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ABSTRACT 

Arterial remodeling is a major pathophysiological mechanism underlying clinical cardiovascular 
disorders such as hypertension, atherosclerosis and restenosis. We examined heparan sulfate 
proteoglycan homeostasis as a mechanism of regulation of arterial vascular remodeling in 
response to altered mechanical environments such as hypertension and injury. We first studied 
the effect of in-vitro mechanical strain on the ability of endothelial cells to inhibit vascular 
smooth muscle cell proliferation. Under these conditions we found mechanical strain increased 
endothelial inhibition of smooth muscle cell proliferation through increased production of 
heparan sulfate proteoglycans. Using inhibitors to p38 MAPK and ERK, we showed that 
activation of both of these pathways was essential for load-induced heparan sulfate production, 
TGF-31 activation, smad-2 activation and increased FGF-2 uptake. Further, we exposed cells to 
strain in the presence of a neutralizing antibody to TGF-31 and demonstrated that autocrine TGF- 
PI signaling was essential for load-induced HSPG production and sustained p38 MAPK and ERK 
activation. We also examined the endothelium of spontaneously hypertensive rats using 
immunohistochemical staining for heparan sulfate proteoglycan core proteins, TGF-p1 and 
phosphorylated signaling intermediates and found results that correlated well with our in-vitro 
experiments. Taken together these results imply a novel paradigm of vascular remodeling to 
mechanical stimuli in which net arterial remodeling is controlled by the dynamic interplay 
between pro-growth signals from vascular smooth muscle cells and anti-growth signals from 
endothelial cells. 

In a second portion of this work, we examined the role of heparanase in vascular remodeling. 
Using siRNA gene silencing and overexpression techniques, we showed that alterations in 
heparanase expression lead to a profound modulation in endothelial inhibition of vascular smooth 
muscle cell proliferation. In vivo, we quantified heparanase expression in animal models of 
hypertension, vascular disease and injury. Immunohistochemical analysis of the aortae of 
hypertensive rats revealed an increase in endothelial production of heparanase that strongly 
correlated with increased aortic structural remodeling. Studies of vascular injury with stenting in 
the Zucker rat model of diabetes showed a relationship between neointimal heparanase expression 
and lesion thickness. Our results define a new role for heparanase as a key molecular controller 
of vascular remodeling in diverse disease states. 

Thesis Supervisor: Elazer R. Edelman 
Title: Thomas D. and Virginia W. Cabot Professor, Division of Health Sciences and Technology 
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Chapter 1 : Introduction 

The vascular endothelium is comprised of a single layer of cells situated between 

the blood and the solid tissues of the body. In recent years, this thin layer of cells has 

been shown to be a dynamic constituent of the vascular system, exerting remarkable 

control over such diverse process as hemostasis, inflammation, and regulation of vascular 

tone. As a consequence of its unique location, the vascular endothelium is exposed to a 

distinct mechanical environment consisting of hemodynamic shear stress and mechanical 

stretch from blood pressure. Vascular homeostasis requires that endothelial cells must 

respond to their mechanical environment and regulate appropriate changes in arterial 

structure. In this work, we examine the role of heparan sulfate proteoglycans in the 

control of vascular remodeling. 

Previous work has found that heparan sulfate proteoglycans are powerful, 

ubiquitous sensors of cardiovascular injury and mediators of cardiovascular health. 

These complex molecules are composed of a core protein covalently coupled to one or 

more heparan sulfate glycosaminoglycan chains. The heparan sulfate chains consist of a 

linear polymer of alternating disaccharide units heterogenenously modified by 

epimerization, deacetylation, and sulfation[l] to create an intricate molecular structure 

with an information capacity far exceeding that of nucleic acids [2]. Heparan sulfate is 

known to interact with a wide variety of proteins ranging from growth factors and 

cytokines to various enzymes and extracellular matrix molecules [3,4]. 

Endothelial cells are known to be the major source of extracellular HSPG in 

arteries. The large extracellular proteoglycan perlecan has been has been shown to be a 

potent inhibitor of vascular smooth muscle cell proliferation [5] and a key component in 
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endothelial control of vSMC proliferation[6]. In addition to perlecan, endothelial cells 

and vSMCs express several cell surface HSPG including transmembrane proteoglycans 

syndecan-1, -2, and -4 as well as glypican-l[7]. The syndecans have been shown to be 

important in stabilizing the binding of FGF-2 to the FGFR and serve as a low affinity 

receptor for FGF capable of independent signaling[8-1 01. In addition, the syndecans also 

have an emerging role in cell adhesion, cytoskeletal arrangement, and intracellular 

signaling [ 1 11. 

In this thesis, we examined heparan sulfate proteoglycan homeostasis as major 

mechanism of endothelial regulation of arterial vascular remodeling. We first examined 

the role of mechanical forces in regulating the endothelial inhibition of vSMC 

proliferation and explored two potential mechanisms including the regulation of heparan 

sulfate proteoglycans and activation of TGF-B 1 under mechanical strain condidtions. 

Through these studies we discovered that autocrine TGF-B 1, ERK112 and p38 MAPK 

were required for the increased production of perlecan induced by mechanical strain. 

Further we examine the aortae of hypertensive animals and immunostained for various 

components suggested by our in-vitro work. 

While heparanase has received much attention as an enzyme involved in 

angiogenesis and cancer metastasis, its role in macrovascular disease and remodeling is 

relatively unexplored. To examine the role of heparanase expression in the vascular 

system we developed methods to knock-down and overexpress heparanase in endothelial 

cells. Further we examined heparanase expression in several models of vascular disease 

and injury. Our results supports the hypothesis that heparanase represent a key control 

point of vascular remodeling in diverse disease states. 
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Chapter 2: Background 

Vascular Wall Mechanics and Remodeling 

A short review of vascular 

anatomy is essential in understanding the 

mechanics of large vessels. The aorta is 

an elastic artery consisting of three major 

layers: the tunica intima, the tunica media 

and the tunica adventitia (shown in Figure 

1 [I 21). In non-injured, non-diseased 

arteries the intima consists of the 

endothelium and its underlying basement 

membrane. In injury and disease, vascular 

smooth muscle cells and immune cells 

migrate to form the neointima. The media 

consists of vascular smooth muscle cells Figure 1. Histologic slide of typical arterial 
structure [12]. 

and organized layers of elastin known as the elastic laminae. These laminae give the 

aorta its characteristic elastic properties. The adventitia is composed of collagen and 

elastin with the appearance of loose connective tissue. 

The vascular system is unique in its function of maintaining the regulated 

separation of blood components from the solid tissue of the body. As a consequence of 

this unique location, blood vessels are exposed to hemodynamic stresses from blood flow 
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and pressure. On the simplest level the artery can be considered an isotropic thin-walled 

vessel, leading to the familiar constitutive relationship: 

where q, is hoop (circumferential) strain, is hoop stress, p is transmural pressure, E is 

Young's modulus, r is vessel radius, and t is vessel thickness. In actuality, the stress- 

strain relation in arteries must account for the vessel anisotropy, vascular smooth muscle 

tone, and nonlinear elastic relations of vessel components [13]. Vascular cells are also 

subjected to wall shear stresses resulting from fluid flow. The simplest model of vascular 

flow would be to assume laminar, steady fluid flow governed by Poiseuilles Law (shown 

in Figure 2 below) with a parabolic fluid velocity regime. Actual fluid flow in arteries is 

made more complex by pulsatility, alterations in viscosity with fluid velocity, and the 

elasticity of the arterial wall. 

Range of Wall Shear Stress Magnitude 

Shear Stress, dyne/cm2 

Figure 2. Shear stress in the vascular system A) simplified view of the arterial shear stress 
profile. B) Magnitude of shear stress in various vascular conduits [12]. 
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Vascular remodeling represents both a normal healthy response to the body's 

changing hemodynamic needs and an underlying mechanism fundamental to most 

vascular disorders. There is a spectrum of vascular response depending on the stimulus 

and underlying disease processes (illustrated in Figure 3). While various cell types can 

participate in the remodeling process, endothelial cells are particularly well positioned to 

control these processes. Endothelial cells are able to control vascular tone, smooth 

muscle cell growth, immune cell adhesion and invasion, and are directly exposed to the 

hemodynamic and chemical milieu of the blood. Thus these cells are optimally situated 

as both sensors and effectors of the vascular remodeling process [14]. 

Shear stress from fluid flow is a powerful modulator of arterial remodeling. The 

vascular system normally maintains a shear stress of about 10- 15 dynes cm'  on the 

vascular wall regardless of location within the vascular tree [15]. One model used to 

CONCENTRIC ECCENTRIC PATHOLOGIC 
Hy~erPlasia/HyPertro~y Matrix Alignment Healing 

Figure 3. Types of vascular remodeling (adapted from [14]). 
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study this phenomema is the arteriovenous fistula which allows the flow rate to be 

increased by a factor of 8 within an artery. In response to this stimulus the vessel 

remodels by increasing its diameter, both through vascular smooth muscle cell relaxation 

and matrix remodeling involving matrix metalloproteases (MMPs) [16]. Blood pressure 

causes circumferential stress on the artery and likewise has a strong influence on arterial 

remodeling. Similar to shear stress, the physiology of the body maintains an 

approximately constant value (around 2. lo6 dynes cm") of circumferential stress 

independent of location in the arterial tree. The vessel maintains this stress by regulating 

the thickness of the artery through vascular smooth muscle hypertrophy, proliferation and 

matrix synthesis [ 151. 

Clinically, arterial stiffhess increases with age and various disease states. These 

disease states themselves are associated with increased cardiovascular risk, so a 

fundamental question is whether stiffhess is a marker or a direct causal agent in the 

development of vascular disease [17]. Recent studies have shown that components of the 

extracellular matrix can directly affect the development of hypertension, supporting a 

direct role for arterial stiffhess in modulation of blood pressure [18]. 
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Vascular Cell Mechanotransduction 

Underlying the vascular response to mechanical stimuli is the fundamental 

biochemical mechanisms that govern the ability of cells to sense and respond to 

mechanical stimuli. Molecular mechanisms of cell signaling in response to mechanical 

stimuli have been the subject of an extensive amount of research (reviewed in [19] and 

[15]). Many receptors have been found to be responsive to mechanical stimuli in 

vascular cells (shown in Figure 4). One of the receptor types that has become 

synonymous with cell adhesion and mechanotransduction is the integrin family of 

receptors. These cell surface molecules exist as a dimer of an a and subunit. Each of 

these pairings has a binding target in the extracellular matrix (e.g. a5P1 for fibronectin). 

Integrins can become activated by binding their respective ligand and clustering. When 

activated, integrins bind into a focal adhesion complex consisting of several proteins 

11 - lull hmnwt I 

Figure 4. Molecular mechanisms of mechanotransduction [I 51. 
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including vinculin, talin and a-actinin (Figure 5) [20]. When cells are stimulated with 

mechanical force, integrin clustering leads to activation of focal adhesion kinase (FAK) 

[2 1-23lthrough c-Src [24]and possibly Rho A [25,26]. Many studies support the 

involvement of mitogen-activated protein (MAP) kinase cascades in the 

mechanotransduction process. Cyclic stretch has been shown to activate ERK112 and 

JNK pathways in vascular smooth muscle cells both in-vitro [27] and in-vivo [28]. The 

p38 MAPK has also been implicated in the response to cyclic stress [29] and fluid shear 

stress [30]. The mechanistic step between FAK activation and MAPK or other cell 

signaling pathways remains elusive. Many pathways have been implicated but are highly 

dependent on the model of mechanical load being used. These include activation of G 

Ten si, , 

Figure 5. Molecular components of a focal adhesion complex [20]. 
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proteins [19,3 11, receptor tyrosine kinases [32], epidermal growth factor receptor [33] 

and generation of reactive oxygen species [29]. 

Multiple transcription factors have been implicated in the response of vascular 

cells to stretch and shear stresses. Elevated activity of NF-KB and associated genes has 

been found in-vitro and in regions of disturbed flow in-vivo [34,35]. The transcription 

factor KLF2 has also been implicated in flow response and proinflammatory activation 

[36,37]. Depending on the load conformation and cell type, other transcription factors 

have been found to be involved in the regulation of mechanosensitive genes including 

Egr- 1, Sp 1 [3 8-40], and members of the AP- 1 family [4 11. 

