deck, or motion of the cargo. This vicious circle of chain events can eventually drive the ship to capsize. Unfortunately, the capsize mechanism has not yet be fully understood due to the underlying complex dynamics and parameters. Despite today's advanced technology, it is not yet feasible to design and construct capsizing-resistant ships. The reason lies in the fact that it is not possible to model and simulate nature mathematically with all its aspects. Thus, the random, unpredictable, and sometimes chaotic character of ocean environment is responsible for capsizes and loss of life.

Studying the causes of capsizing in more detail, understanding the nature of waves and winds blowing over them, and finding the forces and moments that these conditions apply on the ship will contribute to a better understanding of capsizing phenomena. It is the intention of this thesis to contribute to the knowledge that can lead to the design of safer ships and the critical examination of existing vessels against capsizing.

1.2. Thesis Out/ine

The aim of this document is to predict the roll angle that ships of a given hull form will suffer when subjected to winds of different velocities and angles of attack. In addition, this document will study the human reliability factor when decisions have to be made in order to avoid the capsizing danger when a heavy weather condition has been announced. Special attention is given to:

- theoretical background on which wind effects are quantified
- description of most important elements in each step of the prediction procedure
- major assumptions made and the limits of applicability
- sensitivity of ship performance on the related parameters

This thesis is composed of six Chapters. The first Chapter deals with the presentation of the topic. Chapter 2 describes the theoretical background required to further investigate capsizing in ships. In particular it details the mechanisms of capsizing, the ship stability analysis, the generation of statical stability curves and how they are influenced by ship geometry (hull form).

Chapter 3 deals with the wind effect on hull. The three selected hull forms are tested under the influence of winds. The mathematical equations describing this phenomenon are developed and the theoretical predictions are presented. The effect of the wind striking the ship with different velocities and angles of attack during static and dynamic processes is investigated. The roll angle is calculated in all cases and conditions under which capsizing occurs are found.

Chapter 4 details the results obtained by the analytical formulation developed in Chapter 3. In order to properly solve the dynamic problem, initial boundary conditions are imposed. Apart from the case that the initial conditions are zero the chapter also includes calculations for the cases where non-zero initial conditions are experienced.

Chapter 5 summarizes the main assumptions made in this thesis and suggests potential routes for future refinements and increased accuracy.

Chapter 6 discusses the economic aspects of capsizing for several types of ships.

Chapter 2: Theoretical Background

The purpose of this chapter is to give to the reader a quick general idea of some of the theoretical principles and background needed for the evaluation procedure that follows. All these theoretical aspects can be found in more details in any good naval architecture text.

2.1. Mechanisms of capsizing

The dominant cause of small ship capsizing is the combined action of breaking waves with excess magnitude winds blowing over them. Historical evidence suggests that small boats are more vulnerable to capsize due to breaking waves than large boats. In fact, capsizing of a vessel over 100 feet is very rare.

There are several mechanisms that can lead to capsize, some of which will be detailed below. Most of these mechanisms are essentially non-linear in nature and they cannot be investigated by a simple frequency-domain approach. One mechanism that can cause capsize involves static stability characteristics. In following or quartering seas, the waveencountered frequencies are much lower than in head seas or seas on the bow, which means that the wave profile is almost stationary relative to the ship. As a consequence, the ship may become statically unstable in roll, relative to the waterline defined by the wave profile. This happens because the wave surface is not plane and neither is the instantaneous load waterline. The metacentric radius BM_{T} which is derived for this modified waterline may in fact differ from that computed for the still waterline. The metacentric height, GM_{T}, is very sensitive to the metacentric radius and as a consequence significant variations in GM_{T} can occur with frequencies equal to the encountered frequency. This parametric change of GM_{T} can lead to roll instabilities, with roll motions increasing in time. This effect is amplified for ships with low initial stability.

A different mechanism which can cause a ship to capsize, is a phenomenon called broaching. As a term, broaching, describes the situation in which a ship veers broadside to the wind and waves. This can be caused when the frequency of the encounter between the ship and the waves is small. The result is an altered course relative to the waves. This situation can lead to large amplitude of the unrestored motions of sway and yaw, which result in serious interactions with the steering and large resonant roll angles. In cases of extreme high waves and excess magnitude of winds, where the water particle velocities become comparable to the ship speed, the broaching mechanism may force the ship to yaw to an orientation parallel to the wave crest, which is extremely dangerous and may eventually lead to capsizing.

2.2. Stability Curves Inadequacy

In order to investigate the safety of the ship-stability one needs to study its static and dynamic response under the effect of moments applied to the ship by winds and waves (or any other reason than can cause a heeling to the ship). The conventional statical stability analysis of ships is well known and simply presented by the righting arms (RA) curve. Unfortunately, the existing stability standards do not demand rigorous analysis of wave and wind forces that, often, are the main causes of capsizing. Various characteristics of the RA curve, such as the initial metacentric height, GM, angle of vanishing stability, and area under the curve are directly dependent upon ship's hull form and weight distribution. This type of analysis should be extended a step further to include the effect of external disturbing forces by wind.

2.3. Floating Body Principles and Righting arm

To proceed to the wind effect analysis it is necessary to give a short introduction to the theoretical background of the ship stability. In particular, this section describes the importance of righting arms, the way that they are related to the angle of heel and their utilization for the following calculations.

It is known that a ship, as any afloat body, experiences the force of buoyancy equal to the weight of the displaced liquid. The resultant of that force is acting vertically upward through a point called the center of buoyancy (B), which is the center of gravity of the displaced liquid. The application of this principle to a ship makes it possible to evaluate the hydrostatic pressure acting on the hull and the appendages by determining the volume of the ship below the waterline and consequently its centroid. This volume, when converted to weight, is called displacement (Δ).

The behavior of a floating object is determined by the interaction of the forces of the weight and buoyancy. In the absence of any other forces, and in the case of positive stability the ship will settle until the force of buoyancy equals the weight and it will rotate until the two following condition is satisfied, as shown in Figure 1^{1} :
a. The centers of buoyancy B and gravity G are in a vertical line, and
b. Any slight rotation from this position from an initial waterline to another will cause the equal forces of weight and buoyancy to generate a restoring couple which tends to move the ship back to float on the initial waterline

[^0]

Figure 1: Equilibrium of floating body

For every stable object there is at least one position at which the above conditions are satisfied. Any deviation from that position would produce a moment tending to restore the body to the initial position. These moments are called righting moments. Depending on the vertical position of the center of gravity, G, either righting moments which oppose further inclination or upsetting moments which contribute to continued inclination and potential capsize.

Lowering the center of gravity will increase stability. This happens because when a righting arm exists, lowering the center of gravity increases the separation of the two forces and thus increases the righting moment. When a heeling moment exists, lowering the center of gravity would change the heeling moment to a righting one. All the above are schematically shown in Figure 2^{2}. To better understand the following figure, one needs to investigate how the righting arms change as the center of gravity is shifted along the y-axis.

[^1]

Figure 2: Alternate conditions of the equilibrium of a floating body

2.4. Heeling arms

In addition to weight and buoyancy, there are other forces that may act on the ship. These forces are, generally, called upsetting forces and their magnitude determines the magnitude of the moment that must be produced by the weight-buoyancy couple in order to prevent capsizing or excessive heel.

External upsetting forces that can cause a ship-inclination may be:

- Wave action,
- Wind,
- Collision,
- Grounding,
- Shifting of onboard weights
- Addition or removal of weight
- High-Speed Turns
- Strain on mooring lines
- Towline pulls of tugs
- Entrapped water on deck

In the case where upsetting forces are acting on the ship, the ship heels to an angle whose value produces a moment by the forces of weight and buoyancy to equalize the moment developed by the upsetting forces. When the ship is exposed to a beam wind, the wind pressure acts on the portion of the ship above the waterline, and the resistance of the water to the ship's lateral motion is acting in an opposite direction in a point below the waterline, as can be seen in Figure 3^{3}. As the ship heels from the vertical, the wind pressure, water pressure and their vertical separation remain approximately constant. The ship weight is unchanged and acts at a fixed point. Even though the magnitude of the buoyancy remains the same, the point through which it acts depends on the angle of heel. Subsequently, equilibrium will be reached when sufficient separation of the centers of gravity and buoyancy has been produced to cause balance between heeling and righting moments.

Figure 3: Effect of a beam wind
In any of the cases when upsetting forces are applied it is quite possible that under several circumstances, equilibrium would not be reached before the ship capsized. It is also possible that the equilibrium would not be reached until the angle of heel becomes so

[^2]large that water would be shipped through topside openings, and the weight of this water would contribute to capsizing which otherwise would not have occurred.

2.5. Statical Stabi/ity Curves 2.5.1. Definition and Characteristic Points

The statical stability curves are a plot of the righting arms or the righting moments of the ship against the angle of heel for a given condition of loading. For any ship, the shape of this curve will vary with the displacement, the vertical and transverse position of center of gravity, the trim and the effect of free liquids' surfaces. The area under the curve physically represents the potential energy that the ship possesses at corresponding heel angles. The standard plotting form of the righting arm curve is shown in Figure 4^{4}. In order to have a complete understanding of intact ship stability, it should be known not only how a righting arm curve is determined and used, but also why it is shaped as shown, and the significance of its typical features. The slope of the righting arm curve at zero is equal to the metacentric height of the ship. Up to about 5-10 degrees, the righting arm curve can be approximated by $\mathrm{GZ}=\mathrm{GMr} \cdot \sin (\phi)$, where φ is the angle of heel.

Figure 4: Characteristic points on a ship's curve of stability
The peak of the righting arm curve identifies two quantities that are important in evaluating the overall stability of a ship. These are the maximum righting arm and the angle of maximum stability. The importance of the maximum righting arm is that when multiplied by the ship's displacement it produces the maximum steady-state heeling moment that the ship can withstand without capsizing. Beyond the angle of maximum

[^3]stability, righting arms decrease, often more rapidly than they had increased up to that point. This rapid decrease, ultimately, leads to the point at which GZ becomes zero. The angle at which this occurs is the angle of vanishing stability. Any ship that inclines beyond this angle will capsize. In reality, capsize could occur at smaller angles due to the additive heeling impulses posed by dynamic conditions.

2.5.2. Dependency on the hull characteristics

The shape of the righting arm curve depends heavily on the ship's hull form, both under and above the design waterline. While initial stability (righting arms at small angles of heel) depends almost entirely on metacentric height, the overall shape of the stability curve is governed by hull form. Figure 5^{5} shows how changing hull form increases or decreases righting arm by altering the position and movement of the center of buoyancy.

Figure 5: Dependence of the ship stability curve on the hull form and ship main dimensions

- Beam. Of all the hull dimensions that can be varied by the designer, beam has the greatest influence on transverse stability. Metacentric radius (BM) is proportional to the ratio $\mathrm{B}^{2} / \mathrm{T}$. BM , and therefore KM will increase if beam is increased while draft is held constant. If freeboard is held constant while beam is increased, the

[^4]angle of deck edge immersion is decreased; righting arms at larger angles and the range of stability are reduced.

- Length. If length is increased proportionally to displacement, with beam and draft held constant, KB and BM are unchanged. In practice, increasing length usually causes an increase in KG , reducing initial stability. If length is increased at the expense of beam, righting arms are reduced over the full range of stability. If length is increased at the expense of draft, righting arms will be increased at small angles, but decreased at large angles.
- Freeboard. Increasing freeboard increases the angle of deck edge immersion, increasing righting arms at larger angles and extending the range of stability. If draft is held constant, increasing freeboard causes a rise in the center of gravity, mitigating the benefits of increased freeboard to some extent.
- Draft. Reduced draft proportional to reduced displacement increases initial righting arms and the angle of deck edge immersion but decreases righting arms at large angles.
- Displacement. If length, beam, and draft are held constant, displacement can be increased only by making the ship fuller. The filling out of the waterline will usually compensate for the increased volume of displacement, and BM, as a function of $\frac{I_{x x}}{V}$, will increase. The height of the center of gravity will also be decreased by filling out the ship's form below the waterline. These changes will enhance stability at all angles.
- Side and Bottom Profile. Extreme deadrise (fining the bilges) or tumblehome in the vicinity of the inclined waterline reduces the increase in waterplane area and outward shift of the center of buoyancy, resulting in a shallow stability curve. Ships with flaring sides develop large righting arms because of the rapid increase in waterplane area and large shift of the center of buoyancy as the ship is inclined. A round-bottomed ship with vertical sides beginning somewhat above the water line, such as a tug or icebreaker, will roll easily to small angles of inclination but develop strong righting moments at large angles.

Chapter 3: Wind Effect on Hull

This Chapter is devoted to the study of the wind effect on the heeling of a ship. To do so, we make use of the theoretical background described in Chapter 2. A code that calculates the roll angle that a ship experiences due to the moments applied from the wind which strikes a ship, is proposed. Particular emphasis is placed on tumblehome hulls due to the special interest expressed by several navies around the world to acquire and operate this type of ship. Tumblehome ships have the advantage of reduced electromagnetic signatures because the angled ship structure above the water line reflects the electromagnetic waves in a direction that makes the trace of the ship more difficult. However, a tumblehome ship will have decreased righting arms GZ, in the whole spectrum of the heeling angles and the angle of vanishing stability will also be lowered.

3.1. Hu77 Se7ection

For the analysis and evaluation process three different hull forms were selected. A flaresided, a wall-sided and a tumblehome. These types of hulls are schematically shown in Figure 6^{6}.

Figure 6: Schematics of the hull forms examined
These hulls were developed under the supervision of the Seakeeping Division of the NAVSEA Warfare Center Carderock Division and the name of the project is ONR. The RA curves for several values of initial metacentric height, GM_{T}, were constructed. GM_{T} limits for safe operations at sea, using Sarchin and Goldberg criteriaare shown below:

- Tumblehome: $\quad \mathrm{GM}_{\mathrm{T}}=2.01 \mathrm{~m}$

[^5]- Wall-Sided:
$\mathrm{GM}_{\mathrm{T}}=1.10 \mathrm{~m}$
- Flare-Sided:
$\mathrm{GM}_{\mathrm{T}}=0.19 \mathrm{~m}$

For these values of GM_{T} the righting arm curves versus the angle of heel were constructed by NAVSEA, and they are indicative of the superiority of the flare-sided ships. These curves are shown in Figure 7^{7}

Heel Angle (deg)

Figure 7: Righting arm curves for the large initial metacentric height (GM=2.0m)
While setting up the hulls to be examined, the following assumptions were made in order to make valid comparisons:

All of investigated hulls have the same principle characteristics L, B, T and the same displacement:
$\mathrm{L}=182.88 \mathrm{~m}$
$B=24.11 \mathrm{~m}$
$\mathrm{T}=8.413 \mathrm{~m}$
$\Delta=14264$ ton

[^6]- All of them have the same sail area. In other words, the heights of the ships' profiles above the waterline are assumed to be the same. This ensures that the forces applied by the wind and consequently the moments created are equal for all the types of the hull
- The local drag coefficient was chosen to be one. ($\mathrm{C}_{\mathrm{D}}=1$)
- The velocity profile was uniform throughout the superstructure.
- There are no other excitation forces applied to the hull of the ship apart from the wind force. Therefore, it is assumed that before any wind application the ship was in stillwater, and the initial angle of inclination and the initial angular velocity of the ship were zero
- The waterline did not rise on the high side when the ship rolled, therefore the wind roll force and moment would be proportional to the square of the cosine of the roll angle

Discussion on how these assumptions will be altered will follow in proceeding chapter.

3.2. Calculations Set up

The purpose of this work is to calculate and make finally a comparison of the following outcomes:

- Find the forces and the moments applied on the hulls by the wind
- Find the roll angle where the ship will balance after the application of the wind force for a long time. This will be called the static case
- Find the roll angle that the ship will experience as a result of a wind that gusts causing a heeling angle greater than that found in static case. This will be called the dynamic case.
- Finally, determine at which wind speed the ship will capsize, if any

The difference between the static and the dynamic case is the following. The static case evaluates the equilibrium roll angle for which the wind roll moment equals the ship righting moment. On the other hand, the dynamic case evaluates the extreme roll angle when the wind speed starts from zero and suddenly gusts to the prescribed wind speed which is maintained. In this case, the roll angle will overshoot the equilibrium value and as the ship behaves as a pendulum the energy provided by the wind will be absorbed by the ship restoring forces and finally the ship after a short period of time will be balanced to the angle calculated in static case.

This work will evaluate and plot the values of the angles described above for the following cases:

- The three different hull shapes mentioned above
- Two different righting arm curves for each hull with initial metacentric heights, $\mathrm{GM}_{\mathrm{T}}=1.5 \mathrm{~m}$ and $\mathrm{GM}_{\mathrm{T}}=2.0 \mathrm{~m}$
- Several wind speeds in increments of 2 knots for values ranging in the region of 50 knots to 100 knots

The wind direction with respect to astern winds is called the angle θ. For the purposes of this project, θ would take the following values: $30^{\circ}, 45^{\circ}, 60^{\circ}, 90^{\circ}$. It is obvious that the worst case scenario will be when the wind strikes the ship at an angle of 90°.

Subsequently, the values of the roll angles in the static and dynamic cases will be plotted as a function of wind speed in each of the wind directions, for the several hull forms and the two initial metacentric heights.

3.3. Calculations

3.3.1. Projected Area Calculation

For calculation purposes, an existing preliminary design for the part of the ship above the waterline was used. This design is the $\mathrm{DD}(\mathrm{X})$ Multi-Mission Surface Combatant which is the future Surface Combatant for the US Navy.

Figure 8: Figure of $\operatorname{DD}(x)$ for the calculation of projected to the wind area
" $\mathrm{DD}(\mathrm{X})$ will be about 600 feet long, 79 feet wide, draw approximately 28 feet, and be capable of speeds in excess of 30 knots. Displacement will be approximately 14,000 tons. The ship's tumblehome design will make it appear smaller than it actually is on radar. Although nearly twice the displacement of a Spruance-class destroyer, through signature reductions and its unique tumblehome hull design, $\mathrm{DD}(\mathrm{X})$ will be a stealthy warship and present a radar cross section a fraction of Spruance-class ships."

Source: http://www.globalsecurity.org/military/systems/ship/dd-x-design.htm
Because the ship is not yet constructed, and because the design plans are confidential the ship scheme given in Figure 8^{8} was used. Knowing that the ship has an overall length of

[^7]about 600 ft or 182.88 m and measuring ship length from the figure, a ratio of the real ship and ship of the figure, called λ was created. Using that ratio, and measuring the heights of the ship's profile in figure, the real ship profile heights can be estimated.

The profile of the projected area normal to the wind was represented by two singlecolumn tables: one denotes the longitudinal position along waterline and another the corresponding heights. The table of longitudinal positions is in meters starting from $x=0 \mathrm{~m}$ at the stern of the ship and ending at $\mathrm{x}=182.88 \mathrm{~m}$ at the bow. Because of the particular ship profile, the positions of measurements are not evenly spaced. Instead, the positions of measurements are selected according to hull profile changes. Both tables have 22 elements: 22 longitudinal positions, denoted as L_{j} and 22 corresponding heights, denoted as H_{j}. These tables can be found in Appendix III.

In a second step, we assume that j is taking values from 0 to 21 , in order to cover all the longitudinal positions and heights. A function $f(j)$ is defined to calculate the projected wind area of a small trapezoid between the positions L_{j} and L_{j+1} with corresponding heights H_{j} and $\mathrm{H}_{\mathrm{j}+1}$.

$$
\begin{equation*}
\mathbf{f}_{\mathrm{j}}=\frac{1}{2}\left(\mathrm{H}_{\mathrm{j}}+\mathrm{H}_{\mathrm{j}+1}\right) \cdot\left(\mathrm{L}_{\mathrm{j}+1}-\mathrm{L}_{\mathrm{j}}\right) \tag{1}
\end{equation*}
$$

The whole projected area of the ship will then be given by the summation of all small trapezoids:

$$
\begin{equation*}
\operatorname{Area}=\sum_{j=0}^{20} f_{j} \tag{2}
\end{equation*}
$$

3.3.2. Calculation of the force and the moment applied by the wind

Another function of $\mathrm{j}, \mathrm{a}(\mathrm{j})^{9}$ is set to calculate the moment of area of each trapezoid about the waterline, and the sum of those will represent the first moment of the total projected wind area about the waterline, which is called M_{x} :

$$
\begin{align*}
& \mathrm{a}(\mathrm{j})=\frac{1}{2} \cdot\left(\mathrm{H}_{\mathrm{j}}+\mathrm{H}_{\mathrm{j}+1}\right) \cdot\left(\mathrm{L}_{\mathrm{j}+1}-\mathrm{L}_{\mathrm{j}}\right) \cdot \frac{\left(\mathrm{H}_{\mathrm{j}}\right)^{2}+\left(\mathrm{H}_{\mathrm{j}} \cdot \mathrm{H}_{\mathrm{j}+1}\right)+\left(\mathrm{H}_{\mathrm{j}+1}\right)^{2}}{3 \cdot\left(\mathrm{H}_{\mathrm{j}}+\mathrm{H}_{\mathrm{j}+1}\right)} \tag{3}\\
& \mathrm{M}_{\mathrm{x}}=\sum_{\mathrm{j}=0}^{20} \mathrm{a}(\mathrm{j}) \tag{4}
\end{align*}
$$

[^8]M_{x} divided by the Area will give the centroid of the area, Centroid ${ }_{\mathrm{y}}$, with respect to the waterline

Centroid ${ }_{y}=\frac{\mathbf{M}_{\mathbf{x}}}{\text { Area }}$

The force on a surface can then be derived using:
$\mathrm{F}=\frac{1}{2} \cdot \rho_{\mathrm{air}} \cdot \mathrm{C}_{\mathrm{D}} \cdot\left(\mathrm{V}_{\mathrm{a}} \cdot \sin \theta\right)^{2} \cdot \sum_{\mathrm{i}=0}^{20} \mathrm{f}(\mathrm{j})$
where
C_{D} is the local drag coefficient $\left(C_{D}=1.0\right)$,
$\rho_{\text {air }}$ is the air density ($\rho_{\text {air }}=1.2 \mathrm{~kg} / \mathrm{m}^{3}$),
V_{a} is the wind velocity in $\mathrm{m} / \mathrm{sec}$., and
θ is the angle between the wind direction and the ship direction (0° - wind is coming from the stern and 180° - wind is coming from the bow) as it is shown in Figure 9.

The longitudinal fore-and-aft component of the wind has also some effect, due to the curvature of superstructure. The projected area to this component is very small compared to the projected area of the lateral component, thus the moment created from the horizontal velocity is negligible and can therefore be ignored. All following calculations do not take this horizontal component of the wind into account.

Figure 9: Angle of attack of the wind with respect to the ship

Another function of j , termed $\mathrm{d}(\mathrm{j})$, is set up to calculate the moment applied by the wind on each of the small trapezoids that constitute the hull. This moment will be equal to the product of the force applied on each piece and the lateral distance, 1 , of the centroid of each piece from the point where the force from the water resistance is applied. It can be assumed that this point is at half draft, $T / 2$. This issue is clarified in Figure $10{ }^{10}$.

Figure 10: Moment applied by the wind on a hull
This formula is derived as follows:
$\mathrm{d}_{\mathrm{j}}=\frac{1}{2} \cdot \mathrm{f}_{\mathrm{j}} \cdot\left(\frac{\mathrm{H}_{\mathrm{j}}}{2}+\frac{\mathrm{H}_{\mathrm{j}+1}}{2}+\right.$ Draft $)$
where the total moment applied to the hull by the wind is the sum of all the moments applied to each trapezoid:
$\mathrm{M}=\frac{1}{2} \cdot \rho_{\text {air }} \cdot \mathrm{CD}_{\mathrm{D}} \cdot\left(\mathrm{V}_{\mathrm{a}} \cdot \sin \theta\right)^{2} \cdot \sum_{\mathrm{i}=0}^{20} \mathrm{~d}(\mathrm{j})$
The force and the moment found using the above equations is what the ship experiences in the upright position. As the ship inclines to some angle, φ, the force and the moment applied on the hull is actually multiplied by a factor $\left(\cos ^{2} \varphi\right)$ because in that case the wind

[^9]hits the ship in an angle φ so the ship realizes the $V a \cdot \cos \phi$ component. Furthermore, in the expression giving the force and the moment applied by the wind (equations $6 \& .8$), speed term is squared; consequently, the factor $\cos (\varphi)$ is also squared.

3.3.3. Ship Righting Moment Calculation

Righting arm data for various heel angles was collected for each of the three hulls examined. This data, collected from the ONR project, gives values of righting arms versus heel angle, $\mathrm{GZ}(\varphi)$, at initial metacentric heights of $\mathrm{GM}=1.5 \mathrm{~m}$ and $\mathrm{GM}=2.0 \mathrm{~m}$ for tumblehome, wall sided and flare sided designs.

Since the ship used for the ONR project is similar to $\mathrm{DD}(\mathrm{x})$ but smaller (152.5 m compared to 182.88), all the righting arms from the curves constructed for ONR are multiplied by a factor 1.2 , which is the ratio of the $\mathrm{DD}(\mathrm{x})$ length over the ONR project ship's length. The decision to multiply with the ratio of the lengths and not the ratio of the displacements is made because the righting arms are measured in meters. Therefore it was proper to multiply with a ratio of a length scale, which is of the same dimension. A cubic spline was fitted to those points, in order to get a continuous function of $\operatorname{GZ}(\varphi)$ for that discrete characterization, as shown in Appendix I. This spline representation will help the MathCAD to use the function $\operatorname{GZ}(\varphi)$ in the equations that will give the static and dynamic solution for the roll angle experienced by the ship under wind effect.

3.3.3.1. Evaluation of roll angle in static case

For the static roll angle solution, a function $\Gamma(\varphi)$ is created. This function represents the difference between the moment applied by the wind, $\left[M \cdot \cos ^{2} \phi\right]$ and the restoring moment of the ship, $\Delta \cdot \mathrm{GZ}(\phi)$

$$
\begin{equation*}
\Gamma(\phi)=\mathrm{M} \cdot \cos ^{2} \phi-\Delta \cdot \mathrm{GZ}(\phi) \tag{9}
\end{equation*}
$$

The root of that function is the angle φ that will make both terms equal. This root will be the equilibrium angle that the ship will balance when is hit by a constant velocity wind.

3.3.3.2. Evaluation of roll angle in dynamic case

In an attempt to describe the complicated dynamic phenomena associated with ship heeling, we represent the dynamic stability U_{φ} of a ship as the difference between the potential energies of the ship heeled at an angle φ and upright at 0 degrees. Since the work required to heel the ship by a differential $d \varphi$ is

$$
\begin{equation*}
\text { Energy }=\Delta \cdot \mathrm{GZ}(\phi) \cdot \mathrm{d} \phi \tag{10}
\end{equation*}
$$

The total work required heeling the ship up to an angle φ, or in other words, the dynamic stability U_{φ} is expressed by:

$$
\begin{equation*}
\mathrm{U}_{\phi}=\int_{0}^{\phi} \Delta \cdot \operatorname{GZd} \phi=\Delta \cdot \int_{0}^{\phi} \mathrm{GZd} \phi \tag{11}
\end{equation*}
$$

The dynamic stability is therefore directly proportional to the integral under the righting arm curve. When the external moment by the wind which is a function of $\varphi, \mathrm{M} \cdot \cos ^{2} \phi$, is applied, the ship's equation of motion, taking into account that water is acting as a damper to the rolling of the ship, becomes:

$$
\begin{equation*}
\left(\Delta_{44}+\mathrm{A}_{44}\right) \cdot \frac{\mathrm{d}^{2}}{\mathrm{dx}^{2}} \phi+\mathrm{B}_{44} \cdot \frac{\mathrm{~d}}{\mathrm{dx}} \phi+\mathrm{C}_{44} \cdot \mathrm{GZ}(\phi)=\mathrm{M} \cdot \cos ^{2} \phi \tag{12}
\end{equation*}
$$

with initial conditions:

$$
\phi(0)=0 \quad \phi^{\prime}(0)=0
$$

where:

- Δ_{44} represents the moment of inertia of the ship around the roll axis and equals the squared radius of gyration, $\mathrm{k}_{\mathrm{x}}{ }^{2}$, multiplied by the ship displacement converted in kg to match the units
- A_{44} represents the added mass moment of inertia of the hull around the roll axis
- B_{44} is the roll damping coefficient
- C_{44} is the restoring force coefficient and has the value of the displacement, converted in mass units, multiplied by the gravity acceleration $\mathrm{g},\left(\mathrm{C}_{44}=\Delta \mathrm{g}\right)$

Because the offsets of the hulls studied for the purposes of this research are not known, the only known value in equation (12) is C_{44}. The values $\Delta_{44}, \mathrm{~A}_{44}, \mathrm{~B}_{44}$ will be calculated making some assumptions. The value that can be calculated most readily is Δ_{44} making the assumption that the radius of gyration is one third of the beam of the ship.

For A_{44} and B_{44} the following procedure will be followed:
Step 1: It is known that if the sectional added mass, α_{44} and b_{44} is given for each section of the ship at any position-x then integration of this along the length of the ship will give, consequently, the values of A_{44} and B_{44}. The sectional added mass terms, α_{44} and b_{44}, can be found by solving the 2-D hydrodynamic problem shown in Figure 11^{11}.

[^10]

Figure 11: Two dimensional strip theory for the calculation of $\boldsymbol{a}_{\mathbf{4 4}}, \mathbf{b}_{\mathbf{4 4}}$

Then, using strip theory the values of the added mass terms for the whole ship, A44 and B_{44}, can be determined by using the following equations:

$$
\begin{align*}
& \mathrm{A}_{44}=\int_{\Lambda} \alpha_{44}(\mathrm{x}) \mathrm{dx} \\
& \mathrm{~B}_{44}=\int_{\mathrm{L}} \mathrm{~b}_{44}(\mathrm{x}) \mathrm{dx} \tag{13}
\end{align*}
$$

Step 2: As the exact offsets of the ship are not known, the exact calculation of sectional coefficients, a_{44} and b_{44} is impossible. The use of experimental results is necessary. Using Figure 46 on p. 62 of PNA (Principles of Naval Architecture Volume III) we can obtain a non dimensional sectional added mass moment of inertia and damping coefficient in roll for a rectangle of beam B and cross-sectional area A , as a function of non-dimensional frequency of the motion. A mean value from these charts is chosen as:

$$
\begin{align*}
& \frac{\alpha_{4 \mathrm{~s}}}{\rho_{\mathrm{sw}} \cdot \mathrm{~A} \cdot \mathrm{~B}^{2}}=0.05 \\
& \frac{\mathrm{~b}_{4 \mathrm{~s}}}{\rho_{\mathrm{sw}} \cdot \mathrm{~A} \cdot \mathrm{~B}^{2}} \cdot \sqrt{\frac{\mathrm{~B}}{2 \mathrm{~g}}}=0.04 \tag{14}
\end{align*}
$$

The purpose of this thesis is not to derive the exact values of the added mass terms but to predict the roll angles experienced by the ship under high speed winds in the dynamic case. Because the added mass moment of inertia is very small compared to the moment of inertia of the ship and because doubling the damping coefficient will change the maximum roll angle by less than four percent, we can assume the validity of the above
values from the chart given in PNA. In the following step, a method of finding the added moment of inertia and the damping coefficients of a slender body when sectional coefficients are known in any position of the ship will be presented, for future reference.

Step 3: Using Figure 12^{12} that shows the waterplane area of the $\mathrm{DD}(\mathrm{x})$ at draught waterline, a function of the half-beam of the ship can be obtained.

Figure 12: Beam of the waterplane area as a function of ship length

So the function of the half-beam of the ship with respect to the longitudinal position (bow defined as $\mathrm{x}=0$) is given from the following formulas:

$$
\begin{array}{lll}
B=0.173446 \cdot x & \text { for } & 0 \leq x \leq 69.494 m \\
B=12.0548 & \text { for } & 69.494 m \leq x \leq 182.88 m \tag{15}
\end{array}
$$

Assuming that draft remains unchanged for the entire length, the cross-sections of the ship will be rectangles of different beams and same drafts with an area $\mathrm{A}=\mathrm{B} \cdot \mathrm{T}$. Therefore combining the equations (13), (14), (15), A_{44} and B_{44} can be written down as:

$$
\begin{align*}
& \mathrm{A}_{44}=2 \cdot \int_{0}^{\mathrm{L}} 0.05 \cdot \rho_{\text {sw }} \cdot \mathrm{T} \cdot \mathrm{~B}^{3} \mathrm{dx} \\
& \mathrm{~B}_{44}=2 \cdot \int_{0}^{\mathrm{L}} 0.04 \cdot \rho_{\text {sw }} \cdot \mathrm{T} \cdot \sqrt{2 \mathrm{~g}} \cdot \mathrm{~B}^{\frac{5}{2}} \mathrm{dx} \tag{16}
\end{align*}
$$

[^11]The solution of the above integrals in order to obtain a value for the A_{44} and B_{44} terms is shown in Appendix II. A factor of two at the integrals exists for calculate A_{44} and B_{44} for the whole ship as the function B is giving the half beam.

This step is created to generate a reasonable procedure of getting these coefficients and it can be used as a reference in future utilization, when the sectional added mass terms and the offsets of the ship are known exactly.

Inputting the values of $\mathrm{A}_{44}, \mathrm{~B}_{44}$ and C_{44}, the MATHCAD 12© gives the function of the roll angle versus time, $\varphi(\mathrm{t})$. Given these values and the capabilities of the program, a maximum roll angle when the wind gusts from zero to the prescribed value, is calculated. After a long period of time ($t \gg 0$), the roll angle should coincide with the static roll angle.

Both the static and dynamic roll angle calculation procedures for all the cases examined are shown in Appendix III.

Chapter 4: Simulation Results
 4.1. Results with zero initial conditions

This chapter presents the simulation results as predicted by the model proposed in Chapter 3. The need to obtain roll angles for a) static and dynamic cases, b) three different hull types, c) two different initial metacentric heights, d) four different wind angle of attack, and e) twenty six wind speeds in the range of 50 to 100 knots in steps of two knots, produces a large number of required simulations (1248 combinations) that would be very tedious to run manually in the MATHCAD 12© code.

