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Abstract 

Past spaceflight experience has shown that astronauts adapt their motor control 
strategies to microgravity movements after approximately four weeks of microgravity 
exposure. A similar (but typically shorter) re-adaptation period is required upon 
return to Earth or partial gravity environment such as the Moon or Mars. During 
these adaptation periods, astronaut performance is considerably degraded and can 
lead to falls and mission-threatening injuries. 

This dissertation describes a research program to quantitatively study the dynam- 
ics and control aspects of human motor control adaptation to a spectrum of gravity 
environments. The key hypotheses of this research were that a) locomotor control 
adaptation could be observed following short exposure (on the order of hours) to a 
different dynamic environment and b) the observed adaptation could be predicted 
using a single model that applied to a spectrum of gravitational environments. 

Experiments were conducted on a 1-G air-bearing floor microgravity simulator and 
underwater to provide contrasting dynamic and gravitational environments. Subjects 
performed leg push-offs and hand landings to demonstrate their control strategies as 
they adapted. Forces and moments from the push-offs and landings were recorded 
using 6-axis force-moment sensors. Joint angles were measured using a kinematic 
video analysis system. A suite of dynamic estimation filters was written to combine 
the kinetic and kinematic data. Experimental results showed significant motor control 
adaptation to the air-bearing floor experiments, evidenced by reduced peak push-off 
forces and increased sensor contact times. A model based on Golgi tendon organ 
(GTO) force feedback was proposed to predict the observed adaptation. Comparisons 
between the experimental data and the model predictions indicate that the GTO 
adapt at ion model can adequately predict the observed adapt at ion. 

Thesis Supervisor: Dava J.  Newman 
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Chapter 1 

Introduction 

Future space missions will require astronauts spend months to years in reduced grav- 

ity environments. Such missions include extended visits to the International Space 

Station (ISS) and exploration missions to the Moon and eventually to Mars [Bush, 

20041. However, before humans will be able to optimally perform during these long 

trips in space, a substantial amount of research is required. During spaceflight, as- 

tronauts lose 1-2% of bone mass, 20-30% of muscle mass and 40% of their overall 

strength per month. Ongoing research into the skeletal [Beck et al., 1990, Schaffner, 

1999, Newman and Schaffner, 20031, muscular [Fitts et al., 2000], vestibular [Oman, 

1988, Young et al., 1993, Lathan and Clkment, 1997, Newman et al., 20031 and car- 

diovascular [Heldt et al., 20021 changes that occur during spaceflight is providing new 

countermeasures. Other research programs are focussing on the human factors of 

spaceflight. For example, several scholars are studying the effects of humans operat- 

ing in extreme environments such as a cramped spacecraft [Brubakk, 2000, Stuster, 

2000, Newman and Lathan, 19991, while others are studying ways to prevent astro- 

nauts from becoming disoriented in convoluted space st at ion modules [Oman, 200 1, 

Young et al., 19931. 

While all of the above mentioned challenges are important to the success of future 

long duration spaceflights, this research focuses on an equally important and chal- 

lenging aspect: understanding the mechanisms by which astronauts develop motor 

strategies for differing gravity environments. This research examines astronaut mo- 



tion and how it changes over time. The overall goal of the proposed research is to 

improve astronaut performance and efficiency through the use of rigorous quantitative 

dynamic analysis, simulation and experiment ation. 

One of the key challenges to living in space is locomotor function in a microgravity 

environment. Moving from place to place within the spacecraft requires an altered 

set of control strategies than are applicable for 1-G. Fortunately, astronauts have 

demonstrated their ability to adapt their locomotor control strategies to fit the needs 

of microgravity operations [Newman and Jackson, 20001. However, during the period 

of time before astronauts completely adapt to this new environment (m 2 - 4 weeks) 

the productivity of the astronauts is severely limited (as evidenced by recent research 

using instrumented hand and foot restraints [Newman et al., 2001, 19991). Further- 

more, while the newly adapted movement strategies are typically appropriate for the 

microgravity environment, they are not suit able for partial gravity environments, pos- 

sibly forcing a re-adaptation period upon return to Earth or arrival at another planet 

[Baroni et al., 2001al. For planetary exploration missions, where astronauts are ex- 

pected to explore a gravity environment immediately after a lengthy (> 6 months) 

microgravity spaceflight, this re-adaptation phase could significantly affect the as- 

tronauts' ability to perform their mission and science duties. Understanding and 

modelling the characteristics of the locomotor control strategies adopted by veteran 

astronauts as well as the adaptation or skill selection process used to arrive at them 

could provide insight into new training techniques and countermeasures intended to 

accelerate the adaptation and re-adaptation. A single model that can predict loco- 

motor control adaptation to a spectrum of gravitational and dynamic environments 

would permit detailed studies of astronaut exploration activities prior to the actual 

flight and could lead to improved operations planning, spacesuit and/or tool design 

and in-flight countermeasures to aid in the locomotor adaptation. 

In order to optimize astronaut performance, this research studies the locomotor 

adaptation process that permits astronauts to efficiently perform motor tasks across 

a spectrum of gravitational environments (i.e., Earth, Moon, Mars and microgravity). 

In the research presented herein, I quantitatively characterize the skills and motor 



control strategies that veteran astronauts use to move their bodies through differing 

gravity environments and how the control strategies develop over time. A key hy- 

pothesis in this work was that a single adaptation process will be found responsible 

for the adaptation seen across the entire gravity spectrum. 

During this research, emphasis is be placed on the locomotor1 skills required to 

move one's entire body from place to place while on orbit. Understanding this process 

requires a highly accurate data acquisition system such as the one being used for the 

Microgravity Investigations and Crew Reactions in 0-G (MICRO-G) flight experiment 

slated for the International Space Station (ISS) [Ferguson et al., 2004bl. The MICRO- 

G sensors and accompanying kinematic video system will provide a complete picture 

of the astronauts' control strategy since joint torques can be computed from the 

coupled kinetics and kinematics. Knowledge of the joint torques will permit a detailed 

analysis of the joints and muscle groups being employed to execute the motions as 

well as provide clues suggesting a neural adaptation process. 

This thesis presents the results of human motion experiments performed both 

underwater and on a two-dimensional frictionless air-bearing floor to observe the 

development of motor control strategies for multiple environments. 

1.1 Hypotheses 

Prior to studying human motion adaptation, a sensing system must be created that 

can observe adaptation while it happens. In addition to creating the sensor, algo- 

rithms and dynamic filters must be created that can effectively reduce the data into 

manageable and meaningful metrics. Hypothesis #1 explores the ability to combine 

kinetic and kinematic data for adapt at ion monitoring purposes. 

Hypothesis #1: Kinetic data from a force / moment sensor and kine- 

matic joint angle data can be combined in a dynamic filter to produce 

accurate, reliable estimates of whole body motions during adaptation ex- 

'The term "locomotor" was coined by Jacob Bloomberg in his work [Bloomberg et al., 20011, and 
is defined as the skills required to move one's body mass in any gravitational environment. 



periments. Using the combined kinetic and kinematic data, metrics can 

be defined that illustrate control strategy adaptation to different gravita- 

tional and dynamic environments. 

Hypothesis #2: Given exposure to a particular gravity environment, 

humans will retain the adapted locomotor control strategies for multiple 

weeks of constant exposure to a different gravity environment, providing 

evidence of multi-adaptation. 

Studying dual adaptation requires exposing subjects to different environments and 

looking for the amount of control adaptation retained over a period of time. If subjects 

who have had prior exposure to a given environment show improved performance after 

exposure to a different environment, it could provide evidence of multi-adaptation. 

In addition to developing sensing systems for quantifying human motion, this 

thesis explores the ability of several different control models of human body motions 

to describe the adapt at ion observed during the human experiments. While classical 

adaptive control structures [Slotine and Li, 1991, Niemeyer and Slotine, 19911 have 

demonstrated the ability to adapt to different model parameters, they have difficulty 

in altering the entire control strategies. A Bayesian optimization approach [Ferguson 

et al., 2004a, Tryfonidis, 19991 to control strategy adaptation may be applicable, 

however, it often requires internal dynamic models that some argue are not practical 

for humans to implement [Flash, 1987, Flash et al., 2003, Bizzi et al., 19941. The 

traditional equilibrium trajectory control model avoids the requirement that internal 

models exist in the human brain, but has difficulty predicting adaptation to different 

environments. 

Hypothesis #3: A single adaptation mechanism governs human loco- 

motor control strategies across a spectrum of gravity environments in a 

manner similar to that predicted by either Bayesian optimization; or the 

virtual trajectory hypotheses or a combination of the two. 



1.2 Background 

Sensor technology for quantifying human motion has been growing for many years. 

Recent developments in video analysis [DeCarlo and Metaxas, 2000, Metaxas, 1996, 

Zhang et al., 2003, Barron et al., 1992, Ferrigno et al., 19991 have enabled detailed 

kinematic analysis of human mot ion. However, these video analysis techniques lack 

acceleration information important to understanding the control of human motion. 

While force / moment sensor technology is not new, researchers have been imple- 

menting them more and more into human applications [Amir, 1998, Ferguson and 

Newman, 20061. Some have studied using force / moment sensors to aid in robot 

torque control [Liu et al., 1998, Morel and Dubowsky, 19961 and human joint work 

estimation[Nagano et al., 19981, but none have combined the kinetic force / moment 

information with kinematic measurements to enable more reliable motion tracking 

without the need for acceleration estimation. 

A substantial amount of research has also been conducted on the development of 

simulators for exposing humans to gravity environments other than the 1-G environ- 

ment found on Earth. Engineering and operational concerns during underwater op- 

erations and training have also been studied[Akin, 1986, Wickman and Luna, 19961, 

however both studies lacked accurate kinetic measurements underwater. [Newman 

and Wu, 20001 developed a partial weight suspension system known as the "moon- 

walker" for simulating partial gravity environments. A similar, but actively controlled 

partial weight suspension system called POGO was also developed at the Johnson 

Space Center (JSC) for astronaut training purposes[Ray, 19931. 

The problem of human motor control adaptation to spaceflight has been studied 

by several researchers in the past. Drawing upon the vast amounts of literature 

on human arm control [Atkeson and Hollerbach, 1985, Feldman, 1994, Flash, 1987, 

Flash and Hogan, 1985, Flash et al., 2003, Hasan, 1986, Katayama and Kawato, 

1993, Mussa-Ivaldi et al., 19851, several have attempted to understand the control 

changes of the human 2-link arm. Lackner and DiZio from Brandeis University have 

also studied the effect of coriolis forces on arm control using a large rotating room 



[Lackner and DiZio, 1994, 19981. These studies showed that humans are capable 

of rapidly (over the course of only about 10 trials in less than one hour) adapting 

their arm control strategies to altered gravity environments. This work extended to 

arm, posture and vestibulo-oculo reflex (VOR) control adapt ation in weightlessness 

[Lackner and DiZio, 1996, 19991, using data collected during parabolic flight. [Bock 

et al., 19921 have also studied arm adaptation to differing gravitational environments, 

measuring how quickly subjects learn the new gravitational dynamics. 

Tryfonidis' doctoral work augmented some of the work done by Lackner and DiZio 

and added some data taken from actual spaceflights [Tryfonidis, 19991. In his thesis, 

Tryfonidis developed a theory for arm control adaptation to varying gravitational 

environments that follows directly from conventional adaptive sliding control theory 

for robots. Tryfonidis compared his theory to data taken on the Russian space sta- 

tion Mir of astronauts throwing small balls to illustrate the new control strategies 

astronauts adopt during spaceflight [Tryfonidis et al., 20041. In this work, Bayesian 

optimization was used to develop an arm adaptive control strategy that accounted 

for observations taken in both 1-G and microgravity. 

Other research has focussed on postural control of the head and trunk in space. 

Baroni, Pedrocchi and Pedotti, along with Massion and Cl6ment have performed 

numerous studies using data from Mzr and parabolic flights [Baroni et al., 2001b, 

1999, Massion et al., 1997, 1998, Cl6ment and Lestienne, 19881. These studies used 

kinematic data collected by specially designed video capture systems. These systems 

use body reflectors that are picked up by carefully calibrated video cameras and then 

video processing algorithms are used to compute the body joint angles and rates. 

Research in the mid 1990's used rats to demonstrate sensorimotor adaptation 

of posture to altered gravity environments as a result of vestibular alterations [Fox 

et al., 19981. In these experiments, rats were dropped into pools of water in normal 

(Earth) and hyper-gravity. Fox et al. monitored the rats posture in free fall and 

while swimming and watched as they adapted to their new gravity environments. 

Fox's research concluded that the observed adaptation was a result of gain reductions 

in the gravity-sensitive portion of the vestibular system. 



The concept of dual adaptation (also known as plasticity or context-speczfic adap- 

tation) has also been studied in the context of motor adaption to spaceflight. These 

theories st ate that humans have the capability of retaining several different control 

sets for different environments. Baroni et al. explored dual adaptation of postu- 

ral control during long-term microgravity exposure in 2001 [Baroni et al., 2001al. 

Shelhamer has also provided evidence of dual adaptation, this time with respect to 

neurovestibular adaptation to differing gravitational environments, including micro- 

gravity on the KC-135 microgravity aircraft [Shelhamer and Clendaniel, 2002, Shel- 

hamer et al., 2002, 20031. Finally, Bloomberg has performed several experiments that 

demonstrate visuo-motor plasticity [Roller et al., 2002, 200 11. Bloomberg's results 

were recently extended to astronaut locomotor problems following spaceflight through 

a series of pre- and post-flight walking experiments [Bloomberg and Mulavara, 2003, 

Layne et al., 20011. 

Other researchers have focused on the plausibility of the cerebellum for use in 

adaptive control[Houk et al., 19961 and signal delay compensation[Massaquoi and 

Slotine, 1996, Miall et al., 19931. Kawato and Gomi have studied the role of the 

cerebellum in the adaptation of the Vestibulo-Occular Reflex (VOR) [Kawato and 

Gomi, 19921. Later, Schweighofer and colleagues proposed a model of the cerebellum 

that accounted for motor learning in arm reaching experiments and was physically 

possible given the neuronal structure of the cerebellum [Schweighofer et al., 1998a,b]. 

There is a large body of literature that covers how humans learn motor tasks. 

[Shadmehr and Holcomb, 19971 show the effect of breaks on motor learning (known 

as consolidation). Others have studied the ability for humans to apply arm motor 

skills learned in one environment to different environments [Seidler, 20041. 

1.3 Thesis Outline 

This thesis presents the results of a research program designed to study the adaptive 

control strategies of humans in different gravitational and dynamic environments. 

The next chapter (Chapter 2) describes the design of a custom 6-axis force/moment 



sensor designed in parallel for this thesis research and for an International Space 

Station experiment known as the Microgravity Investigation of Crew Reactions in 0- 

G (MICRO-G). Chapter 2 also contains a summary of the MICRO-G flight experiment 

and how its objectives relate to this work. 

In order to clearly understand the control strategies being used by astronauts and 

experiment subjects, algorithms needed to be developed to track the subjects' body 

motions and to estimate joint control torques given the interaction forces and moments 

and the subjects' joint angles. Chapter 3 describes the development of a Kalman 

filter based body motion estimator and a non-linear control torque estimator that 

were developed as part of this research program to aid in the analysis of experimental 

data. 

Chapter 4 describes the three different experiments conducted for this research 

program: air-bearing floor experiments and the underwater experiments. Along with 

detailing the experiment protocols, results are presented that illustrate locomotor 

control adapt at ion. 

Chapter 5 describes the development of a single model that describes the loco- 

motor adaptation observed in Chapter 4. Simulation results from the model are 

compared to the actual human experiments to illustrate a good match. 

Finally, Chapter 6 summarizes this thesis by discussing the results and their rele- 

vance not only in the fields of bioastronautics and human space exploration, but also 

in the fields of dynamics, control and estimation. 



Chapter 2 

Body Motion Sensor Design 

The work presented in this thesis represents the ground studies of the Microgravity 

Investigations of Crew Reactions in 0-G (MICRO-G) research program. This chapter 

presents the hardware and software design for the MICRO-G flight experiment. In 

addition, a preliminary experimental protocol for the MICRO-G International Space 

Station experiment. Since the research presented in this thesis was completed as part 

of the MICRO-G research program, most of the hardware and software developed for 

the spaceflight experiment is identical to that used for the experiments presented later 

in this thesis. Differences between the flight experiment and the ground studies are 

noted below. 

2.1 Introduction 

The development of countermeasures that enable astronauts to withstand extended 

stays in changing gravitational environments has been identified as an enabling tech- 

nology for future human space exploration missions [Kieza et al., 20041. As such, 

there is a need for a human factors, technology-based bioastronautics research effort 

to develop an integrated system that reduces risk and provides scientific knowledge of 

astronaut-induced loads and adaptation mechanisms during long-duration missions 

on the International Space Station (ISS), which will lead to appropriate countermea- 

sures and diagnostic tools. 



The primary objectives of the Microgravity Investigations of Crew Reactions in 

0-G (MICRO-G) research effort (known to NASA as simply "Adapt") are to quantify 

astronaut adaptation and movement as well as to model motor strategies for differ- 

ing gravity environments [Ferguson et al., 2004bl. The overall goal of this research 

program is to improve astronaut performance and efficiency through the use of rigor- 

ous quantitative dynamic analysis, simulation and experimentation. The MICRO-G 

research effort provides a modular, kinetic and kinematic capability for the ISS. The 

collection and evaluation of kinematics (whole-body motion) and dynamics (reac- 

tion forces and torques) of astronauts within the ISS will allow for quantification 

of human motion and performance in weightlessness, gathering fundamental human 

factors information for design, scientific investigation in the fields of dynamics and 

motor control, technological assessment of microgravity disturbances, and the design 

of miniaturized space electronics. 

A key hypothesis of the MICRO-G research program is that a single model can 

be identified that predicts human control strategies across a spectrum of gravita- 

tional environments. Evaluating the ability of a particular dynamic model of human 

motion requires a comprehensive sensing system, able to monitor the motion and 

control strategies of humans in different gravitational environments. Four dynamic 

load sensors/restraints have been developed to measure astronaut forces and torques. 

Standard ISS video cameras record typical astronaut operations and prescribed IVA 

motions for 3-D kinematics. Forces and kinematics are combined for dynamic anal- 

ysis of astronaut motion, exploiting the results of the detailed dynamic modeling 

effort for the quantitative verification of astronaut IVA performance, induced-loads, 

and adaptive control strategies for crewmember whole-body motion in micrograv- 

ity. This comprehensive effort, provides an enhanced human factors approach based 

on physics-based modeling to identify adaptive performance during long- duration 

spaceflight, which is critically important for astronaut training as well as providing a 

spaceflight database to drive countermeasure design. This chapter describes the en- 

tire MICRO-G experiment in detail, including hardware, software and experimental 

protocol development. 



2.2 Sensor System 

The MICRO-G force-moment sensor design is based on that used for the Enhanced 

Dynamic Load Sensors (EDLS) experiment (pictured in Figure 2-1). The EDLS 

sensors were designed to measure 3-axis forces and 3-axis moments at 250 Hz in order 

to measure the crew-induced loads to the Mir space station structure [Newman et al., 

20011. The experiment was successful, however, it became apparent that the sensing 

(a) Photo of the Experiment Support Module (b) Photo of an astronaut using one of the sen- 
(ESM) that the three EDLS sensors plugged sors in the EDLS experiment. 
into. 

Figure 2-1: Sensor hardware from the Enhanced Dynamic Load Sensors (EDLS) flight 
experiment. 

system had some drawbacks, namely: 

The sensors required umbilicals to connect to a separate, bulky support module 

(seen in Figure 2-1 (a)), limiting the positions with the space station where the 

sensors could be located. 

The sensors only provided kinetic (force-moment ) data without any kinematics 

(body and joint positions). 

No feedback was provided to the astronauts as to the magnitudes of forces being 

imparted on the sensors (a feature that many astronauts have requested). 

The EDLS experiment served its purpose well - to quantify the types of load dis- 

turbances astronauts impart to the space station. However, to quantify and model 



astronaut whole-body adaptation, a more comprehensive and modular sensing system 

was required. 

The MICRO-G sensing system was designed to address the drawbacks of the EDLS 

system and is comprised of two parts: (A) Wireless, modular force-moment sensors 

with visual feedback and (B) A kinematic video system. My contribution to the 

development of the new MICRO-G sensors involved the design concepts, electrical 

design (except the load cell design that was replicated from the EDLS design) and 

software design and implementation. 

2.2.1 Force-Moment Sensors 

I developed the concept for the MICRO-G sensors to follow the basic functionality 

of the EDLS sensors, but featuring entirely self-contained electronics. To test the 

concept, I assembled a working prototype using a backup EDLS sensor and a Com- 

mercial Off The Shelf (COTS) electronics backplane. A custom clock board was 

also designed, built and integrated into the concept prototype1. Payload Systems 

Inc. (PSI) of Cambridge, MA then took the MICRO-G sensor concept prototype I 

designed and built and professionally manufactured the prototype MICRO-G sensors. 

Figure 2-2(a) shows a photo of the first "concept" prototype that was passed on to 

PSI. Figure 2-2(b) shows a photo of one of four prototype MICRO-G sensors assembled 

by PSI. 

The load cell design and layout for the MICRO-G sensors is identical to that used 

on the EDLS sensors. The design employs three aluminum flexures, each instrumented 

with two full strain-bridges for a total of six load cells per sensor. Six independent 

strain measurements arranged in the geometry illustrated in Figure 2-3 can adequately 

observe three orthogonal forces and three orthogonal moments. The sensor top plate 

attaches directly to the three flexures. 

In addition to using the flight-tested flexure design of the EDLS sensors, the 

MICRO-G force-moment sensors are equipped with several new features that make 

them better suited to adaptation research on the ISS. The new features include: 

'Thanks to Andrew Pinkham, a UROP that aided in the clock board design 
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(a) A photo of the concept prototype I built, (b) A photo of one of the 4 prototype MICRO- 
configured as a foot restraint. G sensors (configured as a hand hold), assem- 

bled by PSI. 

Figure 2-2: Early versions of the MICRO-G force-moment sensor prototype. 

Standard ISS Restraint Accommodation 

On-board Data Acquisition 

Custom Software 

Video Synchronization 

Wireless Communication 

Realtime Feedback 

Waterproofing 

Easy Data Backup System 

Many of the new features have already been developed and are incorporated into 4 

prototype sensors. Other features will be implemented in the flight version of the 

MICRO-G sensors to be manufactured immediately following the experiment Critical 

Design Review (CDR). The following sections describe the key features of the MICRO- 

G sensors. 



Figure 2-3: A photo of the strain gauge flexures underneath the top plate of the new 
MICRO-G prototype sensor. The flexure design is unchanged from the original EDLS 
design. 

Standard ISS Restraint Accommodation 

In order to measure natural astronaut motions, the MICRO-G sensors need to look and 

feel similar to the restraints astronauts currently use on the ISS. While the prototype 

sensors accommodate generic hand holds (as seen in Figure 2-2(b)) and fabric foot 

restraints, the flight sensors will be able to accommodate the actual hand hold and 

foot restraints used by the astronauts. Figure 2-4 illustrates what the flight sensors 

will look like when configured as either a hand hold (Figure 2-4(a)) or a foot restraint 

(Figure 2-4(b)). 

(a) MICRO-G sensor configured as a (b) MICRO-G sensor configured as a 
hand-hold. foot restraint. 

Figure 2-4: CAD images of the MICRO-G sensors for use on the ISS. 

One of the key features of the new MICRO-G sensors is their modularity. Each 



sensor can be configured as either a hand hold or a foot restraint depending on 

the requirements of the given task. The MICRO-G sensors also come with multiple 

attachment options, making it easy for astronauts to relocate the sensors if an extra 

restraint is needed in another part of the space station. 

On-board Data Acquisition 

A small PC/104-based CPU, data acquisition system and 60 GB hard drive are built 

into the sensors to make them entirely self-contained. As such, they no longer require 

a separate experiment support module for data acquisition. Figure 2-5 shows the 

electronics inside one of the prototype MICRO-G sensors. 

Figure 2-5: A photo showing the electronics inside the prototype MICRO-G sensors. 
Starting from the board at the far left, the boards are: PCMCIA card interface, VGA 
module, CPU and the Analog to Digital Board. 

The MICRO-G sensors are driven by the Prometheus CPU by Diamond Systems 

(part number PR-Z32-EA-ST). The Prometheus employs a 486-class processor chip 

with on-board analog to digital circuitry and several programmable digital I/O ports. 

A dedicated analog to digital card, the DMM-16-AT board by Diamond Systems, 

enables high frequency differential measurement of up to 8 strain gauge signals (al- 

though each sensor only requires six differential measurements). 

A PC/104 VGA card by Arcom (part number AIMlOCVGA-CRT) provides easy 



debugging access through a standard VGA monitor. The PCMCIA module (also a 

PC/104 card) is manufactured by Ampro (part number MM2-PCC-Q-71). 

The MICRO-G sensor backplane was custom designed to house the four PC/104 

modules side-by-side to conserve space inside the sensor2. The sensor backplane also 

houses a custom filtering and gain circuit that preconditions the analog sensor voltages 

prior to the analog to digital conversion done by the DMM-16-AT board. 

Custom Software 

To maximize flexibility, each sensor has a full installation of Slackware Linux, com- 

plete with device drivers, C compilers, multi-threading constructs and disk and net- 

work utilities. Linux provides an easy environment for developing software for the 

MICRO-G sensors as well as eliminates the need to develop basic capabilities such as 

remote login shells and file transfer protocols. 

The MICRO-G sensor software was designed to be as autonomous as possible. 

Upon start-up, the sensor software initializes the data acquisitions boards and begins 

sampling the strain gauges. If the forces or moments raise above a settable threshold 

for a specified period of time, the sensors identify that as a contact event and begin 

writing data to the hard drive at a rate of 250 Hz. To ensure that no data is lost, a 

buffer of two seconds on either side of every detected event is also saved to the hard 

drive. 

In a separate execution thread, a network server waits for a connection from the 

MICRO-G client software (described in Section 2.2.1). When connected, the MICRO- 

G sensor transmits live data to the client software at a rate of 10 Hz for realtime 

display purposes. 

Other threads control the clock display and the force-level indicator (also described 

in Section 2.2.1). All interactions with the sensor software are executed via a telnet 

connection. A flowchart depicting the basic operation of the MICRO-G sensor software 

can be seen in Figure 2-6. 

2 ~ h e  typical mounting configuration of PC/104 modules is one on top of the other. 
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Figure 2-6: MICRO-G Sensor Software Flowchart. 

Video Synchronization 

A digital clock window (seen in Figure 2-2(b)) displays the six least significant digits 

of the Linux system time (including two digits past the decimal point). The Linux 

system time is stored as a double precision number representing the number of seconds 

since the Epoch (defined somewhat arbitrarily by the Linux community as 00:00:00 

UTC, January 1, 1970). The time displayed in the sensor clock window is precisely 

the time saved with the force data. Thus, as long as the camera can see the clock 

window, the kinematic data from the video camera can be easily synchronized with 

the force data by simply reading the time from one of the video frames. 

In order to synchronize the sensors to one another, Linux's Network Time Protocol 



(NTP) is used. NTP allows Linux machines to synchronize their clocks with various 

publicly available atomic clock servers. However, users can identify any Linux machine 

running the NTP daemon as the source for their time synchronization. In the case of 

the MICRO-G sensors, all are setup to be peers of one another on the same ~ t r a t u m . ~  

Upon startup, the sensors poll each other and self-organize to agree upon a common 

time with which to synchronize. Within two or three minutes, the sensor clocks are 

synchronized typically to within 10 milliseconds of one another (or about two or three 

frames of force-moment data). 

Wireless Communication 

The new sensors communicate wirelessly to each other and to a central laptop, provid- 

ing time synchronization, easy sensor commanding and real-time data plots. Wireless 

communication enables the sensors to be easily relocated anywhere within range of 

the wireless network. An optional battery back-up in the flight version of the MICRO- 

G sensors will allow the sensors to be operated for up to two hours without requiring 

a power hookup. Figure 2-7 shows the USB wireless ethernet adapter used in the 

prototype MICRO-G sensors. 

Figure 2-7: The DWL-122 wireless ethernet adapter (802.11). In the prototype sen- 
sors, this adapter is attached on the bottom of the sensor backplane. In the flight 
version of the MICRO-G sensors, the wireless adapter will be located in an indentation 
on the exterior of the sensor housing to improve signal quality. 

3All NTP servers must be identified with a particular stratum number. The lower the stratum 
number, the higher fidelity the clock source is (the few publicly available atomic clocks in the world 
are denoted stratum 1). Identifying different strata within local networks reduces the NTP polling 
delay and hence provides better time synchronization across a given network. 



Realtime Feedback 

A small force-level indicator on top of the sensor provides programmable feedback to 

the astronauts as to the relative force magnitudes they are applying to the sensor. 

The indicator is made of ten LEDs, six green, two yellow and two red. The forces 

associated with each level can be programed via the onboard sensor software. This 

kind of display not only provides feedback that the sensor is operating normally, but 

it can aid the astronauts in their adaptation with appropriate selection of the green, 

yellow and red zones. For example, astronauts could be instructed to keep their 

interaction forces below the red zone in order to maximize their motion accuracy. 

Figure 2-8(a) shows a photo of the force-level display on one of the prototype MICRO- 

G sensors. 