TGF-ff in the Vascular System 

In this thesis we examine the role of transforming growth factor beta (TGF-p) in 

the mechanotransduction process and the control of heparan sulfate proteoglycan 

production. Transforming growth factor beta (TGF-p) is a cytokine with diverse 

functions including the regulation of proliferation, differentiation and survival of many 

cell types [42]. Specifically, TGF-p has been shown to play an essential role as a 

modulator of angiogenesis [43,44], tumor growth [45,46], and many diseases [47,48]. 

A defect in TGF-p signaling has been linked to a hereditary vascular disorder known as 

Hereditary Hemorrhagic Telangiectasia or HTT [49,50]. 

TGF-p is disulfide linked homodimeric protein that is made in latent form and 

activated by cleavage of a C-terminal polypeptide. This cleavage can occur through 

multiple mechanisms including proteolytic cleavage by MMPs or plasmin [5 1,521, 

interaction with thrombospondin [53], integrins [54], reactive oxygen species [55], low 
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pH [56] or heparan sulfate [57]. TGF-6 signaling occurs through a heteromeric complex 

of transmembrane serinelthreonine receptors (shown in Figure 6). This complex consists 

of a high affinity type I1 receptor which binds to TGF-6 and then recruits a type I 

receptor leading to autophosphorylation of the type I receptor and Smad proteins [58, 591. 

Smads are the classical downstream effectors of TGF-6 signaling and the question of 

how these molecules regulate specific genes is the subject of active research [60]. Smads 

alter transcription through several mechanisms. Firstly, Smads can form a heterotrimeric 

complex which can translocate to the nucleus and serve directly as a transcription factor 

[5 8 ,6  11. Smads can also affect transcription through Smad interacting transcription 

factors. These transcription factors have high affinity to a specific sequence of DNA in 

the gene regulatory region. Smad 2 through 4 have been shown to bind DNA with a less 

stringent sequence requirement than typical transcription factor and can consequently 

serve to enhance gene transcription if an appropriate Smad-binding region is in proximity 

to the binding sequence of the interacting transcription factor [58, 591 (for a summary of 

interacting transcription factors see [60]). Of particular interest to this work is the fact 

that when Smad 3 interacts with Spl and c-Jun the binding affinity of these factors 

increases [62,63]. Smad-Sp 1 interactions have been show to activate TGF- p induced 

genes including PAI- 1, collagen, integrin 65, and Smad 7 [60]. 

Other signaling pathways have also been implicated in TGF-p signaling. 

Specifically, TGF-6 has been shown to activate ERK [58, 591 and p38 MAPK [64]. 

Cross talk occurs through a signaling intermediate interaction with the Smads in the 

MAPK, Akt, JNK, and cyclin dependent kinase signaling networks (reviewed in [60]). 
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Figure 6. TGF-p Signaling Pathway [60]. 

Heparan Sulfate Proteoglycans in the Endothelial Control of 

Vascular Smooth Muscle Cell Biology 

In order to control vascular remodeling, endothelial cells secrete a number of 

compounds that modulate smooth muscle cell growth and proliferation. In this work we 

examined heparan sulfate proteoglycans and TGF-p, two potent modulators of vascular 

smooth muscle that have been shown to interact and underlie endothelial inhibition of 
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smooth muscle cell proliferation. In culture, postconfluent endothelial cells inhibit 

vascular smooth muscle proliferation whereas subconfluent cultures do not [65-691. 

Heparin and heparan sulfate have been shown to inhibit neointimal proliferation in 

animal models of vascular injury and disease [70-751. This inhibition is dependant on 

heparan sulfate proteoglycans but also requires a protein component [6]. In this section 

we review the relevant aspects of heparan sulfate proteoglycans and their role in the 

vascular system. 

Heparan Sulfate Proteog lycans 

Heparan sulfate proteoglycans consist 

core protein covalently linked to one or more 

heparan sulfate gl ycosaminogl ycan chains. The 

heparan sulfate chains consist of a linear polymer 

of alternating disaccharide units heterogenenously 
Figure 7. Molecular structure of heparan 

modified by epimerization, deacetylation, and sulfate glycosarninoglycan chain [76]. 

sulfation [I] to create an intricate molecular structure (shown in Figure 7) with an 

information capacity far exceeding that of nucleic acids [2]. Heparan sulfate is known to 

interact with a wide variety of proteins ranging from growth factors and cytokines to 

various enzymes and extracellular matrix molecules [3,4]. In particular, its structure is 

similar to that of the common anticoagulate drug heparin, but is less modified by 

sulfation. 

The synthesis of HSPGs is complex and not fully understood. Proteins are 

targeted for glycoslysation in the transgolgi by having a particular amino acid sequence 

Ser-Gly (A1a)-X-Gly (Ala). This site accepts an initial tetrasaccaride synthesized by four 
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Figure 8. The biosynthesis of heparan sulfate [77]. 

enzymes [78]. Heparan sulfate synthesis is initiated by the heparan sulfate copolymerase 

that adds glucuronic acid and N-acetylglucosamine to produce the initial heparan sulfate 

structure (Figure 8). This initial chain is then heterogeneously modified by deacetlyation, 

epimerization and sulfation to create a intricate fine structure [79]. 

In the vascular system heparan sulfate is found on several core proteins including 

the perlecans, glypicans, and syndecans. Perlecan is a large heparan sulfate proteoglycan 

found in the basement membrane. In humans it is the product of the HSPG2 gene with a 

molecular weight of 470 kDa and approximately 800 kDa after post-translational 

glycoslyation [3]. It has a modular structure possessing a myriad of interactions with 

growth factors, extracellular matrix molecules and adhesion molecules (Figure 9). Its 

name is derived from its "pearls on string" appearance under rotary shadowing electron 

microscopy [80]. In the vascular system perlecan has been shown to have a role in 

angiogenesis, atherosclerosis and vascular injury [5, 8 11. 
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Figure 9. Structural domains of perlecan [3]. 

The syndecans are a family of transmembrane heparan sulfate proteoglycans 

found on the cell surface and shed in a soluble form (reviewed in [77]). Each syndecan 

consists of an extracellular domain that contains glycosaminoglycan attachment sites, a 

single pass transmembrane domain, and a short cytoplasmic domain with multiple 

phosphorylation sites. The heparan sulfate and chondrointin sulfate glycosaminoglycan 

chains allow syndecans to interact with a large number of ligands including FGF-2, 

VEGF, PDGF and TGF-fl [ l  11. The interaction of syndecans with FGF-2 is probably the 

most characterized of these interations. Syndecans and the attached heparan sulfate 

proteoglycan are essential for effective binding and signaling of the FGF receptor [82]. 

On the cell surface syndecans stabilize the FGF-2lFGFR complex and are essential for 

effective signaling [82]. When shed from the surface, syndecan-1 can inhibit FGF-2 

induced cell proliferation [83]. However, physiologic degradation of syndecan by 

heparanase may lead to heparan sulfate fragments that enhance FGF-2 signaling [84]. 

Syndecan-4 has also been shown to interact with FGF-2 and promote FGF-2 signaling 

[9]. Recent work has also found that syndecans can act independently of the FGF 

receptor to act as a transmembrane receptor of FGF [8]. 
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Transforming growth factor-p (TGF-p) has been shown to interact with the 

heparan sulfate chains on syndecans. Syndecan-2, in particular, has been shown to 

interact with TGF-p via a protein-protein interaction [85]. The exact nature and role of 

this interaction is complex and still remains to be elucidated. The presence of syndecan-2 

may serve to compete with betaglycan (TGF receptor type 111) for the binding of 

synectin. Synectin stabilizes betaglycan on the cell surface and, consequently, syndecan- 

2 may serve to reduce signaling in the TGF pathway [ l  1, 851. 

The syndecans have an intricate role in orchestrating development and are known 

to be involved in cell-cell and cell-matrix adhesion. Syndecan-1 has been shown be 

important for cell adherence to type-I collagen [86]. In addition, syndecan- 1 stabilizes 

the interactions of vitronectin with avp3 integrin [87]. During migration syndecan- 1, 

syndecan-4 and calveolin are directed to the region of cell contraction [88-901. 

Syndecan-4 has also been shown to be an essential component for the activation of focal 

adhesion kinase and is known to bind fibronectin with its heparan sulfate chains [91-931. 

In vascular smooth muscle cells exposed to shear stress syndecan-4 has been shown to 

dissociate from focal adhesions [94]. 

Several studies have revealed differential regulation of syndecans by various 

growth factors and cytokines. Fibroblast growth factor-2 (FGF-2) has been shown to 

increase syndecan-4 expression in vascular smooth muscle cells [95]. Arterial injury and 

myocardial infarction have also been shown to increase syndecan-4 expression [94,96, 

971. Stimulation with tumor necrosis factor-a (TNF-a) increases syndecan-2 expression 

and decreases syndecan- 1 in endothelial cells [%I. Transforming growth factor p2 

increases syndecan-4 and decreases syndecan- 1 in epithelial cells [99]. 
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Figure 10. Heparanase cleavage site within heparan sulfate and associated molecules 

released by heparan sulfate degradation [loo]. 

Heparanase in Cancer, Angiogenesis and Vascular Disease 

A major goal of this thesis is to examine the role of heparanase in vascular 

remodeling. Heparanase is an endo-beta-D-glucuronidase that cleaves at a particular site 

in heparan sulfate to create fragments that are 10-20 sugar units long and still biologically 

active [84, 10 1 - 1031 (Figure 10). While the presence of heparanase-like activity has been 

known for decades, the gene for heparanase was cloned independently by two groups in 

1999 [1O4, 1051. Tight regulation of heparanase activity is essentially due to the potential 
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tissue damage that could result from widespread HSPG degradation. The enzyme is 

synthesized as a 65 kDa zymogen which is cleaved into the active 50 kDa form [1O5]. 

The exact regulator of this process is unknown but may potentially include cytokines, 

local pH, cellular localization and a membrane bound protease [ 1 061. 

Heparanase is known to be involved in the metastasis of cancer [loo]. 

Degradation of heparan sulfate is an essential step in the extravagation of cells in the 

blood [ 107- 1 131. Heparanase expression correlates strongly with metastasis of cancers 

cells [ 102, 104, 1 10, 1 141 and heparanase inhibitors significantly reduce the metastatic 

potential of cells in experimental models [ 109, 1 10, 1 151. A recent paper has shown that 

inhibiting heparanase expression using gene silencing techniques reduced metastatic 

potential of cancer cells and inhibited tumor angiogenesis [116]. Sulfated polysaccarides 

have been shown to inhibit heparanase (as well as having other activities) and have also 

been shown to inhibit cancer metastatis [110]. 

Heparan sulfate and heparanase are also known to play an essential role in 

angiogenesis. Heparanase expression increases during endothelial cells undergoing 

angiogenesis versus mature vessels [102]. Further, wound vascularity is enhanced with 

the topical administration of heparanase [102]. The mechanism behind this relation is 

though to be the release and induction of angiogenic growth factors by heparanase [102]. 

While there exists a large body of work examining the role of heparanase in 

cancer, there are only a limited number of studies that have addressed the role of 

heparanase in macrovascular biology. Specifically, it has been shown that heparanase- 

like activity in combination with matrix metalloprotease-9 (MMP-9) is important for a 

phenotypic change in vascular smooth muscle cells induced by macrophages [117]. 
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Other studies have shown that platelet-derived heparanase can release FGF-2 from the 

extracellular matrix and lead to vSMC proliferation and migration both in-vivo and in- 

vitro [118, 1191. 
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Chapter 3: Regulation of Heparan Sulfate Proteoglycans 

by Mechanical Strain 

It is the goal of this portion of the thesis to understand some of the basic 

mechanisms that control the vascular response to hemodynamic stimuli. Mechanical 

stress has both positive and negative effects on the artery. The negative effects are 

illustrated by the clinical outcomes of hypertension including increased risk of stroke and 

myocardial infarction. Hypertension induces the production of reactive oxygen species 

and pro-inflammatory factors and has increased plaque formation in animal models [120]. 

In contrast, mechanical stress also has beneficial effects in terms of atherosclerotic 

disease. Atherosclerotic plaques are found to form more frequently in arterial regions of 

disturbed flow or low shear stress when compared to arterial regions of steady laminar 

flow [12 11. High shear stress is known to be a key mediator of this effect by inducing 

NO synthesis [ 1221 and attenuating VCAM expression [ 1231. In contrast, oscillatory 

shear stress causes endothelial cells to express cell surface adhesion molecules and 

soluble factors that enhance leukocyte recruitment [ IN].  