In order to accommodate this large number of runs, a MATLAB© code is developed that uses the equations described in Chapter 3 to statistically and graphically obtain the roll angle values for all described cases. This code is included in Appendix IV. The validity of the MATLABC code was verified by cross checking the results that each program gives for certain cases.

Tables of the roll angles of ship heeling for both static and dynamic cases for each hull form and each initial metacentric height for all the combinations of wind speeds and directions are presented in Appendix V.

In what follows, the results for static and dynamic cases are presented in graphic format. The x -axis and y -axis in the graphs represent the wind speed in knots and the roll angle in degrees, respectively.

At the end of this section a table and a graph for the worst-case scenario (this happens at beam winds $\left[\theta=90^{\circ}\right]$) are also constructed which will help to make the comparison.

4.1.1. Tumblehome Hull Form

Figure 13: Equilibrium roll angles for static case (Tumblehome GM=1.5m)

Figure 14: Maximum roll angles for dynamic case (Tumblehome GM=1.5m)

Figure 15: Equilibrium roll angles for static case (Tumblehome GM=2.0m)

Figure 16: Maximum roll angles for dynamic case (Tumblehome GM=2.0m)

4.1.2. Wall Sided Hull Form

Figure 17: Equilibrium roll angles for static case (Wall Sided GM=1.5m)

Figure 18: Maximum roll angles for dynamic case (Wall Sided GM=1.5m)

Figure 19: Equilibrium roll angles for static case (Wall Sided GM=2.0m)

Figure 20: Maximum roll angles for dynamic case (Wall Sided GM=2.0m)

4.1.3. Flare-Sided Hull Form

Figure 21: Equilibrium roll angles for static case (Flare Sided GM=1.5m)

Figure 22: Maximum roll angles for dynamic case (Flare Sided GM=1.5m)

Figure 23: Equilibrium roll angles for static case (Flare Sided GM=2.0m)

Figure 24: Maximum roll angles for dynamic case (Flare Sided GM=2.0m)

4.1.4. Discussion of the results

As can be seen from Figure 13 through Figure 24 as well as from the data presented in Table 1 and Table 2, the tumblehome ship of initial metacentric height of 1.5 m will capsize if it will experience a beam wind gust of over 90 knots. In reality, there is a possibility that capsize will occur earlier. The maximum righting arm appears at an angle of inclination of 28 degrees. Since the MATLABC code doesn't break down until the wind speed becomes 91 knots, it can be accepted, for the purposes of this thesis, that the ship will withstand beam winds up to 91 knots.

Table 1: Dynamic case roll angles as a result of several wind speeds at $\theta=90^{\circ}$

		Wind Speed (kts)					
		50	60	70	80	90	100
Hull Form	Tumblehome for GM=1.5m	7.34	11.63	17.51	26.21	40.17	Capsize
	Tumblehome for $\mathrm{GM}=2 \mathrm{~m}$	5.35	8.11	11.68	16.07	21.19	27.39
	Wall Sided for GM=1.5m	7.39	10.79	14.99	20.22	26.14	32.25
	Wall Sided for GM=2m	5.29	8.02	11.21	14.58	18.44	23.05
	Flare Sided for $\mathrm{GM}=1.5 \mathrm{~m}$	7.41	10.42	13.95	17.99	22.37	26.85
	Flare Sided for GM=2.0 m	5.68	8.02	10.74	13.87	17.34	21.02

Table 2: Static case roll angles as a result of several wind speeds at $\theta=90^{\circ}$

		Wind Speed (kts)					
		50	60	70	80	90	100
Hull Form	Tumblehome for $\mathrm{GM}=1.5 \mathrm{~m}$	3.72	5.80	8.77	12.54	17.85	Capsize
	Tumblehome for $\mathrm{GM}=2 \mathrm{~m}$	2.74	4.10	5.82	8.11	10.67	13.75
	Wall Sided for $\mathrm{GM}=1.5 \mathrm{~m}$	3.86	5.58	7.72	10.31	13.10	17.00
	Wall Sided for $\mathrm{GM}=2 \mathrm{~m}$	2.69	4.10	5.87	7.87	9.93	11.88
	Flare Sided for $\mathrm{GM}=1.5 \mathrm{~m}$	3.97	5.52	7.34	9.39	11.71	14.33
	Flare Sided for $\mathrm{GM}=2.0 \mathrm{~m}$	3.01	4.24	5.67	7.28	9.08	11.08

It is obvious from a comparison between Table 1 and Table 2, that when a ship receives a wind which is gusting from zero up to a nominal speed the ship will heel at a maximum angle which is almost twice as much as the angle of equilibrium. Provided that the wind continues to blow at this nominal speed for some periods of oscillation, the ship will remain heeled at an angle equal to the angle of equilibrium which is found under the study of static case.

Figure 25: Dynamic case maximum roll angles for all hull forms and GMs at $\boldsymbol{\theta}=90^{\circ}$

Figure 25 presents the maximum roll angles obtained for the dynamic case for the range of speeds from 50 knots to 100 knots for all the different hulls examined. It can be observed that in the case of initial metacentric height of $\mathrm{GM}=2.0 \mathrm{~m}$, the difference between the three different hull forms is less than the difference observed for the GM= 1.5 m case. For both cases, however, roll angles in the vicinity of wind speeds of 50 knots are essentially the same but they tend to deviate as the wind speed is increased. It should be noted that in the case of the initial metacentric height of 1.5 m the deviation is much bigger than the deviation occurs with initial metacentric height of 2.0 m .

In any case, as it can be understood by graphs and table, the flare sided ship is superior in terms of stability. Wall sided ships are less stable, while the tumblehome ships show the least desirable stability under high winds' effect.

As claimed by NAVSEA experiments on tumblehome hulls, the adequate metacentric height for a ship of this kind to be stable is 2.0 m and more. This is also confirmed by the presented calculations.

The graphs presented in paragraphs 4.1.1-4.1.3 demonstrate that the roll angles decrease as a ship veers in a way to reduce the wind angle of attack to less than 90°. The reduction of the angles of roll becomes greater as the angle between the wind and the ship is reduced. Consequently, a ship which is going to experience bad weather conditions has two options: one is to try to avoid the weather if time permits and the other, if there is no time to avoid the weather, is to keep a course as parallel as possible to the direction of the blowing wind.

Also, it must be mentioned that a ship will capsize from combined effect of wind and waves. In the above calculations only the effect of the wind is given. In reality with both wind and waves, capsize will occur in much lower wind speeds.

4.1.5. Validation of the code

4.1.5.1. Analytical Solution

This section is devoted to validation of the MathCAD© code. In order to do so we investigate a special case where analytical solutions exist and compare the results with the numerical solution given by the code. The dynamic case problem, expressed by equation (12), can be solved analytically for very small angle of heeling. This relates to the physical scenario that small heeling moments are applied to the hull of the ship by the wind.

In that case equation (12) can be written in the form:
$\left(\Delta_{44}+\mathrm{A}_{44}\right) \cdot \frac{\mathrm{d}^{2}}{\mathrm{dx}^{2}} \phi+\mathrm{B}_{44} \cdot \frac{\mathrm{~d}}{\mathrm{dx}} \phi+\mathrm{C}_{44} \cdot \mathrm{GM} \cdot \phi=\mathrm{M}_{10}$
where we use the approximation for small angles: $\cos ^{2} \phi \approx 1$ and $G Z=G M \cdot \sin (\phi)=G M \cdot \phi$

Using an initial metacentric height of 2.0 m , a wind speed of 10 knots that should produce a small heeling moment $\left(M_{10}=5.751 \cdot 10^{5} \mathrm{Nm}\right)$ and the values for $\Delta_{44}, \mathrm{~A}_{44}, \mathrm{~B}_{44}$ and C_{44}, as they can be obtained from Appendix III, equation (17) becomes:
$8.62 \cdot 10^{8} \cdot \frac{\mathrm{~d}^{2}}{\mathrm{dx}^{2}} \phi+3.06 \cdot 10^{7} \cdot \frac{\mathrm{~d}}{\mathrm{dx}} \phi+1.269 \cdot 10^{8} \cdot 2 \cdot \phi=5.751 \cdot 10^{5}$
This linear second order differential equation can be solved analytically using simple mathematics. The roll angle as a function of time is given by:
$\phi(t)=2.266 \cdot 10^{-3} \cdot\left(1-e^{-0.0185 t} \cdot \cos (0.553 t)\right)$

The graphical representation of this function of time can be obtained by any mathematical software and it has the shape of Figure 26:

Figure 26: Graphical representation of analytical solution
The red line in the figure above represents the roll angle as a function of time, while the blue and green dashed lines represent the envelope that encloses the roll angle function. The dashed lines physically represent the roll angle amplitude decay ratio. For input values of cosine in equation (20) of 1 and -1 the green and blue lines take the analytical forms $\frac{M_{10}}{G M \cdot C_{44}}\left(1+e^{0.0185 t}\right)$ and $\frac{M_{10}}{G M \cdot C_{44}}\left(1-e^{0.0185 t}\right)$, respectively.

Furthermore, from equation (19), it can be derived that $\omega_{n}=0.553$ radians per second and therefore the natural period of the system is: $T_{n}=\frac{2 \cdot \pi}{\omega_{n}}=11.362 \mathrm{sec}$. Of great value is also the time scale $\frac{1}{0.0185}=54.05 \mathrm{sec}$ over which the oscillatory part of the roll amplitude will decay by a factor $\frac{1}{e}$.

4.1.5.2. Numerical Solution

The MathCAD code was also used, for the tumblehome ship with initial metacentric height $\mathrm{GM}=2.0 \mathrm{~m}$. The equation used for that run can be found in Appendix III and is also given below:

$$
\begin{equation*}
\left(\Delta_{44}+\mathrm{A}_{44}\right) \cdot \frac{\mathrm{d}^{2}}{\mathrm{dx}^{2}} \phi+\mathrm{B}_{44} \cdot \frac{\mathrm{~d}}{\mathrm{dx}} \phi+\mathrm{C}_{44} \cdot \Pi(\phi)=\mathrm{M}_{10} \cdot \cos ^{2}(\phi) \tag{20}
\end{equation*}
$$

where $\Pi(\varphi)$ is the cubic spline created to fit the righting arm curve.
The MathCAD solution to this non-linear equation is graphically represented in the form of the roll angles versus time, in Figure 27:

Figure 27: Graphical representation of the numerical solution

A comparison between the numerical and analytical results demonstrates:

- For long equilibrium times ($t=1000$ secs $)$ the code suggests a roll angle of 0.127 degrees, while the analytical solution gives a roll angle of $\lim _{t \rightarrow \infty}\left[\frac{M_{10}}{G M \cdot C_{44}}\left(1+e^{-0.0185 t}\right)\right]=0.13$, a discrepancy on the order of 2.3%.
- From the graphs one can observe that after 200 seconds the number of cycles will be equal for both cases.
- The local first maximum can also be evaluated for both cases. The maximum roll angle can be directly derived from the analytical and numerical roll angle functions, which turn out to be 0.225 and 0.242 , respectively, thus an error of 7%.

These small deviations between numerical and analytical predictions can be attributed to the cubic spline approximation which only approaches reality in the vicinity of small
positive angles. In fact, the tangent of the cubic spline at zero is smaller or greater than the initial metacentric height depending on the case.

4.2. Results when initial conditions are non zero

All calculations and graphs assume that the ship, before the wind gusts, was at rest, which means that the sea was calm and the initial angle of heeling and the initial angular velocity were zero. This however, is not realistic. A ship moving on the waves will gain some angle of inclination or some angular velocity under several circumstances. The following two case studies examine the results for dynamic case rolling angles when (I) there is an initial angle of inclination (caused i.e. by a turning of the ship or an angle imposed by damage) and (II) initial angular velocity (caused i.e. from a wave striking the ship from the side and providing the energy to the ship to start oscillation). These two cases intensify the problem if the application of the moment applied by the wind is in the same direction as the initial angular velocity or the initial angle of heeling. This will contribute to the generation of larger rolling angles and the reduction of the maximum wind speed that the ship can withstand without capsizing.

For the purposes of these case studies, the MATLAB© code created in previous steps, is used to run the combination of each hull form and each of the two initial metacentric heights for a range of speeds from 50 knots to 100 knots in increments of 2 knots. For the first case study an initial angle of six degrees of inclination is assumed. For the second case study an initial angular velocity of $0.1 \mathrm{rad} / \mathrm{sec}$ is examined. Those two values cannot describe the real and complex nature of movements of the ship in a rough sea, and they are arbitrary, but they are indicative of the deterioration of ship stability.

Tables and graphs of the resulting maximum rolling angles for both case studies in each of the above mentioned combinations are presented in Appendix VI. In the following sections, a comparison of the results for each hull and each initial metacentric height for the worst-case scenario of beam winds $\left[\theta=90^{\circ}\right]$ is presented. The resulting graphs show that for all types of hull, and both initial metacentric heights, the ship becomes more vulnerable to capsize in the dynamic cases where the maximum roll angles are bigger for the whole wind velocity range when initial conditions are applied. $\left[\theta=90^{\circ}\right]$.

4.2.1. Tumblehome Hull Form

Figure 28: Comparison for different initial conditions (Tumblehome $\mathbf{G M}=1.5 \mathrm{~m}$)

Figure 29: Comparison for different initial conditions (Tumblehome $\mathbf{G M}=\mathbf{2 . 0 m}$)

4.2.2. Wall Sided Hull Form

Figure 30: Comparison for different initial conditions (Wall Sided GM=1.5m)

Figure 31: Comparison for different initial conditions (Wall Sided GM=2.0m)

4.2.3. Flare-Sided Hull Form

Figure 32: Comparison for different initial conditions (Flare Sided GM=1.5m)

Figure 33: Comparison for different initial conditions (Flare Sided GM=2.0m)

Chapter 5: Future Steps

This thesis is a small part of a larger project whose purpose is to evaluate the behavior of tumblehome ships when underway in a stormy environment. As was earlier discussed, tumblehome ships are of special interest as they are in the future plans of many navies around the world for construction and acquisition.

In order to conduct the necessary analysis, assumptions are made. These assumptions are an unavoidable consequence of the lack of exact information concerning the shape of the hull of the new US Navy tumblehome ship, which is presently in the feasibility stage of design. Furthermore, this project neglects some of the details of the environmental conditions, as their complicated nature prohibits a more rigorous analysis. In fact, specialized work needs to be done in order to better evaluate the statistical weather conditions that dominate in the areas that the ship will operate.

The purpose of this chapter is to summarize the assumptions made in this thesis. This aims in helping future researchers to outflank the deterrents posed by these simplifications and to proceed with more accurate calculations as detailed information about the ship characteristics become available.

5.1. Uniform wind

During this project, the wind velocity profile was assumed uniform throughout the superstructure. As is shown in Figure 34, a wind, with nominal speed of 100 knots at a height of 10 m , would not have the same value at all heights above the waterline but its value will follow the shape of the curve shown below:

Figure 34 : Wind speeds (kts) at various heights (m) above WL (Nominal speed 100kts at 10m)

Therefore, in order to calculate exactly the forces and moments applied to the hull by the wind, one need to take the integral of the velocity profile over the hull. For that reason, wind velocity profiles should be constructed for several nominal wind speeds.

Therefore, in order to calculate exactly the forces and moments applied to the hull by the wind, one needs to take the integral of the velocity profile over the hull. Wind velocity profiles should be constructed for several nominal wind speeds.

A further step would be the refinement of the curve shown in Figure 34 to account for the cases where a ship is sailing in an area with large ocean breaking waves. The wind velocity profiles above those waves need to be studied using both numerical and experimental methods. This will contribute to the construction of reliable wind profile, which would probably deviate from the shape of Figure 34 in a region from the ship waterline to a height above the waterline that depends on the wave heights.

5.2. C_{D} calculation

The drag coefficient C_{D} used for the calculations was assumed to be equal to one ($C_{D}=1.0$). In reality, however, the drag coefficient is a function of angle of heeling of the ship. Apart from the height-dependent wind speed, the actual force applied on the hull by the wind is given by the formula:

$$
\begin{equation*}
\mathrm{F}_{\mathrm{wind}}(\phi)=\frac{1}{2} \cdot \rho_{\mathrm{air}} \cdot \mathrm{U}^{2} \cdot \mathrm{~A} \cdot \mathrm{CD}(\phi) \tag{21}
\end{equation*}
$$

The lateral horizontal force applied by the wind, $\mathrm{F}_{\text {wind }}$ and the corresponding drag coefficient, C_{D} can be obtained by a wind tunnel test on a model of the actual ship. The moment produced on the ship model by the wind can be measured and by appropriate scaling of results from wind tests the full scale ship moment applied by the wind can be calculated. An example of an arrangement for tests in wind is shown in Figure 35^{13}

[^12]

Figure 35: Arrangement for model tests in a wind tunnel

5.2.1. Model Set-Up

The ship model that would be used for wind tests should comply with the following:

- The model should copy the shape of the actual ship above the waterline
- All sharp corners in the actual ship should be resembled in the model in order to simulate separated flow
- Main fittings on the exposed decks and superstructures should be modeled and fitted properly
- The size of the model should be determined in order to make the blockage ratio to the wind tunnel less than five per cent [5\%]. The blockage ratio is defined as the ratio between the lateral projected area of the model above the waterline and the area of the test section of the wind tunnel

5.2.2. Wind Characteristics

The wind speed should comply with the following:

- The minimum wind speed to perform tests should be over the critical Reynolds. number, after which C_{D} is constant (for the same angle of heeling)
- The wind speed versus height should model the atmospheric boundary layer over the ocean
- The effects of end plate (due to its shape, size, roughness, etc.) and of the gap between end plate and model should be minimized

5.2.3. Test Procedure

The lateral horizontal force $F_{\text {wind }}$ and the heeling moment due to wind $M_{\text {wind }}$ are obtained by the wind tunnel test measurements. C_{D} is calculated according to Equation (21), for the actual value of air density during tests.

Model tests should be carried out in compliance with the following:

- Before tests are carried out, the vertical and horizontal distribution of the wind speed at the model position should be verified.
- Tests should be carried out in upright position and at some heeling angles with appropriate increment to leeward and windward covering a sufficient range of heeling angles.
- The change of trim due to heel can be neglected.

5.3. Rising of Waterline as the ship heels

It is understood that as a ship heels to large angles the use of $\cos ^{2} \varphi$ for the exposed area does not constitute a rigorous approach. In fact the exposed area can significantly deviate from this cosine function.

Figure 36: Projected to the wind area as the ship heels

As is shown in Figure 36, the projected area to the wind can be calculated by the sum of two components $F r \cdot \cos (\phi)+\frac{B}{2} \cdot \sin (\phi)$.
where
$\mathrm{Fr}=$ is the freeboard of the ship before the heeling and
$B=$ the beam of the ship at the new waterline

In order to calculate the refined roll angles in the case when the waterline is rising as the ship heels, the MathCAD code has been modified. In what follows, the governing equations will be derived and a comparison of the results between the two cases, when the waterline is rising and when it is not, will be conducted. The equations described in paragraphs $3.3 .1,3.3 .2,3.3 .3 .1, \& 3.3 .3 .2$ will be transformed in order to take into account the effect of the rising waterline. Equation (1) can be written as:

$$
\begin{equation*}
\mathrm{f} 1(\phi, \mathrm{j})=\frac{1}{2}\left(\mathrm{H}_{\mathrm{j}} \cdot \cos \phi+\frac{\mathrm{B}_{\mathrm{j}}}{2} \cdot \sin \phi+\mathrm{H}_{\mathrm{j}+1} \cdot \cos \phi+\frac{\mathrm{B}_{\mathrm{j}+1}}{2} \cdot \sin \phi\right) \cdot\left(\mathrm{L}_{\mathrm{j}+1}-\mathrm{L}_{\mathrm{j}}\right) \tag{22}
\end{equation*}
$$

where

- H_{j} represents the freeboard Fr and
- B_{j} represents the beam at various longitudinal positions

The force on a surface can then be derived using the transformed equation (6). The effect of the heeling, represented by the angle φ, is included in the $f 1_{\mathrm{j}}$

$$
\begin{equation*}
\mathrm{F} 1(\mathrm{Va}, \theta, \phi)=\frac{1}{2} \cdot \rho_{\mathrm{air}} \cdot \mathrm{C}_{\mathrm{D}} \cdot\left(\mathrm{~V}_{\mathrm{a}} \cdot \sin \theta\right)^{2} \cdot \sum_{\mathrm{i}=0}^{20} \mathrm{f} 1(\phi, \mathrm{j}) \tag{23}
\end{equation*}
$$

Equations (7) and (8) are transformed accordingly to the following:
$\mathrm{d} 1(\phi, \mathrm{j})=\frac{1}{2} \cdot \mathrm{f} 1(\phi, \mathrm{j}) \cdot\left(\frac{\mathrm{Hj}}{2} \cdot \cos \phi+\frac{\mathrm{Bj}+1}{4} \cdot \sin \phi+\frac{\mathrm{H}_{\mathrm{j}+1}}{2} \cdot \cos \phi+\frac{\mathrm{Bj}+1}{4} \cdot \sin \phi+\right.$ Draft $\left.\cdot \cos \phi\right)$
Equation (24) represents the moments applied to each of the trapezoids. The total moment applied to the hull by the wind can therefore be calculated as the sum of all the moments
$\operatorname{M1}\left(\mathrm{V}_{\mathrm{a}}, \phi\right)=\frac{1}{2} \cdot \rho_{\text {air }} \cdot \mathrm{C}_{\mathrm{D}} \cdot\left(\mathrm{V}_{\mathrm{a}} \cdot \sin \theta\right)^{2} \cdot \sum_{\mathrm{i}=0}^{20} \mathrm{~d} 1(\phi, \mathrm{j})$

Again, the external moment applied by the wind is a function of φ, but this time is included in the expression of the moment and it is not proportional to $\cos ^{2} \phi$. Consequently, the dynamic case equation which yields the roll angle now reads:

$$
\begin{equation*}
\left(\Delta_{44}+\mathrm{A}_{44}\right) \cdot \frac{\mathrm{d}^{2}}{\mathrm{dx}^{2}} \phi+\mathrm{B}_{44} \cdot \frac{\mathrm{~d}}{\mathrm{dx}} \phi+\mathrm{C}_{44} \cdot \mathrm{GZ}(\phi)=\mathrm{M} 1(\mathrm{Va}, \theta, \phi) \tag{26}
\end{equation*}
$$

with initial conditions:

$$
\phi(0)=0 \quad \phi^{\prime}(0)=0
$$

One has to give an input for the wind speed and direction in order to obtain the roll angles for the case when the waterline is rising as the ship heels. Figure 37 represents the difference between the two previously mentioned cases. The two codes were run for the tumblehome ship with the initial metacentric height of 2.0 meters, for a wind speed of 80 knots, with a direction of 90 degrees (lateral to the ship). The red line shows the roll angle versus time when the rising of the waterline is not taken into account, while the blue dotted line represents the roll angle produced by the contribution of the waterline rising. It is readily observed that in the case when the waterline is rising, the roll angles are amplified due to the larger area exposed to the wind.

Figure 37: Effect of the rising of the waterline to the rolling of the ship

The enhanced code used to calculate the above cases is included at the end of Appendix III and it can be used to further investigate the roll angle for different ranges of wind speeds, different hull types and/or varying initial metacentric heights.

5.4. $A_{44} B_{44}$ exact calculations

In the evaluation of the dynamic case rolling angle, the calculations of the added mass moment of inertia, A_{44}, and the damping coefficient, B_{44} were performed.

During analysis the ship examined was considered to have rectangular cross sections, with a beam B, where B is the beam of the ship at the waterline at each longitudinal position, and a draft T, which is assumed to remain constant for the entire length of the ship. These assumptions are a good approach to the calculations of the required coefficients, since the ships' offsets are unknown.

For additional accuracy, the ship offsets are needed. With the ship offsets in hand, exact cross sectional calculations of the ship at each longitudinal position are possible. A diagram of the two-dimensional added mass and damping coefficients for each cross section should also be constructed experimentally. Once both are available, integrating the 2-D cross sectional coefficients along the length of the ship using numerical methods, will generate the added mass moment of inertia, A44 and damping coefficient, B44 for the entire ship.

The added mass moment of inertia and damping coefficients used for calculations made in this project are estimates. The added mass moment of inertia, A44, is a small portion of the ship moment of inertia Δ_{44}; consequently it would not play a dominant role on the change of the maximum roll angle.

Finally, B_{44} controls the number of cycles the ship will need to oscillate until it reaches the equilibrium angle, and its contribution to the maximum roll angle is also limited.

5.5. Forces and moments applied by the waves

It was first assumed that the ship was initially at rest. Subsequently, it was shown that the rolling angles are worse when an initial angle of six degrees or an initial angular velocity of $0.1 \mathrm{rad} / \mathrm{sec}$ was imposed. In reality, the magnitude of these initial conditions is determined by the environment in which the ship is moving. The dominant role is played by the waves. To define the forces and the moments that are applied on the hull of the ship, extended research on the wave velocity profiles should be conducted. In the simplified scenario that the waves are linear, the corresponding velocity profile can be directly obtained. However, in cases of large breaking waves, the velocity profile gets complicated and should be further studied, numerically and experimentally. Once a profile of velocities under breaking waves is obtained, then the forces and moments produced by wave-action can be calculated with more accuracy.

Chapter 6: Costs Associated with Capsizing 6.1. Causes of Capsizing

Bad weather conditions appear to be the most important single cause of ship losses. As it can be seen in Table 3, severe weather conditions are responsible for the thirty per cent of ship losses occurred in the decade 1989-1999.

Table 3: Total losses of ships (1989-1999) ${ }^{14}$

Nature of Casualty	Bulk Carriers	Tankers	Other Vessels	Total (\%)
Collision	12	14	149	$177(\mathbf{1 1 \%)}$
Explosion	24	71	206	$301(\mathbf{1 9 \%})$
Grounding	28	15	122	$165(\mathbf{1 1 \%)}$
Machinery	16	8	58	$82(\mathbf{5 \%}$)
Weather	64	37	372	$473 \mathbf{(3 0 \%)}$
Other	39	26	307	$372 \mathbf{(2 4 \%)}$
Total	$\mathbf{1 8 3}$	$\mathbf{1 7 1}$	$\mathbf{1 2 1 4}$	$\mathbf{1 5 6 8}$

Special caution should be taken when analyzing these results. Despite the observation that bad weather is the dominant factor there are a number of several other hidden reasons that can eventually lead to ship capsizing. Capsizing can in fact be the result of some specific existent environmental conditions in which a ship is moving combined with some human errors that take place, either before or during the trip. The exposure of the vessel to the extreme environmental conditions can therefore be the result of these human errors. Furthermore, human errors, imposed during the design process, weight growth modifications, loading or handling of the ship, can cause reduction of its reserve stability, resulting in a vessel more vulnerable to heavy weather where heeling moments are applied by the winds and waves, at the same time, and where synchronicity with waves can happened. Figure 38^{15} schematically shows a fault tree of combined human actions and environmental difficulties that can lead to capsize.

[^13]

Figure 38: Fault tree for capsize

6.2. Identification of the Costs

The aspects of marine casualties, in terms of costs, associated with total loss of a ship will be briefly discussed. Thorough knowledge of costs is an important factor that should be taken into consideration when developing safety regulations and systems, or when
characterizing the severity of vessel casualties or dealing with the risk assessment. The objective of this section is therefore to identify the prevailing cost variables, and to estimate their values where possible.

6.2.1. Costs Applied to the Shipping Industry

The direct cost of total loss of a seagoing vessel falls to the following categories:

6.2.1.1. Seafarers and Passengers

Some of the possible prospective costs are summarized below:

- Loss of life, personal injury or incapacitation. This can raise claims from the seafarers' party in order to have their livelihood assured.

6.2.1.2. Vessel Owners

The direct costs that an owner has to pay because of an accident that resulted in vessel total loss are:

- The physical loss of a vessel. This could be compounded by financial loss if:
a) the ship has secure employment, and therefore a guaranteed income stream,
b) the owner is accused and found guilty for negligence, thereby forfeiting any right for compensation. In general, the insured value of a ship is usually bigger than its actual market value.
- Higher hull and machinery (H\&M) insurance premiums. These costs are applicable only if the ship-owner replaces the lost ship and/or if he owns other vessels.
- Loss of freight earnings from a voyage during which the loss occurs, assuming that the ship is on charter. The non-fulfillment of a charter can, depending on market conditions, involve a significant loss of revenues.
- Compensation claims for oil pollution-related environmental damage.
- Other third-party claims for compensation if an accident occurs. For example, such claims could originate from members of the crew or passengers as a result of personal injury or crew relatives in response to death of crew members. Likewise, when cargo is lost, the cargo owner, the charterer or the shipper may claim his rightful compensation.
- Higher subsequent P\&I insurance premiums as a result of such claims, as mentioned above.
- Adverse public relations, although this depends on how well recognized the company is. For example, a large multinational oil company such as Exxon incurred significant adverse publicity after the 1989 oil spill from the "Exxon Valdez". On the other hand, few independent ship-owners are known to the general public, so these suffer little risk of consumer boycotts, or other direct
action against a casualty incident. The potential harm that adverse publicity can cause to a well-known corporation has driven many oil companies in distancing themselves from direct ownership of tankers in recent years. This has been achieved by providing independent ship-owners with long-term time charters. Also, unfavorable publicity can lead to a possible decline in the share price and capitalized value of the ship-owner if the involved, in a ship loss, is a well known company.
- Potential loss of confidence from charterers or shippers, if the owner is considered to be responsible for the loss of the vessel.
- Direct financial penalties, if the company is found to have violated national or state legislation (These penalties are generally more applicable to incidents including environmental damage rather than total losses, even though fatalities are more frequently associated with the latter case). Depending on the magnitude of the offence and which country's regulations have been breached the size of penalty may vary accordingly.
- The costs of litigation, in case the company gets sued for its actions, plus those of enacting any sentence imposed. These can be significantly large should a serious pollution has arisen.
- A lowering of the owner's credibility, potentially affecting the willingness of some banks to lend money to him afterward.

6.2.1.3. Charterers / Shippers / Cargo Owners

Although this category has not full access to the ship loading or the conditions in which a ship operates, they might suffer possible costs that are related with:

- The potential loss of a cargo. This can have serious consequences if:
a) The commodity being carried possesses a high inborn value.
b) Its loss prevents the operation of an industrial facility to which it is to be delivered. (This can apply even if the cargo has a relatively low unit value, e.g. iron ore).
c) The charterer or shipper does not insure his cargo.
- Adverse publicity if the charterer is widely known. However, many charterers are not necessarily largely known outside the shipping industry community; furthermore, to minimize the risk of suffering bad publicity, some large organizations charter under names that differ from their respective prime corporate identity.

6.2.1.4. Classification Societies

The classification societies have suffered much obloquy for their alleged "complicity" in some of the worst shipping casualty incidents of recent years. Classification societies that ignore international regulations face, consequently, the following costs:

- Adverse publicity if a vessel is in an accident arising from a serious defect that should have led to the society withholding class until it had been rectified.
- Third-party compensation claims, if the society has been negligent or has willfully failed to impose class requirements, resulting in an accident. The magnitude of such penalties varies, depending on the severity and nature of the incident and the legal jurisdiction under which the claim is being pursued. However, societies generally include in any contract with their clients a clause releasing them from liability.

6.2.1.5. Shipbrokers

Apparently, whether a broker is even involved in a voyage that results in a casualty incident depends on the type of ship and whether its owner is not otherwise able to deal directly with a charterer or shipper to secure employment for his vessel. A shipbroker can suffer costs relating to damage caused by a substandard ship if:
I. He fails to advise the buyer or the charterer of a ship that he is merely acting on behalf of the vessel owner, rather than acting as a principal himself, when relaying information and expressing opinions about the ship.
II. He does not notify the charterer of any obvious defects that the vessel may have which are subsequently found to have been responsible for any loss or damage.

In such situations, the broker is deemed to have acted negligently and the costs that he will face in a case of total loss of the vessel are coming from:

- Compensation claims from charterer / cargo owner.

6.2.1.6. P\&I Clubs

These tend to suffer a higher incidence of compensation claims if a club has provided P\&I cover to the owner of a substandard ship. Such vessels are associated with a greater likelihood of accident than well-maintained, well-operated tonnage. Some clubs exercise strict risk assessment procedures, including the inspection of ships for which their clients seek P\&I cover. However, others rely merely on proof being available that the ship complies with class requirements. The costs brought upon P\&I clubs are:

- Remuneration of third-party compensation claims for loss of life, personal injury, loss of cargo \& environmental damage if the vessel owner forfeits his right to limited liability.

6.2.1.7. Marine Underwriters

Companies that provide hull \& maintenance insurance suffer various costs in the event of an accident. These include:

- Reimbursing the owner for the insured value of a ship that has been an actual total loss.

6.2.1.8. Banks and Financial Institutions

Past experience shows that some high profile banks have let themselves become excessively exposed to bad credit risks by lending to owners of questionable merit and credibility. However, many other banks take a more responsible stance and exercise stringent controls on the tonnage on which they will lend and the owners to whom they will provide the respective funds. Depending on how careful they are, banks can in theory face the following costs:

- Financial loss if a vessel on which it has given a mortgage sinks and the owner is found to have been negligent, so forfeiting any right to compensation. However, in practice, the bank would have required some guarantee as a condition of the loan, so should recover the balance of the mortgage regardless of the loss of the ship.
- Financial loss if a vessel owner proves to be insolvent.
- Direct fines, but only if the bank is actively involved in the operation of a ship, rather than being a mere lender. However, this situation could change if the bank had reason to foreclose on a mortgage and thereby became a lender in possession. Furthermore, under leasing arrangements, a bank is effectively the owner of the ship. As such, it could therefore be liable to any penalties imposed.

