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Abstract 

The right measure of similarity between examples is important in many areas of 
computer science. In particular it is a critical component in example-based learning 
methods. Similarity is commonly defined in terms of a conventional distance function, 
but such a definition does not necessarily capture the inherent meaning of similarity, 
which tends to depend on the underlying task. We develop an algorithmic approach 
to learning similarity from examples of what objects are deemed similar according to 
the task-specific notion of similarity at hand, as well as optional negative examples. 
Our learning algorithm constructs, in a greedy fashion, an encoding of the data. This 
encoding can be seen as an embedding into a space, where a weighted Hamming 
distance is correlated with the unknown similarity. This allows us to predict when 
two previously unseen examples are similar and, importantly, to efficiently search a 
very large database for examples similar to a query. 

This approach is tested on a set of standard machine learning benchmark prob- 
lems. The model of similarity learned with our algorithm provides and improvement 
over standard example-based classification and regression. We also apply this frame- 
work to problems in computer vision: articulated pose estimation of humans from 
single images, articulated tracking in video, and matching image regions subject to 
generic visual similarity. 
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Title: Associate Professor 
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Chapter 1 

Introduction 

The need to automatically decide whether, and/or to what extent, two objects are 
similar arises in many areas of computer science. Sometimes it is explicit, for in- 
stance in nearest neighbor methods that rely on finding training instances similar 
to the input, or in information retrieval applications. In other cases, for instance in 
probabilistic models that use dissimilarity computations to derive model parameters, 
this need is implicit. The notion of similarity judgment has been also in the focus of a 
large body of research in cognitive science. It is known that people can perceive and 
judge similarity at different cognitive levels, and that the semantics of such judgments 
may depend on the task. 

The basic idea explored in this thesis is that the notion of task-specific visual 
similarity can be, and should be, learned from examples of what is to be considered 
similar for a given task. Specifically, we develop an new approach that learns an 
embedding of the data into a metric space where a (possibly weighted) Hamming 
distance is highly faithful to the target similarity. A crucial practical advantage of 
this approach is that a search for examples similar to a given query is reduced to 
a standard search in the metric embedding space and thus may be done extremely 
quickly, leveraging an arsenal of randomized algorithms developed for that purpose. In 
some of the applications reported here we use our embedding approach in conjunction 
with locality sensitive hashing, and achieve state-of-the-art performance in sublinear 
time. 

We develop a family of algorithms for learning such an embedding. The algo- 
rithms offer a trade-off between simplicity and speed of learning on the one hand 
and accuracy and flexibility of the learned similarity concept on the other hand. We 
then describe two applications of our similarity learning approach in computer vision: 
for a regression task of estimating articulated human pose from images and videos, 
and for a classification task of matching image regions by visual similarity. To our 
knowledge, this is the first example-based solution to these problems that affords a 
feasible implement at ion. 

In the context of regression, the novelty of our approach is that it relies on learning 
an embedding that directly reflects similarity in the target space. We can use t,his 
embedding to retrieve training examples in which the target function with high prob- 
ability has values similar to the value on the input point. We combine the embedding 



with the search algorithm using randomized hashing and with a clustering step that 
allows for multi-modal estimation. 

This Introduction is organized as follows. Section 1.1 gives defines more formally 
the task we are addressing. Section 1.2 outlines the basic ideas in our approach to 
learning similarity. The computer vision applications of this approach are briefly d e  
scribed in Section 1.3. Finally, Section 1.4 describes the organization of the remainder 
of the thesis. 

1.1 Modeling equivalence 
The central learning problem addressed in this thesis can be formulated as follows. 
Let X denote the data space in which the examples are represented. We will define 
an equivalence similarity concept as a binary relation S(x, y)  + f 1, that specifies 
whether two objects x E X and y E X are similar (+I) or not (-1). We will assume, 
unless noted otherwise, that this relation is reflexive, i.e. S(x,  x) = + 1 , and symmet- 
ric, i.e. S (x ,  y)  = S(y,  x). However we will not require S to be transitive, and so it 
will not necessarily induce equivalence classes on X. 

We develop an approach to learning a model of such similarity relation from 
examples of pairs that would be labeled similar, and ones that would be labeled 
dissimilar, by S .  We also show how, under certain assumptions, such learning can be 
done in a scenario in which only positive examples are provided, in addition to some 
unlabeled data. 

Our objective in learning similarity is dual: 

To develop a similarity classifier, that is, to build an estimator that given a 
novel pair of objects in X predicts, as accurately as possible, the label S would 
have assigned to it. 

To provide framework for a very efficient similarity search. Given a large 
database XI, . . . , x~ of examples and a query xo we would like to have a method 
for retrieving examples in the database that are similar (with respect to S )  to 
the query, without having to apply the similarity classifier to every possible pair 
(XO , xi) 

The embedding approach developed in this thesis allows us to achieve both of 
these goals in a single learning framework. 

1.1.1 Other notions of similarity 

Similarity can be defined at two additional levels of "refinement", which we do not 
address here. However we describe these notions of similarity below in order to clarify 
the distinction from the problem outlined above. 

Ranking One can define a relative similarity: for two pairs of examples, x , y  and 
z, w one can determine whether or not S(x,  y)  5 S(z, w). In principle such similarity 
model defines a binary classification problem on pairs of pairs of examples. 



Distance At the most refined level, S could produce a non-negative real number 
for any pair of examples; the smaller this number the more similar the two examples 
are. Such a regression mapping X2 -+ R+ corresponds to the standard notion of a 
distance between pairs. The distance values of course induce a ranking relation, as 
well. It may also be possible to obtain a consistent set of distances from ranking, by 
met hods like multidimensional scaling (Section 2.3.3) but in general the information 
available at this level is more rich than the other two. 

In this thesis, unless otherwise noted the term "similarity" will refer to  equivalence. 
At the end of the thesis we will discuss how the approach we develop could be extended 
to the ranking notion of similarity. As for learning a real-valued, distance notion of 
similarity, we will not pursue it here. 

1.1.2 Example-based met hods 

In some cases, the goal of an application is explicitly to predict the similarity judgment 
on two examples x, y E X,  under a particular similarity S. This is a classzfication 
problem over the space of pairs X x X.  However, very often in machine learning the 
ability to automatically judge similarity of example pairs is important not in itself, 
but as part of an example-based method. 

The distinction between model-based and example-based classification is often 
loose; here we attempt to frame it in terms of the manner in which training examples 
are used to predict the label of a new input. 

Model-based methods use the training examples to build a modelof the class or of 
the target function. More often than not the model is parametric. A common example 
is to fit a parametric model of probability density to examples from each class; the 
very popular family of classification methods based on principal component analysis 
belongs to this kind. Sometimes it is non-parametric, for instance modeling the class- 
conditional density with a kernel estimate. The main defining characteristic of a 
model-based classification is that the input is not explicitly matched with (compared 
to) individual training examples but rather matched to the model. This is true 
whether the original training examples are kept around, like in the case of kernel-based 
non-parametric model, or are discarded after the model is constructed as in principal 
component analysis, or a mix of the two is used, as in a support vector machine 
(SVM) [103], where some of the training examples, namely the support vectors, are 
retained in addition to a set of parameters learned from the entire training set. 

In contrast, in example-based methods classification or regression is based explic- 
itly on comparing the input to individual training examples. Widely used example- 
based methods include nearest-neighbor classification and locally-weighted regression. 
A generic description of such a method is: 

1. Store the training (sometimes called reference) data X = {xl, . . . , xn) and the 
associated labels 11, . . . , l,. 

2. Given a query xo, find examples xil, . . . , xi, in X that are similar to XO. 

3. Infer the label of the query lo from (xi,, ti, ) , . . . , (x, , -tiic ) . 



The central computational task in the above description is similarity search: 
Given a query q E X and a set of examples X = {xl , . . . , +), find xi such that 
S(xo, xi) = +l.  Technically, this may be equivalent to applying a similarity classifier 
on n pairs (xo, xi), i = 1, . . . , n. However, from a practical standpoint such a solution 
is unacceptable for large datasets, even with a relatively simple classifier. In order to 
make search feasible, it should be possible to complete in time sublinear in n. 

We assume that no analytic expression exists for the "true" similarity concept S, 
or that no access to such an expression is given to us. Thus we need to construct a 
model Ŝ  of similarity, which will be used to predict the values of S .  

1.1.3 Why learn similarity? 

Before we discuss the details of our approach to learning similarity from data, we 
briefly discuss some alternatives here, and a more detailed discussion is found in 
Chapter 2. 

A reasonable approach may be to use a distance as a proxy for the desired simi- 

The choice of the distance D, and to some extent of the threshold R, may have 
critical impact on the success of such a model. The most commonly used distances 
are the L, metrics, in particular the L1 (or Manhattan) and the L2 (Euclidean) 
distances. These distances account for a vast majority of example-based methods 
proposed in computer vision when the representation space X is a vector space of 
fixed dimension. ' When the represent at ion does not allow a meaningful application 
of Lp, the similarity is typically measured in one of two ways. One is to embed the 
data into a metric space and proceed using an Lp distance; the other is to apply 
a distance measure suitable for X. For instance, when examples are sets of points 
in a vector space, a common distance to use is the Hausdorff distance [45] or the 
earth mover's distance [55]. Often one uses an embedding of X into another, usually 
higher-dimensional space, in which an Lp metric approximates the complex distance 
in the original space [5, 551. 

However, it is usually possible to provide examples of similarity values. The 
source of such examples depends on the circumstances in which similarity modeling is 
required. In some cases, similarity values for example pairs may be provided directly, 
either by manual labeling or via an automated data generation or gathering process. 
In colloquial terms, this means that a human has a particular concept of similarity 
in mind, such as "these two image patches look similar", or "these two people have a 
similar body pose", that allows him/her to serve as an oracle and provide values of 
S(x,  y) for some pairs (x, y) E X2. These values are considered the "ground truth" 
and the goal of the similarity modeler is to construct an estimate, g, that optimizes 

'The distances under L1 and Lp will of course differ, however the ranking, and consequently the 
set of nearest neighbors, are typically very similar; see, e.g., [52] for a discussion. 



the chosen measure of agreement with S .  In other words, the goal is to "uncover" 
the similarity judgment S used to assign the training labels. 

On the other hand, in the context of example-based methods similarity between 
objects in X is in effect a "latent concept". Each training example x in X is associated 
with a label [(x) in a target space y. Usually, a well-defined similarity Sy exists over 
y and can usually be computed analytically. For instance, in a classification scenario 
y is the finite set of class labels, and two labels are similar if they are identical. 
In a regression setting Y contains the values of the target function, and similarity 
may be defined by two values falling within a certain distance from each other. We 
suggest a natural protocol for defining a similarity over X2: two examples in X are 
considered to be similar under S if their labels are similar under Sy. This provides us 
with a method for inferring values of S from the labels. The basic challenge remains 
unchanged: to be able to predict S(x,  y) without access to the labels l (x) ,  [(y) and 
thus to the ground truth similarity. 

A crucial property of similarity is that it can be task-speczfic: the same two ex- 
amples may be judged similar for one purpose and dissimilar for another. This is 
illustrated by the following "toy" example. Consider a set of 2D points, with two 
different notions of similarity illustrated in Figure 1-1 (analyzed in more detail in 
Chapter 3.) Under the first similarity (top row), two points are similar if their Eu- 
clidean norms are close (within a given threshold). Under the second, two points 
are similar if the angles in their polar coordinates (modulo T )  are close. Clearly, 
Euclidean norms, Manhattan or Mahalanobis distances are not adequate here. The 
proposed algorithm uses a few hundred examples of pairs similar under the relevant 
similarity and produces an embedding which recovers the target concept quite well, 
as shown on the right. 

1.2 Learning embeddings that reflect similarity 

In the most basic form, our approach can be summarized as follows. We construct 
an embedding of X into an M-dimensional space 7-1, each dimension m of which is 
given by a separate function h,: 

H :  x E X  --, [alhl(x) , . . . ,  a M h ~ ( x ) ] ,  h,(x)~{O,l}.  (1.2) 

The value of a, > 0 depends on the specific algorithm, but in all algorithms the 
h, are chosen in such a way that the Ll distance 

reflect the underlying similarity. That is, the lower the distance I I H (x) , H (y) 1 1 ,  the 
higher the certainty of S(x,  y )  = +l. Thus, we follow the paradigm of distance as 
proxy for similarity (1. I), however the represent at ion, the distance and the threshold 
R are explicitly chosen with the objective of maximizing the prediction accuracy. 



Figure 1-1: Illustration of task-specific similarity modeling on a toy 2D data set. 
Left: ground truth showing, for one query (cross), examples similar to it (diamonds). 
Examples found by the BoostPro (Chapter 3) algorithm are shown by squares. Right: 
similarity regions induced by the query and the embedding learned with BoostPro 
(200 bits), for a particular distance. Top row: norm similarity, bottom row: angle 
similarity. 



1.2.1 Motivation: hashing and boosting 

This approach is inspired by, and to a large extent has evolved from ideas developed 
in the last decade in two areas of research: randomized search algorithms in computa- 
tional geometry and ensemble methods in machine learning. Here we briefly describe 
them, and a more detailed survey can be found in Chapters 2 and 3. 

Locality sensitive hashing (LSH) The LSH [65, 52, 311 is a scheme for approxi- 
mate similarity search under the L, metric for p E [O, 21. It works by indexing the data 
in a set of 1 hash tables with independently constructed randomized hash functions, 
each using a key of k bits. Each bit in the hashing key is computed by projecting 
the data onto a random vector and thresholding the value. With a suitable setting 
of parameters 1 and k, this hashing scheme finds, for a value R, a E-R neighbor of xo, 
i.e., an example x such that llxo - x I I  5 (1 + E) R. Its lookup time is 0 (n1/('+')), 
and arbitrarily high probability of success can be achieved. The building block of 
LSH which provides this guarantee is the notion of a locality sensitive hash function, 
under which the probability of collision is related to the distance in X. When the L, 
metric over X is used as a proxy for the underlying similarity S, the LSH achieves 
our goal as formulated: the union of distinct bits used in the hash keys defines an 
embedding in which L1 distance (in this case equivalent to the Hamming distance) 
reflects S. A natural question, then, is how to extend the LSH framework to reflect 
the distance in the unknown embedding space. Our solution is, essentially, to learn 
the locality-sensitive bits and let the bits define the embedding. 

Boosting The idea of boosting [99, 231 is to create an ensemble classifier (or regres- 
sor) by greedily collecting simple classifiers that improve the ensemble performance. 
Each simple classifier only has to be better than chance, hence it is often referred 
to as a "weak" classifier. A number of variants of boosting have been published so 
far; in Chapter 3 we review the specific boosting algorithms relevant to our work. 
The general strategy shared by boosting methods is to assign weights to the training 
examples and manipulate these weights in order to steer the iterative greedy selection 
process towards improving the desired properties of the ensemble. 

The learning approach in this thesis was inspired by these ideas, and has adapted 
them for the purpose of constructing a similarity-reflecting embedding. The algo- 
rithms outlined below and described in detail in Chapter 3. The order in which they 
are presented corresponds to the evolution of the underlying ideas and to trading off 
simplicity of learning for representational power of the resulting embeddings. 

1.2.2 Similarity sensitive coding 

The first algorithm2 is essentially a modification of the original LSH approach in 
which the hashing bits correspond to axis-parallel decision stumps. The operating 
assumption behind it is that a reasonable approximation to S may be obtained by 
calculating the L1 distance in the data space X, when the following "corrections" : 



1. Some dimensions of X may be irrelevant for determining S. These dimensions 
serve as noise when distance is computed, and are better ignored. 

2. For a given dimension, some thresholds (decision stumps) are much more ef- 
fect ive (i .e. similarity-sensit ivesee Sect ion 2.4.2) than others. Using these 
thresholds in constructing LSH keys will optimize the properties of the hashing 
scheme for a given size of the data structure (and thus for a given lookup time.) 

3. The determination of the dimensions and thresholds described above is to be 
guided by the available training data in the form of similar and dissimilar pairs of 
points in X. The training true positive (TP) rate correspond to the percentage 
of similar pairs in which both examples (projected on the dimension at hand) 
fall on the same side of the threshold. The false positive (FP) rate is evaluated 
similarly by looking at the dissimilar pairs. 

This leads to the algorithm called similarity sensitive coding (SSC), first presented 
in (1051 under the name of PSH (parameter-sensitive hashing). For each dimension 
of X, SSC evaluates the thresholds and selects the ones with acceptable combination 
of T P  and FP  rate. The criteria of acceptability depend on the precision/recall rates 
appropriate for the application at hand, and are formulated as an upper bound on the 
FP and a lower bound on the T P  rates. The data are then indexed by LSH, which 
uses only the selected stumps as hash key bits. This is equivalent to embedding X into 
a binary space 

H'~'(X) = [hsSC(x), . . . , hEC(x)] , 
where each bit hgC(x) is obtained by quantizing a single dimension i, in X into a 
single bit by t hresholding: 

1.2.3 Boosting the embedding bits 
Learning of the decision stumps in SSC is straightforward, and the algorithm has 
produced good results in the pose estimation domain [105, 351. However, SSC leaves 
room for a major improvement: it ignores dependencies between the dimensions of 
X. The second algorithm of Chapter 3 addresses these issues and employs a boost- 
ing algorithm (AdaBoost) which takes the dependencies into account. The boosting 
algorithm yields an ensemble classifier, 

where the single bit functions hkB are of the same form as hzc .  The resulting 
embedding is into a weighted binary space 



Interestingly, the L1 (Hamming) distance in this space between H*~(x )  and 
fIAB(y) is proportional to the margin of the AdaBoost classifier, 

In practice, this algorithms may outperform SSC for a number of reasons: 

The embedding is less redundant and more directly optimized for the underlying 
similarity predict ion task. 

The weights produced by AdaBoost allow for an additional "tuning" of the 
embedding. 

While in principle this is a straightforward application of AdaBoost, a number of 
interesting practical problems arise when the algorithm is applied to a large amount of 
data. In particular, under the assumption mentioned in Section 2.1.4 that similarity 
is a "rare event", the class distribution is very unbalanced. We discuss this issue in 
Chapter 3. 

1.2.4 BoostPro: boosting optimized projections 

The final algorithm of Chapter 3, called BoostPro, further advances our approach 
towards making the embedding more flexible. We leave the realm of axis-parallel 
decision stumps, and instead propose to use arbitrary projections of the data. By a 
projection we mean any function f : X -+ R; in all the experiments described in this 
thesis we have used polynomial project ions, 

d 

f (x) = C 6'jc;, pj E {I., 2, . . .}, i j  E {I,  . . . , d i m ( X ) } .  
j=1 

In contrast to the algorithm outlined in the previous section (where the weak learn- 
ers only select the threshold), BoostPro uses a gradient-based optimization procedure 
in the weak learners to improve projection coefficients as well as thresholds, given the 
current ensemble and the weights on the training data. Furthermore, we introduce 
a modification of AdaBoost algorithm for the special case of learning similarity, in 
which learning is done from positive examples only. 

Figure 1-2 provides a cartoon illustration of the forms of embedding attainable 
with each of the algorithms. 

1.2.5 Relationship to other similarity learning methods 

In Chapter 2 we discuss in some detail the significant body of literature devoted to 
related topics. Here we attempt to broadly categorize the prior work and emphasize 
its main differences from the learning approach developed in this thesis. 



(a) SSC (b) Boosted SSC (c) BOOSTPRO 

Figure 1-2: Illustration of embeddings obtained with the learning algorithms. Dotted 
lines show 011 boundaries for each bit. Letters correspond to weights, numbers in 
parenthesis to the order of the bits. Shown in the box is the embedding of the query 
point (circle). In (c), the case of linear projections is illustrated; for polynomial 
projections of higher order the boundaries would be nonlinear. 

Metric learning Much work has been done on learning a metric D on X that 
is optimized for the use in a particular learning machine, typically a NN classifier. 
The requirement that the distance be a metric (including transitivity and compliance 
with triangle inequality) stands as a major difference with our approach. F'urther- 
more, typically the learned metric is constrained to a particular parametric form, 
usually described by a quadratic form [118, 531. Thus the class of similarity con- 
cepts attainable by these methods is significantly more limited in comparison to our 
embeddings. 

Optimal distance learning For certain classification tasks there have been pro- 
posed algorithms that learn a distance (as a measure of dissimilarity) which is not nec- 
essarily a metric, optimized for a particular task-classification or clustering. Among 
recent work in this direction, [79] and [60, 611 are the closest in spirit to ours. How- 
ever, the transitivity requirement is retained in these approaches, and it is not clear 
how to extend them effectively beyond problems with finite label sets. 

Manifold learning Many algorithms have been proposed for learning a low-dimensional 
structure in data, under the assumption that the data lie on a (possible non-linear) 
manifold: multidimensional scaling (MDS) [27], Isomap [112], local linear embed- 
ding 1961 and others (see [12] for a unifying perspective on these and other manifold 
learning algorithms.) These algorithms usually obtain an embedding of the training 
data by manipulating the eigenvectors of the pairwise distance matrix. A related fam- 
ily of methods deals with embedding a graph, whose vertices represent examples and 
edges are weighted by (dis)similarity, in a space where the similarities are preserved. 

In contrast to the manifold learning algorithms, our approach does not make an 
implicit assumption regarding structure in the data, nor does it limit the dimension- 



ality of the embedding by the dimensionality of x . ~  A more important difference, 
however, has to do with extending the embedding to new examples. The MDS and 
related algorithms do not yield a mapp2ng function, which could be applied to a pre- 
viously unseen example. While some extensions to out-of-sample examples have been 
proposed [12, 331, they typically rely on the (Euclidean) distance in X and the ability 
to find neighbors efficiently among training data-an undesirably circular dependency 
in the context we are considering here. 