The specific aim of this section is to identify the role of mechanical stimuli in the 

endothelial production of inhibitory factors towards vascular smooth muscle cells. This 

aims to give insight into the fundamental mechanisms by which vascular remodeling is 

orchestrated by endothelial cells. This work was begun with a simple experiment 

directed at finding whether mechanical strain served to increase or decrease endothelial 

inhibition of vascular smooth muscle cells. After identifying two inhibitory molecules 
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that were modulated by mechanical load we then examined several potential 

mechanotransduction pathway that were responsible for regulating these alterations. 

Methods 

Cell Culture. Rat vascular smooth muscle cells (RVSMCs) and bovine aortic 

endothelial cells (BAECs) were isolated from fresh bovine or rat aortae. These cells were 

cultured in Dulbecco's Modified Eagle's Medium (DMEM; Invitrogen, Carlsbad, CA) 

supplemented with 5% calf serum (Hyclone, Logan UT) and 100 units per ml of 

penicillin, 100 pg per ml streptomycin sulfate, and 2 mM L-glutamine. Human umbilical 

vascular endothelial cells (HUVECs, Cambrex, Walkersville, MD) were grown in 

DMEM with 5% fetal bovine serum (Hyclone) and EGM-2 supplements (Cambrex). All 

smooth muscle cells were used at passages 4 to 5 and all endothelial cultures were used at 

passages 3 to 5. All cells were incubated at 37OC in a humidified atmosphere containing 

5% co*. 

Mechanical Strain Application to Cultured Cells. The device to apply mechanical 

strain to cells has been described previously (shown in Figure 1 1 and Figure 12) [125]. 

This device was kindly loaned to us by Professor Martha Gray at MIT. Essentially, this 

device applies load by pushing a piston through the bottom of a custom culture plate with 

a flexible silastic membrane as a culture surface. A major advantage of this system over 

the commercially available Flexcell system is it creates a uniform strain field across most 

of the silastic membrane [126]. The Flexcell, however creates a heterogeneous strain 

field with both compressive and tensile regions. The maximal strains from studies using 
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this device are actually averages of this entire field. Consequently, a 20% maximal strain 

reported from this device represents a range of actual strains on cells. 
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Figure 11. Diagram of mechanical device for applying strain to cells in-vivo [127]. 
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Figure 12. Photograph of mechanical device for applying strain to cultured cells. 



We developed a notable addition to the use of this device by creating a 

manufacturing process for creating disposable cell culture inserts with silastic membrane 

culture surfaces. This allowed us to create many culture inserts and enabled simultaneous 

preparation of cell culture plates to allow faster serial runs with the mechanical loading 

device. The original culture inserts were sprayed with silicone mold release and molded 

using silicone rubber (Smooth Sil950, Smooth-On, Inc., Easton, PA). The mold was 

cured overnight and the original part cut free of the mold. The culture inserts were then 

cast using Smooth-Cast 300 polyurethane plastic and post-cured overnight at 50Â°C 0- 

rings were created using 3/32" Buna-N o-ring cord (part #ORBK-015, Small Parts, 

Miami Lakes, FL) to match the original o-rings. The silicon membranes (0.005" 

nonvulcanized rubber, gloss/gloss finish; Specialty Manufacturing, Inc., Saginaw, MI) 

were mounted into the inserts and secured using silicon sealant (Superflex Clear RTV, 

59530; Loctite, Rocky Hill, CT). The silastic membranes were sprayed twice with 70% 

ethanol and sterilized overnight under a germicidal UV lamp. The inserts were then 

coated with collagen by incubating the membranes with 10 ml of a 50 pglml solution of 

collagen I in phosphate buffered saline (BD Biosciences, San Jose, CA) containing 

penicillin and streptomycin for 48 hrs at 37OC. The membranes were then washed twice 

with PBS and endothelial cells were passaged onto the plate at a 1 :4 density from 

confluence. The cells were grown to confluence and kept in this state for 2 days prior to 

performing the experiment. Endothelial cells were grown on the collagen-coated silastic 

membranes and cyclic mechanical strain was applied with maximal strain of 3% or 5% 

and frequency of 1 Hz. 
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Metabolic labeling and Proteoglycan Isolation. At the time of mechanical loading, 100 

pCi of  SO^ and 80 pCi of '~-~lucosamine was added to each plate. After loading, the 

conditioned media was collected and combined with guanidine-HCl to a final 

concentration of 4 M. The cell layers were then washed three times with cold PBS then 

PBS with 1.0 mM EDTA was added and the cells were allowed to detach. The cells were 

spun down and washed with PBS twice and then resuspended in 1 ml of 0.05% trypsin- 

EDTA solution (Invitrogen, Carlsbad, CA) and placed on ice for 10 min. Mild trypsin 

digestion has been shown to isolate almost exclusively cell surface proteoglycans due to 

the high sensitivity of the syndecans to proteolysis [128]. After the trypsin digestion, the 

samples were centrifuged and 1 ml of DMEM with 5% CS was added to neutralize the 

trypsin. This solution was then brought to a final concentration of 4 M guanidine-HCl. 

Analysis of Proteoglycans. A diagram of the experimental procedures for the analysis of 

the proteoglycans is shown in Figure 13. Briefly, the isolated conditioned media and cell 

surface digests were desalted into Buffer A (20 mM Tris, 8 M Urea, pH = 8.0) using a 

HiTrap desalting column (Amersham Biosciences, Piscataway, NJ). The proteoglycans 

were separated from other proteins by fractionation on a 1 ml HiTrap Q ion exchange 

column (Amersham) with a linear salt gradient from 0 to 2 M NaCl. One rnl fractions 

were collected and aliquots of these samples were counted using liquid scintillation. 

Aliquots were subjected to digestion with 0.6 Ulml of protease free chondroitinase ABC 

(Seikagaku, Japan) for 4 hrs. Control samples were subjected to digestion conditions 
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without the addition of enzyme. The GAG fractions were pooled, desalted, and subjected 

to /^-elimination in 0.1 M NaOH and 1 M NaBH4 at 40 O C  for 24 hrs. The solution was 

then neutralized with 50% acetic acid and the GAGS separated from protein by Q column 

chromatography. The free GAG chains were separated by gel filtration chromatography 

on a Superose 12 column (Amersharn) using Buffer A with a flow rate of 0.4 mllml. 

Fractions were taken throughout the run using 0.5 ml fractions and were counted using 

liquid scintillation. 
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Figure 13. Flow diagram for analysis of glycosarninoglycans. C.ase = Chondroitinase. Size Excl. Chrom. = 

Size Exclusion Chromatography. Ion Exchange Chrom. = Ion Exchange Chromatography. 
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Cell Lysis and Western Blottingm Cells exposed to various treatments were placed on 

ice and washed twice with cold PBS. One ml of lysis buffer containing 20 mM Tris, 150 

mM NaCl, 1% Triton X- 100, 1% deoxycholate, 0.1% SDS, 1 mM sodium orthovanadate, 

50mM NaF, 2 mM PMSF, and the standard concentration of mini-complete protease 

inhibitor cocktail (Roche, Nutley, NJ) was added to each plate. After 10 minutes of 

incubation in lysis buffer, the plates were scraped and the lysates pipetted into a 

centrifige tube. The samples were cleared by centrihgation at 14,000 g for 15 minutes 

prior to western blotting. The samples were run on 4-15% polyacrylamide gradient gels 

and transferred to PVDF membranes (Millipore, Billenca, MA). The membranes were 

blocked for 1 hr in 5% non-fat milk in PBS with 0.01% tween-20 (PBST) and exposed to 

the following antibody dilutions at 4OC overnight in 1% non-fat milk: mouse anti- 

heparanase (1 ~200; Cell Sciences, Canton, MA), mouse anti-perlecan (1 : 100; Invitrogen), 

mouse anti-Sp 1 (1 : 100; Santa Cruz Biotechnology, Santa Cruz, CA), rabbit anti-TGF-p 1 

antibody (product #G122A; Promega, Madison WI), an anti-phospho-Smad-2 

(Ser4651467; l38D4; Cell Signaling), rabbit anti-phospho-p3 8 MAPK (Thrl8OlTyrl82; 

12F8; Cell Signaling), and rabbit mti-phospho-p44142MAPK (Thr202lTyr204; 20Gll; 

Cell Signaling). The membranes were washed with PBST, incubated at room 

temperature for 2 hrs with a 1 :3000 dilution of a horseradish peroxidase linked secondary 

antibody (Promega), and detected using a chemiluminescent reagent (Western Lightning 

Plus; Perkin Elmer, Boston, MA). 

ELISA Measurement of TGF-pl and FGF-Zm TGF-p 1 was measured using an ELISA 

assay (R&D Systems, Minneapolis, MN) according to the manufacturer's instructions. 
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Latent TGF-pl was activated by adding 20 pl of 1 N HCl to 100 pl of sample. The 

samples were incubated for 10 minutes at room temperature and then neutralized with 20 

pl of 1.2 N NaOW0.5 M HEPES and assayed immediately. To extract FGF-2 fiom the 

extracellular matrix the cells were lysed and the culture plates washed three times with 

cold PBS. The PBS was removed and 10 ml of extraction buffer containing 2 M urea and 

2.5 mg/ml heparin in PBS was added. The plates were incubated 48 hours with rocking 

to extract the FGF-2 and then dialyzed against three changes of distilled water for 48 hrs. 

The dialysis was performed using a 3500 molecular weight cutoff membrane in a 

slidealzer cassette (Pierce Biotechnology, Rockport IL). The samples were then snap 

fiozen using liquid nitrogen, lyophilized, and reconstituted in 1 ml of PBS. Media 

samples were assayed without fbrther preparation. An ELISA assay (R&D Systems, 

Minneapolis, MN) was used to measure FGF-2 in the media and matrix extracts. 

Gene Expression Analysis by Real Time RT-PCR Cell were grown to confluence and 

exposed to mechanical loading as described above. The cells were washed twice with 

PBS and mRNA was isolated using a RNAeasy Mini Protect Kit (Qiagen, Valencia, CA) 

following the manufacturer's instructions. Homogenation of the samples was performed 

using QIAshredder columns (Qiagen). A DNase digestion was performed while the RNA 

was bound to the column using RNase fi-ee DNase (Qiagen). Reverse transcription was 

pefiormed using polyA primers (Applied Biosystems). Real time PCR was pefiormed 

using an MJ Research Real Time PCR Machine at MIT BioMicro Center (Cambridge 

MA) using a SYBR Green Master Mix (Applied Biosystems). Cycle conditions were as 

follows: 2 min at 50Â°C 10 min at 95OC, and 40 cycles of of 15 s at 94OC and 1 min at 
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60Â°C Primers used for the real time PCR were as follows: GMDH, 

GGCCTCCAAGGAGTAAGACC (sense, S), AGGGGTCTA CATGGCAACTG (anti- 

sense, AS); syndecan-1, AGGGGACAGGAGTC CACTTT (S), GGGGGATACCGMT 

CAACTT (AS); syndecan-2, CTCAAGGATGAC GTGGGTTT (S), GATTTCCTCTGG 

CCAATTCA (AS); syndecan-4, TCGATCCGAGAGACTGAGG T (S), CCAGATCTCC 

AGAGCCAGAC (AS); heparanase, ATCAATGGG TCGCAGTT AGG (S), AGGCTGA 

CCAACATCAGGAC (AS); perlecan, TCCACCTG AGTACCCG AAAC (S), CTGAAG 

TGACCAGGCTCCTC (AS). 

Smooth Muscle Cell Proliferation AssayD Rat smooth muscle cells were passaged into 

six-well plates at low density. Endothelial cell conditioned media was isolated and used 

in an assay of vascular smooth muscle cell proliferation. Smooth muscle cells were serum 

starved in 0.5% calf serum for 24 hours, washed with PBS, and incubated in conditioned 

media with 1 pCi/ml 3 ~ - t h ~ d i n e  for 24 hours. The cells were then washed three times 

with PBS at 4OC. The cells were then incubated with 10% TCA for 30 min at 4OC, washed 

twice in 95% ethanol, and solubilized in 1 ml of 0.25 M NaOH with 0.1% SDS for 1 

hour. The samples were then added to scintillation cocktail and radioactivity was 

measured using a liquid scintillation counter. 