In addition to the force-level indicator on the surface of the sensor, astronauts can 

also use the MICRO-G client software for viewing force and moment traces from a 

given maneuver. The MICRO-G client software connects to the sensors wirelessly and 

receives force and moment data at a reduced rate of 10 Hz (recall that the data saved 

to the on-board sensor hard drive is collected at 250 Hz). Astronauts can view the 

forces and moments either as a strip-chart recorder or in a moving bar-chart format. 

In addition to viewing data, astronauts can send commands to the sensors that either 

enable or disable data collection, upload new calibration matrices or zero the sensors. 

One full window of data can be saved as a "snapshot" for viewing later either in 

the client itself or in Matlab. When snapshots are taken, the MICRO-G client software 

reports summary statistics of the event, including maximum and minimum forces and 

moments, means, medians and standard deviations. Future versions of the MICRO-G 

client will be able to track the astronauts' adaptation as the experiment progresses. 

It is anticipated that astronauts may use the MICRO-G client as a diagnostic tool for 

evaluating their level of adaptation to their new environment. Figure 2-8(b) shows a 

screenshot of the MICRO-G client software. 



(a) The force-level indicator on the surface of (b) A screenshot of the MICRO-G client soft- 
the MICRO-G sensors. ware. 

Figure 2-8: Realtime feedback features of the MICRO-G sensors. 

Waterproofing 

The new MICRO-G sensors are waterproof, permitting simulated weightlessness stud- 

ies to be carried out in pools up to 10 meters deep. While operating underwater, 

the wireless ethernet signals are not viable due to attenuation by the water. Thus, a 

wired ethernet cable and the power cable are routed through waterproof connectors. 

All other connectors (i.e., serial, VGA and keyboard) as well as the PCMCIA card 

slots are sealed prior to submersion underwater. Figure 2-9 illustrates a SCUBA diver 

installing a MICRO-G sensor at the bottom of MIT's Alumni Pool. 

Figure 2-9: A photo of the new MICRO-G prototype sensor (configured as a hand- 
hold) being mounted during an underwater experiment. The digital display is for 
video synchronization. 



Easy Data Backup System 

The prototype MICRO-G sensors employ two standard PCMCIA card slots for addi- 

tional data backup. Astronauts and/or experiment operators can easily backup the 

data saved on the sensor hard drives by plugging small PCMCIA drives into one of 

the card slots. 

On the flight MICRO-G sensors, the PCMCIA card slots have been replaced by an 

external USB port to save space and power. More compact and higher capacity USB 

memory sticks can then be inserted and removed easily for data backup purposes. As 

with the PCMCIA card solution, the Linux operating system supports hot-swapping 

of USB devices, making implementation easy. The USB memory stick can be seen as 

a small protruding box in Figure 2-4. The larger protruding box represents the USB 

wireless network adapter described in Section 2.2.1. 

2.2.2 Kinematic Video System 

The kinematic video system provides relevant joint angle trajectories of the subjects 

interacting with the MICRO-G force-moment sensors. These data are then used as 

input into the dynamic modeling code developed by Ferguson [Ferguson and Newman, 

20061. In order to obtain the joint angles over time, the ability to track the moving 

joint must exist. Not only must the joint be fully visible in the field of view of 

the camera, but the motion must be observable from this same view. It is therefore 

important to arrange the cameras such that all potential movements can be captured. 

The camera set-up for the ground-based experiments is shown in Fig. 2-10 with the 

given coordinate system. The views captured by each camera are shown in Table 2.1. 

The 3-D motion of the subject can be reconstructed by applying the principles 

of articulated movements of deformable models [Metaxas, 19961. The use of optical 

flow measurements provides and added constraint to the determination of the limb 

movements [DeCarlo and Metaxas, 20001 and thus the joint angles. Upon experi- 

ment completion, the videos were analyzed with this knowledge using the following 

methodology (shown as a schematic in Fig. 2-11). The videos were first separated 



Figure 2-10: Camera configurations for the ground-based experiments. 

into individual frames. The pixels in each frame were tracked using the ideas of vi- 

sual and motion consistency through the optical flow code. The visual grouping is 

done according to color similarity and intensity. Since the optical flow problem is 

underconstrained, a constraint is added in order to determine the pixel movement 

direction and velocity [Barron et al., 19921. The added constraint maintains motion 

consistency by limiting velocities of neighboring pixels. Thus the distance one pixel 

can move with respect to a neighboring pixel is implicitly limited. Once this is com- 

pleted, custom software that implements the principles of articulated motion is used 

to track the movement of the limbs based on the user-selected joint locations and the 

optical flow information. The use of optical flow as a constraint to the articulated 

movement assumes that the color does not change significantly between frames. In 

order to account for changes in intensity and color due to shadows and variations in 

the object depth, the user is queried every few frames to select the location of the 

desired joints. The number of frames between queries can be modified by the user. 

With the knowledge of each camera orientation and location, data from multiple cam- 

eras enable the 3-D reconstruction of the joint angles. The task of reconstruction is 

made simpler when a calibration procedure is performed such that the exact position 



Table 2.1: Views Captured by Each Camera 

and orientation of the camera with respect to the subject is not necessary [Zhang, 

19991. However, the analyses presented here were performed using one camera view 

with motions visible purely in the corresponding plain. 

of the Joint 
Locations 

8 I 

i Articulated Movement Analysis 
#------------------------------------------------> 

Figure 2-11: Schematic of the kinematic video analysis. 



2.3 The MICRO-G Experiment 

The MICRO-G flight experiment consists of two classes of experiment sessions, each 

repeated approximately 12 times over a single ISS increment (typically lasting six 

months). The first class of experiment sessions is known as the Prescribed Motion 

sessions. In these sessions, each participating crewmember will perform several body 

motions designed to demonstrate their locomotor control strategies. These motions 

will include push-offs and landings using both feet and hands, as well as several torso, 

leg and other body motions. Figure 2-12 illustrates a crewmember carrying out some 

prescribed motions. 

Figure 2-12: Illustration showing a crewmember using the MICRO-G foot and hand- 
hold sensors during a Prescribed motion experiment session. 

Notice how in Figure 2-12, video cameras have been positioned to capture the joint 

angle kinematics of the prescribed body motions. One of the requirements for the 

prescribed motion sessions is that at least two video cameras are positioned in such 

a manner to capture the three-dimensional motion and permit accurate joint angle 

determination. The Prescribed Motion sessions supply controlled data at regularly- 

spaced intervals which will show the crew's locomotor adaptation to microgravity. 

In between the Prescribed Motion sessions are the Regular Daily Activity sessions. 



During these sessions, the MICRO-G sensors are powered and will record any inter- 

actions the crewmembers have with them during other science or ISS maintenance 

activities in close proximity to the sensors. The crewmembers will be asked to posi- 

tion cameras in the work area while interacting with the MICRO-G sensors to provide 

limited kinematic measurements, however this is not a hard requirement. The pur- 

pose of the Regular Daily Activity sessions is to supplement the Prescribed Motion 

data with natural crew motions. 

Figure 2-13: Illustration showing a crewmember using a MICRO-G handhold sensor 
to pull himself through an ISS module. 

Details of the MICRO-G flight experiment can be found in the Experiment Doc- 

ument (ED) [Newman, 20051 and in [Ferguson et al., 2004bl. 

2.4 Sample Data 

Figure 2-15 shows some typical data (forces, moments and angles) collected using 

the MICRO-G sensing system while a subject was performing a leg push-off (the leg 

model is pictured in Figure 2-14). In the following analysis, out of plane forces and 



moments are ignored since they are entirely reacted by the air-bearing cart and floor 

and do not lead to subject motion. 

Figure 2-14: A photo of a subject performing a push-off from one of the MICRO- 
G sensors while gliding on MIT's air-bearing floor. The leg model used for torque 
estimation has been superimposed over the image. 

Summary 

This chapter has described the hardware and software that support the MICRO-G 

research program. The force-moment sensor design is based on a spaceflight-proven 

design that accurately and reliably measures forces and moments in changing gravita- 

tional environments. New on-board electronics make the MICRO-G sensors modular, 

self-contained and easy to relocate, thus minimizing the crew time required to use 

them on-orbit. Enhanced real-time feedback features of the MICRO-G sensors engage 

the astronauts in the experiment and can lead to improved adaptation performance. 

The next chapter presents a suite of tools developed to interpret the raw MICRO- 

G data. These tools include a joint control torque estimator as well as a body motion 

estimator. 



Leg Push-off For- 

(a) Plot of force-moment data collected using the MICRO-G force- 
moment sensors. Data is collected at 250 Hz only when the sensors 
are touched. 
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(b) Arm joint angles measured using the kinematic video system. The bottom 
plot shows the body position using the model depicted as an overlay in Figure 
2-14. 

Figure 2-15: Sample data resulting from a simple one-handed push-off on MIT's 
custom air-bearing floor. 





Chapter 3 

Dynamic Modelling and Analysis 

Techniques 

The work presented in this thesis involves the analysis and processing of vast quan- 

tities of data. Three dimensional forces and moments are collected at 250 Hz and 

joint angle kinematics are collected at 30 Hz. The design of the force-moment sensors 

and the kinematic video analysis system was described in Chapter 2. One of my hy- 

potheses is that by analyzing the data collected from the force-moment sensors and 

the video system, I would be able to observe, identify and quantify the key metrics 

that define the control adapt at ion to a given environment. 

In order to observe control adaptation during simple motions (e.g., push-offs and 

landings in a microgravity environment), certainly basic metrics such as maximum 

force application, force application direct ion and net joint angle deflect ion from each 

joint can provide a great deal of insight. Since these metrics are directly derived from 

the force-moment and joint angle measurements, very little processing is required to 

extract these metrics, aside from simple low-pass filtering to remove high-frequency 

noise. However, other metrics such as body center of mass motion and joint control 

torques require a substantial amount of processing in order to arrive at the final 

metric. 

Of course, all metrics could be derived from the joint angle measurements alone, 

provided they could be differentiated twice to yield joint rates and joint accelerations. 



The angles, rates and accelerations together with reasonable estimates of the dynamic 

parameters of the subjects' bodies would, in theory, provide all of the kinematic and 

dynamic information about a given movement. However, given that the joint angle 

measurements are imperfect and often tainted with noise, reliable differentiation once 

is difficult and differentiation twice oft en leads to meaningless, noisy accelerations. 

Estimation by differentiation in this manner is explored further in this section to 

demonst rated the associated difficulties. 

The basic problem associated with observing and analyzing dynamic motions using 

position measurements alone is the lack of true acceleration information. Fortunately, 

the force-moment measurements collected by the MICRO-G force-moment sensors 

provide this missing acceleration information. However, whereas the kinematic joint 

angle measurements lack acceleration information, the force-moment measurements 

position information. In theory, if the initial joint angles of a subject were known and 

the degrees of freedom of the model were sufficiently small compared to the richness 

of the motion (see Section 3.2.4 for more details), the forces and moments could be 

integrated to yield a complete picture of the body motion and dynamics and thence 

the desired metrics. Due to the double integration, however, errors continually accrue 

and the reliability of the resulting position information degrades over time. Figure 3-1 

illustrates the informat ion content of kinematic and kinetic measurements graphically. 

An obvious solution to the problem described above is to combine both the kine- 

matic and kinetic measurements together to yield more accurate estimates of the the 

adaptation metrics than would have been achieved using one or the other measure- 

ments alone. Furthermore, knowing something about the system dynamics should 

also provide more insight into obtaining more reliable metrics. The question, how- 

ever, is how to do this effectively. This chapter describes the modelling and analysis 

algorithms that were developed as part of this research program to reduce and inter- 

pret the kinetic and kinematic data. Custom filters, derived from non-linear Kalman 

filters, were developed that assimilate the force, moment and joint angle information 

along with knowledge of the system dynamics into reliable body position and joint 

torque estimates. 



Figure 3- 1: The relative information content in kinematic (joint angle) and kinetic 
(force & moments) measurements. The bottom two lines show the information gained 
by assimilating the data and then introducing a filter cognizant of the system dynam- 
ics respectively. 
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3.1 Body Center of Mass Tracking 

Content 

When observing the motion of a human, it is often useful to answer the question, 

where is the location of a subject's center of mass (COM)? In a gravity-based envi- 

ronment, the primary means of human locomotion is some form of walking, loping, 

hopping or otherwise, depending on the acceleration due to gravity [Carr, 20051. With 

each step on the ground, humans apply forces to their body and their center of mass 

accelerates. The resulting motion of the center of mass position is a wave that re- 
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peats with each step. In microgravity, Newton's laws dictate that the motion of the 
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body center of mass follow a perfect straight line after the subject loses contact with 

the surface used to push-off from. During the push-off, however, the center of mass 

position and velocity can change as the push-off force varies. 

3.1.1 Estimator Development 

A Kalman filter is proposed to estimate the position and velocity of the center of 

mass of the subject during a push-off maneuver. By combining the force and joint 

angle measurements with the joint angle data from the kinematic video system, along 

with knowledge of the system dynamics, it is anticipated that a better estimate of 



the COM motion will result. 

As with any estimator development, the first step is defining the quantity to be 

estimated, followed by the measurements and finally the dynamics, if known. In the 

case of estimating body center of mass motion, the state vector is defined as: 

- - [m] 
where xmm is the cartesian position of the center of mass of the subject and xCom 

denotes the time derivative of xam. 

As described earlier, the measurements available to estimate our state vector Xm 

are the kinematic joint angles (from the video system) and the kinetic force and mo- 

ment measurements (from the force-moment sensors). However, only the joint angles 

can be used as true measurements in the estimator since the forces and moments can 

not be expressed as functions of the state vector. The force - moment "measurements" 

will be used to describe the control inputs to the plant dynamics. 

Figure 3-2 illustrates the configuration of the rigid body model assumed for esti- 

mation purposes. Each link of the limb represents a given segment of the body. For 

instance, a 4-link model used to describe leg push-offs couldinclude a toe, ankle, knee 

and hip joint. Figure 2-14 from Chapter 2 illustrates such a model overlaid on top of 

an image of a subject. 

Figure 3-2 depicts a planar model, only capable of motion in the xy plane. Given 

the degrees of freedom of the human leg and the natural tendencies of subjects during 

motions, a planar leg model is usually adequate. The following analysis will assume 

planar motion. It should be noted, however, that extension of these models and 

methods to three dimensions would require only minor changes to the descriptions of 

the measurements and dynamics. 

The forward kinematics of a simple, two-link model are described by the trigono- 

metric relations below: 



Figure 3-2: An N-link limb in one plane. The joint angles are represented as Bi where 
i is the joint number. 

where li is the length of the ith link. 

The position of the body center of mass is a function of the body joint angles. It 

should be noted that the position of the center of mass may not necessarily lie on the 

body itself. Equation 3.4 describes the cartesian coordinates of the body center of 

mass location. 

where xci represents the cartesian position vector of the center of mass of the ith link 

and mi represents the mass of the ith link. The center of mass positions of each link 

are simple trigonometric functions of the joint angles that take very similar forms to 

the forward kinematics equations described in Equations 3.2 and 3.3. 

In order to implement a dynamic filter, it is necessary to express the measurements 

as a function of the state vector. For a two-link model, it is possible (for most 



configurations) to invert Equations 3.2, 3.3 and 3.4 to obtain: 

where h (xcm) is a non-linear combination of inverse trigonometric functions. How- 

ever, in general, for greater than two links, forming Equation 3.5 is not possible. 

In order to get around this difficulty, Equation 3.4 can be used to generate a 

"pseudo-measurement" of the body COM directly. The only complication with this 

technique is that now, the measurement variance matrix, R, is no longer constant, 

but now depends on the joint angles, 8.  

To determine R from 8, one must go back to the basic definition of the measure- 

ment variance matrix. From first principles, 

where ycom is the measurement vector. If each element of ywm is independent, R 

from Equation 3.6 is simply a diagonal matrix with the individual variances of each 

measurement located on the diagonal. When creating "pseudo-measurement s" , how- 

ever, each element is no longer independent and one would expect off-diagonal entries 

in R. 

Taking the first variation of Equation 3.4 results in: 

where f (68) is, in general, a linear function of 68. Substituting Equation 3.7 into 

Equation 3.6 and taking the expectation provides an expression for R, which is now 

a function of 8 .  

While the above technique provides a good estimate for how R will change with 8, 

it runs into difficulties when the body position nears singularities. If any body angles 

are (or near) an integer multiple of 7~12, certain diagonal elements of R may reduce 

to zero. Clearly, this cannot be the case, since simply transforming one measurement 



vector into another cannot reduce the measurement error down to zero. The reason 

why this occurs is because the covariance matrix by definition only considers the ex- 

pected value of the first variation squared of a function and this first variation can go 

to zero while the second and higher order terms do not. In other words, looking at a 

Taylor series expansion, the covariance matrix assumes terms that are second order 

and beyond are negligible. In fact, if the measurements were tainted with true Gaus- 

sian noise (an assumption that is always made prior to constructing a Kalman filter), 

all but the first and second central moments (i.e., standard deviation and variance) 

would be identically zero. In constructing the "pseudo-measurements" of Equation 

3.4, however, non-Gaussian measurements have been created and appropriate actions 

must be taken to ensure that R does not become singular for any values of 8 .  

To remedy this problem, a small diagonal factor is added to R to ensure it is always 

positive definite. The term needs to be big enough to ensure numerical stability when 

inverting R, but not so big that it causes the Kalman filter to essentially ignore the 

measurements. Since the need for this extra term stems from ignored second order 

terms, it seems appropriate that the additional term take the form of the variance 

squared. Thus, the expression for the measurement covariance matrix is: 

where R (8) is computed from Equations 3.7 and 3.6 and 

With the measurements, ycom and their associated covariance estimates, R defined 

as above, the measurement equation can be expressed as: 



where 

Continuing with the Kalman filter development, the dynamics and process noise 

must now be defined. The dynamics of motion of the body COM follow Newton's laws 

of motion. The force inputs are simply the measured forces from the force-moment 

sensor. In the absence of gravity or other friction forces, the dynamics can be written 

as: 

xWm = AXwm + BF 

where 

and F is the vector of two-dimensional forces measured from the force-moment sensor. 

The continuous process noise matrix, Q comes from the measurement noise vari- 

ance of the force-moment sensor. Thus, 

0 0 0 0 

(OF/  (cy==l mi))2 0 

0 0 0 (OF/  (Cy=l mi) )2 I 
All of the pieces are now in place to execute a traditional Kalman filter. The 

equations for a generic Kalman filter are found below: 



Kalman  Measurement Update 

Ka lman  T i m e  Update 

where k denotes the current time-step, (.)- indicates a quantity before the measure- 

ment update, (*)+ indicates a quantity after the measurement update and @ is the 

state transition matrix. 

3.1.2 Simulations and Results 

A simulation of a 4-link model performing a simple "extension" maneuver was created 

to test the estimator described in the previous section. First, the truth was simulated 

and the resulting joint angles were recorded. Next, artificial Gaussian white mea- 

surement noise was added to the joint angles (oB = lo) and the body COM position 

was computed at each time-step. The resulting reaction force trace was computed 

from the truth angles and artificial Gaussian white measurement noise was added 

(oF = 1 N ) .  

The filter was initiated using an initial estimate of the body COM position that 

had an error consistent with the joint angle measurement errors. The estimated po- 

sition and velocity were recorded and compared with the truth. Figure 3-3 illustrates 

the position and velocity errors as well as the 1 - o covariance bounds as a function 

of time during the extension maneuver. 

It is interesting to note in Figure 3-3 that the error (and indeed the error covariance 

bounds) decreases over time. This improvement is expected since the filter is able 



to glean more and more dynamic information about the system as the richness of 

the motion increases. Since the extension maneuver contained primarily y motion 

with very little x component, the filter was able to obtain a higher accuracy in the y 

direction than in the x direction. 

Figure 3-4 illustrates the body COM motion as seen in the cartesian plane. Figure 

3-4 shows the benefit of the dynamic filter by plotting the results obtained by using 

just the forces or the joint angles alone. 

While the joint angle measurements alone always have traceability back to the 

approximate position of the body COM, the noise greatly obscures the result. Fur- 

thermore, it is clear that differentiating the noisy joint angle measurements would 

not yield any useful velocity estimates. 

The forces, on the other hand, produce a relatively smooth estimate, but it is 

greatly affected by the initial starting point. Without joint angles to aid in the 

starting location, a conservative initial error estimate of less than 10 centimeters was 

assumed. In reality, this error could easily be much worse. Notice how the estimate 

using the force measurements alone is never able to come close to the true body COM 

position because it contains no direct position information. 

The estimate obtained using the Kalman filter is able to effectively extract the 

best parts of each signal to obtain a useful and reliable estimate. The covariance 

bounds associated with the Kalman filter estimate conveys the degree to which these 

estimates can be trusted. 

The previous section has described the design of a dynamic filter to combine kinetic 

force measurements with kinematic joint angles to arrive at an accurate estimate of 

the body COM motion (position and velocity). The next section explores how the 

same measurements can be used to estimate the joint control torques that were used 

to affect the observed motion. 



3.2 Joint Torque Estimation 

For years, researchers have been developing theories regarding how humans control 

their limb and body motions [Gribble et al., 1998, Gomi and Kawato, 1996, Flash 

and Hogan, 1985, Bizzi et al., 19941. Many researchers develop models to predict 

human motion under a variety of conditions. To verify the models, simulation results 

are often compared to actual human motion experiments. While simple joint angle 

trajectory comparisons may provide a cursory performance comparison, alone they do 

not provide insight into the dynamics being controlled. Since many widely accepted 

limb control strategies rely on control torques being applied to joints (resulting ei- 

ther through explicitly computed torques [Gribble et al., 19981 or those generated 

naturally by the spring-like properties of muscles [Bizzi et al., 19821)) one means of 

characterizing human motion controllers is to study the joint control torques. 

[Bergmann et al., 19951 have measured joint control torques directly by instru- 

menting hip joints with strain gauges. While these techniques can provide relatively 

high accuracy joint control torque information, they come at the price of invasive 

surgical procedures, garments or prostheses that can impede the natural motion of 

the human subjects. 

Without measuring joint torques directly, the only other option is to non-invasively 

measure several indirect quantities and use them to estimate the joint torques. Esti- 

mating joint torques for multi-link limbs is complicated by several factors, including: 

The strong non-linearity of the system dynamics 

Their dependence on joint accelerations, which are difficult to measure 

The unpredictability of joint torques 

The fact that joint torques need not be continuous 

Many studies measure joint angles using either a manipulandum [Flash, 1987, 

Gomi and Kawato, 19961 or a video-kinematic tracking system [Amir et al., 20011. To 

obtain the joint torques, the angles are differentiated twice to obtain rates and accel- 

erations. Inverse dynamics are then used to compute the dynamic joint torques. This 



technique can work well, provided the joint angles can be effectively differentiated. 

Often, however, the joint angle data is noisy, leading to even noisier rate estimates 

and often useless acceleration information. 

Other studies have employed the use of force-plates to measure ground reaction 

forces and moments during a particular body motion [Newman et al., 20011. Ground 

reaction forces and moments can be useful for computing joint control torques since 

both joint torques and reaction forces/moments are related to joint accelerations. 

Several other researchers have attempted to back out robot joint control torques 

from reaction forces and torques measured at the base of the robot arm [DeVita and 

Hortobagyi, 2003, Morel et al., 2000, Nagano et al., 19981. However, all have relied 

on estimates of joint acceleration1 that can be extremely difficult to estimate from 

noisy joint angle measurements (as described above). 

This chapter provides a novel dynamic estimation algorithm that effectively com- 

bines joint angle measurement s (kinematics) with force-plate reaction forces (kinet- 

ics) without requiring accurate acceleration information to estimate the joint control 

torques in addition to the joint angle and rate states of a multi-link limb. Before 

developing the estimator, the next section presents a brief background on the statics 

and dynamics of multi-link limbs. 

3.2.1 Multi-Link Limb Statics and Dynamics 

Figure 3-2 illustrates the generic limb configuration considered in this chapt er.2 Joint 

angles are denoted as Bi where i is the joint number. The (x, y) position in space of 

the tip of the limb can be represented as a function of the joint angles, Bi . For a 2-link 

limb, these tip position coordinates are computed as in Equations 3.2 and 3.3 above. 

Differentiating Equations 3.2 and 3.3 and rearranging, one can define the Jacobian 

matrix J (9) as: 

'With the exception of Morel [Morel et al., 20001 who assumes that for fine motion tasks, accel- 
eration terms can be ignored. 

2For simplicity, the examples presented throughout this thesis will address only planar motion. 
A simple extension of these methods permits application to motion in three dimensions. 



where 

and 

If we apply a constant force, Ft to the tip of the limb and assume that the limb 

is not in motion, the principle of virtual work states that: 

where r is the vector of joint torques. Substituting Equation 3.21 into Equation 3.24 

and rearranging results in: 

Equation 3.25 illustrates how static forces translate into joint torques. Equation 

3.25 does not account for any inertial, centripetal, Coriolis or frictional torques that 

are present when a limb is in motion. 

To account for all dynamic torques, one must consider the full dynamic equations 

of motion of a multi-link limb. [Asada and Slotine, 19861 discuss several different 

ways to derive these equations. The resulting dynamic equations can be expressed 

as: 

where H (8) is the configuration dependent inertia matrix, C is the centrifu- 

gal/Coriolis matrix, D is the joint friction (or damping) matrix and G is the 

vector of torques due to gravity. 



Equation 3.26 illustrates the non-linear dependence of joint angles, rates and ac- 

celerations on t he joint control torques. Thus, estimating dynamic control torques 

requires developing some knowledge of angles, rates and accelerations. Fortunately, 

angle and (noisy) rate information can be determined from a video tracking system 

[Pedrocchi et al., 2003, Amir et al., 2001, Pedrocchi et al., 2005, Goldenstein et al., 

20031 and accelerations can be inferred from the force-plate information. Assuming 

the limb remains in contact with the force-moment sensor, the force vector, Fb, can 

be expressed as: 

where mi and f i  is the mass and acceleration, of the ith link respectively, Fc is the 

total gravity weight (if applicable) and N is the total number of links. Similarly, the 

moments measured by the force-moment sensor, Mb, can be expressed as: 

where Ii, wi Lji are the moment of inertia, angular velocity and angular acceleration 

respectively of the ith joint as expressed in reference frames attached to the center of 

mass of each joint. 

Since Equations 3.27 and 3.28 depend on the cartesian acceleration of each link in 

the limb, they also depend on the joint angle accelerations. This relationship is found 

by twice differentiating N-link versions of Equations 3.2 and 3.3 and combining with 

Equation 3.27. As such, combining Equations 3.26, 3.27 and 3.28 with measurements 

of joint angles and force-moment data should provide enough information to compute 

the joint control torques. The following section develops a dynamic estimator that 

effectively combines both angle and force-moment measurements to arrive at a better 

estimate than would be computed from angle measurements alone. 



3.2.2 Estimator Development 

Classical dynamic state estimators (such as the one developed in Section 3.1.1) follow 

the flow pictured in Figure 3-5. Assuming the control inputs are known, the state 

for the next time-step is predicted. Measurements from this new time-step are then 

incorporated to correct the predicted estimate and the iteration continues. 

In the case of estimating joint control torques, while the dynamics are known 

(Equation 3.26), the control inputs pictured in Figure 3-5 are not immediately avail- 

able since they are the quantity being estimated. Furthermore, since control torques 

are chosen by the subject, they cannot be predicted by any dynamic equation. Thus, 

conventional predictor-corrector estimators (e.g., Kalman filters) are not appropriate 

for solving this problem and other single-step methods3 must be explored. 

When designing an estimator of any kind, one must first decide on the state 

vector to be estimated. A logical choice for the state vector would be joint control 

torques; however, this choice provides a subst ant ial mat hemat ical difficulty since the 

measurements must be expressed as a function of the state vector. Given the non- 

linearities of Equations 3.26, 3.27 and 3.28, it is not possible to find an expression for 

the joint angles or reaction forces as a function of joint torques alone. To simplify the 

mathematics, a st ate vector containing joint angles, rates and accelerations will be 

used. Then, with a good estimate of joint angles, rates and accelerations, Equation 

3.26 can be used to compute the joint control torques (i.e., inverse dynamics). The 

state vector, X, for this filter is thus defined as: 

The measurements available for estimation from the kinematic video system and 

3Single step estimators only perform the "correction" step of the predictor-corrector estimator 
depicted in Figure 3-5. 



a force-moment plate are: 

where h (X) represents the nonlinear measurements as a function of the state vector, 

X and v is a vector of normally distributed Gaussian white noise with zero mean 

and standard deviation of R (denoted N (0, R)). R is a diagonal matrix that defines 

the expected noise or reliability of each measurement (expressed as the variance (02) 

of the signal); the higher the diagonal entry in R, the more uncertain the associated 

measurement. 

The optimal single-step estimator for a linear system with measurements tainted 

by Gaussian white noise is known as a "least squares" estimator. However, given the 

nonlinear measurements in Equation 3.30, the linear least squares estimator cannot 

be used. Instead, an iterated nonlinear least squares estimator must be used. While 

not optimal, the nonlinear least squares estimator (NLSE) can provide a good one- 

step estimate of a state vector with noisy nonlinear measurements [How, 20021. The 

development of the nonlinear least squares estimator can be found in Appendix B. 

As seen in Appendix B, the nonlinear least squares algorithm requires a guess of 

the full state vector at each time step. The guess state is required because the full 

state is not completely observable given the measurements for any limb larger than 

two links. The observability of the state given a particular set of measurements can 

be found by computing the rank of the information content of the measurements. 