1.3 Applications in computer vision 

1.3.1 Levels of visual similarity 

Visual similarity can be defined at a number of perceptual levels, which differ in the 
amount of semantic complexity, the dependence on the task at hand, and the potential 
stages in the visual pathway at which they may be implemented in biological vision 
systems. 

Low-level similarity Two image regions (patches) are considered visually similar 
if they correspond to similar physical scenes. A simple example of this occurs under 
small motions (translation and rotation) of a camera pointed at a given scene: in most 
cases, unless there is a discontinuity in appearance due, for examples, to sharp edges, 
images of the scene in subsequent frames will be similar. The framework developed 
in this thesis will be applied to learn such similarity - specifically, to predict when 
two image patches are transformed versions of each other. In essence, the goal is 
to obtain transformation-invariant similarity on top of non-invariant representation. 
The learning for this kind of similarity can occur with no human supervision: given 
a set of natural images, pairs of similar patches can be extracted automatically. 

Mid-level similarity On a higher perceptual level (which may be associated with 
later stages in the visual pathway) visual elements are deemed similar if they share 
some simple semantic property. An example of such similarity that arises in the 
object categorization domain is the notion of parts - elements that are repeatable 
in a particular visual category, albeit with some appearance variation. This level of 
similarity may be important, in particular in an object classification architecture with 
multiple feature levels. 

High-level similarity On an even higher perceptual level, similarity is defined 
primarily by semantics. These properties that make two objects similar are themselves 
not visual, but can be inferred (by human perception) from visual information. Two 
examples of such task-speczfic similarity that we consider in this thesis are object 
category (do the two objects belong to the same category?) and articulated human 

3Although directly comparing dimensionalities is somewhat inappropriate, since our embedding 
space is (possibly weighted) binary, as opposed to Euclidean X. 
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Figure 1-3: A cartoon of the example-based pose estimation approach. The embed- 
ding is learned to reflect similarity of the entire pose. 

pose estimation (is the body configuration of the two human figures similar?). Note 
that in the latter case, there is an additional level of dependency on the exact task: 
two poses that may be judged similar if one only needs to classify a gesture (pointing 
versus raising one's hand) would not be considered similar if the goal is to recover 
the 3D location of every body joint with maximal precision. 

1.3.2 Example- based pose estimation 

Previous model-based approaches have shown that the task of modeling the global r e  
lationship between the image and the pose is very difficult. In the proposed approach, 
we instead model a simpler concept: similarity between the poses that appear in two 
images. This leads to an examplebased estimation algorithm: given an image, find in 
a large database of images (labeled with the underlying articulated poses) examples 
classified as similar to the input. This scheme, illustrated in Figure 1-3, relies on 
the performance of the similarity classifier. Its high true positive (TP) rate provides 
that with high probability, the unknown pose is close to the poses in the retrieved 
examples. On the other hand, the low false positive (FP) rate means that not many 
spurious examples will be retrieved. 

A preliminary work in this direction, using SSC, has been presented in [105]. In 
this thesis we present new experiments with a very large database of poses, obtained 
with motion capture system, using BoostPro to learn an embedding of images that 
reflects pose similarity. 



1.3.3 Learning visual similarity of image regions 

Comparing image regions is a basic task which arises in many computer vision prob- 
lems: analysis of stereo, image denoising, scene recognition, object categorization etc. 
Recently, met hods that operate by comparing image regions have established them- 
selves as state-of-the-art in some of these problems. Conceptually, there are usually 
four steps in such methods that directly operate on image regions: 

1. Interest operator: selecting a set of regions from the given image that are con- 
sidered "interesting". This is an attention mechanism, and a number of such 
operators have been proposed. While some appear to be particularly successful 
in certain cases [77, 841, the choice of interest operator and even its utility is 
still far from obvious [80, 141, and we will remain agnostic regarding this issue. 

2. Descriptor The next step is to compute the representation of the selected 
patches. Ideally, the represent at ion should capture the features that are impor- 
tant to the application that uses the matching method, while being invariant to 
features that are unimportant. We will consider two representations, that have 
been the subject of much work in the vision community: the shift-invariant 
feature transform (SIFT) [77] and the sparse overcomplete codes [89]. 

3. Matching Once the descriptor for a region is computed, it is matched to the 
descriptors of regions in the database (the training data). 

4. Inference Depending on the specific task and the method at hand, the results 
of the matching across the test image are combined to produce an answer. 

The matching step clearly provides a natural grounds for applying our learning 
approach. In Chapter 6 we describe an experiment in which we learn to match patches 
obtained by transforming an image in certain ways (rotations and mild translations), 
and show how whereas standard distance-based similarity models fail, the embedding 
learned by our algorithm allows to detect similarity between transformed versions of 
the same patches. 

1.4 Thesis organization 

Chapter 2 provides the background for the thesis research. It describes the prior 
work in related areas, with particular emphasis on the two ideas that inspired our 
learning approach: locality sensitive hashing and the boosting. Chapter 3 describes 
the core machine learning contribution of the thesis-a family of algorithms that pro- 
duce similarity-reflecting embeddings of the data. Armed with these algorithms we 
develop example-based approaches for two computer vision domains. In Chapter 4 
we describe a method for estimating articulated pose of human figure from a single 
image, and in Chapter 6 a method for matching image regions based on visual simi- 
larity under certain class of transformations. Chapter 7 contains a discussion of the 
presented approach, and outlines the most important directions for future work. 





Chapter 2 

Background 

This chapter presents some background for the research presented in this thesis. We 
start with a review, in Sections 2.1 and 2.2, of example-based classification and re- 
gression methods, which provides an important context for similarity learning. In 
Section 2.3 we discuss prior work on learning distances and similarities, and in Sec- 
tion 2.4 we review state-of-the-art algorithms for similarity-based retrieval. The back- 
ground for vision applications in the thesis is not covered in this chapter, but rather 
presented in Chapters 4, 5 and 6. 

2.1 Example-based classification 

In a classification problem, the labels belong to a finite set of possible ident i t ies:  

and the task consists of assigning a test example to one of the C classes. By far the 
most used example-based method is the K nearest neighbors (K-NN) classifier. Its 
operation is described in Algorithm 1. Setting K = 1 yields the nearest neighbor 
classification rule, perhaps the simplest and the most widely used in practice. 

2.1.1 Properties of KNN classifiers 

Despite its simplicity, the NN classifier very often achieves good performance, partic- 
ularly for large data sets. The result by Cover and Hart [26] establishes a tight upper 
bound on the asymptot ic  risk R, of the NN rule for C classes in terms of the Bayes 
risk R*. 

Similar bounds can be established for the K-NN classifier, although they are more 
involved (see, e.g., [38] .) 

The bound in (2.1) describes the performance of the rule in the limit on an infinite 
amount of data, and has practical significance only in conjunction with a reasonable 



Algorithm 1 Classification with K nearest neighbors (KNN). 
Given: Training set X = {xl,. . . , xN) with labels {yl,. . . , yN). 
Given: A distance measure D : X -, R. 
Given: An integer 0 < K 5 N. 
Given: Test example xo E X. 

(KNN) Output: Predicted label Go 
1: Let i;, . . . , ik be the indices of the K NN of xo in X w.r.t. D, i.e. 

and 
D(xo,xik) 5 D(xo,xi) for all i $! {i;, . . . ,ik}. 

2: For each y E Y let Xb = {i: I yi; = y, 1 5 k 5 K )  
3: Predict Go (KNN) = argm%Ex 1 Xb I, breaking ties randomly. 

rate of convergence of the N-sample risk RN to R,, as N grows large. The finite 
sample behavior of the NN rule has been extensively studied and shown to be difficult 
to characterize in a general form. Under various assumptions and approximations, the 
existing results describe the rates of convergence of RN to R, [25, 371; unfortunately, 
it has been shown that such convergence may be arbitrarily slow. Some results exist 
regarding the bounds on RN [48, 901, and means of calculating the risk for given data 
and distribution parameters [go, 1091. In addition, some analysis of the deviation 
RN - R, is given in [50]. 

Despite the lack of guarantees for finite samples, the NN rule has been known to 
work well in very many practical cases, and often performs on par with much more 
sophisticated classifiers, provided enough training data (see, for instance, [30] for an 
extensive comparative study). 

A major drawback of the NN rule is its computational complexity. With N exam- 
ples in a D-dimensional input space, bruteforce exhaustive search requires 0 (DN) 
operations (assuming a single distance calculation costs O(D) operations, and must 
be carried out for each reference point). Faster'algorithms, which require as little 
as 0 (log N) time, also require 0 (NDI2) storage which for high D is prohibitively 
large. It is a common conjecture, supported by empirical evidence [18], that exact 
NN search algorithms are bound to suffer from this problem, due to the "curse of 
dimensionality". To alleviate this problem, practitioners often turn to approximate 
schemes, which trade off some of the accuracy guarantees in retrieval of neighbors for 
a significant increase in speed. 

2.1.2 Approximate nearest neighbors 

An E-k-th NN of xo is defined as a training example K; such that 



where E > 0 is an approximation parameter. In general, there will be more than one 
such candidate point and the particular selection strategy depends on the specific 
search algorithm used. 

The asymptotic risk of the E-NN rule can be easily established.' By the dominated 
convergence theorem [I, we have 

if limN,D(q,xi,) = 0 w.p.1, 

then limN,,D(xo,xi;) = O  w.p.1, 

following from (2.2), where D is the metric in the input space. The limit in (2.3) 
is proved, under mild assumptious, in [26], thus yielding the conclusion in (2.4). 
From here, one can closely follow the proof in [26] and obtain the R, (i.e., the same 
asymptotic overall risk as for the exact NN rule) in the limit. As for the finite risk of 
the E-NN classifier, and in particular its deviation from the corresponding risk of the 
exact NN, no definitive answers are known yet. 

State-of-the-art methods allow finding an E-NN or E-R neighbors (see next sec- 
tion for definition) in time sublinear in N, and with mild storage requirements. In 
section 2.4.2 we describe in detail one such method: the locality sensitive hashing 
(LSH) . 

2.1.3 Near versus nearest 

In the algorithms discussed above, the cutoff used in the search procedure is para- 
metrized by the rank order K. An alternative criterion is to use a distance cutoff. 
Modifying step 1 accordingly leads to the R-near neighbor classifier (Algorithm 2.) 
The notion of approximate near neighbor is defined similarly to (2.2): For a given 
distance value R and the approximation factor t, the E-R neighbor of xo is defined as 
any x for which 

D(xo, %,R) 5 (1 + t)R. (2.5) 

Algorithm 2 Classification with R-neighbors. 
Given: Training set X = {xl,. . . , xN) with labels {yl,. . . , yN). 
Given: A distance measure D : X + R. 
Given: A number R > 0. 
Given: Test example xo E X. 

(RN) Output: Predicted label go . 
1: Let i;, . . . , ik be the indices of R-neighbors of xo in X w.r.t. D, i.e. 

2: For each y E Y let Xb = {ii I pi; = y, 1 < k 5 K )  
3: Predict @rN) = a r g m q E y  IXJ, breaking ties randomly. 

l ~ e  are not aware of m y  previous publication of this observation. 
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There are important differences between the two algorithms. On the one hand, 
the search in K-NN is guaranteed to produce exactly K matches'while for a fixed 
R the search in R-neighbor may fail to return any matches even with exact search 
algorithms, since there may simply be no appropriate matches in the database. The- 
oretical analysis of example-based methods based on near-neighbor retrieval appears 
to be harder, in particular it is difficult to show any "distribution-free" properties. On 
the other hand, setting the cutoff for Algorithm 2 may lead to more robust estimation, 
since it prevents cases in which some of the K-NN are too far to usefully contribute 
to the local model.2 Overall, the choice of the specific formulation of neighborhood 
retrieval is a matter of design and should be decided for the task at hand. In most of 
the experiments in this thesis we used the K-NN (i.e., nearest) formulation. 

2.1.4 Evaluation of retrieval accuracy 

How good is a model 3 ?  Since S defines a classification problem, a standard measure 
of accuracy for a classifier S^ is the risk 

which depends on the loss m a t ~ x  L that specifies the penalty for any combination 
of true and predicted similarity values. In practice, the expectation above can be 
estimated by calculating the average loss on a finite test set. 

A more detailed measure is the combination of the precision of Ŝ  

I{(x,y) : S(x ,y )  = +1 andS^(x,y) = +1)1 
pre = 

I{(x,Y) : %,Y) = +Ill 

(i.e., out of pairs judged similar by & how many are really similar under S) ,  and 
its recall A 

I{(x,y) : S(x ,y )  = +1 andg(x,y)  = +1)1 
rec = 

I{ (~ ,Y)  : S(x,y)  = fl1l 
(out of pairs similar under S, how many are correctly judged similar by 3.)  A 

closely related terminology3 refers to the true positive, or detection rate TP which is 
equal to the recall rate, and the false positive, or false alarm rate 

I{(x, y)  : S(x,  y)  = -1 and g(x, y)  = +1)1 
FP = 

I{(x,Y) : S(X,Y) = -111 
Rather than specifying a single point in the precision/recall space, one can consider 

the entire range of the tradeoff between the two. Plotting the T P  against FP as a 
function of changing parameters of the retrieval algorithm (in this case the threshold 

2Although such spurious neighbors may be seen as outliers and could be dealt with by, say, robust 
local regression (Section 2.2.) 

3 ~ h i s  terminology corresponds to the view of similarity learning as a detection task. 



on the distance) yields the receiving-operating characteristic (ROC) curve. 
When retrieval of similar examples is the goal in itself, the ROC curve provides 

the comprehensive measure of the method's performance by specifying the range of 
the trade-off between precision and recall. Furthermore, the area under ROC curve 
(AUC) provides a single number describing the performance. However, if a similarity 
model is used as a component in an example-based classification or regression, its 
success should be also measured by the accuracy of the resulting prediction: the 
average classification error, or the mean estimation error on a test set. 

The choice of a loss matrix L as well as the desired precisionfrecall combination is 
typically influenced by the relative frequency of similar and dissimilar pairs in X2. It 
is often the case (and especially so in vision-related domains) that similarity is a "rare 
event": two randomly selected examples from X are much less likely to be similar 
than not. This asymmetry has consequences on all aspects of similarity learning. For 
instance, L may need to be skewed significantly, in the sense that the penalty for 
one "direction" of wrong prediction is much higher than the penalty for the opposite 
error. For many learning algorithms this poses a significant challenge. However, we 
will describe in Chapter 3 how it can be turned to our advantage. 

2.2 Example-based regression 

The task of regression consists of predicting, for a query point XO, the value of a real- 
valued target function g on a test point xo; the function is conveyed to the learned by 
a set of examples XI , .  . . , x~ labeled by the value of yi = g(xi), perhaps with some 
noise. When no global parametric model of g is available, example-based estimation 
is often an appropriate choice. 

The simplest example-based approach to regression is to apply the K-NN rule [24], 
with the slight modification to account for the estimation goal: the predicted value of 
yo is set to the average of the values in the NN, rather then to the winner of a majority 
vote4. This estimation rule corresponds to a piecewise-constant approximation of the 
target function g(x), with at most (g) distinct values (one value for every feasible 
assignment of K nearest neighbors among the reference points). Similarly to the 
K-NN classifier, there are results on the asymptotic behavior of this estimator [24]. 

The family of local polynomial regression estimators 1431 may provide more flex- 
ibility in modeling the higher order behavior of the target function g. Under the 
assumptions that g is well approximated by a polynomial of degree p within any 
small region of X, and that the selected neighbors of the query point xo fall within 
such a small region around it, a polynomial model fit to those neighbors and evaluated 
in xo will produce an accurate estimate of g(w). 

A more robust approach using the local modeling idea is to assign weights to the 
neighbors, in accordance with their similarity to the query xo. The closer xi; is to 
xo the more influence should it exert on the eo. This leads to the locally weighted 
regression (LWR) idea, an excellent introduction to which is available in [7]. 

4 ~ f  Y E IRd, with probability 1 every value will appear exactly once. 



In the presence of noise, the local regression procedure may still be vulnerable to 
the misleading influence of outliers introduced by function mismeasurement, labeling 
errors or spurious similarity judgments. The robust LWR [21, 221 addresses this by 
re-weighting the neighbors based on the residuals of the fitted model and refitting 
the model with the new weights. This process is repeated for a small number of 
iterations, and may considerably improve results on noisy data. 

The regression approach outlined above is applicable when the underlying rela- 
tionship between the data and the estimated quantity g is a function, that is, when 
specifying the x determines a unique value of g(x). In some applications this may 
not be the case: multiple values of g correspond to the same value of x. In other 
words, there is an ambiguity in g(x). This of course makes the problem of estimat- 
ing g ill-posed. There are two possible avenues for addressing this challenge. One 
focuses on representation: finding a data space X in which the ambiguity is resolved. 
For instance, using multiple silhouettes (Section 5.2) or stereo-based disparity images 
(Section 5.3) largely removes the ambiguity in the pose estimation context. 

The other avenue is to address the problem at the estimation step. If the represen- 
tation at hand does lead to ambiguity, simply ignoring it may cause severe estimation 
errors-for instance, in a K-NN regression, if there are two possible values of g(x) and 
the labels of the retrieved neighbors are roughly equally distributed among these two 
values, naive K-NN regression will yield a value which is the mean of the two, and 
may be quite far from both. Instead, we can introduce a clustering step whose ob- 
jective is to detect the occurrence of such ambiguity and separate the distinct values. 
The regression procedure (e.g., averaging in the K-NN case) is then applied to each 
cluster of the labels. This results in multiple answers rather than a single prediction. 
Figure 2-1 illustrates this for the case of linear regression model. The query point 
(cross) matches a number of neighbors (circles), that correspond to two "modes" of 
the target function g. Clustering them according to the value of g is straightforward, 
and the final estimation is carried out separately on each cluster, producing two linear 
models shown by dashed lines. 

How these answers are used depends on the application at hand. An additional 
procedure aimed at resolving the ambiguity may be applied; an example of such 
approach is taken in the orientation estimation described in Section 5.2, where we 
produce two estimates of orientation that are subsequently refined based on temporal 
context. Alternatively, we may "propagate" the multiple answers, and defer the 
resolution of the ambiguity until later stages in the decision process, or even report 
them as the end result of the estimation. 

2.2.1 Regression-induced similarity 
The key underlying assumption in most example based regression methods is that the 
target function behaves smoothly enough within any small enough region to be well 
modeled by a relatively simple (low order) model in that region. Thus the choice of 
the neighborhood is crucial for finite sample cases. This choice is typically tuned by 
comparing the prediction accuracy on the training data or, if the amount of available 
data allows that, in a cross-validation procedure, for a range of neighborhood-defining 



Figure 2- 1 : Illustration of the idea of regression disambiguation by clustering the 
labels. Cross: query point and its true label; circles: the neighbors; the dashed lines 
show the two models fit separately to the two clusters. 

parameters: K for K-NN or R for R-neighbors. 

Consider however a different notion of similarity: we will define two examples x 
and y in X to be similar if the values of the target function g are similar. The latter 
similarity is defined in a straightforward manner, depending on the application at 
hand, the precision required and the behavior of the function g. When the range y 
of g is a metric space, a natural way to define such similarity is by setting a threshold 
r in Y, and defining 

+1 ifDy(g(xo),g(x)) I r, 
- 1 otherwise. 

Figure 2-2 illustrates this definition. Note that if r is set so that errors within r can 
be reasonably tolerated in the application, and if we can accurately retrieve examples 
similar to w.r.t. Sg,r, we should achieve excellent regression results (subject to the 
noise level in the training labels.) Of course, the problem is that since the value g(m) 
is not known, the definition in (2.9) is ill-posed and can not be used directly. On the 
other hand, we can form a large number of pairs (a, x j )  over the training examples 
such that they are similar, or dissimilar, under that definition. This naturally leads 
to the problem of learning similarity from examples. 



Figure 2-2: Regression-induced similarity. For a query point (black cross), shown are 
the . bneighbors in X(green circles) and the Sg,s5-neighbors (red squares). 

Learning Distances and Similarity 

There exists a large body of literature, both in machine learning and in cognitive 
science, devoted to the idea of learning distances or similarities from examples and/or 
for a specific task. Below we review the prior work in some detail, pointing out 
relevance to the stated problem of learning an equivalence concept and the differences 
from our approach. 

2.3.1 Metric learning 

The most common way to model similarity is to assume that a distance 2, can serve 
as a reasonable "proxy" for the desired similarity S. Many methods assume that V is 
n metric, complying with the following three properties: 

Sometimes V is allowed to be a pseudo-metric, i.e. it may violate the triangle 
inequality (2.12). 

The most common scenario in which this approach has been applied is a classifica- 
tion (or equivalently clustering) setup, where the objective is to produce a metric that 
minimizes label error with a specific classification or clustering algorithm. Notable 
examples of work in this direction include [78, 118, 79, 61, 531. In these applications, 



in addition to the metric assumptions in (2.10)-(2.12), it is typically assumed that 
the target equivalence concept on pairs in x2 induces equivalence classes in X. The 
key reason for that is that the metric-learning met hods usually depend on transitivity 
of similarity: they assume that if S(x, y) = +1 and S(x, z) = +1 than S(x,  z) = +l. 