Table 4 summarizes the costs described above:

Table 4: Direct costs of ship total loss for respective parties

Party	Potential Costs Incurred
Seafarers / Passengers	Loss of life / personal injury
Ship-owners	Loss of insured vessel
	Higher H\&M insurance
	Third-party compensation claims
	Higher P\&I insurance
	Adverse publicity
	Financial penalties
	Litigation
	Reduction in credit rating
Cargo Owner / Charterer/ Shipper	Loss of cargo
	Possible disruption to operations at facility to which cargo is being delivered
	Adverse publicity
Banks	Loss of vessel
	Financial penalties
Marine Underwriters	Payment of insured value of vessel provided that loss is not proven to have resulted from ship owner's negligence.
P\&I Clubs	Payment of third-party compensation claims for loss of life, personal injury, loss of cargo \& environmental damage.
Classification Societies	Adverse publicity
	Financial penalties
Shipbrokers	Compensation claim from charterer / cargo owner

6.2.2. Costs outside shipping industry

The cost of ship losses has also implications on the society through the damage caused to the environment. The estimation of damage to the maritime environment through an oil or chemical discharge and whom it may concern is a very difficult task in the present state of knowledge. But it is almost certain that would cause:

- physical effects on the biological environment
- lost recreational values
- effects on the tourist industry
- economic consequences for the fishing industry
- cost of restoration measures

6.3. Values of several damages

As it becomes evident from the previous sections, calculating the costs associated with the total loss of the vessels can be an extremely complicated procedure. Taking into account that the collection of cost data is a cumbersome and time-consuming task, their calculation is almost impossible for anyone having no direct access. In fact the shipowners' cost data can be characterized as trade secrets and therefore kept unexposed to the general public. Therefore, the various costs involved will be estimated as a whole, as its categorization to the several related parties is beyond the scope of this thesis. Hence, based mainly on published and web sources, this study will try to collect statistical data of several accidents under extreme weather conditions that led to the total loss of the ship. Furthermore, this data will be analyzed, and approximate values for each case will be applied in order to calculate an estimate of the total loss cost of a vessel. In future steps, when available cost data is available, the methodology and formulas derived below can be enhanced, in order to give more accurate estimations.

All costs quoted are 2006 prices and expressed in US dollars. The inflation rate used to modify some of the prices to present value of money (NPV - Net Present Value) was assumed to be two percent (2\%).

6.3.1. Value of Life

Any attempt to put a value on human life runs into a number of difficulties, the most fundamental of which is the objection that the value of life cannot be measured in monetary terms. However, as a part of everyday performance of both the legal system and the insurance industry, such evaluations must be, and are regularly carried out. An extensive literature exists on the value of human life and only the adequate price estimates will be quoted.

The value of human life is measured in two ways: a) in terms of a person's expected lifetime earnings and b) in terms of industry's expenditure on safety measures per life
saved. The first method gives an estimated value of the life of a seaman to be about 1.2 million US\$(1980); the second method estimates the value to be 1.4 million US $\$(1980)^{16}$. The value of human life lost in a road accident can be calculated, for several countries and these costs are given below:

- Great Britain ${ }^{17}$: 902,500 Great Britain Pounds per fatality (1994)
- United States: 2,600,000 US dollars per fatality (1994)
- Canada ${ }^{18}: 2,900,000$ Canadian dollars per fatality (1998)
- Australia: 1,500,000 Australian dollars per fatality (1996)

In the following table, Table 5 all the above are converted to US dollars (2006), using a common inflation rate of 2% and a conversion rate between different currencies as it was on April, 21 2006.The average cost of human life per fatality coming from the different methods will be assumed for the calculations carried on from that point:

Table 5: Calculation of cost per fatality using different estimations

	Initial Value	Value(2006)	Conversion Rate (21-Apr-2006	$\begin{aligned} & \text { Value(2006) in } \\ & \text { USD } \end{aligned}$
Method 1	1.4mUSD(1980)	2,342,785 USD	1.0000	\$2,342,785
Method 2	1.2m USD(1980)	2,008,101 USD	1.0000	\$2,008,101
Method 3	$0.9 \mathrm{~m} \mathrm{GBP}(1994)$	1,144,588 GBP	1.7783	\$2,035,432
Method 4	2.6m USD(1994)	3,297,428 USD	1.0000	\$3,297,428
Method 5	2.9m CUD(1998)	3,397,812 CUD	0.8798	\$2,989,395
Method 6	1.5m AUD(1996)	1,828,491 AUD	0.7378	\$1,349,061
Average				\$2,337,034

The cost of injuries is less a matter of opinion than the value of a life. However, the lack of knowledge on the distribution of the severity of injuries makes a detailed analysis impossible. A rough average estimate from references [9], [10], [13] and [14] indicates almost $1 / 30$ of the cost of a fatality to be spent for an average injury. Therefore a 77,901 US\$ per injury will be used for further calculations. When using this estimate, it is assumed that the severity distribution of injuries in maritime casualties is the same as in road accidents.

6.3.2. Value of Damage to Property

The second-hand market value is generally assumed to be the best indication of the value of a vessel. This viewpoint is adopted here and the values of ships totally lost are taken to be equal to their second-hand prices. Published ships sales in the second-hand market were collected. Reference [11] summarizes the data collected for the sales of second hand

[^14]ships for the years 2002-2006 (sales of the first two months of 2006 are included). The total number of ships sold each year, the total deadweight tonnage they weighed and the total amount of money spent for the acquisition of these ships are presented in two tables. Table 6 presents the values for bulk carriers and Table 7 presents the values for tankers. Bulk carriers, Ro-Ro, Passenger ships, and Containerships are included in the first category. Tankers, Liquefied Petroleum Gas Carriers (LPG) and Liquefied Natural Gas Carriers (LNG) fall into the second category.

Table 6: Total outlays in $\mathbf{2 0 0 6}$ US \$ for bulk Carriers (Ro-Ro, Passenger Ships, Containerships incl.)

Year	Number of Vessels Sold	Total Outlays in current year US $\$$	Total Outlays in 2006 US $\$$	Total Deadweight	US\$/ton
2002	724	$5,288,660,000$	$5,724,615,667$	$28,724,712$	199.29
2003	931	$8,903,350,000$	$9,448,306,247$	$33,625,481$	280.99
2004	1174	$17,590,000,000$	$18,300,636,000$	$40,447,590$	452.45
2005	847	$15,386,630,000$	$15,694,362,600$	$33,165,379$	473.22
2006	140	$2,909,470,000$	$2,909,470,000$	$5,979,308$	486.59
				Average	$\mathbf{3 7 8 . 5 1}$

Table 7 : Total outlays in 2006 US \$ for tankers (LNG, LPG incl.)

Year	Number of Vessels Sold	Total Outlays in current year US\$	Total Outlays in $\mathbf{2 0 0 6}$ US $\$$	Total Deadweight	US\$/ton
$\mathbf{2 0 0 2}$	291	$3,340,960,000$	$3,616,362,549$	$20,941,191$	172.69
2003	531	$10,662,590,000$	$11,315,225,809$	$45,792,468$	247.10
2004	667	$16,398,000,000$	$17,060,479,200$	$57,501,260$	296.70
2005	549	$16,278,910,000$	$16,604,488,200$	$39,485,311$	420.52
2006	95	$3,468,280,000$	$3,468,280,000$	$8,493,165$	408.36

The total value of the ship per ton will be assumed as the average of the price for each year, converted again to 2006 US\$ value. This assumption, while not realistic, is a good first approximation that can replicate the market prices cycle. Another assumption is that the actual price of a second hand ship that would replace the lost vessel when total loss occurred should differ from the price derived from the data collected for the years between 2002 and 2006. The fluctuations in the shipping market lead to a 5 -year data collection of second hand ship prices in order to reflect the average price per ton. The number of total losses due to bad weather conditions between years 1960 to present, for all types of ships, is about 1890 and it would be extremely difficult to assess the secondhand value of each ship separately by taking the known prices of ships of the same type and about the same age and size and then taking the average. The method of taking the average of the price per ton and then derive a formula, characteristic of the costs associated with the total loss, would not be very accurate but it would be indicative and useful.

6.3.3. Value of Environmental Damage

The determination of the economic value of damage to the maritime environment through an oil or chemical discharge is a very difficult task in the present state of knowledge. As the existing data does not provide any information about the pollution magnitude of each case, this study will calculate the oil spilled by tankers to the ocean. We will consequently make the assumption that in any accident that caused pollution, the whole cargo was oil and try to evaluate the cleanup costs which give an indication of the magnitude of the economic values involved. According to reference [9], the total cleanup costs were about $46,000,0002006$ US $\$$ for 5,500 tons of oil spilled, thus 8,300 US $\$$ per ton. Unfortunately all the other physical effects due to environmental pollution, described in paragraph 6.2.2, can not be evaluated because the information obtained on the economic consequences of the oil spills which have taken place in connection with the ship casualties is insufficient and no detailed analysis is possible at this stage. It can be mentioned however that the recreational values lost due to the closure of a beach in a tourist site during summer period are estimated to be about 30 to 40 millions US\$. But, these costs cannot be a part of the analysis as the knowledge of the beach closures due to pollution caused by an accident is inadequate.

6.3.4. Value of Cargo

Cargo damage and its associated cost can only be defined after specifying the case of ship accident and the freight. In this thesis cargo damages will therefore be evaluated using the following 2 -step procedure: 1) Cost per ton of some of the major goods carried overseas will be assigned using web sources ${ }^{19}$. 2) Then, an average of these prices will be multiplied by the average deadweight of all the ship lost in order to calculate a non accurate but indicative estimate of cargo costs due to a loss.

Table 8, demonstrates the prices of some of the seaborne commodities carried by bulk carriers, containerships and general cargo ships, in US \$ per metric ton. It should be noted that the following conversions hold:

1 bushel = 35.24 liters $=27.215$ kilograms. Also,
1 box $=18.14 \mathrm{~kg}$

1 pound $=0.454 \mathrm{~kg}$

[^15]Table 8: Major commodities carried bulk carriers, container and general cargo ships

Commodity	Price in US\$ per x -units				kg per x - unit	Price in US\$ per mton
Cocoa	0.73	per	1	pound	0.454	1,617.53
Tea	1.47	per	1	kg	1	1,470.00
Coffee	0.8276	per	1	pound	0.454	1,824.55
Sugar	0.099	per	1	pound	0.454	218.26
Rise	218.52	per	1	mton	1000	218.52
Wheat	130.44	per	1	mton	1000	130.44
Soybean	238.58	per	1	mton	1000	238.58
Corn	2.485	per	1	bushel	27.215	91.31
Cotton	0.5252	per	1	pound	0.454	1,157.87
Wool	7.11	per	1	kg	1	7,110.00
Fish Oil	718	per	1	mton	1000	718.00
Coconut Oil	617	per	1	mton	1000	617.00
Bananas	7.76	per	1	box	18.140	427.78
Orange juice	1.4525	per	1	pound	0.454	3,202.21
Poultry Meat	1218.25	per	1	mton	1000	1,218.25
Meat Livestock	2617.71	per	1	mton	1000	2,617.71
Bovine Meat	4172	per	1	mton	1000	4,172.00
Pork bellies	0.7938	per	1	pound	0.454	1,750.03
Thermal Coal	55	per	1	mton	1000	55.00
Copper	3.08	per	1	pound	0.454	6,790.24
Iron Ore	65	per	1	mton	1000	65.00
Aluminum	1.259	per	1	pound	0.454	2,775.62
Average						1,749.36

Table 9, shows the prices, in US\$ per metric ton, of goods carried by tankers or LNG ships. For clarity of conversion it should be mentioned that the following values where used:

1 gallon $=3.7854$ liters
1 barrel= 42 gallons
Gasoline Density $=0.73722 \frac{\mathrm{~kg}}{\mathrm{lt}}$
Crude Oil Density $=0.847 \frac{\mathrm{~kg}}{\mathrm{It}}$
Brent Oil Density $=0.873 \frac{\mathrm{~kg}}{\mathrm{lt}}$
Natural Gas Density $=0.41 \frac{\mathrm{~kg}}{\mathrm{It}}$

Table 9: Major commodities carried by tankers and LNGs

Commodity	Price in US\$ per \mathbf{x}-units			kg per x-unit	Price in US\$ per mton	
Brent crude	74.57	per	1	barrel	134.660	553.77
Crude oil	73.95	per	1	barrel	138.790	532.82
Natural gas	210	per	1000	m 3	410.000	512.20
Unleaded gasoline	2.181	per	1	gallon	2.791	781.44
Average						595.05

6.4. Calculations

This section deals with the calculation of the cost relating to ship losses. The presented data was collected using a trial version of the software SEA-WEB ${ }^{\circledR}$, developed by Lloyds. The search criteria posed, concern the total ship losses in bad weather conditions for the period between years 1960 and 2005. The outputs of this search were:

- Name of the lost ship
- Date of loss
- Number of people killed
- Cargo that the ship carried
- Deadweight
- Gross tonnage of the ship during the loss
- Whether there was a pollution or not

The extracted data was analyzed and organized in tables, which are presented in appendices VII through X. Table 10 summarizes that data:

Table 10: Cumulative data for ship accidents per type for the period 1960-2005

Bulk Carriers	Number of Accidents	Deadweight (mton)	Gross Weight(mton)	Number of Killed/Missing)
	75	3261035	1807729	797
	39	56882	50823	68
General Cargo	626	84697		2541
Tankers	68	2923869	1814262	2371
TOTAL	$\mathbf{8 1 6}$	$\mathbf{7 1 6 3 5 0 9}$	493840	319

Figure 39 demonstrates that bulk carriers and general cargo ships lost under heavy weather conditions represent the largest proportion in terms of deadweight percentage. The loss of tankers follows by 12%, while the loss of Passengers ships/Ro-Ro/Ferries and containerships is rather uncommon ($\sim 1 \%$).

Figure 39: Deadweight percentage of totally lost vessels per ship category

From a number of casualties perspective (Figure 40), however, Passenger Ships/Ferries/Ro-Ro are responsible for the largest portion (42\%). These are followed by General Cargo ships (39\%) which increased in proportion due to the great number of accidents that happened in this category of seagoing vessels during the last 50 years. Tankers, Bulk carriers and Containerships contribute to only a small portion of the total fatalities ($\sim 19 \%$).

Figure 40: Killed/Missing people percentage due to ship total loss per ship category
In order to calculate the average costs, as previously mentioned, two major categories for the second hand prices will be assumed. Bulk carriers, containerships, passenger ships, ferries, Ro-Ro and general cargo ships will be handled as they have the same second hand prices. The same assumption will be employed for tankers, LNG and LPG ships. In dealing with the lost cargo the same two categories will be used, with the only difference
being that for ships carrying passengers there is no cargo. For all the other ships their gross tonnage will be assumed to be the weight of the lost cargo. Furthermore a comment is due on the pollution related costs of ships carrying oil. Generally speaking one can avoid the consideration of pollution issues as some of lost oil carrying ships rest on the ocean bed with their tanks sealed. It is generally accepted, hwovere, that the highly corrosive saline environment of the ocean water gradually degrades the ship with the great possibility of oil to escape and create a pollution issue. In order to incorporate this issue in our analysis it will be assumed that 50 per cent of the accidents involved tankers caused a pollution issue.

The following table, Table 11, presents the average cost of a total loss of a ship, in 2006 US\$, for each category. The previously mentioned assumptions were used in a MathCAD ${ }^{\circledR}$ code that calculated the total cost. The details of these are presented in Appendix XI.

Table 11: Average costs per accident for each category

	Human Life Cost	Vessel Cost	Cargo Cost	Clean-Up Cost	Total
Bulkcarriers	$24,830,000$	$16,460,000$	$42,160,000$	n/a	$\mathbf{8 3 , 4 5 0 , 0 0 0}$
Tankers	$10,960,000$	$3,804,000$	$4,321,000$	$30,140,000$	$49, \mathbf{2 2 5 , 0 0 0}$
Containerships	$19,860,000$	$2,691,000$	$11,110,000$	n / a	$33,661,000$
General Cargo	$8,852,000$	$1,768,000$	$5,070,000$	n / a	$15,690,000$
Passenger Ships	$152,300,000$	822,000	n / a	n / a	$153,122,000$

6.5. Assumptions \& future steps

This section summarizes the assumption made in our calculations and aims in pointing out the simplifications made during the calculation procedure. The lack and inaccessibility of data were the primary reasons that led to the following treatement. Thus, this procedure may contain inaccuracies that should be improved as more data becomes available. The major assumptions made are:

- The value of life is calculated using the value assigned for that in the richest and the most economical powerful countries. It is a fact however that the majority of seamen (except for the captain) are coming from poor countries (Eastern Europe, China and South-East Asia, Africa) where the value of life is considerably less than the derived one. Furthermore, accidents are assumed to happen in countries that have no strong regulations that would prevent the bad handling of the ship in the altar of the ship-owner's profit (overloading, indifference of ship condition etc.)
- The value of second hand price is derived from the past five year data which cannot give with great accuracy the value of a ship sunk fifty years ago. Also the analysis made treats all the types of ships as two major categories and the value derived is based on the deadweight tonnage as previously described.
- The environmental related cost is calculated as the clean-up costs due to the oil spills. Such a physical disaster is usually associated with implications on tourism, fishery or wild life. These additional implicit costs are not included in our
analysis. Finally, the percentage of ships causing environmental pollution (fifty per cent of the tonnage carried is spilled to the ocean) was arbitrarily chosen.
- The cargo's value is taken as the average of some products usually carried through the ocean routes and the gross tonnage of the commodities carried is multiplied by the average prices of these commodities.

It should be noted that the accurate procedure of finding the average costs of total losses of ships during the last five decades is completed through the following steps:

- Access each case separately
- Calculate the costs associated with this loss
- Convert the total cost of each case in 2006 money value
- Divide the total cost of all ships' losses with the number of cases to find the average per ship cost of each case

6.6. Conc/usions

Throughout Chapter 6 we presented estimates of the costs associated with a potential ship loss. In what follows we demonstrate how these estimated costs can be used for decision making processes, either by ship owners, insurance companies, or even ship manufacturers.

The decision tree for such an evaluation process is:

where:

- x is the probability of a fatal accident happening during the designed lifespan of the of a ship, Y.
- C_{T} is the net present value of the total cost associated with the ship loss and the profits that the ship has contributed until that time.
- P_{j} is the profit made by the ship in year- j
- The inflation rate is assumed to be constant throughout the years and equal to i , while the initial capital investment for buying the ship is denoted by D .

The earnings in today's money can be calculated as:

$$
A=-D+\sum_{1}^{Y} \frac{P_{j}}{(1+i)^{j}}
$$

and the expected monetary value of the decision will be

$$
E M V=\left[(1-x) \cdot A+x \cdot C_{T}\right]
$$

Consequently, one can make an investment or insurance decision based on the resulting EMV. In general positive EMV's denote an investment opportunity where profit is made, whereas negative EMV's suggest an incurred cost. It must be noted however that the personal preference (risk aversion) of the decision maker has not been included in our analysis. There are however advanced theories (utility theory) that can improve the previous decision process.

The above simplified analysis demonstrates the value and use of the estimated costs associated with a ship loss. One can make the decision as whether to purchase a ship, insure the ship to minimize risk, or simply wait for a better opportunity. Furthermore this analysis can be used by ship manufacturers or ship owners to make a feasibility cost study of potential routes in reducing the possibility of ship loss, either through reduction of the human factor by training personnel or refining the design of a new ship to increase its robustness in severe weather conditions.

REFERENCES

[1] Seakeeping Division of NAVSEA Warfare Centers (Carderock Division)
[2] www.globalsecurity.com
[3] http://www.efunda.com/math/areas/IndexArea.cfm
[4] Principles of Naval Architecture Volume I \& III
[5] http://web.nps.navy.mil/
[6] IMO Intact Stability Code, 10 June 2005
[7] International Underwriting Association (IUMI Conference, London 2000)
[8] Human Reliability And Ship Stability by Robert D,G. Webb \& Tabbeus M. Lamoureux ,July 4,2003
[9] Studies on Ship Casualties In the Baltic Sea, P.Tuovinen, V.Kostilainen- 1984
[10] Transportation Cost and Benefit Analysis-Safety and Health Costs, Victoria Transport Policy Institute
[11] Shipbrokers: http:// www.cotzias.gr
[12] http://markets.usatoday.com/custom/usatoday-com/html-commodities.asp
[13] Accident costing using value transfers Juha Tervonen, Technical research center of Finland, 1999
[14] Transportation Cost and Benefit Analysis - Safety and Heath Costs Victoria Transport Policy Institute (www.vtpi.org)

Appendix I:DATA USED FOR THE CONSTRUCTION OF RIGHTING ARM CURVES

Nomenclature

Disp $=$ Ship Displacement in metric tons
$\Delta=$ Ship Displacement in kilograms.
Although they defined as above, MathCAD recognizes both Disp and Δ with units of mass.
$\Delta_{44}=$ Moment of inertia of the ship around the roll axis
$\mathbf{A}_{44}=$ Added mass moment of inertia of the hull around the roll axis
$\mathbf{B}_{44}=$ Roll damping Coefficient
$\mathrm{C}_{44}=$ Restoring force coefficient
$\mathbf{N}(\varphi)=$ cubic spline represents the righting arms versus angle of heeling for tumblehome (GM=1.5m)
$\Xi(\varphi)=$ cubic spline represents the righting arms versus angle of heeling for wall-sided (GM=1.5m)
$\mathbf{O}(\varphi)=$ cubic spline represents the righting arms versus angle of heeling for flare angle ($\mathrm{GM}=1.5 \mathrm{~m}$)
$\Pi(\varphi)=$ cubic spline represents the righting arms versus angle of heeling for tumblehome (GM=2.0m)
$\mathbf{P}(\varphi)=$ cubic spline represents the righting arms versus angle of heeling for wall-sided (GM=2.0m)
$\Sigma(\varphi)=$ cubic spline represents the righting arms versus angle of heeling for flare angle (GM=2.0m)
$\Gamma=$ A function has no meaning. It helps MathCAD to understand what to solve

Data for Medium ew=1.5m

Tumblehome
$\left.\times 1=\left(\begin{array}{c}0 \\ 0.087 \\ 0.175 \\ 0.262 \\ 0.349 \\ 0.524 \\ 0.576 \\ 0.611 \\ 0.663 \\ 0.698 \\ 0.75 \\ 0.82 \\ 0.89 \\ 0.96 \\ 1.029 \\ 1.082 \\ 1.152 \\ 1.222\end{array}\right) \quad \begin{array}{c}0 \\ \\ \hline\end{array}\right)=\left(\begin{array}{c}0.144 \\ 0.24 \\ 0.312 \\ 0.348 \\ 0.384 \\ 0.372 \\ 0.36 \\ 0.336 \\ 0.312 \\ 0.276 \\ 0.216 \\ 0 . \\ 0.18 \\ 0.144 \\ 0.096 \\ 0.048 \\ -0.048\end{array}\right)$

Tumblehome

$0:=\operatorname{cspline}(x 1, y 1)$
$N(\phi):=\operatorname{intarp}(0, x 1, y 1, \phi)$

Wall Sided

Wall sided

```
p:= cspline(x2 y y2)
```

$$
E(\phi):=\operatorname{interp}(p, x 2, y 2, \phi)
$$

Fare

Flare

```
q:= espline(x3,y3)
```

$0(\phi)=\operatorname{intarp}(4, x 3, y 3, \phi)$

patif or Large CM=20m

Tumblehome

Tumblehome
$r:=\operatorname{cspline}(x 4, y 4)$
$\Pi(\phi):=\operatorname{intarp}(r, x 4, y 4, \phi)$

Wall Sided

$\left.\times 5=\left(\begin{array}{c}0 \\ 0.087 \\ 0.175 \\ 0.262 \\ 0.349 \\ 0.524 \\ 0.698 \\ 0.838 \\ 0.908 \\ 0.96 \\ 0.995 \\ 1.03 \\ 1.082 \\ 1.222 \\ 1.396 \\ 1.414 \\ 1.484 \\ 1.745\end{array}\right) \quad \begin{array}{c}0 . \\ \\ \end{array} \quad \begin{array}{c}0 \\ 0.192 \\ 0.352 \\ 0.552 \\ 0.672 \\ 0.96 \\ 1.164 \\ 1.368 \\ 1.476 \\ 1.512 \\ 1.524 \\ 1.536 \\ 1.524 \\ 1.404 \\ 1.068 \\ 1.044 \\ 0.852 \\ 0.024\end{array}\right)$

Wall Sided

```
s= cspline (x5,y5)
```

$P(\phi):=$ interp $(s, x 5, y 5, \phi)$

Fare

$x 6=\left(\begin{array}{c}0 \\ 0.087 \\ 0.175 \\ 0.262 \\ 0.349 \\ 0.524 \\ 0.698 \\ 0.82 \\ 0.89 \\ 0.925 \\ 0.96 \\ 0.995 \\ 1.03 \\ 1.082 \\ 1.152 \\ 1.222 \\ 1.309 \\ 1.484 \\ 1.658 \\ 1.745\end{array}\right)$
$y 6=\left(\begin{array}{c}0 \\ 0.192 \\ 0.396 \\ 0.588 \\ 0.792 \\ 1.236 \\ 1.704 \\ 2.112 \\ 2.28 \\ 2.328 \\ 2.364 \\ 2.376 \\ 2.388 \\ 2.376 \\ 2.304 \\ 2.208 \\ 2.004 \\ 1.452 \\ 0.756 \\ 0.36\end{array}\right)$

Flare

$\mathrm{u}:=$ espline $(x 6, y 6)$
$\Sigma(\phi)=\operatorname{interp}(u, x 6, y 6, \phi)$

Appendix II: CALCULATION OF THE INTEGRALS FOR
ADDED MASS MOMENT OF INERTIA, A44 AND DAMPING COEFFICIENT, B44

Draft : $\quad \mathbf{T}=\mathbf{8 . 4 1 3 m}$

Sea Water Density: $\quad \rho_{\mathrm{sw}}:=1025 \frac{\mathrm{~kg}}{\mathrm{~m}^{3}}$

Ship Half-Beam
$B(x):=(0.173446 \cdot x) \cdot(0<x \leq 69.494)+12.0548 \cdot(69.494<x<182.88)$
Along the Length:

Calculation of A_{44}

$$
A_{44}:=2.0 .05 T \cdot \rho_{s w} \cdot m^{4} \cdot \int_{0}^{182.88} B(x)^{3} d x
$$

$$
A_{44}=2.624 \times 10^{7} \mathrm{~kg} \cdot \mathrm{~m}^{2}
$$

Calculation of B44

$$
\mathrm{B}_{44}:=2.0 .04 \mathrm{~T} \cdot \mathrm{P}_{\mathrm{sw}} \cdot \sqrt{2 \mathrm{~g}} \cdot \mathrm{~m}^{\frac{7}{2}} \int_{0}^{182.88} \mathrm{~B}(\mathrm{x})^{\frac{5}{2}} \mathrm{dx}
$$

$$
B_{44}=3.06 \times 10^{7} \frac{\mathrm{~kg} \cdot \mathrm{~m}^{2}}{\mathrm{~s}}
$$

Appendix III: MathCAD © CALCULATIONS

$$
\begin{array}{ll}
L_{R}:=182.8800 \cdot \mathrm{~m} & B:=24.10968 \mathrm{~m}
\end{array} \quad \text { Draft }:=8.413 \mathrm{~m}, ~ A_{x}:=3571.4344 \cdot \mathrm{~m}^{2} \quad 152709.25 \cdot \mathrm{~m}^{4}
$$

For use with the differential equation for determining the dynamic roll angle

Note : Unfortunately Mathcad does not allow units inside the differential equation solver, that 's way some formulas are divided by their unit to get a dimensionless number
$\Delta_{44}:=\operatorname{Disp} \cdot \mathrm{kx}^{2} \cdot \frac{1}{\mathrm{~kg} \cdot \mathrm{~m}^{2}}$
$A_{44}:=\left(2.624 \times 10^{7}\right)$

$$
\Delta_{44}+A_{44}=8.62 \times 10^{8}
$$

$B_{44}:=\left(3.06 \times 10^{7}\right)$

$$
B_{44}=3.06 \times 10^{7}
$$

$C_{44}:=\operatorname{Disp} \cdot \mathrm{g} \cdot \frac{\mathrm{sec}^{2}}{\mathrm{~kg} \cdot \mathrm{~m}}$

$$
c_{44}=1.269 \times 10^{8}
$$

$L_{m}=0.19 \mathrm{~m} \quad \begin{aligned} & : \text { length of the ship at the figure which used to } \\ & \text { define the heights of the hull above the waterlin }\end{aligned}$ define the heights of the hull above the waterline
$\lambda:=\frac{L_{R}}{L_{m}} \quad \begin{aligned} & \text { ratio of the length of the real ship over the ratio of } \\ & \text { the length of the ship in the figure }\end{aligned}$ the length of the ship in the figure

The heights of the hull above the waterline

 for the ship of the figure\section*{Long_Pos
 | | 0 |
| ---: | ---: |
| 0 | 0 |
| 1 | $3 \cdot 10^{-3}$ |
| 2 | 0.049 |
| 3 | 0.049 |
| 4 | 0.051 |
| 5 | 0.051 |
| 6 | 0.054 |
| 7 | 0.057 |
| 8 | 0.059 |
| 9 | 0.065 |
| 10 | 0.099 |
| 11 | 0.104 |
| 12 | 0.105 |
| 13 | 0.106 |
| 14 | 0.1125 |
| 15 | 0.1225 |
| 16 | 0.1295 |
| 17 | 0.1305 |
| 18 | 0.1375 |
| 19 | 0.148 |
| 20 | 0.1715 |
| 21 | 0.19 |}

Height :=

	0
0	0
1	0.01
2	0.01
3	0.015
4	0.015
5	0.02
6	0.02
7	0.015
8	0.015
9	0.03
10	0.03
11	0.012
12	0.012
13	0.015
14	0.015
15	0.012
16	0.012
17	0.015
18	0.015
19	0.012
20	0.012
21	0

Ls :=Long_Pos $\cdot \lambda \cdot m$
元
Hs:=Height $\cdot \lambda \cdot m$

The heights of the hull above the waterline for the real ship as estimated by multiplying with the ratio λ

$\rho_{\mathrm{air}}:=1.2 \frac{\mathrm{~kg}}{\mathrm{~m}^{3}}$
$c_{d}:=1$
$j:=0 . . \quad 21$

Area Calculation

$f(j):=0.5 \cdot\left(H s_{j}+H s_{j+1}\right) \cdot\left(L s_{j+1}-L s_{j}\right)$

Area $:=\sum_{j=0}^{20} f(j) \quad$ Area $=2.689 \times 10^{3} \mathrm{~m}^{2}$
$a(j)=0.5 \cdot\left(H s_{j}+H s_{j+1}\right) \cdot\left(L s_{j+1}-L s_{j}\right) \cdot \frac{\left(H s_{j}\right)^{2}+H s_{j} \cdot H s_{j+1}+\left(H s_{j+1}\right)^{2}}{3\left(H s_{j}+H s_{j}+1\right)}$
$M_{x}:=\sum_{j=0}^{20} a(j)$
$M_{x}=2.514 \times 10^{7} L$

Centroid $y:=\frac{M_{x}}{\text { Area }} \quad$ Centroid $y=9.35 \mathrm{~m}$

Force Calculation

$F_{W}(\mathrm{Va}, \theta):=\frac{1}{2} \cdot \rho_{\text {air }} \cdot\left(0.5144 \frac{\mathrm{~m}}{\sec } \mathrm{Va} \cdot \sin (\theta)\right)^{2} \cdot C_{d} \cdot \sum_{j=0}^{20} f(j)$

Moment Calculation
$d(j):=f(j) \cdot \frac{1}{2} \cdot\left(\frac{H s_{j}}{2}+\frac{H s_{j}+1}{2}+\right.$ Draft $)$
$M(\operatorname{Va}, \theta):=\frac{1}{2} \cdot \rho_{\text {air }} \cdot\left(0.5144 \cdot \frac{m}{\sec } \operatorname{Va} \cdot \sin (\theta)\right)^{2} \cdot C_{d} \cdot \sum_{j=0}^{20} d(j)$

Static Case Roll Angle

For Tumblehome Ship with GM=1.5 m
$\Gamma_{N}(x):=M\left(V_{a}, \theta\right) \cdot \cos (x)^{2}-$ Disp $\cdot g \cdot m \cdot N(x)$
$\mathrm{SOL}_{\mathrm{N}}:=\frac{180}{\pi} \cdot \operatorname{root}\left(\Gamma_{\mathrm{N}}(x), x, 0, \pi\right)$

For Wall Sided Ship with GM=1.5 m

$\Gamma_{\Xi}(x):=M\left(V_{a}, \theta\right) \cdot \cos (x)^{2}-$ Disp $\cdot g \cdot m \cdot \Xi(x)$

SOLE $:=\frac{180}{\pi} \cdot \operatorname{root}\left(\Gamma_{\Xi}(x), x, 0, \pi\right)$

For Flare Sided Ship with GM=1.5 m

$\Gamma_{0}(x):=M\left(v_{a}, \theta\right) \cdot \cos (x)^{2}-\operatorname{Disp} \cdot g \cdot m \cdot O(x)$

SOL $_{O}=\frac{180}{\pi} \cdot \operatorname{root}\left(\Gamma_{O}(x), x, 0, \pi\right)$
$\Gamma_{\Pi}(x):=M\left(v_{a}, \theta\right) \cdot \cos (x)^{2}-$ Disp $\cdot g \cdot m \cdot \Pi(x)$

$$
\operatorname{soL}_{\Pi}:=\frac{180}{\pi} \cdot \operatorname{root}\left(\Gamma_{\Pi}(x), x, 0, \frac{\pi}{3}\right)
$$

For Wall Sided Ship with GM=2.0 m

$$
\Gamma_{P}(x)=M\left(v_{\mathrm{a}}, \theta\right) \cdot \cos (x)^{2}-\text { Disp } \cdot g \cdot m \cdot P(x)
$$

$$
\text { soL } P:=\frac{180}{\pi} \cdot \operatorname{root}\left(\Gamma_{P}(x), x, 0, \frac{\pi}{3}\right)
$$

For Flare Sided Ship with GM=2.0 m
$\Gamma_{\Sigma}(x):=M\left(v_{a}, \theta\right) \cdot \cos (x)^{2}-$ Disp $\cdot g \cdot m \cdot \Sigma(x)$
soL $\Sigma=\frac{180}{\pi} \cdot \operatorname{root}\left(\Gamma_{\Sigma}(x), x, 0, \frac{\pi}{3}\right)$