The information content, Y, is defined as: 

where H is the linearized measurement matrix such that 



If the rank of Y is less than the length of the state vector X, then the full state is not 

observable. Unless the measurement vector contains repeated measurements of the 

same quantity, the rank of Y is usually equal to the number of measurements. For 

a planar manipulator, only two forces and one moment are non-zero. Incorporating 

the joint angle measurements to the force and moment measurements provides: 

Equation 3.33 indicates that in order to estimate all angles, rates and accelerations 

of each joint (2 .  e., 3N elements) a good prior estimate must exist since the rank of Y 

is always less than the length of X for any limb with more than one joint. 

The measured joint angles can form the position portion of the NLSE guess state. 

Guess joint rates can be found via filtered differentiation of the measured joint an- 

gles. However, as stated earlier, differentiating a second time to obtain an estimate 

of the joint accelerations is often not practical. To obtain an appropriate guess of 

the joint accelerations, a preliminary NLSE step can be taken to estimate the joint 

accelerations using the force and moment measurements alone. For a limb with 3 

or fewer joints, the joint accelerations are completely observable and an appropriate 

initial joint acceleration guess would be zero for all joints. If N > 3 or if no moment 

measurements are available4, a rough estimate of the joint accelerations may be re- 

quired, however in most cases, an initial estimate of zero for all joint accelerations is 

sufficient. 

The acceleration estimates from the preliminary NLSE step described above along 

with the measured joint angles and differentiated joint angles can now form the com- 

plete guess state for the full NLSE step, which is further described in Appendix B. 

The NLSE results in an estimate of the joint torques, based partially upon dif- 

ferentiated angle measurements to obtain rate and acceleration information. With 

knowledge of the joint torques, the full system dynamics are known and a dynamic 

(two-step) estimator can be used with the original measurements to obtain a more ac- 

4See Section 3.2.4 for a more detailed discussion of torque estimation without moment measure- 
ments. 



curate estimate of the joint angles, rates and accelerations. The estimate computed 

using a dynamic estimator will be better than the differentiation of noisy angles 

because a dynamic estimator can make use of the plant dynamics to observe the 

changing state and aide in the estimation. The only remaining question is what kind 

of dynamic estimator should be used? 

Given the non-linear dynamics (Equation 3.26) and measurements (Equations 

3.27 and 3.28), a regular Kalman filter cannot be used. One option would be to 

use an Extended Kalman Filter (EKF) [Gelb et al., 19991. However, while the EKF 

handles some of the linearization errors associated with a traditional Kalman Filter, it 

still requires linearization of the state dynamics to propagate the covariance matrix. 

Linearizing Equations 3.27 and 3.28 is manageable, however, linearizing Equation 

3.26 is extremely tedious and prone to error, especially for limbs with greater than 

two joints. 

The Unscented Kalman Filter (UKF) is a filter designed to remove the burden and 

error-inducing effects of linearizing the measurement and dynamic equations [Julier 

and Uhlmann, 2004, Wan and van der Merwe, 20011. The UKF works by generat- 

ing a selection of solution points with an associated mean and covariance and then 

propagating each one nonlinearly through the dynamics. The mean and covariance 

of the newly propagated points is then evaluated to determine the new estimate and 

covariance. Appendix C outlines the equations used in the UKF. For a detailed de- 

velopment of the UKF, see [Julier and Uhlmann, 20041 and [Wan and van der Merwe, 

20011. 

It should be noted here that while the UKF state vector contains the joint ac- 

celerations, the UKF cannot actually estimate the accelerations since they are not 

true state  variable^.^ However, since the force and moment measurements depend on 

joint accelerations, the accelerations are required to execute the UKF. Knowing the 

joint angles, rates and control torques, the joint accelerations can be computed by 

'A state variable is one that is required to completely describe a dynamical system at any point in 
time. Typically, a state vector contains only position and velocity states. Accelerations can change 
instantaneously and do not hold any "memory" in the same way that position and velocity states 
do, so they are not considered state variables. 



re-arranging Equation 3.26 as: 

Figure 3-6 illustrates how the UKF and the NLSE are combined to form the new 

torque estimation technique. 

3.2.3 Simulations and Results 

Simulations were developed to test the estimator described in the previous section. 

The simulations represent human subjects performing a standing maneuver taking one 

second to complete. The motions are controlled by a simple proportional-derivative 

(PD) joint controller. The resulting control torques, joint angles, rates and acceler- 

ations are saved and denoted the "truth". From the truth, noisy measurements are 

generated and used to estimate the actual joint torques, angles and rates. 

Two models of a human were developed: one represents a human with three joints 

and the other represents a human with four joints. The three-joint configuration 

models the ankle, knee and hip joints. With these joints, the segments between 

the joints represent the lower leg, upper leg and torso. The four-joint configuration 

models the toe, ankle, knee and hip joints. The corresponding segments represent 

the foot (behind the toes), lower leg, upper leg and torso. Table 3.2.3 describes the 

mass properties of the body parts used for the simulations. 

Table 3.1: Mass properties for the limb models. 

Lower Leg 
Upper Leg 0.40 10.0 

Torso 0.80 45.0 

The inertias of each limb segment were computed assuming they were uniform 

69 



density rods as: 
12 

where rn is the mass of the limb segment and I is the length of the limb segment. 

The joint friction of each joint was assumed to be zero. Section 3.2.4 provides a brief 

discussion on why joint friction values were not included in the models. 

Random noise was added to all measurements to ensure appropriate realism. The 

angle measurements used in the simulations were assumed to be accurate to within 

f lo, force measurements to within f 0.2 N and the moment measurements to within 

k0.5 Nrn. 

When propagating the truth states, process noise was added to simulate un- 

modeled effects. At every time step, random noise was added to the velocities (0.1 "1s) 

and joint accelerations (0.2 "/s2). 

Finally, all simulations assume no gravitational forces (since the original intent 

for this work was the analysis of astronaut motions in space). 

Prior to implementing the new estimator developed above, an initial simulation 

was conducted to illustrate the performance of a torque estimator that does not 

include force or moment measurements. Figure 3-7 illustrates the torque estimation 

results for the 3-link model. Clearly the torque estimates bear no resemblance to the 

actual joint torques. 

Figure 3-8 illustrates the torque estimation results using the new estimator. Figure 

3-9 shows the angle and rate estimates resulting from the UKF. The force and moment 

measurements provide sufficient acceleration information to fully estimate the joint 

accelerations and thus the joint control torques. 

Figure 3-10 shows joint control torques utilizing the new estimator for the 4-link 

model. Figure 3-11 illustrates joint angles and rates for the 4-link model. Notice 

again how well the torques, angles and rates track the truth. 

Using the force, moment and joint angle data presented in Figure 2-15 in Chapter 

2, Figure 3-12 illustrates the torques computed using the algorithms described in this 

chapter. 
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(a) Simulated COM position estimation errors. 
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(b) Simulated COM velocity estimation errors. 
Figure 3-3: Position and velocity errors during the simulated motion. The dashed 
lines above and below the error trace indicate the covariance (lo) bounds. 



Body Center of Mass Position 

..... ..... ..... Estimate 

. . . . . . . Angles Only 

0.8' I I I 

-0.05 0 0.05 0.1 
X Position (m) 

Figure 3-4: The true and estimated position of the body COM during a simulated 
motion. The solid line represents the truth and the dashed line represents the result 
from the body COM motion estimator. The dotted and dash-dotted lines represent 
the results that would have been obtained if only the angle measurements or the 
force measurements respectively were used on their own to estimate the body COM 
position. 
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Figure 3-5: The information flow of a conventional predictor-corrector filter. 
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Figure 3-6: The information flow of the newly-developed joint torque and state esti- 
mation technique using an Unscented Kalman Filter (UKF) and the Nonlinear Least 
Squares Estimator (NLSE). 
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Figure 3-7: Actual (solid) and estimated (dashed) joint control torques for a 3-link 
model using only differentiated joint angles. 



Joint Torques (Actual solid, Estimated dashed) 

-25; r 
0.2 0.4 0.6 0.8 1 

Time (seconds) 

Figure 3-8: Actual (solid) and estimated (dashed) joint control torques for a 3-link 
model using force, moment and angle measurements. 
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(a) Actual (solid) and estimated (dashed) joint (b) Actual (solid) and estimated (dashed) joint 
angles. rates. 
Figure 3-9: State estimation results from the UKF for a 3-link model using force, 
moment and angle measurements. 
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Figure 3-10: Actual (solid) and estimated (dashed) joint control torques for a 4-link 
model using force, moment and angle measurements. 
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(a) Actual (solid) and estimated (dashed) joint (b) Actual (solid) and estimated (dashed) joint 
angles. rates. 
Figure 3-11: State estimation results from the UKF for a 4-link model using force, 
moment and angle measurements. 
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Figure 3-12: Torque data estimated using actual forces, moments and joint angles 
collected during a push-off motion. The inset shows the joint angle convention used 
to further define the joint torques. 



3.2.4 Discussion 

The results presented in Section 3.2.3 clearly illustrate the benefit of incorporating 

force and moment measurements to estimate joint control torques. However, an 

important step of the estimation process is the computation of the inverse dynamics 

via Equation 3.26. For any manipulator with more than 2 links, developing the details 

of Equation 3.26 can be extremely tedious. Fortunately, [Corke, 19961 presents a 

robotics control toolbox for MATLAB that computes the dynamics of Equation 3.26, 

which have been implemented in the simulations herein. 

Since the computed joint torques depend on the quality of the model parameters 

in Equation 3.26, reliable techniques must be in place to determine them for any 

human subject. Fortunately, the inertia matrix and segment masses for a human 

limb can be accurately determined using several body measurements, as described in 

[Yeadon, 19901. 

The above analysis assumed that the joint friction (damping) was zero for each 

joint. While others have measured the actual joint frictions for various joints [Zhang 

et al., 19981 and found true, non-zero values for the joint frictions, this does not 

invalidate these results. Since joint friction is dissipative, the joint torques due to 

joint friction are not observable in force plate measurements. Thus, if appropriate 

estimates of joint friction were known, they could be added to the estimated joint 

torques after the estimation. 

The results presented in this chapter assume planar motion only to provide a worst 

case observability. As mentioned in Section 3.2.2, only one moment and two forces 

are non-zero for a planar limb. If any joint were to move out of plane, it would add 

at least one more non-zero force measurement and one more (possibly two) non-zero 

moment measurement, thus, increasing the rank of the information content. 

All simulations presented in this chapter assumed that no prior joint acceleration 

was known. In reality, it may be possible to filter the joint angles sufficiently such 

that a rough joint acceleration estimate can be made through differentiation alone. 

In such a case, the prior acceleration estimate can aid in the estimation process and 



permit a greater number of joints in a given model. 

A common difficulty in using force-moment sensors with human subjects arises 

when the subjects' feet or hands slip across the force plate. In this case, the assump- 

tion that the limb remains firmly attached to the plate is no longer true. The most 

sensitive measurements to such slipping are the moments. Estimating joint torques 

using only forces and joint angles (i.e., no moment measurements) is much more dif- 

ficult due to the observability issue described in Section 3.2.2. Figure 3-13 illustrates 

the torque estimation results for the three-link model without moment measurements. 

Joint Torques (Actual solid, Estimated dashed) 
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Figure 3-13: Actual (solid) and estimated (dashed) joint control torques for the 3-link 
model using force and angle measurements (no moments). 

Since the estimator used in Figure 3-13 is rank deficient (see Section 3.2.2), a 

very rough acceleration estimate was obtained by double differentiation to start the 

estimator. While the first half of Figure 3-13 tracks reasonably well, the second 

half of the simulation is degraded. In such a case, a better prior estimate of the 

joint accelerations could be sought (as described above), or different measurements 

could be added. One such measurement could be the addition of a common 2-axis 

accelerometer. Figure 3-14 shows the same simulation presented in Figure 3-13, but 

with accelerometer measurements added to the center of mass of the subject's torso. 



Figure 3-14 shows a noticeable improvement over the force and angle measurements 

alone in Figure 3-13. 

Joint Torques (Actual solid, Estimated dashed) 
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Figure 3-14: Actual (solid) and estimated (dashed) joint control torques for the blink 
model using force and angle and accelerometer measurements. 

3.3 Conclusions and Recommendat ions 

This chapter has presented a nonlinear estimator for computing joint control torques, 

joint angles and joint rates, using force, moment and angle measurements. The 

estimator is based on a novel combination of the nonlinear least squares estimator and 

the unscented Kalman filter. Dynamic models of the human body were presented that 

propagate the state estimates from time step to time step and enable the estimator 

to function even when incomplete measurement information is available. 

Simulation results show the remarkable improvement that force and moment mea- 

surements can add to joint torque and whole body motion estimation. At the heart 

of dynamic motion is acceleration, and forces and moments are rich with accelera- 

tion information that the new torque estimator uses to enhance the estimation. Not 

only do the resulting joint control torques offer a glimpse into the human movement 



control strategy, but the knowledge of joint torques permits further refinement of the 

angle and rate estimates through dynamic estimation. 

The results of this study strongly suggest that the addition of a force-moment 

sensor into whole body motion studies can remarkably improve the quality of the ob- 

served motion data with minimal effort. A simple, commercial force-moment sensor 

can easily be placed into most experimental environments with minimal cost. Further- 

more, the algorithms presented in this chapter can be easily modified to incorporate 

other measurements. Sect ion 3.2.4 provides an example of adding accelerometer mea- 

surements, but other measurements from devices such as laser range finders or joint 

rate encoders could be added with minimal modification. In fact, if subjects were 

instrumented with in vivo strain gauges to measure joint torques (as is the case with 

[Hodge et al., 1989]), the measured joint torques could be added as an additional 

measurement. In this case, information from the force-moment data and the directly 

measured joint torques would be combined by the dynamic estimator to arrive at an 

estimate that is much more accurate than one computed from the force-moment or 

torque measurements alone. 

The algorithms presented in this chapter could also be used in the design and 

control of robotic manipulators. [Morel et al., 20001 describe a novel control approach 

that uses a force-moment sensor mounted at the base of the manipulator and joint 

acceleration measurements to estimate the joint torques and feeds them back into the 

controller. However, the joint torque estimator presented in this chapter does not 

require joint acceleration information in order to compute the joint torques, making 

the controller presented in [Morel et al., 20001 more widely applicable. 



Chapter 4 

Dynamic Human Adapt at ion 

Experiments 

This chapter describes the human adaptation experiments that were conducted to 

test the experimental hypotheses (outlined in Chapter I). All human studies adhered 

to the guidelines issued by MIT's Committee On the Use of Human Experimental 

Subjects (COUHES). Please refer to Appendix H for the COUHES documentation 

supporting this research. 

As outlined in Chapter 1, the purposes of the human experiments were to a) 

Observe human locomotor adaptation to different gravitational environments, b) Test 

whether dual adaptation could be observed over short periods of time (i.e., after 

several weeks of exposure to a different gravitational environment) and c) Define 

metrics that clearly show the observed adaptation. The hypotheses directly tested 

by these experiments were: 

Hypothesis #1: Kinetic data from a force / moment sensor and kine- 

matic joint angle data can be combined in a dynamic filter to produce 

accurate, reliable estimates of whole body motions during adaptation ex- 

periments. Using the combined kinetic and kinematic data, metrics can 

be defined that illustrate control strategy adaptation to different gravita- 

tional and dynamic environments. 



Hypothesis #2: A single adaptation mechanism governs human loco- 

motor control strategies across a spectrum of gravity environments in a 

manner similar to that predicted by either Bayesian optimization; or the 

virtual trajectory hypotheses or a combination of the two. 

Human adaptation experiments were conducted on a l-G microgravity simulator 

(air-bearing floor) and underwater to attempt to measure contrasting locomotor con- 

trol adaptation. Subjects were instructed to perform a series of repeated push-offs 

and landings using both hands and feet to demonstrate their control strategy during 

whole-body motion and adaptation to the new environment. These experiments serve 

as the ground-based studies for the MICRO-G ISS experiment described in Chapter 2. 

While the MICRO-G ISS experiment aims to quantify and model long-term (on the 

order of months) adaptation, it was expected that short-term adaptation would be 

evident after minimal exposure to particular dynamic environments. The following 

section describes each of the two testing environments employed for this study. 

4.1 Testing Environments 

To simulate different gravitational and dynamic environments on Earth, two different 

testing scenarios have been developed: (A) On a near frictionless air-bearing floor 

and (B) Underwater. 

4.1.1 Air-Bearing Floor 

To easily simulate microgravity in one plane, a custom-made air-bearing floor was 

designed and built as part of this research program (see Figure 4-1). The air-bearing 

cart is made of a four-bearing air palette by AeroGo Inc. from Seattle, WA. The 

coefficient of dynamic friction of the air cart was empirically determined to be ap- 

proximately 0.005 (or about that of a speed skater [de Koning et al., 19921). 

Subjects either lie on their side in the sling mounted on top of the air palette or 

sit upright in a chair atop the palette. The sling was constructed to allow free motion 



(a) A photo of the sensor mounting frame, (b) An EDLS force / moment sensor is 
complete with the hose mast. mounted to  the mounting frame to test sensor 

placement options. Subjects lying in the sling 
can easily interact with the sensors with both 
their arms and legs. 

Figure 41: Photos illustrating the setup of the sensor mounting frame around the 
air-bearing floor. 

of the subjects' arms and legs while cradling their torso comfortably. A headrest was 

offered to subjects to minimize neck strain, however, all subjects opted not to use the 

headrest. 

The MICRO-G sensors (force moment sensors) were mounted on a steel mounting 

frame in positions easy for the subjects to reach while they were in both the horizontal 

(lying in the sling) and vertical (sitting in the chair) positions. The mounting frame 

also featured a 4 meter tall mast for holding the air hose to prevent it from dragging 

on the floor. Please see Figure 4-1 for photos of the mounting frame surrounding the 

air-bearing floor. 

4.1.2 Underwater 

Testing subjects underwater provides simulated weightlessness in three degrees of 

freedom. Using the same mounting frame as used in the air-bearing floor experi- 

ments, waterproof force moment sensors and underwater video cameras collect force 



/ moment and 3-D motion data. Figure 4-2 shows the MICRO-G sensor mounting 

frame assembled at the bottom of MIT's Alumni Pool. 

Figure 4-2: A photo of the sensor mounting frame (the same frame used on the 
air-bearing floor) assembled at the bottom of MIT's Alumni pool. Using SCUBA 
gear, subjects perform push-offs and landings in a neutral buoyancy environment, 
simulating weightlessness while introducing the added dynamics of water viscosity. 

Performing motion experiments underwater introduces the added dynamics of 

water viscosity. While the effects of water viscosity are certainly not present during 

spaceflight, it is important to study the effect of water viscosity on human motion 

since the vast majority of astronaut training occurs in underwater environments. 

4.2 Pilot Studies 

Prior to conducting the studies presented in this thesis, a short series of pilot studies 

were conducted to verify the data collection system and hone the subject instructions 

to evoke repeatable measures. The pilot studies were loosely structured intentionally 

to enable efficient and often real-time modifications of the experiment protocol based 

on the subjects' verbal input during the experiment. 

In total, 7 consenting female subjects completed the pilot study. Each subject 

performed between 10 and 30 push-offs and landings using both hands and legs in 

both the sling and chair configurations of the air-bearing floor. Instructions varied 

per subject, but the overall goal of the instructions was to give the subject as much 

freedom as possible to choose the strategy that she wanted to employ while retaining 



subject repeatability. Instructions were also modified to ensure that proper measure- 

ments could be attained from the force / moment sensors as well as the kinematic 

video system. After each subject completed the pilot study, they were debriefed in 

a short interview to get information about what parts of the experiment were clear 

or unclear and what aspects could be improved upon. The following section lists the 

primary lessons learned from the pilot studies that were incorporated into the final 

experimental protocol for the experiments presented in this thesis. 

4.2.1 Lessons Learned from the Pilot Studies 

1. Subjects needed some direction so that their hands and feet pushed off from 

the middle of the sensor. Early pilot studies were difficult to analyze because of 

false off-axis loads due to push-offs being executed off the side of the sensor. To 

remedy this, a small, vinyl bump (pictured in Figure 43 )  was added to the top 

plate of each sensor. Subjects were then instructed to feel for the bump with 

their hands or feet prior to starting their motion. 

Figure 4-3: Vinyl bump added to the sensor top plates to encourage subjects to push 
off from the center of the sensor. 

2. After approximately 15 trials, most subjects began to experience hip fatigue 

due to the need to cantilever their leg off of the edge of the air-bearing cart. 

Some subjects reported this fatigue while others did not; however, in all cases, 

fatigue was manifested by inaccurate or "sloppy" motions at approximately the 



15th trial. To alleviate the fatigue and to ensure that the data is not adversely 

affected, subjects will be asked to take a short (1-2 minute) break following trial 

number 15. In most cases, the subjects will not even need to sit up - they can 

simply rest their top leg on their supported bottom leg. 

Originally, subjects were instructed to conduct the push-offs and landings at a 

comfortable speed and to attempt to complete them as accurately as possible. 

While all subjects interpreted this to mean they needed to hit the target sensor 

in the middle, some subjects felt that it was okay if after they hit the target 

sensor, they spun out of control. Clearly, the instructions were too vague, 

and needed clarification. It was observed that the subjects that spun out of 

control after their landing always expected the experiment operator to physically 

move them back to the push-off sensor prior to the next motion. Subjects 

that continued to adapt to the point where they did not spin out of control 

upon landing were those who always attempted to move themselves back to the 

push-off sensor by pushing off of the landing sensor. This resulted in a new 

instruction aimed at fixing this discrepancy. All subjects are now instructed to 

push themselves back to the starting point from the landing sensor under their 

own power. This should cause the subjects to continue their adaptation to a 

point where their landing is accurate and does not spin out of control. 

4. Procedures for the early pilot studies had the experiment operator setting up 

the initial conditions and asking the subject if they felt they needed the initial 

position to be adjusted. It was then observed that many subjects were able to 

move themselves around, using their hands on the floor and their feet on the 

sensor or on the mounting frame. Now, all subjects are instructed to set up 

their own starting position to ensure that the test director in no way affects the 

strategy that they choose. 

5. In order to ensure the force traces can be understood properly, subjects are now 

instructed to pause motionless for approximately one second prior to the start of 

their motion. Often, as subjects become well-adapted to the motions, they need 



to be reminded of this because there is a tendency for them to start LLbouncing" 

back and forth between the push-off and landing sensor. This has the effect of 

combining the landing force signature with the push-off force signature. 

6. Subjects tend to restrict their limb motions to one plane, thus justifying only 

planar models for analysis. 

4.3 Experiment 1 - Simulated Microgravity Push- 

Offs and Landings 

The first experiment of this study took place on the air-bearing floor. The purpose 

was to initially expose each subject to the dynamics of being "weightless" in one 

plane and observe how they develop locomotor control strategies applicable for this 

environment. 

4.3.1 Subjects 

12 (6 male, 6 female). All subjects consented to participate in this experiment and, 

as such, signed the informed consent form found in Appendix H. Since all subjects 

were also being considered for the underwater study (described later in this chapter), 

all subjects were required to be SCUBA certified. 

4.3.2 Methods 

Each subject performed a series of push-offs and landings that were designed to illus- 

trate the locomotor control strategy for each task. Subjects performed the motions 

in two different orientations. The first orientation was with their body parallel to 

the direction of travel, known as horizontal. The second orientation was when the 

subjects oriented their body perpendicular to the direction of motion, known as ver- 

tical. Given the location of the sensors within the mounting frame (see Figure 4-4), 

subjects were able to use their hands or feet while horizontal, but could only use 



hands while vertical. Figure 4-5 illustrates the vertical and horizontal configurations 

of the air-bearing floor pictorially. 

Figure 4-4: The sensor mounting frame with overlay arrows indicating the paths 
subjects were to take during the experiments. 

Subjects first completed a set of motions known as course traverses. In these 

motions, subjects move from one sensor to another along a pre-defined path. Using 

the letter designations in Figure 4-4, the different course traverses were: 

1. Triangle, Horizontal: 

(a) Foot push-off A 

(b) Hand landing B 

(c) Hand push-off B 

(d) Hand landing C 

(e) Hand push-off C 

( f )  Foot landing A 

2. Triangle, Vertical: 



(a) Hand push-off A 

(b) Hand landing B 

(c) Hand push-off B 

(d) Hand landing C 

(e) Hand push-off C 

(f) Hand landing A 

(a) A subject using the air-bearing floor in the (b) A subject using the air-bearing floor in the 
horizontal configuration. vertical configuration. 

Figure 4-5: Photos of the air-bearing floor in each of the horizontal and vertical 
configurations. While horizontal, both hand and feet are free to use. In the vertical 
position, only the hands can be used. 

After the triangular course traverse, the subjects performed straight push-offs and 

landings from sensor A to C, illustrated in Figure 4-4 as the black arrow. After 30 

repeated trials of straight push-offs and landings, the triangle course was repeated 

for 5 trials, followed by another set of 30 straight push-offs and landings between 

sensors and finally another set of triangular course traverses. Once these motions 

were complete, the subject then re-configured to the vertical position and conducted 

the same motions using only hands. Figure 4-7 illustrates the the phase / trial break 

down for all experimental data analyzed for this research program. Data collected 

from the vertical configuration was collected but not analyzed herein. The vertical 

configuration data could potentially support future studies. Table 4.1 summarizes 

the motions the subjects took for Experiment 1. 



Table 4.1: Motions carried out by each subject for Experiment 1. The triangle courses 
are depicted in Figure 4-4. 

Motion Push Limb Land Limb Body Orientation Trials 
Triangle Course Foot Hand Horizont a1 5 
Push-off Foot Hand Horizont a1 15 
Break 
Push-off Foot Hand Horizont a1 15 
Triangle Course Foot Hand Horizont a1 5 
Push-off Foot Hand Horizont a1 15 
Break 
Push-off Foot Hand Horizont a1 15 
Triangle Course Foot Hand Horizont a1 5 
Triangle Course Hand Hand Vertical 5 
Push-off Hand Hand Vertical 15 
Break 
Push-off Hand Hand Vertical 15 
Triangle Course Hand Hand Vertical 5 
Push-off Hand Hand Vertical 15 
Break 
Push-off Hand Hand Vertical 15 
Triangle Course Hand Hand Vertical 5 

Subject Instructions 

Prior to beginning the motions, the subjects were briefed as to the experimental and 

individual goals they should strive towards. The goals were described as follows: 

Your goal is to  push off from the indicated sensor with your right hand/foot 

(depending on  the motion) and land with your right hand/foot (again, de- 

pending o n  the motion). You should strive to  be as accurate as possible 

when pushing off, such that your landing is as close to  the center of the 

sensor as possible. Upon arriving at the landing sensor, you will be re- 

quired to  push yourself back to  the initial push-off sensor. You may choose 

any speed you feel comfortable with. 

As previously stated, to ensure that the subjects had complete control over the 

initial conditions, subjects were initially positioned at a nominal distance away from 

the push-off sensor (approximately 60 cm from the sensor surface to the edge of 



the air-bearing cart). Subjects were encouraged to use their hands on the floor to 

reposition themselves prior to the motion. 

To ensure that subjects always performed their push-offs from the center of the 

sensor (to enable accurate force and moment readings), a small acrylic bump was 

been placed at the center of each force-moment sensor (see Figure 4-3). Prior to each 

motion, the subjects were instructed to place their hand or foot in the center of the 

sensor so that they could feel the bump at the center of the sensor's top plate. 

Once the subject was satisfied with their initial conditions, they were asked to 

pause motionless for one second to provide a recognizable point in the force signature 

that signified the start of the motion. The exact instructions for positioning the 

subjects prior to each motion were as follows: 

Prior to  each motion, you will determine the starting orientation that 

best suits the motion. You will be placed close to the sensor and then will 

be permitted to use your hands on the floor to  reposition yourself. Feel 

free to use your feet on the sensor or on the side of the mounting frame 

to  aid in your repositioning. When satisfied with your starting position, 

please feel for the bump on the sensor and ensure that you will be pushing 

on the sensor at this location. If need be, use your hands and/or feet 

to  reposition yourself. Once you are satisfied with your starting position, 

remove your hands from the floor and pause motionless for approximately 

1 second before beginning the motion. 

4.3.3 Measurements 

Force, moment and video data were collected during the experiments. The forces 

are analyzed herein and video analysis of the joint angles (outside the scope of this 

thesis) will be analyzed in the future. Table 4.2 summarizes the directly measured 

quantities and their attributes. 

One of the goals of this research program was to identify the key metrics that 

define adaptation to different gravity environments. As such, a comprehensive set of 



Table 4.2: Directly measured quantities. Forces, moments and video were all recorded 
during the experiments. Only a subset of the measurements were used in this study 
(see Section 4.6). 

Measurement Symbol Units Data Rate Comments 
X Force F x  Newtons 250 Hz Per sensor 
Y Force 4 Newtons 250 Hz Per sensor 
Z Force Fz Newtons 250 Hz Per sensor 

X Moment Mx Newton-meters 250 Hz Per sensor 
Y Moment M, Newton-meters 250 Hz Per sensor 
Z Moment Mz Newton-meters 250 Hz Per sensor 

Toe Joint Angle 0, radians 30 Hz 
Ankle Joint Angle 0, radians 30 Hz 
Knee Joint Angle 01, radians 30 Hz 
Hip Joint Angle Oh radians 30 Hz 

Finger Joint Angle Of radians 30 Hz 
Wrist Joint Angle 0, radians 30 Hz 
Elbow Joint Angle 0, radians 30 Hz 

Shoulder Joint Angle 0, radians 30 Hz 

metrics were defined and computed1. Table 4.3 lists all metrics derived from the raw 

measurements listed in Table 4.2. 