As we stated earlier, we would like to avoid such transitivity assumption. In 
particular, this assumption clearly does not hold in the context of regression-induced 
similarity defined in Section 2.2.1, such as the pose estimation domain described in 
Chapter 4. Neither does it hold in general matching problems, such as the image 
patch classification in Chapter 6. If a region in an image is repeatedly shifted by 
one pixel 100 times, most of the consecutive regions in the sequence will be visually 
similar, however it will hardly be the case for the first and the 100th regions. 

Another important difference of our approach is in the class of attainable similarity 
measures. Metric learning methods are typically based on a particular parametric 
form, often a quadratic form of the data, whereas our approach is non-parametric. 

2.3.2 Similarity as classification 

A very different family of approaches take advantage of the duality between binary 
classification on pairs and similarity. Formulated as a classification problem, the task 
of learning similarity may be approached using the standard arsenal of techniques 
designed to learn classifiers. A number of such approaches have been proposed in the 
area of face analysis, where pairs of faces are to be classified as belonging to the same 
or different persons, either in a verification context or as part of a matching-based 
recognition. Typically it is done by modeling the differences between the two images 
in some parametric form, either probabilistic [85] or energy-based [20]. A different 
approach is taken in [69], where the classifier is obtained by boosting local features, 
in a way similar to our learning algorithms. However, none of that work is extended 
to learning an embedding. 

The classification approach to modeling similarity face two major challenges. One 
is inherent in the nature of similarity in many domains: the classification task induced 
by similarity is typically extremely unbalanced. That is, similarity is a rare event: the 
prior probability for two examples to be similar may be very low. Consequently, the 
negative class is much larger and, in a sense, more diverse and more difficult to model. 
Although some solutions to such situations have been proposed, in particular in the 
context of detection of rate events [117, 1141 this remains a difficulty for learning 
algorithms. 

The other challenge is in the realm of practical applications of the learned similar- 
ity concept. Most of the classifiers are ill-suited for performing a search in a massive 
database; often the only available solution is to explicitly classify all the possible 
pairings of the query with the database examples, and that does not scale up. 

Conceptually, these approaches are closely related to ours, since our algorithms 
described in Chapter 3 do rely on classification techniques. However, we use those as 
means to construct an embedding, and the similarity classification itself is done by 
means of thresholding a metric distance, an approach that easily scales up to high 
dimensions and large databases, in particular using methods reviewed in Section 2.4. 



2.3.3 Embeddings and mappings 

Finally, there exists a broad family of algorithms that learn a mapping of the data 
into a space where similarity is in some way more explicit. Our approach falls into 
this broad category as well, although it differs from the previously developed ones 
in important ways. Below we discuss the existing embedding and mapping methods, 
which can roughly be divided into two categories. 

Multidimensional scaling 

Multidimensional scaling (MDS) [27] is a family of techniques aimed at discovering 
and extracting low-dimensional structure of the data. The algorithms in this family 
expect as their input a set of examples XI, . . . , x~ and a (perhaps partial) list of 
pairwise dissimilarities 6ij between xi and xj- The goal is to map the input examples 
into a space where Euclidean distance match, as well as possible, the given values of 
6. 

Let us denote by f the transformation that such a mapping induces on the dis- 
similarities (from the value of hii to the distance between the images of xi and xj.) 
In metric MDS, f must be a continuous monotonic function. This form is most rele- 
vant to the distance model of similarity mentioned in Section 1.1, but less so to the 
boolean similarity case. More relevant is the nowmetric MDS (NMDS), in which the 
transformation f can be arbitrary, and is only subject to monotonicity constraint: 
if < then f (6,) 5 f (bkl), i.e., it only must preserve the rank. Technically, 
NMDS may be directly applied to the problem of learning an equivalence similarity, 
in which case there are only two ranks since all &j E {-1,l). However, NMDS does 
not learn an embedding in the sense our algorithms do: it finds the mapping of the 
training examples into a lower-dimensional Euclidean space, but does not provide a 
way to map a previously unseen example. Another difference is the assumption of low 
dimensionality of the embedding space, which is not explicitly present in our work. 

In addition to a large set of classical MDS techniques [27], notable methods that 
fit this description include, Isomap (1121 and local linear embedding [96]. Some re- 
cent work aimed at extending these techniques to unseen points is discussed in [12], 
along with a unifying perspective on these and other methods. The focus there is, 
however, on metric MDS in the context of manifold learning and clustering. In gen- 
eral, approaches to extending the embedding in MDS-style methods to new examples 
proceed by finding the NN of XQ in X and combining their embeddings (for exam- 
ple, averaging) to produce an estimated embedding of xo. In contrast, our approach 
avoids such dependence on the original distance in X, that can be detrimental when 
there is a significant departure of S from that distance. 

Embedding of known distance 

Many methods have been developed for constructing a low-distortion embedding of 
the original data space into a space where L1 can be used to measure similarity. 
They assume that the underlying distance is known, but expensive to compute. The 
embedding is used either to approximate the true distance [44, 55, 561 or to apply a 



filter-and-refine approach [42,5] in which the embedding space is used for fast pruning 
of the database followed by exact distance calculations in the original space. Two main 
differences of these algorithms from MDS and related methods is that the dimension 
of the embedding is usually very high, often many times higher than the dimension 
of the input space, and that the construction of the embedding is usually guided by 
analytically known properties of the underlying distance rather than learned by the 
data. A recent review of other related methods can be found in [62], however many 
of them are better categorized as search algorithms rather than learning similarity. 

2.4 Algorithms for search and retrieval 

In this section we discuss the state of the art in search and retrieval, decoupled from 
the problem of learning and representing similarity. All of these algorithms assume 
that the dissimilarity is expressed by a distance (almost always a metric, usually 
Euclidean or L1. This is generally not the case in the problems we are concerned with 
in this thesis, however, we can rely on these met hods to allow, after an embedding has 
been learned, for efficient search under L1 distance in the embedding space. Indeed 
this is one of the main motivations for our embedding approach. The dimension of 
our embedding space may be quite high, as we will see in the following chapters, and 
a method of choice must handle high-dimensional spaces well. 

The most straightforward method is the linear scan, often referred to as brute force 
search: inspect all the examples in the database and measure the distance between 
them and the query. This is the simplest solution, but for a very large number of 
high-dimensional examples it quickly becomes infeasible. We will therefore focus on 
methods that allow some speedup relative to the brute force search. 

2.4.1 kd-trees 

In the kd-tree approach 113, 321, the space X is partitioned by a multidimensional 
binary tree. Each vertex represents a (possibly unbounded) region in the space, which 
is further partitioned by a hyperplane passing through the vertex and perpendicular 
to one of the coordinate axes of X. The partition is done so that the set of points 
that belong to the region represented by a vertex is roughly equally divided between 
that vertex's children. Furthermore, the orientation of the partitioning hyperplanes 
alternates through the levels in the tree. That is, the first hyperplane is perpendicular 
to XI, the two hyperplanes in the second level are perpendicular to X2 and so on, 
starting over again with the first dimension at the level dzm(X) + 1. 

The standard way of querying the kd-tree is by specifying a region of interest; any 
point in the database that falls into that region is to be returned by the lookup. The 
search algorithm for kd-tree proceeds by traversing the tree, and only descending 
into subtrees whose region of responsibility, corresponding to the partitions set at 
construction time, intersects the region of interest. 

When dzm(X) is considered a constant, the kd-tree for a data set of size N can 
be constructed in 0 ( N  log N), using 0 (N) storage [32]. Its lookup time has been 



shown to be bounded by 0 (N'-'/~"(~)). Unfortunately, this means that kd-trees 
do not escape the curse of dimensionality mentioned in Section 2.1.1: for very high 
dimensions the worst case performance of kd-tree search may deteriorate towards the 
linear scan. Nevertheless, in more than three decades, kd-t rees have been successfully 
applied to many problems. As a rule of thumb, their average performance is typically 
very good for dimensions below 10, and reasonable for dimensions up to 20; however, 
for hundreds of dimensions kd-trees are often impractical. 

A number of modifications of the kd-tree scheme have been aimed at reducing the 
lookup time. For the classification scenario, a method has been proposed in [75] for 
NN classification, using a data structure similar to the kd-trees but with overlapping 
partitions; the insight of that approach is that in order to predict the majority vote 
among the NN it may not be necessary to explicitly retrieve the neighbors themselves. 
In a more general setting, a number of modifications have been proposed that change 
the order in which the tree is traversed [lo] or randomization by early pruning [4]. 

We now turn to another approach to approximate similarity search, that is prov- 
ably efficient even in very high dimensional spaces and that has seen a lot of attention 
in the recent years. Besides its utility for the search problems we will encounter, this 
approach has provided inspiration to some of the central ideas in this thesis. 

2.4.2 Locality sensitive hashing 

LSH [65, 521 is a randomized hashing scheme, developed with the primary goal of 
E-R neighbor search. The main building block of LSH is a family of locality sensitive 
functions. A family 7-1 of functions h : X -+ { O , 1 )  is (pl, p2, r, R)-sensitive if, for any  
x , y  E X, 

The probabilities are over a random choice of h E 71; more precisely, the functions 
are assumed to be parametrized with a bounded range of parameter values, and the 
notation U [ R ]  denotes uniform sampling of those values. A family 71 is of course 
useful only when r < R, and when there is a gap between pl and p2, i.e. when 
pl > pa. This notion of a gap is very important, and will inspire our approach to 
learning similarity. 

Algorithm 3 gives a concise description of the LSH construction algorithm for a 
particularly simple case, when the distance of interest is L1. The family 'FI in this 
case contains axis-parallel stumps, i.e. a value of an h E 'FI is obtained by taking a 
single dimension d E (1, . . . , dim(X)) and thresholding it with some T: 

1 if xd 5 T, 
0 otherwise. 

An LSH function g : X + (0, l)k is formed by independently k: function hl, . . . , hk E 



3-1 (which in this case means uniform sampling of a dimension d and a threshold T 
on that dimension). Applied on an example x E X, it produces a k-bit hash key 

This process is repeated 1 times and produces 1 independently constructed hash func- 
tions gl, . . . , gl. The available reference (training) data X are indexed by each one of 
the 1 hash functions, producing 1 hash tables. 

Algorithm 3 LSH construction (from [52]) 
im(X) Given: Data set X = [xl , xN], xi E IKd . 

Given: Number of bits k, number of tables 1. 
Output: A set of 

1: for all j = 1,. . . , I  d o  
2: f o r a l l i = l ,  . . . ,  k d o  
3: Randomly (uniformly) draw d E (1, . . . , dim(X)}. 
4: Randomly (uniformly) draw m i n { ~ ( ~ ) }  < v 5 ma~{x(~)} .  
5 : Let h: be the function X -+ {0,1} defined by 

1 if x(d) 5 v, 
h: (x) = 

0 otherwise. 

6: The j-th LSH function is gj = [hi, . . . , hi]. 

Once the LSH data structure has been constructed it can be used to perform 
a very efficient search for approximate neighbors, in the following way. When a 
query xo arrives, we compute its key for each hash table j, and record the examples 
C,{x:, . . . , xi,} resulting from the lookup with that key. In other words, we find the 
training examples (if there any) that fell in the same "bucket" of the 1-th hash table 
to which xo would fall. These 1 lookup operations produce a set of candidate matches, 
C = u:=, Cj. If this set is empty, the algorithm reports that and stops. Otherwise, 
the distances between the candidate matches and xo are explicitly evaluated, and the 
examples that match the search criteria, i.e. that are closer to xo than (1 f t) R, are 
r e p ~ r t e d . ~  This is illustrated in Figure 2-3. 

LSH is considered to fail on a query if there exists at least one R-neighbor of 
in X, but the algorithm fails to find any (1 + E)R-neighbor; any other outcome 

it's a success. It was shown in [65, 521 that the probability of success can be made 
arbitrarily high by suitable choice of k and I; at the same time, there is a trade-off 
between this probability and the expected running time, which is dominated by the 
explicit distance calculations for the candidate set C. 

'The roles of r and R seem somewhat arbitrary: one could ostensibly define R to be the desired 
distance and r to be R / ( l +  E ) .  However, the actual values are important since they determine pl 
and pz.  They also define the event of success: if there are no points at distance r but there exists a 
point at distance R, the algorithm is not required to find it. 





theoretical properties, LSH has already been successful in practical applications, in 
particular in computer vision problems where the ability to do fast lookup in large 
databases is crucial. Some examples include [49, 55, 511 and also the work in [I051 
and 1931, which is part of this thesis. 

We can now make a connection between the idea of LSH and the learning frame- 
work developed in the next chapter. Each bit in the unary encoding is a feature of the 
input, and LSH is randomly selecting a set of kl (not necessarily distinct) features. 
This works since that specific family of features is locality-sensitive, with respect to 
L1 norm. However, no such guarantee exists for general similarity concepts, that may 
not adhere to any metric. Moreover, in general the similarity is not known analyti- 
cally, and therefore it is not possible to analytically design an LSH family and prove 
its properties. We therefore are interested in a method that would learn a set of 
locality-sensitive functions entirely from dat a.6 

Consequently, we will have to change the notion of locality-sensitive set of func- 
tions from (2.13) to the following definition of a similarity sensitive family. Let pl ,pz 
be probability values and S be a similarity (equivalence) concept. A family 1-I of 
functions h : X -+ {0,1) is (pl,pz, S)-sensitive if, for any h E 'H, 

Pr ( h ( x ) = h ( y ) I S ( x , y ) = + l )  2 Pl, 
X9YN p(W2 

Pr ,(h(x) = h(y) IS(x,y) = -1) I: Pz. 
X9YN P(X) 

An important difference between this definition and (2.13) is in the placement of 
qualifiers. In (2.13) it is assumed that the data are fixed, and that the distance of 
interest is L,. In our case, the roles are interchanged: we are interested in finding 
deterministic functions that are expected (i.e. have high probability) to be sensitive 
to similarity under S for a random input. Thus, the probabilities in (2.17) are taken 
with respect to randomly drawn data x, y, and not random functions. 

Summary 

In this chapter we have reviewed the main examplebased methods for regression 
and estimation, in the context of which we develop our learning approach. The 
central computational task in these methods is the search in a labeled database for 
examples similar to a query. For cases where the similarity underlying this task is well 
represented by an analytically defined distance, there exist met hods that allow for 
efficient solution, exact or approximate. However, the nature of similarity underlying 
this task is often defined by the task at hand, lacks known analytical form, and it is 
often beneficial to learn it from examples. We have discussed a number of approaches 
that have been proposed to this and related problem, some of which have inspired 
the work presented in this thesis. In the next chapter we develop a new approach 

6As in any learning approach, we of course will also use certain amount of information not 
contained in the data per se, such as a hypothesis regarding the suitable parametric form of the 
projections. 



that combines some of the ideas behind LSH, similarity classification and learning 
embeddings in one learning framework. 



Chapter 3 

Learning embeddings that reflect 
similarity 

This chapter describes a family of algorithms for learning an embedding 

that is faithful to a task-specific similarity. This means that the lower the distance 
I(H(x) - H(y) ( 1  is, the higher is the probability that S(x, y)  = +I. Consequently, 
there exists a range of values of R such that if S(x, y)  = +1 then with high probability 
IIH(x)-H(y)ll < R, and ifS(x,y) = -1 then with high probability IIH(x)-H(y)l) > 
R. For a practical application, such a relationship means that the task of matching a 
query to a database may be reduced to the task of search for K nearest neighbors or for 
R-neighbors of the query, embedded in H,  among the database examples embedded 
in the same way. 

The order in which the algorithms are presented corresponds to the evolution 
of this general approach, which in turn corresponds to the trade-off between the 
simplicity and cost of training and the flexibility, and accuracy, of the embedding. The 
similarity sensitive coding algorithm in Section 3.2 has evolved from the parameter 
sensitive hashing (PSH) published in [105]. It can be seen as an improvement of 
the LSH structure for a similarity measure which is not necessarily identical to an 
L, norm in X. The extension using AdaBoost (Section 3.3), published in [93] has 
considerably higher training complexity, but may greatly improve the efficiency of the 
embedding. However, it is still limited to a certain family of L1-like similarities. This 
limitation is reduced by the third algorithm, BOOSTPRO, presented in Section 3.4. 

The embedding algorithms are designed to learn from examples of similar and 
dissimilar pairs of examples. Moreover, we extend the algorithms, subject to certain 
assumptions, to the semi-supervised case when only examples of similar pairs, plus 
some unlabeled data points, are available. 



3.1 Preliminaries 

The general form of the embedding constructed by our algorithms is 

where each dimension m is produced by a function h,, parametrized by a projection 
f : X -4 R and a threshold T E R: 

1 if f (x) 5 T, 
h(x; f7T)  = (0 i f f ( r )  >r 

We will simply write h(x) when the parametrization is clear from context. This 
form of H is motivated by two considerations. One is the simplicity of learning: the 
"modular" form of H affords simple, greedy algorithms. The other is the computa- 
tional complexity of the search: the L1 distance in H is in fact a Hamming distance 
(perhaps weighted by as), and its calculation can be implemented with particular 
efficiency. 

A function h in (3.2) naturally defines a classifier c : X2 + {kl) on pairs of exarn- 
ples. We will refer to such c as simple classifier, and omit writing the parametrization 
unless necessary: 

+1 if h(x; f ,T)  = h(y; f ,T),  
c(x,Y; f ,T)  = 

- 1 otherwise. 

3.1.1 Threshold evaluation procedure 

The embedding algorithms in this chapter differ in the form of projections f used to 
derive the hs, and in the way the hs are chosen. One element they all share is a pro- 
cedure for evaluating, for a fixed f ,  the empirical performance of the simple classifiers 
that correspond to a set of thresholds. This procedure is given in Algorithm 4. We 
assume that each training pair is assigned a non-negative weight wi; when 
an algorithm involves no such weights they can be simply assumed to be all equal. 

Intuitively, the motivation behind the algorithm is as follows. Our goal is to 
estimate, for a given T, the expected true positive rate 

and the true false positive rate 

with the expectations taken with respect to the joint distribution of example pairs 
p(x, y ) . In the context of retrieval, when we are conceptually considering pairing 
the query with every example in the database, this means the product of marginal 
distributions p(x)p(y) . 



As is normally the case in machine learning, we can only estimate these quantities 
from the available examples of similar and dissimilar pairs.' The straightforward 
approach that we will adopt for now, is to estimate TP by the percentage of similar 
pairs that are n o t  separated by T, i.e. pairs for which the both values fall on the same 
side of T . ~  Similarly, FP is estimated by measuring the percentage of dissimilar pairs 
not separated by T. 

An implicit assumption in this estimation is that the training pairs are distributed 
identically and independently according to a probability law that generates the data, 
and therefore are equally representative. Instead, it is possible that each pair have a 
weight, which may be interpreted as the probability of selecting that pair; such is the 
situation in the context of boosting algorithms later in this chapter. The weights are 
easily incorporated into our empirical estimation approach: instead of the percentage 
of pairs separated by T, we will calculate their cumulative weight. 

Algorithm 4 describes in pseudocode an efficient procedure for such estimation of 
the T P  and FP rates for all feasible thresholds. The technique used to do this in the 
single pass is simple: when we form the sorted array of projection values, we record 

(1) (2) for each element p = 1 , 2  of a pair (xi ,x i  ) the direction d i ,  to its counterpart 
within the array; e.g., if f(xil)) > f(x,(')) then, after sorting by the values of f (x) ,  
xi1) will appear after xi2). Traversing the array from the lowest to the highest value 
we maintain and update the cumulative weights (which is equivalent to counts, when 
weights are all equal) of positive and negative pairs separated by the current threshold. 
This is illustrated with Figure 3-1 that shows the estimated TP and FP rates for a 
set of five similar and five dissimilar pairs. 

The set of thresholds to consider is determined by the number of unique values 
among the projections of the data: any two thresholds for which no data point is 
projected between them are not distinguishable by the algorithm. Therefore, with 
N training pairs we have n 5 2N + 1 thresholds. The sorting step dominates the 
complexity, since after the values v i ,  are sorted, all thresholds are evaluated in a 
single pass over the sorted 2N records. Thus the running time of the algorithm is 
O(N1og N). 

The first algorithm we propose in this thesis is the similarity sensitive coding 
(SSC). It uses the procedure presented above to construct an embedding of the data 
into a binary space, selecting the dimensions of the embedding independently based 
on the estimated gap. 

3.2 Similarity sensitive coding 

The idea underlying the SSC algorithm is to construct an embedding similar to the 
one achieved in LSH, but to explicitly maximize its sensitivity to the desired similarity 

'1n a notation shortcut we will henceforth write TP and FP to mean these estimates, rather than 
the unknown true values. 

2 ~ h i c h  side is not important, as long as both values are on the same side; consequently, note 
that h is not a classifier, while c is. 



Figure 3-1 : Illustration of the operation of Algorithm 4. Similar (top) and dissimilar 
(bottom) pairs are connected by dashed lines, and are assumed to all have equal 
weights of 1/10. All 21 distinct thresholds are shown; the T P  (top) and FP (bottom) 
rates are shown only for some. The maximal attainable gap here is .4 (.e.g, with the 
ninth threshold from the left). 

measure. The implicit assumption here is that the L1 distance in X provides a 
reasonable foundation for modeling S, that is in need of the following improvements: 

Some dimensions are more relevant to determining similarity than others, and 
thus should affect the distance more heavily. 

For a given dimension, some thresholds are more useful than others. 

A pseudocode description for SSC is given in Algorithm 5. Recall the discussion 
in Section 2.4.2 on the role of the gap between the T P  and FP rates of a binary 
function. SSC takes a parameter G that specifies a minimal acceptable value (lower 
bound) of this gap, and extracts, for each dimension of the data, all the thresholds 
for which the estimated TP-FP gap meets this bound. 