StatisticsD All results are shown as mean 2 one standard deviation. An ANOVA was used 

to make comparisons between groups of continuous variables. A two-tailed Student's t 

test was used to make comparisons between groups; p < 0.05 was defined as being 

statistically significant. 
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Results 

Mechanical strains of 5% Maximal Strain are Not Cytotoxic to 
Endothelial Cells in Culture 

As these experiments were aimed at understanding the affects of chronic load and 

not acute injury and cell death, an experiment was performed to assess cell viability as a 

h c t i o n  of maximal strain. Lactate dehydrogenase (LDH) is an intracellular enzyme that 

is constitutively expressed by virtually all cell types. The release of this enzyme fiom the 

cell indicates that the cell membrane integrity has been compromised and that cell 

damage has occurred. The release of this enzyme in response to mechanical load was 

measured under experimental conditions at various maximal strains. In HUVEC there is 

little release of LDH into the conditioned media at I%, 3%, or 5% maximal strain (1 hz 

for 24 hrs) and a significant increase at 8% strain (see Figure 14). These results support 

that the effects of mechanical load were not fiom cell death or injury as there was no 

substantial increase in LDH release after 24 hours of load of 5% stain or less (2.6% 

2.6% increase in LDH release, n = 4). 
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Figure 14. Lactate dehydrogenase (LDH) release relative to static cultures in response to 
mechanical strain. 
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Mechanical Strain Increases Endothelial Inhibition of Vascular 
Smooth Muscle Cell Proliferation 

A fundamental question that we would like to address is whether mechanical 

strain causes endothelial cells to produce more or less inhibitory factors in response to 

mechanical stimuli. To explore the role of mechanical strain in modulating endothelial 

cell control of vascular smooth muscle cells, endothelial cells were grown on silastic 

membranes until 2 days postconfluent and then exposed to uniform, cyclic mechanical 

strain (5% maximal strain, 1 Hz) for 24 hrs. Conditioned media was harvested from 

endothelial cells under strain and non-strain conditions, and applied to vascular smooth 

muscle cells in culture. Proliferation of the vSMCs was measured using incorporation of 

radiolabeled thymidine. Cyclic mechanical strain increased the inhibitory properties of 

HUVEC conditioned media by two fold over the inhibition from non-strained HUVEC 

cultures (80% total inhibition compared to growth media; Figure 15). This effect was 

present in multiple endothelial cell types and increased with the magnitude of the load 

(Figure 16). 
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Control Media No Strain 5% Strain 

Figure 15. Inhibition of vascular smooth muscle cell proliferation by human umbilical 

endothelial cell conditioned media. "Control media" has not been exposed to endothelial 

cell. "No strain" is conditioned medium from endothelial cells that are under static 

conditions. "Five percent strain" is conditioned medium from endothelial cells exposed 

to mechanical load for 24 hrs. Results are mean + standard deviation, *p < 0.05 versus 

5% control media; * *p<0.05 versus no strain and control media; n = 5- 12. 

Page 46 



5% Calf Serum Unloaded ECCM 3% Strain ECCM 5% Strain ECCM 

Figure 16. Inhibition of vascular smooth muscle cell proliferation by bovine aortic 

endothelial cell conditioned media. Five percent calf serum is control media that has not 

been exposed to endothelial cells. No strain is endothelial cell conditioned medium (ECCM) 

from endothelial cells that are under static conditions. Three or five percent strain is 

conditioned medium from endothelial cells exposed to mechanical load for 24 hrs at either 

3% or 5% maximal strain. All comparisons have p < 0.05. 
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Mechanical Strain Increases Production of Heparan Sulfate 
Proteog lycans 

To examine the mechanism behind the observed increase in inhibitory molecules 

we quantified the production of heparan sulfate proteoglycan core proteins in static and 

mechanically loaded cultures (5% cyclic load for 24 hrs). Western blotting for heparan 

sulfate proteoglycan (HSPG) core proteins revealed an increase in cell-associated 

syndecan-1 and -4 as well as an increase in perlecan in the conditioned medium (Figure 

17). A control for equal loading of protein was done using an antibody for p-actin. 
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Figure 17. Western blot for HSPG core proteins, heparanase and the 

transcription factor Spl from endothelial cells exposed to 5% cyclic strain for 

24 hrs. p-actin are from cell lysate samples. Perlecan is from conditioned 

medium. Results are mean + standard deviation, *p < 0.05 versus 5% control 

media; n = 3-4. 

Page 49 



Real time PCR was also used to examine the level of mRNA of the genes for the 

heparan sulfate proteoglycan core proteins (Figure 18). Mechanical strain of 5% at 1 Hz 

for 24 hours also led to an increase in mRNA expression of syndecan-1 and -4, as well as 

a decrease in the expression of syndecan-2 mRNA. An increase in perlecan mRNA was 

seen but was not statistically significant. No changes in the level of heparanase mRNA 

was found. All samples were normalized to a GAPDH gene control before normalization 

to the non-loaded control. 
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No Strain 5% Strain No Strain * 5% Strain 
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No Strain 5% Strain 
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No Strain 5% Strain 

No Strain 5% Strain 

Figure 18. Real time PCR analysis of alterations in syndecan gene expression. Values are 

normalized to No Strain controls. HPA = Heparanase. 
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Proteoglycans production can be regulated on multiple levels. Consequently, it is 

possible to regulate the production of the glycosarninoglycan sugar chains without 

altering the core protein production or visa versa. To investigate the effect of mechanical 

strain on endothelial heparan sulfate glycosaminoglycan (GAG) chain production, cells 

were exposed to mechanical strain and metabolically labeled using 3~-glucosamine and 

^So4. Mechanical strain induced an increase of 24% in total soluble GAG production in 

HUVECs (Figure 19 and Figure 23). A 38% increase in soluble heparan sulfate was also 

observed (Figure 20 and Figure 23). No change in cell surface total GAG was observed 

(Figure 21 and Figure 23), but a decrease in cell heparan sulfate was observed (Figure 22 

and Figure 23). The GAGs extracted from the matrix were also measured and found to 

be increased in the extracellular matrix after mechanical load. Total normalized GAGs 

and heparan sulfate GAGs increased fi-om 1 .OO+0.09 to 1.85+O.O5 and fiom 1 .OO+O.O3 to 

l.l9Â±O.O4 respectively for mechanically loaded versus non-loaded. 
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Fraction Number 

Figure 19. Total proteoglycans in endothelial cell conditioned media labeled with 3 ~ -  

glucosamine and separated by ion exchange chromatography. Samples treated with 5% strain 

(dashed line) and no strain (solid line) are shown with the applied salt gradient (dotted line) on the 

second axis. 
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Fraction Number 
Figure 20. Heparan sulfate proteoglycans in the endothelial conditioned media labeled with 'H- 

glucosamine and separated by ion exchange chromatography. Samples treated with 5% strain 

(solid line) and no strain (dashed line) are shown with the applied salt gradient (dotted line) on the 

second axis. 
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Fraction Number 

Figure 21. Total proteoglycans on the endothelial cell surface labeled with 3~-glucosa~ine and 

separated by ion exchange chromatography. Samples treated with 5% strain (dashed line) and no 

strain (solid line) are shown with the applied salt gradient (dotted line) on the second axis. 
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Fraction Number 

Figure 22. Heparan sulfate proteoglycans on the endothelial cell surface labeled with 'H- 

glucosamine and separated by ion exchange chromatography. Samples treated with 5% strain 

(dashed line) and no strain (solid line) are shown with the applied salt gradient (dotted line) on the 

second axis. 
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Figure 23. Total and isolated heparan sulfate proteoglycans in the endothelial conditioned 

media labeled with 3~-glucosamine and separated by ion exchange chromatography (normalized 

to no strain, *comparison of p < 0.05). 
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Another potential pathway of regulation of proteoglycans is to alter the size of the 

glycosaminoglycan chains attached to the core protein. We examined the affect of 

mechanical strain on altering the hydrodynamic size of the gl ycosaminogl ycan chains. 

The size distribution of total proteoglycans in the conditioned media was not altered by 

mechanical strain (Figure 24). There were increases in both low and high molecular 

weight heparan sulfate produced in the media (Figure 25). On the cell surface the size 

distribution was unaltered for both total and heparan sulfate proteoglycans, with 

decreases in both low and high molecular weight heparan sulfate (Figure 26 and Figure 

27) 
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Fraction Number 

Figure 24. Total proteoglycans in the endothelial conditioned media labeled with H -  

glucosamine separated by size exclusion chromatography. Representative samples treated with 

5% strain (dashed line) and no strain (solid line) are shown. 
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Figure 25. Heparan sulfate proteoglycans in the endothelial conditioned media labeled with 3 ~ -  

glucosamine separated by size exclusion chromatography. Representative samples treated with 

5% strain (dashed line) and no strain (solid line) are shown. 
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Figure 27. Cell surface heparan sulfate proteoglycans on the endothelial cell surface labeled 

with 3~-glucosamine and separated by size exclusion chromatography. Representative samples 

treated with 5% strain (dashed line) and no strain (solid line) are shown. 
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Mechanical Strain Activates TGF-PI through p38 and ERK112 
Dependant Pathway 

Transforming growth factor- p (TGF-p) is another molecule intimately involved in 

the control of vascular smooth muscle cell growth as well as a regulator of extracellular 

matrix production in various cell types. This molecule is predominantly present in latent 

form that can be activated by various factors. We examined the amount of active TGF-p 

present with mechanical load in the presence of inhibitors to the MAPK and p38 MAPK 

signaling pathways. In non-loaded cultures active TGF-p was undetectable by ELISA 

(Figure 28). Following treatment with mechanical strain for 24 hrs, significant amounts 

of active TGF-p were found in the condition media. This effect was significantly 

blocked by both inhibitors to MAPK (U0126) and p38 MAPK (SB029063). Total TGF-p 

was assayed after acidification and neutralization of the conditioned media revealing 

similar amounts of total TGF-p under all conditions (Figure 29). 
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5% Strain + + + - - = 

U0126 - + rn - + = 

SB 293063 - rn + rn + + 
Figure 28. Active TGF-b in endothelial cell conditioned media after 24 hrs of mechanical strain 

or static conditions measured by ELISA assay. 
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5% Strain + + + = - = 

Figure 29. Total TGF-p in endothelial cell conditioned media after 24 hrs of mechanical strain 

or static conditions measured by ELISA assay. Total TGF-b was activated by treatment with 

acid pH prior to ELISA assay. 
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Mechanical Strain Alters Extracellular Matrix Bound FGF-2 through 
p38, ERK112, and TGF-PI Mediated Mechanism 

Heparan sulfate proteoglycans are involved in many aspects of FGF-2 signaling, 

uptake and sequestration. To examine the role of mechanical strain in regulating FGF-2 

we measured FGF-2 in the condition media and extracellular matrix fractions of cells 

exposed to static and mechanical strain conditions. In the extracellular matrix, 

mechanical strain decreased the amount of FGF-2 present (Figure 30). This effect was 

blocked completely by inhibitors to MAPK (U0126) and partially inhibited by an 

inhibitor to p38 MAPK (SB 293063). In the condition media the amount of FGF-2 was 

slightly lowered due to mechanical load (Figure 3 1). Similar experiments were 

performed examining the affects of a neutralizating antibody to TGF-p on the FGF-2 

content of the extracellular matrix and conditioned media (Figure 32 and Figure 33). 

Pretreatment with a neutralizing antibody to TGF-p blocked the decrease in extracellular 

matrix associated FGF-2. 
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Figure 30. Fibroblast growth factor-2 (FGF-2) extracted from the extracellular matrix of 

endothelial cultures pretreated for 1 hr with U0126 or SB 293063 and exposed to 24 hrs of static 

or strain conditions. 
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5% Strain + + + = = 
m 

Figure 31. Fibroblast growth factor-2 (FGF-2) in the conditioned media of culture pretreated 

with U0126 or SB 293063 for 1 hr and exposed to static or strain conditions for 24 hrs. 
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Figure 32. A neutralizing antibody to TGF-p reduces blocks the load induced decrease in 

extracellular matrix (ECM) bound FGF-2. Endothelial cells were treated with a neutralizing 

antibody for 1 hr prior to exposure to 24 hrs of 5% mechanical strain. 