4.4 Experiment 2 - Hoop Game 

During Experiment 1, some subjects did not need to change their control strategy very 

much due to the fact that the task they were required to do was quite simple. The 

primary purpose of the second experiment was to provide a much more difficult task 

for the subjects to complete such that all subjects needed to make distinct changes 

to their control strategies to be successful. In this second experiment, subjects were 

instructed to place a copper hoop on a copper post located mid-way while soaring 

from one sensor to the next. 

The secondary purpose of the second experiment was to test the dual-adaptation 

hypothesis. Approximately two to three weeks elapsed between the time when each 

'For most of the trials, joint angle data was not immediately available from the kinematic video 
analysis system. As such, metrics based on joint angle estimates were not used for most trials. 



Table 4.3: Derived Quantities. For each derived metric, the required inputs are listed. 
In the "Units" column, n denotes the number of time-steps the subject is in contact 
with the sensor during the push-off or landing (which ever is being analyzed). 

subject conducted Experiment 1 and Experiment 2. If subjects exhibit similar control 

strategies at the beginning of experiment 2 as the end of experiment 1, it would 

suggest that the subjects retained their adaptation even after being subjected to a 

1-G environment for 2 - 3 weeks. 

Measurement 
Filtered Forces 

Filtered Moments 
Normal Force Direction Vector 

Normal Force 
Max. Normal Force 

Contact Time 
Filtered Angles 
Joint Torques 

Estimated Joint Angles 
Estimated Joint Rates 
Estimated Joint Acc. 
Body COM Position 
Body COM Velocity 
Body Rotation Angle 
Body Rotation Rate 
Departure Velocity 
Departure Speed 

Departure Rotation Rate 
Estimated Landing Error 

Body Major Inertia 
Body Inertia Change 
Linear Body Energy 

Rotational Body Energy 
Differential Joint Work 

Total Joint Work 
Internal Limb Energy 

4.4.1 Subjects 

To enable repeated measures statistical analysis techniques, 11 of the 12 subjects 

that performed Experiment 1 returned to participate in Experiment 2. In total, 6 

consenting males and 5 consenting females participated in the hoop experiment. All 

subjects signed the informed consent form found in Appendix H. 

Symbol 
Ffilt  
M f i l t  
Fdir 

Fnorm 
Fmaz 

tcontact 

e f i l t  
T 

eest 

eest 

eest 

Xbody 
Xbody 
ebody 

Wbody 

vdepart 
Vdepart 

wdepartUre 
AL 

Ibody 
AIbody 

Elin 
Erot 
dW 
W 

Elimb 

4.4.2 Methods 

The second experiment was carried out on the same air-bearing floor described in 

Section 4.3. To provide a direct comparison with Experiment 1, the first 15 trials 

and the last 15 trials of Experiment 2 were designed to be identical to the horizontal 

Units  
Newtons 

Newton-meters 
unitless 
Newtons 
Newtons 
seconds 
radians 

Newton-meters 
radians 

radians/second 
radians/second2 

meters 
meters/second 

radians 
radians/second 
meters/second 
meters/second 
radians/second 

meters 
kilograms/meter2 

percent 
Joules 
Joules 
Joules 
Joules 
Joules 

Dim. 
[ n  x 31 
[ n  x 31 
[n  x 31 
[n  x 11 
scalar 
scalar 
[ n  x 41 
[ n  x 41 
[ n  x 41 
[ n  x 41 
[ n  x 41 
[ n  X 31 
[ n  x 3) 
[ n  x 31 
[n x 31 
[3 x 11 
scalar 
(3 x 11 
scalar 

[ n  x 11 
scalar 
scalar 
scalar 
[ n  x 41 
[1 x 41 
[ n  X 11 

Req. Inpu ts  
F 
M 
F 
F 

Fnorm 
F, M 

6  

F, M ,  
F, M ,  
F, M ,  6  

F, M ;  6  

F, e e s t ,  e e s t ,  T 

F, O e S t ,  O e S t ,  T 

Wbody 

F, O e q t ,  B e s t ,  T 

Xbody 
Vdepart 
Wbody 

X b o d y ,  Xbody  

eest 

Ibod y  
Xbody 

wbody, Ibody 
7,  eest 
7,  eerrt 

e e s t ,  ees t  

Comments  
f c  = 30 H z  
f ,  = 30 H z  

Mean-square 

Push-off only 
f ,  = 5 H z  

From torque est. 
From torque est . 
From torque est. 
From torque est. 

Estimated 
Estimated 
Estimated 
Estimated 

Push-off only 
Push-off only 
Push-off only 
Push-off only 

At departure 
At departure 



trials in Experiment 1 ( 2 .  e., straight leg push-offs and hand landings). 

After the first 15 trials, the hoop game commenced. Subjects were instructed to 

place a copper hoop on a copper post with electrical tape at the far end. The goal 

was to place the hoop on the taped portion of the post without touching the copper 

hoop to the copper post. If, at any time, the hoop contacted the copper portion of 

the post, a buzzer sounded and an LED lit up to indicate to the test director and 

to the subject that their attempt had failed. As the experiment progressed, subjects 

were presented with a large (10 cm in diameter), medium (6 cm in diameter) and 

small (4 cm in diameter) hoop. See Figure 4-7 for a detailed description of the phase 

/ trial break down. Figure 46(a)  illustrates the hoop game system with the three 

different sizes of hoops present for relative size comparison. Figure 4-6(b) shows a 

subject attempting to place the hoop on the post during Experiment 2. Appendix E 

outlines the design and electrical schematic for the hoop game. 

(a) The largest hoop measured 10 cm in di- (b) A subject attempting to place one of the 
ameter, the medium-sized hoop was 6 cm in hoops on the post during Experiment 2. Sub- 
diameter and the smallest hoop was 4 cm in jects used their right hand to place the hoop 
diameter. The post (made of standard copper on the post and their left hand to land on the 
plumbing pipe) was 1.27 cm in diameter. landing sensor. 

Figure 4-6: The hoop game designed for Experiment 2. 

Subjects were instructed to repeat the game trials 15 times for each of the three 

hoop sizes. Table 4.4 describes the various phases of Experiment 2. 



Table 4.4: Motions carried out by each subject for experiment 2. 

I Motion I Push Limb I Land Limb I Body Orientation I Trials I 

Subject Instructions 

Push-off 
Game (Big Hoop) 
Game (Medium Hoop) 
Game (Small Hoop) 
Push-off 

Since the first 15 and the last 15 trials of Experiment 2 were identical to the horizon- 

tal trials in Experiment 1, the subject instructions for those phases were identical. 

During the phases where the hoop game was conducted, the following instructions 

were provided: 

These next push-offs and landings will be conducted in exactly the same 

way as the previous ones in that you will push off with your right foot 

after positioning yourself using your hands on  the floor and your feet on 

the sensor and / or the mounting frame. However, before you arrive at 

the landing sensor, during the gliding motion, you will be required to  place 

the given hoop over the post and place i t  on the black tape area without 

touching the hoop on the copper part of the post. When returning, you 

will be required to  lift the hoop off of the post and carry it back to  the 

starting point of your motion. If you are not successful and the copper 

hoop contacts the copper post, a buzzer will sound. If you are successful, 

you will hear nothing. Your goal is  be successful as often as possible. 

Foot 
Foot 
Foot 
Foot 
Foot 

4.4.3 Measurements 

The measurements for Experiment 2 are the same as in Experiment 1 with the addi- 

tion of the binary succeed / fail variable associated with the hoop game. If the hoop 

contacted the post while it was being placed on the hoop or if it bounced to contact 

the post after being placed, the trial was considered to be a failure. 

Hand 
Hand 
Hand 
Hand 
Hand 

Horizontal 
Horizontal 
Horizont a1 
Horizont a1 
Horizont a1 

15 
15 
15 
15 
15 



4.5 Experiment 3 - Underwater Push-Offs and Land- 

ings 

The near-frictionless, air-bearing floor used in Experiments 1 and 2 provides an easy 

and effective means of simulating weightlessness in two dimensions. One way to 

simulate weightlessness in three dimensions is to use an underwater environment, 

just as NASA often does when training astronauts. 

Experiment 3 reproduces the first half of Experiment 1, but underwater instead 

of on an air-bearing floor. 

4.5.1 Subjects 

Four of the twelve subjects (1 female, 3 male) that completed Experiment 1 partici- 

pated in Experiment 3. All subjects consented and thus signed the informed consent 

form located in Appendix H. In addition to signing the consent form, all subjects were 

required to answer a brief questionnaire to ensure they were able to safely participate 

in the underwater portion of the study. The underwater subject questionnaire can 

also be found in Appendix H. 

4.5.2 Methods 

All subjects used a SCUBA regulator at the end of a 7.6 meter long hose, connected 

to a SCUBA tank situated on the pool deck. This type of SCUBA equipment is 

frequently referred to as a "hookah". Subjects wore a soft weight belt containing bags 

of lead shot to provide, neutral buoyancy. Each subject required different amounts 

of mass in order to achieve neutral buoyancy, but on average, subjects tended to use 

between 1 and 2 kg of extra mass. In addition to the hookah and the weight belt, 

subjects wore a SCUBA mask to aid in their breathing and to provide as much visual 

feedback as possible. No other equipment other than a bathing suit was worn by the 

subjects ( e.g., no buoyancy compensators, fins, snorkels or wet-suits). 

Subjects performed two sets of 15 push-offs and landings in the same manner as 



the first two phases of Experiment 1. Figure 4 7  illustrates the phase / trial break- 

down for all three experiments. The sensor spacing used in Experiment 3 was identical 

to that used in Experiment 1 on account of the same mounting frame being used in 

both experiments. 

Subjects were instructed to take as much time as they required to set themselves 

up in front of the sensors, using their hands and legs as they see fit. The push-offs 

were conducted from sensor A, to C and back to A again, as denoted in Figure 4-4. 

Subjects used their right leg to push-off from sensor A and the left hand to land 

to land on sensor C. When returning, subjects pushed off with their left hand from 

sensor C and landed on sensor A with their right leg. 

Exp. 1 

Exp. 2 

Exp. 3 

Figure 4-7: Figure depicting the phase designations and trials for each of the three 
experiments. Each experiment was broken down into phases. A single phase consists 
of three sub-phases and each sub-phase consists of five trials. Experiment 1 contains 
4 phases, Experiment 2 contains 5 phases and Experiment 3 contains 2 phases. 

Subject Instructions 

Phases 
r 

Trials 

The instructions for Experiment 3 were identical to Experiment 1 in all respects, 

except that instructions needed to be given to the underwater subjects regarding the 

temptation for them to "swim" to the target sensor. The additional instruction was 

During the motions, you will be tempted to  use your hands and feet in 

97 
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swimming motions. Please resist these temptations. Unless you are reach- 

ing for a sensor, please do not move your arms or legs during the portion 

of the motion while you are not in contact with any sensor. 

4.5.3 Measurements 

The same measurements and metrics were recorded for Experiment 3 as were recorded 

for Experiment 1. Special underwater housings for the video cameras (pictured in 

Figure 4-8) were used to enable high-resolution, underwater video. 

Figure 4-8: Underwater video camera housing by Equinox Underwater Products. 

4.6 Results 

One of the purposes of this research program was to identify the signature metrics 

that clearly show adaptation trends. While Table 4.3 lists all of the metrics considered 

as possible candidates, only a subset of them showed any significant change over the 

course of the experiment. Of those that showed significant change, most of the relevant 

behavior could be reduced down to and captured in two basic metrics: the maximum 

push-off force and the amount of time the subject is in contact with the sensor during 

the push-off. Most other metrics were strong functions of these two primitive metrics. 

The following subsections present the basic observations and statistical analyses of 



the three experiments described above. Please see Table 4.5 for a complete summary 

of the statistical results of all three experiments. 

During the two air-bearing floor experiments (Experiments 1 and 2), it became 

evident that two of the female subjects were not following instructions appropriately. 

After several repeated instructions, subjects continued to use their hands on the floor 

during their motions, thus tainting their results. As a consequence of this, data from 

both subjects that did not follow the instructions were omitted from the analysis that 

follows. One of the two subjects that did not follow instructions during Experiment 

1 was the same subject that did not participate in Experiment 2. Thus, the following 

analysis for Experiments 1 and 2 considers only the complete set of 10 subjects who 

completed both experiments and followed the instructions correctly. 

In the analysis that follows, both male and female subjects have been grouped 

together. This decision was justified by choosing 11 metrics from Table 4.3 and 

using a general linear model (GLM) to test for a gender effect. Only one of the 11 

metrics tested showed a significant gender effect (i.e., the computed landing error 

metric showed a significant gender effect with p = 0.031 and F = 7.235)2. Table 

4.5 summarizes the results from all 11 metrics used to test for a gender effect. With 

only 10 subjects being tested and 11 different metrics, it is not unreasonable that one 

metric could show a significant gender effect by chance (since significance was defined 

as p < 0.05). Thus, the one significant gender result was considered an anomaly and 

both males and females were grouped together for the remaining analysis. 

The following sections present data averaged across all subjects to illustrate adap- 

tation. Please see Appendix A for individual subject data. 

4.6.1 Maximum Push-Off Force 

A common observation by astronauts and others who have experienced true weight- 

lessness during parabolic flight or microgravity is that most control problems encoun- 

tered when exposed to the weightless environment are due to excessively high forces 

during push-offs and hence, landings. As such, the maximum force vector magnitude 

2A significant effect was claimed when p < 0.05. 



of each push-off was recorded and analyzed to find evidence of adaptation. 

Each experiment was split into phases, each phase consisted of three sub-phases, 

and each sub-phase consisted of five repetitions of the particular push-off or landing 

(thus, each phase consisted of 15 trials; see Figure 4-7). Considering all phases of the 

first two experiments (four phases in Experiment 1 and five phases in Experiment 2), 

a significant difference between phases was found among subjects using a repeated 

measures general linear model (p = 0.017, F = 5.892, n = 1 0 ) ~ .  Figure 4-9 illustrates 

the average maximum force vector magnitude for each phase across all subjects. 

Maximum Push-Off Force 
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Figure 4-9: Proof of adaptation (p = 0.023, F = 6.822, n = lo),  and dual-adaptation 
(p = 0.996, F = 0.004, n = 10) when comparing the maximum force application 
during push-offs across phases in Experiments 1 and 2. 

Using the general linear model, contrast hypothesis tests were performed to test for 

significant adaptation effects. Comparing the first phase of Experiment 1 (i.e., phase 

1A) with the last phase of Experiment 1 (i.e., phase ID), a significant reduction in the 

average maximum push-off force (p = 0.023, F = 6.822, n = 10) was found, indicating 

3All statistical results found using SYSTAT. 



the presence of adaptation to this particular simulated gravitational environment ( 2 .  e., 

the frictionless air-bearing floor, providing free movement in two dimensions). Thus, 

referring back to the hypotheses in Chapter 1, this significant adaptation result in 

combination with the sensor development in Chapter 2 and the data analysis methods 

presented in Chapter 3 verifies that Hypothesis #1 (that adaptation can be observed 

by defining metrics that clearly show the adaptation) is true. 

Figure 4-9 also illustrates the average maximum push-off force for all subjects in 

the first phase of Experiment 2. From the time that Experiment 1 concluded and 

Experiment 2 commenced, approximately three weeks had elapsed. During that time, 

subjects were in constant exposure to the 1-G gravitational pull of Earth. If the sub- 

jects did not have the ability to retain the adaptation gained during Experiment 1, one 

would expect to see a significant difference between the maximum force application 

at the end of Experiment 1 and the beginning of Experiment 2. However, a contrast 

hypothesis test comparing phase four (the final phase) of Experiment 1 to phase 1 

of Experiment 2 showed no significant different in maximum force application (p = 

0.996, F = 0.004, n = 10). This result supports the theory that humans can at least 

"dual-adapt" to two different gravity environments and suggests that Hypothesis #2 

may be true. One can only speculate about "multi-adaptation" (2 .  e., the ability to 

adapt to more than two different environments and retain all adaptations) at this 

point since this experiment only tested 1-G versus microgravity. 

As described in Section 4.3.2, subjects performed a short set of five course traverses 

between phases two and three of Experiment 1. The purpose of these course traverses 

was to give the subjects a break from the straight, back and forth push-off and 

landings. Figure 4-10 demonstrates the possible effect this short break had on the 

subjects' adaptation. 

As evidenced in Figure 4-10, a significant reduction (p = 0.008, F = 10.494, n = 

10) in the maximum force application occurred across the course traverse break. For 

this analysis, sub-phases were contrasted against each other, again using a repeated 

measures general linear model. Furthermore, Figure 4-10 shows no significant change 

(p = 0.184, F = 2.178, n = 10) when comparing the final two sub-phases prior to the 



Maximum Push-off Force Across a Directed Break 

Sub-phase (groups of 5 motions) 

Figure 410: Maximum force plot illustrating the effect of a short break on the ob- 
served adaptation. No significant difference (p = 0.184, F = 2.178, n = 10) was 
detected between the two sub-phases immediately prior to the course traverse break. 
However, a significant reduction in the maximum force application between the two 
sub-phases that span the break (p = 0.008, F = 10.494, n = 10) was found. 

break. Thus, it is reasonable to conclude that the break accelerated the adaptation, 

causing a small step change (reduction) in the maximum force application during 

push-off. A similar motor learning result (although over different time-scales) was 

reported in [Shadmehr and Holcomb, 19971. 

Due to waterproofing difficulties, data from only two subjects (1 male and 1 fe- 

male) turned out to be useful from the underwater studies. However, the dramatic 

trends in maximum force application illustrated by both subjects provided a signifi- 

cant adaptation result in Figure 41 1. 

Figure 4- 1 1 compares the maximum push-off force application from Experiment 

1 (all four phases averaged) with the average of both phases from the underwater 

experiment (Experiment 3). A significant increase (p = 0.015, F = 1913.366, n = 2) 

using a repeated measures general linear model was detected. 



Maximum Push-off Force Air-Bearing Floor vs Underwater 
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Figure 4-11: Maximum force application plot illustrating the difference between the 
average of phases 1-4 of Experiment 1 and the average of both underwater phases (p 
= 0.015, F = 1913.366, n = 2). 

4.6.2 Push-off Contact Time 

Another metric that indicated a change in the overall control strategy as the subjects 

adapted was the amount of time the subjects remained in contact with the push-off 

sensor while pushing off. Figure 4-12 illustrates the change in sensor contact time 

across all four phases of Experiment 1. A significant increase in contact time (p = 

0.016, F = 8.001, n = 10) was detected between phases one and three. As in the 

maximum force analysis, a repeated measures general linear model was used with 

contrast hypothesis testing. 

Figure 4-13 shows the significant reduction in contact time (p = 0.044, F = 

21 1.809, n = 2) resulting from the underwater environment. This result, in com- 

bination with the increase in maximum force application in Figure 4-11 suggests that 

a different control strategy is being used underwater versus on the air-bearing floor 

due to the underwater hydrodynamics. 



Push-Off Contact Time 
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Figure 4-12: Push-off contact time plot illustrating a significant difference between 
phases 1 and 3 of Experiment 1 (p = 0.016, F = 8.001, n = 10). 

4.6.3 Force Profiles 

While the maximum force application and contact time metrics show significant adap- 

tation results across the three experiments conducted in this research, they only 

provide a small window into the locomotor control strategies employed by the sub- 

jects. By analyzing the force profiles of representative trials from each phase, a clear, 

qualitative change in the force shape is evident as the subjects adapt. Figure 4-14 

illustrates representative axial force profiles (i.e., force in the direction pointing to 

the target sensor versus time for a single subject / trial) for every phase of all three 

experiments. 

The force traces depicted in Figure 4-14 are the forces in the axial direction (i. e., 

in the direction of the target sensor) during the push-off. At the beginning of Exper- 

iment 1, the motions are characterized by smooth, bell-shaped force profiles. As the 

subject adapts to the environment in Experiment 1, a pronounced second maximum 

develops. At the beginning of Experiment 2, the subjects indicate they have retained 
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Figure 4-13: Contact time plot showing a significant difference between the average 
of phases 1-4 and the average of both underwater phases (p = 0.044, F = 211.809, n 
= 2). 

some of their adapted "bumpy" force profile, but not all of it. Once the hoops are 

introduced in Experiment 2, the task gets much more difficult and the prominent 

second maximum appears again. However, when the subject is no longer required 

to place the hoop (in the last phase of Experiment 2), the force profile returns to a 

smoother (but skewed) bell-shape. The observed changes in force profiles point to a 

distinct change in control strategy as the subjects adapt to their new environment. 

It is interesting to point out that the force profiles from the underwater exper- 

iments show no sign of any second maximum and look very similar to the smooth, 

single-peaked profiles observed early in Experiment 1. This dramatic change in force 

profiles, in addition to the significant increase in maximum push-off force (see Figure 

4-11) and significant decrease in sensor contact time (see Figure 4-13) are most likely 

due to the added viscosity and drag associated with underwater motions. While such 

dynamic differences are obvious, the important point to be made about the underwa- 



Table 4.5: Summary of all statistical results. The gender tests (to test for any gender 
effects) are performed across 10 subjects from all phases of Experiments 1 and 2 using 
a general linear model (GLM). The contrast tests are also using a GLM, contrasting 
phase averages and sub-phase averages (where noted below). The last three entries 
report contrast results comparing the average of multiple phases versus the average of 
other sets of multiple phases. This permits comparison of all 4 phases of Experiment 
1 versus both phases of Experiment 3, for example. 

Test P F n  
Gender Tests 
Max Force 0.412 0.762 10 
Contact time 0.970 0.357 10 
Mean Force 0.510 0.482 10 
Linear Pushoff Energy 0.684 0.180 10 
Sig. Landing error 0.031 7.235 10 
Mean Force Direction Angle (FDA) 0.997 < 0.001 10 
Max FDA 0.228 1.745 10 
Integral FDA 0.805 0.065 10 
Variance FDA 0.280 1.372 10 
Body Angle Change (at departure) 0.433 0.692 10 
Body Departure Velocity 0.325 1.123 10 
Average contrast tests 
Sig. Max Force 1A - 1D 0.023 6.822 10 
Max Force 1D - 2A 0.996 0.004 10 
Max Force 1B2 - 1B3 (sub-phases) 0.184 2.178 10 
Sig. Max Force 1B3 - 1C1 (sub-phases) 0.008 10.494 10 
Sig. Max Force lABCD - 3AB (phase averages) 0.015 1913.366 2 
Sig. Contact Time 1AB - 1CD (phase averages) 0.016 8.001 2 
Sig. Contact Time lABCD - 3AB (phase averages) 0.044 211.809 2 

ter data is that subjects appear to be developing control strategies underwater that 

are not consistent with those that are required for a true microgravity environment. 



Experiment #I - Push-offs and landings 

Experiment #2 - Hoop Game 

Experiment #3 - Underwater 

(a) Subject A. 

Experiment #I - Push-offs and Landings 
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Experiment #2 - Hoop Game 
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Experiment #3 - Underwater 

(b) Subject B. 

Figure 414: Normalized force shape progression for two subjects throughout the 
experiment (single trials shown). All profiles have been normalized to have the same 
height (maximum force) and width (contact time) to illustrate changes in the overall 
force profile. 



4.6.4 Astronaut Data 

While the above results clearly indicate that an adaptation of the subjects' control 

strategy took place, it is not immediately evident that the control strategies the 

subjects adapted to reflected those used by astronauts in a microgravity environment. 

Fortunately, an astronaut who has flown on five separate Space Shuttle missions 

was available to perform a subset of the air-bearing floor push-off experiments pre- 

sented in this chapter. Since it has been well-documented that veteran astronauts 

retain their locomotor control adaptation from flight to flight, it was reasonable to 

assume that this astronauts' control strategies exhibited while moving on the air- 

bearing floor would be representative of the strategies he developed during his time 

spend in microgravity. 

Figure 4-15 is a representative push-off force profile (in the axial direction) taken 

from one of the push-offs the astronaut subject performed. The astronaut subject 

was given the same instructions as all regular subjects were given for Experiment 1. 

The data in Figure 4-15 clearly shows the same aspects that other subjects ex- 

hibited after they had adapted to the air-bearing floor experiment, but at a much 

more refined level. The contact time used by the astronaut subject was 1.6 seconds, 

compared to an average of approximately 1.3 seconds for subjects that had become 

experienced at the air-bearing floor experiment (i.e., in phase ID). The astronaut 

subject also had a maximum push-off force that was less than 70 Newtons. While 

the other subjects' maximum push-off force dramatically reduced as they adapted 

to the air-bearing floor experiments, the average push-off force from phase ID was 

approximately 130 Newtons (almost twice that of the astronaut subject). 

Perhaps the most telling aspect of the astronaut subject's data was the prominent 

multi-peaked force profile. Figure 4-14 illustrates the other experimental subjects de- 

veloping a second and sometimes a third peak to their force profiles, but the astronaut 

data in Figure 4-15 shows several well-defined peaks. 

While it is difficult to draw strong conclusions from only one astronaut subject 

with limited data, it is reasonable to assume that given much more time to adapt, the 
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Figure 4-15: A representative push-off force profile taken from an experienced astro- 
naut. 

control strategies exhibited by the other experimental subjects would likely approach 

the control strategy exhibited by the astronaut subject. The data shown in Figure 

4-15 can be viewed as a highly advanced version of the data collected from the other 

experimental subjects. 

4.6.5 Relative Force Magnitudes 

It is instructive to consider the orders of magnitude of the average interaction forces 

from the experiments presented in this dissertation in comparison with data from 

different gravitational environments. Figure 4-16 shows average interaction forces 

across a spectrum of gravitational and dynamic environments. The air-bearing floor 

and underwater data was collected from the experiments presented herein. The space 



data is from [Amir and Newman, 20001. The walking and running data is from l-G 

and gravity extrapolated data from [McMahon, 19841. 

Figure 4-16: Average interaction force magnitudes from different gravitational envi- 
ronments for comparison [McMahon, 1984, Amir and Newman, 20001. 

Notice how small the space and air-bearing floor data is compared with l-G walk- 

ing and running. Furthermore, while the underwater force data is significantly greater 

than the space and air-bearing floor data, it is still much less than l-G walking and 

running. It is interesting to note that while the underwater environment seems to be 

inappropriate for developing microgravity control strategies, the relative force mag- 

nitudes seem to indicate that it may still be appropriate for simulating lunar and 

martian motions. Of course, the water viscosity and drag would still be present, 

but it is possible that the hydrodynamics would impact the walking-type motions 

expected for lunar and martian locomotion less than the push-off motions required 

for microgravity locomotion[Newman, 19921. 



4.7 Experiment Summary 

This chapter has presented the experimental protocols and primary observations from 

the dynamic human adaptation experiments conducted as part of this research pro- 

gram. The experimental data provides evidence of not only adaptation, but dual 

adapt ation. Together with the simulation results of Chapter 3, these experiment a1 

results prove Hypothesis # 1 (that adaptation can be detected using kinetic and kine- 

matic measurements during human motion experiments in different gravity environ- 

ments). The results from Figure 4-9 provide evidence of dual-adaptation, suggesting 

that Hypothesis #2 (on dual- or multi-adaptation) could be true. In order to fully 

test Hypothesis #2, a more complete set of experiments would need to be conducted 

that exposed subjects to partial gravity environments (in addition to 1-G and micro- 

gravity environments) and varied the amount of time subjects were required to retain 

their control strategies. 

The only hypothesis remaining to be tested is Hypothesis #3 - that a single adap- 

tation mechanism could be found responsible for locomotor adaptation to a spectrum 

of gravitational environments. The following chapter addresses this hypothesis by 

exploring the capabilities of different physiologically plausible control strategies to 

predict the data seen in the experiments presented in this chapter. 





Chapter 5 

Adapt at ion Modelling and 

Discussions 

The previous chapter illustrated the aspects of kinetic data ( 2 .  e., forces and moments) 

that show locomotor adaptation of human subjects to altered gravitational environ- 

ments. As such, kinetic data was found to adequately characterize the motions. In 

this chapter, the kinetic data characteristics observed in the previous chapter are 

studied further. 

The experiments in Chapter 4 suggests that as subjects adapt to motions in a 

simulated microgravity environment, their peak forces reduce, the push-off contact 

times increase and the force profiles become multi-peaked. One possible reason for 

such control modifications could be to provide more time for the subjects to correct 

small errors during the push-off. In the sections that follow, different candidate 

control strategies are presented and evaluated in terms of their ability to reproduce 

the qualitative observations from the human experiments as well as the physiological 

plausibility. 

Specifically, a model is sought that can reproduce both the smooth, skewed bell- 

shaped force profiles seen early in the subjects' adaptation as well as the multi-peaked 

force-profiles exhibited by well-adapted subjects. Ideally, the model should have a 

single parameter that can be adjusted to cause the observed adaptation. Figure 5-1 

explicitly compares three force profiles from one subject. The first profile is from 



the first few trials of Experiment 1, the second profile is from the the middle of 

Experiment 1 and the third profile is from the last few trials of Experiment 1. For 

a more detailed progression of force shapes for one subject across the entire study, 

please refer to Figure 4-14 in Chapter 4. 