An earlier version of this algorithm was published in [105], under the name of 
parameter sensitive hashing (PSH). The original name reflected the coupling of r e p  
resentation (a bit vector based on a set of axis-parallel stumps) and the LSH-based 
search, and also the implicit notion of similarity present only through the specifica- 
tion of pose parameters. An additional difference is in the criterion for selecting the 
embedding bits: in PSH, the criterion is formulated in terms of bounding the T P  
and FP rates separately rather than bounding the gap. Numerous experiments have 
confirmed since that the gapbased formulation is not only better justified t heoret i- 
cally but also superior in practice. Thus, SSC can be seen as a generalization and 
improvement of the original PSH algorithm. 

In a practical implementation of Algorithm 5, one faces a number of design decision 
that may have a dramatic effect on the performance. Below we discuss these issues in 
the context of experimental evaluation on the UCI/Delve data sets. The focus here is 



Algorithm 4 THRESHOLDRATE(P, f ,  W): Evaluation of projection thresholds given 
similaritv-labeled exam~les. 

.I I 

Given: Set of labeled pairs P = {(x,('), xy ) , li)}El c X2 x {k I), 
(1) (2) where li = S (xi , xi ) . 

Given: A projection function f : X + W. 
Given: Weights W = [wl , . . . , wN] . 
Output: Set of triples {(Tt, TP,, FPt)};=,, where TPt and FPt are the estimated T P  

and FP rates for threshold Tt. 
I: Let := f (x!)) for i = 1, .  . . , N and p = 1,2. 

2: Let ul < . . . < un-1 be the n - 1 unique values of {v~,~}.  
3: Let Aj := (uj+1 - uj)/2, for j = 1,. . . , n - 2. 
4: Let TI := 211 - A,, and Tj+1 := uj + Aj, for j = 1,. . . , n - 1. 
5: for all i = 1, .  . . , N  do , , 

+l if v i ,~  5 vi,27 
6: Let di,1 := 

-1 if V ~ , J  > vi,2. 

+1 if vi,l > vi,2, 
7: Let di,2 := 

- 1 if vi,l 5 ~i,2.  
8: Sort records { ( v ~ , ~ ,  di,p, wi, li))i=l ,..., ~,p=1,2 by the values of ~ i , ~ .  
9: Normalize wi so that Eli=+1 wi = 1, C li=- wi = 1. 

10: for all j = 1 , .  . . , t do 
11: Let ij := max{i : vi 5 T,)  
12: TPj  := 1 - EiSijk=+l wdi. 
13: FPj := 1 - CYij,li=-l widi. 

on questions arising directly in the implement at ion of SS C . Other import ant issues, 
such as how the similarity labels are obtained, are discussed elsewhere. 

3.2.1 Benchmark data sets 

Throughout this chapter we will refer to experiments on a number of data sets. 
The learning problems associated with these data sets are of the type for which we 
expect our algorithms to be particularly useful: regression or classification with a 
large number of classes. 

The purpose of these experiments is two-fold. One is to illustrate the principles 
underlying the new algorithms. The data sets vary in size and difficulty, but most 
of them are small enough (both in number of examples and in dimension) to allow a 
rat her thorough examination of the effect of various settings. 

The other purpose is to evaluate the impact of our algorithms outside of the 
computer vision domain,. on "generic" data sets, familiar to the machine learning 
community from their use as benchmarks. From a practitioner's perspective, this 
means evaluating what does one gain, if at all, from using a model of similarity 
learned for the task at hand, in comparison to the standard use of distances in the 



Algorithm 5 SSC(P, g) : Similarity sensitive coding by selecting thresholds on orig- 
inal dimensions. 
Given: Set of similarity-labeled pairs P = {(x,('), xj2)), li)lN,l c X2 x {f 11, 

(1) (2) where li = S (xi , xi ) . 
Given: Lower bound on TP-FP gap G E (0,l). 
Output: Embedding H~~~ : X +- (0, 1IM (M to be determined by the algorithm). 

1: Let M := 0. 
2: Assign equal weights W(i) = 1/N to all N pairs in P .  
3: for all d = 1, . . . , dirn(X)  d o  
4: Let f (x) = x(+ 
5: Apply THRESHOLDRATE(P, f ,  W) to obtain a set of n thresholds { ~ d ) ~ = ,  and 

associated T P  and FP rates {TP~}, {FP~) .  
6: f o r a l l t = I ,  . . . ,  n d o  
7: if T P ~  - FP,~ 2 G then  
8 : Let M := Ad+ 1. 
9: hM(x) fi h(x; f,~:, 1) {as in (3.2).) 

10: Let H~~~ x -+ [hl(x), . . . , hM(x)] 

data space. Depending on the precise goals of an application, this effect can be 
measured in terms of ROC curve behavior, or in terms of the regression/classification 
error obtained by an example-based method that uses the similarity model. 

The data sets are publicly available and come from a variety of domains. Below 
we give a brief description of each set; the important statistics are summarized in 
Table 3.1. Recall that r (given in the last column of Table 3.1) is the threshold used 
to define a label-induced similarity in our experiments, as explained in Section 2.2.1, 
on the distance in the labels, such that Dy(yi,yj) 5 r H S(%,xj) = +l.  For 
classification problems, a natural value of r is 0, i.e. two examples are similar if and 
only if they belong to the same class. 

For regression the choice should be determined by the desired sensitivity of the 
estimator and by the effect on the resulting similarity model. In our experiments, 
we have set r based on a "rule of thumb" defined by two criteria: choose a value 
that does not exceed half of the mean error obtainable by the standard (published) 
regression algorithms, and that keeps the proportion of similar pairs out of all pairs 
below 10% (these two criteria "pull" the value of r in different directions.) A more 
thorough approach would involve optimizing the value of r by cross-validation or 
holdout procedure: repeating the entire experiment of learning an embedding and 
evaluating the NN estimator on this embedding, for a range of values of r .  Such 
procedure would likely improve the results. 

Auto-MPG Predicting mileage per gallon of fuel from various mechanical charac- 
teristics of a vehicle. 



Table 3.1: Summary of the data sets used in the evaluation. 

Machine CPU Regression: predicting time spent by a program in user CPU mode 
from process statistics: number of system calls, page faults, I/O etc. 

Task Label span r 
Regression 37.6 1 
Regression 99.0 1 
Regression 45.0 1 
Regression 28.0 1 
Regression 5 x lo5 500 
Classification 1,. . .26 0 
Classification 1,. . .26 0 

Name Source 
MPG [16] 
CPU [I] 
Housing [16] 
Abalone [16] 
Census [I] 
Letter [I] 
Isolet [16] 

Boston Housing Regression: predicting median value of housing in Boston neigh- 
borhoods as a function of various demographic and economic parameters. 

Dimension # of examples 
7 392 
21 8192 
13 506 
7 4177 
8 22784 
16 20000 
617 3899 

Abalone Regression: predicting the age of abalone from physical measurements. 

US Census Regression: predicting median price of housing based on neighborhood 
statistics. 

Letter Classification of written letters from a set of image statistics; 26 classes (one 
per letter .) 

Isolet Classification of spoken isolated letters (by a number of speakers) from a set 
of features of the recorded acoustic signal. There are 26 classes (one per letter.) Only 
half of the available 7797 examples were used to speed up experiments. 

3.2.2 Performance and analysis of SSC 
We have evaluated the performance of SSC on the seven data sets introduced in 
Section 3.2.1. The results were obtained using ten-fold cross-validation: each data 
set was randomly divided into ten disjoint parts roughly equal in size, and each part 
was used as a test set while the remaining 9/10 of the data served as training set. All 
the data were encoded using the SSC embedding learned on that training set, and 
then the prediction error was measured for the examples in the test set using the Ll 
distance in the embedding space (with SSC embedding this is the same as Hamming 
distance) to determine similarity. 

Two parameters have to be set in this process. One is the minimal gap G. We 
chose it from a range of values between 0.01 and 0.25 by leave-oneout cross valida- 
tion on training data in each experiment. For each data set and in each "fold" of 
the ten-fold cross validation, we encode the training data (9110 of the total data) 
using SSC with each gap value under consideration, and compute the mean absolute 



traznzng error of example-based estimation with that encoding. That is, we predict 
the value of the label for each training point using its neighbors (but not itself) in 
the embedded training set. We then select the gap value which produced the lowest 
training error, and use it to compute the testing error in that fold of cross validation. 
In our experiments we found that the gap value resulting from this tuning procedure 
is very stable, and typically is the same for most of the ten folds in any data set; 
these typical values are shown in the second to last column of Table 3.2. 

The second parameter is the K (or R) in the eventual regression/classification 
algorithm. Virtually all published results on these data sets refer to K-NN algorithms, 
hence we also used K-NN, choosing K from a range between 1 and 300 by a procedure 
identical to the one for setting 9.3 

As a baseline, we compare the results obtained with SSC to those obtained with 
the standard nearest-neighbor regression estimation, using L1 distance between the 
examples as a proxy for similarity. Tables 3.3 and 3.5 show the results of this compar- 
ison for regression databases. In terms of the mean absolute error (MAE), there is a 
general trend of SSC outperforming the L1. On two datasets the differences between 
the means are farther than two standard deviations apart, while for others the differ- 
ence is less significant. In terms of the mean squared error, the two methods achieve 
qualitatively similar performances. This suggests that the error with SSC is often 
smaller than that with L1, but occasionally it becomes very high due to a spurious 
match. The performance of SSC on classification data sets, compared to the L1, is 
similarly good, as evident from Table 3.4. 

As mentioned in Chapter 1, another measure of the performance of a similarity 
model is its direct effect on retrieval accuracy. Figures 3-6-3-12 show the plots of the 
ROC curves for L1 and SSC on the seven benchmark datasets. In six out of seven 
datasets, the curves for SSC (blue, dashed) are clearly above that for L1 (black, 
dotted). The average gain in the area under curve (AUC) is between .05 and .l. The 
only data set in which no gain was recorded is Isolet. The dimension of that data set 
is significantly higher than the dimensions of the remaining six, and we believe that 
this fact partially accounts for the difficulty of SSC. There is a very high number 
of thresholds in general for this data set (i.e., the length of the unary encoding is 
very high, see Table 3.2) and of the thresholds that attain the desired gap value, 
in particular. Thus, in training SSC, we randomly selected 4,000 out of more than 
250,000 thresholds with the gap above 0.1. That step, dictated by computational 
necessity, may have removed significant some useful thresholds from the code and 
hampered its retrieval accuracy. 

Distribution of the TP-FP gap 

An immediate effect of the value of G is on the value M, the number of selected bits. 
Setting G too high will result in failure to construct an embedding; setting it too high 
will result in an embedding with a huge number of bits, not only not efficient but also 

- - 

3 ~ o r e  precisely, we optimized g and K jointly, by evaluating on the training data a range of K 
for each embedding obtained with a particular g, and choosing the "winning" combination for each 
of the ten cross-validation folds. 



impractical due to the required storage space. Figure 3-2 shows, for four datasets, 
how the number of accepted thresholds (pooled over all dimensions) declines as the 
lower bound on the gap increases. 

lwer bound on TPFP 

(a) Letter, dimension 4 

h e r  bound on TP-FP 

(b) CPU, dimension 11 

(c)  Boston housing, dimension 10 (d) Auto-MPG, dimension 3 

Figure 3-2: The distribution of TP-FP gap values for four data sets (pooled over all 
dimensions.) 

Figure 3-3 shows some typical examples of the behavior of T P  and FP rates and 
the gap between them (for the same cases used in Figure 3-2.) As may be expected, 
the general trend is that a threshold with higher T P  rate typically will also have 
a higher FP. This is because thresholds with high T P  rates simply lie close to the 
median of the projection (dimension) values, and thus are likely to separate many 
pairs-similar and dissimilar. In that way, the selection procedure is guided by the 
statistics of the data. 

One other observation from Figure 3-3 is that the false positive rates appear to 
be bounded from below at around 112. We will discuss this phenomenon and its 
implications in Section 3.2.4. 
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Figure 3-3: The distribution of T P  and FP rates for a single dimension, for four data 
sets. Solid (red): TP; dashed (blue): FP; dotted (black): the gap. 

3.2.3 The coding perspective on SSC 

From a machine learning standpoint, SSC can be seen as a mechanism of directly 
selecting features from a very large but finite pool, consisting of all the distinct 
functions h (i.e., all the bits in the unary encoding of the data). In terms customary 
in machine learning literature, this is a filter selector: the criteria for selecting or 
rejecting a feature are based on the feature's parameters-the performance of the 
associated simple classifier. That is in contrast to wrapper selection, whereby the 
features are evaluated by "plugging them in" to the clas~ifier.~ 

The embedding H~~~ can be also interpreted as encoding examples in X with an 
M-bit code, which is constructed with the objective to retain maximum information 
relevant to similarity between examples. (A similar interpretation of similarity fea- 

4The greedy algorithm presented in Section 3.3 is an example of a wrapper feature selection. 



Table 3.2: Comparison of the SSC length kf to original representation. Optimized: 
number of bits necessary to encode the unique values. Nominal: number of bits 
necessary to encode N x dim(X) values in a N-point data set with no compression. 
Unary: length of unary encoding after conversion of the data to integers (see foot- 
note 5). Compression: the percentage of the unary encoding bits effectively eliminated 
by SSC. 

tures has been discussed in [97], in the context of binary classification problems.) It is 
interesting to compare M to the length of the original representation. In terms of the 
"nominal" number of dimensions, M is typically higher(= evident in Table 3.2) than 
dim(X) . However, the effective represent ation that SS C is implicitly compressing 
is the unary encoding (see discussion in Section 2.4.2.) With respect to the unary 
encodingY5 SSC is achieving considerable compression, as shown in the right column 
of Table 3.2. The numbers refer to the percentage cif unary encoding bits that are left 
out of the SSC encoding (i.e., 90% compression means 90% reduction in encoding 
length.) The selection procedure in SSC can therefore be seen as a dzmenszonalitp 
reduction in the unary encoding space, with the objective to preserve the dimensions 
most relevant to similarity judgments. 

Besides examining the number of bits in the code, of course, we must also look at 
the redundancy. It should come as no surprise that the code obtained with SSC is 
terribly redundant. Figure 3-4 visualizes the covariance matrices for the SSC bits for 
three of the data sets (these are typical covariance matrices), with red corresponding 
to higher values. One source for this redundancy is trivial: if two thresholds TI and 
T2 are close (relative to the span of f (x)), the values of h(x; f ,  TI) and h(x; f ,  T2) 
will be highly correlated. A less trivial source of correlation is the structure in the 
data, which may include various dependencies between values and carry on to the 
t hresholded project ions. 

Compression 
0.9206 
0.9990 
0.9999 
0.7621 
0.9999 
0.8458 
0.9651 

3.2.4 Semi-supervised learning 

Data set 
MPG 
CPU 
Housing 
Abalone 
Census 
Letter 
Isolet 

In Section 3.2.2 we noted that the false positive rate of the stumps in our experiments 
appears to be bounded from below by 112. This has the following explanation. Sup- 
pose that similarity is a very rare event, in the sense that for two random examples 

Nominal 
152 
625 
385 
224 
256 
128 
19744 

Optimized 
39 
220 
91 
64 
107 
64 
6844 

'~eca.11 that for integers, the length of the unary encoding is simply the span of the values. For a 
set of values vl, . . . , v, some of which are non-integers, it was calculated as max{vi) . I /  mini,j {lvi - 
v.il1. 

Unary 
4672 
7136969 
4612045 
12640 
58564303 
240 
5096373 

M (gap G) 
371 f 7 .1 
6864 f 308 .15 
673 f 57 .15 
3007 f 25 .1 
3438 & 1481 .1 
37 =t 0 .1 
178116 f 6948 .15 
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a o j m 4 w m  

(c) Housing 

Figure 3-4: Covariances of the SSC bits for three of the data sets. Red values are 
high, blue values are low. The large blocks correspond to the original dimensions of 
the data; the peaks of covariance values are around the medians of projections. Refer 
to Tables 3.1 and 3.2 for details about the data sets and the embeddings. 

drawn from the domain at hand, the probability of them being similar is low. This is 
certainly the case for many interesting applications in computer vision. For instance, 
two randomly selected images of people are unlikely to contain similar articulated 
poses, and two regions randomly extracted from natural images are unlikely to be 
visually ~ i m i l a r . ~  This is in fact the case in the UCIfDelve data sets used in our ex- 
periments; the average similarity rate (the probability of a random pair to be similar) 
ranges from 0.03 to 0.1 (with the exception of Abalone for which it is 0.3.) 

Let us consider the distribution of the values of f (x) for similar and dissimilar 
pairs of examples in X. The underlying assumption of our approach is that, if f is 
a "useful" projection, there is a structure in the distribution of these values, namely, 
that similar pairs tend to have similar values of f .  On the other hand, under our 
assumption that the similarity rate is significantly lower than 112, the set of all 
dissimilar pairs is close to simply the set of all pairs in x 2 .  That means that 

p(f (xi), f (xz) I S ( X ~ , X Z )  = -1) ~ ( f  (XI), f ( ~ 2 ) )  = ~ ( f  ( x l ) I ~ ( f  (~2)) r  

i.e. the joint distribution of the pairs of projections (f (x), f (y)) for S(x, y) = - 1 is 
close to the unconditional joint distribution over all pairs.7 (The second equality is 
due to the assumption that examples are provided to us i.i.d.) 

We can then model the process that generates negative examples for similarity 
learning by the following trivial procedure: take a random pair of examples and label 
it as dissimilar. This of course will produce some noise in the labels - at the rate 
equal to similarity rate of the data set. In fact the natural procedure to create a set 

 his may not be true if the notion of similarity is defined coarsely, e.g. if any two people standing 
upright are considered in similar pose. But we will assume that the similarity is sufficiently fine, as 
seems to be the case in most interesting problems. 

' ~ t  should be clear that we are referring to distribution of f (x), not that of x. 



of dissimilar pairs, and the one we used in all the experiments reported in this thesis, 
is in fact almost as described above, with the additional pass to remove any spurious 
similar pairs. 

The consequence of (3.6) is that, for a low similarity rate p, the FP rate of a 
feature h(x; f ,  T) is bounded from below by a value close to 1/2. The following proof 
has been given in [70], and is augmented here to take into account the correction by p. 
Suppose that we draw a random pair of examples (xl, x2) from the data distribution 
p(x) and project them using f .  Let ~ T T  be the probability mass of f (x) below the 
threshold T: 

TT = Pr(f (x) 5 T) 

Since the randomly constructed pair (xl, x2) is assumed to be dissimilar, a "bad" 
event, from the perspective of classifying similarity, occurs when f (xl) and f (x2) 
are on the same side of T on the line f(x). The probability of such an event is 
n;+ (1 - ? r ~ ) ~ .  By definition of p the random pair (xl, x2) is dissimilar with probability 
1 - p; therefore, the expected FP rate of h(x; f, T) is 

Note that KT (cdf of a scalar random variable) can be easily and robustly estimated 
from the data, even with a relatively modest number of examples. This means that 
in order to estimate the FP rate of a threshold, we do not need explicit examples 
of dissimilar pairs if we have access to a set of unlabeled (single, not paired) data 
points. We will refer to such a setup as semi-s~pentised.~ The threshold evaluation 
procedure in Algorithm 4 is easily modified for the semi-supervised case, as described 
in Algorithm 6. 

In the remainder of this thesis, we will consider both supervised and semi-supervised 
set up when discussing the embedding algorithms. 

3.2.5 Limitations of SSC 

In the experiments described above, we have seen that SSC is able to improve over 
the "off-the-shelf" distance measure, both in terms of the prediction accuracy with 
examplebased methods that rely on it and in terms of the accuracy of similarity 
detection, as expressed in the ROC curves. However, we also have pointed to a 
number of problems with the embeddings constructed with SSC. These problems are 
rooted in two main sources: 

Constrained geometry SSC provides a refinement on the L1 distance better 
tuned to the target similarity, but the reliance on axis-parallel projections limits 
the resulting similarity concept to the class of hyper-rect angles in the unary encoding 
space. 

8 ~ h i s  may seem somewhat different from the common use of the term "semi-supervised" to mean 
that only part of the available data is labeled. To reconcile that with our use, consider that with N  
examples, we essentially operate on the set of N ( N  - 1)/2 pairs, only a small fraction of which are 
labeled (all positive), and the rest are given implicitly with no labels. 



Algorithm 6 Semi-supervised procedure for evaluating threshold. See Sect ion 3.2.4 
for details. 
Given: Data set X = [xl, . . . , xN] c X. 
Given: Set of similar pairs P+ = {(x:l1, xy))}zl} c x2. 
Given: Projection function f : X -+ W 
Given: Weights on pairs W = [wl,. . . , wNp], such that xi wi = 1. 
Given: Weights on points S = Isl, . . . , sN]  ) such that xj sj = 1. 
Output: Set of triples {(T,, TPt, FPt)}Y=,, where TPi and FPi are the estimated T P  

and FP rates for threshold T. 
1: Let u1 < . . . < u,-1 be the unique values of f {xi)z1a 
2: Set thresholds TI < . . . < T, based on {ui), like in Algorithm 4. 
3: for all i = 1,. . . , N do 
4: Obtain list of records { ( v ~ , ~ ,  di,p, W~))~=~,...,N,, ,l,z sorted by ~ i , ~ ,  like in Algo- 

rithm 4, but using only similar pairs in P+ 
5: for all j = 1, ..., n do 
6: Let ij := max{z : vi 5 Tj}  
7: T P j : = l - C i < , w i d i .  - 

Ignoring dependencies Tresting features h individually leads to redundancy in 
the embedding, sometimes at the cost of performance. Although some ad-hoc methods 
for alleviating this (such as checking for correlation with already selected thresholds) 
may help, we would like to have a more direct method to limit unnecessary depen- 
dencies and to optimize the entire embedding rather than individual dimensions. 