Page 69 



Figure 33. The content of the conditioned media is unaffected by mechanical strain or a TGF-b 

neutralizing antibody. Endothelial cells were treated with a neutralizing antibody for 1 hr prior 

to exposure to 24 hrs of 5% mechanical strain. 
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Mechanotransduction Pathway Controlling Load-Induced Heparan 
Sulfate Proteoglycans Involves p381ERK activation and Autocrine 
TGF-PI signaling 

To examine the intracellular signaling pathways responsible for mechanical 

strain-mediated modulation of heparan sulfate proteoglycans we pretreated cells with 

inhibitors to the MAPK (MEK112 inhibitor U0126) and p38 (SB 293063) signaling 

pathways. We hypothesized that since mechanical strain induced TGF-p activation, an 

autocrine signaling from this growth factor may be an important mechanism. Following 

inhibitor or neutralization antibody treatment we used western blotting to examine the 

levels of phosphorylated signaling intermediates including phospho-Smad-2 (a 

downstream effector of TGF-p), phospho-p38 MAPK, and phospho-ERKll2 (shown in 

Figure 34). Mechanical strain activated all of these intermediates after 24 hrs of cyclic 

strain. Interestingly, there was crosstalk between each of the signaling pathways. 

Maximal Smad-2 only occurred in the absence of both inhibitors to MAPK and p38 

MAPK. Further, phosphorylation of ERKll2 and p38 MAPK was partially blocked by 

inhibitors to each of the other pathways. This suggests that these pathways are 

communicating through some type of common pathway or that the drugs have non- 

specific affects on other signaling pathways. We performed a similar western blotting 

analysis in mechanically stimulated cultures that were pretreated with a neutralizing 

antibody to TGF-p (shown in Figure 35). We also examined the role of these pathways 

in the production of the heparan sulfate proteoglycan core proteins in response to 

mechanical strain (Figure 36). The inhibitors to MAPK and p38 pathways and the 
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neutralizing antibody to TGF-b blocked the load induced increase in perlecan 

production. 
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5% Strain + + + - - rn 

U0126 - + - - + - 
SB 293063 - + - + + 

Figure 34. Western blot analysis of intracellular signaling intermediates of the TGF-p, MAPK, 

and p38 MAPK pathways. Cells were pretreated with the indicated inhibitors for 1 hr prior and 

during exposure to static or mechanical strain conditions for 24 hrs. 
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Figure 35. Western blot analysis of intracellular signaling intermediates of the TGF-p, MAPK, 



HPA, Cell 

Perlecan 

Syndecan 4, Cell - - "-amuml--.- 

p-actin, Cell dmlmm amulmF- 

5% Strain + + + - - -  
SB-239063 ( ~ 3 8 )  + - - + -  
U-0126 (MEK) - +  - -  + 

5% Strain + + - - 
Anti-TGF-pl - + - + 

Figure 36. Western blot analysis of heparan sulfate core proteins and heparanase* Cells were 

pretreated with the indicated inhibitors or neutralizing antibody for 1 hr prior and during 

exposure to static or mechanical strain conditions for 24 hrs. 
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Promoter Analysis of Heparan Sulfate Proteoglycan Core Proteins 
and Heparanase 

A promoter analysis was performed on the various genes using PROSCAN (v. 

1.7). This analysis revealed several common transcription factor binding sites found in 

the syndecan- 1, 4y perlecany and the heparanase promoter region. Notably, a Sp 1 binding 

site was found in the promoter region of all the genes. To test whether Spl was regulated 

by mechanical strainy Spl expression was found to be increased in measurements by 

Western blotting (Figure 17). 

Inhibition of Transcription Factor Spl Leads to Maladaption of 
Endothelial Cells to Mechanical Strain 

To examine the role of Spl in the response to mechanical strain cells were 

incubated with mithramycin for 1 hr prior to mechanical loading for 24 hrs. Mithramycin 

is an antibiotic that has been used to treat certain cancers [129]. The drug binds to CG- 

rich regions of the DNA and prevents the binding of Sp 1 [ 1301. Pretreatment of cells 

with mithramycin led to an increase in cell damage due to mechanical loading. Both cell 

attachment (Figure 37a) and LDH release in the media (Figure 37b) were observed as a 

result of mechanical strain on mithramycin treated cultures. The conditioned media and 

cell lysates were analyzed for perlecan and heparanase expression revealing a decrease in 

both perlecan and heparanase in the mithramycin treatedy non-loaded cells (Figure 38). 

An increase in both perlecan and heparanase was found in the treated, loaded cell (Figure 

38). 
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No Strain + Mithra 

10 nM Mithramycin 

5?40 Strain + 
Figure 37. Mithramycin and mechanical load together cause cell detachment and lactate 

dehydrogenase (LDH) release. (a) Phase contrast microscopy of cells treated with combinations of load 

and mithramycin. (b) Total LDH release into culture media of treated cell cultures (normalized to no 

strain controls). 
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HPA, Cell 
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Perlecan, Media 

Figure 38. Control of perlecan and heparanase (HPA) expression by mechanical 

strain in mithramycin treated cells. 
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Discussion 

An initial control experiment revealed that mechanical strains of 5% or less for 24 

hrs did not cause cytotoxicity. This is an important control not only for the interpretation 

of our experiments but also those present in the literature. Papers in the literature 

routinely report strain levels of 20% or more using the Flexcell system without measuring 

cytotoxicity. As a consequence these studies may be looking at an injury response of the 

endothelial cells rather than a physiologic response to increased hernodynamic stimuli. 

We began our studies with an experiment examining the role of physiologic 

loading on endothelial inhibition of vascular smooth muscle cell proliferation. In humans 

the maximal strain, in the aorta varies along the aorta fiom around 18% in the ascending 

aorta to 4- 1 5% in the abdominal aorta [ 1 3 1, 1321. With chronic hypertension or diabetes 

this strain can decrease by 40-60% due to arterial stiffening [13 11. Our studies revealed 

that mechanical strain increased endothelial production of inhibitory factors towards 

vascular smooth muscle cells. Heparan sulfate proteoglycans have been shown to be an 

essential component of endothelial inhibition of vascular smooth muscle cells [6]. A 

major question is the source of the additional heparan sulfate proteoglycan found in the 

media. The studies quantifjmg the mRNA levels in mechanically strained cells would 

indicate that the syndecans are transcriptionally regulated but heparanase and perlecan 

are not. Notably, multiple studies have shown heparan sulfate proteoglycan core proteins 

are known to show alterations in protein level without alterations in mRNA [77]. In one 

study a 10-fold change in protein was observed without a change in mRNA levels [133]. 

Various forms of post-transcriptional regulation may act on these genes as well as 

potential alterations in protein stability or degradation. 
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The presence of additional perlecan is likely due to increased production rather 

than purely release from the extracellular matrix. Our studies on FGF-2 binding to the 

matrix indicate a reduction in bound FGF-2 to the extracellular matrix but our 

measurements of heparan sulfate in the matrix show increased heparan sulfate. The 

growth medium used in these experiments was complete growth medium containing 

serum and FGF-2 supplements. As a consequence there is likely an excess amount of 

FGF-2 in the growth media and this could saturate any potential binding sites for FGF. 

Perlecan is the major heparan sulfate proteoglycan in the endothelial extracellular matrix 

[3]. Heparan sulfate proteoglycans are the primary binding site for FGF-2 in this type of 

extracellular matrix [134]. These results are somewhat paradoxical unless we consider 

that the endothelium is acting as a barrier layer (after reaching confluency) preventing 

media FGF-2 binding to matrix. This would imply that the endothelium is increasing 

FGF-2 uptake from the matrix in response to load and would also be consistent with our 

observation that the FGF in the conditioned media remains constant. Syndecan-4 has 

been shown to be important in the endocytosis of FGF-2 and the increased FGF-2 uptake 

by the cell may be result of increased cell surface syndecan-4 [135]. 

Another potential source of increased vascular smooth muscle cell inhibition is 

the increased shed syndecan-1 observed as a consequence of mechanical strain. Shed 

syndecan-1 has been shown to be an effective inhibitor of FGF-2 signaling [84]. 

Syndecan-1 was found to be upregulated transcriptionally and on the cell surface by 

western blotting. Cell surface syndecan-1 has been shown to be important for the 

adhesion to collagen type-I [86]. The silastic membrane used in these experiments were 

coated with type-I collagen and these results would be consistent with the idea that the 
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cells were increasing the strength of attachment to this substate in response to mechanical 

load. A similar argument could be made for the upregulation of syndecan-4 that was 

observed as well. Mechanical strain has been shown to increase formation of focal 

adhesions and stress fibers [15]. Sydnecan-4 is intimately involved in these processes 

and has been shown to respond to stretch and injury in vascular smooth muscle cells [94]. 

Heparanase has also been shown to act as an adhesion molecule by binding to cell surface 

heparan sulfate proteoglycans independent of its enzymatic activity [136]. The 

syndecans can bind heparanase and may act synergistically to allow the cells to properly 

alter their adherence to the substratum to allow cell survival under loading conditions. 

The activation of TGF-p observed in response to mechanical load could also serve 

to inhibit vascular smooth muscle cell proliferation. Active TGF-p has been shown to 

regulate vascular smooth muscle growth and may act as either an inhibitor or an 

stimulator depending on the growth state of the cells [137, 1381. Heparan sulfate has 

been shown to facilitate the activation of TGF-p [57] and the increased cell surface 

proteoglycans and extracellular heparan sulfate may play a role in this process. It is also 

interesting to note that MMP-2 activation is enhanced by syndecan- 1, giving another 

potential role to the regulation pattern observed for the syndecans [139]. The syndecans 

can also function as regulators of growth factor response and transmembrane signaling 

[l 11. Syndecan-2 interacts with TGF-p via a protein-protein interaction but the exact 

nature and purpose of this interaction is unclear [85]. Studies have shown that the type 

I11 receptor for TGF-p (betaglycan) is stabilized in the membrane by synectin. Syndecan- 

2 competes for binding to synectin and may disregulate TGF-p signaling [ 1 1, 851. Our 

Page 8 1 



results show a reduction in mRNA for syndecan-2, implying that the cell may have an 

increases sensitivity and response to TGF-p stimulation. 

Our in-vitro studies also indicate a role for the transcription factor Spl in the 

response to mechanical strain. Inhibition of Spl binding led to sensitization of the cells 

to load. Spl binding sites (GC boxes) are located in the promoter regions of 

heparanase[l40], perlecan[14 11, syndecan- 1 [142], and syndecan-4[143]. Endothelial Sp 1 

phosphorylation and DNA binding has been shown to be increased in response to fluid 

shear stress[144], and, in our work, the total Spl increased with mechanical strain. We 

show here that inhibition of Sp1 leads to maladaptation of endothelial cells to mechanical 

strain leading to cell damage and detachment. This result highlights the critical nature of 

Spl activation in controlling the cell response to mechanical strain. While many genes 

have Spl transcription factor binding domains in their promoter regions, our work shows 

that the syndecan core proteins are highly responsive to mechanical stimuli. The 

transcription factor Spl and TGF-p induced Smads have been shown to interact and 

facilitate gene transcription [62] and may present a model of regulation for the heparan 

sulfate proteoglycan protein increase observed in these studies. Another potential 

mechanism is the regulation of the Kruppel-like factor (KLF) family of transcription 

factors that has been shown bind sequences similar to Spl and has been shown to be 

important for response to mechanical stimuli [145]. 

A major contribution of this work is the elucidation of the mechanotransduction 

pathway governing the response of heparan sulfate proteoglycan to mechanical strain. 

Our results indicate that optimal stimulation of MAPK requires p38 signaling and 

autocrine TGF-p. Similarly, optimal p38 MAPK signaling requires MAPK and autocrine 
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TGF-p. Finally, TGF activation and stimulation of phospho-Smad-2 is partially blocked 

by inhibitors to both of these pathways. These results taken together suggest a signaling 

model in which MAPK and p38 are important for activation of TGF-fl and that TGF-p is 

important for the continued stimulation of MAPK and p38 pathways. Our experiments 

also suggest that this autocrine TGF-p signaling loop controls the increase in perlecan 

observed in response mechanical strain. 

An overall model suggested by this work is shown in Figure 39. In this model a 

TGF autocrine signaling loop controls the response of cells through controlling heparan 

sulfate proteoglycan production. There is also some synergistic feedback in the system 

from the heparan sulfate proteoglycans acting to facilitate TGF activation and signaling 

potentially through MMP-2, heparan sulfate binding and downregulation of syndecan-2. 