Figure 5-1: Representative force profiles for one subject plotted together to show 
explicit differences in maximum force, contact time and overall shape. The solid line 
is a representative profile from trials 1 - 5 of phase A of Experiment 1, the dashed 
line is a representative profile from the last 5 trials of phase B and the first 5 trials 
of phase C and the dash-dotted line is from the last 5 trials of phase D Experiment 
1 (2. e., the end of Experiment 1). 

5.1 Push-off Control using Springs 

A common way to model the human body during running is to represent the lower 

limbs as springs that repeatedly compress and then release their energy with every 

stride [Cavagna and Margaria, 1966, McMahon, 19841. Naturally, an extension of 

this principle should lead to jumping (in l-G) or push-offs (in microgravity). By 



pre-loading the "spring" made by the lower limbs and releasing it, a jump or push- 

off should result. Figure 5-2 illustrates the mechanics of the push-off model being 

considered for this study. 

Figure 5-2: A stick-figure model representing the joints of the leg using a rigid-body 
model. The dynamics for this system are described in detail in Chapter 3. 

Muscle pairs acting on joints are often modelled as settable torsional springs and 

dampers [Flash, 1987, Bizzi et al., 19941. When the muscles connected to a particular 

joint are set to a particular (const ant) activation level, the joint will eventually come 

to to rest at some position that is dependent upon the force field that the joint happens 

to be in at the time (known as the equilibrium position, since at that point, all joint 

torques are in equilibrium). If the joint is exposed to gravity, it will deflect. If there's 

friction of some sort, this will also alter the rest position of the joint accordingly. 

In a dynamic situation, where the activation levels change over time, the joint may 

never reach its equilibrium position. Instead, the joint "chases" the command as the 

torsional springs and dampers respond to the difference between their current state, 

the command and any external forces (2.e. gravity, friction, etc.). 

A simple proportional-derivative (PD) controller can adequately represent the 



joint control described above. Figure 5-3 illustrates the imaginary torsional springs 

and dampers added to each joint and Figure 5-4 depicts the control block diagram. 

Figure 5-3: The stick figure model from Figure 5-2 with torsional springs added to 
the joints to illustrate the dynamic model assumed to describe muscle / joint motion. 

Mathematically, this control law can be writ ten as: 

where r is the joint torque for a given joint, 8 is the joint angle, e is the joint rate, 

Oref is the commanded reference trajectory for the given joint and Kp and Kd are 

the stiffness and damping of the joint. It is important to note that the control law 

chosen for this study controls to zero velocity in the damping term. In other words, 

this control law "damps to ground". While others [McIntyre and Bizzi, 19931 have 

proposed equilibrium control models that damp to the actual velocity trajectory as 

opposed to simply zero, the purpose of this study was to keep the models as simple 

as possible and still reproduce the observed behaviour. For the simulations presented 
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Figure 5-4: Control block diagram for the torsional spring / damper control model. 

in this chapter, 

and 

Before the above control can be implemented, a decision must be made about what 

the reference joint trajectories should look like. The simplest form of the reference 

trajectories would be a step change in all joint trajectories from the initial joint 

angles to angles that represent the fully out-stretched position (based on the joint 

angle notation convention in Figure 3-2, this would correspond to 90 degrees for the 

first joint and 0 degrees for all other joints). Lyapunov stability analysis reveals that 

this kind of control law will always be stable [Asada and Slotine, 19861, however, can 



it reproduce the typical force profiles that were observed in Chapter 4? Figure 5-5 

illustrates the push-off results obtained using this type of reference trajectory along 

with the model outlined in Figure 5-4 and Equation 5.1. 

Body Visualization 
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(a) Plot illustrating the body configuration (b) Plot of the axial push-off force as a function 
over time. of time. 

Figure 5-5: Simulation results using a step change in the joint reference trajectories. 
Notice how while the body visualization seems correct, the forces are not representa- 
tive of the skewed bell-shaped profile seen during the experiments. 

Notice in Figure 5-5(a) that while the general body shape of the simulated sub- 

ject looks approximately correct, the force trace in Figure 5-5(b) does not contain 

the skewed bell-shaped profile seen in Figure 5-1. The kinematics in Figure 5-5(a), 

however, do look correct since most of the observed motion came from the subjects' 

ankles and toes. The fact that the kinematics look correct while the kinetics do not 

underscores the importance kinetic data analysis. Since the torques st art immediately 

following the step change, Figure 5-5(b) does not reproduce the ramp up in forces 

seen in the data from Chapter 4. 

A natural change to the reference trajectory would be to make it gradually move 

from the starting position to the end position with the start and end points fixed and 

the initial slope constrained to zero. The time taken for the reference joint trajectories 

to reach their final destinations is a parameter that can be adjusted. Realizing such a 

reference trajectory requires that each joint follow a quadratic trajectory taking the 

form: 

eTe (t) = e0 + a t2  



where 

In the above, O0 and Of are the initial and final joint angles respectively and tc is 

the time the command takes to move from the initial joint positions to the final 

joint positions. Figure 5-6 illustrates the results using a gradually sliding reference 

trajectory. 
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(a) Plot illustrating the body configuration (b) Plot of the axial push-off force as a function 
over time. of time. 

Figure 5-6: Simulation results using a gradual change in the reference trajectory. 
While not smooth, the general skewed bell-shaped force profile is similar to the early, 
pre-adapted experimental results. 

For the above simulation, the reference trajectory for each joint was assumed 

to arrive at their final destinations at the same time The results in Figure 5-6 are 

certainly an improvement over Figure 5-5 in that the forces build up from zero. 

Furthermore, comparing the overall shape of Figure 5-6 with early, pre-adaptation 

trials in Figures 4-14 and 5-1, a clear similarity is noted. However, since all joints 

are activating at the same time and roughly the same rate, only one force peak can 

be predicted by this model. Furthermore, aside from adjusting the joint stiffnesses, 

it is not clear what part of the model could plausibly adapt to different gravitational 

environments. 

A simple way to create multiple force peaks is to offset the muscle activations in 

time. This can be realized by delaying when the reference trajectory for each joint 



begins to move to its target. By delaying only the toe joint, a clear second peak due 

to a "toe flick" can be seen just as the modelled subject leaves the sensor (see Figure 

5- 7). 
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(a) Plot illustrating the body configuration (b) Plot of the axial push-off force as a function 
over time. of time. 

Figure 5-7: Simulation results using a gradual change in the reference trajectory with 
delayed muscle activation offsets. The shape of the force profile resembles the shape 
of adapted subjects. However, a method for choosing the offsets is not intuitive and 
is entirely feed forward in nature. 



While the results in Figure 5-7 are promising and clearly do a reasonable job pre- 

dicting the shape of the observed data from later trials in the adaptation process, it 

is not clear how the subjects would select these time delays. Furthermore, a com- 

pletely different set of activation times and stiffnesses are required in order to predict 

each motion. Thus, subjects would need a completely different set of activation times 

and muscle stiffnesses in order to execute a fast, high-force push-off versus a slow, 

low-force push-off. 

Finally, the above control strategy is entirely feedforward in nature. By definition, 

the reference trajectory is feedforward, however, the selection of activation times also 

need to be pre-determined prior to the motion. Anecdotal comments from subjects 

during the experiments revealed that subjects found themselves able to correct for 

small errors during the push-off if they slowed their motions sufficiently. Certainly, 

the fact that subjects perceived errors being compensated for during the motions 

suggests that some sort of feedback was present during the later trials. In general, 

the proposed feedforward control scheme alone is not robust enough to be considered 

plausible for human motion. 

The next section explores some fundamental properties of the human neuro- 

muscular system, namely muscle activation dynamics, force feedback through the 

Golgi tendon organs (GTO), physical signal propagation delays in the human body 

and the ability for the cerebellum to close a proprioceptive feedback tracking loop. 

It will be shown that intrinsic properties of these neuro-muscular characteristics can 

help predict not only the observed force-shape trends, but also the adaptation of those 

trends. 

5.2 Muscle Dynamics, Force Feedback and Trans- 

portation Delays 

Using physiologically-relevant elements provides strength to models because they tend 

to remove any arbitrary components added merely to improve model performance. 



It is sometimes the case that adding more complexity to a model ends up providing 

simpler, more meaningful results [Gribble et al., 19981. 

The following sections provide some basic background for the physical elements 

incorporated into the proposed control model. Specifically, it will be shown how 

cerebellar and spinal feedback, along with representative signal transmission delays 

and dynamics can be used to improve the model fidelity and reproduce the observed 

adaptation behaviour described in Chapter 4. 

5.2.1 Long-loop, Cerebellar Tracking Control 

One of the observations noted in Chapter 4 was a significant increase in sensor con- 

tact time as the subjects adapted to the floor experiment. One possible reason for 

remaining in contact with the sensor longer could be to give the subjects more time 

to correct errors in the positioning of the subjects' center of mass, since a straight 

push-off requires the push-off force to go through the center of mass. 

Using visual and / or proprioceptive feedback, it is reasonable that the subjects 

could close a feedback loop around the sensed center of mass angle error. This com- 

putation would need to be performed in the cerebellum, as pictured in Figure 5-8. 

The round-trip signal propagation delay between the cerebellum and the lower 

leg is typically on the order of 100 ms. As such, the cerebellar COM tracking loop 

used in this model contained a 100 ms transport delay. However, it should be pointed 

out that the cerebellum is often assumed to be able to handle these delays quite 

well, effectively eliminating the effect of the delay. Miall [I9931 and Massaquoi [I9961 

have shown that the cerebellum can be modelled as a Smith predictor to account 

for the long time delays [Miall et al., 1993, Massaquoi and Slotine, 19961. A Smith 

predictor is a control tool often used in controlling telerobotics that incorporates a 

model of the system dynamics at the remote controlling end of the time delay (in this 

case, the cerebellum). The system dynamics are then used to predict the result of 

the commanded control after the known time delay. Knowing the dynamics and the 

time delay allows the Smith predictor to virtually eliminate (or at least significantly 

reduce) the effect of the delay [Smith, 19591. For simplicity, the model assumed for 
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Figure 5-8: Stick-figure model illustrating the cerebellar long-loop COM tracking 
feedback. 

this research did not include any time delay compensations such as a Smith predictor, 

so the full 100 ms delay was included in the cerebellar feedback loop. 

The long-loop cerebellar tracking controller took the following form: 

where u,, are the correction commands assumed to be commanded by the cere- 

bellum, AObod, is the angular deviation of the body's center of mass from a straight 

forward trajectory and Kc is the cerebellar control gain matrix that maps the an- 

gular deviation to appropriate joints to correct the perceived error. The reference 



trajectory is then modified by the cerebellar tracking loop as follows: 

where u is reference trajectory modified by the cerebellar feedback. 

The gain matrix used in this model was: 

Note that the gain matrix in Equation 5.8 assumed that all COM control was executed 

by the ankle and hip (joints 2 and 4 when counting up from the toe joint). The vector 

representing the position of the body's center of mass was computed as: 

where mi is the mass of the ith link and the position of the center of mass of the ith 

link, ri is defined as: 

where li is the length of the ith link, 1ci is the distance from the ith joint to the center 

of mass of the ith link and Oi is the ith joint angle. 

The previous section described a feedback control loop assumed to be executed 

through the cerebellum. However, much of simple human motion control (2.e. re- 

flexes) is known to be executed via spinal feedback loops. The following section 

describes how a spinal feedback loop (using Golgi tendon organs) could provide ad- 

just able force control. 



5.2.2 Golgi Tendon Organ Feedback 

Given that one of the key observations from Chapter 4 was that subjects reduced 

the maximum force exerted when performing push-offs, a natural mechanism causing 

force reduction is desired. The Golgi tendon organs (GTO), located at the muscle- 

bone interface of each muscle, is responsible for sensing muscle stress. The stress 

signal is relayed to the spinal cord and used to limit the amount of muscle force 

commanded to each muscle in order to prevent injury. The force limiting effect is 

accomplished by the GTO inhibiting the active muscle and activating its opposing 

muscle to effectively limit the torque applied to each joint [Houk and Rymer, 1981, 

Nichols and Houk, 19761. Figure 5-9 illustrates this GTO feedback loop on the stick 

figure originally presented in Figure 5-2. 

While the GTO model provides a natural means of moderating the joint torque at 

each joint, it also provides an inherent time delay due to the spinal signal transmission 

delay (approximately 35 ms in each direction). Setting a low GTO threshold for a 

joint would inhibit a particular joint until the joint torque falls below the set threshold. 

Then, after 35 ms, the GTO reactivates the joint, causing a small spike in activation. 

Specifically, the effect of the GTO force regulation takes the following form: 

210 = -b [-rthresh f ~ G T O  (t - At)]+ + 7-4 
ujhnt = ua(t - At) 

where ujhnt is the reference trajectory modified by both the cerebellar and spinal 

(GTO) feedback loops, u is the corrected reference trajectory from the cerebellar 

feedback (Equation 5.7), At is the one-way spinal transmission delay (35 ms) , TthTesh 

is the GTO torque threshold, TGTO is the joint torque sensed by the GTO, b is the 

GTO gain and 

[x] + = max (0, x) (5.13) 

Both the cerebellar and spinal feedback loops described above provide key control 

structure to the model being proposed, especially when combined with the realistic 
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Figure 5-9: Stick figure model illustrating the Golgi tendon organ spinal feedback 
loop. 

time delays described above. However, in addition to loop delays, the dynamics asso- 

ciated with the chemical and mechanical activation of muscles must be incorporated 

in order to provide a good representation of muscle / joint motion generation resulting 

from neural commands. 

5.2.3 Excitation / Contraction Coupling 

An important effect of human motion stems from the dynamics of muscle excitation 

and contraction. Both the chemical excitation and the mechanical contraction of 

the muscles to generate joint torques in reality does not happen instantaneously. 



Instead, [Winters and Stark, 19871 showed that both these effects can be modelled 

using simple, linear, low-pass filters. Figure 5- 10 illustrates the linear excitation / 
contraction coupling proposed by [Winters and Stark, 19871 and used in the model 

presented herein. 

Figure 5-10: Control block diagram illustrating the linear excitation / contraction 
dynamics assumed for the push-off model (as described in [Winters and Stark, 19871). 

5.3 Adaptation Model 

After incorporating the above-mentioned components, the new control block diagram 

can be found in Figure 5-11. 

By scaling the GTO gains for all joints (keeping the ratios of GTO gains the same 

among joints so that only one parameter is tuned), the model is shown in Figure 5-12. 

Note the striking similarities not only in shape, but also in absolute force maximum 

and contact time with the sensor. By choosing an appropriate GTO gain scale factor 

(TG), both the early, non-adapted behaviour can be recovered in addition to the force 

profiles that characterize well-adapted subjects. 

The base GTO gain matrix was chosen to be 



Figure 5-11: Control block diagram incorporating GTO feedback, long-loop tracking 
control and the excitation / contraction coupling. 

and the scaled GTO gain matrix was 

where TG is the scale factor that, when varied, reproduces the observed adaptation 

as depicted in Figure 5-12. 

At the beginning of this chapter, it was postulated that a benefit to reducing the 

push-off force was that it leads to longer sensor contact times. Having foot contact 

with the sensor longer allows more time for the cerebellar center of mass tracking loop 

(see Figure 5-8) to correct these errors. This effect was demonstrated in simulation. 

Figure 5-13 illustrates how as the GTO gain increases (by increasing TG) , the contact 

time increases and the targeting error decreases. The targeting error was computed 

assuming that the target was 4 meters away from the body at the time of the push-off. 

The angular error, from Equation 5.6 was used to compute the targeting error 
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(a) Representative force profiles for one subject (b) Plot of model-predicted force profiles by 
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Figure 5-12: Plots comparing the actual experimental data (on the left) with the 
model predictions (on the right). The different adaptation levels are selected through 
modification of only one variable: The GTO force feedback gain. 

in centimeters as: 

X,,, = 400 tan(AObod,) 

5.4 Discussion 

5.4.1 Hybrid Feedforward / Feedback Model Performance 

The proposed model in Section 5.3 requires only one parameter to be tuned to pre- 

dict both unadapted and adapted behaviours. This single parameter (i.e., the scale 

factor multiplying all joint GTO gains) also holds physical relevance to the differ- 

ences between gravitational environments. One of the key differences between 1-G 

and microgravity locomotion is the presence or absence of gravitational torques being 

constantly required to hold one's body up in the gravitational field. This constant 

force background requires high enough joint torques (and thus low force feedback 

gains) be permitted to prevent the body from collapsing when standing up. However, 

these same joint torques would not be appropriate for the low-force, delicate motions 

required in microgravity. 

The model proposed above is a hybrid feedforward / feedback model, providing 



Contact time and Predicted Error vs. GTO Gain 
I I I I I I ; I 3  

1 ' I I I I I I 

0 0.2 0.4 0.6 0.8 1 1.2 1. 
GTO Gain TG 

3 

Figure 5-13: Plot illustrating the increase in contact time and the decrease in targeting 
error as the GTO force feedback gain is increased (simulating increasing adaptation 
to a microgravity environment). 

natural robustness. The multi-peaked force profiles are generated by the natural 

time delays that arise from signal transmission times in the human body and not 

fiom arbitrarily chosen joint firing delays. Furthermore, lower force push-offs can be 

generated by simply increasing the GTO force feedback gains (via the TG parameter). 

Decreasing the force application has other benefits aside from those noted above. 

[Schmidt et al., 1979, Todorov, 20021 have shown using EMG measurements that 

the variability of muscle force increases as the muscle force increases. The Bayesian 

optimization approach to motor coordination [Kording and Wolpert, 2004, Ferguson 

et al., 2004al suggests that humans choose control strategies that minimize the tar- 

geting error variance of the task. Thus, if lower muscle forces (and hence, lower joint 

torques) reduce the error variance of the force (joint torque) application, it seems 

reasonable that humans would choose the lowest force they can while still being able 

to accomplish the task. 



5.4.2 Limitations of the Proposed Model 

The model proposed above has assumed a GTO model that is sensitive to both 

actively commanded and passively generated joint torques. Data presented in [Houk 

and Henneman, 19671 suggest that the GTO's actually do not respond (or respond 

very little) to passive forces. However, since then, others have challenged the findings 

of [Houk and Henneman, 19671 in [Gregory et al., 2002, Jami, 19921. Recent research 

has also shown a strong link between GTO signals and the timing and control of 

locomotor function [Conway et al., 1987, Dietz and Duysens, 20001. Furthermore, 

many prominent researchers have continued to use the GTO model presented above 

in recent research [He et al., 1991, Spoelstra et al., 20001. 

However, while the model results presented above indicate that force control most 

likely plays a key role in human locomotor adaptation to different gravitational en- 

vironments, an important question that has not been answered by this research is 

where exactly does this force control take place. In an effort to develop the simplest 

possible model that could predict the observed adaptation results, I assumed simple 

spinal force feedback, however, this need not be the case. 

Research has shown that GTO force signals reach the cerebellum and cortex 

[Konorski, 1970, MacKay and Murphy, 19741. Thus, it is conceivable that the force 

control model proposed in this chapter may actually be executed via long-loop (either 

cerebellar or even trans-cortical) control. Figure 5-14 compares the model results ob- 

tained by increasing the force loop delay to 100 ms, to reflect moving the force control 

from the spinal loop to the cerebellar loop. 

The results in Figure 5-14 indicate that moving the control from the spinal loop to 

the cerebellar loop has very little effect on the maximum push-off force, the contact 

time or even the multi-peaked force profile prediction. This apparent insensitivity to 

the location of the force control suggests that while force control is a likely candidate 

for predicting locomotor control adaptation, I cannot use the modelling results in this 

chapter to suggest exactly where the control takes place. In Chapter 6, suggestions 

are made regarding future experiments that could be conducted to provide insight 



Model-Predicted Force Profiles by Adjusting GTO Feedback Gain 
2501 i 

Time (s) 

(a) Spinal force control. 

Model-Predicted Force Proflies by Adjusting Force Feedback Gain 

(s) 

(b) Cerebellar force control. 

Figure 5-14: Plots comparing spinal force control versus cerebellar force control. The 
results were obtained by simply increasing the loop delay from 70 ms (spinal) to 100 
ms (cerebellar). 

into where this force control might be located. 

The muscle model assumed in this research was linear, following Equation 5.1. A 

possibly more physiologically accurate muscle model would have the muscle stiffness 

increase with the activation level. As such, one could propose a muscle model similar 

to Equation 5.1 but where: 

Kp (u) = KO + K ~ u  (5.17) 

where u is the output of the excitation / contraction filters (see Figure 5-10) and KO 

and Kl are constants. Since the model in Equation 5.1 assumed Kl = 0, it is possible 

that non-zero values for Kl would produce a greater force as the muscle activation 

increased. 

The kinematics produced by the model show the motions being dominated by an- 

kle and toe motions. While a similar trend was also observed during the experiments, 

the knees tended to flex more during the experiments than predicted by the model. 

In the future, when the joint angles can be analyzed more reliably, actual kinematic 

data will be compared with the model results. A possible modification to the model 

could be to increase the knee motion to better match the observed body motions. 

However, without reliable joint angle data, this type of comparison and subsequent 

model modification is not possible at the time of this writing. 



5.4.3 Other Feedback Loops to Consider 

The long-loop cerebellar control law expressed in Equation 5.6 assumes no velocity 

feedback. It is quite possible that the long-loop control could provide some velocity 

feedback using visual inputs or possibly vestibular cues [Young, 19951. A possible 

extension to this model could be to include a body angle rate feedback to improve 

the error-correct ing feedback as the contact time increases. 

Another important feedback mechanism that has not been considered as part of 

this modelling effort is the role tactile feedback might play in guiding the subject's 

applied force direction during the push-offs. Tactile sensations in the foot and ankle 

are likely to be transmitted to the cerebellum or even the cortex to enhance the 

feedback control. 





Chapter 6 

Conclusions and Recommendat ions 

6.1 Thesis Summary 

This dissertation has presented a comprehensive research effort to identify, quantify 

and model the key aspects of human adaptation to different gravitational and dynamic 

environments. The hypotheses that drove this research were as follows: 

1. Kinetic data from a force / moment sensor and kinematic joint angle data can 

be combined in a dynamic filter to produce accurate, reliable estimates of whole 

body motions during adaptation experiments. Using the combined kinetic and 

kinematic data, metrics can be defined that illustrate control strategy adapta- 

tion to different gravitational and dynamic environments. 

2. Given exposure to a particular gravity environment, humans will retain the 

adapted locomotor control strategies for multiple weeks of constant exposure to 

a different gravity environment, providing evidence of multi-adaptation 

3. A single adaptation mechanism governs human locomotor control strategies 

across a spectrum of gravity environments in a manner similar to that pre- 

dicted by either Bayesian optimization; or the virtual trajectory hypotheses or 

a combination of the two. 

The first part of this research program was to design a reliable and accurate 6-axis 

force / moment sensor for use in human motion experiments. The ultimate application 



of the force-moment sensors was for use during the Microgravity Investigation of 

Crew Reactions in 0-G (MICRO-G) International Space Station (ISS) experiment. 

The force-moment sensor design was based on a spaceflight-proven design (EDLS - 

Enhanced Dynamic Load Sensors) that accurately and reliably measures forces and 

moments in changing gravitational environments. New on-board electronics made the 

MICRO-G sensors modular, self-contained and easy to relocate, thus minimizing the 

crew time required to use them on-orbit. Furthermore, the MICRO-G sensors were 

designed to be used underwater in addition to on-orbit to provide crucial feedback to 

astronauts training for the space missions underwater in the Neutral Buoyancy Lab 

(NBL). Enhanced real-time feedback features of the MICRO-G sensors will engage 

astronauts during the MICRO-G ISS experiment and will hopefully lead to improved 

adaptation performance. The development of the MICRO-G sensors contributed to 

testing Hypothesis #l. 

A suite of analysis tools were created to aid in the analysis of the kinetic (forces 

and moments) and kinematic (joint angles) measurements. In addition to a Kalman 

filter to estimate the motion of the subjects' center of mass motions, a novel joint 

torque estimator was also developed. The torque estimator combined an unscented 

Kalman filter with a non-linear least squares estimator. The results of the torque 

estimator development showed that reliable joint control torque estimates could be 

obtained using the estimator developed as part of this research, even for multi-joint 

systems where the joint torque observability matrix was not full rank. Furthermore, 

the joint torque estimator was shown to provide a simple way to include other body 

measurements such as accelerometers to improve the estimation accuracy. 

The estimator development described above demonstrated the superior filter per- 

formance that can be achieved by combining both kinetic and kinematic data to- 

gether. The force and moment measurements provide acceleration information, but 

no position information, while the joint angle measurements provide position infor- 

mation, but only limited velocity and acceleration information. By including force / 
moment data into human motion experiments, outcomes from these experiments can 

be obtained with greater reliability than using either kinematic or kinetic measure- 



ments alone. The design of unique estimators to measure and record human motion 

adapt ation further supported Hypothesis # 1. 

Experiments were conducted on a 1-G air-bearing floor microgravity simulator and 

underwater to provide contrasting dynamic and gravitational environments. Subjects 

performed leg push-offs and hand landings to demonstrate their control strategies as 

they adapted. Forces and moments from the push-offs and landings were recorded 

using the MICRO-G 6-axis force-moment sensors. Joint angles were measured using 

a kinematic video analysis system. 

A set of experiment support equipment was designed and built to support the 

human motion experiments. A near-frictionless air-bearing floor was constructed 

using an industrial air-pallet and a Unistrut sensor mounting frame and air-hose 

support mast. The air-bearing floor provided simulated weightlessness in one plane 

(parallel to the floor) with a coefficient of kinetic friction of only 0.004 (or about 

that of a professional speed skater). The Unistrut sensor mounting frame was also 

designed to be assembled at the bottom of a swimming pool to support the underwater 

experiments. The new MICRO-G sensors (designed to be waterproof up to 10 meters 

underwater) and special underwater video camera housings were used to collect data 

during the underwater experiments. 

Three experiments were conducted using a single group of repeated subjects. The 

first experiment was conducted on the air-bearing floor. Subjects performed a series 

of foot push-offs and hand landings, followed by hand push-offs and foot landings. 

During this experiment, the force / moment measurements indicated clear (and sta- 

tistically significant) adaptation to a planar microgravity environment. The peak foot 

push-off force reduced and the sensor contact time increased as the subjects adapted. 

This observation, along with the development of the MICRO-G sensors and the asso- 

ciated data analysis software proves Hypothesis #1 (that human motion adaptation 

can be observed) to be true. 

Another interesting observation made during the first experiment was the fact that 

after a short directed break, subjects' adaptation rate increased significantly. This 

result may be compatible with other research that has demonstrated the improved 



learning performance of motor skills after a break, however, further experimental 

testing would be required to verify this learning effect. 

In the second experiment, subjects placed a hoop on a post to force their motions 

(also conducted on the air-bearing floor) to be as accurate as possible. This added 

complexity caused most subjects to make distinct changes in how they controlled 

their bodies. As the adaptation progressed, the axial push-off force changed from 

being a smooth, single-peaked bell-shaped curve to a flatter, multi-peaked, wider and 

shorter force profile. 

Another key observation from the second experiment was that most subjects re- 

tained their adapted control strategy from the first experiment even though 3 weeks 

had passed between the first and second experiment. This was evidenced by similar 

peak push-off forces and sensor contact times as those measured at the end of the 

first experiment. This observation provided proof that dual adaptation (the ability to 

retain multiple control strategies) likely was being exhibited, suggesting that Hypoth- 

esis #2 may be true. More experiments in partial gravity environments with variable 

exposure times would be required to completely test Hypothesis #2, however, the 

dual-adaptation result found in this research is promising. 

The third experiment was conducted underwater. In this setting, subjects per- 

formed straight push-offs and landings in the same manner as in the first experiment. 

Due to the water drag, the peak push-off force and sensor contact time measurements 

taken underwater looked similar in magnitude and overall shape to those measured 

early in the the first experiment (when the subjects had not yet adapted to the 

air-bearing floor dynamics). Most importantly, the characteristic multi-peaked force 

profiles did not appear underwater. This result suggested that precise control strate- 

gies developed for underwater motions do not exactly replicated the control strategies 

required for true microgravity motions. 

To explain the change in peak force, the force shape and the sensor contact time, a 

dynamic model was constructed to simulate the push-off motions. It was found that 

a hybrid feedforward / feedback control model including Golgi tendon organ force 

feedback, a cerebellar tracking loop and simple, spring-link muscles, along with r e p  



resentative signal propagation delays was able to reproduce similar force and contact 

time measurements as those measured during the experiments. A single parame- 

ter, the GTO force feedback gain, governed how far along in the adaptation process 

the subjects were, which fits well into a Bayesian optimization approach to motor 

control. For early floor experiments, GTO gains must be set low so that the force 

feedback is shut off to reproduce the experimental results for novice subjects. For 

the highly accurate, well-adapted subjects, multi-peaked force profiles with similar 

maximum push-off force and sensor contact times could be reproduced using high 

GTO gains that limit the torque at each joint. Simulations also demonstrated that 

the increase in contact time gained by increasing the force feedback gain resulted in 

better performance, measured by a predicted landing error. 