These issues are addressed in the improved versions of this basic similarity embed- 
ding algorithm, which we present next. The first of them enhances SSC by replacing 
independent selection of embedding bits with a greedy, sequential optimization pro- 
cedure based on boosting. 

3.3 Ensemble embedding with AdaBoost 
Recall that for each thresholded projection h (3.2) there is a dual classifier of example 
pairs c (3.3). Let us now consider the M-bit SSC embedding H = [hl, . . . , hM], 
and suppose that for some x, y E X the distance IIH(x) - H(y) 11 = R. Since each 
embedding dimension contributes either 0 or 1 to the distance, this means that values 
at exactly R positions in the two embeddings are different. Consequently, exactly R 
associated classifiers would assign S^(x, y)  = -1. Generally, we can write 

so that the distance assumes values between 0 and M. 



In the more general form, the contribution of a thresholded projection hm to the 
distance is weighted and is either 0 or am. This corresponds to assigning a vote of 
am/2 to the classifier c, in (3.8). Together, the M thresholded projections form the 
similarity classifier 

This is an ensemble ~lasszfier.~ A feasible strategy for constructing an embedding H 
is therefore to construct an ensemble C coupled with the threshold r by a procedure 
that minimizes the empirical risk on the training pairs. We will follow this strategy 
and use the boosting approach [99, 231. Boosting is essentially a procedure for greedy 
assembly of C in a way that reduces the training error. It has also been shown to yield 
excellent generalization performance. Before we describe how the boosting framework 
can be applied in our task, we review it in the next section. 

3.3.1 Boosting 

We will follow the generalized view of AdaBoost, given in [100], since it will simplify 
the transition to improved versions of our algorithm. Let X = xl , . . . , X N  be the N 
training examples labeled by 11, . . . , lN  E {f 1).  In boosting it is assumed that there 
exists a weak learner that can, given a set of labeled training examples and a dzstri- 
butzon (set of non-negative weights that sum to one) W, obtain a weak hypothesis 
c(x) whose training error on X, weighted by W, is better than chance (112). The 
goal of boosting is to construct an ensemble classifier 

that minimizes training error. Note that (3.10) implicitly assumes t hresholding at zero 
(i.e. classifying by a weighted majority). A different threshold may be introduced 
post-training and set to reach the desirable ROC point.1° 

Finding the ensemble that attains the global minimum of training error is com- 
put ationally infeasible. Instead, AdaBoost gives an iterative greedy algorithm that 
adds weak classifiers c, with an appropriate vote a, one at a time. Throughout 
the iterations AdaBoost maintains a distribution W; we will denote by Wm(i) the 
weight on the i-th example before iteration m. The distribution is updated so that, 
intuitively, examples classified correctly in an iteration have their weight reduced, 
and those misclassified have their weight increased (thus "steering" the weak learner 
towards themselves by increasing the cost of further misclassifying them). 

The magnitude of change in iteration m is determined by the vote a,; the update 

'instead of thresholding the sum of votes at zero in (3.9), a different value of the threshold may 
be introduced by adding a "dummy" classifier which always outputs, say, +1, and setting its vote 
to the desired threshold value. 

l00r, alternatively, by including a fixed-output weak classifier in the ensemble, similarly to the 
"bias7' input cell in neural networks. 



rule in AdaBoost is 

with division by the normalization const ant 

ensuring that Wm+1 remains a distribution in the sense defined above. 
In addition to ZiB,  another key quantity in the analysis of boosting is the weighted 

correlation of labels with predictions 

It can be shown [loo] that a reasonable objective of the weak learner at iteration m 
is to maximize r t B .  Furthermore, the training error of H after m iterations can be 
shown to be bounded from above by nE1 2tB; minimizing 2tB in each iteration is 
therefore a reasonable objective of the greedy algorithm. Once the weak classifier c, 
has been selected, Z i B  is affected only by am, so that this objective is translated to 
setting a appropriately. When the range of c, is [-I, +I], the rule 

can be shown to achieve that goal of minimizing .ZkB [loo]. In a more general frame- 
work, the optimal a can be found by numerical optimization of (an easy procedure 
since Z can be shown to be convex and have a unique minimum.) 

3.3.2 Supervised boosted SSC 

Algorithm 7 is a straightforward application of AdaBoost to the problem of classifying 
pairs for similarity. Namely, the training examples in our case are pairs, and the weak 
classifiers here are thresholded projections that assign a positive or negative labels to 

(1) (2) a pair. The true label li of a pair (xi ,xi ) correspond to the underlying similarity 
(1) (2) S(x, ,xi 1- 
To calculate the objective in iteration m, we collect the positive terms in (3.13), 

T P ~  + Wn - F P ~ ,  and the negative terms - ( F P ~  + WP - TP:); summation of these 
yields the expression in step 7 of Algorithm 7. The calculation of a, in step 9 is done 
by minimizing the 2kB, following the bisection search procedure suggested in [100] .I1 

ll~riefly, we start with an initial guess for an interval that contains the optimal a ,  and evaluate 
the derivative aZm/aam at the endpoints as well as in the middle; since the derivative does not 
change the sign, and we are looking for its single zero-crossing, we then repeat, recursively, on the 
half of the interval that has opposing signs of dZm/dam at its endpoints. 



Algorithm 7 Boosted SSC (supervised). Note: this is a direct application of the 
AdaBoost algorithm. 

Given: A set of pairs  xi'), xy)}zl, labeled by li = s(@, xi2)). 
Output: A set of functions hm : X -+ (0, am}, m = 1,. . . , M .  

1: Set initial set of weights Wl, wl(i) = 1/N. 
2: for all m = 1, .  . . , M do 
3: Let WP := Ci:Ii=+l Wm(i), Wn := Ci:4=-l Wm(i). 
4: for all d = 1, . . . , dim(X) do 
5: Let fd(x) = xp). 
6: For each feasible threshold T j  on fd, j = 1,. . . , nd, compute T P ~  and F P ~  

using THRESHOLDRATE(P, fd, Wm). 
7: Let rFB)(Tj) := ~(TP: - F P ~ )  + Wn - WP. 

'AB' (Ti) 8: Select Tm := argmaxdj r ,  
9: Set LY, to minimize Zm (a)  (see text ) . 

10: If am < 0, stop. 
11: Update weights according to (3.11) 

The boosted version differs from the original SSC algorithm in a number of 
ways. First, it replaces the exhaustive collection of features with large TP-FP gap 
in SSC by an optimization step that selects, at iteration m, a single feature maxi- 
mizing rm. Second, it incorporates the votes am, so that the embedding it produces 
is H (x) = [orl hl (x) , . . . , amhm (x)] . As a result, the embedding space becomes a 
weighted Hamming space: the L1 distances there are measured by 

It is interesting to note the interaction of the type of weak learner we have chosen 
and the specific nature of the task. The objective r, of the weak learner, expressed in 
(3.13), can be decomposed into two terms. One term, W m ( i ) k ( q )  penalizes 
any positive pair divided by hm. The influence of this term "pulls" the thresholds, 
for any projection f , away from the median of that project ion, since that reduces the 
probability of crossing any positive pairs. 

The second term - xi:c=-l Wm(i)k(%) penalizes the negative pairs that are not 
divided, and its influence is exactly opposite: it encourages thresholds as close to 
the median as possible, since then minimal number of negative pairs are misclassified 
(and that still is about one half). This situation is different from typical classification 
tasks, where the classes "work together" to optimize the decision boundaries. In 
addition, the examples in the negative class are significantly more difficult to classify 
consistently: a positive pair is likely to be repeatedly labeled correctly by the weak 
classifiers, while a negative pair is likely to get misclassified with high probability in 
any given iteration.12 The training error rates on the two classes in a typical run of 

12yet another insight into this behavior can be obtained by realizing that it is trivial to produce 
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the algorithm reflect this: the training error on the similar pairs rapidly goes down 
and usually reaches zero after relatively few iterations, while the training rate on 
the negative examples goes up and eventually reaches 1. This makes it important to 
find the correct threshold on the Hamming distance in H, based on the ROC curve 
obtained on training data (or, if possible, on a held out validation set). 

Nevertheless, this algorithm may be successfully used for complicated problems 
such as the task of learning similarity of human silhouettes, as described in Chapter 5. 

3.3.3 Boosting in a semi-supervised setup 

When only examples of similar pairs are specified in addition to the unlabeled data, 
as describe in Section 3.2.4, the boosting algorithm needs a modification, which is 
described in this section. 

We maintain a distribution Wm(i) for i = 1, . . . , Np where Np is the number of 
positive pairs. Wm plays essentially the same role as it did in AdaBoost, and is 
updated in the usual way, except that the normalization constant 2, is set to make 
xi Wm+l(i) = 112. 

We also maintain a second distribution Sm(j) on the unlabeled examples xj,  j = 

1, . . . , N .  Before we present the update rule for Sj, let us consider the role played by 
the unlabeled examples. Intuitively, an example xj serves as a representative of all 
the possible pairs (xj, Y) that can be constructed. As we have seen in Section 3.2.4, if 
the similarity rate is low we may assume that most of these pairs are dissimilar, and at 
least half (usually much more) of these pairs will be misclassified by any h ( x ,  y; f ,  T). 
That number as we have seen depends on the probability mass rm = Pr(f (x) 5 T). 
Specifically, the probability of a random pair formed with xj to be misclassified by a 
threshold T on a projection f is 

The expected value returned by the classifier c, on a pair formed with x j  is 
therefore 

Pj (f I) + ( I  - Pj) (-1) = 2Pj - 1. 

Consequently, we change the definition of rm from (3.13) : 

The update rule for Sj changes accordingly; instead of having a deterministically 

a threshold that will classify all positive training examples correctly, but as we have shown it is 
impossible to do much better than chance on the negative examples. 



computed value of em in the exponent, we use the expected value, which yields 

with the normalization constant Zs = Cj Sm (j)  exp(am (2 Pj - 1)). This implies that 

When f (xj) falls on the side of the threshold with small probability mass, its 
weight goes down. 

When f (xj) falls on the side with large probability mass, its weight goes up. 
Intuitively this encourages the algorithm to choose next threshold which will 
place this example on the "good" side (with small probability mass). 

If ri is 112, the weights do not change (that is the "ideal threshold"). 

3.4 Boostpro: boosting general projections 

The learning framework presented above has been thus far limited to selection and 
combination of features from a finite set: axis-parallel stumps (we have shown that 
this is equivalent to selection of bit features from the unary encoding). This makes the 
learning simple, but at the same time may limit the power of the resulting encoding. 

The following "toy" example clearly demonstrates the limits imposed by a com- 
mitment to axis-parallel features. Consider the 2D Euclidean space, in which we have 
two similarity concepts. The first concept, SA, the angle simzlarity, is determined 
by the slopes of straight lines passing through the origin and the points; if the angle 
between the two lines is less than 5 degrees, the two points are similar. The second 
concept SN,  the norm similarity,relies on the Euclidean norm of the points (i.e., their 
distance from the origin): if the Lz norms of two points differ by less than 114, they 
are considered similar under &. Figure 3-5 illustrates this, by showing, for a fixed 
reference data set and two query points denoted by circles, the set of reference points 
similar to the queries under each of the two concepts. The figure also shows the sim- 
ilarity region: the set of all points on the 2D plane that would be judged similar to a 
query. While empirical performance of a similarity model is determined in terms of 
the precision/recall measured on a particular data set, its generalization performance 
may be evaluated by measuring the overlap between the correct similarity region and 
the region estimated under the model. 

The performance of L1 distance as a proxy for either of the two similarities is 
quite poor, not surprisingly. In particular, the threshold on the distance necessary to 
achieve reasonable precision corresponds to an ROC point with a very low recall. It 
seems obvious that no subset of the features inherently limited to axis-parallel stumps 
will do much better in this case. 

In hindsight (given what we know about the target similarities in each case), the 
best solution is of course to simply extract the parameter which directly affects the 
similarity. This would mean simply converting the Euclidean coordinated to polar 
coordinates and using the phase (modulo ?r) and magnitude as an embedding of the 
data for, respectively, SA and &T. Of course, normally we do not have such knowledge 



(a) Angle similarity SA (b) Norm similarity SN 

Figure 3-5: Toy 2D data set, with examples of angle similarity and norm similarity. 
Sa(x,y) N latan(x) - atan(y)l, and SN(x,y) N lllxll - 11vylll. Circles: examples 
similar, under each of the two concepts, to the query shown by the cross. Shaded 
area: the similarity region (see text.) 

of the functional form of the target S, and so we must rely on a learning algorithm 
with a rather generic set of features that will allow us to reasonably approximate it. 

3.4.1 Embedding with generic projections 

We are now extending the family of the projection functions used to form the embed- 
ding. We will consider all generalized linear projections of the form 

This still leaves the choice of $ unspecified. In this thesis, we will limit our attention 
to polynomial projections, in which 

that is, each term $ j  in (3.18) is a product of oj components of x (not necessarily 
distinct). In our experiments, we have used projection with oj bounded either by 1 
(linear projections) or 2 (quadratic projections) . 

This is a fairly broad family (that of course includes the axis-parallel projections 
used so far), and the framework developed in this section does not necessarily assume 
any further constraints. The specific choice of the projections is a matter of design, 
and should probably be guided by two considerations. One is domain knowledge- 
for instance, in our toy example it is pretty clear that quadratic projections should 



be appropriate for the task. The second consideration is computational resources: 
since learning with such projections involves optimization, increasing the number of 
parameters will increase the time required to learn an embedding. 

3.4.2 The weak learner of projections 

Until now the weak learner in boosting was essentially ranking all the features based 
on the current weights on the examples. Transition to an infinite set of projections 
requires a weak learner capable of searching the space of features in order to optimize 
the objective function in a current iteration of boosting. Below we define a differ- 
entiable objective function aimed at maximizing r,, and describe a gradient ascent 
procedure for that function. 

In order to have a differentiable objective, we need a differentiable expression 
for the classifier. Therefore, we replace the "hard" step functions in (3.2) with a 
differentiable approximat ion via the logistic function: 

This introduces the parameter y, the value of which can affect the behavior of the 
learning algorithm.13 We suggest the following heuristic to set a reasonable y: 

which means that the lowest value of K on the available data is at most 0.001, and 
the highest value is at least 0.999.14 

We also change the definition of the classifier associated with 6 from (3.3) to 

Note that the response of so defined E is a continuous variable in the range [-I, 11, 
that can be thought of as a confidence rated prediction: if both f (x) and f (y) are 
far from the threshold on different sides, then E(x, y)  will be close to + 1, and if they 
are very close to the threshold the response will be close to zero. 

To calculate the gradient, we need to compute the partial derivatives of the ob- 
jective function with respect to the projection parameters el, . . . , b, T. Below we do 
that for two cases: the fully supervised case and the semi-supervised one. 

131n principle the same role of determining the shape of can be played by the psrameters B j ,  
however we found that using y, in particular for data with vastly different ranges for different 
dimensions, improves both the numerical stability and the speed of convergence of the learning. 

141n principle the objective may be explicitly optimized with respect to the value of y as well, 
however we have not pursued that direction. 



Fully supervised case 

To simplify notation, let us denote the parameter with respect to which we differ- 
entiate by 6. Recall that when total N of positive and negative pairs are available, 
labeled by li, the objective function is given by 

The partial derivative of (3.22) is 

Now, from definition of E 

Next, we can take the derivative of the soft threshold h. Denoting fT(x) = f (x)-T 
for simplicity, we get 

Finally, we can take the derivative of the projection. For the coefficients B,, 

and the derivative with respect to the threshold is simply -1. Plugging the equa- 
tions (3.24)-(3.26) back into (3.23) produces the partial derivative of Fm w.r.t. the 
projection parameter 6, and allows us to perform gradient ascent using standard 
numerical met hods. l5 

Semi-supervised case 

The main difference of the semi-supervised case from the supervised one is that we 
need to take the derivative of the second part of (3.16) containing the expected 
responses of E. Unfortunately, we can no longer use Pj to estimate that expectation 
since any point on the line f (x) will produce a different response of E when paired 
with f (xi). Thus, we resort to explicitly estimating the expectation, which is given 

150ne can also calculate the Hessian to allow for a more efficient search with Newton-Raphson 
method, but we have not pursued that. 



Table 3.3: Test accuracy of constant robust locally-weighted regression. Shown are 
the mean values k std. deviation of mean absolute error (MAE) for 10-fold cross- 
validation .) 

BOOSTPRO 
1.9286 f 0.1941 
2.0890 f 0.1198 
2.4985 f 0.5272 
1.4994 f 0.0496 

18379.6952 f 540.5984 

Table 3.4: Test accuracy of K-NN classification with SSC vs L1 similarity (mean f 
std. deviation for 10-fold cross-validation.) 

SSC 
2.2376 f 0.3900 
2.1503 f 0.1500 
2.4748 f 0.5166 
1.4700 f 0.0606 

22480.2135 f 1588.8343 

Data set 
MPG 
CPU 
Housing 
Abalone 
Census 

by the integral 

LI 
2.7368 f 0.4429 
4.1969 f 0.2189 
3.4641 f 0.2568 
1.4582 f 0.0557 

24705.0481 f 988.2865 

BOOSTPRO 
0.0501 f 0.0061 
0.0993 f 0.0237 

We estimate this integral by taking the sum over the available examples. Thus, the 
expression for fm  becomes 

SSC 
0.0426 f 0.0065 
0.1713 f 0.0215 

Data set 
Letter 
Isolet 

Taking the derivative of (3.28) involves assembling Np terms given in (3.24) (for 
the positive pairs) and N(N - 1) terms for the unlabeled examples. If computation 
time is of concern and the quadratic dependence on N is infeasible, the latter term 
may be further approximated by sampling a constant number of xb's at, say, fixed 
percentiles of the distribution of f (x). 

LI 
0.0449 f 0.0050 

0.1265 f 

3.4.3 Results 

Synthetic 2D data 

For each of the two similarity tasks introduced in the beginning of Section 3.4, the 
algorithm constructed an embedding with M = 200 dimensions based on Np = 1000 
positive examples (and no negative examples), using projections quadratic in xl and 
x2. Figure 3-13 shows examples of the learned weak classifiers. The plotted regions 
correspond to h; the value of the classifiers c for any two examples is obtained by 



Table 3.5: Test accuracy of constant robust locally-weighted regression on regression 
benchmark data from UCIfDelve. Shown are the mean f std. deviation of mean 
squared error (MSE) over 10-fold cross validation. Results for SVM are from [83]; see 
text for discussion. 

Data Set 
MPG 
CPU 
Housing 
Abalone 
Census 

Table 3.6: The best of the available results of other methods published for a simi- 
lar experimental setup. The error shown is MSE for the regression sets and mean 
classification error for the classification sets. 

L1 
13.9436 f 5.1276 
37.9810 5.2729 
26.5211 f 6.8080 
4.7816 f 0.5180 

2.493~10' f 3 . 3 ~ 1 0 ~  

Data set 
MPG 
CPU 
Housing 
Abalone 
Census 
Letter 
Isolet 

placing them on the figure and comparing the colors at their location. Thus, the 
pairs of red crosses would be classified as dissimilar (by the weak classifier alone!) 
while the pairs of circles would be classified as similar. The typical shape of h (origin- 
centered disks for norm, and "bow-tie" shapes for angle) effectively corresponds to 
a quantization of the underlying polar coordinate used to define similarity, although 
the values of those coordinates were withheld during learning. Figure 3-14 shows 
retrieval results; the lighter regions in the data space correspond to a L1-ball of 
radius R = 20 in H around the query (shown by cross). The ROC curves for the 
similarity retrieval/classification are shown in Figure 3-15. We also evaluated the 
DistBoost algorithm from [60] on these two problems. Note that the comparison 
is somewhat "unfair" since DistBoost assumes that the similarity corresponds to 
equivalence classes on X. Nevertheless, DistBoost performed reasonably well, in 
particular for low values of recall. Overall, on these synthetic data our embedding 
approach is clearly superior to both DistBoost and the L1 distance, which performs 
only slightly better than chance (as expected). 

Real data sets 

SSC 
10.0813 f 3.8950 
18.2912 f 4.2757 
14.3476 f 9.1516 
4.8519 f 0.4712 

2 .237~  lo9 f 3 . 2 ~ 1 0 ~  

Error 
7.11 
28.14 
9.6 

4.31 
1.5 x 1 o9 
0.0195 
0.0372 

Tables 3.3, 3.5 and 3.4 summarize the results of an experimental comparison of 
BOOSTPRO with other similarity models as a tool in example-based regression and 

BOOSTPRO 
7.4905 f 2.5907 
9.0846 f 0.9953 
13.8436 f 8.4188 
4.7602 f 0.4384 

1.566~10' f 2 . 4 ~ 1 0 ~  

Method Source 
SVM ~ 3 1  

Regression Trees [I131 
SVM [83] 

Neural Network [83] 
Regression Trees [I131 

ECOC with AdaBoost [28] 
SVM [731 
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Figure 3-6: Results on Auto-MPG data set. Left: box plot of test mean absolute error 
of example-based regression using, from left to right, L1 distance in X, SSC embed- 
ding and BOOSTPRO embedding. The plots show distribution of results in ten-fold 
cross validation. Right: test ROC curves for the ten folds of the cross-validation. 
Black (dotted): L1 in X; Blue (dashed): SSC; red (solid): BOOSTPRO. 
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False alarm rate 

(a) Mean absolute error (b) ROC curve 

Figure 3-7: Results on Machine CPU. See legend for Figure 3-6. 

classification on the seven real data sets. In all data sets the projections used by 
BOOSTPRO were linear projections with two term, in other words, each dimension 
of the embedding is a thresholded linear combination of two coordinates of the input. 
The performance in terms of mean error is also summarized graphically in Figures 3- 
6-3-12; these figures show the distribution of mean errors as well as the ROC curves 
for the three similarity measures on seven data sets. 