Prior work has shown that mechanical stimuli may increase vascular smooth muscle cell 

proliferation through multiple mechanisms [ 127, 146- 1481. Taken along with previous 

studies, our work fills in the endothelial side of a dynamic equilibrium which controls 

vascular remodeling to load. Explicitly, mechanical strain stimulates vascular smooth 

muscle cells to proliferate while in causing endothelial cells to increase their inhibition. 

These two processes lead to a balance between growth and inhibitory processes that can 

control vascular homeostasis. In hypertension, this increased activity would make the 

artery more vulnerable to disease processes that causing endothelial dysfunction. In this 

case the endothelial side of the balance would be compromised leaving the vascular 

smooth muscle cell growth uncompensated by endothelial inhibition. 
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Figure 39. Overall mechanistic scheme of endothelial control of vascular remodeling to 

mechanical stimuli. This study supports the signaling network outlined underneath the 

endothelial cell portion of this scheme. 
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Conclusion 

In this chapter, we gave evidence for a unified model of vascular response to 

mechanical forces in which mechanical stimuli enhanced both endothelial inhibition and 

vascular smooth muscle cell proliferation. We given evidence that supports that 

underlying the endothelial side of this balance is the regulation of heparan sulfate 

proteoglycans by an autocrine signaling loop consisting of TGF-p as well as the MAPK 

and p38 signaling pathways. In the next chapter we explore this model farther in-vivo in 

an animal model of hypertension. 
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Chapter 4: Role of Heparan Sulfate Proteoglycans and 
Heparanase in Spontaneously Hypertensive Rats 

Introduction 
Table 1. Classification of Blood Pressure in Adults 

Hypertension, or elevated blood BP Classification SBP DBP 
(-g) (mmHg) 

pressure, is the most common primary 
Normal 4 2 0 -  and <80 

Prehypertension <120-139 or 80-89 
sttge 1 140-159 or 90-99 

diagnosis in the United States affecting Hypertension 
Stage 2 > 160 - Or > 100 

about 50 million people in the country and Hypertension 
BP, blood pressure; SBP, systolic blood pressure, DBP, diastolic blood pressure. 

1 billion people worldwide [149, 1501. Hypertension is classified into stages based on 

systolic (SBP) and diastolic blood pressure (DBP) as shown in Table 1 (adapted from 

[15O]). A strong relationship exists between blood pressure and heart attack, heart 

failure, stroke and kidney disease. Each increment of 20 mmHg in systolic blood 

pressure or 10 mmHg in diastolic blood pressure doubles the risk of cardiovascular 

events [15 11. 

In the previous chapter, a set of experiments were performed that gave rise to a 

model of vascular response to mechanical strain. The aim of this section is to take this 

model developed in in-vitro and examine its relevance in the spontaneously hypertensive 

rat model of hypertension. To this end, we examined the expression of heparan sulfate 

proteogl ycans, heparanase, TGF- and the phosphorylat ed intracellular signaling 

intermediates Smad-2, ERIC112 and p38 MAPK in hypertensive and normal rats. 
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Materials and Methods 

Animal Model of Hypertension. All experimental procedures and protocols used in this 

investigation were reviewed and approved by the Animal Care and Use Committee of the 

Massachusetts Institute of Technology and conformed to the "Guiding Principles in the 

Care and Use of Animals" of the American Physiological Society and the NIH Guide for 

the Care and Use of Laboratory Animals. Age matched Wild-Type Wistar-Kyoto Rats 

and Spontaneously Hypertensive (SHR; NTac:SHR) rats were obtained from (Taconic, 

Germantown, NY). At 20 weeks of age the animals were sacrificed and the aortae were 

harvested. A total of 16 rats from each group were used in these experiments. 

Immunohistochernistry. The abdominal aortae from hypertensive rats were formalin 

fixed and sectioned using standard methods. The sections were heated for 10 min in a 

60Â° oven, deparaffinized in xylene, and rehydrated. Antigen retrieval was performed by 

placing the slides in 1 OmM citrate buffer (pH = 6.0) and heating in the microwave for 10 

min. The samples were allowed to cool for 20 min and were then incubated in 3% 

hydrogen peroxide for 1 0 min. The samples were rinsed 3 times with PBS with 0.0 1 % 

tween-20 (PBST) between each of the following steps. The sections were blocked with 

20% normal goat serum for 45 minutes at room temperature. For staining of heparan 

sulfate proteoglycans the slides were treated for 2 hrs with a 0.4 Ulml solution of 

heparitinase I11 (Ibex, Canada). Primary antibodies were diluted in PBS containing 1% 

BSA, applied to slides, and incubated in a humid chamber for overnight at 4Â°C The 

following antibodies were used for staining: an anti-heparanase (Cell Sciences, Canton, 

MA); a monoclonal antibody recognizing "stubs" of digested heparan sulfate (3GlO; 
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Seikagah); an anti-TGF-p 1 antibody (product #G122A; Promega, Madison WI); an anti- 

phospho-Smad-2 (Ser4651467; 138D4; Cell Signaling); an anti-phospho-p38 MAPK 

(Thr 1 8OlTyrl82; 1 2F8; Cell Signaling); anti-phospho-p44142MNK (Thr202lTyr204; 

20Gll; Cell Signaling); and anti-sp 1 (1 C6; Santa Cmz Biotechnology). Secondary 

antibody staining at detection was performed using the LSAB 2 kit (DakoCytomation, 

Carpinteria, CA) according to the manufacturer's instructions. An AEC substrate 

(DakoCytomation) was used for detection of the horseradish peroxidase conjugate. The 

samples were counterstained in Mayer's hematoxylin for 3 min, washed with tap water, 

and mounted in aqueous mounting mediurn (DakoCytomation). M e r  24 hrs the sections 

were mounted and coverslipped with Cytoseal XYL (83 12-4; Richard Allen Scientific, 

Kalamazoo, MI). 

Quantitative Morphology. To quantify the irnmunohistochemical staining the sections 

were first imaged using an Olympus BX41 (Olympus, Melville, NY) with a DP70 CCD 

(Olympus). The images were captured using Microsuite Biological Suite 2.4 (Olympus). 

The images were quantified using Photoshop (Adobe Systems, Inc., San Jose, CA). To 

perform the quantitation of DAB or AEC substrate staining, the region of interest was 

selected using the magic wand tool in Photoshop (Adobe). The average intensity of each 

color channel was recorded (red, green, or blue) and number of pixels (area) were taken 

using the histogram hct ion .  A similar reading was taken for the background (white 

field) of each captured picture. The optical density (OD) was calculated using the 

following equation: 
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Where I is the color channel intensity and I. is the color channel intensity of the 

background. A deconvolution matrix to separate DAB or AEC and hematoxylin staining 

was calculated using the method of Ruifiok and Johnston [ 1521. These matrices were 

used to separate the hematoxylin staining fiom imunostaining and give an overall 

density of staining within the region of interest. 

Statistics. All results are shown as mean standard deviation. An ANOVA was used to 

make comparisons between groups of continuous variables. A two-tailed Student's t test 

was used to make comparisons between groups; p < 0.05 was defined as being 

statistically significant. The Pearson product moment correlation statistic was used as a 

measure of correlation between variables. 

Results 

Hypertension Increases Heparan Sulfate Proteoglycan and 
Heparanase Expression in the Endothelium of Spontaneously 
Hypertensive Rats 

To evaluate the role of heparan sulfate proteoglycans and heparanase in 

modulating arterial remodeling in hypertension, we examined the expression of heparan 

sulfate proteoglycans and heparanase in the spontaneously hypertensive (SHR) rats 

compared with age-matched Wistar-Kyoto (WKY) wild-type rats. Formalin fixed, 

paraffin embedded sections were made fkom rat aortae fkom each group. The sections 

were stained with hematoxylin and eosin and analyzed morphologically. This analysis 

revealed increased medial thickening in the medial region of the SHR rat aortae (Figure 
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40). The expression of total heparan sulfate proteoglycans was quantified 

immunohistochemically with an antibody that recognized the "stub" left over after 

digestion with heparitinase 111. In the SHR and WKY animals the media, basement 

membrane, and endothelial layer stained heavily for heparan sulfate proteoglycan (Figure 

41). The intensity of staining in the endothelial and basement membrane layers was 

quantified and compared between animals, indicating an increase in endothelial heparan 

sulfate proteoglycan staining of 58% in comparing the SHR rats to WKY controls. A 

similar analysis was performed following immunohistochemical staining for heparanase 

and an increase in heparanase expression of hypertensive rats was found to be two fold 

increased versus control rats (Figure 42). Local medial thickness correlated strongly with 

local endothelial heparanase staining (Figure 43; R = 0.879, p < 0.0005). 
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WKY 

SHR 

SHR 

Figure 40. Hematoxylin and eosh staining of Wistar-Kyoto (WKY) and spontaneously 

hypertensive (SHR) rat aortae. 
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WKY 

SHR 

SHR 

Figure 41. Immunohistochemical staining for heparan sulfate epitopes in Wistar-Kyoto (WKY) 

and spontaneously hypertensive (SHR) rat aortae. *statistically significant comparison (p < 
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WKY SHR 

Figure 42. Immunohistochemical staining for heparanase in Wistar-Kyoto (WKY) and 

spontaneously hypertensive (SHR) rat aortae. *statistically significant comparison ( p  < 0.05). 
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Medial Thickness (urn) 

Figure 43. Quantitative morphometry of vessel remodeling in SHR and WKY rats. Correlation 

between medial thickening and endothelial heparanase expression in SHR (m) and WKY (a) rats. 
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Hypertension Alters Transforming Growth Factor-Beta Expression 
and Phosphorylation State of Intracellular Signaling Intermediates 

In our studies hypertension causes a redistribution of TGF-p within the aorta. In 

the hypertensive animals the endothelial staining for TGF-p was increased and the medial 

staining reduced (Figure 44). A similar distribution of staining was found for 

phosphorylated Smad-2, a downstream element of TGF-p receptor signaling (Figure 45). 

Immunohistochemical staining also revealed an increase in endothelial staining for 

phosphorylated p38 MAPK and ERK (Figure 46 and Figure 47). The amount of total 

Spl was found to increase in the hypertensive animals as well (Figure 48). 
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Figure 45. Irnrnunohistochemical staining for phosphorylated Smad-2 in Wistar-Kyoto 

(WKY) and spontaneously hypertensive (SHR) rat aortae Cp < 0.05, n = 4). 
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SHR 

Figure 46. Immunohistochemical staining for phosphorylated p38 in Wistar-Kyoto (WKY) and 

spontaneously hypertensive (SHR) rat aortae Cp < 0.05, n = 4). 
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WKY SHR 

Figure 47. Immunohistochemical staining for phosphorylated ERK in Wistar-Kyoto (WKY) 

and spontaneously hypertensive (SHR) rat aortae Cp < 0.05, n = 4). 
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SHR 

Figure 48. Immunohistochemical staining for transcription factor Spl in Wistar-Kyoto (WKY) 

and spontaneously hypertensive (SHR) rat aortae m . 0 5 ,  n = 4). No counterstain was used in 

this staining. 
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Correlation Analysis of Immunocytochemical Staining 

To establish relationships between the various signaling factors examined in this 

work we performed a correlation analysis. This analysis revealed strong correlations 

between medial thickness, p38, ERK, and TGF-p in the endothelium (shown in Table 2, 

Figure 49, and Figure 50). Correlations values (R) range from 0.7 to 0.9 with a p-value 

less than 0.05. A similar analysis was performed examining the medial staining but no 

significant correlations were found (Table 3). 
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Table 2. Correlation Analysis of Immunohistochemical Staining of the Endothelium 