In order to reproduce the shapes of the underwater force profiles, the GTO gains 

needed to be set so low that the force feedback was basically not activated. This result 

is not surprising given the force required to ensure the subject reaches the target 

sensor before becoming completely arrested by the water drag. However, this result 

indicated that while an underwater environment can be an extremely useful training 

tool to familiarize astronauts with the statics and situational awareness of a three- 

dimensional, weightless environment, the motor control strategies developed during 

underwater training will most likely not be appropriate for use in microgravity due to 

the vastly different dynamics of water versus air. The ability of the chosen model to 

predict the key adaptation metrics across both the adaptation process and into the 

underwater experiments proves Hypothesis #3 (that a single adapt ation mechanism 

governs the adaptation across a spectrum of gravitational and dynamic environments) 

to be true. However, an open area of research remains that is determining exactly 

where the apparent force feedback control resides ( 2 .  e., spinal or cerebellar feedback). 

6.2 Contributions 

While conducting the research program described in this dissertation, some key con- 

tributions were made to the areas of smart sensor design, non-linear estimation (data 



fusion) and human motor control and modelling. The following five contributions 

resulting from this research are listed below: 

1. Designed a robust 6-axis, wireless force / moment sensor for use in human 

motion experiments in 1-G, underwater and on-orbit. . 

2. Developed two non-linear estimators that combine force / moment measure- 

ments with joint angle measurements to obtain an accurate representation of 

the human motion dynamics. 

3. Designed and built the infrastructure to support frictionless floor and underwa- 

ter human adaptation experiments using low-cost, COTS materials. 

4. Identified the key adaptation metrics that describe human motion adaptation 

to different dynamic and gravitational environments. 

5. Demonstrated how a simple, but physiologically plausible dynamic and biolog- 

ical model can predict human motor control adaptation across a spectrum of 

gravitational and dynamic environments. 

6.3 Recommendations 

The results of this research program have led to several recommendations pertain- 

ing to experimental measurement, estimation and crew training techniques for space 

missions. This sect ion summarizes these recommendat ions. 

As stated in Section 3.3, a force / moment sensor can add important accelera- 

tion information to any human motion or robotic analysis study. Using the filters 

developed in Chapter 3, kinetic and kinematic data can be fused to create accurate 

represent ations of dynamic mot ions. 

One of the motivations of this research program was to identify and model the 

primary metrics describing adaptation to a spectrum of dynamic environments in 

order to target training procedures and countermeasures to accelerate the adapta- 

tion. Given that it was found that a simple force feedback gains (wherever located) 



predicted well-adapted microgravity control strategies, training procedures and coun- 

termeasures that target these feedback gains should be effective. Since it was shown 

that underwater motions required vastly different control strategies than those ap- 

propriate for a simulated planar microgravity environment, a key recommendation 

from this research is that underwater training not be used as a means of familiarizing 

astronauts with microgravity dynamics. Instead, only spatial orientation and static 

familiarization exercises should be performed underwater. 

Training astronauts on air-bearing floors or in parabolic flight provides the best 

exposure to true microgravity dynamics, even if only for brief periods of time. How- 

ever, training in such environments must consist of many simple and repeated trials 

(such as the push-offs and landings studied in this work) to give time for the subjects 

to properly adapt. The results from the air-bearing floor experiments presented in 

this dissertation indicate that adaptation can occur in as little as one hour of rela- 

tively constant exposure to a new environment. Furthermore, the adapted control 

strategies were shown to be retained for at least three weeks. 

Preparing astronauts for arrival to either the Moon, Mars or returning to Earth 

following a lengthy period in microgravity should include exercises that encourage 

the force feedback gains to decrease. Currently, astronauts frequently use resistive 

training devices on the International Space Station to retain and rebuild muscle and 

bone mass. These types of resistive training exercises could be modified to include 

a performance measure providing feedback to the astronauts. The MICRO-G sen- 

sors, with their LED force display (see Chapter 2)) could be used for this purpose. 

For instance, astronauts could be instructed to perform resistive exercises (including 

stand-up motions and jumps) while standing on the MICRO-G sensors. Higher and 

higher force targets could be set as the days get closer to their landing date. Using the 

MICRO-G graphical user interface, astronauts would be able to monitor the accuracy 

of their landings in terms of off-axis forces that could cause falls and other injuries at 

their planetary destination. 

In addition to providing new training techniques and in-flight countermeasures, 

another useful tool (often requested by astronauts) is a diagnostic tool to inform them 



how far along they are in their control adaptation to a particular environment. If, 

upon arriving on Mars for instance, the crew needed to choose one crewmember to 

perform a complicated, potentially dangerous construction task. Exercises such as 

those described above could be performed while being monitored by kinetic (forces 

/ moments) and kinematic (joint angles) measurements. Using the metrics and data 

analyses presented in this dissertation, crewmembers could evaluate not only how far 

along they are in their adaptation, but it could also point out areas in which they 

need to focus their adaptation exercises. Based on this information, decisions can be 

made regarding whether or not certain control tasks should be attempted based on 

the state of the crewmembers' adapted control strategies. 

6.4 Future Work 

As outlined in Chapter 2, the ultimate setting for this research program is during long 

duration spaceflight on the International Space Station (ISS). The work presented in 

this dissertation represents only the ground studies for the much larger ISS exper- 

iment. While this study only considers short term adaptation, the MICRO-G ISS 

experiment will have the opportunity to monitor and quantify astronaut adaptation 

across an entire space station increment (approximately 6 months). 

However, while the ISS experiment is the ultimate goal of this research program, 

there is still much that can and should be done to prepare for deployment on the ISS. 

As of this writing, the experiments described in this dissertation are being repeated 

during parabolic flight. In parabolic flight, subjects are exposed to approximately 25 

seconds of weightlessness that is almost identical to that experienced by astronauts 

in-orbit. These experiments should be able to answer critical questions about the 

applicability of air-bearing floor exposure to the true, three-dimensional weightless 

environment during parabolic flight. In much the same way that key differences were 

noted between the underwater environment and the air-bearing floor environment, we 

must understand what (if any) significant differences exist between parabolic flight 

and air-bearing floor experiments. While air-bearing floors provide a nearly friction- 



less surface, there will always be more friction than that found during parabolic flight. 

Does the small amount of friction provide a crutch that subjects use to help them 

move? How does the planar motion restriction of an air-bearing floor affect the con- 

trol strategy adaptation? Performing experiments in parabolic flight should provide 

insight into these questions. 

The underwater experiments conducted as part of this research program showed 

that the control strategy used by subjects underwater varied greatly to that which 

was appropriate on the air-bearing floor. It is possible, however, that if the mo- 

tions were smaller, over shorter distances, the viscosity effect of the water might be 

minimized to the point where its impact is negligible. To test this theory, experi- 

ments could be conducted underwater and on the air-bearing floor whereby subjects 

perform low-velocity motions over short (< 1 rn) distances. While the experiments 

presented in this thesis focussed on microgravity adaptation, the relative force mag- 

nit udes presented in Figure 4- 16 indicate that an underwater environment might be 

a good simulator for partial gravity environments. The new, waterproof MICRO-G 

sensors could provide valuable data about the applicability of underwater training to 

partial gravity locomotion. 

The adaptation model presented in this dissertation is based on GTO force feed- 

back with a simple feedforward descending commands. While this model provided 

similar results to those observed during the experiments, no attempt was made to 

verify the true biological structure of the control architecture. One important ques- 

tion that arose from the model discussion of Chapter 5, was the physical location 

of the apparent force feedback. Future experiments could be planned to pin point 

not only what the key sources of adaptation are (i.e., proprioceptive feedback, visual 

feedback, vestibular feedback, or some combination), but what kind of loop is being 

implemented to control the motions. 

Studies using cerebellar patients could begin to answer questions regarding the role 

of the cerebellum in such adapt ation. If cerebellar patients show similar adapt ation 

trends and characteristics as the subjects did in the studies presented in this thesis, it 

could provide evidence supporting spinal feedback. Simple studies could be conducted 



whereby subjects are asked to close their eyes prior to the push-off motion. Doing 

so would isolate the effect of visual feedback on the push-off task. Future studies 

could also involve EMG measurements to monitor exactly what commands are being 

transmitted to the muscles and how they are being mediated by the GTO, cerebellum 

or otherwise. 

In order to be able to make strong statements regarding the applicability of this re- 

search to a spectrum of gravitational env2ronrnents, more research focussed on partial 

gravity adaptation is required. Obviously, the push-off and landing motions con- 

ducted in this study are unique only to a microgravity situation. However, jumping 

in altered gravity environments should provide similar metrics (i. e., maximum force, 

contact time and a characteristic force profile) and could characterize adaptation. 

The results of this study could then illuminate countermeasures that could be done 

of the surface of the moon or Mars that would prepare astronauts for the next part 

of their exploration mission. 

The future of space exploration will require humans venture beyond Earth's orbit 

to different planets, each with its own dynamic and/or gravitational environment. 

While humans have demonstrated over and over their ability to adapt their bodies 

to new environments, we cannot afford to conduct space exploration missions with- 

out first understanding what kinds of adaptation will be required and how it can be 

accelerated to prevent mission-threatening injuries. This research program has pro- 

vided both scientific insight and enabling technologies targeting how humans adapt 

to different dynamic and gravitational environments and how the adaptation process 

can be reliably monitored and evaluated. 



Appendix A 

Individual Subject Data 

The following plots illustrate the individual data from each subject that was analyzed 

to support this research (10 subjects for Experiments 1 and 2 and 2 subjects for 

Experiment 3). Maximum force and contact time data are presented for each phase 

and subphase where results in Chapter 4 were presented. 
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Figure A-1: All analyzed subjects maximum push-off force for Experiments 1 and 2. 
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Figure A-2: All analyzed subjects maximum push-off force across a break. 
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Figure A-3: All analyzed subjects contact time for Experiment 1. 
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Figure A-4: All analyzed subjects maximum push-off force for Experiments 1 and 3. 
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Appendix B 

Nonlinear Least Squares Algorithm 

Development 

The nonlinear least squares estimator begins with the assumption that some prior 

knowledge of the state vector exists. Let this prior state estimate be Xo, with associ- 

ated covariance matrix, Po. The covariance matrix is analogous to the measurement 

variance matrix R defined in conjunction with Equation 3.30. In most cases, the prior 

state estimate, Xo is simply a guess and Po represents the confidence in the initial 

guess (again expressed as (r2 quantities). 

The goal of the estimator is to find the best state estimate, X ,  that forms the best 

balance of previous knowledge with the new measurements. Mat hemat ically, this is 

equivalent to finding X that minimizes the following cost function, J: 

J = (X - X O ) ~  pi1 (X - Xo) + (y - h ( x ) ) ~  R-' (y - h (X)) (B.1) 

Assuming that h (X) can be differentiated, the first variation of J is found to be: 

The optimization problem is solved when the first variation is zero ( i .e . ,  at the 
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minimum). Let 

and 

""h T -1 G ( X ) = -  = ( x - x ~ ) ~ P ~ ' - ( ~ - ~ ( x ) )  R Hx ax 
Then, solving: 

will provide the best estimate of the state vector X. Due to its nonlinearity, solving 

Equation B.4 requires the use of an iterative algorithm, such as the Newton-Raphson 

method. 

The Newton-Raphson iterative method uses a Taylor series expansion represen- 

tation of a nonlinear function to solve it. Let f ( x )  be some nonlinear function of x. 

The Taylor series of f expanded about some operating point, xo is: 

Truncating the series after the second term, we have: 

Assume that Ax is the amount that xo must be adjusted in order to make f (xo + Ax) 

zero. Solving for Ax (and setting f (xo + Ax)  = 0: 

f ( 2 0 )  Ax = -- 
df (XI 
dx 0 

Thus, the new guess for the solution to f ( x )  = 0 is: 

The new solution of X I  is then used to re-compute Ax from Equation B.8 and the 

iteration continues until the magnitude Ax falls below some pre-defined tolerance. 



Applying the Newton-Raphson solution method to the solution of G = 0, at every 

step, the modification to the state vector is computed as: 

Differentiating Equation B .4: 

where PC' has been defined for convenience. Thus, following Equation B. 10 the 

update at every iteration step of the nonlinear least squares estimator becomes: 

In summary, the computational steps of the nonlinear least squares estimator are 

as follows: 

1. Guess the state, Xo. 

2. Compute h (Xo) and Hxo. 

3. Compute PI using Equation B.11. Note that regardless of the iteration step, 

the Po in Equation B. 11 always refers to the covariance matrix of the original 

state estimate and not the previously computed PI. 

4. Compute G at the current state estimate using Equation B.4. 

5. Compute the new state estimate using Equation B.12. 

6. If the state is changing less than some pre-defined tolerance, stop. Otherwise, 

use the new state and repeat back to step 2. 





Appendix C 

Unscented Kalman Filter 

Development 

The following equations were taken directly from reference [Wan and van der Merwe, 

20011. Throughout, the subscript k denotes the filter time-step. 

The Unscented Kalman Filter (UKF) begins by calculating the set of sigma points 

as follows: 

xr-1 = [ x k - I  y J Z  xk-1 - y JIG ] 
where xk-1 and Pk-l are the previous state estimate and covariance matrix respec- 

tively and y is a pre-defined constant that determines the filter accuracy. 

The time update of the UKF proceeds as follows: 

where @ represents the nonlinear system dynamics and u is the vector of control 

inputs. Using the propagated sigma points, the propagated state and covariance 

matrices are computed as: 



where the minus superscript denotes a quantity prior to being corrected by the mea- 

surement update, L is the dimension of the state vector, Q is the process noise 

covariance matrix and wim) and w!") are known as the unscented transformation 

weights. The weights are computed as: 

where A, a and p are chosen in a similar fashion to y  to determine filter accuracy. 

With the propagated state and covariance estimates, the sigma points are now 

redrawn: 

Xk = [k; k ; + ? f i  k i - y f i ]  

The measurement update equations are: 

(C. 13) 

(C. 14) 

(C. 15) 



Appendix D 

Sensor Calibration 

D. 1 Introduction 

The goal when calibrating a 6-axis force sensor using 6 sensor voltages is to determine 

a calibration matrix C such that 

F = Cy 

where y is a vector of six sensor readings (from the six load cells inside the sensor) 

and 

T 

[ 
T 

where [ F, F, F, ] is the three-dimensional vector of forces and M, M, M, ] 
is the three-dimensional vector of moments. Given the dimensions of Equation D. 1, 

the calibration matrix C is a 6x6 matrix containing 36 unknown elements. 

Prior to the EDLS experiment, the sensors were calibrated and the calibration 

procedure was documented in [Amir, 19981. Since the MICRO-G sensor flexure design 

is based on that of the sensors used for the EDLS experiment, the EDLS calibration 



procedure was used as a starting point when developing the MICRO-G calibration 

procedure. 

It was found that the EDLS calibration procedure lacked an important aspect that 

prevented accurate and repeatable calibration of the sensors. This report outlines the 

deficiencies of the EDLS calibration procedure and what was done to improve upon 

it for the MICRO-G sensor calibration procedure. This report also serves to point out 

important design considerations for future MICRO-G sensors that could improve the 

calibration further. 

D.2 The EDLS Calibration Procedures 

The EDLS calibration procedures used an aluminum fixture that was attached to the 

sensor to facilitate load application in many different axes. Data collected using this 

fixture were then used to compute the calibration matrix, C, in Equation D.1. The 

following sections describe the EDLS calibration fixture and the EDLS calibration 

algorithm. 

D.2.1 EDLS Calibration Fixture 

An aluminum plate and "L" shaped hanger were built to permit loading of the 

EDLS sensors during calibration. The calibration fixture mounted to an EDLS sensor 

mounted to the lab wall is pictured in Figure D-1. 

The EDLS calibration fixture was designed to be mounted directly to the load-cell 

flexures. Given its "L" design, only two different loading scenarios could be applied 

without having to rotate the sensor and/or disassemble the fixture to rotate the "L" . 
As described below in Section D.3.1, re-assembly and removal of the sensor top plate 

causes unknown loads to be imparted internally into the sensor top plate that alter 

the calibration by changing the voltage reading when no load is applied to the sensors. 



Figure D-1: Photo showing the calibration fixture used for the EDLS calibration. 

D.2.2 EDLS Calibration Algorithm 

The EDLS calibration procedure begins by collecting n sets of sensor voltage readings 

paired with known loads applied to the sensor using the fixture pictured in Figure 

D-1. Since there are six load cells, a single sensor response from an applied load 

consists of six individual voltage readings. The data collected in this manner can be 

expressed as: 

F = c y  

where is a 6xn matrix of known applied loads (3-axis forces and 3-axis moments) 

and ji is a 6xn matrix of corresponding sensor responses. Right-multiplying the left 

and right side of Equation D.3 by yT results in: 

Using Equation D.4, the calibration matrix, C, can then be solved as: 

Note that the quantity yT (yyT)-' is commonly known as the pseudoinverse of y. In 

general, if y has dimensions m x n, the pseudoinverse only exists if rank ( y )  = n. In 



the case of sensor calibration, this means that the set of known loads applied to the 

sensor must span the entire space to make all six load axes (three forces and three 

moments) observable. For instance, if none of the applied loads contain a force in 

the x direction, the calibration cannot contain any information in that direction and 

thus, the pseudoinverse would not exist. 

Calibrating the sensors using Equation D.5 only works if all six load cells read 0 

Volts when no load is applied to the sensor. This can be seen in Equation D.l by 

noting that if y = 0, then F = 0, which may not be the case if there are residual 

voltage readings. Certainly, the electronics can be tuned such that virtually any 

loading configuration reports 0 Volts on all load cells, however, creating a "no load 

scenario" in a 1-G lab is extremely difficult without disassembling the sensor and 

calibration fixture thereby changing the loading behavior and tainting the calibration. 

D.3 The MICRO-G Calibration Procedure 

To improve upon the EDLS calibration, two aspects of the calibration were reconsid- 

ered: (A) the calibration fixture and (B) the calibration algorithm. Both improve- 

ments are discussed here. 

D.3.1 The MICRO-G Calibration Fixture 

Since neither the EDLS nor the MICRO-G sensors are made of one solid piece of 

aluminum through the flexures and top plate, some hysteresis is expected. This 

hysteresis is due to minor slipping of the screw points connecting the flexures to the 

sensor housing and the flexures to the top plate. While in use, hysteresis is easy to 

compensate for by "zeroing" the sensor1. However, during calibration, hysteresis can 

cause the zero-load sensor reading to change dramatically and can lead to inaccurate 

calibration results. Thus, a calibration fixture and mounting system was required 

that eliminated major sensor handling during the calibration procedure. 

'"Zeroing" the sensor means recording the current reading and arbitrarily calling it zero by 
subtracting the current sensor readings off of all subsequent readings. In commercial scales, this is 
sometimes referred to as a tare operation. 



Another way in which the zero-load sensor readings can change is by removing and 

re-attaching the sensor top plate. Since the top plate is attached to the sensor flexures 

at more than one point, internal stresses are carried by the flexures and the top-plate 

assembly when the screws are tightened and these stresses are not necessarily the same 

each time the top plate is replaced. hrthermore, when the top plate is installed, these 

internal loads may cause the loading pattern to change slightly than if the loads were 

applied directly to the flexures themselves. Thus, the new calibration fixture needed 

to attach to the sensor top plate (and not the flexures themselves) and not require 

repositioning during the calibration procedure. 

The new MICRO-G calibration fixture is pictured in Figure D-2. The new fixture 

design permits loading in all sensor axes without requiring removal and reposition- 

ing of the sensor top plate or the calibration fixture. Furthermore, the MICRO-G 

calibration fixture affixes directly to the sensor top plate so that the sensor is in a 

similar configuration during calibration as it will be during its actual use. All forces 

and moments except Fz can be applied with the sensor mounted on the wall. Fz 

application requires the sensor to be unmounted from the wall and placed on a flat 

surface such as a lab bench (pictured in Figure D-2(b)). 

Once the calibration fixture is mounted to the sensor, the sensor is mounted to a 

turntable on the wall. The turn table permits easy sensor rotation to different loading 

orientations, thus minimizing the possibility that the sensor will be jarred and the 

zero-load sensor readings changed. Each loading orientation points a different axis 

direction towards the floor and hence, puts it in the load path. Figure D-3 illustrates 

the coordinate system used for reporting forces and moments2. 

In each orient at ion, four different weight application points (indicated with num- 

bers in Figure D-2(a) and letters in Figure D-2(b)) were used to apply different known 

combinations of forces and moments to the sensor. The calibration fixture itself plus 

the sensor top plate weighs 54.49 Newtons and the hanger used to place the calibra- 

2Note that the MICRO-G sensors report forces applied to the sensor as opposed to those reacted 
by the sensor. Thus, a weight hanging off the sensor in the positive direction of an axis will be 
reported as a positive force in that direction. The moments are reported in the same manner, using 
the right-hand rule. Figure D-3 illustrates the axis system for the MICRO-G sensors. 



(a) Photo showing the calibration fixture (b) Photo showing the calibration fixture 
mounted to  the sensor. The numbers 1 through mounted to the sensor with the sensor on a 
4 indicate the different loading positions on the flat table. This loading orientation is required 
calibration fixture. The hook positions do not to apply x forces. The four hooks, denoted A, 
rotate with the sensor, so hook # 3 is always B, C and D are used to apply combined forces 
the lowest hook. The round plate behind the and moments. 
sensor facilitates easy sensor rotation. 

Figure D-2: Photos showing the sensor with calibration fixture attached. 

tion weights weighs 4.31 Newtons. The long axial member of the calibration fixture is 

offset 30.48 centimeters while the short cross pieces each are offset 17.78 centimeters. 

The downward moment resulting from hanging the calibration fixture and empty 

weight hanger off of the sensor is 9.17 Newton-meters. The moments are assumed to 

be taken about a point at the center on the surface of the sensor top plate3. Using 

the axis system defined in Figure D-3 combined with the load location designations 

in Figure D-2, Table D.3.1 describes the applied loads for each sensor orientation in 

addition to the load offsets applied by the calibration fixture itself. 

A calibration program for the MICRO-G sensors was written to streamline the 

data collection process and reduce tedious data entry errors. The program (found on 

each sensor in the /root/new-cal/calibration/ directory) can be run in one of two 

different modes: Simple  or Advanced. 

In Simple  mode, the sensor is assumed to be setup as documented in Figure D-2. 

3Hooks located on the calibration fixture base plate (denoted hook #4 in each orientation) are 
assumed to  be at  the zero moment point even though they are technically raised 3 mm. This as- 
sumption does not noticeably affect the calibration accuracy and permits pure force loading without 
requiring disassembly of the sensor or calibration fixture during calibration. 



Figure D-3: An annotated MICRO-G sensor photo illustrating the axis convention. 

The user is prompted for an orientation number and a hook number (or letter as is 

case for orientation # 5 ) .  The program asks the user what his/her unit preference is 

for force application (the options are kilograms, grams, Newtons, pounds or ounces) 

and then prompts the user for the first weight to be applied to the weight hanger. The 

program automatically computes the force and moment caused by the added weight 

and the weight of the sensor. The sensor is sampled 200 times over the space of three 

seconds and average readings for the six load cells are obtained in AID counts. The 

data is then converted into SI units from whatever the user chose at the beginning 

and recorded to a Matlab file. The user continues adding or removing weight from 

the hanger until they choose to stop. The data file can then be downloaded from 

the sensor via FTP to another computer with Matlab where the calibration matrix 

is computed using the algorithm outlined in Section D.3.2. 

In Advanced mode, the user has much more freedom to load the sensor in any 

way he/she wishes. The user is prompted for both the mass units (kilograms, grams, 

Newtons, pounds or ounces) and the length units (meters, centimeters, yards, feet or 

inches). If the user wishes he/she can enter constant force or moment offsets that 

would compensate for a calibration fixture being used. Then, during the calibration, 

the user is prompted for the entire three-element force vector and three-element mo- 

ment vector being applied to the sensor (if the user entered any offsets, they would 

be automatically added here). In this mode, the user must compute the forces and 

moments (in what ever units they selected) based on the geometry of their setup and 



Ori. # Grav. Dir. Hook # Applied Loads Fixture Force (N) Fixture Moment (Nm) 
1 - z 1 -Fz +Mx +My  [o, 0 ,  -58.81"' [0.7665,9.170,0]" 
1 - z 2 -Fz ,  - M x ,  +M, [o, 0 ,  - 5 8 . 8 1 ~  [-0.7665,9.170, OIT 
1 - z 3 -Fz ,  +My  [O, 0 ,  - 5 8 . 8 1 ~  (0, 9.170, OIT 
1 - z 4 -Fz [O, 0 ,  - 5 8 . 8 1 ~  [O, 7.856, OIT 

2 +Y 1 +Fy ,  + M x ,  +Mz [o, 58.8,0Ix' [0.7665,0,9.170]"' 
2 +I/ 2 +Fv, -Mx , +Mz [o, 58.8, OIT [-0.7665,0,9. 1701T 
2 +Y 3 +Fg, +Mz [O,  58.8, OIT [ O ,  0 ,  9 . 1 7 0 1 ~  
2 +Y 4 + F, [O,  58.8, OIT [ O ,  0,7.8561T 
3 + z 1 +Fz +Mx ,  -Mv  [o, 0,58.8]"' [0.7665, -9.170,0]"' 
3 + 2 +Fz7 - M x ,  - M ,  [o, 0 ~ 5 8 . 8 1 ~  [-0.7665, -9.170, OIT 
3 + 3 +Fz - M ,  [O,  0 ,  58.81T [ O ,  -9.170, OIT 
3 + 4 +Fz [O,  0,58.81T [O, -7.856, OIT 

4 -I4 1 -F,, + M x ,  -Mz  [O, -58.8,0]"' [0.7665,0, -9.170]"' 
4 -9 2 F ,  M M [O,  -58.8, OIT [-0.7665,0, - 9 . 1 7 0 1 ~  
4 -I4 3 -F,, -Mz [O,  -58.8, OIT 10, 0 ,  - 9 . 1 7 0 1 ~  
4 -Y 4 - F,, [O,  -58.8, OIT [0 ,0 ,  - 7 . 8 5 6 1 ~  
5 - X  A -Fx,  +Mz [-58.8,0,0]" [0, 0,0.7665]"' 
5 - x  B -Fx,  -Mv  [-58.8,0, OIT [ O ,  -0.7665, OIT 
5 - X  C -Fx,  -Mz [-58.8,0, OIT [ O ,  0 ,  - 0 .76651~  
5 - x  D -Fx ,  +Mv [-58.8,0, OIT [ O ,  0.7665, OIT 
5 - x  E - FX [-54.5,0, OIT [o,  0 ,  0lT 

Table D.l: Loading directions and fixturelhanger offsets for each sensor orientation 
and loading hook. The first column is the orientation number used as a reference. The 
second column lists the axis pointed down in the direction of the gravity vector in the 
given orientation. The third column lists the hook numbers denoted in Figure D-2(a). 
The fourth column lists the force and moment directions that can be applied in the 
given orientation and hook number. Finally, the last two columns display the force 
and moment load offset caused by the calibration fixture itself and the weight hanger, 
if applicable. Note that the last loading scenario (Orientation 5, hook E) does not 
actually use a hook since weights are placed directly on top of the calibration fixture 
(as seen in Figure D-2(b)). 

the sensor axis system. As in Simple mode, the data is converted into SI units prior 

to being recorded to the data file (thus ensuring that the calibration matrix is always 

computed in SI units). 

D.3.2 MICRO-G Calibration Algorithm 

When the MICRO-G sensors are in use, they can be zeroed to eliminate any residual 

load cause by thermal deformations, internal loading due to mounting stresses or 

restraint installation. In this manner, we enforce the voltage readings to be zero 

when zero load is being applied (or asserted when the zero command is sent), as seen 

in Equation D.6 below: 



where y, is a vector of 6 sensor voltages recorded when the zero command was sent. 

Using Equation D.6, forces and moments relative to the user-defined zero point can 

be reported. 

However, during calibration, absolute forces, moments and voltage readings must 

be used to keep all measurements consistent across each loading configuration. It is 

thus not possible to simply subtract off an arbitrary zero load unless it is truly an 

absolute zero load (which can only be attained in l-G by disassembling the sensor 

and introducing unknown internal loads). Therefore, when calibrating the sensor, one 

must determine the load cell voltage readings at zero load in addition to solving for 

the full calibration matrix. 

Taking the zero load offset into account, Equation D. 1 is re-written as: 

where J represents the force offset when all load cells read 0 Volts. Re-arranging 

Equation D. 7 to solve for y ,  

where 

and 

B = - D J  (D. 10) 

The calibration problem is then re-cast as solving for D and B. The calibration 

matrix can then be found by simply inverting D as per Equation ~ . 9 ~ .  

4We can be certain that D is invertible because its inverse, C ,  must be invertible. If C were not 
invertible, it would mean that it would have a rank less than 6, implying that at least 2 of the 6 
load cells measured exactly the same quantity. If this were true, then the calibration would not be 
possible since we require 6 independent measures to estimate 6 quantities (3 forces and 3 moments). 
So, if D were found to be singular, it would point to a sensor design error, which we know is not the 
case. 



Equation D.8 can now be regarded as the measurement equation for a conventional 

least squares estimator. Since Equation D.8 is linear, it can be re-written as: 

where Y is a 6 n  x 1 vector of all sensor voltage vectors stacked one on top of the 

other, X is a 42 x 1 element column vector comprised of the 36 elements in D and 

the 6 elements of B and H is the 6 n  x 42 measurement matrix defined as: 

where Fi is the ith known load (forces and moments) applied to the sensor. 

After forming H as per Equation D.12 and stacking the measurements to form Y ,  

an estimate of the state vector, X, can be solved as: 

(D. 13) 

Notice the similarities between Equation D. 5 and Equation D. 13. Indeed, Equa- 

tion D. 13 is simply the pseudoinverse solution of Equation D.11. However, in the case 



of Equation D.13 the state vector, X contains both the (inverse of the) calibration 

matrix as well as the zero load voltage offsets. 