Selecting the terms in the projection in BOOSTPRO requires some care. With two- 
dimensional projections it may be possible (if dzm(X)  is low enough), in principle, 
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Figure 3-8: Results on Boston Housing. See legend for Figure 3-6. 
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Figure 3-9: Results on Abalone. See legend for Figure 3-6. 

L-1 SSC BooslPro 

to exhaustively consider all dim(X)(dim(X) - 1)/2 combinations, perform gradient 
descent on each and select the optimal one. However, it is extremely expensive (at 
every step of the gradient descent we need to compute the gradient, which requires a 
pass over all the training data.) In addition, while this may speed up the reduction 
in training error, there is no requirement to find the best weak classifier in a given 
iteration-just to find a weak classifier better than chance. Therefore, instead of 
such exhaustive search we consider with a fixed number (typically 100) randomly 
constructed term combinations, set the projection parameters 0 to randomly selected 
numbers, find the local maximum of r, by starting the gradient ascent at each of 
these projections, and select the one that attains the highest r,. Note that this is an 
inherently parallelizable procedure, since the gradient ascent proceeds independently 
from every initialization point. We take advantage of this and use a parallelized 
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Figure 3-10: Results on US Census. See legend for Figure 3-6. 
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otherwise, see legend for Figure 3-6. 
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implementation. However, we believe that the under-exploration of the space of 
projections is the main cause for the failure of BOOSTPRO to improve over the other 
similarity models. 

Nevertheless, in most cases, BOOSTPRO out performs other similarity models ro- 
bustly, as measured by the means and standard deviations of mean errors in cross 
validation. The main conclusion from these experiments is that for a practitioner 
of examplebased estimation methods, it is often beneficial to model the similarity 
rather than apply the default L1-based neighbor search in X. In some cases there is 
no improvement, however; we suspect that these are the cases in which the L1 is an 
appropriate proxy for similarity. The following "hybrid" approach provides perhaps 
the safest means of optimizing the performance of a similarity model: using a held-out 
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Figure 3-12: Results on Isolet. See legend for Figure 3-1 1. 

Figure 3- 13: Typical weak classifiers (t hresholded project ions) learned for the angle 
(top three) and norm (bottom three) similarity on the synthetic 2D data. The darker 
shade corresponds to the area where h = +l. Crosses and circles show pairs that 
would be classified by the project ion as similar and dissimilar, respectively. 

test set (or in a cross-validation setting) evaluate the estimation error using each of 
the three similarity models, and select the one with the best performance. 

In order to place these results in the context of state-of-the-art results, we can also 
compare our results to the best results published in the machine learning literature 
for the data sets in question, as summarized in Table 3.6.16 For each data set, we have 

16Due to a large variety of techniques and experimental designs used in such evaluations, such 
comparisons should be considered carefully. We attempted to locate the most relevant results with 



Figure 3- 14: Synthetic data: example similarity regions. Light areas correspond to x 
such that 1 1  H (x) - H (q) 1 1  5 R, with the query q shown by the red cross and R = 20 
set for 0.5 recall. The dots show the training data. Top: angle similarity, Bottom: 
norm similarity. 

(b) Norm 

Figure 3-15: ROC curves for the retrieval experiments with angle and norm similar- 
ities (see Figure 3-5. Diagonal: chance. Dotted: L1. Dashed: DistBoost. Solid: the 
embedding learned with semi-supervised Boost Pro. 

respect to the specific set of experiments reported here. 
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(a) MPG (b) Housing (c)  Abalone 

Figure 3-16: Results on three of the UCI data sets. Comparison of L1, DistBoost 
and semi-supervised BoostPro. Diagonal: chance. Dotted: L1. Dashed: DistBoost. 
Solid: the embedding learned with semi-supervised BoostPro. 

Table 3.7: Lengths of embedding learned with BOOSTPRO on UCI/Delve data; mean 
& std. deviation in 10-fold cross validation. 

Data set 
M 

MPG CPU Housing Abalone Census Letter Isolet 
180 f 20 115 f 48 210 5 28 43 f 8 49 f 10 133 f 13 121 f 52 



cited the best result, along with the method with which it was achieved and the source. 
As can be seen, for some data sets (regression) the simple constant, i.e. zeroth-order, 
robust locally-weighted regression (introduced in Section 2.2) with a BOOSTPRO- 
learned embedding performs on a par with the best published results, while for other 
data sets (primarily classification) its performance appears to be inferior. 

Note that our embedding offers a critical advantage over SVM or similar classifi- 
cation machines, when the task of similarity retrieval is relevant. This advantage is 
in our ability to directly approach this task as a distance-based neighbor retrieval in 
the embedding space, and to use LSH for a sublinear time search. 

The main consequence of this ability is the computational gain. When the simi- 
larity notion is inherently related to class labels, SVM could be in principle applied 
to classify the query example and then retrieve all database examples that have the 
same class label. Since SVM are known to often retain a significant proportion of 
the data as support vectors, and since the computational cost of applying an SVM is 
directly proportional to the number of support vectors, this often will be much more 
expensive than the fast search with LSH. 

When the relevant similarity notion can not be linked to a classification problem, 
SVM or similar mechanisms are simply not directly applicable to the retrieval task. 
One possibility to overcome this is to train an SVM classifier of similarity, i.e. a 
classifier that operates on pairs of examples. That, however, would require to apply an 
SVM, which is often an expensive operation itself, for all pairs formed by connecting 
the query and each of the database examples. This is clearly prohibitively expensive 
even with medium-size databases, and completely infeasible for databases of the type 
we will discuss in the next chapters, with millions of examples. This is in stark contrast 
to the cost of retrieval with our method, that combines the learned representation in 
the embedding space with the fast search using LSH, making retrieval in near-real 
time easily implemented for these very large databases. 

BOOSTPRO also shows an improvement over SSCon most data sets, at the same 
time greatly reducing the embedding size; Table 3.7 shows the average values of M 
for B o o s ~ P ~ o ( t h e s e  values are essentially determined by the stopping criteria of 
AdaBoost, that stops when it can not find, within a reasonable time, a weak classifier 
with non-zero r,.) Compare these numbers to those in Table 3.2. 

Semi-supervised scenario 

Figure 3-16 shows a result of comparing the semi-supervised version of BOOSTPRO to 
DistBoost (and L1) on three of the UCI data sets: Abalone, Housing and Auto- 
MPG. The ROC curves shown are for a single partition of the data, using 40% 
for testing. On these three data sets, the advantage of our embedding method is 
still noticeable, although it is less pronounced, since both DistBoost and L1 perform 
better than for synthetic data. In all the five data sets, the expected similarity rate 
p (e.g., the probability that random two examples are similar) is between 0.05 and 
0.3. Nevertheless, the positiveonly version of the algorithm based on the assumption 
that this rate is low, performs well. 

We have also investigated the effect of the ground truth similarity rate on the 



Figure 3-17: Effect of similarity rate on the performance of the semi-supervised 
BOOSTPRO, on synthetic norm similarity data. The ROC curves are shown for the 
retrieval task on 1000 test points, using 600 unlabeled points and 2,000 similar pairs, 
with M=100. 

performance of the semi-supervised version of BOOSTPRO. Norm similarity in the 
2D "toy" data set is determined by setting a threshold on the difference between 
Euclidean norms of the two points in question; varying this threshold corresponds to 
modifying the similarity rate (if the threshold is low, p is low). We have evaluated 
the retrieval performance of the algorithm for a range of values of p between 0.02 and 
0.55. Figure 3-17 shows the ROC plots for eight values of p, obtained by applying 
the semi-supervised BOOSTPRO. The FP rate was estimated as per equation 3.7, 
that is, using the probability mass estimate for a threshold and the correction term 
for the known p. F'rom the results it is apparent that the algorithm is very robust, 
in the sense that the semi-supervised version achieves identical (good) results for p 
up to 0.3; the curve for 0.4 is noticeably inferior, and for 0.55 the curve deteriorates 
much further. This is consistent with our observation that for values of p up to 0.3 
in the UCI/Delve data sets, the performance of semi-supervised algorithm does not 
suffer from replacing actual negative examples with the expectations over all pairs, 
corrected for the known (or estimated) p. 



Discussion 
We have developed a family of algorithms for learning an embedding from the original 
input space X to an embedding space H. The objective of these algorithms is to to 
optimize the performance of L1 distance in the embedding space as a proxy for the 
unknown similarity S, which is conveyed by a set of examples of positive pairs (similar 
under S )  and, possibly, negative pairs, perhaps along with some unlabeled example 
in X. 

The following summarizes the main properties of each algorithm. 

Similarity Sensitive Coding (SSC) The algorithm takes pairs labeled by similar- 
ity, and produces a binary embedding space H ,  typically of very high dimension. 
The embedding is learned by independently collecting thresholded projections 
of the data. 

Boosted SSC This algorithm addresses the redundancy in SSCby collecting the 
embedding dimensions greedily, rather than independently. It also introduces 
weighting on the dimensions of H.  

BoostPro This algorithm differs from the Boosted SSCin that the dimensions of the 
embedding are no longer limited to axis-parallel stumps. We have introduced a 
continuous approximation for the thresholded projection paradigm in which a 
gradient ascent optimization becomes possible. 

Semi-supervised learning For each of these three algorithms we have presented a 
semi-supervised version which only requires pairs similar under S, in addition 
to a set of unlabeled individual examples in X. 

As part of the discussion in this chapter we have applied some of the new alge 
rithms to a number of real-world data sets from public data repositories, and observed 
very good performance, both in terms of the ROC curve of similarity detection and in 
terms of the prediction accuracy for regression and classification tasks. In the follow- 
ing chapters we will see how the proposed framework can be applied to challenging 
problems in machine vision. 





Chapter 4 

Articulated Pose Estimation 

In this chapter we describe a new approach to estimation of articulated pose of hu- 
mans from single monocular images. Our approach is example-based: it reduces the 
problem of recovering the pose to a database search under L1 in the embedding space, 
which is carried out extremely fast using LSH. The embedding is constructed based 
on edge direction histograms, using the algorithms presented in Chapter 3. Underly- 
ing this construction is the definition of a similarity concept under which two images 
of people are similar if the underlying poses are, and learning an embedding that is 
sensitive to that similarity. 

We start with describing the problem domain and presenting our approach to it 
in a nutshell in Section 4.1, and cover some related work in Section 4.2. Section 4.3 
gives the details of the representation and the learning problems defined for the task. 
Experimental results in two estimation tasks are described in Sections 4.4 and 4.5. In 
Chapter 5 we discuss the integration of our approach to single-frame pose estimation 
into a tracking framework. 

4.1 The problem domain 

The articulated pose estimation problem is formulated as follows. We are given an 
image which contains a human body.' We also have an articulation model-a model of 
the body that describes the current 3D body configuration in terms of a set of limbs 
and rotational joints that connect them into a tree structure. 

This model is illustrated in Figure 4-1. The image on the left is not a photograph of 
a real person but a synthetically generated image of a humanoid model obtained with 
a computer graphics program POSER [29]. This image corresponds to the articulated 
model in the left part of the figure. The model is shown by plotting 2D projections 
of 20 key joints (crosses) and the lines connecting them, that roughly correspond to 
limbs. This model may be described by 60 numbers, namely the (X, Y, 2) coordinates 
of the joints (an alternative form of describing the model would be in terms of articu- 
lated angles, which we will discuss later.) In fact, there are hundreds of parameters in 

'The presented framework can be applied to any articulated body, but estimating pose of humans 
is by far the most important task of this sort. 



(a) Image of a body (b) Corresponding articulated model 

Figure 4-1 : A (synthetic) image of a person and the corresponding articulated model. 
The goal of pose estimation is to derive the representation from the image on the left. 
Crosses show key joints, labeled with abbreviations. l/r: leftlright, t: big toe, a: 
ankle, k: knee, h: hipbone, s: shoulder, e: elbow, w: wrist. Additional parts are the 
base of the neck nk, the base of the skull th  and the top of the skull (not labeled). 

addition to these 60 numbers that affect the resulting image: the articulated pose of 
additional body parts not accounted for by this coarse model, such as fingers; shape 
of the actual body parts (the model, so to speak, describes the "bones", but not the 
flesh); facial expression; hair style; clothing; illumination etc. Added to that could 
be the parameters that describe the scene, the objects in the background etc. The 
goal of a computer graphics program like POSER is to start with these parameters 
and produce a realistic image, that is, to go from the right half of Figure 4-1 to the 
left half. The goal of computer vision is the opposite. In the context of articulated 
pose estimation this goal is to start from the left half (the image), and recover the 
relevant parameters (the right half) of the represent ation that "generated" the im- 
age, while ignoring the nuisance parameters-all those additional aspects of the visual 
scene listed above. When the image is actually synthetically generated the success 
of this task is easy to measure, since we have access to the ground truth. For real 
images such evaluation is more difficult. When measurements of the underlying pose 
are available, for example obtained using a motion capture device at the same time 
as the images are taken, this may be done in a precise fa~h ion .~  In other cases this 
may be subjective, or it may depend on the success of a "downstream" application 
that relies on the estimated pose (we discuss some applications in the next section 
and in Chapter 5.) 

2~owever,  special caution is required to make sure the motion capture setup, e.g. special clothing 
or visible sensors, is not used by the estimation algorithm to "cheat". 



4.2 Background on pose estimation 

There exists a large body of literature on the estimation of the pose of articulated 
bodies. We only focus here on work most related to our approach. It should also 
be noted that much more attention has been given to the task of articulated trackzng 
of humans: recovering the sequences of articulated poses from a video showing a 
moving person. This task is usually approached in a qualitatively different way from 
singleframe pose estimation. In particular, tracking algorithms (with almost no 
exceptions) rely on the assumption of manual initialization. While the tracking setup 
is in some ways more challenging than the singleframe one, it also allows access to 
provides valuable cues from motion that are not available in a static task. This may 
allow, in particular, to disambiguate certain situations which are very difficult or even 
impossible to disambiguate with a single frame. We will not discuss tracking here, 
but in Chapter 5 we will describe tracking algorithms that integrate our approach 
to singleframe pose estimation with a tracking setup, allowing us to relax or even 
abandon the initialization assumption. 

Providing automatic initialization (and re-initialization throughout the sequence) 
for tracking is among the most important applications of single frame pose estima- 
tion. In fact, having a perfect pose estimator would eliminate the need for specialized 
tracking algorithms, since the accurate pose recovery would simply be done in every 
frame. Of course, this is not possible since singleframe estimation is ill-posed: in 
many "interesting" activities there is a great deal of occlusion of some body parts by 
others, there is often ambiguity related to symmetry, mirror reflections etc. Neverthe- 
less the ability to recover pose from a single image is crucial for successful tracking. 
We discuss this in more detail in Chapter 5. 

Much of the work has relied on deterministic methods guided on the known geom- 
etry of the articulated body. In [Ill] 3D pose is recovered from the 2D projections of 
a number of known feature points on an articulated body. Other efficient algorithms 
for matching articulated patterns are given in [45, 94, 881. All of these approaches 
assume that detectors are available for specific feature locations, and that a global 
model of the articulation is available. Another family of approaches can somewhat 
relax these assumptions, at the cost of relying on the availability of multiple views [58]. 

Other techniques are based on statistical learning approaches. In [87] pose esti- 
mation is reduced to contour shape matching using shape context features. In (951, 
the mapping of a silhouette to 3D pose is learned using multi-view training data. 
These techniques were successful, but they were restricted to contour features and 
generally unable to use appearance within a silhouette. Some methods explicitly work 
with silhouettes only [40, 21 but those, due to a rather impoverished representation 
that greatly increases ambiguity, are usually restricted to a specific type of activity 
(walking is particularly popular.) 

In [6] a hand image is matched to a large database of rendered forms, using a 
sophisticated similarity measure on image features. This work is most similar to 
ours and in part inspired our approach to pose estimation. However, the complexity 
of nearest neighbor search makes this approach difficult to apply to the very large 
numbers of examples needed for general articulated pose estimation with image-based 



distance met rics. 
Finally, we should emphasize that the task of pose estimation we are considering 

is decoupled from the tasks of detection and localization, i.e., determining whether 
an image contains a person and finding the specific portion of the image occupied by 
the person. There are a number of methods for carrying out those tasks, and we will 
assume that localization is solved by an external algorithm. Specific arrangements 
for obtaining this information in our experiments is described in Sections 4.4 and 
Section 4.5. 

4.3 Example-based pose estimation 

We approach pose estimation as a regression task, and develop an example-based 
approach to solving it. As described in Section 2.2.1, we can define a similarity 
concept Sp corresponding to pose similarity. We assume that we have access to a 
large and representative3 database of images labeled with the corresponding poses. 
Then, the pose in a query image xo can be estimated in by the following two steps: 

Find in the database some examples of poses similar to the unknown pose in 
xo. 

Using the retrieved examples, infer the pose in xo. 

This fairly vague recipe is detailed in the sections below. 

4.3.1 Pose-sensit ive similarity 

Suppose that a pose is represented by a parameter vector 0 (we discuss some param- 
eterization~ below). Let xl and x2 be two images depicting people whose articulated 
poses are, respectively, O1 and 02. Then, we define 

This is a generic similarity "template", and the precise definition depends on two 
parameters: the distance Do used to compare poses, and the appropriate threshold R 
on that distance. The threshold could be set in two ways. The first is by finding R 
which meets some perceptual criteria: if De(O1, 02) 5 R, then human observers will 
generally agree that the two poses ''look similar", or are similar for the purpose of a 
particular application. Our approach to learning similarity from examples, developed 
in Chapter 3, is perfectly suited for such a definition since all it requires is a set of 
examples of similar pairs-which in this case may be supplied by human observers. A 
second method of setting R is by means of validation tuning with a specific estimation 

3 ~ n  the sense that for a random pose drawn from the distribution of poses, there is, with high 
probability, an example with a similar pose, under the relevant definition of similarity discussed in 
this section. 



algorithm. That is, if the goal is to recover pose as precisely as p~ss ib le ,~  and the 
estimation algorithm relies on similarity defined in (4.1)) then we may look for R that 
minimizes the final error. 

As for Do, there are two avenues for defining it, and the choice depends on the rep- 
resent at ion of the articulated model. A common represent at ion, common in computer 
graphics and animation, is by joint angles[93]. Consider a directed graph representa- 
tion of an articulated tree, where each node corresponds to a joint (we use the term 
joint loosely to refer to any rigid point in the model, so that, for instance, the top 
of the skull is also considered a "joint" .) Edges leaving the node correspond to the 
limbs connected to that joint, and they connect it to the joints on the other side of 
the limb. Then the entire configuration of the model in 3D is given by a set of 3D 
rotation parameters in each joint plus the global position and orientation of the root, 
which is usually at the hip joint. This representation is convenient to describe articu- 
lation, and especially to parametrize articulated motion. Also, it describes the body 
articulation independently of the sizes of actual limbs. However it makes defining 
distances quite cumbersome. For instance, a 20 degree change in an angle may affect 
the global position of body parts very little if it is in a finger, or very much if it is in 
the hip. 

For this representation, we use the mean cosine deviation distance Vcos: 

The second representation is in terms of 3D joint locations [57]. If there are L 
joints in the model, then the pose Oi is fully described by Oi = [O), . . . , O f ] ,  where the 
location of the j-th joint is given by O j  = [o:,~, 0:,+, OijilT E It3. This representation is 
somewhat redundant, since there are strong constraints on the relative locations of 
neighboring limbs, however it is very explicit and thus convenient for manipulating 
and comparing poses. 

For this representation, we define the maximum deviation distance VD by the 
maximum L1 distance between any t'wo corresponding joints in 3D: 

In accordance with the approach we have outlined above, we will learn an embed- 
ding of the images space into a new space H, such that for two images XI, x2 and 
the corresponding poses 01, 02, 1 1  H (xl) - H(x2) 1 1  is, with high probability, low if 
Do(&, 02) l R. 

4Note that this is rarely the real goal of an application; for instance, in an activity recognition 
scenario, or for understanding gestures, an error of a few degrees or a. few centimeters relative to the 
"ground truth" is rarely a problem. 



Figure 42 :  Illustration of the edge direction histogram (EDH) represent ation. Col- 
ors correspond to detected edge orientation red=O, green=n/4, purple=?r/2 and 
blue=3?r/4. 

4.3.2 Image represent at ion 

Before we approach the learning task, we need to design the representation of the 
input space X. The simplest decision would be to simply use the pixels of the image. 
However it is clearly not very helpful, due to a large effect of the nuisance parameters 
(color and illumination in particular) on the pixel intensities, and we would benefit 
from a representation that is more invariant to nuisance parameters while capturing 
information useful for inferring pose. In this chapter we will use the representation 
by multi-scale edge direction histograms (EDH) [68], often used in image analysis and 
retrieval, but until now it has not, to our knowledge, been used for pose analysis. 