Dynamic Case Roll Angle

$\Delta_{44}+A_{44}=8.62 \times 10^{8}$
$B_{44}=3.06 \times 10^{7}$
$c_{44}=1.269 \times 10^{8}$
$D:=M\left(V_{a}, \theta\right) \frac{1}{J}$

For Tumblehome Ship with GM=1.5 m

Given

$$
\left(\Delta_{44}+A_{44}\right) \cdot \frac{d^{2}}{d t^{2}} \phi(t)+B_{44} \cdot \frac{d}{d t} \phi(t)+C_{44} \cdot N(\phi(t))=D \cdot \cos (\phi(t))^{2}
$$

$\phi(0)=0$ $\phi^{\prime}(0)=0$
$\phi 1:=$ Odesolve ($t, 200$)

For Tumblehome Ship with GM=2.0 m
Given
$\left(\Delta_{44}+A_{44}\right) \cdot \frac{d^{2}}{d t^{2}} \phi(t)+B_{44} \cdot \frac{d}{d t} \phi(t)+C_{44} \cdot \Pi(\phi(t))=D \cdot \cos (\phi(t))^{2}$
$\phi(0)=0 \quad \phi^{\prime}(0)=0$
$\phi 2$:= Odesolve ($t, 200$)

For Wall Sided Ship with GM=1.5 m

Given
$\left(\Delta_{44}+A_{44}\right) \cdot \frac{d^{2}}{d t^{2}} \phi(t)+B_{44} \cdot \frac{d}{d t} \phi(t)+C_{44} \cdot \Xi(\phi(t))=D \cdot \cos (\phi(t))^{2}$
$\phi(0)=0$
$\phi^{\prime}(0)=0$
$\phi 3:=$ Odesolve ($\mathrm{t}, \mathbf{2 0 0}$)

For Wall Sided Ship with GM=2.0 m

Given
$\left(\Delta_{44}+A_{44}\right) \cdot \frac{d^{2}}{d t^{2}} \phi(t)+B_{44} \cdot \frac{d}{d t} \phi(t)+C_{44} \cdot P(\phi(t))=D \cdot \cos (\phi(t))^{2}$
$\phi(0)=$
$\phi^{\prime}(0)=0$
$\phi 4$:= Odesolve ($t, 200$)

For Flare Sided Ship with GM=1.5 m

Given
$\left(\Delta_{44}+A_{44}\right) \cdot \frac{d^{2}}{d t^{2}} \phi(t)+B_{44} \cdot \frac{d}{d t} \phi(t)+C_{44} \cdot O(\phi(t))=D \cdot \cos (\phi(t))^{2}$
$\phi(0)=0 \quad \phi^{\prime}(0)=0$
$\phi 5:=$ Odesolve ($t, 200$)

For Flare Sided Ship with GM=2.0 m
Given

$$
\begin{aligned}
& \left(\Delta_{44}+A_{44}\right) \cdot \frac{d^{2}}{d t^{2}} \phi(t)+B_{44} \cdot \frac{d}{d t} \phi(t)+C_{44} \cdot \Sigma(\phi(t))=D \cdot \cos (\phi(t))^{2} \\
& \phi(0)=0 \quad \phi^{\prime}(0)=0
\end{aligned}
$$

Samples of MathCAD runs

(wind speeds $\mathrm{V}_{\mathrm{a}}=80$ knots for different hull forms and different initial metacentric heights)

Flare-Sided GM=1.5m

Enhanced MathCAD code to calculate the roll angles under the effect of the rising of the wateline as the ship heels

$$
\text { Ls }:=\text { Long_Pos } \cdot \lambda \cdot m \quad \text { Hs }:=\text { Height } \cdot \lambda \cdot m
$$

Br is the beam of the ship at the respective longitudinal position

$\rho_{\text {air }}:=1.2 \frac{\mathrm{~kg}}{\mathrm{~m}^{3}}$
$C_{d}:=1$
$\mathrm{j}:=0 . . \quad 21$

Area Calculation

$\mathrm{f} 1(\mathrm{j}, \phi):=0.5 \cdot\left(H s_{\mathrm{j}} \cdot \cos (\phi)+\frac{\mathrm{Br} \mathbf{j} \cdot \sin (\phi)}{2}+H \mathrm{~s}_{\mathrm{j}+1} \cdot \cos (\phi)+\frac{B r_{\mathrm{j}+1} \cdot \sin (\phi)}{2}\right) \cdot\left(L s_{\mathrm{j}+1}-L s_{\mathrm{j}}\right)$

Force Calculation

$F 1(\mathrm{Va}, \theta, \phi):=\frac{1}{2} \cdot \rho_{\mathrm{air}} \cdot\left(0.5144 \frac{\mathrm{~m}}{\mathrm{sec}} \mathrm{Va} \cdot \sin (\theta)\right)^{2} \cdot \mathrm{C}_{\mathrm{d}} \cdot \sum_{\mathrm{j}}^{20} \mathrm{f} 1(\mathrm{j}, \phi)$

Moment Calculation

$\mathrm{d} 1(\mathrm{j}, \phi):=\mathrm{f} 1(\mathrm{j}, \phi) \cdot \frac{1}{2} \cdot\left(\frac{\mathrm{Hs} \mathrm{s}^{2}}{2} \cdot \cos (\phi)+\frac{\mathrm{Br}_{\mathrm{j}} \cdot \sin (\phi)}{4}+\frac{\mathrm{Hs}_{\mathrm{j}+1}}{2} \cdot \cos (\phi)+\frac{\mathrm{Br} \mathrm{j}+1 \cdot \sin (\phi)}{4}+\operatorname{Draft} \cdot \cos (\phi)\right)$

M1 $(\operatorname{Va}, \theta, \phi):=\frac{1}{2} \cdot \rho_{\text {air }} \cdot\left(0.5144 \cdot \frac{m}{\sec } \mathrm{Va} \cdot \sin (\theta)\right)^{2} \cdot C_{d} \cdot \sum_{j=0}^{20} d 1(j, \phi)$
D1 $(\phi):=\mathrm{M} 1(\mathrm{~V}$ a $, \boldsymbol{\theta}, \phi) \frac{1}{\mathrm{~J}}$

For given wind speed and Va and wind direction θ in respect to the ship, D1 is function of φ only

Given

$$
\begin{aligned}
& \left(\Delta_{44}+A_{44}\right) \cdot \frac{d^{2}}{d t^{2}} \phi(t)+B_{44} \cdot \frac{d}{d t} \phi(t)+C_{44} \cdot N(\phi(t))=D 1(\phi(t)) \\
& \phi(0)=0 \\
& \phi 1:=\text { Odesolve }(t, 200)
\end{aligned}
$$

For Tumblehome Ship with GM=2.0 m

Given

$$
\begin{aligned}
& \left(\Delta_{44}+A_{44}\right) \cdot \frac{d^{2}}{d t^{2}} \phi(t)+B_{44} \cdot \frac{d}{d t} \phi(t)+C_{44} \cdot \Pi(\phi(t))=D 1(\phi(t)) \\
& \phi(0)=0 \quad \phi^{\prime}(0)=0 \\
& \phi 2:=\text { Odesolve }(t, 200)
\end{aligned}
$$

For Wall Sided Ship with GM=1.5 m

Given
$\left(\Delta_{44}+A_{44}\right) \cdot \frac{d^{2}}{d t^{2}} \phi(t)+B_{44} \cdot \frac{d}{d t} \phi(t)+C_{44} \cdot \Xi(\phi(t))=D 1(\phi(t))$
$\phi(0)=0 \quad \phi^{\prime}(0)=0$
ф3 := Odesolve ($\mathrm{t}, 200$)

For Wall Sided Ship with GM=2.0 m

Given
$\left(\Delta_{44}+A_{44}\right) \cdot \frac{d^{2}}{d t^{2}} \phi(t)+B_{44} \cdot \frac{d}{d t} \phi(t)+C_{44} \cdot P(\phi(t))=D 1(\phi(t))$
$\phi(0)=0$
$\phi^{\prime}(0)=0$
$\phi 4:=$ Odesolve ($\mathrm{t}, 200$)

For Flare Sided Ship with GM=1.5 m

Given
$\left(\Delta_{44}+A_{44}\right) \cdot \frac{d^{2}}{d t^{2}} \phi(t)+B_{44} \cdot \frac{d}{d t} \phi(t)+C_{44} \cdot O(\phi(t))=D 1(\phi(t))$
$\phi(0)=0$
$\phi^{\prime}(0)=0$
$\phi 5:=$ Odesolve ($\mathrm{t}, 200$)

For Flare Sided Ship with GM=2.0 m

Given

$$
\begin{aligned}
& \left(\Delta_{44}+A_{44}\right) \cdot \frac{d^{2}}{d t^{2}} \phi(t)+B_{44} \cdot \frac{d}{d t} \phi(t)+C_{44} \cdot \Sigma(\phi(t))=D 1(\phi(t)) \\
& \phi(0)=0
\end{aligned} \quad \phi^{\prime}(0)=0 . l l
$$

$$
\phi 6:=\text { Odesolve (} t, 200)
$$

Appendix IV: MATLAB© CODE

CODE: Rollangle

```
function rollangle(ship_x, ship_y)
%rollangle is the function that is going to be calculated
%To change time step size, duration of run (sec),
%For Changes in the number of time steps and initial conditions go to the function rk4.
%To change interpolation and/or equationfor d^2\phi _ dt^2 go to the function acceleration
%Parameters
%r_air is the density of the air
%cd is the drag coefficient
r_air = 1.2;
cd = 1;
```

\%b_a is the quotient of the damping coefficient (B44) with the sum of the moment of inertia and
added moment of inertia (D44+A44)
b_a $=3.06 / 86.2 ;$
\%g_a is the quotient of restoring force coefficient (C44) with the sum of the moment of inertia and
added moment of inertia (D44+A44)
$g_{-} a=1.269 / 8.62 ;$
\%M_f is the function that gives the moment applied on the hull by the wind as a function of wind speed and wind direction relative to the ship
M_f = inline('0.5*r_air*(0.5144*va*sin(theta))^2* ${ }^{*}$ cd*3.623*10^4','r_air', 'cd', 'va', 'theta');
\%Wind angles relative to the ship
theta_all $=[1 / 6,0.25,1 / 3,0.5]^{*} \mathrm{pi}$;
\%Wind speed [starting value]:interval:[ending value]
va_all = 50:2:100;
for $\mathrm{a}=1$: length(theta_all)
for $b=1$:length(va_all)
theta $=$ theta_all (a);
va = va_all(b);
M_a = M_f(r_air, cd, va, theta)/8.62*10^(-8);
[x_max(a,b), x_stat(a,b)] = rk4(b_a, g_a, ship_x, ship_y, M_a);
pack
end
end
\%Plotting
\%Max angle
figure(2)
hold on
grid on
plot(va_all, x_max(1,:), va_all, x_max(2,:), va_all, x_max(3,:), va_all, x_max(4,:))

xlabel('va'); ylabel('||phi|_\{dyn, max\}')
\%Static angle
figure(3)
hold on
grid on
plot(va_all, x_stat(1, :), va_all, x_stat(2,:), va_all, x_stat(3,:),va_all, x_stat(4,:))

xlabel('va'); ylabel('\phi_\{static\}')

CODE: rk4

function [x_max, x_stat] = rk4(b_a, g_a, ship_x, ship_y, M_a)
\%This function is used to integrate a 2 nd order ode
\%INPUT
\%Time step size
$\mathrm{k}=0.1$;
\%Duration of run (sec)
N_d = 200;
\%Number of time steps
$\mathrm{Nt}=$ ceil($\mathrm{N} _\mathrm{d} / \mathrm{k}$);
\%Initial conditions
$x=0$;
$x_{-}=0$;
\%for the run of non-zero initial conditions one has to assign values \%for x, x _t
\%
\%Time integration

```
for i=1:Nt
```