It is important to remember that while this new calibration algorithm estimates 

both the calibration matrix, C,  as well as the zero load voltage offsets, B ,  the calibra- 

tion matrix is the only quantity that is actually used during operation of the sensor. 

The purpose of estimating B was to ensure that constant offsets in the measured volt- 

ages were treated as such and were not erroneously incorporated into the C matrix 

(as would have been the case when calibrating using Equation D.5). 

D.4 Calibration Results 

Using the techniques outlined in Section D.3, the 4 prototype MICRO-G sensors were 

calibrated. For each loading case, 14 pounds were incrementally loaded and unloaded. 

The load increments went: 0, 1, 2, 3, 4, 6, 8, 10, 12, 14, 12, 10, 8, 6, 4, 3, 2, 1 and 

0 pounds. Recording both the loading and unloading response ensured that if there 

was any hysteresis, it would be obvious when looking at the data and furthermore, 

the estimator would be able to approximately average it out when computing the 

calibration matrix and the zero load volt age offsets. 

Figures D-4(a) and D-4(b) show the actual and predicted loads (using the com- 

puted calibration matrix) for each of the approximately 400 load cases applied to 

sensor #001 during the calibration. The calibration matrices computed for all four 

prototype MICRO-G sensors as well as calibration plots for sensors 002 through 004, 

can be found in Section D.6. 

Due to the nature of the load cell placement inside the sensors, the estimation 

error is different for each loading axis. Since most motions will result in mainly Fx 

forces (see Figure D-3 for the sensor axes definitions), it was important that this axis 

be as accurate as possible. The results in Figure D-4(a) indicate the error in Fx forces 

is less than 0.4%. While the error in the other axes is larger, the error in the other 

force axes is less than 4% and the errors in My and Mz is less than 5%. 

The error in Mx was larger than expected (ranging from -20% to +20% across each 
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Figure D-4: Plots illustrating the force/moment estimation accuracy using the com- 
puted calibration matrix for sensor #001. In the top plots, the actual loads are 
represented by solid lines and the computed forces using the calibration matrix are 
represented by dashed lines (difficult to see because they lie almost directly on top of 
the actual loads). The bottom plots show the error between the actual and computed 
loads. The load cases presented are those used to compute the calibration matrix. 
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loading and unloading profile), however given the expected plane of most motions, 

we are unlikely to see much Mx motions anyway. The high error in Mx is most likely 

due to hysteresis in the sensor flexures. Given the structure of the flexures, applying 

moments in the Mx direction could be causing significant flexure motion since they 

are the least stiff in the Mx direction. This motion could be causing wires and rubber 

sealant to rub and stick against the sensor top plate and/or the sensor housing, leading 

to increased hysteresis. Section D.5 briefly addresses some potential design changes 

that could eliminate or reduce the hysteresis observed on the prototype MICRO-G 

sensors. 

D .5 Recommended MICRO-G Design Modifications 

The prototype MICRO-G sensors are the first attempt at re-designing the EDLS sen- 

sors to be not only self-contained from a data collection and computation perspective, 

but also waterproof. The purpose of building four prototype sensors prior to the de- 

sign and assembly of the final flight sensors was to identify areas of the design that 

required further consideration and address the issues. 

From a calibration perspective, the sensors must respond linearly to six-axis forces 

and moments in order to obtain an accurate calibration matrix. Thus, eliminating or 

at least reducing hysteresis is extremely important. The hysteresis observed during 

calibration is most likely resulting from one of three sources: 

1. Wires rubbing and being dragged across the sensor housing, top plate and the 

flexures themselves. 

2. Waterproofing sealant (RTV) rubbing against the flexures and the top plate. 

3. The flexures shifting slightly at their interface with the sensor housing and the 

top plate. 

The following suggestions may improve the sensor performance with respect to hys- 

teresis. 



D.5.1 Wiring modifications 

The wiring beneath the top plate of the prototype sensors uses low-gauge (large 

thickness) wire. Using a higher gauge (thinner) wire would reduce the wire stiffness 

and perhaps allow the wire to move more easily when the flexures deflect. 

Furthermore, the wires are currently attached to the flexures at multiple points 

that require the wires run through holes drilled into the flexures. If the strain gauge 

terminal blocks could be located at one location on the edge of each flexure, it would 

minimize the amount of wirelflexure interference. 

D .5.2 Flexure interfaces 

The current flexure design leaves very little clearance for wires or connector bulkheads. 

As a result, the top plate often contacts the wires or RTV under the top plate. While 

there will be no need to waterproof the flight sensors, contact between the wires and 

the top plate needs to be eliminated. 

For the prototype sensors, washers were added between the tops of the flexures 

and the underside of the top plate to allow approximately 2 mm of extra clearance. 

For the flight version, this extra clearance should be built into the flexures themselves 

to eliminate any contact. 

To reduce the slipping between the bottom of the flexures and the sensor housing, 

the flexures could be bonded at that interface. However, this would prevent the 

flexures from being removed at a later date, so the strain gauges would need to be 

extensively tested prior to inst allat ion. 

D.6 Calibration Matrices 

The following matrices take voltages represented in A/D counts and convert them 

into Newtons and Newton-meters. The A/D gain settings for the Diamond Systems 

analog to digital card and the custom analog electronics are: 



Table D.2: A/D settings. 

Parameter Name 
dsccb.boardtype 
dsccb. base-address 
dsccb.int level 
output -b 
output -port a u m  
dscadset t ings .range 
dscadset tings.polarity 
dscadset tings. gain 
dscadset tings.load-cal 
dscadset t ings .current -channel 
dscadscan. low-channel 
dscadscan. high-channel 
dscadscan. gain 

D.6.1 Prototype Sensor #001 

(D. 14) 

Parameter Value 
DSC-DMM16AT 
0x300 
7 
0x12 
0 
RANGE-10 
0 
GAIN-2 
0 
0 
0 
5 
GAIN-2 

The calibration plots for sensor #001 can be found in Figure D-4 in the text above. 

Description 
The type of A/D board 
Hex address of the A/D board 
Interrupt level (not used) 
Output byte sent to custom gain chips 
I/O port connected to custom gain chips 
Full A/D voltage range 
Input polarity set to bipolar 
Gain set in A/D board 
Do not load board calibration settings 
Initializes calibration settings for channel 0 
Start scanning channel 0 
Stop scanning at channel 5 
Same gain setting as above 

D.6.2 Prototype Sensor #002 

D.6.3 Prototype Sensor #003 

(D. 16) 
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Figure D-5: Calibration plots for sensor #002. 
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Figure D-6: Calibration plots for sensor #003. 



D.6.4 Prototype Sensor #004 
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Figure D-7: Calibration plots for sensor #004. 





Appendix E 

Hoop Game Design 

This appendix describes the design of the hoop game used in Experiment 2 (see Chap- 

ter 4). The hoop game was fabricated out of a copper pipe, some copper wire, and 

an electronics box containing an LED, a push-button, a 5 Volt buzzer and associated 

electronic components. The physical hoop game equipment can be found in Figure E- 

l while the electrical schematic for the hoop game electronics can be found in Figure 

E-2. 

The hoop cables are plugged into the connector marked "Hoop". The post cable 

is connected to the connector marked "Rod". If the hoop contacts the copper part 

of the post, the JK flip-flop (see Figure E-2 latches and activates the buzzer and the 

LED. The buzzer and LED can be reset by pressing the red reset button, located on 

top of the game electronics box. The latching behaviour was required to ensure that 

the test director could detect a very brief contact between the post and the hoop. A 

small low pass filter was added to prevent electrical noise from tripping the circuit. 



Figure E-1: The hoop game equipment including the post, the electronics box and 
the three hoops sized 10 cm, 6 cm and 4 cm. 

Copper 
Pipe 

+5v 

Figure E-2: Electronic schematic for the hoop game. 



Appendix F 

Sensor Operating Procedures 

F. l  Theory of Operation 

F. 1.1 Overview 

The purpose of the MICRO-G sensors (one of which is pictured in Figure F-1) is to 

measure 6-axis forces and moments (3-axis forces and 3-axis moments). Software has 

been written to autonomously collect the force and moment data on the sensors. A 

completely separate piece of software runs on a separate computer, is used to view 

the force / moment data in real-time as well as send simple commands to the sensor 

(such as the "zero" (tare) command). 

The sensors can each be configured as hand-holds, foot restraints or plain touch 

pads. Three aluminum hand-holds from the EDLS sensors can be mounted directly 

to the top plates of the sensors. 

F.1.2 Electrical 

Electrically, the sensors have two primary connections: (A) Power and (B) Ethernet 

(data). Both connectors are found on one side of the sensor. The power connector 

contains 6 pins and the ethernet connector contains 10 pins. To mate each connector, 

simply push the connector into the socket until a "click" is heard. To remove a 

connector, pull on the connector housing to release the latch. A slight "pop" sound 



Figure F-1: One of 4 MICRO-G sensors. 

will be heard as the connector releases from the sensor (due to the fact that the 

connectors are water-tight). 

A single power supply box provides power to all 4 sensors. The power supply box 

(pictured in Figure F-2 has 4 power output jacks. Each output jack is identical, so 

it can be used to power any of the sensors. There is a single switch on the power 

supply box that activates and deactivates all power jacks at once. It is important 

that this switch is used to turn the sensors on and off (and not simply plugging the 

sensors into a live jack) because the sensors themselves do not have an on/off switch. 

Powering the sensors without the use of a switch will result in improper operation of 

the sensors and possible damage to the sensor electronics. 

F.1.3 Software 

The MICRO-G sensors each run a fully-functional version of Slackware Linux (version 

6.0) with the standard Linux kernel (version 2.4.26). Upon boot-up, the sensors must 

be logged into in order to start the software, make software changes or shutdown. 

All sensors must be logged into with username root and password microg (all case 

sensitive). The operating system has built-in network security, so a secure shell (SSH) 

must be used to log into the sensors. 



Figure F-2: The 4-port MICRO-G power supply. 

ATTENTION: ~t is extremely important that the sensors are NEVER turned 

off without sending the appropriate shutdown commands (see Section F.2.4). Doing 

so could result in substantial data loss, but would most definitely result in a lengthy (i 

10 minutes) restart procedure. This is because the disk must be re-checked following 

a restart if the sensor was not properly shutdown. Since the hard drive has a capacity 

of 60 GB, this disk check takes a VERY long time. 

Each sensor has its own IP address. This is how the sensors are communicated 

with in most circumstances. Sensor #1 has address 192.168.1.11, Sensor #2 has 

address 192.168.1.12, Sensor #3 has address 192.168.1.13 and Sensor #4 has 

address 192.168.1 .14. One might recognize these addresses as those reserved for 

"private networks". Indeed, this is true. The sensors are designed to communicate 

on their own private and isolated network from the rest of the world-wide internet. 

These settings can be changed in the future if the need arises (i.e., to permit the 

sensors to be accessed from anywhere in the world). 

Nominally, the sensors communicate through a router. While any router will work, 

a wireless router is useful because: 

1. Wireless routers typically have 4 wired ports on them which can accept wired 

connections from all 4 sensors at once. 



2. With all 4 sensors plugged into the wireless router, a laptop equipped with a 

wireless network adapter can communicate with all 4 sensors. 

3. The sensors are equipped with wireless network adapters that could allow them 

to communicate with the wireless router. Currently, this method of communi- 

cation is not reliable since the wireless adapter on each sensor is encased in a 

solid metal box (acting like a very effective Faraday cage). 

The wireless router has an IP address of 192.168.1.1. Figure F-3 shows a picture 

of the Linksys router used for these experiments. 

Figure F-3: The Linksys wireless router. 

To permit communications between the sensors and the laptop (or laptops) moni- 

toring their data, all must be on the private network. To accomplish this, each sensor 

and laptop must set their gateway to be 192.168.1.1 and have an IP address that 

is 192.168.1. xxx. The Apple operating system (OSX at the time this document 

was written) has an option from the "apple" menu to choose a "network location". 

A location named "microg" has been created on both laptops used to communicate 

with the sensors that sets up the appropriate IP address and gateway. 

When the sensor initially boots up, the data collection software will not be run- 

ning. The Linux operating system will be running, but no forces will be recorded. 



When the software is running properly, the clock on the side of the window will 

illuminate and count upwards. 

The sensor software (started using the commands in Section F.2.2 establishes a 

primitive telnet server. It is through this telnet server that the sensor broadcasts its 

data to be displayed on the GUI, running on a laptop. Once the sensor software has 

been started, the only way to stop it cleanly is to telnet into the server and send the 

SHUTDOWN command. Do not confuse logging into the sensor using SSH and telnetting 

into the sensor server. As long as the Linux operating system is running, one can 

always SSH into the sensor. However, one can only telnet into the MICRO-G server 

if the MICRO-G server software is running. The MICRO-G server software is started 

by logging into the sensor (using SSH) and starting the MICRO-G server program. 

Note: It is important to understand that while this data is being transmitted 

to the MICRO-G GUI on the laptop at 10Hz, the actual data (stored at 250 Hz) is 

being stored on the sensors themselves. 

Once the MICRO-G server has been started, data collection can begin. When 

data is being collected, X, Y and Z forces and moments (6 measurements in total) are 

recorded at 250 Hz. Each measurement has associated with it a time. The time is the 

Linux system time, expressed as the number of seconds since the epoch (January 1, 

1970). The 6 least significant digits plus two digits to the right of the decimal point 

are displays on the digital clock at the side of the sensor when the sensor software is 

running. This clock display serves two purposes: 

1. Video cameras can see this time and it can be used to synchronize force data 

with video kinematic data. 

2. The test director can record the time displayed on the side of the sensor at each 

motion. Special Matlab software (written specifically for this task) is then used 

to locate the "event" closest to the time recorded by the test director. 

Unfortunately, two of the 2 sensors (possibly more) have faulty CMOS batteries, 

meaning that the onboard computer does not remember the time after a power-down. 

Thus, after each start-up, the date and time needs to be set using the Linux date 



command. After each sensor has been powered up that is going to be used for a 

particular experiment and all dates are checked and possibly reset, the clocks need to 

be synchronized to ensure consistent data between all sensors and video cameras. The 

time synchronization is accomplished by the Network Time Protocol (NTP). Section 

F.2 provides more detail on how to set the sensor time and how to synchronize the 

clocks across all sensors. 

The sensors only collect data when someone or something is applying a force 

greater than 1 Newton to the sensor top plate. This force could result from contact 

with the sensor or from thermal fluctuations on the sensor top plate. For this reason, 

one should not leave the sensor software running unattended for an extended period 

of time (i.e., hours or days). Eventually, the sensors will need to be re-zeroed (using 

the MICRO-G GUI) due to thermal loads. 

F.2 Detailed Instructions 

F.2.1 Setup 

1. Make sure power supply box is OFF (switch is in lower position and red light 

is OFF). 

2. Plug all sensor power cables into the power supply box and into the power jacks 

on the side of the sensor. The power jack is the 6-pin connector located closest 

to the corner of then sensor. When plugging the power cable into the sensor, 

be sure you hear a "click" to verify it is latched. 

3. Plug the 10-pin ethernet cables into the sensors immediately beside the power 

cable. Again, be sure to hear a click to confirm that the cable is fully seated in 

the connector. 

4. Plug in the black DC power cable to the wireless router into the mains. 

5. Plug all ethernet cables from the sensors into the YELLOW ports of the wireless 

router. The ethernet connector on the sensor is immediately beside the power 



connector. Again, make sure you hear a "click" when inserting the connector 

onto the sensor. 

6. Switch the power supply on using the switch at the front of the power supply 

box. 

F.2.2 Sensor Software Startup 

1. Open a terminal window on the laptop. 

2. Set the laptop to the "microg" location using the Apple menu at the top left. 

3. Ensure that the laptop is connected to the "microg" wireless access point by 

clicking on the wireless icon in the upper right toolbar. 

4. Verify connection with the router by typing: ping 192.168.1.1 <enter>. The 

router should respond to the ping and the program should give you the response 

times. To stop pinging, press CTRL-c. 

5. Connect to Sensor #1 by typing: ssh -1root 192.168.1 .I1 <enter>. Pass- 

word: microg 

6. Change directories to the sensor execution directory by typing cd microg-server/exec 

<enter>. 

7. Start the data collection software by typing . /microg-server -d f i bename 

where filename is the name of the data file the sensor should save the data 

to. 

8. Open up a new terminal window <apple>-n and repeat Steps 5 to 7 for each 

powered up sensor. Sensor #2 has address 192.168.1.12, Sensor #3 has ad- 

dress 192.168.1.13 and Sensor #4 has address 192.168.1.14 

9. Start the MICRO-G GUI software by clicking on it in the ('dock". 

10. Click "OK" when it says it can't find any servers. 

11. Select from the drop-down menu: File + Connect. 



12. Type in the IP Address for the first sensor. In the Port window, type 9000. 

Click "OK". 

13. Select from the drop-down menu: Server + Scan. 

14. Repeat Steps 11 to 13 for each sensor started in Step 8. 

F.2.3 Restarting Sensor Software for a New Subject 

1. Quit the MICRO-G GUI by pressing <apple>-q. 

2. Open a new terminal window on the laptop. 

3. Log into the sensor software by typing te lnet  ip-address 9000 <enter> 

where ip-address is the address of the sensor. 

4. You should see a message telling you what your "escape" character is. Type 

SHUTDOWN <enter>. 

5. In the terminal window where you started the sensor software after ssh'ing into 

the sensor, you should have your prompt returned to you. 

6. Repeat Steps 3 to 5 for each sensor. 

7. You man now re-start the software (if you wish) using a new filename by starting 

at Step 7 in Section F.2.2. 

F.2.4 Powering Down the Sensors 

1. Follow the steps in Section F.2.3 but without restarting the software. 

2. In the terminal window for each sensor (i.e., the window where you started the 

microg-server program), type shutdown -h now <enter>. 

3. Wait at least 30 seconds (VERY IMPORTANT!!!) and then flip the switch on 

the power supply. 



Appendix G 

Data Analysis Software 

function analyze-data-new0 

% Constants 

rad2deg = 180/pi; 

deg2rad = pi/180; 

pounds2kg = 0.45359237; 

% Load the supplemental data collected in the lab book 

% The file supplemental-data.m must exist in the subject's data directory 

clear error-code 

supplemental-data; 

% Get the rotation matrix for the current sensor configuration 

fm-rot-mat = get-f orce-rot-mat (sensor-conf ig) ; 

% Parse force data 

% This will parse the raw sensor data and ask the user for the contact 

% start and stop times. It will also save the individual events into 

% separate .mat files 

f orce-f ilenames = load-all-datacpush-of f -sensor-f ilename , push-of f -sensor-number, supp-data) ; 

% Check to see if the current subject already as a saved data file 

% If it does, load it. If it doesn't, then create the structure 

if check~for~file('saved_subjact_data.mat') 

disp('This subject has been analyzed in the past, so loading past analysis data.'); 

load saved-subject-dataemat 

else 

% We know that this will always be overwritten, so set the time vector 

% just to start the structure 

dispCICreating the subject-data structure since this is the first analysis run for this subjectJ); 

subject-data(l).time-vec = 0; 

end 

% Check to see if we haven't yet checked the contact data 

load(f orce-f ilenames11)) ; 

if -exist ( ' bad-data' ) 
disp('We have not checked the force data yet, so checking now.'); 

check-comp-contact; 

else 

disp('Data already checked, so we do not have to check it again.'); 



X Loop through the number of runs to perform the analysis 

for i = runs-to-analyze 

X Get the subject's body parameters from the inertia program 

if (limb-code (i) == 1) 

[robo, num-links, full-body-mass, cart-mass] = get-subject-leg-parameters(inertial-parameters-filaname, g, s~bject-mass-~ounds*pounds2kg); 

else 

disp('Error! You need to define the arm model first! '1 ; 

end 

% Save the rob0 object into the subject-data structure 

subject-data(i).robo = robo; 

X Setup the torque estimation parameters into the workspace 

X and compute the torque estimation weighting matrices 

torque-estimator-parameters; 

[R, Qk, PO] = get-estim-params(num_linksr time-step, angle-meae-noise, force-meas-noise, accel-proc-noise, jerk-proc-noise, init-ang-err, init-rate-err); 

X Load the force data 

load(f orce-f ilenameeIi)) ; 

X Only proceed if the data is good 

if 'bad-data 

X Save the flag for good / bad data in the subject-data structure 

subject-data(i) . bad-data = bad-data; 

X Rotate the forces and moments to match the body frame 

[f orcea, moments] = rotatef orces-moments(f orces, momenta, fm-rot-mat) ; 

% Set the time vec to be based on the forces first 

time-vec = get-6-lsd(force-time-vec); 

if angle-data-available(i) 

disp(ILoading the angle data1) 

X Load the angle data 
[angle-time, angles] = interpret-angle-data(ang1e-f ilenamefi. 11. limb-code(i)) ; 

X Even up the time traces 

disp('Making the forces. moments and angles even') 

[time-vec , datqmat] = even-time-trace (time-step, [f orce-time-vec , forces , moments] , [angle-time , angles] ) ; 

% Parse the even data 

[data-mat-length, data-mat-width] = size(data_mat) ; 

forces = data_mat(:,1:3); 

moments = data-mat ( : ,4: 6) ; 

angles = data-mat (: ,7:data_mat_width) ; 

else 

X If the angle data is not available, just save an empty matrix as 

X a placeholder 

disp('Not using angle data for this analysis runD) 

angles = [I; 

end 

X Trim data down to contact time only 

X The contact start and stop times are defined in the force .mat file 

[time-vec, data-mat] = trim-time-data(time-vec, [forces, moments, angles], get-6-lsd(contact-start-time), get-6-lsd(contact-811ddtime)); 

X Re-parse this data matrix again 

[data-mat-length, data-mat-width3 = size(data-mat); 



forces = data-mat ( : ,I : 3) ; 

moments = data-mat ( : ,4: 6) ; 

if angle-data-available(i1 

angles = data-mat ( : ,7 :data-mat-width) ; 

else 

angles = [I ;  
end 

% Subtract off any force offsets 

if offset-present 

f orce-of f = f orces(length(f orces) , : ) ; 
moment-off = moments(length(moments),:); 

for mmm = l:length(forces) 

forces(mmm,:) = forces(mmm,:) - force-off; 

moments(mmm,:) = moments(mmm,:) - moment-off; 
end 

end 

% Apply the friction model to the forces to obtain "realH forces 

forces-raw = forces; 

forces = floor~friction~model(forces, (full-body-mass + cart-mass)); 

% Save the forces, moments and angles into the subject data structure 

subject-data(i).forces-raw = forces-raw; 

subject-data(i).forces = forces; 

subject-data(i).moments = moments; 

subject-data(i).angles = angles; % If no angle data is available, this will be empty 

% Normalize the time vector 

abs-start-time = time-vec(1) ; 

time-vec = time-vec - abs-start-time; 

% Compute the contact time 

contact-time = time-vec(length(time-vec)); 

% Save the time data 

subject-data(i).abs-start-time = abs-start-time; 

subject-data(i).time-vec = time-vec; 

subject-data(i).contact-time = contact-time; 

% Save the game results data if there are any 

if (exist ( 'error-code ' ) == 1) 

if (error-code(i) > 200) 

subject-data(i).game-failed = 1; 

else 

subject-data(i).game-failed = 0; 

end 

else 

subject-data(i).game-failed = 0; 

end 

% Obtain the normal force and the direction vectors 

[normal-force-vec, dir-vecs] = compute~norm~force(forces. force-maskci,:)); 

% Save the simple force analysis 

subject-data(i).normal-force-vec = normal-force-vec; 

subject-data(i.1.ma.x-force = max(norma1-force-vec); 

subject-data(i).mean-force = mean(normal-force-vec); 

subject-data(i).median-force = median(norma1-force-vec); 

subject-data(i).std-force = std(norma1-force-vec); 



% Compute some state on the force direction 

if (length(dir-vecs) > 0) 
for ijk = i:length(dir-vecs) 

if (norm(dir-vecs(1, ijk)) > 0 )  

dir-angle(ijk) = atan2(dir_vecs(2, ijk) , dir-vecs(1 ,ijk))*rad2deg + 90; 

else 

dir-anglecijk) = 0; 

end 

end 

else 

dir-angle = 0; 

end 

% Save the analysis on the force direction 

subject-data(i).force-dir-angle = dir-angle; 

subject-data(i) .max-force-dir-angle = max(abs(dir-angle)) ; 

subject-dataci) . suxdir-angle = sum(dir-angle) ; 

subject-data(i).meap_dir-angle = mean(dir-angle); 

subject-data(i) .var-dir-angle = var(dir-angle) ; 

% Work out the body com motion based on forces only (open loop) 

disp('1ntegrating Motion Equations based on force data only') 

% Determine guesses for the initial body position 

if angle-datkavailable (i) 

init-com-pos-guess = compute-corn-body (angles(1, : ) , robo) ; 
init-com-vel-guess = compute~com~body~vel(angles(i. :) , init-jr-est .*ones(i. num-links) , robo) ; 

else 

init-com-pos-guess = init-com-estci, : ; 

init-com-vel-guess = init-com-vel-est(i. :) ; 

end 

[corn-pas-f only, corn-vel-f only. body-ang-fonly, euler-rates-f only] = estimate-comtrajectory-f only(r0bo. init-com-pos_guess, 

init-com-vel-guess, forces(: ,1: 2), time-step) ; 

% Save the data into the subject data structure array 

subject-dataci) .com_pos-fonly = compos-fonly; 

subject~data(i).com~vel~fonly = com-vel-fonly; 

subject-data(i).body-ang-fonly = body-ang-fonly; 

subject-data(i). euler-rates-f only = euler-rates-f only; 

% Compute and save the total body angle change (min to mar) 

body-angle-change-f only = max(body-ang-f only) - min(body-ancf only) ; 
subject-dataci) .body-angle-change-fonly = body-angle-change-fonly; 

X Compute the departure variables 

departure-vel-f only = norm(com-vel-f only (length(com_vel-f only), : 1) ; 

departure-angle-f only = atan2(-com-vel-f only (length(com-vel-f only) ,I), com-vel-f only (length(com_vel-f only) ,211 ; 

departure-rotation-rate-f only = euler-rates-f only(length(eu1er-rates-f only)) ; 

departure-body-ang-f only = body-ancf only (length(body-ang-f only) ) ; 

% Save the departure variables 

subject-data(i).departure-vel-fonly = departure-vel-fonly; 

subject-data(i) .departure-angle-fonly = departure-angle-f only; 

subject-data(i) .departure-rotation-rate-f only = departure-rotation-rate-fonly; 

subject-data(i).departure-body-ang-fonly = departure-body-ang-fonly; 

X Compute the estimated corn targetting error 

departure-vel-vec-f only = com-vel-f only (length(com-vel-f only) . : ) ; 
departure-poa-fonly = com~pos~fonly(length(com~pos~fonly),:); 

landing-distance-fonly = rig-length - 0.5; 



land-err-fonly = compute~landing~error(departure~vel~vec~fonly, departure-pos-fonly, rig-length); 

% Save the landing error 

subject-data(i).land-err-fonly = land-err-fonly; 

% Compute the energy based on the velocity of the center of mass 

disp('Computing the linear and rotational pushoff energy for forces only'); 

% Linear 

linear-pushoff-energy-fonly = (1/2)*(cart-mass + full~body~mass)*departure~vel~fonly~2; 

% Save the linear pushoff energy 

subject-data(i).linear-pushoff-energy-fonly = linear-pushoff-energy-fonly; 

if angle-data-available (i) 

% Work out the body corn motion computed directly from the angles (no 

% forces) 

for abc = 1:lengthCangles) 

com-pos-aonly(abc,:) = compute~com~body(ang1es(abc,:), robo); 

end 

% Save the data into the subject data structure array 

subject~data(i).com~pos~aonly = com-pos-aonly; 

end 

if angle-data-available (i) 

% Estimate the body com motion 

if (recompute~corn~motion(i) I 1  -isfield(subject-data(i), 'corn-pos') I 1  (length(subject-data(i).com-pos) == 0 ) )  

disp('1ntegrating Motion Equations based on force and angle data') 

% Integrate Equations of Motion 

init-joint-angle-rates = init-jr-est.*ones(l, num-links); 

init-joint-angle-errors = init-ja-err.*ones(l. num-links); 

init-joint-angle-rate-errors = init-jr-err.*ones(l, num-links); 

joint-angle-meas-err = ja-meas-err.*ones(l, num-links); 

force-errors = f_err.*ones(l,2); 

Ccom-pos, corn-vel, body-ang, euler-rates, P-store] = estimate~com~trajectory(robo, angles, init-joint-angle-rates, init-joint-angle-errors, init-j 

% Save the data into the subject data structure array 

subject-data(i).com-pos = com-pos; 

subject-data(i).com-vel = com-vel; 

subject-data(i).body-ang = body-ang; 

subject-data(i).euler-rates = euler-rates; 

else 

disp('Loading Motion data from a previous solve') 

% Load the data from the saved structure array 

com-pos = subject-data(i).com-pos; 

com-vel = subject-data(i).com-vel; 

body-ang = subject-data(i).body-ang; 

euler-rates = subject-data(i).euler_rates; 

end 

% Compute the departure variables 

departure-vel = norm(com~vel(length(com~vel),:)); 

departure-angle = atan2(-com~vel(length(com~vel),1). com~vel(length(com~vel),2)); 

departure-rotation-rate = euler-rates(length(eu1er-rates)); 

departure-body-ang = body-ang(length(body-ang)) ; 