Correlation Matrix (R) 

p-ERK p-p38 TGF-fl p-Smad2 Medial Thickness 
Phospho-ERK 1.000 0.817 0.740 0.790 0.729 
Phospho-p38 0.81 7 1 .OOO 0.793 0.967 0.890 
TG F-fl 0.740 0.793 1 .OOO 0.793 0.902 
Phospho-Smad2 -0.51 1 -0.846 -0.631 1 .OOO -0.694 
Medial Thickness 0.729 0.890 0.902 0.856 1 .OOO 
t Statistic 

p-ERK p-p38 TGF-fl p-Smad2 Medial Thickness 
p-ERK 3.471 2.692 2.882 2.61 0 
P 3.471 3.191 8.497 4.793 
TG F-fl 2.692 3.191 2.91 2 5.106 
p-Smad2 1.329 3.549 1.819 2.1 53 
Medial Thickness 2.61 0 4.793 5.106 3.707 
Correlation Significance (P) 

p-ERK p-p38 TGF-0 p-Smad2 Medial Thickness 
p-ERK 0.013 0.036 0.035 0.040 
~ - ~ 3 8  0.01 3 0.019 0.000 0.003 
TG F-fl 0.036 0.01 9 0.033 0.002 
p-Smad2 0.241 0.016 0.129 0.084 
Medial Thickness 0.040 0.003 0.002 0.014 
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Figure 50. Correlation scatterplots for statistically significant 

correlations on the immunohistochemical staining of the 

endothelium on Wistar-Kyoto and spontaneously 

hypertensive rats. 
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Table 3. Correlation Analysis of Immunohistochemical Staining of the arterial media. 
- - 

Correlation Matrix (R) 
p-ERK p-p38 TGF-p p-Smad2 Medial Thickness 

p-ERK 1 .OOO -0.016 -0.084 0.790 -0.480 
P-P~B -0.016 1 .OOO 0.214 0.967 -0.141 
TGF-8 -0.084 0.214 1 .OOO 0.793 -0.095 
p-Smad2 0.482 0.677 0.519 1 .OOO -0.694 
Medial Thickness -0.480 -0.141 -0.095 0.856 1 .OOO 

t Statistic 

p-ERK p-p38 TGF-p p-Smad2 Medial Thickness 
p-ERK 0.040 0.207 1.229 1.342 
~ - ~ 3 8  0.040 0.538 2.057 0.349 
TGF-p 0.207 0.538 1.359 0.235 
p-Smad2 1.229 2.057 1.359 2.1 53 
Medial Thickness 1.342 0.349 0.235 2.1 53 
Correlation Significance 
iP\ 

p-ERK p-p38 TGF-p p-Smad2 Medial Thickness 
p-ERK 0.969 0.843 0.274 0.228 
P-P~B 0.969 0.610 0.095 0.739 
TG F-p 0.843 0.610 0.232 0.822 
p-Smad2 0.274 0.095 0.232 0.084 
Medial 
Thickness 0.228 0.739 0.822 0.084 
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Discussion 

The animal model of hypertension demonstrated an increase in heparanase and 

heparan sulfate proteoglycans in the endothelium of hypertensive rats. These results 

support that similar processes that control the in-vitro response to mechanical load may 

be governing the vascular response to hypertension. Both heparanase and heparan sulfate 

proteoglycans were increased in our in-vitro studies examining mechanical stretch on the 

endothelium. 

TGF-p has been shown to be important in regulating the pathobiology of many 

vascular disorders [153]. Its role is made complex by its ability to act as both a 

stimulator and inhibitor of growth depending on other factors [137, 1381. Our results 

show increases in active TGF-B in the endothelium and a decrease in TGF-p in the 

media. Our previous in-vitro studies in Chapter 3 suggest that this may be due to the 

mechanically-induced activation of TGF-p by endothelial cells. These results support our 

paradigm of load increasing endothelial inhibition as well as increasing vascular smooth 

muscle cell proliferation. An interesting question not addressed in the current work is the 

reason for the loss of TGF-p in the media of the artery. Since the endothelial cell is 

producing a greater amount of TGF-p, it implies that the vascular smooth muscle cells 

are actively degrading or removing TGF-p. 

The strong correlations between TGF-B and p381ERK support the occurrence of 

an autocrine signaling loop in the endothelium of the SHR rats. Spontaneously 

hypertensive rats are known to have medial hypertrophy in the aorta due to their 

hypertension that correlates with the local severity of the blood pressure increase [154]. 
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The fact that the members of the TGF-p autocrine signaling loop correlates with the 

thickness of the vascular wall implies a relationship between this signaling and the in- 

vivo mechanical environment. 

One fundamental question that remains from this work is the role of heparanase in 

controlling the vascular remodeling in response to hypertension. The strong correlation 

between the thickness of the aorta and the heparanase expression in the overlying 

endothelium indicates that the balance between heparanase and heparan sulfate 

proteoglycan plays a role in growth factor induced hyperplasia as well as proliferation. 

However, it is unclear whether heparanase expression serves as a means to increases the 

inhibition of the endothelial cell or as a pathophysiologic mechanism underlying the 

endothelial dysfunction in hypertension. 
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Conclusion 

These results are consistent with our model of vascular remodeling to mechanical 

strain. The endothelium in hypertension showed increases in HSPG, TGF-p and 

intracellular signaling factors that matched well with the in-vitro results presented in 

Chapter 3. It is interesting to note that alterations occurred in the media as well as in the 

endothelium. This supports the notion that the vascular smooth muscle cells may be 

counteracting the increased inhibition of the endothelium by inactivating or degrading 

TGF-p. In this chapter we identified a close correlation between endothelial heparanase 

expression and vascular wall thickness. These results imply that heparanase may play an 

essential role in controlling vascular remodeling. We will explore the fundamental 

question of heparanase's role in vascular remodeling in more detail in the following 

chapter. 
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Chapter 5: Role of Heparanase in Vascular Remodeling 

Introduction 

Heparanase is an enzyme that degrades heparan sulfate infrequently to yield 

glycosaminoglycan chains that are 10-20 disaccharides in length. The aim of this section 

is to examine the role of heparanase expression in endothelial cells in the macrovascular 

system and in injury. The fundamental question is whether heparanase serves as an 

enhancer or inhibitor of vascular smooth muscle cell proliferation. To study this 

question, heparanase expression in endothelial cells was enhanced or inhibited using 

overexpression and siRNA vectors. To examine the role of heparanase in vascular 

remodeling we used an in-vivo model diabetes and vascular injury. 

Materials and Methods 

Cell Culture. Rat vascular smooth muscle cells (RVSMCs) were isolated from fresh or 

rat aortae. These cells were cultured in Dulbecco's Modified Eagle's Medium (DMEM, 

Gibco BRL Life Technologies, Gaithersburg, MD) supplemented with 5% calf serum 

(Hyclone, Logan UT) and 100 units per ml of penicillin, 100 pg per ml streptomycin 

sulfate, and 2 rnM L-glutamine. Human umbilical vascular endothelial cells (HUVECs; 

Cambrex, Walkersville, MD) were grown in DMEM with 5% fetal bovine serum 

(Hyclone) and EGM-2 supplements (Cambrex). All smooth muscle cells were used at 

passages 4 to 5 and all endothelial cultures were used at passage 3 to 5. All cells were 

incubated at 37Â° in a humidified atmosphere containing 5% C02. 
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Gene Silencing and Expression Vectorsm Gene silencing for heparanase was performed 

using previously validated hairpin RNA sequence[ll6]. Briefly, oligonucleotides with 

the sequence 5'- 

GATCCCCACTCCAGGTGGMTGGCCCTTCMGAGAGGGCCATTCC 

ACCTGGAGTTTTTTGGM-3' and 5'-GATCCCCACTCCAGGTGGMTGGCCCTT 

CMGAGAGGGCCATTCCACCTGGAGTTTTTTGGM-3' were hybridized and 

cloned into a pSUPER expression vector (OligoEngine, Inc., Seattle, WA). Confirmation 

of insertion of the siRNA sequence was performed using automated DNA sequencing by 

the Biopolymers Laboratory at the MIT Center for Cancer Research, Cambridge, MA. 

The h l l  length cDNA for human heparanase in a pCMV6 vector was obtained fiom 

Origene Technologies Inc. (Rockville, MD). 

Transfection of HUVEXsm Transfection of HUVECs was performed using Targefect F- 

2, according to the manufacturer's protocol (Targeting Systems, Santee, CA). 

Transfection conditions were optimized using a pTRACER vector (Invitrogen) that 

constitutively expresses green fluorescent protein. 

Animal Model of Vascular Injury. Zucker fatty (Crl:(ZUC)-$aBR) and Zucker lean rats 

were used in an animal model of vascular injury and stenting in the presence of metabolic 

syndrome and insulin resistance[l55]. At the time of stenting the rats were 12 and 14 

weeks old for the fatty and lean rats, respectively. The rats were anesthetized using 

isofluorane, given a 100 Ukg dose of heparin, and a small incision was made to expose 

the right femoral artery. This artery was ligated and an arteriotomy was performed 

proximal to the ligature. A 0.014'' angioplasty guidewire was passed into the aorta and an 
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9-mm long endovascular stent (Nirflex; Medinol Inc., Tel Aviv, Israel) mounted on a 15 

x 2.5-mm angioplasty balloon (Crossail; Guidant Inc.? Santa Clara? CA) was passed into 

the abdominal aorta (Figure 5 1). The stent was deployed with a 15 s inflammation at 8 

atm inflation pressure. Post-stenting the animals were given aspirin via drinking water at 

an approximate dose of 5 mg/kg/day. The animals were sacrificed at 14 days post- 

stenting using inhaled C02. 
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Figure 51. Photographs of the stating procedure. A) The femoral arteriotomy prior to 

catheter insertion and stent placement. B) The stent in the abdominal aorta at time of 

harvest. 
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Smooth Muscle Cell Proliferation Assay* Rat smooth muscle cells were passaged into 

six-well plates at low density. Endothelial cell conditioned media was colected and used 

in an assay of vascular smooth muscle cell proliferation. Smooth muscle cells were serum 

starved in 0.5% calf serum for 24 hours, washed with PBS, and incubated in conditioned 

media with 1 pCiIm1 3~-thymidine for 24 hours. The cells were then washed three times 

with PBS at 4OC. The cells were then incubated with 10% TCA for 30 min at 4OC, washed 

twice in 95% ethanol, and solubilized in 1 ml of 0.25 M NaOH with 0.1% SDS for 1 

hour. The samples were then added to scintillation cocktail and radioactivity measured 

using a liquid scintillation counter. 

Statistics* All results are shown as mean standard deviation. An ANOVA was used to 

make comparisons between groups of continuous variables. A two-tailed Student's t test 

was used to make comparisons between groups; p < 0.05 was defined as being 

statistically significant. The Pearson product moment correlation statistic was used as a 

measure of correlation between variables. 

Results 

To investigate the role of heparanase expression by endothelial cells, we over- 

and underexpressed heparanase using a vector expressing heparanase and a vector 
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expressing a small interfering RNA (siRNA) hairpin sequence specific to heparanase. 

Human umbilical vein endothelial cells were transfected with the gene silencing vector 

(siHPA) containing an insert to express an siRNA sequence specific for inhibiting 

heparanase, a vector expressing the heparanase protein (pHPA), or a control vector for 

expressing siRNA but with no siRNA sequence (siCON). Following transfection, the 

cells were fixed, stained, and examined by immunofluorescent microscopy to confirm 

alterations in the expression of heparanase protein (Figure 52). Transfected cells were 

also lysed and assayed for heparanase by immunoblotting to confirm alterations in 

protein expression of heparanase (Figure 53). Transfection of cells with siRNA specific 

to heparanase led to almost complete silencing of heparanase protein expression. 
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Figure 52. Immunocytochemical staining for heparanase in endothelial cells transfected with a 

control vector (&ON), a heparanase targeted siRNA vector (siHPA) or a heparanase expression 

vector (pHPA). Cells were transfected with the various vector, incubated for 48 hrs and then 

stained using antibody to heparanase and a fluorescently labeled secondary antibody. 
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Figure 53. Western blot for heparanase in endothelial cells transfected with a control vector 

(siCON), a heparanase targeted siRNA vector (siHPA) or a heparanase expression vector 

(pHPA). Cells were transfected with the various vector, incubated for 48 hrs, lysed and 

subjected to Western blot analysis. 