 \%Assign values from previous time step
 \(\mathrm{x} 1=\mathrm{x}\);
 \(x_{-} t 1=x_{-} t ;\)
 \(x_{-} t 1=\) acceleration(b_a, \(g_{-} a\), ship_x, ship_y, \(M_{-} a, x_{1}, x_{-} t 1\));
 \%First step
 x1_4=x1 + x_t1*0.5*k;
 \(x_{-} t 1 _4=x_{-} t 1+x_{-} t 1^{*} 0.5^{*} k ;\)
 x_tt1_4 = acceleration(b_a, g_a, ship_x, ship_y, M_a, x1_4, x_t1_4);
 \%Second step
 x1_2= x1 + x_t1_4*0.5*k;
 \(x_{-} t 1 _2=x _t 1+x _t t 1 _4^{*} 0.5^{*} k ;\)
    ```
    x_tt1_2 = acceleration(b_a, g_a, ship_x, ship_y, M_a, x1_2, x_t1_2);
    %Third step
    x3_4= x1 + x_t1_2*k;
    x_t3_4 = x_t1 + x_tt1_2*k;
    x_tt3_4 = acceleration(b_a, g_a, ship_x, ship_y, M_a, x3_4, x_t3_4);
    %Fourth step
    x = x1 + (x_t1+ 2*x_t1_4 + 2*x_t1_2 + x_t3_4)**/6;
    x_t = x_t1 + (x_tt1+ 2*x_tt1_4+ 2*x_tt1_2 + x_tt3_4)*}k/6
    x_rk4(i) = x;
    x_t_rk4(i)= x_t;
end
%Save results
x_max = 180/pi*max(abs(x_rk4));
x_stat = 180/pi*mean(x_rk4(Nt-100:Nt));
% pause
% figure(1)
% plot(1:Nt, x_rk4, 1:Nt, x_t_rk4)
% legend('x' ,'dx_{dt}')
% xlabel('time step')
% ylabel('position')
%
% hold off
```


CODE: Acceleration

\%Interpolation for ship data
d = interp1(ship_x, ship_y, x, 'spline');
\%Equation for acceleration of angle
$x_{_} t t=-b _a^{*} x _t-g_{-} a^{*} d+M_{-} a^{*}(\cos (x))^{\wedge} 2$;

Appendix V: TABLES OF ROLL ANGLES FOR ALL CASES WHEN INITIAL CONDITIONS ARE ZERO

| Tumblehome for $\mathrm{GM}=1.5 \mathrm{~m}$ | | | | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| V Knots | Static | | | | V Knots | Dynamic | | | |
| θ | 30 | 45 | 60 | 90 | θ | 30 | 45 | 60 | 90 |
| 50 | 0.81 | 1.68 | 2.62 | 3.72 | 50 | 1.55 | 3.28 | 5.20 | 7.34 |
| 52 | 0.88 | 1.84 | 2.86 | 4.04 | 52 | 1.69 | 3.58 | 5.70 | 8.09 |
| 54 | 0.95 | 2.01 | 3.15 | 4.39 | 54 | 1.83 | 3.89 | 6.24 | 8.89 |
| 56 | 1.03 | 2.18 | 3.46 | 4.86 | 56 | 1.98 | 4.23 | 6.81 | 9.75 |
| 58 | 1.10 | 2.35 | 3.76 | 5.37 | 58 | 2.13 | 4.58 | 7.42 | 10.66 |
| 60 | 1.18 | 2.52 | 4.03 | 5.80 | 60 | 2.29 | 4.96 | 8.07 | 11.63 |
| 62 | 1.26 | 2.69 | 4.33 | 6.22 | 62 | 2.46 | 5.35 | 8.76 | 12.66 |
| 64 | 1.35 | 2.90 | 4.72 | 6.78 | 64 | 2.63 | 5.77 | 9.50 | 13.74 |
| 66 | 1.44 | 3.13 | 5.16 | 7.47 | 66 | 2.82 | 6.21 | 10.27 | 14.90 |
| 68 | 1.54 | 3.38 | 5.58 | 8.16 | 68 | 3.01 | 6.67 | 11.09 | 16.15 |
| 70 | 1.64 | 3.64 | 5.93 | 8.77 | 70 | 3.20 | 7.16 | 11.94 | 17.51 |
| 72 | 1.75 | 3.87 | 6.31 | 9.33 | 72 | 3.41 | 7.67 | 12.84 | 19.00 |
| 74 | 1.87 | 4.09 | 6.81 | 9.93 | 74 | 3.63 | 8.21 | 13.79 | 20.62 |
| 76 | 1.98 | 4.34 | 7.41 | 10.63 | 76 | 3.85 | 8.78 | 14.79 | 22.37 |
| 78 | 2.10 | 4.65 | 8.01 | 11.54 | 78 | 4.08 | 9.38 | 15.86 | 24.23 |
| 80 | 2.22 | 5.01 | 8.56 | 12.54 | 80 | 4.33 | 10.00 | 17.01 | 26.21 |
| 82 | 2.34 | 5.37 | 9.05 | 13.05 | 82 | 4.58 | 10.65 | 18.25 | 28.32 |
| 84 | 2.46 | 5.68 | 9.54 | 14.01 | 84 | 4.84 | 11.33 | 19.59 | 30.63 |
| 86 | 2.59 | 5.96 | 10.08 | 15.17 | 86 | 5.11 | 12.04 | 21.03 | 33.23 |
| 88 | 2.72 | 6.27 | 10.71 | 16.16 | 88 | 5.40 | 12.78 | 22.56 | 36.30 |
| 90 | 2.86 | 6.66 | 11.51 | 17.85 | 90 | 5.69 | 13.54 | 24.18 | 40.17 |
| 92 | 3.02 | 7.14 | 12.40 | Capsize | 92 | 6.00 | 14.34 | 25.88 | Capsize |
| 94 | 3.19 | 7.64 | 12.95 | Capsize | 94 | 6.31 | 15.19 | 27.68 | Capsize |
| 96 | 3.37 | - 8.12 | 13.41 | Capsize | 96 | 6.64 | 16.07 | 29.60 | Capsize |
| 98 | 3.55 | 8.56 | 14.76 | Capsize | 98 | 6.98 | 17.02 | 31.71 | Capsize |
| 100 | 3.72 | 8.97 | 15.19 | Capsize | 100 | 7.34 | 18.02 | 34.10 | Capsize |

| Tumblehome for $\mathbf{G M}=2 \mathrm{~m}$ | | | | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| V Knots | Static | | | | V_{-}Knots | Dynamic | | | |
| θ | 30. | 45 | 60 | 90^{2} | θ | 30 | 45 | 60 | 90 |
| 50 | 0.64 | 1.31 | 2.00 | 2.74 | 50 | 1.23 | 2.53 | 3.90 | 5.35 |
| 52 | 0.69 | 1.42 | 2.18 | 2.98 | 52 | 1.33 | 2.75 | 4.25 | 5.85 |
| 54 | 0.75 | 1.53 | 2.37 | 3.23 | 54 | 1.44 | 2.98 | 4.62 | 6.37 |
| 56 | 0.81 | 1.65 | 2.56 | 3.50 | 56 | 1.55 | 3.22 | 5.00 | 6.92 |
| 58 | 0.87 | 1.78 | 2.77 | 3.78 | 58 | 1.67 | 3.47 | 5.41 | 7.50 |
| 60 | 0.93 | 1.91 | 2.98 | 4.10 | 60 | 1.79 | 3.73 | 5.84 | 8.11 |
| 62 | 1.00 | 2.05 | 3.20 | 4.43 | 62 | 1.92 | 4.01 | 6.29 | 8.76 |
| 64 | 1.06 | 2.20 | 3.42 | 4.78 | 64 | 2.05 | 4.30 | 6.76 | 9.44 |
| 66 | 1.13 | 2.36 | 3.66 | 5.12 | 66 | 2.19 | 4.60 | 7.25 | 10.15 |
| 68 | 1.20 | 2.52 | 3.92 | 5.46 | 68 | 2.33 | 4.91 | 7.77 | 10.90 |
| 70 | 1.28 | 2.68 | 4.20 | 5.82 | 70 | 2.47 | 5.24 | 8.31 | 11.68 |
| 72 | 1.36 | 2.85 | 4.49 | 6.23 | 72 | 2.63 | 5.58 | 8.87 | 12.49 |
| 74 | 1.44 | 3.02 | 4.79 | 6.69 | 74 | 2.78 | 5.93 | 9.47 | 13.34 |
| 76 | 1.52 | 3.20 | 5.09 | 7.17 | 76 | 2.95 | 6.30 | 10.08 | 14.22 |
| 78 | 1.60 | 3.38 | 5.38 | 7.65 | 78 | 3.11 | 6.68 | 10.72 | 15.13 |
| 80 | 1.69 | 3.58 | 5.69 | 8.11 | 80 | 3.29 | 7.08 | 11.39 | 16.07 |
| 82 | 1.78 | 3.78 | 6.02 | 8.57 | 82 | 3.47 | 7.49 | 12.09 | 17.04 |
| 84 | 1.87 | 4.00 | 6.40 | 9.04 | 84 | 3.65 | 7.92 | 12.81 | 18.03 |
| 86 | 1.97 | 4.23 | 6.80 | 9.55 | 86 | 3.84 | 8.37 | 13.55 | 19.05 |
| 88 | 2.07 | 4.47 | 7.22 | 10.09 | 88 | 4.04 | 8.83 | 14.32 | 20.10 |
| 90 | 2.17 | 4.72 | 7.64 | 10.67 | 90 | 4.24 | 9.31 | 15.11 | 21.19 |
| 92 | 2.28 | 4.96 | 8.04 | 11.27 | 92 | 4.45 | 9.81 | 15.92 | 22.32 |
| 94 | 2.39 | 5.20 | 8.43 | 11.88 | 94 | 4.67 | 10.32 | 16.75 | 23.50 |
| 96 | 2.51 | 5.44 | 8.84 | 12.50 | 96 | 4.89 | 10.85 | 17.60 | 24.74 |
| 98 | 2.62 | 5.69 | 9.26 | 13.12 | 98 | 5.12 | 11.40 | 18.47 | 26.03 |
| 100 | 2.74 | 5.96 | 9.71 | 13.75 | 100 | 5.35 | 11.96 | 19.36 | 27.39 |

| Wall Sided for GM=1.5m | | | | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| V_Knots | Static | | | | V Knots | Dynamic | | | |
| θ | 30 | 45 | 60 | 90 | θ | 30 | 45 | 60 | 90 |
| 50 | 0.96 | 1.93 | 2.90 | 3.86 | 50 | 1.81 | 3.65 | 5.51 | 7.39 |
| 52 | 1.04 | 2.09 | 3.13 | 4.18 | 52 | 1.96 | 3.95 | 5.96 | 8.01 |
| 54 | 1.12 | 2.25 | 3.38 | 4.51 | 54 | 2.12 | 4.26 | 6.44 | 8.66 |
| 56 | 1.21 | 2.42 | 3.64 | 4.85 | 56 | 2.28 | 4.59 | 6.94 | 9.34 |
| 58 | 1.30 | 2.60 | 3.90 | 5.21 | 58 | 2.45 | 4.93 | 7.46 | 10.05 |
| 60 | 1.39 | 2.78 | 4.17 | 5.58 | 60 | 2.62 | 5.28 | 8.00 | 10.79 |
| 62 | 1.48 | 2.97 | 4.46 | 5.96 | 62 | 2.80 | 5.65 | 8.56 | 11.56 |
| 64 | 1.58 | 3.17 | 4.75 | 6.37 | 64 | 2.98 | 6.02 | 9.14 | 12.36 |
| 66 | 1.68 | 3.37 | 5.05 | 6.80 | 66 | 3.17 | 6.42 | 9.75 | 13.20 |
| 68 | 1.78 | 3.57 | 5.37 | 7.25 | 68 | 3.37 | 6.82 | 10.38 | 14.08 |
| 70 | 1.89 | 3.79 | 5.70 | 7.72 | 70 | 3.57 | 7.24 | 11.03 | 14.99 |
| 72 | 2.00 | 4.01 | 6.03 | 8.22 | 72 | 3.78 | 7.67 | 11.70 | 15.95 |
| 74 | 2.11 | 4.23 | 6.39 | 8.73 | 74 | 4.00 | 8.12 | 12.40 | 16.95 |
| 76 | 2.23 | 4.46 | 6.76 | 9.26 | 76 | 4.22 | 8.58 | 13.12 | 18.00 |
| 78 | 2.35 | 4.70 | 7.14 | 9.79 | 78 | 4.45 | 9.05 | 13.88 | 19.09 |
| 80 | 2.47 | 4.95 | 7.55 | 10.31 | 80 | 4.68 | 9.54 | 14.66 | 20.22 |
| 82 | 2.60 | 5.20 | 7.97 | 10.82 | 82 | 4.93 | 10.04 | 15.47 | 21.38 |
| 84 | 2.73 | 5.46 | 8.41 | 11.32 | 84 | 5.17 | 10.56 | 16.32 | 22.55 |
| 86 | 2.86 | 5.73 | 8.86 | 11.84 | 86 | 5.43 | 11.10 | 17.20 | 23.74 |
| 88 | 2.99 | 6.01 | 9.32 | 12.42 | 88 | 5.69 | 11.65 | 18.11 | 24.94 |
| 90 | 3.13 | 6.30 | 9.78 | 13.10 | 90 | 5.96 | 12.22 | 19.06 | 26.14 |
| 92 | 3.27 | 6.59 | 10.23 | 13.88 | 92 | 6.23 | 12.80 | 20.03 | 27.34 |
| 94 | 3.41 | 6.90 | 10.67 | 14.69 | 94 | 6.51 | 13.40 | 21.03 | 28.55 |
| 96 | 3.56 | 7.22 | 11.10 | 15.47 | - 96 | 6.80 | 14.02 | 22.05 | 29.77 |
| 98 | 3.71 | 7.55 | 11.54 | 16.22 | 98 | 7.09 | 14.66 | 23.07 | 31.00 |
| 100 | 3.86 | 7.89 | 12.00 | 17.00 | 100 | 7.39 | 15.32 | 24.10 | 32.25 |

| Wall Sided for GM=2m | | | | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| V Knots | Static | | | | V_Knots | Dynamic | | | |
| θ | 30 | 45 | - 60 | 90 | θ | 30 | - 45 | 60 | 90 |
| 50 | 0.61 | 1.26 | 1.94 | 2.69 | 50 | 1.17 | 2.45 | 3.82 | 5.29 |
| 52 | 0.66 | 1.37 | 2.12 | 2.93 | 52 | 1.27 | 2.66 | 4.17 | 5.79 |
| 54 | 0.71 | 1.48 | 2.32 | 3.19 | 54 | 1.38 | 2.89 | 4.54 | 6.31 |
| 56 | 0.77 | 1.60 | 2.51 | 3.47 | 56 | 1.49 | 3.13 | 4.93 | 6.86 |
| 58 | 0.83 | 1.72 | 2.72 | 3.77 | 58 | 1.60 | 3.39 | 5.35 | 7.43 |
| 60 | 0.89 | 1.86 | 2.93 | 4.10 | 60 | 1.72 | 3.65 | 5.78 | 8.02 |
| 62 | 0.95 | 2.00 | 3.15 | 4.43 | 62 | 1.84 | 3.93 | 6.23 | 8.64 |
| 64 | 1.02 | 2.15 | 3.38 | 4.78 | 64 | 1.97 | 4.22 | 6.70 | 9.27 |
| 66 | 1.09 | 2.30 | 3.64 | 5.13 | 66 | 2.11 | 4.52 | 7.19 | 9.91 |
| 68 | 1.16 | 2.47 | 3.92 | 5.49 | 68 | 2.25 | 4.84 | 7.69 | 10.56 |
| 70 | 1.23 | 2.63 | 4.20 | 5.87 | 70 | 2.39 | 5.17 | 8.21 | 11.21 |
| 72 | 1.31 | 2.80 | 4.49 | 6.27 | 72 | 2.54 | 5.51 | 8.75 | 11.87 |
| 74 | 1.38 | 2.97 | 4.79 | 6.68 | 74 | 2.70 | 5.87 | 9.29 | 12.53 |
| 76 | 1.47 | 3.15 | 5.10 | 7.09 | 76 | 2.86 | 6.24 | 9.85 | 13.21 |
| 78 | 1.55 | 3.34 | 5.41 | 7.49 | 78 | 3.03 | 6.62 | 10.41 | 13.89 |
| 80 | 1.63 | 3.55 | 5.73 | 7.87 | 80 | 3.20 | 7.02 | 10.98 | 14.58 |
| 82 | 1.72 | 3.77 | 6.07 | 8.26 | 82 | 3.38 | 7.43 | 11.55 | 15.30 |
| 84 | 1.82 | 4.00 | 6.42 | 8.69 | 84 | 3.57 | 7.84 | 12.12 | 16.04 |
| 86 | 1.91 | 4.23 | 6.78 | 9.14 | 86 | 3.76 | 8.27 | 12.69 | 16.80 |
| 88 | 2.02 | 4.47 | 7.13 | 9.55 | 88 | 3.96 | 8.71 | 13.28 | 17.61 |
| 90 | 2.12 | 4.71 | 7.48 | 9.93 | 90 | 4.16 | 9.15 | 13.87 | 18.44 |
| 92 | 2.23 | 4.96 | 7.81 | 10.30 | 92 | 4.38 | 9.60 | 14.47 | 19.31 |
| 94 | 2.34 | 5.21 | 8.14 | 10.70 | 94 | 4.60 | 10.06 | 15.08 | 20.22 |
| 96 | 2.46 | 5.47 | 8.50 | 11.09 | 96 | 4.82 | 10.52 | 15.71 | 21.15 |
| 98 | 2.57 | 5.74 | 8.88 | 11.48 | 98 | 5.05 | 10.98 | 16.37 | 22.09 |
| 100 | 2.69 | 6.01 | 9.27 | 11.88 | 100 | 5.29 | 11.45 | 17.04 | 23.05 |

| Flare Sided for GM=1.5m | | | | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| V_Knots | Static | | | | V_Knots | Dynamic | | | |
| θ | 30 | 45 | 60 | 90. | θ | 30 | 45 | 60 | 90 |
| 50 | 1.05 | 2.06 | 3.05 | 3.97 | 50 | 1.98 | 3.86 | 5.66 | 7.41 |
| 52 | 1.13 | 2.23 | 3.28 | 4.26 | 52 | 2.14 | 4.16 | 6.09 | 7.97 |
| 54 | 1.22 | 2.40 | 3.52 | 4.56 | 54 | 2.30 | 4.46 | 6.54 | 8.55 |
| 56 | 1.31 | 2.57 | 3.76 | 4.87 | 56 | 2.47 | 4.78 | 7.00 | 9.16 |
| 58 | 1.40 | 2.75 | 4.01 | 5.19 | 58 | 2.64 | 5.11 | 7.47 | 9.78 |
| 60 | 1.49 | 2.93 | 4.26 | 5.52 | 60 | 2.82 | 5.45 | 7.96 | 10.42 |
| 62 | 1.59 | 3.12 | 4.52 | 5.87 | 62 | 3.00 | 5.79 | 8.46 | 11.08 |
| 64 | 1.69 | 3.31 | 4.78 | 6.22 | 64 | 3.19 | 6.15 | 8.98 | 11.77 |
| 66 | 1.80 | 3.50 | 5.06 | 6.58 | 66 | 3.38 | 6.51 | 9.51 | 12.47 |
| 68 | 1.91 | 3.70 | 5.34 | 6.96 | 68 | 3.58 | 6.89 | 10.06 | 13.20 |
| 70 | 2.02 | 3.90 | 5.63 | 7.34 | 70 | 3.79 | 7.27 | 10.62 | 13.95 |
| 72 | 2.14 | 4.10 | 5.93 | 7.73 | 72 | 3.99 | 7.66 | 11.20 | 14.72 |
| 74 | 2.25 | 4.31 | 6.23 | 8.13 | 74 | 4.21 | 8.07 | 11.80 | 15.51 |
| 76 | 2.37 | 4.52 | 6.55 | 8.54 | 76 | 4.42 | 8.48 | 12.41 | 16.32 |
| 78 | 2.50 | 4.74 | 6.87 | 8.96 | 78 | 4.65 | 8.90 | 13.04 | 17.15 |
| 80 | 2.62 | 4.96 | 7.20 | 9.39 | 80 | 4.87 | 9.33 | 13.68 | 17.99 |
| 82 | 2.75 | 5.19 | 7.54 | 9.83 | 82 | 5.11 | 9.77 | 14.34 | 18.85 |
| 84 | 2.88 | 5.42 | 7.88 | 10.28 | 84 | 5.34 | 10.22 | 15.01 | 19.71 |
| 86 | 3.01 | 5.66 | 8.23 | 10.75 | 86 | 5.58 | 10.69 | 15.70 | 20.59 |
| 88 | 3.14 | 5.90 | 8.59 | 11.22 | 88 | 5.83 | 11.16 | 16.40 | 21.48 |
| 90 | 3.28 | 6.15 | 8.95 | 11.71 | 90 | 6.08 | 11.64 | 17.12 | 22.37 |
| 92 | 3.41 | 6.41 | 9.32 | 12.21 | 92 | 6.34 | 12.14 | 17.85 | 23.26 |
| 94 | 3.55 | 6.67 | 9.70 | 12.71 | 94 | 6.60 | 12.64 | 18.59 | 24.16 |
| 96 | 3.69 | 6.93 | 10.09 | 13.24 | 96 | 6.86 | 13.16 | 19.34 | 25.05 |
| 98 | 3.83 | 7.20 | 10.48 | 13.77 | 98 | 7.13 | 13.68 | 20.10 | 25.95 |
| 100 | 3.97 | 7.48 | 10.89 | 14.33 | 100 | 7.41 | 14.22 | 20.86 | 26.85 |

| Flare Sided for GM=2.0 m | | | | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| V_Knots | Static | | | | $V_{\text {-Knots }}$ | Dynamic | | | |
| θ | 30 | 45 | 66 | 90 | θ | 30 | 45 | 60 | 90 |
| 50 | 0.78 | 1.55 | 2.29 | 3.01 | 50 | 1.49 | 2.92 | 4.31 | 5.68 |
| 52 | 0.85 | 1.67 | 2.47 | 3.24 | 52 | 1.61 | 3.15 | 4.65 | 6.11 |
| 54 | 0.91 | 1.80 | 2.65 | 3.47 | 54 | 1.73 | 3.39 | 5.00 | 6.57 |
| 56 | 0.98 | 1.93 | 2.84 | 3.72 | 56 | 1.86 | 3.63 | 5.36 | 7.04 |
| 58 | 1.05 | 2.06 | 3.03 | 3.98 | 58 | 1.99 | 3.89 | 5.73 | 7.52 |
| 60 | 1.12 | 2.20 | 3.23 | 4.24 | 60 | 2.12 | 4.15 | 6.11 | 8.02 |
| 62 | 1.20 | 2.34 | 3.44 | 4.51 | 62 | 2.26 | 4.42 | 6.50 | 8.53 |
| 64 | 1.28 | 2.49 | 3.65 | 4.79 | 64 | 2.41 | 4.69 | 6.90 | 9.06 |
| 66 | 1.36 | 2.64 | 3.87 | 5.08 | 66 | 2.56 | 4.98 | 7.32 | 9.61 |
| 68 | 1.44 | 2.79 | 4.09 | 5.37 | 68 | 2.71 | 5.27 | 7.74 | 10.17 |
| 70 | 1.52 | 2.95 | 4.32 | 5.67 | 70 | 2.87 | 5.57 | 8.18 | 10.74 |
| 72 | 1.61 | 3.11 | 4.56 | 5.98 | 72 | 3.03 | 5.87 | 8.63 | 11.34 |
| 74 | 1.69 | 3.27 | 4.80 | 6.29 | 74 | 3.19 | 6.19 | 9.09 | 11.94 |
| 76 | 1.78 | 3.44 | 5.05 | 6.62 | 76 | 3.36 | 6.51 | 9.56 | 12.57 |
| 78 | 1.87 | 3.62 | 5.30 | 6.95 | 78 | 3.53 | 6.84 | 10.04 | 13.21 |
| 80 | 1.97 | 3.79 | 5.56 | 7.28 | 80 | 3.71 | 7.17 | 10.53 | 13.87 |
| 82 | 2.06 | 3.97 | 5.83 | 7.63 | 82 | 3.89 | 7.52 | 11.04 | 14.53 |
| 84 | 2.16 | 4.16 | 6.10 | 7.98 | 84 | 4.07 | 7.87 | 11.56 | 15.22 |
| 86 | 2.26 | 4.35 | 6.37 | 8.34 | 86 | 4.26 | 8.23 | 12.09 | 15.91 |
| 88 | 2.36 | 4.54 | 6.65 | 8.70 | 88 | 4.45 | 8.59 | 12.64 | 16.62 |
| 90 | 2.46 | 4.74 | 6.94 | 9.08 | 90 | 4.64 | 8.97 | 13.19 | 17.34 |
| 92 | 2.57 | 4.94 | 7.23 | 9.46 | 92 | 4.84 | 9.35 | 13.76 | 18.06 |
| 94 | 2.67 | 5.14 | 7.52 | 9.85 | 94 | 5.05 | 9.74 | 14.33 | 18.79 |
| 96 | 2.78 | 5.35 | 7.83 | 10.25 | 96 | 5.25 | 10.13 | 14.92 | 19.53 |
| 98 | 2.89 | 5.56 | 8.13 | 10.66 | 98 | 5.46 | 10.54 | 15.52 | 20.28 |
| 100 | 3.01 | 5.78 | 8.45 | 11.08 | 100 | 5.68 | 10.95 | 16.13 | 21.02 |

Appendix VI: TABLES AND FIGURES OF ROLL ANGLES FOR ALL CASES WHEN INITIAL CONDITIONS ARE NONZERO

TUMBLEHOME

INITIAL ANGLE OF HEELING (6 degrees) Tumblehome for $\mathrm{GM}=1.5 \mathrm{~m}$

| Tumblehome for GM=1.5m | | | | |
| :---: | :---: | :---: | :---: | :---: |
| V_Knots | Dynamic | | | |
| | 30 | 45 | 60 | 90 |
| 50 | 8.14 | 10.18 | 12.38 | 14.76 |
| 52 | 8.30 | 10.53 | 12.95 | 15.58 |
| 54 | 8.47 | 10.89 | 13.54 | 16.46 |
| 56 | 8.64 | 11.28 | 14.18 | 17.41 |
| 58 | 8.83 | 11.68 | 14.85 | 18.44 |
| 60 | 9.02 | 12.11 | 15.56 | 19.56 |
| 62 | 9.21 | 12.55 | 16.32 | 20.76 |
| 64 | 9.42 | 13.02 | 17.13 | 22.05 |
| 66 | 9.64 | 13.51 | 18.00 | 23.43 |
| 68 | 9.86 | 14.02 | 18.93 | 24.90 |
| 70 | 10.09 | 14.56 | 19.92 | 26.47 |
| 72 | 10.34 | 15.12 | 20.98 | 28.15 |
| 74 | 10.59 | 15.72 | 22.11 | 29.97 |
| 76 | 10.85 | 16.34 | 23.30 | 31.97 |
| 78 | 11.11 | 17.00 | 24.56 | 34.24 |
| 80 | 11.39 | 17.70 | 25.89 | 36.84 |
| 82 | 11.68 | 18.43 | 27.30 | 39.99 |
| 84 | 11.98 | 19.21 | 28.81 | Capsize |
| 86 | 12.29 | 20.03 | 30.43 | Capsize |
| 88 | 12.61 | 20.90 | 32.20 | Capsize |
| 90 | 12.93 | 21.81 | 34.17 | Capsize |
| 92 | 13.28 | 22.77 | 36.39 | Capsize |
| 94 | 13.63 | 23.77 | 38.97 | Capsize |
| 96 | 13.99 | 24.81 | Capsize | Capsize |
| 98 | 14.37 | 25.90 | Capsize | Capsize |
| 100 | 14.76 | 27.05 | Capsize | Capsize |

INITIAL ANGULAR VELOCITY ($0.1 \mathrm{rad} / \mathrm{sec}$)

| Tumblehome for $\mathrm{GM}=1.5 \mathrm{~m}$ | | | | |
| :---: | :---: | :---: | :---: | :---: |
| V Knots | Dynamic | | | |
| | 30 | 45 | 60 | 90 |
| 50 | 12.69 | 14.05 | 15.58 | 17.34 |
| 52 | 12.80 | 14.28 | 15.99 | 17.96 |
| 54 | 12.91 | 14.54 | 16.43 | 18.65 |
| 56 | 13.02 | 14.80 | 16.90 | 19.39 |
| 58 | 13.14 | 15.09 | 17.41 | 20.20 |
| 60 | 13.27 | 15.39 | 17.95 | 21.08 |
| 62 | 13.40 | 15.70 | 18.54 | 22.04 |
| 64 | 13.54 | 16.04 | 19.17 | 23.07 |
| 66 | 13.68 | 16.40 | 19.85 | 24.18 |
| 68 | 13.83 | 16.78 | 20.59 | 25.38 |
| 70 | 13.99 | 17.19 | 21.37 | 26.67 |
| 72 | 14.15 | 17.62 | 22.21 | 28.07 |
| 74 | 14.32 | 18.07 | 23.12 | 29.59 |
| 76 | 14.50 | 18.56 | 24.08 | 31.26 |
| 78 | 14.69 | 19.07 | 25.10 | 33.15 |
| 80 | 14.88 | 19.62 | 26.20 | 35.29 |
| 82 | 15.08 | 20.20 | 27.36 | 37.80 |
| 84 | 15.29 | 20.81 | 28.62 | 40.93 |
| 86 | 15.52 | 21.46 | 29.97 | Capsize |
| 88 | 15.74 | 22.15 | 31.45 | Capsize |
| 90 | 15.98 | 22.88 | 33.09 | Capsize |
| 92 | 16.23 | 23.64 | 34.92 | Capsize |
| 94 | 16.49 | 24.45 | 37.01 | Capsize |
| 96 | 16.76 | 25.31 | 39.47 | Capsize |
| 98 | 17.04 | 26.20 | Capsize | Capsize |
| 100 | 17.34 | 27.15 | Capsize | Capsize |

| Tumblehome for GM=2.0m | | | | |
| :---: | :---: | :---: | :---: | :---: |
| V_Knots | Dynamic | | | |
| | 30 | 45 | 60 | 90 |
| 50 | 10.59 | 11.49 | 12.47 | 13.54 |
| 52 | 10.66 | 11.65 | 12.73 | 13.90 |
| 54 | 10.74 | 11.81 | 12.99 | 14.29 |
| 56 | 10.81 | 11.98 | 13.28 | 14.71 |
| 58 | 10.89 | 12.16 | 13.58 | 15.14 |
| 60 | 10.98 | 12.35 | 13.90 | 15.61 |
| 62 | 11.07 | 12.55 | 14.23 | 16.10 |
| 64 | 11.16 | 12.76 | 14.58 | 16.61 |
| 66 | 11.25 | 12.98 | 14.95 | 17.16 |
| 68 | 11.35 | 13.21 | 15.35 | 17.74 |
| 70 | 11.45 | 13.45 | 15.75 | 18.34 |
| 72 | 11.56 | 13.70 | 16.19 | 18.97 |
| 74 | 11.67 | 13.96 | 16.64 | 19.64 |
| 76 | 11.79 | 14.24 | 17.11 | 20.34 |
| 78 | 11.90 | 14.53 | 17.60 | 21.07 |
| 80 | 12.03 | 14.83 | 18.12 | 21.85 |
| 82 | 12.16 | 15.14 | 18.66 | 22.67 |
| 84 | 12.29 | 15.46 | 19.22 | 23.53 |
| 86 | 12.43 | 15.80 | 19.80 | 24.44 |
| 88 | 12.57 | 16.16 | 20.42 | 25.39 |
| 90 | 12.72 | 16.52 | 21.05 | 26.40 |
| 92 | 12.87 | 16.90 | 21.72 | 27.46 |
| 94 | 13.03 | 17.29 | 22.42 | 28.57 |
| 96 | 13.19 | 17.70 | 23.15 | 29.73 |
| 98 | 13.36 | 18.12 | 23.92 | 30.94 |
| 100 | 13.54 | 18.56 | 24.72 | 32.20 |

WALL-SIDED

INITIAL ANGLE OF HEELING (6 degrees)

| Wall Sided for GM=1.5m | | | | |
| :---: | :---: | :---: | :---: | :---: |
| V_Knots | Dynamic | | | |
| | 30 | 45 | 60 | 90 |
| $\mathbf{5 0}$ | 7.05 | 8.94 | 10.86 | 12.82 |
| $\mathbf{5 2}$ | 7.21 | 9.25 | 11.33 | 13.47 |
| $\mathbf{5 4}$ | 7.36 | 9.57 | 11.83 | 14.16 |
| $\mathbf{5 6}$ | 7.53 | 9.91 | 12.35 | 14.87 |
| $\mathbf{5 8}$ | 7.70 | 10.26 | 12.89 | 15.62 |
| $\mathbf{6 0}$ | 7.88 | 10.63 | 13.46 | 16.42 |
| $\mathbf{6 2}$ | 8.06 | 11.00 | 14.05 | 17.24 |
| $\mathbf{6 4}$ | 8.25 | 11.40 | 14.66 | 18.11 |
| $\mathbf{6 6}$ | 8.45 | 11.80 | 15.30 | 19.02 |
| $\mathbf{6 8}$ | 8.65 | 12.22 | 15.97 | 19.96 |
| $\mathbf{7 0}$ | 8.86 | 12.66 | 16.67 | 20.94 |
| $\mathbf{7 2}$ | 9.08 | 13.11 | 17.40 | 21.94 |
| $\mathbf{7 4}$ | 9.30 | 13.58 | 18.15 | 22.97 |
| $\mathbf{7 6}$ | 9.53 | 14.07 | 18.94 | 24.02 |
| $\mathbf{7 8}$ | 9.77 | 14.57 | 19.75 | 25.08 |
| $\mathbf{8 0}$ | 10.01 | 15.08 | 20.58 | 26.16 |
| $\mathbf{8 2}$ | 10.26 | 15.62 | 21.44 | 27.25 |
| $\mathbf{8 4}$ | 10.52 | 16.17 | 22.32 | 28.36 |
| $\mathbf{8 6}$ | 10.78 | 16.75 | 23.22 | 29.49 |
| $\mathbf{8 8}$ | 11.05 | 17.34 | 24.13 | 30.63 |
| $\mathbf{9 0}$ | 11.33 | 17.95 | 25.05 | 31.79 |
| $\mathbf{9 2}$ | 11.61 | 18.59 | 25.98 | 32.97 |
| $\mathbf{9 4}$ | 11.90 | 19.24 | 26.93 | 34.17 |
| $\mathbf{9 6}$ | 12.20 | 19.91 | 27.88 | 35.39 |
| $\mathbf{9 8}$ | 12.51 | 20.59 | 28.85 | 36.64 |
| $\mathbf{1 0 0}$ | 12.82 | 21.29 | 29.83 | 37.90 |

| Wall Sided for GM=2.0m | | | | |
| :---: | :---: | :---: | :---: | :---: |
| V Knots | Dynamic | | | |
| | 30 | 45 | 60 | 90 |
| 50 | 7.83 | 9.21 | 10.60 | 11.98 |
| 52 | 7.95 | 9.44 | 10.94 | 12.43 |
| 54 | 8.06 | 9.68 | 11.30 | 12.89 |
| 56 | 8.18 | 9.92 | 11.66 | 13.37 |
| 58 | 8.31 | 10.18 | 12.03 | 13.86 |
| 60 | 8.44 | 10.44 | 12.42 | 14.37 |
| 62 | 8.57 | 10.71 | 12.82 | 14.89 |
| 64 | 8.71 | 10.99 | 13.23 | 15.44 |
| 66 | 8.86 | 11.28 | 13.65 | 16.01 |
| 68 | 9.00 | 11.57 | 14.08 | 16.60 |
| 70 | 9.16 | 11.87 | 14.53 | 17.22 |
| 72 | 9.32 | 12.18 | 14.99 | 17.87 |
| 74 | 9.48 | 12.50 | 15.46 | 18.54 |
| 76 | 9.65 | 12.83 | 15.95 | 19.24 |
| 78 | 9.82 | 13.16 | 16.47 | 19.98 |
| 80 | 9.99 | 13.50 | 17.00 | 20.73 |
| 82 | 10.17 | 13.85 | 17.55 | 21.51 |
| 84 | 10.36 | 14.21 | 18.11 | 22.31 |
| 86 | 10.55 | 14.58 | 18.70 | 23.12 |
| 88 | 10.74 | 14.95 | 19.32 | 23.95 |
| 90 | 10.94 | 15.34 | 19.95 | 24.79 |
| 92 | 11.14 | 15.73 | 20.61 | 25.64 |
| 94 | 11.34 | 16:14 | 21.27 | 26.51 |
| 96 | 11.55 | 16.57 | 21.96 | 27.38 |
| 98 | 11.77 | 17.00 | 22.66 | 28.26 |
| 100 | 11.98 | 17.45 | 23.37 | 29.15 |

INITIAL ANGULAR VELOCITY(0.1 rad/sec)

| Wall Sided for GM=1.5m | | | | |
| :---: | :---: | :---: | :---: | :---: |
| V Knots | Dynamic | | | |
| | 30 | 45 | 60 | 90 |
| 50 | 12.11 | 13.21 | 14.41 | 15.72 |
| 52 | 12.20 | 13.40 | 14.72 | 16.17 |
| 54 | 12.29 | 13.60 | 15.05 | 16.65 |
| 56 | 12.38 | 13.81 | 15.40 | 17.16 |
| 58 | 12.48 | 14.03 | 15.77 | 17.71 |
| 60 | 12.58 | 14.26 | 16.16 | 18.29 |
| 62 | 12.69 | 14.51 | 16.58 | 18.91 |
| 64 | 12.80 | 14.76 | 17.01 | 19.56 |
| 66 | 12.92 | 15.03 | 17.48 | 20.24 |
| 68 | 13.04 | 15.32 | 17.96 | 20.96 |
| 70 | 13.16 | 15.61 | 18.48 | 21.71 |
| 72 | 13.30 | 15.92 | 19.02 | 22.50 |
| 74 | 13.43 | 16.25 | 19.58 | 23.31 |
| 76 | 13.57 | 16.59 | 20.18 | 24.15 |
| 78 | 13.72 | 16.94 | 20.80 | 25.02 |
| 80 | 13.87 | 17.32 | 21.44 | 25.91 |
| 82 | 14.03 | 17.70 | 22.11 | 26.83 |
| 84 | 14.19 | 18.11 | 22.80 | 27.76 |
| 86 | 14.36 | 18.53 | 23.51 | 28.72 |
| 88 | 14.54 | 18.98 | 24.24 | 29.70 |
| 90 | 14.72 | 19.44 | 25.00 | 30.71 |
| 92 | 14.90 | 19.91 | 25.76 | 31.74 |
| 94 | 15.10 | 20.41 | 26.55 | 32.79 |
| 96 | 15.30 | 20.92 | 27.36 | 33.87 |
| 98 | 15.51 | 21.45 | 28.18 | 34.97 |
| 100 | 15.72 | 21.99 | 29.02 | 36.09 |
| | | | | |

| Wall Sided for GM=2.0m | | | | |
| :---: | :---: | :---: | :---: | :---: |
| V_Knots | Dynamic | | | |
| | 30 | $\mathbf{4 5}$ | 60 | 90 |
| $\mathbf{5 0}$ | 10.44 | 11.24 | 12.10 | 12.99 |
| $\mathbf{5 2}$ | 10.50 | 11.38 | 12.31 | 13.28 |
| $\mathbf{5 4}$ | 10.57 | 11.53 | 12.54 | 13.59 |
| $\mathbf{5 6}$ | 10.64 | 11.68 | 12.77 | 13.93 |
| $\mathbf{5 8}$ | 10.71 | 11.83 | 13.02 | 14.27 |
| $\mathbf{6 0}$ | 10.79 | 11.99 | 13.28 | 14.64 |
| $\mathbf{6 2}$ | 10.87 | 12.16 | 13.54 | 15.02 |
| $\mathbf{6 4}$ | 10.95 | 12.34 | 13.83 | 15.42 |
| $\mathbf{6 6}$ | 11.04 | 12.52 | 14.12 | 15.84 |
| $\mathbf{6 8}$ | 11.12 | 12.71 | 14.43 | 16.29 |
| $\mathbf{7 0}$ | 11.21 | 12.91 | 14.75 | 16.76 |
| $\mathbf{7 2}$ | 11.31 | 13.12 | 15.09 | 17.25 |
| $\mathbf{7 4}$ | 11.41 | 13.33 | 15.44 | 17.77 |
| $\mathbf{7 6}$ | 11.51 | 13.55 | 15.80 | 18.32 |
| $\mathbf{7 8}$ | 11.61 | 13.78 | 16.18 | 18.89 |
| $\mathbf{8 0}$ | 11.72 | 14.02 | 16.59 | 19.50 |
| $\mathbf{8 2}$ | 11.83 | 14.27 | 17.00 | 20.13 |
| $\mathbf{8 4}$ | 11.94 | 14.52 | 17.44 | 20.79 |
| $\mathbf{8 6}$ | 12.06 | 14.79 | 17.90 | 21.48 |
| $\mathbf{8 8}$ | 12.18 | 15.06 | 18.38 | 22.19 |
| $\mathbf{9 0}$ | 12.31 | 15.34 | 18.88 | 22.91 |
| $\mathbf{9 2}$ | 12.44 | 15.64 | 19.40 | 23.66 |
| $\mathbf{9 4}$ | 12.57 | 15.94 | 19.94 | 24.42 |
| $\mathbf{9 6}$ | 12.70 | 16.26 | 20.51 | 25.20 |
| $\mathbf{9 8}$ | 12.84 | 16.59 | 21.09 | 25.99 |
| $\mathbf{1 0 0}$ | 12.99 | 16.93 | 21.69 | 26.79 |

FLARE-SIDED
INITIAL ANGLE OF HEELING (6 degrees)

| Flare Sided for GM=1.5m | | | | |
| :---: | :---: | :---: | :---: | :---: |
| V_Knots | Dynamic | | | |
| | $\mathbf{3 0}$ | $\mathbf{4 5}$ | $\mathbf{6 0}$ | $\mathbf{9 0}$ |
| $\mathbf{5 0}$ | 6.48 | 8.34 | 10.15 | 11.94 |
| $\mathbf{5 2}$ | 6.64 | 8.64 | 10.59 | 12.52 |
| $\mathbf{5 4}$ | 6.79 | 8.95 | 11.05 | 13.13 |
| $\mathbf{5 6}$ | 6.96 | 9.27 | 11.52 | 13.75 |
| $\mathbf{5 8}$ | 7.13 | 9.60 | 12.01 | 14.40 |
| $\mathbf{6 0}$ | 7.31 | 9.94 | 12.51 | 15.06 |
| $\mathbf{6 2}$ | 7.49 | 10.29 | 13.03 | 15.75 |
| $\mathbf{6 4}$ | 7.67 | 10.65 | 13.57 | 16.46 |
| $\mathbf{6 6}$ | 7.87 | 11.02 | 14.12 | 17.19 |
| $\mathbf{6 8}$ | 8.06 | 11.41 | 14.69 | 17.93 |
| $\mathbf{7 0}$ | 8.26 | 11.80 | 15.28 | 18.69 |
| $\mathbf{7 2}$ | 8.47 | 12.21 | 15.88 | 19.47 |
| $\mathbf{7 4}$ | 8.69 | 12.62 | 16.49 | 20.26 |
| $\mathbf{7 6}$ | 8.91 | 13.05 | 17.12 | 21.07 |
| $\mathbf{7 8}$ | 9.13 | 13.48 | 17.76 | 21.88 |
| $\mathbf{8 0}$ | 9.36 | 13.93 | 18.42 | 22.71 |
| $\mathbf{8 2}$ | 9.59 | 14.39 | 19.08 | 23.54 |
| $\mathbf{8 4}$ | 9.83 | 14.86 | 19.76 | 24.38 |
| $\mathbf{8 6}$ | 10.08 | 15.34 | 20.45 | 25.23 |
| $\mathbf{8 8}$ | 10.33 | 15.83 | 21.15 | 26.07 |
| $\mathbf{9 0}$ | 10.58 | 16.33 | 21.86 | 26.93 |
| $\mathbf{9 2}$ | 10.84 | 16.84 | 22.57 | 27.79 |
| $\mathbf{9 4}$ | 11.11 | 17.36 | 23.29 | 2.65 |
| $\mathbf{9 6}$ | 11.38 | 17.89 | 24.02 | 2.52 |
| $\mathbf{9 8}$ | 11.66 | 18.42 | 24.75 | 30.39 |
| $\mathbf{1 0 0}$ | 11.94 | 18.96 | 25.48 | 31.26 |

INITIAL ANGULAR VELOCITY ($0.1 \mathrm{rad} / \mathrm{sec}$)

| Flare Sided for GM=1.5m | | | | |
| :---: | :---: | :---: | :---: | :---: |
| V_Knots | Dynamic | | | |
| | 30 | 45 | 60 | 90 |
| 50 | 11.81 | 12.78 | 13.82 | 14.93 |
| 52 | 11.88 | 12.95 | 14.09 | 15.30 |
| 54 | 11.96 | 13.12 | 14.37 | 15.70 |
| 56 | 12.05 | 13.30 | 14.66 | 16.11 |
| 58 | 12.14 | 13.50 | 14.97 | 16.55 |
| 60 | 12.23 | 13.70 | 15.29 | 17.01 |
| 62 | 12.32 | 13.90 | 15.63 | 17.49 |