In order to compute EDH, we apply an edge detector of choice (we have used 
the Sobel detector [54]) to obtain an edge map, i.e. a binary image in which the 
value of a pixel is 1 if a detected edge passes through it. Next, each detected edge 
pixel is classified into one or more of four direction bins: ~/8,3?r/8,5?r/8,71~/8. This 
is done by applying a local gradient operator at each of the four orientations, and 
t hresholding the response. Then, the histograms of direction bins are computed 
within sliding square windows of varying sizes (scales) placed at multiple locations 
in the image; the scales and the location grid are parameters to be set. This yields 
four integer values (the counts for the four direction bins) for each scale and location. 
The resulting multi-scale EDH is obtained by concatenating these values in a fixed 
order. Figure 4 2  illustrates the EDH representation; each of subwindows A and B 
contributes four numbers, calculated by counting edge pixels of four colors within the 
subwindow .5 

Assuming, as we do, that the person localization task is solved for us and the image 
is centered on the bounding box of the body, a reasonable measure of similarity to 
apply to this representation is the L1 distance, since a particular bin in the histogram 
corresponds to a roughly fixed location on the body. It is interesting to note the 
connection of this distance to the Hausdorff and Chamfer distances often used to 

'some pixels, in particular the ones at edge intersections, may have multiple colors, i.e. multiple 
orientations, assigned to them. 



compare silhouettes or edge images (111. A related distance is the Earth-Mover's 
dist ance[55]. 

Another interesting connection is to shape contexts [ll], that have been used for 
pose estimation among other tasks 186, 871 

4.3.3 Obtaining labeled data 

Our approach relies on the availability of a large database of images labeled with poses. 
Such a database may be constructed either by means of computer graphics package, 
such as POSER. or by recording data from human subjects. The synthetic generation 
is an appealing option since it is extremely cheap, can provide an arbitrarily large 
number of examples, and makes it easy to include as much variability in the data as 
desired (subject to model limitations of the software.) Importantly, it also provides 
accurate ground truth of the pose for every image. The resulting images can be quite 
realistic in terms of pose appearance (see Figures 4-3 and 4-6 for some examples). 

Alternatively, such a database could also be created by recording images of real 
people in a variety of poses, along with the poses themselves measured by one of 
the available methods for that (usually based on instrumenting the actor with some 
sort of sensors.) However, this may be extremely expensive, labor-intensive and time- 
consuming. This may be possible for a constrained set of poses, for instance associated 
with a particular task or activity. If the goal is to have a very large database highly 
representative of the general pose space, this approach is probably infeasible, and 
even more so if we also want to include a significant variation in nuisance parameters 
in the data. One potential advantage of such a database, of course, is that the real 
training images may, in some sense, look more "like" the real test images the system 
would encounter. However in our opinion the stateof-theart in computer graphics, 
as exemplified by POSER, removes this concern since the synthetic images are close 
in quality to the real ones, at least for the single-frame pose estimation purposes.6 
A more important advantage of a human-based database is in the realistic nature of 
the poses it contains, both in terms of the distribution and in terms of attainable 
configurations. 

Fortunately, there is a way to have the best of both worlds. A set of poses 
can be recorded with a motion capture setup, and then used to create a large set 
of synthetic images by changing the viewpoint, slightly perturbing the poses, and 
randomly assigning the nuisance parameters. This is the approach taken to obtain 
the training data used in experiments described in Section 4.5 and in Chapter 5. 

4.4 Estimating upper body pose 

The experiments described in this section7 deal with estimating only a partial pose, 
namely that of the upper body. The joints model specifies the location of shoulders, 
elbows and wrists. It is assumed that the person in the image is visible from about 

 his may not yet be the case for synthetic rendering of motion! 
 h his section is based on the work published in [I051 



Figure 43:  Example training images for upper body pose estimation 

the knee level up and is standing in an upright posture. The orientation (yaw) of the 
body is not constrained, and may vary between the two profile views, f 90". 

4.4.1 Training data 

The database of poses contains 500,000 images obtained by sampling uniformly at 
random the space of articulation angles, applying a feasibility correction algorithm 
of POSER (to prevent configurations which are either anatomically impossible or 
physically impossible, e.g. surface intersections), and rendering a 180 x 200 pixel image 
with randomly assigned nuisance parameters: illumination (obtained by modeling 4 
random light sources), hair style, clothing, and hand configuration. As stated above, 
we assume that the body has been segmented from background, scaled, and centered 
in the image. Thus no background detail was generated, so the figures are on a 
uniform background. Figure 4 3  shows some examples. 

4.4.2 The learning setup 

The EDH representation was constructed with windows of sizes 8,16 and 32, with each 
window sliding through locations spaced by half its size, yielding 11,728 histogram 
bins per image. With two bytes to represent each histogram bin, this requires above 
11 Gigabytes to record the EDH for the full database. 

Pose similarity was defined by setting a threshold of 0.5 on the 21, between poses. 
This value was chosen by inspection, as it corresponded to a good cutoff between 
perceptually similar and dissimilar pairs of poses. Not surprisingly, similarity in this 
domain is a rare event; the similarity rate p defined in Section 3.2.4, measured on a 
million random pairs constructed over the training data, was only 0.0005. 

Using the EDH representation as the input space X, we constructed a training 
set for SSC: 100,000 positive examples and 1,000,000 negative examples. The larger 
number of the negative examples was motivated by the unbalanced nature of the 



Model 
k-NN 
Linear 

Table 4.1: Mean estimation error for 1000 synthetic test images, in terms of D,,,. 
Standard deviation shown in parentheses. Not shown are the baseline error of 1- 
NN, 1.614 (0.88), and of the exact 1-NN based on L1 in X, 1.659. LWR stands for 
locally-weighted regression, see Section 2.2. 

k = 7  k = 12 k = 50 
0.882 (0.39) 0.844 (0.36) 0.814 (0.31) 
0.957 (0.47) 0.968 (0.49) 1.284 (0.69) 

const LWR 
linear LWR 
robust const LWR 
robust linear LWR 

problem, discussed in Chapter 3. 
We evaluated a number of TP-FP gap values on a small validation set, and set 

the lower bound on the gap g to 0.25. With that gap bound, SSC selected 213 
dimensions. Thus, the size of the database could be reduced, with the most eco- 
nomical data storage, from 11 Gigabytes to less than 14 Megabytes (recall that the 
dimensions produced by SSC are bit valued.) This data structure was then indexed 
by LSH, with 1=80 tables and k = 19 bits per hash key. Note that the application 
of algorithm 3 (p. 2.4.2) is particularly simple on the bit-valued embedding H since 
each dimension only has one possible threshold. Thus the application of SSC with 
subsequent indexing by LSH may be seen as simply learning of an appropriate family 
of LSH functions. 

We also tested the semi-supervised version of SSC described in Chapter 3. As 
expected for the low similarity rate in this case, the results were very similar to the 
results with the fully supervised version: we obtained 221 dimensions, with 97% over- 
lap with the dimensions learned with the supervised algorithm. Thus we get essen- 
tially identical results with more than 10 times reduction in learning time (since 
the semi-supervised algorithm uses only 111 1 of the training examples used in the 
fully-supervised one.) 

0.882 (0.39) 0.843 (0.36) 0.810 (0.31) 
0.885 (0.40) 0.843 (0.36) 0.808 (0.31) 
0.930 (0.49) 0.825 (0.41) 0.755 (0.32) 
1.029 (0.56) 0.883 (0.46) 0.738 (0.33) 

4.4.3 Results 

To quantitatively evaluate the algorithm's performance, we tested it on 1000 synthetic 
images, generated from the same model, so that the ground truth is available. Table 
4.1 summarized the results with different methods of fitting a local model; 'linear' 
refers to a non-weighted linear model fit to the neighborhood. The average size of 
the candidate set C found by LSH (i.e. the union of the buckets in the hash tables) 
was 5300 examples, about 1% of the data. We found that in almost all cases, the 
true nearest neighbors under VH were among the candidates, which means that we 
do not pay significant cost for the speedup obtained with LSH. 

The locally-weighted regression (LWR) [7] model was tested with zeroth-order, or 
constant, model (i.e., weighted average of the neighbors) and first-order, or linear, 



Figure 4-4: Examples of upper body pose estimation (Section 4.4). Top row: input 
images. Middle row: top matches with LSH on the SSC embedding. Bottom row: 
robust constant LWR estimate based on 12 NN. Note that the images in the bottom 
row are not in the training database - these are rendered only to illustrate the pose 
estimate obtained by LWR. 

model (i.e., weighted linear fit .) The robust LWR [22] re-weighted the neighbors in 5 
iterations. The purpose of robust LWR, as explained in Section 2.2, is to reduce the 
influence of the outliers (examples with high residual under the current model fit) by 
iteratively decreasing their weights. 

The results confirm some intuitive expectations. As the number of approximate 
neighbors used to construct the local model increases, the non-weighted model suffers 
from outliers, while the LWR model improves; the gain is especially high for the 
robust LWR. Since higher-order models require more examples for a good fit, the 
order-1 LWR only becomes better for large neighborhood sizes. Overall, these results 
show consistent advantage to LWR. Note that the robust linear LWR with 50 NN is 
on average more than twice better than the baseline 1-NN estimator. 

We also tested the algorithm on 800 images of a real person; images were processed 
by a simple segmentation and alignment program, using a statistical color model of 
the static background and thresholding by intensity change. Figure 4-4 shows a few 
examples of pose estimation on real images. Note that the results in the bottom 
row are not images from the database, but a visualization of the pose estimated with 
robust linear LWR on 12-NN found by LSH; we used a Gaussian kernel with the 
bandwidth set to the dx distance to the 12-th neighbor. In some cases (e.g. leftmost 
column in Figure 4-5), there is a dramatic improvement versus the estimate based on 
the single NN. The number of candidates examined by LSH was significantly lower 
than for the synthetic images - about 2000, or less than .5% of the database. This 
is expected since the real images differ from the synthetic ones in many subtle ways. 



Figure 4-5: More examples, including typical "errors" ; see legend of Figure 4-4. Note 
the gross error in the leftmost column, corrected by LWR. Examples in the right two 
columns are among the ones with most severe error in the test set. 

It takes an unoptimized Matlab program less than 2 seconds to produce the pose 
estimate. This is a dramatic improvement over searching the entire database for the 
exact NN under L1 in the embedding space, which takes more than 5 minutes per 
query, and in most cases produces the same top matches as the LSH. Note that exact 
search under L1 distance in X (EDH) would take a number of days, in particular due 
to the enormous size of the database mentioned above. 

Lacking ground truth for these images, we relied on visual inspection of the pose 
for evaluation. For about 213 of the examples the pose estimate was judged accurate; 
Figures 4 4  and 4 5  show a number of examples of typical estimates. On the remaining 
examples it was deemed inaccurate, on some examples the error was quite significant. 
Figures 4 4  and 4 5  show a number of examples, including two definite failures. Note 
that in some cases the approximate nearest neighbor is a poor pose estimate, while 
robust LWR yields a much better fit. 

Nevertheless this system clearly can be improved. We can identify three sources 
of failure. One, not directly related to the learning and estimation procedures, is 
imperfect segmentation and alignment. The other potential reason is the suboptimal 
set of dimensions found by SSC (perhaps due to a poor choice of the gap bound); we 
suspect that 213 dimensions in the embedding is not rich enough a representation. 
The third problem is related to the limitations of the synthetic training set, in terms 
of coverage and representativeness of the problem domain. The experiment reported 
in the next section addressed some of these issues. 



Figure 4-6: Examples of images in the motion capturebased repository of full body 
pose used in the experiments in Section 4.5. 

Estimating full body pose 
In this experiment we estimate full body pose, with the articulated model containing 
60 parameters (this is the model illustrated in Figure 4l(b) .)  

4.5.1 Training data 

To improve the quality of the database we used the motion capture sequence freely 
available from [41]. The database contains over 600 sequences recorded from a variety 
of activities from everyday life (walking, greeting, brushing teeth), athletics (soccer, 
martial arts), etc. We collected 550,000 unique poses (with VD between any two 
poses, as defined in (4.3), at least lcm) and rendered a 240x320 pixel image from 
each pose at three random yaws, yielding a repository of 1,650,000 images labeled 
with the ground truth pose. The figure in each image is rendered at a random 2D 
location within the virtual scene, with up to lm translation, in order to represent 
variability and with the intent to make the resulting estimator invariant to moderate 
translations (the 2D location is considered a nuisance parameter.) Figure 4-6 shows 
some examples of the images in this repository. 

From each image we extracted the bounding box of the silhouette (using the fact 
that these synthetically generated images have known segment ation and thus the 
silhouette mask is available), and computed the EDH representation as described 
above, yielding 13,076 bins in a histogram. 

4.5.2 Learning setup and results 

We selected 60,000 images from the repository, constrained to upright postures. From 
these, we formed 20,000 positive pairs, subject to the similarity defined as in (4.1) 
with DD as the pose distance and r = 3cm. 

We then applied a semi-supervised version of BOOSTPRO, using linear projections 
over two dimensions. That is, each dimension of the embedding is obtained by taking 



Figure 47:  Testing on synthetic input. Column 1: test images. Columns 2-4: top 3 
matches in H. 

two random dimensions of the EDH, and optimized as described in Section 3.4.2, and 
the projections are combined by the semi-supervised boosting algorithm introduced 
in Section 3.4.1. In this way we constructed a 1,000-dimensional embedding H. 

To get a better underst anding of the relationship between independently selecting 
the dimensions of H with SSC and applying a greedy ensemble learning algorithm 
in BOOSTPRO, we also measured the TP-FP gap of the selected dimensions. As may 
be expected, some of the selected features, when considered alone, have very low 
gap values (as low as .02), nevertheless, they are selected by the boosting since their 
weighted gap, or equivalently the value of the objective r, is high. 

Figures 4 7  and 48  show examples of retrieval by exact NN search in the em- 
bedding space H. A more thorough evaluation of the error is reported in the next 
chapter, where we discuss integration of our pose estimation approach into a tracking 
framework. 

Discussion 

We have presented an example-based approach to articulated pose estimation from 
a single image. Its main difference from the previously proposed methods is that 
it does not attempt to build a global model of pose-image relationship, which is 
notoriously difficult. Instead, we use a large synthetic database to directly learn to 
detect when the poses underlying two images are similar, and, at the same time, 
construct an embedding into a space where that similarity is modeled by low L1 
distance between embedded images. The embedding framework and the resulting 
ability to retrieve similar poses by a simple L1 search combined with the power of 
LSH give this approach a critical advantage: the solution to the complex problem 
of pose estimation becomes very simple and very fast. To our knowledge, no other 
singleframe pose estimation method that achieves similarly accurate estimates has a 
comparable speed. These properties make this pose estimation approach well suited 
as a component in articulated tracking algorithms. In the next chapter we describe 
two systems in which this is taken advantage of. 



Figure 4-8: Results on real input. Column 1: test images. Columns 2-4: top 3 
matches in H 



Chapter 5 

Articulated Tracking 

This chapter describes two stateof-the-art probabilistic articulated tracking systems 
that rely on the pose estimation framework presented in Chapter 4. What distin- 
guishes these systems from most other approaches to tracking is the use they make 
of task-specific similarity models, and specifically of the embeddings learned to fa- 
cilitate detection of and search for similarity under these models. The similarity 
embeddings are an essential component of the systems from which they derive the 
ability to establish and evaluate hypotheses more efficiently. 

In Section 5.1 we give a brief introduction to articulated tracking and discuss the 
role played by single-frame pose estimation. The first system, described in Section 5.2, 
is aimed at motion-driven swing dancing animation. That is a joint work with L. Ren, 
3. Hodgins, P. Viola and H. Pfister, published in [93]. Our contribution in that work 
has focused on the design of an example-based approach, based on similarity learning, 
to evaluating the hypotheses arising in the context of tracking constrained motion 
with a discrete dynamics model. The second system, that offers a new approach 
to the task of general articulated tracking, is a joint work with D. Demirdjian, L. 
Taycher, K. Grauman and T. Darrell. It was published in [35], and is described here 
in Section 5.3. In contrast to the first system, here our similarity learning framework 
is responsible for generating hypotheses based on estimated similarity between stored 
examples and the current observation. 

5.1 Articulated tracking 

The task of articulated tracking is to recover a sequence of articulated poses from 
a video (sequence of images) showing a moving articulated object, in most cases a 
human. The definition of pose, and the desired form of the output for each frame 
remain the same as in the static pose estimation task introduced in the previous 
chapter. What makes the tracking task qualitatively different is the presumed depen- 
dencies between consecutive poses. Tracking algorithms attempt to take advantage of 
such dependencies by framing the problem as that of probabilistic, usually Bayesian, 
inference. Consequently, the tracking task is often reformulated as estimating, at 
every frame, the posterior distribution of the pose parameters given the observations 



so far. 

5.1.1 Probabilistic tracking framework 

Let ~ ( ~ 1  be the articulated pose at time t, and x@) the observation recorded at that 
t imethat  is, an image, or a set of images received by a multi-camera system. We 
will denote x(''-.-yt) the entire sequence of observations recorded up to, and including, 
time t. A standard step in probabilistic training is to model the dglnamics of the 
motion by a distribution p(0(~+~)10(~), . . . , ~ ( ~ 1 ) .  Usually folded into this model is the 
assumption that the current pose is independent of the pose in most of the previous 
frames, given the last few ones, so that the prior distribution of the pose given the 
"history" is 

p(d(t+l) lo('), . ,g(t)) = p(o(t+l) 10 (t--'I , a - m ,  ~ ( t ) ) .  (5.1) 

The relationship between the observation and the image is modeled by the lzkelz- 
hood function ~ ( x ~ I o ( ~ ) ) .  The posterior distribution of the pose in the current frame, 
given all the observations so far, can be written as 

using the Bayes rule to invert the likelihood and normalized to integrate to unity. 
The first factor in the integrand in (5.2) is computed according to the dynamics 
model (5.1); the second factor is expanded, recursively, using the same equation. An 
important consequence of this approach is that it is necessary to have an estimate 
for some initial frames in the sequence (or a reliable narrow estimate of the posterior 
in those frames) known. Providing such initialization is one of the main roles played 
by single-frame pose estimation, which is not dependent on the past estimates and 
observations. 

In practical applications of tracking it is usually necessary to commit to a specific 
point estimate, that is, to produce a set of deterministic values of the model param- 
eters. The commonly used principal way to form such an estimate in a probabilistic 
framework is to compute the maxzmum a-posteriori (MAP) value of the pose, that 
is, one that maximizes (5.2). 

5.1.2 Models of dynamics 

The form of the prior depends on the assumptions about the dynamics in the system, 
and on the "depth of the horizon" r .  

Continuous models 

One popular model is the Gaussian dzfluszon model under which r = 1, and the prior 
is p ( ~ ( ~ + ' )  = N(B(~) ;  0, Z) . This essentially means that the model constrains 
the magnitude of the motion. This is the model used in the system described in 



Section 5.3. More complex models that use higher values of r may be able to model 
higher order properties of the motion such as velocity or acceleration. Such models are 
either analytical, implementing linear filtering mechanism like the Kalman filter and 
its variants [110], or non-parametric and learned from the data [72]. In these models 
the information about the past is entirely contained in the prior distribution. The 
prior distribution may be represented in a parametric form, or in a semi-parametric 
form, that is, by a set of samples [66]. The latter approach leads to the particle 
filtering framework, among the most popular ones in articulated tracking. 

Discrete models 

In some applications, the motion is highly structured, in the sense that only a finite, 
and relatively small, number of transitions are considered possible from any given 
pose. Furthermore, the number of attainable qualitatively different poses is also 
finite.' This is usually the case with activities that follow certain well-defined rules, 
like many sports or dancing. Under these constraints, it is possible to write down the 
dynamics model by explicitly enumerating the possible poses as nodes of a graph, and 
possible pose transitions as directed edges in this graph, weighted by the probability 
of the transition. This leads to the motion graph [72], the model used in the system 
described in Section 5.2. 

5.1.3 Likelihood and similarity 

The form of the likelihood term in (5.2) is typically determined by a generative model 
of image given pose. In most algorithms, maximizing the likelihood is achieved by 
a gradient-based optimization, in which the model is iteratively used to predict an 
observation, and the mismatch between the prediction and the actually observed 
data is used to improve the model. Two major problems with this approach are 
its computational complexity (likelihood computations are often the computational 
bottleneck of a tracking algorithm) and the dependence on the starting location [108]. 

In the context of motion graph tracking, computing the likelihood is reduced to 
evaluating the match between the input frame and a finite set of hypotheses, namely 
all the poses eti in the notation of (5.3). In other words, this is an instance of the 
similarity detection problem formulated in Section 1.1, and we will approach it using 
the tools developed in Chapter 3. 

The likelihood model in the systems described in this chapter is example-based: 
likelihood is evaluated implicitly, by comparing the input frame to stored examples 
for which the pose is known: 

More precisely, the likelihood is assumed to be high for poses whose associated obser- 
vations are similar to the current observation. This is made possible by applying the 
similarity learning framework developed in Chapter 3. The assumption underlying 

'That is, the number of poses qualitative different up to some tolerance. 



this approach is that examples similar to the input under Spas, correspond, with high 
probability, to peaks of the likelihood. 