Page 116 



One of the primary functions of the macrovascular endothelial cell layer is to 

control vascular smooth muscle cell (vSMC) growth and proliferation. Secreted heparan 

sulfate proteoglycans (HSPGs) are the major inhibitory molecules involved in endothelial 

control of vSMC proliferation [6,68]. To examine heparanase's role in modulating this 

control, conditioned media was prepared from each transfection group and applied in an 

assay of SMC proliferation (Figure 54). Overexpression of heparanase removed most of 

the inhibitory properties of endothelial cell conditioned medium (90.8 Â 8.8% thymidine 

incorporation versus control, p = not significant). Interestingly, the siRNA knock-down 

of heparanase resulted in highly inhibitory conditioned medium, leading to almost 

complete inhibition of SMC growth in the proliferation assay (3.3 1.5% thymidine 

incorporation versus control, p < 0.05). These data indicate that endothelial expression of 

heparanase can serve as an effective mechanism to control endothelial inhibition of SMC 

proliferation. 
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Figure 54. Vascular smooth muscle cell proliferation when exposed to endothelial cell 

conditioned medium from cells transfected with a control vector ( S O N ) ,  a heparanase targeted 

siRNA vector (siHPA) or a heparanase expression vector (pHPA). 
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To further examine the mechanism of heparanase control of vSMC inhibition, 

endothelial cells were metabolically labeled with tritiated glucosamine and the 

conditioned media analyzed using ion exchange and size exclusion chromatography for 

glycosaminoglycan (GAG) expression (Figure 55 through Figure 58). Overexpression of 

heparanase led to a marked reduction in endothelial cell surface associated GAG and 

HSPG (Figure 58). Conversely, a reduction in heparanase produced an increase in cell 

surface GAG accumulation (Figure 58). The media GAG appeared to be less affected by 

heparanase expression, only showing a small decrease in total proteoglycan and HSPGs 

for heparanase overexpressing cells. 
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Fraction Number 
Figure 55. Total proteoglycans in endothelial cell conditioned media separated by ion exchange 

chromatography. Cells transfected with a control vector (black line), a heparanase targeted 

siRNA vector (blue line) or a heparanase expression vector (red line). The applied salt gradient 

(dotted line) on the second axis. 
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Fraction Number 
Figure 56. Heparan sulfate proteoglycans in endothelial cell conditioned media separated by ion 

exchange chromatography. Cells transfected with a control vector (black line), a heparanase 

targeted siRNA vector (blue line) or a heparanase expression vector (red line). The applied salt 

gradient (dotted line) on the second axis. 
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Fraction Fhmber 
Figure 57. Total proteoglycans on the endothelial cell surface separated by ion exchange 

chromatography. Cells transfected with a control vector (black line), a heparanase targeted 

siRNA vector (blue line) or a heparanase expression vector (red line). The applied salt gradient 

(dotted line) on the second axis. 
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Fraction Number 

Figure 58. Heparan sulfate proteoglycans on the endothelial cell surface separated by ion 

exchange chromatography. Cells transfected with a control vector (black line), a heparanase 

targeted siRNA vector (blue line) or a heparanase expression vector (red line). The applied salt 

gradient (dotted line) on the second axis. 
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In addition to hypertension, percutaneous vascular intervention is another 

common mechanical stimulus for arterial remodeling. The affects of overexpression of 

heparanase on endothelial control of vSMC proliferation suggest that heparanase may 

also play a major role in modulating vascular response to injury. Platelets and 

inflammatory cells are known to express heparanase, providing a source of heparanase 

independent of the endothelium. We recently showed that vascular injury was 

exacerbated by the diabetic state in the Zucker rat model of type I1 diabetes[155]. To 

examine the role of heparanase in vascular injury we placed stents in the aortae of lean 

and fatty Zucker rats. Two weeks after stenting the animals were sacrificed and plastic 

embedded sections were prepared from the stented regions of the aortae. 

Hematoxylin and eosin and van Geissen staining of aortae showed an increase in 

neointimal thickness comparing the fatty to lean Zucker rats (Figure 59 and Figure 60). 

Imrnunohistochemical staining for the expression of heparanase in the neointima of fatty 

rats showed intense staining for heparanase in the neointimal region surrounding the stent 

strut (Figure 61). A strong correlation was found between the legion neointimal thickness 

and heparanase expression (R = 0.749, p < 0.0005, Figure 62). 
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Figure 59. Hematoxylin and eosin staining of histological sections of the stented abdominal 

aorta. 
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Figure 60. Elastic fiber (Verhoff Van Geisen) staining of histological sections of the stented 

abdominal aorta. 
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Figure 61. Irnrnunohistochemical staining for heparanase of histological sections of the stented 

abdominal aorta. 
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Neointimal Thickness (urn) 

Figure 62. Correlation analysis comparing lesion thickness with heparanase staining. 

Correlation between medial thickening and endothelial heparanase expression in SHR (H) and 

WKY (0)  rats. 
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Discussion 

This study identifies endothelial heparanase as a regulator of vascular remodeling 

and provides evidence that altered heparanase expression may underlie the 

pathophysiology of common vascular disorders. Previous work on heparanase has 

focused primarily on its role in modulating tumor cell invasion and angiogenesis. 

Despite the discovery of heparanase expression in endothelial cells two decades ago, the 

functional role of this expression in arterial biology had not been explored. Our study 

shows that heparanase expression serves to counterbalance the expression of growth 

inhibitory heparan sulfate proteoglycans in endothelial cells, providing a feedback 

mechanism for endothelial cells to have fine control of vascular smooth muscle cell 

growth and proliferation. 

Our studies show that gene silencing and enhancement of heparanase expression 

in endothelial cells leads to dramatic modulation of the conditioned media inhibitory 

properties towards vascular smooth muscle cell. Surprisingly, the silencing of 

heparanase expression resulted in almost complete inhibition of vascular smooth muscle 

cell growth. One potential mechanism of action of heparanase is to cleave extracellular 

matrix HSPG causing a release of matrix bound growth factors (particularly FGF-2). 

Heparanase isolated from platelets has been shown by others to release FGF-2 increasing 

the proliferation of vSMC [119]. While this mechanism may play a role in increasing 

proliferation in endo thelial overexpression of heparanase, it is unlikely to explain the 

large increase in inhibition of vSMC growth observed in the heparanase silenced cells. It 

is also notable that the medium used for these experiments contained considerable 

amounts of FGF-2 in serum and as a supplement. Similar inhibition results were 
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obtained using the isolated proteoglycans as with full conditioned media, indicating that 

release of FGF-2 was not a major mechanism acting in this system. Heparanase appeared 

to act on endothelial cells by causing the cleavage of cell surface heparan sulfate 

proteoglycans. This result is consistent with prior work that found that heparanase did not 

cut heparan sulfate proteoglycans in conditioned media [I561 and also that macrophage 

lysosomal lysates can digest cell surface heparan sulfate proteoglycan of smooth muscle 

cells [ 1 5 71. 

Previous work has shown that heparanase does not completely digest heparan 

sulfate into disaccharides but rather it cuts infrequently to yield chains of 10-20 sugar 

units [ 1581. Studies examining the specific structural determinants of heparin's 

inhibitory properties have shown that a minimum length of a hexasaccharide was needed 

to get inhibitory properties but also revealed a dependence on sulfation [159]. A major 

question that arises is whether these short polysaccharides are more or less inhibitory 

than the original, longer heparan sulfate chain. Our work indicates that heparanase acts 

on cell surface heparan sulfate proteoglycan cutting them to make small fragments that 

increase vSMC proliferation. Cell surface heparan sulfate proteoglycans can serve as 

coreceptor facilitating FGF receptor signaling [82] thus these heparan sulfate 

proteoglycans, in particular, would be particularly effective in increasing vSMC 

proliferation when released from cells by heparanase. The released cell surface heparan 

sulfate proteoglycans serve to counterbalance the inhibitory properties of the secreted and 

matrix HSPG that endothelial cells produce. 

In-vivo, an animal model of hypertension demonstrated an increase in heparanase, 

HPSG, and Spl in the endothelium of hypertensive rats. These results support that similar 
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processes that control the in-vitro response to mechanical load may be governing the 

vascular response to hypertension. Spontaneously hypertensive rats are known to have 

medial hypertrophy in the aorta due to their hypertension[154]. The strong correlation 

between the thickness of the aorta and the heparanase expression in the overlying 

endothelium illustrates that the balance between heparanase and HSPG plays a role in 

growth factor induced h yperplasia as well as proliferation. 

Prior work has shown increased heparanase expression in the endothelium of 

apoE-null mice and in endothelial cells exposed to fatty acids [160]. We examined the 

effect of the mechanical injury of endovascular stenting on rats in the context of the 

Zucker rat model. Our studies revealed a strong correlation between neointimal 

heparanase expression and neointimal thickness. This work indicates that the increased 

fatty acids act in inflammatory cells in vascular injury, causing increased expression of 

heparanase and increased neointimal formation. A secondary mechanism may be the 

enhanced of heparanase expression in invading inflammatory cells. Heparin and PI-88 (a 

synthetic heparin analogue) have been used in animal models to reduce neointimal 

formation [16 1, 1621. Both of these compounds can inhibit heparanase activity but also 

have many other activities including growth factor binding and direct activity on vascular 

smooth muscle cell. 

Taken together, our results define a new role for heparanase as a regulator of 

vascular remodeling. In this model heparanase serves as a control point allowing 

endothelial cells to modulate between inhibition and stimulation of vascular smooth 

muscle cells by utilizing one molecule. Further, these findings may have important 

implications in vascular disease progression. Aberrant heparanase may serve as a 
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common pathophysiological mechanism governing vascular remodeling under different 

pathological disease states. While specific small molecule inhibitors have long been 

sought after for the treatment of metastatic cancers, these results indicate that these 

molecules may also have a role in the treatment of postangioplasty restenosis, 

atherosclerosis, and hypertension. 
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Conclusions 

In this chapter we have given evidence that endothelial heparanase expression 

causes decreased vascular smooth muscle cell inhibition. Further we have shown a 

strong correlation between the heparanase expression and neointimal thickness in an 

animal model of injury and diabetes. This work identifies heparanase as a major 

regulator of vascular remodeling. Heparanase inhibition is currently a major thrust of 

commercial research for cancer therapy. Our results imply that these therapeutics may be 

useful in controlling aberrant vascular remodeling as well. 
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Chapter 6: Conclusions and Future Directions 

This thesis presents a body of work examining the fundamental biological 

mechanisms that govern vascular remodeling. In Chapter 3, we examined how 

endothelial cells change their control of vascular smooth muscle cells in response to 

mechanical environment. These changes were shown to be mediated, in part, by heparan 

sulfate proteoglycan. The changes in heparan sulfate proteoglycans were controlled by 

intracellular signaling pathways of MAPK and p3 8 MAPK, along with a TGF- p 

autocrine signaling. In Chapter 4, we found that the endothelium in hypertensive animals 

appeared to be similarly regulated by the increased mechanical strains. The hypertensive 

animals had increased endothelial heparanase expression that correlated with medial 

thickening. Finally, we examined the role of heparanase in modulating endothelial 

control over vascular smooth muscle cell proliferation and found that increasing 

endothelial heparanase expression caused a decreased vascular smooth muscle cell 

inhibition. 

Future studies should be done to further examine the mechanotransduction 

pathway that was partially elucidated in this work. In particular it will be essential to 

identify the molecules responsible for the activation of TGF-p in response to load. A 

particularly appealing candidate group is the matrix metalloproteases (MMPs) some of 

which can activate TGF-p and have been modulated with other types of mechanical strain 

[ 1631. Another fascinating possibility is that the endothelial cell is activating the TGF-p 

through direct integrin-mediated pathway. Thrombospondin is known to bind to TGF-p 

and it has been proposed that certain integrins may be involved in activating TGF-p in 
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this state [54]. One potential theory is that the integrins could bind to TGF immobilized 

thrombospondin and mechanical force could serve as the activating factor. 

A major portion of future work will focus on modulating the expression of 

heparanase to get in-vivo overexpression and underexpression. We recently created a 

lentiviral vector capable of in-vivo knockdown of heparanase. This tool can be used in 

several ways. The first is to give local delivery to arteries prior to vascular injury. In 

preliminary tests we delivered a GFP expressing virus in a rat model of carotid balloon 

injury. However, immunostaining for GFP showed that the virus did not penetrate the 

into the media of the artery.. Another approach is to use the virus to create transgenic 

animals. In this way we could study the affects of heparanase knockdown in 

hypertensive and diabetic Zucker rats. This method would likely be more effective than 

local delivery but requires a significant time investment. Another possibility that is being 

explored is to use small molecule inhibitors to heparanase as a means to knockdown 

heparanase activity. We recently started a collaboration with a research group that will 

provide us with a small molecule inhibitor towards heparanase. This methodology has 

great potent for clinical application. Drug eluting stents have been shown to work less 

effectively on diabetic patients. Combination therapy with a heparanase inhibitor and a 

currently used drug might create a stent specifically for use in these at risk patients. 
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