| 64 | 12.42 | 14.12 | 15.99 | 17.99 |
| 66 | 12.52 | 14.35 | 16.36 | 18.51 |
| 68 | 12.63 | 14.59 | 16.75 | 19.06 |
| 70 | 12.74 | 14.84 | 17.15 | 19.62 |
| 72 | 12.86 | 15.10 | 17.57 | 20.21 |
| 74 | 12.98 | 15.36 | 18.01 | 20.81 |
| 76 | 13.10 | 15.64 | 18.46 | 21.44 |
| 78 | 13.22 | 15.93 | 18.93 | 22.08 |
| 80 | 13.36 | 16.23 | 19.41 | 22.74 |
| 82 | 13.50 | 16.54 | 19.92 | 23.41 |
| 84 | 13.64 | 16.87 | 20.43 | 24.10 |
| 86 | 13.78 | 17.20 | 20.96 | 24.80 |
| 88 | 13.93 | 17.54 | 21.51 | 25.51 |
| 90 | 14.08 | 17.90 | 22.06 | 26.24 |
| 92 | 14.24 | 18.26 | 22.63 | 26.97 |
| 94 | 14.41 | 18.64 | 23.21 | 27.71 |
| 96 | 14.58 | 19.02 | 23.80 | 28.47 |
| 98 | 14.75 | 19.42 | 24.40 | 29.23 |
| 100 | 14.93 | 19.83 | 25.01 | 30.00 |

| Flare Sided for GM $=2.0 \mathrm{~m}$ | | | | |
| :---: | :---: | :---: | :---: | :---: |
| V_Knots | Dynamic | | | |
| | 30 | 45 | 60 | 90 |
| 50 | 6.19 | 7.60 | 8.99 | 10.36 |
| 52 | 6.30 | 7.83 | 9.33 | 10.81 |
| 54 | 6.43 | 8.07 | 9.68 | 11.27 |
| 56 | 6.55 | 8.31 | 10.04 | 11.75 |
| 58 | 6.68 | 8.56 | 10.41 | 12.25 |
| 60 | 6.81 | 8.83 | 10.80 | 12.76 |
| 62 | 6.95 | 9.09 | 11.20 | 13.29 |
| 64 | 7.09 | 9.37 | 11.61 | 13.83 |
| 66 | 7.24 | 9.66 | 12.04 | 14.39 |
| 68 | 7.39 | 9.95 | 12.47 | 14.96 |
| 70 | 7.54 | 10.25 | 12.92 | 15.55 |
| 72 | 7.70 | 10.56 | 13.38 | 16.16 |
| 74 | 7.87 | 10.88 | 13.86 | 16.78 |
| 76 | 8.03 | 11.21 | 14.34 | 17.40 |
| 78 | 8.21 | 11.55 | 14.83 | 18.04 |
| 80 | 8.38 | 11.89 | 15.34 | 18.69 |
| 82 | 8.56 | 12.24 | 15.86 | 19.35 |
| 84 | 8.75 | 12.60 | 16.39 | 20.02 |
| 86 | 8.93 | 12.97 | 16.92 | 20.70 |
| 88 | 9.13 | 13.35 | 17.47 | 21.39 |
| 90 | 9.32 | 13.73 | 18.03 | 22.09 |
| 92 | 9.52 | 14.12 | 18.59 | 22.79 |
| 94 | 9.72 | 14.52 | 19.16 | 23.49 |
| 96 | 9.93 | 14.93 | 19.73 | 24.21 |
| 98 | 10.14 | 15.34 | 20.32 | 24.93 |
| 100 | 10.36 | 15.77 | 20.91 | 25.66 |

| Flare Sided for GM=2.0m | | | | |
| :---: | :---: | :---: | :---: | :---: |
| V_Knots | Dynamic | | | |
| | $\mathbf{3 0}$ | $\mathbf{4 5}$ | $\mathbf{6 0}$ | $\mathbf{9 0}$ |
| $\mathbf{5 0}$ | 10.24 | 10.98 | 11.76 | 12.58 |
| $\mathbf{5 2}$ | 10.30 | 11.10 | 11.96 | 12.86 |
| $\mathbf{5 4}$ | 10.36 | 11.23 | 12.17 | 13.16 |
| $\mathbf{5 6}$ | 10.42 | 11.37 | 12.39 | 13.46 |
| $\mathbf{5 8}$ | 10.49 | 11.51 | 12.61 | 13.79 |
| $\mathbf{6 0}$ | 10.55 | 11.66 | 12.86 | 14.13 |
| $\mathbf{6 2}$ | 10.63 | 11.82 | 13.11 | 14.49 |
| $\mathbf{6 4}$ | 10.70 | 11.98 | 13.37 | 14.86 |
| $\mathbf{6 6}$ | 10.78 | 12.15 | 13.65 | 1.55 |
| $\mathbf{6 8}$ | 10.86 | 12.33 | 13.94 | 15.66 |
| $\mathbf{7 0}$ | 10.95 | 12.51 | 14.24 | 16.08 |
| $\mathbf{7 2}$ | 11.03 | 12.71 | 14.55 | 16.53 |
| $\mathbf{7 4}$ | 11.12 | 12.91 | 14.88 | 16.99 |
| $\mathbf{7 6}$ | 11.21 | 13.12 | 15.22 | 17.45 |
| $\mathbf{7 8}$ | 11.31 | 13.33 | 15.57 | 17.95 |
| $\mathbf{8 0}$ | 11.41 | 13.56 | 15.93 | 18.45 |
| $\mathbf{8 2}$ | 11.51 | 13.79 | 16.31 | 18.97 |
| $\mathbf{8 4}$ | 11.62 | 14.03 | 16.70 | 19.51 |
| $\mathbf{8 6}$ | 11.72 | 14.27 | 17.10 | 20.05 |
| $\mathbf{8 8}$ | 11.84 | 14.53 | 17.51 | 20.61 |
| $\mathbf{9 0}$ | 11.95 | 14.80 | 17.93 | 21.19 |
| $\mathbf{9 2}$ | 12.07 | 15.07 | 18.37 | 21.78 |
| $\mathbf{9 4}$ | 12.20 | 15.35 | 18.81 | 22.37 |
| $\mathbf{9 6}$ | 12.32 | 15.64 | 19.27 | 22.98 |
| $\mathbf{9 8}$ | 12.45 | 15.94 | 19.74 | 23.60 |
| $\mathbf{1 0 0}$ | 12.58 | 16.24 | 20.22 | 24.23 |

A. Results with initial angle of heeling Tumblehome Hull Form

Figure 41: Maximum Roll Angles For Dynamic Case (Tumblehome GM=1.5m)

Figure 42: Maximum Roll Angles For Dynamic Case (Tumblehome GM=2.0m)

Wall Sided Hull Form

Figure 43: Maximum Roll Angles For Dynamic Case (Wall Sided GM=1.5m)

Figure 44: Maximum Roll Angles For Dynamic Case (Wall Sided GM=2.0m)

Flare-Sided Hull Form

Figure 45: Maximum Roll Angles For Dynamic Case (Flare Sided GM=1.5m)

Figure 46: Maximum Roll Angles For Dynamic Case (Flare Sided GM=2.0m)

B. Results with initial angular velocity
 Tumblehome Hull Form

Figure 47: Maximum Roll Angles For Dynamic Case (Tumblehome GM=1.5m)

Figure 48: Maximum Roll Angles For Dynamic Case (Tumblehome GM=2.0m)

Wall Sided Hull Form

Figure 49: Maximum Roll Angles For Dynamic Case (Wall Sided GM=1.5m)

Figure 50: Maximum Roll Angles For Dynamic Case (Wall Sided GM=2.0m)

Flare-Sided Hull Form

Figure 51: Maximum Roll Angles For Dynamic Case (Flare Sided GM=1.5m)

Figure 52: Maximum Roll Angles For Dynamic Case (Flare Sided GM=2.0m)

Appendix VII: Data For Bulk-Carriers Losses

| ShipType | Casualty Date | NAME | DWT | GT | Killed | Missing | CARGO |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Barge Carrier | 13-Dec-78 | MUNCHEN | 46249 | 37134 | 0 | 28 | Lash Barges Steel/Steel Products |
| Bulk Carrier | 5-Jan-78 | CHANDRAGUPTA | 37685 | 21635 | 0 | 69 | Grain Wheat |
| Bulk Carrier | 15-Jan-78 | EVELPIDIS ERA | 31353 | 10451 | 0 | | Rock Salt |
| Bulk Carrier | 1-Feb-79 | MITSOS | 19978 | 10984 | 0 | | Scrap Iron |
| Bulk Carrier | 24-Dec-79 | HONGJIN | 56127 | 33461 | 0 | | |
| Bulk Carrier | 7-Jan-80 | AGIOS GIORGIS | 27624 | 16565 | 0 | 29 | Scrap |
| Bulk Carrier | 13-Aug-80 | THEOMITOR | 51717 | 25691 | 0 | | Iron Ore |
| Bulk Carrier | 27-Nov-80 | SANDALION | 46050 | 26389 | 0 | | Coal |
| Bulk Carrier | 27-Dec-80 | ARTEMIS | 30190 | 17770 | 0 | | Timber |
| Bulk Carrier | 30-Dec-80 | ONOMICHI MARU | 56341 | 33833 | 0 | | Coal 53,000 Tons |
| Bulk Carrier | 2-Jan-81 | GOLDEN PINE | 20349 | 11738 | 0 | 25 | Copper Concentrate |
| Bulk Carrier | 7-Mar-81 | MEZADA | 31554 | 19247 | 12 | 12 | Potash |
| Bulk Carrier | 29-Dec-81 | MARINA DI EQUA | 32818 | 22901 | 0 | 30 | Steel Plates Steel Coils |
| Bulk Carrier | 12-Feb-83 | MARINE ELECTRIC | 25985 | 13757 | 24 | 9 | Coal, 27000 Tons |
| Bulk Carrier | 28-Jan-84 | THOMAS K. | 20829 | 14218 | 1 | 7 | Scrap Iron |
| Bulk Carrier | 16-Jul-84 | ANTACUS | 26044 | 16347 | 0 | | Steel 24,600 Tons |
| Bulk Carrier | 9-Aug-84 | CHAR YE | 16211 | 9936 | 0 | | |
| Bulk Carrier | 9-Jun-85 | WINNERS BEE | 16769 | 9994 | 0 | | |
| Bulk Carrier | 16-Aug-85 | PAB | 19472 | 12262 | 0 | | Pig Iron 11,000 Tons Asbestos |
| Bulk Carrier | 15-Jan-86 | LUCHANA | 14524 | 8250 | 1 | 3 | Iron Ore-13,000 T |
| Bulk Carrier | 13-Jan-87 | TESTAROSSA | 115721 | 66903 | 0 | 30 | Iron Ore |
| Bulk Carrier | 29-Apr-87 | SKIPPER I | 27345 | 14474 | 0 | | Scrap Iron |
| Bulk Carrier | 12-Jun-87 | CUMBERLANDE | 36978 | 21384 | 0 | | Ferro-Manganese Manganese Sinters |
| Bulk Carrier | 22-Jun-87 | STAR CARRIER | 25110 | 15992 | 0 | | Scrap Iron 22,400 T |
| Bulk Carrier | 23-Jun-87 | DAYSPRING | 21241 | 13373 | 0 | | Manganese Ore Lead Concentrates |
| Bulk Carrier | 24-Jul-87 | ALBORADA | 19112 | 10396 | 18 | 12 | Coal - 17000 Tons |
| Bulk Carrier | 4-Jul-88 | SINGA SEA | 26586 | 15894 | 1 | 18 | Mineral Sands Copper Ore |
| Bulk Carrier | 17-Apr-89 | STAR OF ALEXANDRIA | 35967 | 22627 | 0 | 2 | Cement |
| Bulk Carrier | 29-Apr-89 | SEVASTI | 15147 | 9042 | 0 | | Timber |
| Bulk Carrier | 4-May-89 | HURON | 16895 | 9440 | 0 | 13 | Timber Steel Scrap |
| Bulk Carrier | 4-Oct-89 | PAN DYNASTY | 36650 | 21567 | 0 | | Phosphate Rock |

| ShipType | Casualty Date | NAME | DWT | GT | Killed | Missing | CARGO |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Bulk Carrier | 22-Dec-01 | CHRISTOPHER | 164891 | 83784 | 0 | 27 | Coal |
| Bulk Carrier | 24-Feb-04 | ASIAN NOBLE | 12336 | 7170 | 0 | 1 | Coal |
| Bulk Carrier | 18-Nov-05 | BRIGHT SUN | 37574 | 22271 | 0 | 1 | |
| Bulk Carrier | 13-Mar-06 | BANG XING I | 19816 | 11641 | 0 | | Logs |
| Bulk Carrier | 12-Dec-80 | D. G. KERR | 13910 | 8017 | 0 | | |
| Bulk Carrier | 30-Dec-87 | THOMAS WILSON | 16866 | 8758 | 0 | | |
| Bulk Carrier | 3-Dec-95 | CANADIAN HARVEST | 31413 | 18473 | 0 | | |
| Cement Carrier | 30-Jan-90 | FLAG THEOFANO | 4470 | 2818 | 2 | 17 | Bulk Cement |
| Cement Carrier | 11-Feb-90 | SCANTRADER | 2784 | 1591 | 12 | 12 | Cement; 2,400 Tonnes |
| Cement Carrier | 6-Jan-93 | COTY 1 | 4064 | 2786 | 4 | 13 | Cement |
| Cement Carrier | 28-Dec-96 | DYSTOS | 6197 | 4045 | 17 | 3 | Cement |
| Cement Carrier | 25-Feb-02 | FILIPPOS K II | 1640 | 1227 | 0 | 1 | Fertilizer |
| TOTAL | 76 | | 3261035 | 1807729 | 179 | 618 | |

Appendix VIII: Data for General Cargo Ships'
Losses

| ShipType | Casualty Date | NAME | DWT | GT | Killed | Missing | CARGO |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| General Cargo | 11-Jan-78 | HOLMARI | 631 | 461 | 1 | 4 | Sprats |
| General Cargo | 12-Jan-78 | HERMANN-HELENE | 438 | 299 | 0 | | Iron |
| General Cargo | 12-Jan-78 | ANNA GRAEBE | 1050 | 487 | 0 | | Bulk Fertilizer |
| General Cargo | 21-Jan-78 | MARLEN | 3464 | 1851 | 0 | | Cement, fibre Pipes Oil In Casks |
| General Cargo | 21-Jan-78 | WATI | 6082 | 2992 | 12 | 3 | Cement |
| General Cargo | 29-Jan-78 | KAPTAN ISMAIL HAKKI | 1032 | 498 | 0 | | Zinc Oxide |
| General Cargo | 3-Feb-78 | MARIA DORMIO | 1483 | 936 | 0 | | Pozzolana |
| General Cargo | 6-Feb-78 | KATRINA | 3445 | 3445 | 0 | | Palm Oil Coconut Oil Chemicals |
| General Cargo | 26-Feb-78 | BLESSE | 599 | 388 | 0 | | Scrap Iron |
| General Cargo | 3-Mar-78 | DIMITRIOS M | 1016 | 906 | 0 | | Steel Bars |
| General Cargo | 22-Mar-78 | DOROTHEOS T | 1999 | 1503 | 0 | | General |
| General Cargo | 26-Mar-78 | ELBE | 859 | 500 | 0 | 1 | Rye |
| General Cargo | 11-May-78 | ARO | 362 | 285 | 1 | | Sand |
| General Cargo | 28-May-78 | WING ON | 2737 | 1973 | 0 | | Barytes |
| General Cargo | 14-Aug-78 | TIEN PAO | 3091 | 1937 | 0 | | Boxed Books |
| General Cargo | 16-Aug-78 | KIS OLE | 305 | 200 | 0 | | |
| General Cargo | 14-Sep-78 | VOL | 199 | 199 | 0 | | Anthracite Nuts |
| General Cargo | 3-Oct-78 | NYNES | 300 | 119 | 0 | 2 | Sand |
| General Cargo | 11-Oct-78 | WAHYUNI | 5757 | 2995 | 0 | | |
| General Cargo | 23-Oct-78 | APOLLO 1 | 4756 | 2772 | 2 | 6 | Logs |
| General Cargo | 27-Oct-78 | NIKO PRIMO | 970 | 499 | 0 | 8 | Cement Pipes |
| General Cargo | 29-Oct-78 | PETRAKIS | 258 | 146 | 0 | | |
| General Cargo | 8-Nov-78 | RAYLIGHT | 406 | 260 | 0 | | Slag Fertilizer, 370t |
| General Cargo | 10-Nov-78 | ANNEMIEKE | 2658 | 1421 | 0 | | Granite Chips |
| General Cargo | 12-Dec-78 | CLAVERIA CLIPPER | 1540 | 999 | 4 | 4 | Philippine Plywood |
| General Cargo | 15-Dec-78 | TEMO. | 839 | 493 | 0 | | Barytes |
| General Cargo | 24-Dec-78 | ALSTERN | 3670 | 2285 | 0 | | Paper |
| General Cargo | 28-Dec-78 | TENORGA | 4300 | 3300 | 4 | 17 | Steel |
| General Cargo | 31-Dec-78 | DECIMUM. | 3079 | 1600 | 0 | | Cement Clinker |
| General Cargo | 3-Jan-79 | GERMA | 2219 | 1240 | 9 | | Unknown Cargo |
| | | | | | | | |

| ShipType | Casualty Date | NAME | DWT | GT | Killed | Missing | CARGO |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| General Cargo | 4-Jan-79 | JOLIKA | 965 | 576 | 0 | | |
| General Cargo | 13-Feb-79 | REVI | 558 | 414 | 0 | | Silver Sand |
| General Cargo | 15-Feb-79 | TAISEI MARU | 727 | 462 | 0 | | Gravel |
| General Cargo | 15-Feb-79 | IRIS | 11540 | 8479 | 8 | | |
| General Cargo | 28-Feb-79 | JOHANN | 732 | 399 | 0 | | Barley (600 Tons) |
| General Cargo | 11-Mar-79 | JASMINE | 1179 | 499 | 1 | | |
| General Cargo | 17-Mar-79 | KORONOWO | 3017 | 1593 | 0 | | Timber |
| General Cargo | 6-Apr-79 | KATYA | 2242 | 1877 | 0 | | Paper |
| General Cargo | 12-Apr-79 | ELLI | 2753 | 1599 | 0 | 1 | General 2400 Tonnes |
| General Cargo | 15-Apr-79 | TORENIA | 11707 | 8077 | 0 | | Raw Sugar 10000 Tons |
| General Cargo | 3-Jul-79 | MANSUR SIMAO | 5282 | 3232 | 0 | | Wheat |
| General Cargo | 15-Jul-79 | NANDA DEVI | 3214 | 1925 | 0 | | Bentonite |
| General Cargo | 18-Jul-79 | KOUN MARU No. 28 | 281 | 199 | 0 | | |
| General Cargo | 24-Jul-79 | TONG NAM | 10052 | 6336 | 3 | 28 | Chrome Ore |
| General Cargo | 30-Aug-79 | KAPTAN CELAL | 3165 | 2123 | 0 | | Coal (3000tons) |
| General Cargo | 14-Sep-79 | REBECCA | 2164 | 880 | 3 | 1 | Soya In Bulk |
| General Cargo | 19-Sep-79 | AUSTRI | 1056 | 499 | 4 | 1 | Pig Iron |
| General Cargo | 24-Sep-79 | MAKEDONIA | 1177 | 859 | 0 | | Canned Goods |
| General Cargo | 29-Oct-79 | AGIOS GERASSIMOS | 813 | 600 | 0 | | Contrabandcigarettes |
| General Cargo | 6-Nov-79 | POOL FISHER | 1394 | 1028 | 3 | 10 | Potash |
| General Cargo | 15-Nov-79 | PETER SIF | 4064 | 1599 | 0 | | General |
| General Cargo | 15-Nov-79 | CHUNDER | 3465 | 1997 | 0 | | Logs |
| General Cargo | 19-Nov-79 | MARINA T | 13447 | 8777 | 0 | 1 | |
| General Cargo | 26-Nov-79 | JOHANNES L | 793 | 489 | 0 | | |
| General Cargo | 28-Nov-79 | BLACK SEA | 1941 | 1119 | 4 | 12 | Fertiliser 1670 Tons |
| General Cargo | 2-Dec-79 | AKISHIMA MARU | 6022 | 2998 | 0 | | Logs |
| General Cargo | 5-Dec-79 | WHESTSCHELDE | 779 | 299 | 0 | | |
| General Cargo | 6-Dec-79 | MALMI | 6896 | 4982 | 4 | 10 | Coke |
| General Cargo | 13-Dec-79 | ANTONIO SCOTTO | 1018 | 499 | 0 | | Tomato Sauce 950tons |
| General Cargo | 20-Dec-79 | LERT | 609 | 388 | 0 | | Steel Castings |
| General Cargo | 25-Dec-79 | SOULA G | 827 | 499 | 5 | 1 | |
| General Cargo | 31-Dec-79 | PHENIX | 879 | 493 | 7 | | Iron Rods Containers |

| Shiptype | Casualt ${ }^{\text {bate }}$ | NAMEW | DWT | CT | Killed | Missing | CARCO |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| General Cargo | 4-Jan-80 | BILL CROSBIE | 2520 | 1598 | 0 | | Structural Steel Steel Grinding Balls |
| General Cargo | 7-Jan-80 | MARLA-K | 294 | 294 | 0 | | Fertalizer 4096 Bags |
| General Cargo | 22-Jan-80 | ALEX | 5890 | 2992 | 10 | 9 | Lauan Logs (4287) |
| General Cargo | 26-Jan-80 | HENRY R II | 186 | 186 | 0 | | |
| General Cargo | 26-Jan-80 | CARMEN R. | 528 | 295 | 0 | | |
| General Cargo | 26-Jan-80 | RYUHO MARU NO. 3 | 680 | 442 | 0 | | Asbestos 450 Tons Tapioca \& Wheat General |
| General Cargo | 29-Jan-80 | VICTORY MARCH | 4983 | 3197 | 0 | 24 | Ore |
| General Cargo | 30-Jan-80 | HATSUFUJI | 9981 | 5130 | 2 | 20 | Coal (7500 Tons) |
| General Cargo | 31-Jan-80 | SHINEI MARU | 1231 | 499 | 4 | 1 | |
| General Cargo | 2-Feb-80 | NISSEN MARU | 1936 | 975 | 0 | 9 | Coal 1100 Tons |
| General Cargo | 16-Feb-80 | EASTERN MINICON | 1339 | 1616 | 0 | 30 | General Containers |
| General Cargo | 20-Feb-80 | ANASTASIOS | 1846 | 1846 | 0 | | |
| General Cargo | 28-Feb-80 | NAHEDA H. | 495 | 495 | 0 | | Potatoes 600 Tons |
| General Cargo | 12-Mar-80 | MAURICE DESGAGNES | 3485 | 2469 | 0 | | Railway Ties |
| General Cargo | 15-Mar-80 | TUSKAR-2 | 584 | 394 | 0 | | Bagged Cargo |
| General Cargo | 22-Mar-80 | KAIFUKU MARU NO. 13 | 1118 | 499 | 2 | | Limestone (820tonnes |
| General Cargo | 29-Mar-80 | GERMA GEISHA | 5300 | 3259 | 0 | | Grain |
| General Cargo | 20-Apr-80 | ALTMARK | 850 | 425 | 2 | | China Clay |
| General Cargo | 11-Jun-80 | SUNRISE | 15562 | 10224 | 0 | | Cement, Bagged |
| General Cargo | 12-Jul-80 | BLUE RIVER | 6702 | 4377 | 0 | | Steel |
| General Cargo | 30-Jul-80 | ATHLOS | 14606 | 10732 | 0 | | Sugar, 14000 Tonnes |
| General Cargo | 4-Aug-80 | RANDA II | 909 | 484 | 0 | | |
| General Cargo | 7-Oct-80 | RANDI DANIA | 849 | 299 | 2 | | Genera Cargo |
| General Cargo | 11-Oct-80 | BULK CARRIER | 2350 | 1599 | 0 | 1 | Sulphur (2317 Tons) |
| General Cargo | 17-Oct-80 | SKYRIAN HOPE | 12142 | 7745 | 0 | | General |
| General Cargo | 25-Nov-80 | CASTORI | 1016 | 500 | 0 | | |
| General Cargo | 24-Dec-80 | SANYU MARU NO. 8 | 1150 | 420 | 0 | | Maize |
| General Cargo | 24-Dec-80 | SIMRI | 2449 | 1499 | 0 | | Iron |
| General Cargo | 28-Dec-80 | BASTABALES | 1300 | 976 | 0 | | Semolina |
| General Cargo | 29-Dec-80 | GARSA TIGA | 5859 | 3139 | 0 | 6 | Logs |
| General Cargo | 29-Dec-80 | MAMMOTH SCAN | 6650 | 4244 | 0 | | |
| General Cargo | 15-Jan-81 | GOODWILL | 940 | 944 | 0 | | Chipboard 750 Tonnes |

| ShipType | Casualty Date | NAME | DWT | GT | Killed | Missing | CARGO |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| General Cargo | 4-Jan-80 | BILL CROSBIE | 2520 | 1598 | 0 | | Structural Steel Steel Grinding Balls |
| General Cargo | 7-Jan-80 | MARLA-K | 294 | 294 | 0 | | Fertalizer 4096 Bags |
| General Cargo | 22-Jan-80 | ALEX | 5890 | 2992 | 10 | 9 | Lauan Logs (4287) |
| General Cargo | 26-Jan-80 | HENRY R II | 186 | 186 | 0 | | |
| General Cargo | 26-Jan-80 | CARMEN R. | 528 | 295 | 0 | | |
| General Cargo | 26-Jan-80 | RYUHO MARU NO. 3 | 680 | 442 | 0 | | Asbestos 450 Tons Tapioca \& Wheat General |
| General Cargo | 29-Jan-80 | VICTORY MARCH | 4983 | 3197 | 0 | 24 | Ore |
| General Cargo | 30-Jan-80 | HATSUFUJI | 9981 | 5130 | 2 | 20 | Coal (7500 Tons) |
| General Cargo | 31-Jan-80 | SHINEI MARU | 1231 | 499 | 4 | 1 | |
| General Cargo | 2-Feb-80 | NISSEN MARU | 1936 | 975 | 0 | 9 | Coal 1100 Tons |
| General Cargo | 16 -Feb-80 | EASTERN MINICON | 1339 | 1616 | 0 | 30 | General Containers |
| General Cargo | 20-Feb-80 | ANASTASIOS | 1846 | 1846 | 0 | | |
| General Cargo | 28-Feb-80 | NAHEDA H. | 495 | 495 | 0 | | Potatoes 600 Tons |
| General Cargo | 12-Mar-80 | MAURICE DESGAGNES | 3485 | 2469 | 0 | | Railway Ties |
| General Cargo | 15-Mar-80 | TUSKAR-2 | 584 | 394 | 0 | | Bagged Cargo |
| General Cargo | 22-Mar-80 | KAIFUKU MARU NO. 13 | 1118 | 499 | 2 | | Limestone (820tonnes |
| General Cargo | 29-Mar-80 | GERMA GEISHA | 5300 | 3259 | 0 | | Grain |
| General Cargo | 20-Apr-80 | ALTMARK | 850 | 425 | 2 | | China Clay |
| General Cargo | 11-Jun-80 | SUNRISE | 15562 | 10224 | 0 | | Cement, Bagged |
| General Cargo | 12-Jul-80 | BLUE RIVER | 6702 | 4377 | 0 | | Steel |
| General Cargo | 30-Jul-80 | ATHLOS | 14606 | 10732 | 0 | | Sugar, 14000 Tonnes |
| General Cargo | 4-Aug-80 | RANDA II | 909 | 484 | 0 | | |
| General Cargo | 7-Oct-80 | RANDI DANIA | 849 | 299 | 2 | | Genera Cargo |
| General Cargo | 11-Oct-80 | BULK CARRIER | 2350 | 1599 | 0 | 1 | Sulphur (2317 Tons) |
| General Cargo | 17-Oct-80 | SKYRIAN HOPE | 12142 | 7745 | 0 | | General |
| General Cargo | 25-Nov-80 | CASTORI | 1016 | 500 | 0 | | |
| General Cargo | 24-Dec-80 | SANYU MARU NO. 8 | 1150 | 420 | 0 | | Maize |
| General Cargo | 24-Dec-80 | SIMRI | 2449 | 1499 | 0 | | Iron |
| General Cargo | 28-Dec-80 | BASTABALES | 1300 | 976 | 0 | | Semolina |
| General Cargo | 29-Dec-80 | GARSA TIGA | 5859 | 3139 | 0 | 6 | Logs |
| General Cargo | 29-Dec-80 | MAMMOTH SCAN | 6650 | 4244 | 0 | | |
| General Cargo | 15-Jan-81 | GOODWILL | 940 | 944 | 0 | | Chipboard 750 Tonnes |

| ShipType | Casualty Date | NAME | DWT | GT | Killed | Missing | CARGO |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| General Cargo | 17-Jan-81 | DENIZ SONMEZ | 6359 | 4259 | 0 | 34 | Phosphate In Bulk |
| General Cargo | 8-Feb-81 | TENIA II | 2140 | 1333 | 3 | 5 | Wire Rolls |
| General Cargo | 14-Feb-81 | EASTERN MARINER 1 | 12163 | 7965 | 0 | | Phosphates In Bags |
| General Cargo | 16-Feb-81 | PYENG HAE | 610 | 449 | 0 | | Limestone 685 Tons |
| General Cargo | 26-Feb-81 | KOMSOMOLETS NAKHODKI | 8230 | 5923 | 18 | 17 | Steel Products |
| General Cargo | 27-Apr-81 | SIRI MARIA | 494 | 346 | 0 | | Sodium Phosphate |
| General Cargo | 23-Jul-81 | MELON KING | 7908 | 4815 | 0 | | Steel Sheets |
| General Cargo | 31-Jul-81 | FATEMA | 780 | 387 | 0 | | Crushed Lentils |
| General Cargo | 1-Sep-81 | JUNTOKU MARU NO. 3 | 430 | 199 | 0 | | |
| General Cargo | 18-Sep-81 | TUNGUFOSS | 1327 | 1362 | 0 | | Meal |
| General Cargo | 25-Sep-81 | WAKAEBISU MARU NO. 8 | 311 | 197 | 0 | | |
| General Cargo | 23-Oct-81 | ASIA SPICA | 5926 | 2997 | 0 | | Logs |
| General Cargo | 3-Nov-81 | DRAGON III | 4267 | 2547 | 0 | | Logs |
| General Cargo | 8-Nov-81 | EMERALD | 4152 | 2193 | 0 | 9 | Aggregates Steel Mesh |
| General Cargo | 19-Nov-81 | BEATRIS | 447 | 264 | 2 | | Macadam |
| General Cargo | 29-Nov-81 | NAROS | 1256 | 499 | 0 | 1 | Anchor Cables Timber |
| General Cargo | 30-Nov-81 | SHOKAI MARU | 5855 | 3507 | 4 | 11 | Coal |
| General Cargo | 1-Dec-81 | YUSEI MARU NO. 12 | 1200 | 476 | 1 | | Gravel |
| General Cargo | 1-Dec-81 | THIDATARA | 2123 | 980 | 6 | | Barite Ore 1800 M To |
| General Cargo | 2-Dec-81 | CRYSTAL STAR | 5100 | 3046 | 0 | 1 | Lauan Logs |
| General Cargo | 11-Dec-81 | BRATSTVO | 2390 | 1580 | 1 | 8 | |
| General Cargo | 13-Dec-81 | BOBRIX | 965 | 647 | 0 | 1 | Maize |
| General Cargo | 14-Dec-81 | GRAINVILLE | 2753 | 1777 | 1 | 2 | Scrap Iron |
| General Cargo | 16-Dec-81 | NISSHIN MARU | 1944 | 694 | 0 | | |
| General Cargo | 17-Dec-81 | MARK | 965 | 499 | 1 | 5 | China Clay |
| General Cargo | 20-Dec-81 | SING YONG | 618 | 618 | 0 | 1 | General |
| General Cargo | 21-Dec-81 | HAFA ADAI | 509 | 539 | 0 | | |
| General Cargo | 9-Jan-82 | GOODWILL | 655 | 655 | 0 | | |
| General Cargo | 14-Jan-82 | NANDI | 5905 | 2995 | 0 | | Timber |
| General Cargo | 5-Mar-82 | FUKUTOKU MARU NO. 1 | 780 | 495 | 0 | | |
| General Cargo | 6-Mar-82 | ZOE II | 5268 | 2650 | 0 | | Timber Rice (Bagged) |
| General Cargo | 7-Mar-82 | NIKOSNASOS II | 6641 | 4156 | 0 | | Cement |

| ShipType | Casualty Date | NAME | DWT | GT | Killed | Missing | CARGO |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| General Cargo | 13-Mar-82 | RISNES | 835 | 295 | 1 | | Fertilizer |
| General Cargo | 25-Mar-82 | SUDURLAND | 1790 | 1143 | 0 | 1 | Salt, 1110 Tons, |
| General Cargo | 4-Apr-82 | CHOEI MARU NO. 5 | 337 | 196 | 0 | | |
| General Cargo | 4-Apr-82 | ZEIDA | 2840 | 1594 | 7 | 3 | Planks Steel Coils Wood |
| General Cargo | 13-Apr-82 | SUMIYOSHI MARU NO. 8 | 199 | 199 | 0 | | |
| General Cargo | 18-Jun-82 | YUSEI MARU NO. 21 | 1200 | 499 | 0 | | |
| General Cargo | 29-Jun-82 | NEW GALAXY | 942 | 938 | 0 | | Wheat Bran |
| General Cargo | 4-Aug-82 | QUIZANDAL | 1000 | 668 | 0 | | Waste Paper |
| General Cargo | 25-Aug-82 | EASTERN PROGRESS | 5747 | 3628 | 0 | | |
| General Cargo | 17-Oct-82 | KARYA TAMBANGAN | 170 | 140 | 0 | 55 | Passengers General Cargo |
| General Cargo | 28-Oct-82 | STAR RIVER | 339 | 339 | 0 | 1 | Salt |
| General Cargo | 3-Nov-82 | KALIMANTAN LIMA | 6026 | 2994 | 0 | | Logs, 5503 Tons |
| General Cargo | 8-Nov-82 | NISSOS ANDROS | 4484 | 2916 | 19 | | Ceramics Marble |
| General Cargo | 10-Nov-82 | NEPTUNE SKY | 4185 | 2500 | 0 | | Logs, 3700 Cubic M. |
| General Cargo | 14-Nov-82 | NESAM | 2364 | 1571 | 4 | 1 | Phosphates |
| General Cargo | 25-Nov-82 | BRILLIANTE | 1465 | 1056 | 0 | | Lumber |
| General Cargo | 27-Nov-82 | ILIANA | 3079 | 1598 | 0 | | |
| General Cargo | 12-Dec-82 | FLORECIMIENTO | 6472 | 3550 | 0 | | Logs |
| General Cargo | 14-Dec-82 | JALAMORARI | 13819 | 9612 | 1 | | Woodpulp Asbestos |
| General Cargo | 17-Dec-82 | BETTY S | 840 | 485 | 0 | | Rolls Of Paper |
| General Cargo | 26-Dec-82 | CARIGULF WARRIOR | 1052 | 495 | 0 | | Lumber |
| General Cargo | 28-Dec-82 | MILLION NO. 1 | 1798 | 922 | 0 | | Cement |
| General Cargo | 29-Dec-82 | SINE S | 163 | 113 | 1 | | Ref. Cargo 82 Tons |
| General Cargo | 7-Jan-83 | BAMBOO ROOT | 13396 | 8820 | 0 | | Manganese Ore |
| General Cargo | 17-Jan-83 | NEW SILLA | 5664 | 4170 | 0 | | Logs |
| General Cargo | 20-Jan-83 | KUDOWA ZDROJ | 1920 | 1991 | 19 | 1 | Iron Rods General Containers |
| General Cargo | 23-Jan-83 | KAPTAN HASAN HANTAL | 793 | 496 | 0 | 11 | Iron Ore, 1000 Tons |
| General Cargo | 5-Feb-83 | HOSEI MARU | 893 | 499 | 0 | | Silicon Sand 800 Ton |
| General Cargo | 11-Feb-83 | MAYA | 1752 | 1598 | 7 | | Scrap Iron - 1200 T |
| General Cargo | 19-Feb-83 | NIKOS | 2497 | 821 | 0 | | Cement |
| General Cargo | 24-Feb-83 | POLMAR | 1494 | 1112 | 0 | | |
| General Cargo | 18-Mar-83 | JASA | 5661 | 2992 | 1 | 11 | 4000 Tons Logs |

| ShipType | Casualty Date | NAME | DWT | GT | Killed | Missing | CARGO |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| General Cargo | 26-Mar-83 | SPRING LASS | 680 | 432 | 0 | | Wire Mesh |
| General Cargo | 22-Apr-83 | MILHAFRE | 1683 | 999 | 1 | | Containers Iron Tubes |
| General Cargo | 26-Apr-83 | HARAPAN II | 132 | 114 | 0 | 42 | Passengers (78) Livestock (Cows) Rice \& Gen Cargo |
| General Cargo | 6-Jun-83 | ENO | 830 | 500 | 2 | 1 | Chain |
| General Cargo | 17-Jun-83 | ESTEDEICH | 2350 | 915 | 0 | | General |
| General Cargo | 27-Jun-83 | KINABALU LIMA | 6210 | 3629 | 0 | | Steel Plates |
| General Cargo | 29-Jun-83 | CONESTHMUS | 499 | 383 | 0 | | |
| General Cargo | 29-Aug-83 | RAUNEFJORD | 422 | 199 | 0 | 4 | |
| General Cargo | 12-Sep-83 | RENATE S | 864 | 499 | 0 | 4 | Bulk Zinc |
| General Cargo | 3-Oct-83 | CHRISTOFOROS | 2774 | 1586 | 0 | | Cement |
| General Cargo | 11-Oct-83 | KYODO MARU | 195 | 146 | 0 | | Roofing Tiles |
| General Cargo | 18-Oct-83 | NAEROYSUND | 278 | 251 | 0 | | Cement |
| General Cargo | 1-Nov-83 | KAMPEN | 6300 | 3982 | 7 | | Coal (5300 Tons) |
| General Cargo | 18-Nov-83 | TOHO MARU NO. 12 | 1099 | 491 | 1 | 1 | Gravel 910 Tons. |