% Save the departure variables 

subject-data(i).departure_vel = departure-vel; 

subject-data(i).departure-angle = departure-angle; 

subject-data(i) .departure-rotation-rate = departure-rotation-rate; 



X Compute the estimated corn targetting error 

departure-vel-vec = com~vel(length(com~vel),:); 

departure-pos = com~pos(length(com~poa), :) ; 

landing-distance = rig-length - 0.5; 
land-err = compute-landing-error (departure-vel-vec , departure-pos , rig-length) ; 

X Save the landing error 

subject-data(i).land-err = land-err; 

% Compute the energy based on the velocity of the center of maas 

diap( 'Computing the linear and rotational pushof f energya ) ; 

X Linear 

linear-pushoff-energy = (1/2)*(cart-mass + full-body-mass)*departure-vela2; 

X Rotational 

rotational-pushof f -energy = (1/2)*euler~rates(length(euler~rates))~2*c0mpute~b0dy~inertia(angles~1ength~ang1es , : 1, robo) ; 

X Save the linear and rotational pushoff energy 

subject-data(i).linear-pushoff-energy = linear-pushoff-energy; 

subject~data(i).rotational~pushoff~energy = rotational-pushoff-energy; 

X Compute the progression of the body moment of inertia 

if (recompute-body-I(i) I I 'isf ield(subject-data(i) , Jbody-I-observed') I I (length(subject-data(i) .body-I-observed) == 0)) 

disp('Computing inertias based on observed angles a ; 

body-I-observed = [I ; 
for jjj = l:length(angles) 

body-I-observed(j j j .l) = compute-body-inertiacanglescj j j , : 1, robo) ; 

end 

X Compute the percent change in body inertia 

body-inertia-change = ((body-I-observed(length(body-I-observed)) - body~I~observed(l))/body~I~observed(1))*100; 

X Save the observed body corn pos and inertia 

subject-data(i).body-I-observed = body-I-observed; 

subject-data(i).body,inertia-change = body-inertia-change; 

else 

X Load data from a previous solve 

disp('Loading body inertias from a past analysis run'); 

body-I-observed = subject-data(i).body-I-observed; 

body-inertikchange = subject-data(i).body-inertia-change; 

end 

X Estimate the joint torques 

if (torque-estimator-on(i) I I 'isfield(subject-data(i), 'eat-torques') I I (length(subject-data(i).est-torques) == 0)) 

disp( a Estimating the joint torques a ) 

X Filter the data 

filter-order = 2; 

force-fc = 40; X Hz 

moment-fc = 40; X Hz 

angle-fc = 5; X Hz 

f-forces = lpfilt(forces, time-step, force-fc, filter-order); 

f -moments = lpf ilt(moments, time-step, moment-f c, f ilter-order) ; 

f-angles = lpfilt(angles, time-step, angle-fc, filter-order); 

% Save the filtered forces and angles 

subject-dataci) .f -f orces = f -forces; 

subject-data(i1.f-moments = f-moments; 

subject-data(i1.f-angles = f-angles; 

X Form the measurement matrix 



meas-store = [f -angles1 ; -f-forces'] ; 

% Setup the initial conditions 

init-cond-vec = [meas-store(1 :num-links, 1) ; zeros(num-links*2,1)] ; 

% Figure out if we need to run the ukf 

if (ukf -on(i)) 

ukf-estim-flag = 1; 

else 

if -isfield(subject-data(i) , 'f ilter-est-states') 
ukf-estim-flag = 1; 

else 

ukf-estim-f lag = 0; 

end 

end 

% Estimate the torques 

[est-torques, f ilter-est-states] = torque-estimator(meas-store, init-cond-vec , R, Qk, PO, time-step, robo, ukf -estim-f lag) ; 

% Save the outputs 

subject-data(i).est-torques = est-torques; 

if (ukf-estim-flag == 1) 

subject-data(i).filter-est-states = filter-est-states; 

end 

else 

% Load the data from the last saved 

disp('Loading the joint torques from a previous run') 

est-torques = subject-data(i).est-torques; 

filter-est-states = subject-data(i).filter-est-states; 

end 

% Compute the work done by each joint 

disp ('Computing the joint work' ) ; 

joint-work = get-joint-work(est-torques, f ilter-est-states) ; 

total-joint-work = sum( joint-work) ; 

% Save the joint work variables 

subject-data(i).joint-work = joint-work; 

subject-data(i).total-joint-work = total-joint-work; 

% Compute the internal limb energy expended 

if (recompute-limb-energy(i) I I -isf ield(subject-data(i) , 'limb-energy') I I (length(subject-dataci) .limb-energy) == 0)) 

disp('Computing the limb energy'); 

limb-energy = get-limb-energy(filter_est-states, robo); 

% Save the limb energy data 

subject-data(i).limb-energy = limb-energy; 

else 

% Load past limb energy data 

disp('Loading limb energy data from a previous analysis run'); 

limb-energy = subject-data(i).limb-energy; 

end 

end 

else 

disp('Skipping this data because it was bad from the sensors.') 

end 

end 

% Save the subject data into a file 

% This will overwrite the current file 

save saved-subject-dataemat subject-data 



X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X  
fuuction Cpos-est, vel-est, ang-est, w-eat. P-store1 = estimate-com_trajectory(robo. angles, init-joint--19-rates, init-joint-angle-errors, 

init-joint-angle-rate-errors, joint-angle-meas-err , forces, f orce-errors, baseR, time-step) 

X Make the inputs what we think they should be 

angles = f orce-column(ang1es) ; 

f orce-errors = f orce-column(f orce-errors) ; 

X Setup initial conditions 

init-pos = compute~com~body (angles (I , : ) , robo) ; 
init-vel = compute~com~body~vel(angles(l, : ) , init-joint-angle-rates, robo) ; 

% Vectorize the quantities 

F = C-f orcesl ; 

init-X = [init-pos; init-vel] ; 

% Compute the symbolic R and P matrices 

R-sym = get-symbolic-R(robo) ; 

P-sym = get-symbolic-P(robo); 

% Form the m a r  error variance vector 

angle-var = joint-angle-meas-err . '2; 

X Form the inital P matrix 

P-init = eval-P(P-sym, angles(1, : 1, init-joint-angle-rates. init-joint-angle-errors. -2, init-joint-angle-rate-errors. '2) ; 

% Get the initial body mass parameters 

m = get-body-mass(robo) ; 

X Form the continuous Q matrix 

w-pos = zeros(2.1) ; 

w-vol = f orce-errors ./m; 

w-vec = Cw-pos; w-vell ; 

Q = diag(diag(w-vec*w-vecD)); 

X Compute the measured body positions from the joint angles 

for i = l:length(angles) 

meas-pas( : , i) = [compute-corn-body (angles(i, : 1. robo)] ; 

end 

X Form the measurement matrix 

H = Ceye(2). zeros(2)l; 

X Start the filter 

disp('filterD) 

X = init-X 

P = P-init; 

for i = l:length(angles) 

X Measurement update 

% Store the state estimate and covariance 

state-store(:.i) = X; 

P-store(: .i) = diag(P) ; 



% Time update 

[A, B] = get-lin-force-dyn(X, m); 

[Phi, Bk, Qk] = get-discrete-dyn(A, Q, B, time-step); 

X = propagate-com-motion-rk(X, time-step, F(i,:)', m); 

P = Phi*P*PhiJ + Qk; 

end 

% Assign the estimated quantities 

pos-est = state_store(l:2,:)'; 

vel-est = state_store(3:4, :) ' ; 
ang-est = zeros(l,length(state_store))'; 

w-est = zeros(l,length(state_store))'; 

for i = l:length(angles) 

body-roll-angle = 0; 

quat-true(:,i) = get-quat-from-pos([pos-est(i,:), OI', body-roll-angle); 

Rott = quat2R(quat_true(: ,i)); 

ang-est(i) = acos(Rott(1,l)) ; 

w-est(i) = get-planar-rate-from-carts(pos-est(i,:), vel-est(i,:)); 

end 

function new-state = propagate-state-rk(X, time-step, ctrl-torques-in, robo) 

% Determine the number of links 

num-links = length(X)/3; 

% Parse state vector 

pos-vec = X(l:num_links); 

vel-vec = X((num-links + 1) : (num_links*2)) ; 

acc-vec = X((2*num_links + 1) : (num-links*3)) ; 

% Create a "small state vector" 

small-state = Cpos-vec; vel-vecl; 

% Compute the derivatives using the current state vector 

kl = time-step*state-derivs-om(0, small-state, robo, ctrl-torques-in) ; 

k2 = time-step*state-derivs-om(time_step/2, (small-state + k1./2), robo, ctrl-torques-in); 

k3 = time-step*state-derivs-om(time_step/2, (small-state + k2./2), robo, ctrl-torques-in); 

k4 = time-step*state-derivs-om(time_step, (small-state + k3) , robo, ctrl-torques-in) ; 

% Do the Fourth Order Runge-Kutta propagation 

new-small-state = small-state + (1/6).*(kl + 2.*k2 + 2.*k3 + k4); 

% Compute the accelerations now 

state-deriv = state-derivs-own(time-step, new-small-state, robo, ctrl-torques-in); 

% Pull out accelerations 

new-acc-vec = state-deriv((num-links + l):(num_links*2)); 

% Form the output 

new-state = [new-small-state; new-acc-vec]; 

function Lest-torques, filter-est-states] = torque-estimator(meas-store, init-cond-vec, R, Qk, PO, time-step, robo, ukf-on) 

% Determine some parameters 

L = length(init-cond-vec) ; 



num-links = length(init-cond_vec)/3; 

kappa = 0; 

alpha = 0.1; 

beta = 2; 

lambda = (alpha'l)*(L + kappa) - L; 
gamma = sqrt(L + lambda); 

X Extract the inertia vector from the robot object 

links-cell = robo.link; 

I = [I; 

for i = 1:num-links 

this-lixtk = links-cellC1, i); 

I-t = this-link.1; 

I(i) = I-t(3,3); 

end 

X Store the init-conda as the first estimate 

filter-est-states = init-cond-vec; 

X Assume that the initial control torques are zero to start 

ctrl-torques = zeros(num-links, 1) ; 

X Store these initial control torques as the first torque estimate 

est-torques = ctrl-torques; 

X Set the optimization options 

options = optimset ( ' TolFun' , 0.000001 ' ; 

X Pull out the angle data from the measurement vector 

angle-data = meas-store(1:num-links. I: length(meas-store) -1) ; 

X Set the f-forces variable 

X The forces used to be filtered here but not anymore 

f -f orces = meas-store( (num-links + 1) : (num-links + 2). :) ; 

X Form the new matrix of measurements 

meas-f ilt-interp = [angle-data; f -f orcesc: . 1: length(f -f orcesl-I) I ; 
X Get the m state 
m = get-m(ang1e-data, time-step); 

X Save the original m for possible measurement use 

m-orig = m; 

X Compute the symbolic H matrix 

H-sym = get-syeH(robo) ; 

H-f ull-sym = get-sym-H-f ull(robo) ; 

X Figure out the number of steps 
num-steps = length(meas-f ilt-interp) ; 

X Start the estimation 

mar-repeats = 1; 

max-diff-to1 = 0.01; 

mar-diff = 10; 

nun-repeats = 0; 

est-torques = zeros(num-links, num-steps) ; 

while ((max-diff > max-diff-tol) & (num-repeats < max-repeats)) 

X Set the number of repeats 

num-repeats = num-repeats + 1; 



% Initialize the state estimate and covariance matrix 

X-filter = init-cond-vec; 

P = PO; 

% Save the old estimated torques 

t-old = est-torques; 

for i = 2:num-steps 

% Display a progress message 

disp(sprintf('Computing estimation step %d of %d in iteration %d of a max of %d.\nl, i, nun-steps, nun-repeats, max-repeats)); 

% Figure out the control torques 

% NOTE: These control torques can be stored at time i and directly 

% compared with the actual-control-torques matrix at the same time i 

% In other words, these torques should actually be used to go from the 

% state at time i-1 to the state i. 

nls-pos-meas = m-orig(1:num-links,i); 

nls-f rc-meas = f -f orces ( : , i) ; 
nls-meas = [nls-pos-meas; nls-frc-measl; 

nls-guess-state = m(: ,i) ; 

nls-guess-state(2*nun-links+l:3*nun-links) = zeros(num-links, 1); 

disp(sprintf('So1ving for acceleration states.\n')); 

[ctrl-torques, nls-XI = nls-torque-est(n1s-meas, H-sym, nls-guess-state, robo, R); 

disp(sprintf('So1ving for all states.\n')); 

[ctrl-torques, nls-X, P-nls-out] = nls-torque-est-full(n1s-meas, H-full-sym, [nls-guess-state(1:nun-links*2); nls-XI, robo, R); 

% Store these control torques 

%ctrl-torques 

est-torques(:,i) = ctrl-torques; 

if ukf-on 

% Run the Unscented Kalman Filter (UKF) 

% NOTE: When I do the update here, I shouldn't use the torque that I 

% just computed. That torque should have been used to propagate the 

% previous state to this one! 

disp(sprintf ('Doing the UKF .\n')) ; 

% Do the UKF time update 

[chi, X-filter, P, Y, y] = ukf-time-update(X-filter, P, (Qk + P-nls-out.*time-step), gamma, L, lambda, alpha, beta, robo, time-step, ctrl-torques); 

% Do the UKF measurement update 

[X-filter, PI = ukf-meas-update(X-filter, P, meas-filt-interp(:,i), y, chi, Y, R, lambda, L, alpha, beta); 

% Store the nev state estimate 

filter-est-states(:,i) = X-filter; 

else 

f ilter-est-states(: ,i) = m(: ,i); 

end 

end 

% Set the m state to run the simulation again 

m = filter-est-states; 

% Save the filter progression 

prog-est-states(:,:,nun-repeats) = filter-est-states; 

prog-est-torques(:,:,num-repeats) = est-torques; 

% Find out how much these torques have changed since the last iteration 

t-diff = est-torques - t-old; 



X Determine the magnitude of the difference in the computed torques 

for nor-cnt = l:num_links 

norm-vec (nor-cnt) = norm(t-dif f (nor-cnt , : ) ) ; 
end 

max-dif f = max(norm_vec) ; 

end 

X Add one entry to the end of the estimated torques and states 

est-torques = Lest-torques, est-torques( : ,length(est-torques) )I ; 
filter-eat-states = [filter-est-states, filter-est-states(:.length(filter-est-states))]; 

function [X-new. P-new] = ukfmas-update(X, P, meas, y, chi, Y, R, lambda, L, alpha, beta) 

% Compute the measurement updated covariance matrix 

Pyy-sum = 0; 

Pxy-sum = 0; 

for j = 0:(2*L) 

% Compute the weights 

if (j == 0) 

Wc = lambda/(L + lambda) + (1 - alpha-2 + beta); 

else 

WC = 1/(2*(L + lambda)); 
end 

X Add to the weighted sums 

Pyy-sum = Pyy-sum + Wc*( Y(:,(j+l)) - y I*( Y(:.(j+l)) - y )'; 

Pxy-sum = Pxy-sum + Wc*( chi(: .(j+l)) - X )*( Y(:  .(j+l)) - y 1'; 

end 

Pyy = Pyy-sum + R; 

Pxy = Pry-sum; 

X Compute the gain 

ukf -gain = Pxy*inv(Pyy) ; 

X Do the state measurement update 

X = X + ukf-gain*(meas - y); 

X Do the covariance matrix update 

P = P - ukf_gain*Pyy*ukf-gainD; 

X Assign the outputs 

X-new = X; 

P-new = P; 

function [chi-new, x-new, P-new. Y-predict, y-predict] = ukf-time-update(X, P, Qk, gamma. L, lambda, alpha, beta, robo, update-period, ctrl-torques) 

X Get the matrix square root of the covariance matrix 

sqP = sqrtm(P); 

X Calculate sigma points 

stateglat = [I ; 
for j = 1:L 

state-mat(:. j) = X; 

end 



chi = [X, (state-mat + gamma*sqP), (state-mat - gamma*sqP)]; 

% Propagate the chi matrix 

chi-prop = [I ; 
for j = 1:(2*L + 1) 

chi-prop( : , j) = propagate-state-rk(chi( : , j) , update-period, ctrl-torques, robo) ; 
end 

chi = chi-prop; 

% Do the weighted sums to complete the time update 

% Do x-hat first 

x-sum = 0; 

for j = 0 : (2*L) 

% Compute the weights 

if (j == 0) 

Wm = lambda/(L + lambda); 

else 

Wm = 1/(2*(L + lambda)); 

end 

% Add to the weighted sum 

x-sum = x-sum + Wm*chi(: , (j+l)) ; 

end 

X = x-sum; 

% Now do P 

P-sum = 0; 

for j = 0 : (2*L) 

% Compute the weights 

if (j == 0) 

Wc = lambda/(L + lambda) + (1 - alpha-2 + beta); 

else 

Wc = 1/(2*(L + lambda)); 

end 

% Add to the weighted sum 

p-sum = p-sm + Wc*( chi(:, (j+l)) - X )*( chi(:, (j+l)) - X ) '; 

end 

P = P-sum + Qk; 

% Get the matrix square root of the new covariance matrix 

sqP = sqrtm(P); 

% Redraw sigma points 

state-mat = [I; 

for j = 1:L 

state-mat(: ,j) = X; 

end 

chi = CX, (state-mat + gamma*sqP), (state-mat - gamma*sqP)]; 

% Compute the predicted measurements based on the current chi matrix 

% First, compute the Y matrix 

Y = [I; 

for j = 1:(2*L+ 1) 

Y(:,j) = get-meas(chi(:,j), robo); 

end 

% Now, do a weighted sum to get the actual predicted measurements 

y-sum = 0; 

for j = 0: (2*L) 

% Compute the weights 

if (j == 0) 



Wm = lambda/(L + lambda); 

else 

Wm = 1/(2*(L + lambda)) ; 

end 

% Add to the weighted sum 

y-sum = y-sum + Wm*Y(: .(j+l)) ; 

end 

y = y-sum; 

X Assign final values 

chi-new = chi; 

x-new = X; 

P-new = P; 

y-predict = y; 

Y-predict = Y; 

function bean-vec , median-vec , var-vec , std-vec , index-vec] = windov-stats(data, window-size , real-data-locs) 

X Put data into column format 

[data, flopped = force-column(data); 

X Check to see if window-size is an appropriate size 

if (window-size > length(data1) 
disp('Error! Window size too big! '1 ; 

return 

end 

full-data-size = length(data1 ; 

X Initialize the output vectors 

mea~vec = U ; 

median-vec = [I ; 
var-vec = [I ; 
std-vec = [I ; 
index-vec = [I ; 

X Initialize the window counter 

jj 5 1; 

X Initialize the beginning and end of the vindow 

window-start = 1; 

window-end = window-size; 

while (window-end <= full-datgsize) 

X Compute the stats for each column 

[rows, cols] = size(data) ; 

for i = 1:cols 

mean-num = mean(data(vindow~start:window~end,i)); 

median-num = median(data(window-start: window-end, i)) ; 

var-num = var(data(window-start : window-end,i)) ; 

std-num = std(data(window-start:window-end,i)); 

end 

% Figure out where on the plot these stats should be placed 

stata-location = window-size*(jj-1) + window-size/2; 

X Put everything into the output vectors 
mean-vec = bean-vec; mean-nd; 

median-vec = Cmedian-vec; median-nd; 



var-vec = [var-vec ; var-numl ; 

std-vec = [std-vec; std-numl; 

index-vec = [index-vec; stats-location] ; 

% Increment the window counter 

jj = jj + 1; 

% Set the new window-end 

window-end = window-size*jj; 

% Set the new window-start 

window-start = window-end - window-size + 1; 

end 





Appendix H 

Human Subject Use 

Document at ion 

H . l  Informed Consent Form 



CONSENT TO PARTICIPATE IN 
NON-BIOMEDICAL RESEARCH 

Microgravity Investigations of Crew Reaction in 0-G - Underwater (MICRO-G - UW) 

You are asked to participate in a research study conducted by Professor Dava Newman, 
PhD and Philip Ferguson, SM, fiom the department of Aeronautics and Astronautics at 
the Massachusetts Institute of Technology (M.I.T.). You have been asked to participate in 
this study because you have been identified as a SCUBA certified member of the MIT 
community who might be interested in such a research program. If you agree to take part 
in this study, you will be one of about 10 to 20 other subjects. You should read the 
information below, and ask questions about anything you do not understand, before 
deciding whether or not to participate. 

PARTICIPATION AND WlTHDRAWAL 

Your participation in this study is completely voluntary and you are free to choose 
whether to be in it or not. If you choose to be in this study, you may subsequently 
withdraw from it at any time without penalty or consequences of any kind. The 
investigator may withdraw you from this research if circumstances arise which warrant 
doing so. 
If at any time during this study, any investigator feels that your safety is at risk, the 
investigators may terminate your participation in this study. 

PURPOSE OF THE STUDY 

The purpose of this study is to identi& the control strategies used by humans to move 
their body from one location to another in the absence of gravity. Future space 
exploration missions will require astronauts to spend long periods of time in a 
microgravity environment and then be expected to perform tasks in full or partial gravity. 
Understanding the mechanisms by which humans adapt their control strategies to 
differing gravity environments may lead to the development of new astronaut 
countermeasures. These countermeasures would be designed to accelerate astronauts' 
adaptation to a new gravity environment and reduce the risk of injuries associated with 
falls. 
When weighted properly underwater, humans experience a weightless sensation similar 
to that experienced by astronauts in space. Humans can also experience a similar 
weightlessness feeling when rolling on a smooth floor in one plane. Thus, this 
experiment will be carried out both underwater and rolling on a smooth floor to simulate 
a zero-gravity, space environment. 
Ths study will be paired with another separate study (COUHES #2718) which 
investigates control strategies adopted during parabolic flight on NASA's KC-135 
microgravity aircraft. Control strategies from the underwater experiments and the KC- 



135 experiments will be compared and techniques for underwater adaptation will be 
evaluated based on subjects performance. 

PROCEDURES 

If you volunteer to participate in this study, we would ask you to do the following things: 

For subjects participating in the 1-G "rolling" portion of the study: 
Preparation: 

You will lie on a rolling platform, similar to a "mechanic's creeper" and will be 
lightly strapped down 
You will be instructed where the sensors are that you will be interacting with 

Acclimation: 
You will be given the opportunity to move yourself around using your arms and 
legs to push and pull yourself around while you get used to moving on the rolling 
platform 

Experiment: 
You will be asked to move your body along a small course made up of 3-4 
sensors. You will use the sensors as restraints to pull and push yourself from one 
sensor to the next. 
The course will be repeated approximately 5 - 10 times. 
After completion of the course trials, you will be asked to perform a series of 
prescribed body motions including push-offs and landings. 

For subjects participating in the underwater portion of the study: 
Preparation: 

You will be briefed on all risks associated with SCUBA diving 
The investigators will review emergency procedures 
You will don a SCUBA mask, weight belt, ankle weights and small inflatable 
snorkeling vest 
You will put a SCUBA regulator in your mouth from a tank sitting on the pool 
deck (this setup is known as a "hookah") 
You will next enter the water with 2 investigators. The investigators will work 
with you to adjust the weights on the weight belt and on your ankles to make you 
neutrally buoyant (neutrally buoyant means that you neither sink nor float). 

Acclimation: 
You will be given the opportunity to swim at the bottom of the pool while using 
the hookah. 
You will be given as much time as you need to feel comfortable with ear 
equalization and breathing using the hookah. 

Experiment: 



You will be asked to move your body along a small course made up of 3-4 
sensors. You will use the sensors as restraints to pull and push yourself from one 
sensor to the next. 
The course will be repeated approximately 5 - 10 times. 
After completion of the course trials, you will be asked to perform a series of 
prescribed body motions including body twists, limb extensions and push-offs and 
landings. 

All experiment operations will take place at either the Alumni pool or the Z-center pool 
at MIT. The entire experiment will take approximately 2 hours to complete. 

POTENTIAL RISKS AND DISCOMFORTS 

The only risks involved in this study are those associated with SCUBA diving in shallow 
(less than 15 feet) of water. There are no risks or discomforts associated with the sensor 
hardware. 
In any SCUBA diving environment, divers are exposed to risks and discomforts relating 
to pressure differentials. Subjects may feel discomfort when descending due to blockages 
in their inner ears. In extreme conditions, subjects may rupture an eardrum if the 
blockage is severe. 
When working underwater, there is always a risk of drowning if subjects inhale sufficient 
amounts of water. 
While this study will be carried out in less than 15 feet of water, there is still a small risk 
of subjects incurring over-expansion injuries. These can occur if a subject is breathing 
regulated (high pressure) air underwater, holds his/her breath and quickly swims to the 
surface. 
As a safety precaution, two Wly trained SCUBA divers will accompany the subject 
during the experiment. Each SCUBA diver will have a spare breathing regulator and will 
be ready to assist the subject in the event of an emergency. 
If at any time during the study any investigator feels that the subject has become 
uncomfortable underwater to the point where the subject's safety is in jeopardy, the 
investigators may terminate the subject's participation in this study. 
For subjects performing only the 1-G ''rolling" study, there are no inherent risks. 

POTENTIAL BENEFITS 

Other than accumulating SCUBA experience, subjects are NOT anticipated to benefit 
directly from participating in this study. 

Understanding the control strategies of astronauts is central to the development of 
countermeasures that will allow humans to conduct extended space exploration missions. 
This study is designed to reveal the typical control strategies that humans adopt in a 0-G 
setting and will hopefully lead to new countermeasure development. 



PAYMENT FOR PARTICIPATION 

Subjects will NOT be paid for participating in this study. 

CONFIDENTIALITY 

Any information that is obtained in connection with this study and that can be identified 
with you will remain confidential and will be disclosed only with your permission or as 
required by law. 

Video taping will be only used to back out joint angles. Several video cameras will 
record the subject's motions and custom software will be used to extract the joint angles. 
If possible, the cameras will be setup to exclude the subjects' faces from the video. 
Furthermore, all subjects will be wearing SCUBA masks and regulators, so subject 
recognition will be extremely difficult, even if video cameras happen to capture subjects 
faces. In the event that a subject is recognizable, the video will be altered to obscure the 
identity. The anonymity of the subjects will be fully preserved. 

Following the experiment, force and joint angle data will be stored on lab hard drives and 
on CDIDVD's. All video from which subjects can be recognized will be destroyed. 

IDENTIFICATION OF INVESTIGATORS 

If you have any questions or concerns about the research, please feel free to contact: 

Principal Investigator: Professor Dava Newrnan 
dnx~inan-@~~.it!.edu 
61 7-258-8799 

Co-Investigator: Philip Ferguson 
pLjMf@mj!.e&k 
61 7-253-5487 

EMERGENCY CARE AND COMPENSATION FOR INJURY 
In the unlikely event of physical injury resulting from participation in this research you 
may receive medical treatment from the M.I.T. Medical Department, including 
emergency treatment and follow-up care as needed. Your insurance camer may be billed 
for the cost of such treatment. M.I.T. does not provide any other form of compensation 
for injury. Moreover, in either providing or making such medical care available it does 
not imply the injury is the fault of the investigator. Further information may be obtained 
by calling the MIT Insurance and Legal Affairs Ofice at 1-617-253 2822. 

RIGHTS OF RESEARCH SUBJECTS 



You are not waiving any legal claims, rights or remedies because of your participation in 
this research study. If you feel you have been treated unfairly, or you have questions 
regarding your rights as a research subject, you may contact the Chairman of the 
Committee on the Use of Humans as Experimental Subjects, M.I.T., Room E32-335,77 
Massachusetts Ave, Cambridge, MA 02139, phone 1-617-253 6787. 



I SIGNATURE OF RESEARCH SUBJECT OR LEGAL REPRESENTATIVE I 
I understand the procedures described above. My questions have been answered to my 
satisfaction, and I agree to participate in this study. I have been given a copy of this 
form. 

Name of Subject 

Name of Legal Representative (if applicable) 

Signature of Subject or Legal Representative Date 

SIGNATURE OF INVESTIGATOR I 
In my judgment the subject is voluntarily and knowingly giving informed consent and 
possesses the legal capacity to give informed consent to participate in this research study. 

Signature of Investigator Date 



H.2 Underwater Subject Selection Questionnaire 

Subiect Selection Ou-nnaire 

Micromavitv Investigations of Crew Reaction in 0-G - Underwater 

Please answer all questions. 

1. Are you SCUBA Certified (circle one)? YES NO 

2. When was your last dive? 

3. Have you consumed any alcohol in the last 24 hours (circle one)? YES NO 

If so, please indicate how much: 

4. Have you consumed drugs of any kind (i.e. muscle relaxants, decongestants, pain relievers or other 

prescription, over the counter or illicit drugs) in the last 24 hours (circle one)? YES NO 

If so, please indicate what kind of drugs: 

5. Are you comfortable using SCUBA equipment (circle one)? YES NO 

6. Are you aware of the over-expansion risks associated with SCUBA diving (circle one)? YES NO 

7. Do you consider yourself to be a competent swimmer (circle one)? YES NO 

8. Have you had a head cold within the past week (circle one)? YES NO 

9. Are you capable of equalizing your ears (circle one)? YES NO 

10. In the event of an emergency in 15 feet of water where you cannot inhale, please describe what 

actions you would take: 
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