| General Cargo | 21-Nov-83 | DAI LUNG | 6289 | 4016 | 1 | 1 | Round Logs 6219 CuM |
| General Cargo | 30-Nov-83 | KAYU LAPIS SATU | 4906 | 2970 | 0 | | Logs (4,120 CuM) |
| General Cargo | 8-Dec-83 | LAT DA | 1759 | 998 | 0 | | |
| General Cargo | 9-Dec-83 | KAREN FOLMER | 706 | 300 | 0 | | Fertilizer |
| General Cargo | 22-Dec-83 | SAINT DRAGON | 2675 | 1520 | 0 | | |
| General Cargo | 29-Dec-83 | LIBRA | 498 | 498 | 0 | | Phosphate Machinery |
| General Cargo | 30-Dec-83 | GREEN MERCURY | 5928 | 3018 | 0 | | Coal, 5,320 Tonnes |
| General Cargo | 23-Jan-84 | RADIANT MED | 5617 | 2997 | 14 | 2 | Wheat In Bulk 4,500t Maize 500 Tons |
| General Cargo | 27-Jan-84 | SPAN | 5135 | 2997 | 0 | | Logs |
| General Cargo | 27-Jan-84 | SEVEN AMBASSADOR | 5974 | 3275 | 2 | 13 | Logs |
| General Cargo | 2-Feb-84 | APOLLONIA V | 1059 | 499 | 0 | 3 | Cement |
| General Cargo | 7-Feb-84 | MIDNIGHT SUN I | 5101 | 2531 | 8 | | Dunite 4800 T |
| General Cargo | 9-Feb-84 | OMEGA LADY | 1067 | 734 | 0 | | Sulphur-840 Tonnes |
| General Cargo | 19-Feb-84 | TATIANA | 657 | 395 | 0 | | Cement Passengers |
| General Cargo | 26-Feb-84 | CANDORA | 402 | 415 | 0 | | |
| General Cargo | 26-Feb-84 | GUARNIZO | 770 | 527 | 0 | | Pozzolana |

| ShipType | Casualty Date | NAME | DWT | CT | Killed | Missing | CARGO |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| General Cargo | 11-Mar-84 | ANDROMACHE I | 834 | 495 | 0 | | |
| General Cargo | 13-Mar-84 | SONIA G. MASIQUES | 559 | 363 | 0 | 7 | Cement 460 Tons |
| General Cargo | 28-Mar-84 | URLEA | 835 | 480 | 1 | | Wood 399 Tons |
| General Cargo | 9-Apr-84 | UNGGULIIV | 550 | 449 | 0 | | Coffee Beans 423 T |
| General Cargo | 6-Jun-84 | JENNIES | 16074 | 9172 | 0 | | Iron Pipes Magnesium |
| General Cargo | 19-Jun-84 | VELA VI | 648 | 468 | 0 | | Onions |
| General Cargo | 29-Jun-84 | HAMAD AL KULAIB | 2910 | 1597 | 0 | | Livestock |
| General Cargo | 4-Jul-84 | AL REAFA I | 3539 | 2392 | 0 | | |
| General Cargo | 14-Jul-84 | CARIBE | 2253 | 1415 | 1 | | Copper Zinc |
| General Cargo | 21-Jul-84 | MARIA RAMOS | 5273 | 3233 | 3 | 8 | Salt |
| General Cargo | 29-Jul-84 | ILSHIN GLORY | 1618 | 1158 | 1 | 11 | Mill Scale - 1500 T |
| General Cargo | 7-Aug-84 | ORIENTAL PEARL | 8182 | 5139 | 0 | | Copper Concentrate |
| General Cargo | 8-Aug-84 | GINREI MARU | 4603 | 2627 | 0 | | Logs |
| General Cargo | 15-Aug-84 | MARINA DEL SUR | 5745 | 2991 | 0 | 4 | |
| General Cargo | 2-Sep-84 | CASTOR | 3040 | 1996 | 22 | | Pipes |
| General Cargo | 6-Sep-84 | MARINA | 5405 | 4116 | 0 | | Phosphate |
| General Cargo | 20-Oct-84 | LIBRA | 467 | 300 | 0 | | Scrap |
| General Cargo | 20-Oct-84 | LADY ODIEL | 901 | 487 | 1 | 3 | Steel Pipes - 765 T |
| General Cargo | 15-Nov-84 | PANOREA | 991 | 445 | 4 | 3 | General |
| General Cargo | 17-Nov-84 | INGMAR | 849 | 422 | 0 | | Grain |
| General Cargo | 20-Nov-84 | CHEROKEE | 1914 | 999 | 1 | 8 | Lumber |
| General Cargo | 21-Nov-84 | FYLRIX | 945 | 637 | 0 | | Granite Chippings |
| General Cargo | 22-Nov-84 | WU HANG | 1520 | 795 | 0 | | Clay 1,000 Tons General |
| General Cargo | 23-Nov-84 | GOLFSTROM | 1207 | 499 | 0 | | Wood |
| General Cargo | 2-Dec-84 | BLUE ANGEL | 4962 | 2832 | 0 | 3 | Logs |
| General Cargo | 4-Dec-84 | ARAUCA | 3860 | 2403 | 0 | | General/In Container |
| General Cargo | 5-Dec-84 | SOFIA | 2050 | 1219 | 0 | | Chickpeas Barbed Wire |
| General Cargo | 23-Dec-84 | GOLDEN PINE | 8638 | 5390 | 0 | | Lauan Logs 6600 Tons |
| General Cargo | 29-Jan-85 | HWAPYUNG ACE | 3413 | 1992 | 7 | 10 | Containers, 57 |
| General Cargo | 1-Feb-85 | CRYSTAL NO. 1 | 1618 | 993 | 1 | 13 | Steel Materials |
| General Cargo | 8-Feb-85 | BUSKO ZDROJ | 1902 | 1974 | 10 | 14 | Steel Members |
| General Cargo | 9-Feb-85 | KOEI MARU NO. 11 | 813 | 395 | 0 | | Steel |

| Shlotype | Casualty Date | NAME | DWT | GT | Killed | Missing | CARCO |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| General Cargo | 22-Feb-85 | SITI FREDA | 6564 | 3675 | 0 | | Logs |
| General Cargo | 10-Mar-85 | YASMAT | 6787 | 3986 | 0 | | Logs 1,753 Pieces |
| General Cargo | 7-Apr-85 | CAROLINE | 720 | 414 | 0 | | Fertilizer |
| General Cargo | 14-Apr-85 | SANKO MARU | 5935 | 2998 | 0 | | Logs 4,900 Tons |
| General Cargo | 24-Jun-85 | CAROL | 1907 | 1051 | 0 | | Scrap |
| General Cargo | 27-Jun-85 | AL RUBAYIA | 1438 | 869 | 0 | | |
| General Cargo | 12-Aug-85 | PORTVAG | 564 | 299 | 0 | | Sand |
| General Cargo | 8-Oct-85 | OCEAN MACKEREL | 524 | 424 | 0 | | |
| General Cargo | 13-Oct-85 | HOELIEN | 4044 | 3278 | 0 | | Timber Steel |
| General Cargo | 16-Oct-85 | HANNA MARJUT | 927 | 499 | 0 | 4 | Sugar Beet |
| General Cargo | 20-Oct-85 | KRITI | 833 | 481 | 0 | 7 | Pumice, 720 Tons |
| General Cargo | 23-Oct-85 | HAI CHIANG | 1563 | 937 | 1 | 17 | Empty Gas Cylinders China Clay |
| General Cargo | 3-Nov-85 | GWYN | 1552 | 730 | 0 | | Steel |
| General Cargo | 10-Nov-85 | RONA | 555 | 299 | 0 | | Fishmeal Hay |
| General Cargo | 17-Nov-85 | JUNG KEUM NO. 7 | 1043 | 730 | 6 | 4 | Mild Steel 850 Tons |
| General Cargo | 26-Nov-85 | NEGWAN | 1556 | 1333 | 0 | | |
| General Cargo | 28-Nov-85 | SUSAN MITCHELL | 395 | 292 | 0 | | 'galvanise' |
| General Cargo | 19-Dec-85 | GLENDA | 3263 | 1937 | 0 | 12 | Fertiliser |
| General Cargo | 27-Dec-85 | KUNIEI MARU NO. 18 | 1570 | 498 | 0 | 2 | Salt, 950 Tons |
| General Cargo | 1-Jan-86 | MORNING PARK | 6308 | 4051 | 0 | | Logs |
| General Cargo | 17-Jan-86 | AGIOS NIKOLAOS | 499 | 499 | 0 | | |
| General Cargo | 23-Jan-86 | STANLEY BAY | 5558 | 3192 | 2 | 1 | Minerals |
| General Cargo | 30-Jan-86 | ALPRO | 945 | 713 | 2 | 5 | China Clay |
| General Cargo | 11-Feb-86 | UNITY II | 1118 | 490 | 7 | 2 | General |
| General Cargo | 17-Feb-86 | NEMOS | 9861 | 4981 | 7 | 1 | Timber 9,500 Tons Logs |
| General Cargo | 26-Feb-86 | ANGELA SMITS | 7800 | 3971 | 0 | | Ammonium Nitrate |
| General Cargo | 28-Feb-86 | LORENZO CONTAINER VII | 1757 | 979 | 0 | 1 | Logs |
| General Cargo | 2-Mar-86 | HALIM METE | 1396 | 497 | 0 | | Ore |
| General Cargo | 11-Mar-86 | MARIA PIA M. | 1927 | 983 | 0 | | General, 1,760 Tonne |
| General Cargo | 23-Mar-86 | SHOEI MARU | 3115 | 1107 | 2 | 5 | Coal 3,000 Tons |
| General Cargo | 24-Mar-86 | ERICAll | 2345 | 1420 | 1 | 8 | |
| General Cargo | 25-Mar-86 | AMINA | 1005 | 493 | 3 | 2 | |

| ShipType | Casualty Date | NAME | DWT | GT | Killed | Missing | CARGO |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| General Cargo | 20-Apr-86 | VIOLET MITCHELL | 473 | 362 | 1 | 1 | |
| General Cargo | 15-Jun-86 | DE BAO | 4870 | 3995 | 3 | | Steel Bars 3324tonne |
| General Cargo | 22-Jul-86 | DELTA QUEEN | 1040 | 498 | 0 | | Cement-850 Tonnes |
| General Cargo | 12-Aug-86 | EAMACO | 13358 | 8146 | 1 | 17 | Plywood |
| General Cargo | 15-Aug-86 | SALIM ATASOY | 1000 | 498 | 0 | | |
| General Cargo | 24-Aug-86 | REHEMA | 620 | 443 | 0 | | Gelignite 60t |
| General Cargo | 25-Aug-86 | SOPOT | 3645 | 3008 | 0 | | Orange Pulp |
| General Cargo | 4-Oct-86 | DONG NAM | 5701 | 3003 | 0 | | Timber |
| General Cargo | 2-Nov-86 | YEN KIM | 5158 | 2831 | 0 | | Logs |
| General Cargo | 16-Nov-86 | HYMETUS | 15281 | 9078 | 1 | 1 | Steel |
| General Cargo | 21-Nov-86 | DA COSTA | 295 | 125 | 0 | | Bagged Cement |
| General Cargo | 2-Dec-86 | VILLON | 677 | 437 | 0 | | Barley |
| General Cargo | 8-Dec-86 | WESERBERG | 1900 | 998 | 0 | | Cornflour |
| General Cargo | 21-Dec-86 | BUMI PERSADA | 3300 | 1592 | 0 | | General |
| General Cargo | 24-Dec-86 | SUDURLAND | 2333 | 2333 | 3 | 3 | Salted Herring |
| General Cargo | 13-Jan-87 | VISHVA ANURAG | 14580 | 11179 | 0 | | Steel General Containers |
| General Cargo | 14-Jan-87 | ALBATROS | 394 | 229 | 0 | | Grain-300 Tonnes Fishmeal Soyabeans |
| General Cargo | 17-Jan-87 | KYTHERA STAR | 3581 | 3163 | 3 | 15 | Iron Bars |
| General Cargo | 18-Jan-87 | NIKOLAOS L. | 904 | 500 | 0 | 10 | Bricks 630t Passengers |
| General Cargo | 6-Feb-87 | CAMMING | 6092 | 3529 | 7 | 16 | Logs |
| General Cargo | 12-Feb-87 | BORA ISIK | 7591 | 5174 | 0 | 3 | Borax Steel |
| General Cargo | 24-Feb-87 | BALSA 24 | 6638 | 3724 | 4 | 14 | Clay |
| General Cargo | 6-Mar-87 | CAPTAIN FRED | 693 | 538 | 0 | | |
| General Cargo | 14-Mar-87 | KOMSOMOLETS KIRGIZII | 12844 | 8540 | 0 | | Flour 10292t |
| General Cargo | 23-Mar-87 | STEFAN E | 2223 | 1189 | 1 | | |
| General Cargo | 8-Jul-87 | AVA MINTI | 4767 | 2872 | 3 | 16 | Salt |
| General Cargo | 8-Jul-87 | CONTI BELGICA | 6140 | 3987 | 0 | | General 1650 Tons |
| General Cargo | 13-Jul-87 | MINDE | 764 | 299 | 0 | | Small Stones |
| General Cargo | 20-Jul-87 | DON TONY | 800 | 581 | 0 | | |
| General Cargo | 26-Aug-87 | BEHRAM DUBASH-I | 606 | 431 | 0 | | Clinker 585 Tons |
| General Cargo | 16-Oct-87 | SUMNIA | 3283 | 1595 | 0 | 2 | |

| ShipType | Casualty Date | NAME | DWT | GT | Killed | Missing | CARGO |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| General Cargo | 28-Nov-87 | KAKAS | 6276 | 3716 | 1 | 1 | Lauan Logs |
| General Cargo | 6-Dec-87 | JANG YUNG No. 2 | 570 | 294 | 0 | 11 | Timber |
| General Cargo | 14-Dec-87 | TRITON TRADER | 3132 | 3132 | 0 | | Fibreboard |
| General Cargo | 13-Jan-88 | SUDARWAN I | 175 | 175 | 0 | 1 | General 200 Tons |
| General Cargo | 24-Jan-88 | CELIKTRANS II | 1400 | 499 | 0 | 1 | Metal |
| General Cargo | 29-Jan-88 | ROLANDIA | 4801 | 2723 | 0 | 12 | Alumina In Bulk |
| General Cargo | 3-Feb-88 | NAUTILUS | 3095 | 1599 | 0 | | |
| General Cargo | 31-Mar-88 | EL EXPORTADOR | 1811 | 1355 | 0 | | Salt - 2000 Tons |
| General Cargo | 7-Apr-88 | TOMIYAMA MARU No. 5 | 399 | 198 | 1 | 4 | Wooden Chips 350 T |
| General Cargo | 18-Apr-88 | SANDAKAN | 3860 | 2878 | 0 | | Copper Sulphide |
| General Cargo | 7-May-88 | ABOUDY | 854 | 499 | 0 | | Aluminium 122 T Livestock General |
| General Cargo | 25-Jun-88 | WALIAN | 2194 | 997 | 1 | | Drilling Cement |
| General Cargo | 29-Jun-88 | MIRENE | 7449 | 4997 | 0 | | Fertiliser Base |
| General Cargo | 26-Sep-88 | ARDLOUGH | 2315 | 998 | 0 | | Hydrogen Peroxide Sodium Hypochlorite |
| General Cargo | 10-Oct-88 | CENTRAL CRUISER | 5313 | 3000 | 1 | 3 | Logs |
| General Cargo | 30-Oct-88 | HUNG MING No. 1 | 6025 | 3571 | 0 | | |
| General Cargo | 30-Oct-88 | MARIA PILAR | 6316 | 3961 | 0 | | Logs |
| General Cargo | 18-Nov-88 | LA VIE EN ROSE | 7123 | 4415 | 2 | 1 | Malaysian Timber |
| General Cargo | 24-Nov-88 | KATIA | 7500 | 4940 | 0 | | Hemp |
| General Cargo | 2-Dec-88 | SADU | 4737 | 3531 | 0 | | |
| General Cargo | 9-Dec-88 | FOUR STAR I | 1904 | 1982 | 0 | 3 | Marble General |
| General Cargo | 10-Dec-88 | CAMFAIR | 6667 | 4169 | 0 | | Logs |
| General Cargo | 11-Dec-88 | SELINA | 8034 | 4827 | 0 | | Lumber |
| General Cargo | 26-Dec-88 | BADEN | 822 | 297 | 0 | | Steel |
| General Cargo | 22-Feb-89 | SECIL ANGOLA | 4842 | 2625 | 5 | 12 | Salt |
| General Cargo | 24-Feb-89 | WALTRAUD | 2964 | 2726 | 0 | | Containers |
| General Cargo | 25-Feb-89 | ANNA LEONHARDT | 6552 | 3894 | 1 | 14 | Alumina 6000t |
| General Cargo | 28-Feb-89 | POLARLIGHT | 424 | 199 | 0 | | Cement |
| General Cargo | 9-Mar-89 | LORENZO CONTAINER V | 2000 | 995 | 19 | | Foodstuffs Construction Mats. |
| General Cargo | 13-Mar-89 | PERINTIS | 1683 | 999 | 0 | | Containers Toxic Chemicals |
| General Cargo | 29-Mar-89 | DIAS | 838 | 499 | 0 | | |

| ShipType | Casualty Date | NAME | DWT | GT | Killed | Missing | CARGO |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| General Cargo | 31-Mar-89 | RAHIM 3 | 5778 | 2958 | 16 | 4 | Scrap Metal 5,300 T |
| General Cargo | 10-Apr-89 | KOBA | 4084 | 2300 | 0 | 1 | Sorghum Grain |
| General Cargo | 16-Apr-89 | HYSTEIN | 2503 | 1391 | 0 | | Grain |
| General Cargo | 13-Jun-89 | PUERTO PLATA | 3085 | 1589 | 0 | | Gypsum |
| General Cargo | 28-Jun-89 | HWAN YANG | 4613 | 2745 | 0 | | Polyester Yarn Polyester Chip Paper Board |
| General Cargo | 8-Jul-89 | GADO | 1079 | 494 | 0 | | Ammonium Nitrate Emulite |
| General Cargo | 25-Jul-89 | PUERTO DE HANGA ROA | 1940 | 1164 | 3 | 5 | Minerals 1800 Tons |
| General Cargo | 25-Sep-89 | CALF SOUND | 609 | 392 | 0 | | Cement Prefab. Buildings |
| General Cargo | 19-Oct-89 | DINA | 1073 | 770 | 3 | 1 | Paper Pulp |
| General Cargo | 28-Oct-89 | MURREE | 18050 | 11940 | 0 | | Containers Methanol 205 Xylene |
| General Cargo | 1-Nov-89 | ARBON | 1555 | 1439 | 0 | 2 | |
| General Cargo | 15-Nov-89 | TYCHE | 9984 | 6034 | 2 | | Logs 2,300 |
| General Cargo | 19-Nov-89 | KAO HWA 3 | 5826 | 2990 | 2 | | |
| General Cargo | 26-Nov-89 | VIBEKE | 785 | 299 | 0 | | Timber |
| General Cargo | 7-Dec-89 | JOHANNA B | 5008 | 2806 | 0 | 16 | Pig Iron |
| General Cargo | 8-Dec-89 | CAPITAINE TORRES | 8769 | 6444 | 0 | 23 | Machinery Containers |
| General Cargo | 16-Dec-89 | ARKLOW VICTOR | 4250 | 2867 | 0 | 1 | |
| General Cargo | 20-Dec-89 | NIAGA XXXIX | 2968 | 1599 | 0 | | Asphalt 15,864 Drums |
| General Cargo | 24-Dec-89 | TOPOLOVENI | 4737 | 3531 | 1 | 13 | Steel 2,722 Tonnes |
| General Cargo | 31-Dec-89 | EVER LIGHT | 1699 | 949 | 0 | | |
| General Cargo | 6-Jan-90 | KARA | 5936 | 3278 | 0 | | Sawn Timber |
| General Cargo | 11-Jan-90 | IRVING FOREST | 8253 | 6982 | 0 | | Woodpulp Newsprint |
| General Cargo | 25-Jan-90 | HUA ZHU | 5106 | 2490 | 5 | 1 | Logs |
| General Cargo | 30-Jan-90 | MIGHTY RYO | 7137 | 4425 | 0 | | Logs |
| General Cargo | 12-Feb-90 | SEA CARRIER | 2700 | 1400 | 1 | 8 | |
| General Cargo | 12 -Feb-90 | BREITHORN | 5509 | 3266 | 0 | | Grain |
| General Cargo | 17-May-90 | SUCCESS STAR | 672 | 199 | 0 | | Logs |
| General Cargo | 19-Jun-90 | MARINE JOY | 6051 | 2992 | 0 | | |
| General Cargo | 10-Nov-90 | TENJIN MARU | 380 | 197 | 0 | | Logs |
| General Cargo | 11-Nov-90 | JIAN CHANG | 7609 | 5581 | 2 | | |
| General Cargo | 10-Dec-90 | CTE ROCIO | 2543 | 998 | 0 | | |
| General Cargo | 28-Dec-90 | JARITA | 725 | 644 | 1 | | Paper |

| Shiptype | Casualty Date. | NAME | W. DWH | CIT | Killed | Missing | CARCO |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| General Cargo | 16-Feb-91 | INDOBARUNA II | 6147 | 4756 | 4 | 19 | Steel Products |
| General Cargo | 21-Feb-91 | SEFEROGLU 1 | 3600 | 2255 | 0 | | Steel Rails |
| General Cargo | 21-Feb-91 | PACIFIC FRIEND | 7244 | 4360 | 7 | 7 | Logs |
| General Cargo | 6-May-91 | RITA M | 1524 | 966 | 0 | | Waste Paper |
| General Cargo | 18-Jun-91 | AYDA I | 830 | 395 | 0 | | |
| General Cargo | 8-Jul-91 | RUTH RIIS | 1720 | 1167 | 0 | | Ammonium Nitrate Electric Detonators |
| General Cargo | 30-Jul-91 | BOSTON TRADER | 429 | 199 | 0 | | Beer 100 Tons |
| General Cargo | 21-Sep-91 | MARINE FUTURE | 5123 | 2491 | 0 | | Logs |
| General Cargo | 27-Oct-91 | CELTIC KIWI | 1094 | 911 | 0 | | Cement 850 Tonnes |
| General Cargo | 7-Nov-91 | APOLLONIA FAITH | 9127 | 5999 | 1 | 1 | Containers |
| General Cargo | 16-Nov-91 | COSMOS No. 2 | 4841 | 2625 | 0 | | |
| General Cargo | 24-Nov-91 | MARTA | 2100 | 1202 | 0 | | Potassium In Bulk |
| General Cargo | 30-Nov-91 | TAYYAR SENKAYA | 550 | 386 | 0 | 4 | Sand |
| General Cargo | 7-Dec-91 | SCAIENI | 4620 | 3374 | 1 | 9 | Ammonium Nitrate |
| General Cargo | 8-Dec-91 | GHIWA | 630 | 398 | 2 | | |
| General Cargo | 27-Dec-91 | KATERINA | 980 | 499 | 0 | | |
| General Cargo | 9-Jan-92 | DOOYANG SAPPHIRE | 6519 | 3950 | 0 | 1 | Logs |
| General Cargo | 24-Feb-92 | WALIE 8 | 1552 | 708 | 0 | | Cement 1,200 Tonnes |
| General Cargo | 5-Mar-92 | PEONY | 11599 | 6732 | 0 | | Gypsum |
| General Cargo | 14-Mar-92 | GOLDEN CAMIA | 6103 | 3509 | 0 | | Logs General |
| General Cargo | 24-Mar-92 | ERIS | 2878 | 1596 | 0 | | Fertiliser |
| General Cargo | 26-Jun-92 | ST. JOSEPH | 1454 | 955 | 0 | | Coment |
| General Cargo | 21-Sep-92 | NEW OCEAN | 7854 | 4678 | 0 | | Round Logs |
| General Cargo | 2-Oct-92 | HOLSTEN | 2210 | 1859 | 0 | | Flour |
| General Cargo | 23-Oct-92 | RICHER | 6076 | 4022 | 3 | 1 | Cement |
| General Cargo | 25-Oct-92 | NORDFRAKT | 1584 | 1599 | 0 | | Lead Concentrates |
| General Cargo | 24-Nov-92 | SHOSEN MARU No. 8 | 250 | 117 | 0 | 6 | Fish |
| General Cargo | 24-Nov-92 | CHARM | 4240 | 3133 | 3 | 5 | Wire Rods |
| General Cargo | 25-Nov-92 | GEORGIA K | 3844 | 2144 | 0 | | Iron Rods |
| General Cargo | 1-Dec-92 | SENG HING | 1920 | 1596 | 0 | 1 | Timber Products |
| General Cargo | 4-Dec-92 | CHUNG HO | 4702 | 2849 | 0 | | Containers Bales Of Paper |
| General Cargo | 18-Dec-92 | SIAU | 7052 | 3827 | 0 | | Steel Bars 3,000 T Plywood (In Bulk) |

| ShipType | Casualty Date | NAME | DWT | GT | Killed | Missing | CARGO |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| General Cargo | 15-Jan-93 | ACAMAR | 5970 | 3146 | 9 | 12 | Kaolinic Clay |
| General Cargo | 21-Jan-93 | NUSA MAS | 1080 | 808 | 0 | | Cement, Bagged 450 T |
| General Cargo | 23-Jan-93 | GATEWAY | 1090 | 499 | 0 | | Bitumen In Drums |
| General Cargo | 23-Jan-93 | ADI PERTIWI | 6275 | 3718 | 0 | | |
| General Cargo | 28-Jan-93 | MARINE HAWK | 5160 | 2493 | 3 | 2 | Logs |
| General Cargo | 30-Jan-93 | NUPEN | 371 | 199 | 0 | 1 | |
| General Cargo | 3-Feb-93 | PROSPERITY | 19052 | 10988 | 4 | 1 | Fertiliser |
| General Cargo | 15-Feb-93 | SUN DANCER | 2012 | 911 | 0 | | |
| General Cargo | 21-Feb-93 | NORDQUEEN | 1472 | 499 | 0 | | Grain |
| General Cargo | 13-Mar-93 | FANTASTICO | 1778 | 986 | 3 | 4 | Fertiliser |
| General Cargo | 24-Mar-93 | XIAN REN | 4097 | 2847 | 17 | 12 | Iron Scrap |
| General Cargo | 12-Apr-93 | VISHVA MOHINI | 13715 | 10092 | 12 | 21 | Steel |
| General Cargo | 10-Jun-93 | PALMA | 13920 | 7902 | 0 | | General |
| General Cargo | 17-Jun-93 | TALENT | 3326 | 2276 | 3 | 14 | Pulses 2,900 Tons |
| General Cargo | 26-Jun-93 | ATON | 6791 | 4511 | 0 | | Ammonium Phosphate |
| General Cargo | 1-Jul-93 | ZAM ZAM | 2205 | 1588 | 0 | | |
| General Cargo | 2-Aug-93 | CHALLENGE | 15379 | 8754 | 1 | 2 | Sugar Soap Rice |
| General Cargo | 21-Aug-93 | TAVEECHAI MARINE | 4044 | 2722 | 0 | | Timber |
| General Cargo | 12-Sep-93 | MIRIAM | 2550 | 1374 | 0 | | Wheat |
| General Cargo | 17-Sep-93 | POLESSK | 11350 | 7192 | 1 | 28 | Steel Pipes |
| General Cargo | 19-Sep-93 | AEGEO STAR | 718 | 492 | 2 | | Plastics |
| General Cargo | 1-Oct-93 | SEABEC | 864 | 499 | 0 | | Containers |
| General Cargo | 4-Oct-93 | EASTERN GLORY | 4503 | 3046 | 0 | 9 | |
| General Cargo | 10-Oct-93 | DJARFOGO | 345 | 199 | 0 | | General Cargo |
| General Cargo | 1-Nov-93 | ANTONIOS | 864 | 492 | 0 | | Corn |
| General Cargo | 3-Nov-93 | AMAL | 2959 | 1585 | 0 | 8 | |
| General Cargo | 9-Nov-93 | CHUL YANG | 945 | 490 | 3 | 1 | Oranges |
| General Cargo | 20-Nov-93 | SUCCESS 1 | 5139 | 2832 | 0 | 1 | Timber |
| General Cargo | 27-Nov-93 | DASA TUJUH | 7365 | 4611 | 3 | 5 | Logs |
| General Cargo | 10-Dec-93 | SOUTHERN GLORY | 3203 | 2427 | 0 | | General Sawn Timber |
| General Cargo | 4-Feb-94 | LEO | 1000 | 486 | 0 | | |
| General Cargo | 5-Mar-94 | FALTICENI | 4795 | 3531 | 0 | 4 | Ammonium Nitrate |

| ShipType | Casualty Date | NAME | DWT | GT | Killed | Missing | CARGO |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| General Cargo | 4-Apr-94 | ELATMA | 2100 | 1652 | 0 | | Ammonium Nitrate |
| General Cargo | 2-Jul-94 | KOTA SILAT IX | 955 | 1159 | 0 | | General |
| General Cargo | 12-Jul-94 | KONSTANTIN ZANKOV | 7700 | 6459 | 0 | | Pyrite Ore |
| General Cargo | 11-Aug-94 | SALEM TWELVE | 15317 | 9283 | 0 | 4 | |
| General Cargo | 22-Aug-94 | BERKAH | 1168 | 496 | 2 | 5 | |
| General Cargo | 19-Oct-94 | DANICA BLACK | 960 | 997 | 0 | | Bagged Fertiliser |
| General Cargo | 21-Oct-94 | SYRVE | 4375 | 3188 | 5 | 6 | Cement |
| General Cargo | 1-Nov-94 | MARIYA | 1652 | 1652 | 0 | | Timber |
| General Cargo | 20-Nov-94 | MAGED H | 1264 | 399 | 0 | 1 | Salt (In Bulk) |
| General Cargo | 6-Dec-94 | SHELBY STAR | 2733 | 1585 | 0 | 2 | Gypsum |
| General Cargo | 9-Dec-94 | SALVADOR ALLENDE | 12007 | 10954 | 0 | 29 | Rice |
| General Cargo | 21-Dec-94 | FRANCIA EXPRESS | 3089 | 1260 | 0 | | |
| General Cargo | 1-Jan-95 | LINITO | 1179 | 419 | 0 | | Marble |
| General Cargo | 29-Jan-95 | JIANG YONG GUAN | 5593 | 4107 | 0 | 5 | Iron Pyrites (5087t) |
| General Cargo | 1-Feb-95 | SANG THAI GALAXY | 7192 | 4359 | 0 | 20 | Cement Clinker |
| General Cargo | 5-Feb-95 | SUN RIVER II | 11785 | 7341 | 11 | 3 | Logs (11,000 Cm) |
| General Cargo | 13-Mar-95 | PELHUNTER | 6138 | 4345 | 7 | 5 | Containers |
| General Cargo | 27-Mar-95 | BISMI | 1876 | 1104 | 0 | | General Onions |
| General Cargo | 13-Apr-95 | ANG LO | 9750 | 7253 | 0 | | Cement |
| General Cargo | 26-Jun-95 | LINK STAR | 10187 | 6241 | 0 | 23 | Steel Products 9700t |
| General Cargo | 17-Jul-95 | PYRAMIDS | 15807 | 9359 | 0 | | Steel Coils |
| General Cargo | 19-Jul-95 | ANNA II | 1067 | 499 | 0 | | Bagged Cement |
| General Cargo | 25-Jul-95 | SUN SHINE 1 | 4311 | 3234 | 0 | 3 | Palm Oil |
| General Cargo | 3-Nov-95 | MARIA I | 2874 | 1808 | 1 | 7 | Stones 2,507 Tonnes |
| General Cargo | 7-Nov-95 | CORALINE | 6142 | 4351 | 0 | | Containers (139) |
| General Cargo | 13-Nov-95 | SANG THAI SILVER | 5840 | 3086 | 0 | | |
| General Cargo | 14-Nov-95 | GIGEK | 4955 | 3132 | 0 | | Containers (Maize) |
| General Cargo | 12-Dec-95 | BUREYA | 1280 | 1449 | 0 | | Rice (100t) |
| General Cargo | 25-Dec-95 | ANDHIKA WANASATYA | 6654 | 3890 | 1 | 13 | Logs |
| General Cargo | 27-Dec-95 | YAYASAN ENAM | 8027 | 5106 | 0 | | Logs |
| General Cargo | 4-Jan-96 | BIANKA PRIMA | 398 | 398 | 0 | 9 | Passengers Plywood |

| ShipType | Casualty Date | NAME | DWT | GT | Killed | Missing | CARGO |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| General Cargo | 6-Jan-96 | COVASNA | 4620 | 3374 | 0 | | Steel Pipes |
| General Cargo | 7-Jan-96 | KATHLEEN D | 1516 | 843 | 0 | 8 | Sulphate |
| General Cargo | 5-Feb-96 | RICO | 11603 | 7094 | 0 | | Cement Clinker |
| General Cargo | 11-Feb-96 | HELENA JAYNE | 481 | 382 | 0 | | |
| General Cargo | 20-Feb-96 | OCEAN RUBY | 5145 | 2818 | 0 | 2 | Logs |
| General Cargo | 27-Feb-96 | YOM BUN JIN | 9950 | 6676 | 2 | 33 | Anthracite |
| General Cargo | 27-Mar-96 | DAVID JUNIOR | 1000 | 998 | 0 | 6 | Cement |
| General Cargo | 2-May-96 | DUMAGUETE DOLPHIN | 500 | 224 | 0 | 5 | Fertiliser Corn |
| General Cargo | 19-Jul-96 | AMELIE | 830 | 497 | 0 | | |
| General Cargo | 23-Jul-96 | SUNDANCE | 17524 | 12499 | 0 | 2 | Bulk Potash |
| General Cargo | 25-Jul-96 | FUGAI | 695 | 346 | 1 | | Bagged Cement Container |
| General Cargo | 13-Sep-96 | PRAGA | 330 | 197 | 0 | 3 | Food Supplies Car |
| General Cargo | 13-Nov-96 | CORDIGLIERA | 16525 | 12025 | 5 | 24 | Steel Paper |
| General Cargo | 15-Nov-96 | PULSAR | 1746 | 1501 | 2 | | Lumber |
| General Cargo | 16-Nov-96 | BLUE SKY | 6470 | 4375 | 0 | | |
| General Cargo | 22-Nov-96 | HALSTENBEK | 936 | 564 | 1 | | Grain |
| General Cargo | 24-Nov-96 | PROMEX AMAN | 7851 | 4685 | 0 | | Logs; 6,000 Tons |
| General Cargo | 24-Dec-96 | BERRACK S | 1073 | 399 | 0 | | |
| General Cargo | 8-Jan-97 | ONURK | 1800 | 989 | 4 | 1 | Zinc/Lead Concentrat |
| General Cargo | 8-Jan-97 | SUN RICHIE 3 | 11598 | 6799 | 0 | | |
| General Cargo | 30-Jan-97 | AHMET AKDENIZ | 824 | 498 | 1 | 2 | Flour, 750t |
| General Cargo | 9-Mar-97 | DISARFELL | 8020 | 5967 | 2 | | Containers |
| General Cargo | 13-Jun-97 | CALARASI | 4800 | 3493 | 0 | 1 | Fishmeal |
| General Cargo | 15-Jun-97 | GANDASULI | 340 | 331 | 0 | 4 | Fertiliser General |
| General Cargo | 19-Jun-97 | ARCADIA PRIDE | 13761 | 9707 | 6 | 18 | Sulphur |
| General Cargo | 31-Jul-97 | SEA EMPRESS | 4410 | 3011 | 0 | | Sulphur; 4200 Tonnes |
| General Cargo | 20-Oct-97 | BLACK SEA T | 10157 | 6390 | 0 | 1 | Rape Seed Wheat |
| General Cargo | 19-Dec-97 | ANJANA | 5662 | 3676 | 0 | | Stone |
| General Cargo | 17-Jan-98 | AGIOS PANTELEIMON | 3018 | 1847 | 2 | 5 | Ammonium Sulphate |
| General Cargo | 2-Feb-98 | DELFIN DEL MEDITERRANEO | 6332 | 4614 | 1 | | Containers |
| General Cargo | 5-Feb-98 | ANTELOPE | 2106 | 1165 | 4 | 1 | Aluminium Coil |

| Shtrouype | Casualty Date | NAME | DWI. | CT | Molled | Missing | CARCO |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| General Cargo | 14-Feb-98 | BEG | 1090 | 1079 | 0 | 5 | |
| General Cargo | 25-Feb-98 | SUNDARI | 850 | 566 | 0 | | Coal; 700 T |
| General Cargo | 27-Feb-98 | ULSUND | 2106 | 1572 | 2 | 5 | Aluminium |
| General Cargo | 10-Apr-98 | DON MARIO | 4394 | 2850 | 0 | 3 | Steel |
| General Cargo | 15-Apr-98 | LYN | 1133 | 902 | 0 | | Herrings In Drums |
| General Cargo | 13-Jun-98 | ALIMAD | 4064 | 2706 | 0 | | Bagged Cement |
| General Cargo | 28-Jun-98 | WORLD PEACE | 14711 | 9152 | 0 | | Marble Chrome Ore |
| General Cargo | 16-Oct-98 | ASTER | 3080 | 1821 | 3 | 3 | Phosphor |
| General Cargo | 19-Oct-98 | CANTIK | 9540 | 5656 | 0 | 2 | |
| General Cargo | 24-Nov-98 | KALIMANTAN EXPRESS | 4399 | 3082 | 0 | | Peas |
| General Cargo | 15-Dec-98 | MARIA MADIA | 15177 | 9176 | 0 | | |
| General Cargo | 9-Jan-99 | DUBA | 430 | 296 | 0 | | |
| General Cargo | 16-Jan-99 | CAROLINES | 10010 | 6209 | 0 | | Silica Sand, 6,000 T |
| General Cargo | 5-Feb-99 | PETIT FOLMER | 570 | 415 | 2 | 2 | Fertiliser In Bulk |
| General Cargo | 16-Mar-99 | CORE No. 8 | 4017 | 3253 | 0 | | Ore |
| General Cargo | 8-May-99 | PENGIBU | 3400 | 2340 | 18 | 8 | Cement In Bags |
| General Cargo | 8-Jul-99 | LIFTMAR | 2896 | 2021 | 0 | | Copper \& Tin Oxide |
| General Cargo | 9-Jul-99 | ARKTIS QUEEN | 2676 | 1829 | 0 | 5 | Timber |
| General Cargo | 20-Oct-99 | HENRY NAVIGATOR | 13600 | 11033 | 0 | | Minerals |
| General Cargo | 29-Oct-99 | DUBAI OASIS | 8230 | 6212 | 0 | | Steel Coil |
| General Cargo | 5-Nov-99 | DOLLY | 366 | 289 | 0 | | Bitumen |
| General Cargo | 9-Nov-99 | ALICAN DEVAL | 1812 | 982 | 0 | 7 | Ore |
| General Cargo | 15-Dec-99 | VIOLET OCEAN | 5117 | 3009 | 0 | | Logs |
| General Cargo | 16-Dec-99 | CAPRICORN | 3173 | 1767 | 1 | | Wood |
| General Cargo | 31-Dec-99 | SAMARET JAMA | 906 | 630 | 0 | | |
| General Cargo | 26-Jan-00 | RUI DA | 7529 | 4942 | 0 | | Logs |
| General Cargo | 27-Jan-00 | YIAW YANG | 8813 | 5577 | 0 | | |
| General Cargo | 21-Feb-00 | LINA STAR | 1170 | 672 | 0 | | Soda Ash |
| General Cargo | 23-Feb-00 | VESTKYST | 415 | 276 | 0 | | Sand |
| General Cargo | 4-Mar-00 | IUGO | 8749 | 5934 | 0 | | Iron Ore Residue |
| General Cargo | 15-May-00 | SKY 1 | 1165 | 1069 | 0 | | Saloon Cars Stainless Steel |

| ShipType | Casualty Date | NAME | DWT | GT | Killed | Missing | CARGO |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| General Cargo | 1-Aug-00 | VALEA ASRE | 11597 | 6441 | 0 | 2 | |
| General Cargo | 17-Aug-00 | BANGLUANG | 6042 | 3908 | 0 | 11 | Timber |
| General Cargo | 5-Nov-00 | RYAZAN | 5657 | 4937 | 0 | | Foodstuff |
| General Cargo | 10-Nov-00 | ELENA | 2893 | 2457 | 0 | | General/Containers |
| General Cargo | 2-Dec-00 | SKY PRIMA | 3052 | 1998 | 0 | | General/Containers |
| General Cargo | 14-Dec-00 | STEINFALK | 396 | 212 | 0 | 3 | Sand |
| General Cargo | 23-Dec-00 | ANITA | 752 | 500 | 1 | 8 | General Cars Tyres On Deck |
| General Cargo | 7-Jan-01 | WHITE KOOWA | 4638 | 3561 | 8 | 1 | Nickle Ore |
| General Cargo | 24-Jan-01 | STAR ADMIRAL | 17850 | 15893 | 0 | | |
| General Cargo | 28-Jan-01 | HOLLY TRADER | 1894 | 1518 | 0 | | Fertiliser |
| General Cargo | 18-Feb-01 | FERNANDINA | 5008 | 2806 | 0 | | Fertiliser |
| General Cargo | 8-Mar-01 | PAMELA DREAM | 6475 | 3946 | 6 | 2 | Timber |
| General Cargo | 20-Jun-01 | GOSELLA | 5052 | 3156 | 0 | 1 | Timber |
| General Cargo | 9-Sep-01 | WINDFJORD | 2060 | 1678 | 0 | | Timber |
| General Cargo | 20-Oct-01 | LAM SON-02 | 200 | 166 | 0 | | Genearl |
| General Cargo | 2-Nov-01 | EM EL NOUR | 1074 | 842 | 0 | | Wood |
| General Cargo | 8-Nov-01 | HO FENG No. 8 | 9588 | 5801 | 0 | | Logs |
| General Cargo | 17-Nov-01 | SAMRA | 1734 | 961 | 6 | | Oil |
| General Cargo | 7-Dec-01 | MEDTRADER | 3060 | 2068 | 0 | 1 | Steel |
| General Cargo | 9-Dec-01 | KALKAVAN | 2123 | 1087 | 0 | | Iron Ore |
| General Cargo | 10-Dec-01 | LADY AMAR | 11899 | 6986 | 0 | 1 | Iron Ore |
| General Cargo | 11-Feb-02 | TRIUMPH KAOHSIUNG | 6278 | 3986 | 6 | 1 | Steel Coils |
| General Cargo | 11-Mar-02 | CAMADAN | 3048 | 1855 | 0 | | Fertiliser |
| General Cargo | 5-Apr-02 | EBN HAWKEL | 9420 | 7533 | 10 | 15 | Flour |
| General Cargo | 20-May-02 | FAIRTECH I | 1000 | 515 | 0 | | Cement Clinker |
| General Cargo | 9-Jun-02 | BELLA 1 | 6207 | 3964 | 0 | | Containers Vehicles |
| General Cargo | 18-Aug-02 | IREMIA | 7085 | 5716 | 0 | | Sugar, Rice Steel Bars |
| General Cargo | 22-Oct-02 | GEORGIOS S | 7880 | 6171 | 0 | | Soil |
| General Cargo | 26-Oct-02 | ASSEBURG | 2890 | 1939 | 0 | | |
| General Cargo | 6-Nov-02 | DNEPROVETS-6 | 1322 | 1550 | 0 | 2 | Potash Fertiliser |
| General Cargo | 5-Jan-03 | ALEKSEY VIKHAREV | 3135 | 2478 | 0 | | 16500 Logs |
| General Cargo | 11-Jan-03 | KHADIJEH | 1968 | 1205 | 0 | | |

| ShipType | Casualty Date | NAME | DWT | GT | Killed | Missing | CARGO |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| General Cargo | 27-Jan-03 | HORNET | 3209 | 2095 | 0 | | Plywood Timber |
| General Cargo | 30-Jan-03 | COUGAR | 6068 | 4163 | 0 | | Kaolin |
| General Cargo | 3-Feb-03 | STRELETS | 4540 | 3390 | 9 | 2 | |
| General Cargo | 18-Feb-03 | KARIN CAT | 1680 | 1501 | 0 | | Heavy Equipment |
| General Cargo | 21-Feb-03 | PENDOLA | 6503 | 4252 | 0 | 4 | 2000 Logs |
| General Cargo | 25-Feb-03 | KEMAL OKAN | 1137 | 690 | 0 | | Gypsum |
| General Cargo | 3-Apr-03 | ALASKA | 627 | 397 | 0 | 5 | Citrus Fruit |
| General Cargo | 21-May-03 | BEHZAT SENKAYA | 1172 | 687 | 0 | | |
| General Cargo | 24-Jun-03 | OCEAN PIONEER | 2893 | 1516 | 0 | | 2300 Tons Of Wheat |
| General Cargo | 12-Aug-03 | YU JIA | 15210 | 9182 | 0 | | Chrome Ore |
| General Cargo | 1-Oct-03 | MARTINIKA | 3001 | 1886 | 0 | | 3000 Tonnes Iron |
| General Cargo | 15-Oct-03 | ENINA | 1585 | 996 | 0 | | 1020 Tonnes Cement |
| General Cargo | 26-Nov-03 | MY SON | 400 | 376 | 0 | | 460 Tonnes Tapioca |
| General Cargo | 23-Jan-04 | QUEEN | 6243 | 3970 | 0 | | |
| General Cargo | 23-Jan-04 | KEPHI | 8355 | 5315 | 3 | 12 | 8000 Tonnes Cement |
| General Cargo | 7-Feb-04 | DURY | 7054 | 5552 | 12 | 6 | 6,000 Tonnes Steel |
| General Cargo | 13-Apr-04 | GENIUS STAR VI | 5107 | 3005 | 0 | 2 | 6000 Mt Logs |
| General Cargo | 24-May-04 | FAMILY ISLAND EXPRESS | 493 | 526 | 1 | | Cement Blocks |
| General Cargo | 9-Jul-04 | MINI MOON | 3020 | 1881 | 4 | 6 | 2,700 Tons Urea |
| General Cargo | 16-Jul-04 | AMAMI | 980 | 718 | 0 | 12 | 2 Passengers Wheat, Rice Sugar |
| General Cargo | 27-Jul-04 | SUNSHINE KING | 450 | 482 | 0 | | 2,000 Bgs Fertilizer |
| General Cargo | 11-Sep-04 | OSTRIA | 1847 | 1427 | 0 | | Marble |
| General Cargo | 2-Nov-04 | WEST | 1847 | 1427 | 16 | 9 | 1,078 Tons Timber |
| General Cargo | 2-Nov-04 | AROS | 5017 | 2811 | 1 | 7 | 4,400 Tons Coal Timber |
| General Cargo | 12-Nov-04 | LADY GRACE | 719 | 478 | 0 | 1 | Cement |
| General Cargo | 2-Jan-05 | GLOBAL ISLAND | 2909 | 1998 | 0 | 2 | |
| General Cargo | 4-Jan-05 | ALEXANDROS | 3063 | 1623 | 0 | 12 | 2,800 T. Blk Potash |
| General Cargo | 16-Jan-05 | FIANDARA | 965 | 863 | 0 | | Timber Steel |
| General Cargo | 17-Jan-05 | LADY O | 1968 | 1653 | 2 | 6 | 732 Mt Steel 1 Passenger |
| General Cargo | 20-Jan-05 | PIONEER NAYA | 4605 | 2826 | 6 | 8 | 4150 Tons Iron |
| General Cargo | 2-Feb-05 | VIGLA | 2015 | 1153 | 6 | 1 | Salt |
| General Cargo | 14-Feb-05 | SEA REY | 1559 | 1059 | 0 | 2 | Containers |

| ShipType | Casualty Date | NANE | DWT | CT. | Killed | Missing | CARGO |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| General Cargo | 8-Oct-05 | MIDAS 1 | 1594 | 1300 | 0 | | Steel |
| General Cargo | 22-Nov-05 | AN JIN | 5118 | 3124 | 0 | 13 | Steel Ingots Cast Iron |
| General Cargo | 22-Dec-05 | OCEAN STAR | 399 | 399 | 0 | | |
| General Cargo | 8-Jan-06 | PAINKIRA | 203 | 159 | 0 | | Food Automobiles Cattle |
| General Cargo | 23-Jan-06 | A. AKIF | 4600 | 3269 | 2 | | Ballast |
| General Cargo | 1980-04-00 | THEOFILACTOS | 420 | 302 | 0 | | Cigarettes |
| General Cargo | 1980-12-00 | OMAR | 561 | 369 | 0 | | |
| General Cargo | 1988-00-00 | WILLAURIE | 376 | 244 | 0 | | |
| General Cargo Barge | 2-Mar-04 | BULK | 14002 | 9066 | 0 | | Coal |
| General Cargo, Sailing | 12-Mar-92 | SOLVANG III | 180 | 149 | 0 | | Wooden Pallets |
| General Cargo/Container Ca. | 16-Apr-94 | TABASCO | 22229 | 16087 | 0 | | Containers |
| General Cargo/Tanker | 23-Jan-01 | ILES DU PONANT | 320 | 227 | 0 | 4 | |
| General Dry Cgo/Container Ship | 14-Feb-79 | FRANCOIS VIELJEUX | 16257 | 12458 | 11 | 12 | Coffee Tea Copper And Zinc |
| General Dry Cgo/Container Ship | 26-Nov-81 | ELMA TRES | 10497 | 7470 | 1 | 22 | Containers |
| General Dry Cgo/Container Ship | 20-Oct-86 | CARIBE ENTERPRISE | 12426 | 11447 | 0 | | |
| Roro Cargo | 12-Nov-77 | HERO | 3692 | 3468 | 1 | | |
| Roro Cargo | 28-Dec-80 | CHERCHELL | 1737 | 1062 | 0 | | General |
| Roro Cargo | 15-Feb-82 | MEKHANIK TARASOV | 5306 | 4262 | 20 | 12 | Newsprint 2,500 Tons |
| Roro Cargo | 14-Jan-87 | AMIRA | 5675 | 3710 | 0 | | Cars |
| Roro Cargo | 30-Mar-87 | AL HOCEIMA | 2743 | 1576 | 0 | | Trucks Containers |
| Roro Cargo | 28-Feb-88 | VINCA GORTHON | 10945 | 18773 | 0 | | Paper Wood Pulp Trailers |
| Roro Cargo | 13-Sep-88 | RA | 2489 | 1333 | 0 | | Beer |
| Roro Cargo | 9-Dec-88 | EL CARRIER I | 2993 | 1508 | 0 | | Rolling Eqpt. |
| Roro Cargo | 7-Apr-90 | EAL DIAMOND | 13971 | 19689 | 0 | | Coffee Cocoa Containers |
| Roro Cargo | 27-Feb-93 | ISLA DE LA GOMERA | 1438 | 1123 | 1 | 4 | Horses Containers |
| Roro Cargo | 6-Sep-01 | LYNN | 1155 | 1542 | 0 | | Copper Sheets |
| Roro Cargo | 22-Jan-03 | WHITE SEAL | 5923 | 7037 | 0 | | |
| Roro Cargo | 16-Jun-04 | DORSET | 3300 | 2084 | 0 | | |
| Ore Carrier | 29-Oct-87 | TOPKAPI-S | 61940 | 36900 | 5 | 11 | Iron Ore 59,000 Tons |
| Ore Carrier | 13-Nov-91 | SONATA | 79681 | 25597 | 0 | | Iron Ore Pellets |
| Ore Carrier | 1-Jan-94 | MARIKA | 169147 | 81262 | 0 | 36 | Iron Ore |

| ShipType | Casualty Date | NAME | DWT | GT | Killed | Missing | CARGO |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Ore Carrier | 3-Sep-94 | IRON ANTONIS | 93356 | 48756 | 0 | 24 | Iron Ore |
| Ore/Oil Carrier | 25-Jan-81 | DEIFOVOS | 70341 | 29689 | 5 | 4 | Iron Ore |
| Ore/Oil Carrier | 22-Jan-85 | HOPE STAR | 116654 | 66593 | 0 | | Iron Ore |
| Refrigerated Cargo | 31-Oct-78 | GOLAR BORG | 7717 | 4892 | 0 | 4 | Potatoes |
| Refrigerated Cargo | 2-Mar-80 | ZEUS | 701 | 490 | 2 | 4 | |
| Refrigerated Cargo | 13-Dec-81 | BONITA | 9143 | 6682 | 1 | | Fertilizer 3,300 T |
| Refrigerated Cargo | 13-Nov-86 | NISSOS SKOPELOS | 9186 | 6691 | 0 | | Potatoes |
| Refrigerated Cargo | 16-Nov-87 | FRIO | 694 | 300 | 0 | | General |
| Refrigerated Cargo | 20-Nov-94 | SAN GEORGIO REEFER | 944 | 487 | 0 | | |
| Refrigerated Cargo | 23-Oct-97 | VANESSA | 5265 | 3955 | 4 | 1 | Fertiliser; 3,200 T |
| Refrigerated Cargo | 7-Feb-05 | JOKULFELL | 3200 | 2469 | 6 | | 1,978t. Steel Containers |
| Refrigerated Cargo | 20-Jan-06 | GUCLU 4 | 2170 | 1216 | 1 | | 2,050 Tons Marble |
| Aggregates Carrier | 17-Jun-80 | SAM JIN NO. 7 | 1279 | 227 | 0 | | Sand 800 Tons |
| Aggregates Carrier | 2-Feb-83 | FUKUHO MARU NO. 3 | 1500 | 495 | 0 | | Sand, 730 Tons |
| Aggregates Carrier | 14-Mar-86 | MEIWA MARU NO. 2 | 250 | 199 | 1 | 2 | Gravel, 350 Tons |
| Aggregates Carrier | 15-May-86 | HATANO MARU | 1304 | 498 | 0 | | Sand |
| Aggregates Carrier | 30-Sep-86 | KOSEI MARU No. 5 | 450 | 199 | 0 | | Stone 200 Cu M |
| Aggregates Carrier | 1-Apr-88 | UNISON III | 1665 | 498 | 0 | 1 | |
| Aggregates Carrier | 10-Dec-88 | HOEI MARU No. 15 | 450 | 199 | 0 | | |
| Aggregates Carrier | 23-Dec-92 | NAKAFUKU MARU | 500 | 290 | 1 | 1 | Gravel |
| Aggregates Carrier | 2-Jun-93 | SEISHO MARU No. 18 | 1100 | 949 | 0 | | |
| Aggregates Carrier | 24-Jun-95 | NIVIA | 647 | 793 | 0 | | Stone Blocks |
| Deck-Cargo Ship | 8-Jul-05 | SPP-13 | 125 | 193 | 0 | 4 | 20 Containers |
| Dredger | 15-Sep-78 | SAND TRANS | 1077 | 493 | 0 | | Stone |
| Dredger/Sand Carrier | 2-Nov-88 | HOLMI | 315 | 236 | 0 | | Gravel |
| Dredger/Sand Carrier | 5-Dec-88 | BOWSPRITE | 2093 | 1503 | 2 | 2 | Sand \& Gravel |
| Dredger/Sand Carrier | 11-Jan-99 | KAE CHUCK JIN | 6780 | 4160 | 6 | | Sand |
| TOTAL | 626 | | 2922772 | 1813289 | 740 | 1627 | |

Appendix IX: Data for Passengers Ships/ RoRo/ Containerships Loss

| ShipType | Casualty Date | NAME | DWT | GT | Killed | Missing | CARGO |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Roro Cargo/Ferry | 7-Sep-66 | SKAGERAK | 2726 | 2726 | 1 | 0 | Passengers Railway Carriages 7. Cars 30 |
| Roro Cargo/Ferry | 17-Apr-80 | MAURITIUS II | 2650 | 2522 | 0 | 0 | Steel |
| Roro Cargo/Ferry | 30-Nov-87 | GULF KANAYAK | 5010 | 5010 | 0 | 0 | |
| Roro Cargo/Ferry | 28-Dec-89 | ZAKYNTHOS | 1559 | 1559 | 1 | 0 | Vehicles Passengers |
| Roro Cargo/Ferry | 12-Jul-90 | TRADER | 215 | 462 | 0 | 0 | Passengers Containers Beer |
| Roro Cargo/Ferry | 27-Oct-94 | VISTA | 165 | 165 | 0 | 0 | |
| Roro Cargo/Ferry | 15-Aug-97 | KALIBO STAR | 656 | 485 | 12 | 43 | Passengers |
| Roro Cargo/Ferry | 8-Jul-02 | SAN MIGUEL DE ILIJAN | 341 | 341 | 0 | 0 | |
| Roro Cargo/Ferry | 7-Sep-03 | WIMALA DHARMA | 75 | 644 | 6 | 5 | 30 Vehicles 168 Passengers |
| Roro Cargo/Ferry | 9-Mar-04 | SAM-SON | 650 | 759 | 0 | 95 | 78 Passengers |
| Roro Cargo/Ferry | 1-Feb-06 | CITRA MANDALA BAKTI | 321 | 321 | 1 | 47 | Passengers |
| Passenger | 6-Jun-80 | SAUDI-FILIPINAS | 8894 | 32360 | 0 | 0 | |
| Passenger | 15-Jan-81 | GOLDEN PRINCESS | 2883 | 2883 | 0 | 0 | |
| Passenger | 4-Aug-91 | OCEANOS | 6090 | 7554 | 0 | 0 | Passengers |
| Passenger | 17-Nov-97 | CONSTITUTION | 7222 | 29638 | 0 | 0 | |
| Passenger | 17-Dec-00 | SEABREEZE I | 5671 | 21010 | 0 | 0 | 34 Passengers |
| Passenger | 26-Jan-01 | PAMYAT MERKURIYA | 270 | 790 | 14 | 5 | Passengers |
| Passenger | 6-Jul-01 | SEA | 3885 | 23292 | 0 | 0 | |
| Passenger/General Cargo | 8-Nov-78 | GLACIER QUEEN | 936 | 1833 | 0 | 0 | |
| Passenger/General Cargo | 11-Feb-79 | TORRES | 1183 | 4208 | 0 | 0 | |
| Passenger/General Cargo | 26-Mar-80 | CITY OF ATHENS | 2174 | 9126 | 0 | 0 | |
| Passenger/General Cargo/Ferry | 22-Oct-83 | SUNNFJORD II | 934 | 934 | 0 | 0 | |
| Passenger/Roro Cargo | 2-Jun-80 | ZENOBIA | 10000 | 12000 | 0 | 0 | Trailer Trucks Passengers |
| Passenger/Roro Cargo | 14-Jan-93 | JAN HEWELIUSZ | 2035 | 3015 | 40 | 15 | Passengers Lorries Railway Carriages |
| Passenger/Roro Cargo | 22-Oct-02 | MERCURY-2 | 3950 | 11450 | 1 | 43 | Passengers Oil Containers |
| Passenger/Roro Cargo/Ferry | 13-Apr-86 | ISLA DE CUBAGUA | 1006 | 3733 | 0 | 0 | |
| Passenger/Roro Cargo/Ferry | 28-Sep-94 | ESTONIA | 2935 | 21794 | 94 | 758 | Passengers Vehicles |
| Passenger/Roro Cargo/Ferry | 18-Sep-98 | PRINCESS OF THE ORIENT | 3110 | 13614 | 64 | 86 | Passengers Vehicles; 15 Containers; 66 |

| ShipType | Casualty Date | NAME | DWT | GT | Killed | Missing | CARGO |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Container Ship | 9-Jan-82 | EASTERN KIN | 9246 | 11400 | 0 | | Scrap Iron |
| Container Ship | 13 -Feb-87 | HANJIN INCHEON | 18846 | 17676 | 1 | 22 | Containers |
| Container Ship | 26-Dec-87 | ISLAND QUEEN | 3298 | 2824 | 0 | | Timber |
| Container Ship | 28-Dec-88 | LLOYD BERMUDA | 1703 | 824 | 2 | 6 | Containers |
| Container Ship | 19-Nov-89 | DESPO | 2175 | 1456 | 0 | 1 | Tomato Juice |
| Container Ship | 31-Jan-92 | TAVRIYA-7 | 1706 | 1408 | 3 | 3 | Metal Pipes |
| Container Ship | 19-Feb-96 | GU CHENG | 13058 | 9683 | 0 | 30 | Containers |
| Container Ship | 10-Dec-02 | MATTEN | 6850 | 5552 | 0 | | Containers |
| TOTAL | 8 | | 56882 | 50823 | 6 | 62 | |

Appendix X: Data For Tankers

| ShipType | Casualty Date | NAME | DWT | GT | Killed | Missing | CARGO |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Tanker | 13-Jun-68 | WORLD GLORY | 47179 | 28323 | 4 | 22 | Crude Oil |
| Tanker | 5-Nov-69 | KEO | 30487 | 15797 | 9 | 27 | Fuel Oil |
| Tanker | 25-Nov-69 | PACOCEAN | 30498 | 17328 | 1 | 2 | Crude Oil |
| Tanker | 6-Jan-70 | SOFIAP | 18919 | 12113 | 7 | | Avgas Turbo Fuel |
| Tanker | 14-Jan-70 | ALBACRUZ | 20693 | 12607 | 0 | | Crude Oil |
| Tanker | 6-Oct-70 | ANASTASIA J.L. | 18797 | 12525 | 0 | | Crude Oil |
| Tanker | 26-Dec-70 | RAGNY | 17588 | 11079 | 1 | 5 | Auto Diesel Heating Oil |
| Tanker | 26-Dec-70 | CHRYSSI | 31717 | 19183 | 0 | 21 | Crude Oil |
| Tanker | 27-Mar-71 | TEXACO OKLAHOMA | 35635 | 20084 | 0 | 31 | Fuel Oil No. 6 Grade |
| Tanker | 6-Jul-71 | ALKIS | 20047 | 11971 | 0 | | Crude Oil |
| Tanker | 2-Sep-71 | AARON | 16470 | 10518 | 0 | 2 | Mollasses Tar, Acid,Oil,Gas |
| Tanker | 5-Mar-72 | SAN NICOLAS | 17090 | 10255 | 0 | 28 | Molasses |
| Tanker | 19-Feb-73 | NELSON | 21073 | 12784 | 0 | | Fuel Oil |
| Tanker | 10-Jan-75 | BRITISH AMBASSADOR | 45672 | 27114 | 0 | | Crude Oil |
| Tanker | 4-Apr-75 | SPARTAN LADY | 21056 | 12689 | 1 | | Fuel Oil |
| Tanker | 14-Oct-76 | BOHLEN | 11570 | 7644 | 16 | 9 | Crude Oil |
| Tanker | 27-May-77 | CARIBBEAN SEA | 31153 | 18372 | 0 | | Crude Oil |
| Tanker | 28-Jun-79 | AVILES | 26245 | 15409 | 3 | 8 | Jet Fuel 22500 Tons |
| Tanker | 1-Oct-79 | HAKUSHIN MARU NO. 5 | 541 | 299 | 0 | | |
| Tanker | 7-Mar-80 | TANIO | 27700 | 18048 | 6 | 2 | Heavy Fuel Oil |
| Tanker | 13-Feb-81 | BOA NOVA | 603 | 424 | 0 | 8 | |
| Tanker | 17-Feb-81 | WITSUPPLY | 2235 | 1335 | 0 | | |
| Tanker | 19-Feb-81 | RONE | 254 | 149 | 0 | | Oil |
| Tanker | 19-Feb-81 | SEFIR | 600 | 449 | 0 | | Diesel Oil Light Oil |
| Tanker | 12-Feb-82 | VICTORY | 21032 | 12487 | 1 | 14 | Molasses |
| Tanker | 13-May-82 | FUKUYOSHI MARU | 1660 | 946 | 0 | | Oil |
| Tanker | 9-Sep-82 | MAE PING | 660 | 558 | 0 | | |
| Tanker | 30-Nov-82 | KASHIMA MARU | 700 | 413 | 0 | 3 | Hydrochloric Acid |
| Tanker | 26-Jun-84 | TESUBU II | 21446 | 13154 | 0 | 26 | Molasses |
| Tanker | 16-Aug-86 | MAYSUN | 2093 | 1202 | 0 | 7 | Bunker Fuel 14000brl |
| Tanker | 25-Dec-86 | STAINLESS TRADER | 3475 | 1599 | 3 | 5 | Sulphuric Acid |

| ShipType | Casualty Date | NAME | DWT | GT | Killed | Missing | CARGO |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Tanker | 28-Jun-87 | ELENIS | 2388 | 1399 | 0 | | Deisel Oil-1800tons |
| Tanker | 15-Sep-87 | BOREA | 3095 | 1599 | 0 | | |
| Tanker | 3-Feb-88 | TENRYU MARU No. 5 | 1000 | 494 | 0 | | Acetic Acid |
| Tanker | 24-Feb-88 | KYUNG SHIN | 2299 | 995 | 0 | | Bunker C, $2650 \mathrm{~K} / \mathrm{L}$ |
| Tanker | 9-Dec-88 | KASUGA MARU NO. 1 | 1204 | 480 | 0 | | Bunker C Oil |
| Tanker | 18-Jan-89 | KAMRAN | 488 | 469 | 0 | | |
| Tanker | 14-Feb-89 | DELIMA 120 | 2476 | 996 | 0 | | Marine Oil 270 t |
| Tanker | 6-Jan-91 | KIMYA | 1876 | 985 | 4 | 6 | Sunflower Oil 1500 T |
| Tanker | 1-Feb-91 | ALESSANDRO PRIMO | 3994 | 2506 | 0 | | Dichlorethane Acrylonitrile |
| Tanker | 16-Apr-92 | KATINA P | 69992 | 30890 | 0 | | Heavy Oil 66,700t |
| Tanker | 14-Nov-92 | MARVIN 1 | 1214 | 693 | 0 | | Bitumen 1,000 T |
| Tanker | 9-Dec-93 | GRAPE ONE | 3439 | 1599 | 0 | | Xylene 3000t |
| Tanker | 23-Jul-94 | PALAWAN ISLAND | 7535 | 9361 | 0 | | Fuel Oil Lumber |
| Tanker | 14-Jan-95 | MAHAL | 350 | 178 | 0 | 2 | Molasses |
| Tanker | 26-Oct-95 | ANNIE No. 1 | 1096 | 751 | 0 | | |
| Tanker | 14-Jan-96 | RECOVERY III | 1118 | 950 | 0 | | Slops |
| Tanker | 9-Feb-96 | KIRA | 8264 | 4998 | 0 | 18 | Phosphoric Acid |
| Tanker | 2-Jan-97 | NAKHODKA | 20471 | 13157 | 0 | 1 | Heavy Fuel Oil |
| Tanker | 9-Nov-99 | YOUNG CHEMI | 1047 | 735 | 1 | 2 | Chloraform |
| Tanker | 11-Dec-99 | ERIKA | 37283 | 19666 | 0 | | Heavy Fuel Oil |
| Tanker | 30-Oct-00 | IEVOLISUN | 7308 | 4189 | 0 | | Styrene Isopropyl AI |
| Tanker | 20-Mar:01 | BALU | 9981 | 5795 | 0 | | Sulphuric Acid |
| Tanker | 13-Nov-02 | PRESTIGE | 81564 | 42820 | 0 | | Heavy Fuel Oil |
| Tanker | 16-Feb-04 | YUG | 1634 | 950 | 0 | 6 | Disposed Oil Product |
| Tanker | 10-May-05 | BIG SEA 5 | 1750 | 699 | 0 | | |
| Tanker | 24-Mar-06 | ORION | 1039 | 1223 | 0 | 3 | 806 T. Fuel Oil |
| Tender | 5-Oct-84 | ALTA MAR I | 0 | 1409 | 0 | | |
| Liquefied Gas Tanker | 4-Jan-79 | MILLI | 1118 | 1113 | 0 | | Butane |
| Liquefied Gas Tanker | 8-Apr-79 | NIKKO MARU NO. 51 | 3499 | 2160 | 0 | | Pebbles, 3000 Tons |
| Liquefied Gas Tanker | 13-Oct-80 | GAZ EAST | 1602 | 1703 | 0 | | Butane Gas Gasoil |
| Liquefied Gas Tanker | 12-Dec-82 | BANDIM | 1849 | 1843 | 0 | | Butane Propane |

| ShipType | Casualty Date | NAME | DWT | GT | Killed | Missing | CARGO |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Liquefied Gas Tanker | 14-Nov-88 | ELPINA III | 563 | 593 | 1 | 2 | Lpg |
| Liquefied Gas Tanker | 5-Jan-94 | RED STAR | 4768 | 5706 | 0 | | Butane Gas |
| Liquefied Gas Tanker | 10-Dec-95 | BILLY FOUR | 850 | 497 | 1 | | Lpg |
| Liquefied Gas Tanker | 25-Aug-96 | PACK ONE | 850 | 699 | 0 | | Liquefied Petro Gas |
| Liquefied Gas Tanker | 22-Nov-97 | APANCHANIT No. 5 | 1999 | 1684 | 0 | | Vinyl Chloride |
| Liquefied Gas Tanker | 14-Nov-05 | TONG CHENG 818 | 1135 | 998 | 0 | 0 | |
| TOTAL | 68 | | 837026 | 493840 | 59 | 260 | |

Appendix XI: Calculation Of Costs for Several Types of Ships

Cost of Human Life
CL : $=2337034$

Bulkcarriers

$$
\begin{aligned}
& \text { Total Number of Killed/Missing } \quad \mathbf{N k i 1}_{\mathbf{k}} \text { := } 997 \\
& \text { Total Number of Accidents Nacc_b := } 75 \\
& \text { Second Hand Price in US } \$ / \text { Ton } \quad \text { Prices_h_b }:=378.51 \\
& \text { Cargo average price in US } \$ / \text { Ton } \quad \text { Price } \mathbf{c a r g o _ b ~}^{\text {: }}:=1749.36 \\
& \text { Total Gross Tonnage lost } \quad \mathbf{G T}_{\mathbf{b}}:=1807729 \\
& \text { Total Deadweight lost } \quad \text { DwT }_{\mathbf{b}}:=3261035
\end{aligned}
$$

$$
\begin{aligned}
& \operatorname{Cos}_{b}=8.346 \times 10^{7}
\end{aligned}
$$

Tankers

> Total Number of Killed/Missing
> Total Number of Accidents
> Nacc_t := 68
> Second Hand Price in US\$/Ton
> Prices_h_t $:=309.07$
> Cargo average price in US\$/Ton
> Pricecargo_t $:=595.05$
> Cost of oil spills clean-up in US $\$ / T o n$
> $\operatorname{Cost}_{\mathbf{o}}:=8300$
> Total Gross Tonnage lost
> $\mathbf{G T}_{\mathbf{t}}:=493840$
> Total Deadweight lost
> DWT $_{\mathbf{t}}:=837026$

$$
\begin{aligned}
& \operatorname{Cos} t_{t}=4.923 \times 10^{7}
\end{aligned}
$$

Containerships

> Total Number of Killed/Missing
> Total Number of Accidents
> $\mathbf{N}_{\text {ki1_c }}:=68$
> Second Hand Price in US $\$ /$ Ton
> Nacc_c := 8
> Prices_h_c := 378.51
> Cargo average price in US $\$ /$ Ton
> Price ${ }_{\text {cargo_c }}:=1749.36$
> Total Gross Tonnage lost
> $\mathbf{G T}_{\mathbf{c}}:=50823$
> Total Deadweight lost
> $\mathrm{DWT}_{\mathrm{c}}:=56882$
> $\operatorname{Cost}_{c}:=C L \cdot \frac{\text { Nkil_c }^{c}}{\text { Hacc_c }}+$ Price $_{s _h _c} \cdot \frac{\text { DWT }_{c}}{\text { Hacc_c }^{c}}+$ Price $_{\text {cargo_b }} \cdot \frac{\text { GT }_{c}}{\text { Hacc_c }}$
> $\operatorname{Cos}_{c}=3.367 \times 10^{7}$

General Cargo

> Total Number of Killed/Missing
> $\mathbf{N}_{\mathbf{k i 1} 1 \mathbf{g}}:=2371$
> Total Number of Accidents
> Nacc_g := 626
> Second Hand Price in US\$/Ton
> Prices_h_g := 378.51
> Cargo average price in US\$/Ton
> Price cargo_g $:=1749.36$
> Total Gross Tonnage lost
> $\mathbf{G T}_{\mathbf{g}}:=1814262$
> Total Deadweight lost
> DWT $_{\mathrm{g}}:=2923869$

$$
\begin{aligned}
& \operatorname{Cost}_{\mathbf{g}}=1.569 \times 10^{7}
\end{aligned}
$$

Passenger Ships

$$
\begin{aligned}
& \text { Total Number of Killed/Missing } \quad \text { Nki1_p }:=2541 \\
& \text { Total Number of Accidents } \\
& \text { Second Hand Price in US } \$ / \text { Ton } \\
& \text { Total Deadweight lost } \\
& \text { Nacc_p := } 39 \\
& \text { Prices_h_p := } 378.51 \\
& \text { DWT } \mathbf{p}:=84697
\end{aligned}
$$

[^0]: ${ }^{1}$ Principles of Naval Architecture Volume I pp. 64

[^1]: ${ }^{2}$ http://web.nps.navy.mil/

[^2]: ${ }^{3}$ Principles of Naval Architecture Volume I pp. 67

[^3]: ${ }^{4}$ http://web.nps.navy.mil/

[^4]: ${ }^{5}$ http://web.nps.navy.mil/

[^5]: ${ }^{6}$ Seakeeping Division of NAVSEA Warfare Centers (Carderock Division)

[^6]: ${ }^{7}$ Seakeeping Division of NAVSEA Warfare Centers (Carderock Division)

[^7]: ${ }^{8}$ From the site of www.globalsecurity.com

[^8]: ${ }^{9} \mathrm{http}: / / \mathrm{www} . e f u n d a . c o m /$ math/areas/IndexArea.cfm

[^9]: ${ }^{10}$ Principles of Naval Architecture Volume I pp. 67

[^10]: ${ }^{11}$ Principles of Naval Architecture Volume III Figure 46 at page 62

[^11]: ${ }^{12}$ www.globalsecurity.com

[^12]: ${ }^{13}$ IMO Intact Stability Code

[^13]: ${ }^{14}$ Source: International Underwriting Association (IUMI Conference, London 2000)
 ${ }^{15}$ Source: Human Reliability And Ship Stability by Robert D,G. Webb \& Tabbeus M. Lamoureux ,July 4,2003

[^14]: ${ }^{16}$ Studies on Ship Casualties In the Baltic Sea, P.Tuovinen, V.Kostilainen- 1984
 ${ }^{17}$ Accident costing using value transfers, Juha Tervonen,„1999
 ${ }^{18}$ Transportation Cost and Benefit Analysis-Safety and Health Costs, Victoria Transport Policy Institute

[^15]: ${ }^{19} \mathrm{http}: / /$ markets.usatoday.com/custom/usatoday-com/html-commodities.asp