5.2 Case I: Motion-driven animation 

This section describes a system for motion-driven animation in the domain of swing 
dancing. The application here is to allow a user to perform a swing dance in front of 
a multi-camera system, parse the motion into an admissible sequence of swing steps, 
and render it on the screen along with a matching action by a "virtual partner". 
The details of the entire system are available in [93] ; here we will be focusing on the 
motion parsing task, which is essentially an articulated tracking task constrained to 
a specific dictionary of poses defined by the rules of swing dance.2 

5.2.1 The setup and training data 

The visual input to the system consists of three silhouettes extracted3 from synchre 
nized, calibrated consumer-grade digital cameras, mounted so that the fields of view 
overlap over a working area of approximately 8' x 24'. These are concatenated to form 
a single three-view observation x. The 62 parameters of the articulated model 0 can 
be divided into the pose parameters E ,  describing the configuration of the limbs in 
the articulated tree (as joint angles in person-centered coordinate system), and the 
parameters specifying the orientation and location of the entire articulate tree in the 
world coordinate system. The orientation ,6 can be encoded by a single number, the 
yaw angle, as we can assume that a swing dancer's body is generally in an upright 
posture. Specifying location involves additional two degrees of freedom X for the co- 
ordinates on the ground plane where the center of mass is projected. In the remainder 
of this section we will refer to as pose, to make this distinction clear. 

The dynamics of the swing dance are modeled by a motion graph, constructed from 
5,120 frames of motion capture data recorded with a professional dancer. Transitions 
are modeled using the distance between poses and ignoring the global orientation and 
location. In addition to these transitions, a small number of transitions are added 
manually to ensure compliance of the graph with the choreographic rules of swing. 

The graph constructed in this way encodes a rather rigid constraint on the move- 
ment speed; if the user moves significantly slower or faster than the dancer in the 
motion capture recording session, no transitions will match his or her motion. To 
alleviate that, the motion graph is augmented by adding a few nodes on each edge 
to allow for slower motion and extra edges (from each node to its grandchildren and 
grand-grandchildren in the graph) to allow for faster motion. 

2The contribution to [93] by the thesis author was primarily in this component. 
3The silhouette is extracted by applying a simple color-based foreground/background segment* 

tion model, finding the bounding box of the foreground pixels and resizing it to 60x60 pixels. 



Tracking with motion graph 

The prior distribution (5.1) corresponding to the motion graph is a discrete probability 
mass function, assigning values according to the weights on the out-going edges from 
8@) and putting zero weights on absent edges. Consequently, the posterior is also 
discrete and can be described by listing all the paths o(') . . . , in the graph. For 
computational reasons, it is possible to maintain only paths of certain maximal bufler 
length b (to avoid combinatorial explosion of the number of paths.) Furthermore, 
depending on the application we may afford to maintain a small look-ahead buffer, 
that is, we can defer inferring the pose in frame t until we have seen the frame t + a.* 

Suppose that at the time t + a we maintain nt paths 

The expression for the posterior is 

5.2.2 Two-stage architecture 

In principle, one could attempt to build a similarity classifier which would be invariant 
to the external parameters of the model (location and yaw). However, this makes for 
a very complex problem, since the appearance of the silhouettes depends greatly 
both on yaw and on the pose and, albeit to a much lesser extent, on the location. 
Instead, we will follow a divide-and-conquer approach which breaks the estimation 
into a two-stage process. 

At the first st age, the yaw of an observation is estimated and quantized into one of 
fixed yaw "bins". At the second stage, the pose of the observation is estimated using 
a similarity model that "specializes" on a particular yaw bin.5 Each of these stages 
deals with an input subspace in which severe variations of appearance are largely 
accounted for by the relevant parameters to be recovered. Below we describe the role 
played by similarity detectors in the design of both stages. 

The training data 

As mentioned in the previous chapter, an example-based approach requires a repre- 
sentative database of pose-labeled observations. The human data itself in this case is 

4 ~ h e  resulting dynamic model could in principle be modeled as a hidden Markov model, however 
estimation in this framework is not practical due to the complexity of the state space together with 
the requirements from the application: it has to be real-time and, importantly, have no "jitter" in 
the resulting animation. 

5This architecture rese~nbles the mixture of experts architecture[67], with the yaw classifier acting 
as a gating function. 



representative of the relevant body configurations, but is not inclusive of all possible 
angles and locations in the working space (the latter affects the input significantly 
due to perspective distortion in the cameras). Thus, a database in this case is built 
following the same paradigm as in Section 4.5: by using human motion capture data 
described above to generate a larger set of synthetic examples. 

For each recorded frame of the human data, an artificial set of silhouettes is 
rendered, using a computer graphics package, for every combination of 36 yaw bins 
and five fixed locations. Each yaw bin c is associated with the angle ~ ~ 1 3 6 ,  and 
covers all yaw values c ~ / 3 6  - r/72 <,8 5 mi36 + ~ 1 7 2 ;  the five locations are in the 
center and four corners of the work area. This procedure yields a database of 921,600 
example observations (triple silhouettes). 

These observations are represented in the space similar to the EDH (see Chapter 4) 
but more appropriate for binary silhouette data: the concatenated set of responses 
of box filters. These filters can be visualized, as in Figure 5-1, by boxes placed over 
an image region and divided into black and white segments. The value of a filter 
is computed by subtracting the sum of the pixel values within the black portions 
of the box from the sum of the pixels within the white portions. These filters were 
introduced in [I151 in a similar context, where the set of responses of such filters was 
used as a feature space for ensemble face detectors. It was also shown in [I151 that 
each response can be computed very efficiently using the integral image transform (in 
which the value in each position is the sum of the pixels above and to the left from 
it.) We used three types of such filters, all seen on Figure 5-1: a two-part (vertical 
or horizontal), a three-part (vertical or horizontal), and a four-part "checkerboard". 
Filters of each type are slid, at multiple scales, through the image similarly to the 
mult i-scale EDH. The resulting represent at ion for a 180 x 60 observation contains more 
than 200,000 values. 

Pose-invariant yaw classification 

We treat the problem of estimating the yaw as a regression problem where the range 
of the target function is the discrete set of yaw bin centers m/36. The precision (bin 
width) of ten degrees was chosen by examining its potential effect on the second stage 
of the process-the pose classification. We have observed that, on the one hand, finer 
divisions of the yaw range do not seem to significantly reduce appearance variation 
between images rendered for the same body pose for angles within the same bin, and 
on the other hand, coarser divisions seem to significantly increase such variation. 

Once formulated as a regression with a set precision threshold, this problem natu- 
rally fits the framework outlined in Section 2.2.1. We therefore define a yaw-sensitive 
similarity between two images S,,, to be +1 if the underlying yaws fall in the same 
bin-ignoring the pose and the location! Examples of a similar and of a dissimilar pair 
under SgaW are shown in Figures 5-2 and 5-1. 

Using this definition we form a training set of similar and dissimilar pairs, and 
apply the Boosted SSC algorithm. To make sure the training examples are rep- 
resentative of the poses while keeping them of manageable size, we apply k-means 
clustering [38] to find 50 centers of pose clusters. We then construct each of the 4,000 



Figure 5-1: Some of the projections (filters) learned by Boosted SSC for yaw simi- 
larity. Top row: positive examples. Bottom row: negative examples. A project ion 
corresponding to a box filter is computed by subtracting the sum of pixels under the 
rark regions of the box from the sum of pixels under the white regions. Fkom [93]. 



Figure 5-2: Positive (left pair) and negative (right pair) training examples for yaw 
similarity; pose and location are ignored in determining S,,,. F'rom [93]. 

positive examples by choosing a random bin, selecting two of the cluster centers, and 
selecting a random location (out of five possible) for each. 6,000 negative examples 
are formed by a similar process, pairing cluster centers across bins. Increasing the 
number of training examples beyond 10,000 is impractical (recall that with the fi- 
nite number of projections, as in this case, each iteration of Boosted SSC involves 
examination of the value of each projection on each pair.) 

We have also set up an additional set of labeled pairs (300,000 positive and 
37,000,000 negative), not used in training, to serve as validation set. Testing on 
this set reveals that 10,000 examples may not be sufficient to cover the space a d e  
quately. Therefore, we follow the resampling approach [106]. We maintain a much 
larger set that serve as a "pool" of training examples (800,000 positive and 2,000,000 
negative). Every 40 iterations of boosting, we resample a 10,000-example training set 
of pairs by the following procedure: 

(1) (2) 1. The response yi = C, cumh(xi , xi )of the current ensemble classifier is com- 
puted for each example pair in the pool. 

2. Each example is assigned a weight exp(-liyi). 

3. The weights are normalized to form a distribution. 

4. A new 4,000+6,000-strong training set is sampled according to that distribution; 
the AdaBoost distribution is set to uniform. 



(a) Yaw similarity classifier (b) Pose similarity classifier 

Figure 5-3: Test errors for yaw (top) and pose (bottom) similarity classifiers, as a 
function of the number of features collected by AdaBoost. Fkom [93]. 

Note that the computational cost of this algorithm is quite high, even with this 
relatively small fraction of examples explicitly examined. Fortunately, most of the 
steps in each iteration, including the resampling steps, can be trivially parallelized, 
by dividing the data and the features among processes. Most of the computation is 
done in parallel, and only modest amount of inter-process communication is required 
at each iteration to combine the error estimates, select the winning weak classifier and 
distribute the updated parameters such as a to each process. We have implemented 
such a parallelized version of the algorithm, and ran it on a Beowulf cluster, using 
between 80 and 120 processes. 

Figure 5-3(a) shows the behavior of the error on the validation set as boosting 
proceeds. As can be seen, the error is steadily decreasing until it levels off, and the 
algorithm is stopped after 260 iterations. We thus have obtained a weighted 260-bit 
encoding that corresponds to S,,,. the estimation of the yaw for a new observation 
follows the paradigm presented in Section 2.2.1, using a 20-NN classifier with L1 
distance in the embedding space. Due to the real time speed requirement of the 
application, we use LSH (Section 2.4.2) to perform the search for neighbors. To deal 
with potential failures due to mirror symmetry of the silhouettes, the actual estimate 
during tracking is made more robust by the following procedure: 

1. Instead of taking a simple majority vote, we build a histogram of the labels 
(yaw values) of the 20 NN and smooth is with a low-pass filter. 

2. Two highest peaks in the histogram are located. 

3. We form a set of four candidates from those peaks and their mirror reflection 
(by adding r to each). 
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(b) Yaw similarity classifier 

Figure 5-4: 5-4(a): performance of the yaw estimator on a real video sequence of 
swing dancer. Solid: ground truth from motion capture; dashed: estimate. 5-4(b): 
effect of error in yaw on the resulting pose similarity classifier. The correct yaw in 
this case is zero. F'rom [93]. 

4. Out of these four candidates, we choose the one closest to the estimated yaw in 
the previous frame. 

Figure 5-4(a) shows an example performance of the final yaw estimator on a real 
video recorded simultaneously with the motion capture. For 73% of the frames in 
this sequence, the error in yaw estimate is below 10 degrees - i.e., a correct yaw 
bin assignment under our definition of sensitivity. In 92.5%, the error is below 20 
degrees, and in 98% below 30 degrees. To understand how tolerable are errors of 
different magnitude, we tested the effect of incorrect yaw estimation on the accu- 
racy of the resulting pose similarity classifiers (we describe learning these classifiers 
below). The results for the case of zero degrees yaw, shown in Figure 5-4(b), im- 
ply that errors of up to 30 degrees do not cause significant increase in the error of 
pose similarity classifier. We believe that this is explained by the relatively smooth 
transitions between the appearances of the same pose in neighboring yaw bins. It is 
interesting to consider the difference between false negative and false positive rates: 
the latter is significantly higher, in particular for yaw estimates with large error, since 
the responses of the similarity classifier in that regime become more random, and as 
we have noted in Chapter 3 it is "easier" to misclassify a dissimilar pair by a random 
set of pro jections/thresholds. 

Yaw-specific pose estimation 

For each yaw bin p, we learn a classifier of the pose similarity S'LS, defined according 
to (4.1), with Do being the Lz in the pose parameter space. The learning proce- 



Figure 5-5: Positive (left pair) and negative (right pair) training examples for pose 
similarity for a fixed yaw. From [93]. 

dure closely follows the one described above for the yaw similarity learning, with the 
following differences: 

For positive examples, all the 5,120 poses, rather than 50 cluster centers, are 
used, since the similarity rate for the pose is significantly lower than for yaw, 
and the total number of potential positive pairs is much lower. For negative 
examples, we use clustering in the way described above. 

There are 3,000 positive and 5,000 negative examples in the training set, and 
200,000/10,000,000 examples in the resampling pool. 

Resampling occurs every 80 iterations. 

The number of boosting iterations is 320. 

As can be seen in Figure 5-3(b), the behavior of the error of a typical pose simi- 
larity classifier follows the same trend as for the yaw classifier. However, the absolute 
level of the error is much lower. This reveals that the difficulty of the yaw estimation 
task significantly exceeds that of the pose classifier. We relate that to two factors. 
One is the larger visual diversity among the examples seen by the yaw similarity 
classifier, versus any of the 36 pose similarity classifiers. The other factor is the much 
smaller, in absolute numbers, set of potential positive examples in the case of pose 



estimation; as a result, it is possible to represent those better in the training set pro- 
vided to the learning algorithm, whereas in the case of yaw classifier we must resort 
to clustering as a pre-processing step. 

Once the pose similarity classifiers are learned, we could follow the same approach 
as with yaw estimation, i.e. convert the classifier to an embedding, and build a NN- 
based regression mechanism using the Ll in the embedding space. However, recall 
that under the motion raph model we need, for frame t ,  to consider a finite number of 

?t) examples - the nodes 6, , . . . ,022 in terms of Equation 5.3. The number of currently 
maintained paths nt is typically small due to relatively low branching factor of the 
motion graph. Therefore, we can afford to use the similarity classifier explicitly! 
In other words, we can form nt pairs of observations (x@), x!)) and compute the 

M response6 Ern=, amcm (d t ) ,  x,(t1). 

5.2.3 Performance 

The system described in this section has been successfully tested on a number of real 
video sequences. To obtain a quantitative measure of error, an evaluation was done on 
one such sequence for which motion capture data, recorded simultaneously with the 
video, was available. On that sequence, performance of our system was compared to 
the performance of a system using a commonly used set of features-Hu moments [63]. 
Hu moments are based on seven moment invariants of a binary shape 9the silhouette 
in this case). The purpose of this evaluation was to try to ascertain the effect of 
learning similarity and of using the box filter representation. 

Figure 5-6 shows the histogram of error dzflerences; the superior performance of 
the learned similarity representation over Hu moments is clear. In 86% percent of 
the frames, the error with Hu moments exceeded the error of our system. The effect 
of the learned embedding (or equivalently the learned distance measure) is further 
illustrated in Figure 5-7. The figure shows some typical examples of poses retrieved 
by the nearest neighbor search with respect to the ground truth, the embedding 
distance, and the distance in Hu moment space (the results shown were obtained 
with no temporal information to emphasize the effect of the space/distance on the 
retrieval.) The average per frame Do error of the embedding NN was 44cm, compared 
to 25cm with the "hindsight" NN (finding the best match knowing the correct ground 
truth value) and to 76cm with Hu moments. 

Finally, in addition to measuring the accuracy of pose estimation on a per-frame 
basis, extensive evaluation was done to compare the quality of the resulting animation 
to that obtained with state-of-the-art methods in the field; see [93] for details. 

- -- 

6We found that ignoring the weights a, speeds up the computation, which is then reduced to 
calculating Hamming distance, with no significant effect on the results. 



Figure 5-6: Histogram of differences between the Do error of 1-NN in Hu moments 
and the 1-NN error in the learned similarity embedding; positive values mean smaller 
error for our system. Obtained on one real dance sequences with measured ground 
truth. Rom [93]. 



Figure 5-7: Representative examples of pose retrieval accuracy with various methods. 
Each row corresponds to one frame. Columns, from left to right: Ground truth; best 
match in the database by brute search; best match in the embedding space; best 
match with Hu moments. Numbers: L2 error in the pose space. From [93]. 



5.3 Case 11: General pose tracking with likelihood 
modes 

If the goal of the tracking application is not restricted to a specific domain with con- 
strained and structured motion, continuous models of dynamics are more appropriate. 
The system described in this section implements such a model. It is however unusual 
in that it avoids the problem shared by many state-of-the-art tracking algorithms: 
being led astray by an inaccurate prior. This is achieved by using a weak prior, 
and using similarity search in an embedding space to obtain the peaks of the likeli- 
hood function directly from the observation. Since such search can be implemented 
extremely fast using LSH, the resulting tracking system is also very fast. 

5.3.1 Pose similarity as likelihood sampling 

As mentioned in Section 5.1.3, we adopt the assumption that the examples closest to 
the current observation in the similarity embedding space are, with high probability, 
close to peaks of the likelihood. More precisely, we assume that at least one example 
among those returned by a K-NN search in the embedding space will correspond to 
each high peak in the likelihood. 

Following this assumption, we can think of searching a large database of labeled 
images under a learned pose similarity as a very fast evaluation and sampling of 
approximate likelihood. The examples not returned by the search (i.e., the vast 
majority of the database) are considered to have been pruned away by this procedure, 
which is taken to mean that their likelihood is low. The returned examples are treated 
as candidates for high likelihood. However, since the search is approximate, we do 
not directly use these examples in estimation, but rather use them as starting points 
for local optimization. 

The likelihood optimization in our system uses the Iterative Closest Point (ICP) 
algorithm [15] to find a local optimum of tohe match between a set of points on the 
surface constructed for the articulated model and a corresponding set of points on the 
estimated surface of the observed body (the latter is obtained by applying a standard 
stereo matching algorithm.) 

5.3.2 Tracking with likelihood modes 

The main motivation behind the algorithm described here is to avoid a typical failure 
mode of tracking algorithms that rely on the prior: being led astray and losing track 
due to inaccurate, and overly confident, prior. One reason for using a strong prior is 
that it provides a starting point for an optimization step in which the model is im- 
proved with the objective to increase the likelihood (and thus the posterior), typically 
by means of an iterative gradient ascent algorithm. This strategy often is reasonable, 
however it may fail in cases of occlusion, unusually fast or slow motion, and simply 
when the tracker made significant mistakes in the previous few frames. Applying 
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Figure 5-8: Schematic illustration of the estimation flow in ELMO. The temporal 
prior is obtained by multiplying the posterior from the previous frame by a high- 
bandwidth Gaussian. From (351. 

strong prior model in such cases results in a bad starting point for the gradient de- 
scent, which may have critical effect on the quality of the eventual result [108]. 

The operation of our tracking algorithm (called ELMO: Tracking with Likelihood 
Modes) is schematically shown in Figure 5-8. At every frame, we maintain a para- 
metric estimate of the pose posterior in the previous frame in the form of a mixture 
of Q Gaussians. A temporal prior is obtained from this estimate by multiplying the 
posterior by a high-bandwidth Gaussian window, in accordance with the diffusion 
dynamics model. 

Given the new observation, we compute its embedding into a space H and retrieve 
the poses corresponding to K top matches in H. As mentioned above, our assumption 
is that the poses associated with the retrieved examples have, with high probability, 
high likelihood given the current observation. Each of these K candidate poses is 
then used as a starting point for an ICP search to find the adjacent local maximum 
of the explicit likelihood. Once these modes of the likelihood are found, we multiply 
them by the prior obtained, as mentioned above, by smoothing the posterior from 
the previous frame. The result is the estimate of the posterior in the current frame. 

5.3.3 Implementat ion and performance 

In our system we use the concatenated multi-scale edge direction histogram (EDH) 
as the feature space, as described in the previous chapter. Using a combination of 
color background model with stereo volume information we extract a bounding box 
of the silhouette and normalize it to 200 x 200 pixels. With 3 scales (8, 16 and 32 
pixels) and with location step size of half the scale, the EDH yields N = 13,076 



bins. Applying SSC , and specifying the minimum TP-FP gap of . l ,  we obtained 
&I = 3547 embedding dimensions. 

Having encoded the data (described in Section 4.5) according to the learned em- 
bedding, we constructed LSH with 1 = 50 hash tables with Ic = 18 bit keys. At the 
run time, we retrieve for every frame K = 50 training examples and use their poses 
to initialize the ICP. 

Using six synthetic sequences generated based on human motion capture data, 
obtained from [41], we compared the performance of ELMO to that of two alternative 
algorithms: the state-of-the-art Condensation particle filtering approach [36], with 
1,000 particles, and the ICP differential tracker 1341. We also measured the per- 
frame error resulting from retrieving the NN under the SSC embedding directly. The 
sequences are rendered with significant perspective distortion, relatively wide range 
of motions, much self-occlusion and are therefore challenging for a tracking algorithm. 

The summary of the results of this comparison appears in Figure 5-9. As can 
be seen, the average error with ELMO is the lowest. Figure 5-10 shows the per- 
frame account for segments from two of the synthetic sequences. The error with 
ELMO is the lowest in most of the frames. The performance of Condensation was 
the worst among the tracking algorithms (and only better than the per-frame static 
estimation with SSC that ignores dynamics). It is possible that with additional 
particles Condensation would improve its performance. However, with 1,000 particles 
it is already two orders of magnitude slower than the other methods. 

It is also interesting to note that although the average performance of the single- 
frame pose estimation with SSC is inferior to that of proper tracking algorithms, it 
fares relatively well, with the error being less than a standard deviation above the 
average errors of Condensation and ICP trackers. Looking at the sequence data we 
can see that in fact there are segments in which it does better than those algorithms. 
This provides some insight into the success of ELMO: relying on the robust single- 
frame estimator allows it to recover from some severe errors, since at most after a 
few frames the matches found with LSH in the embedding space become again close 
to the likelihood peaks. This is also related to an additional advantage not explicit 
in these figures: ELMO does not need manual initialization, instead using the NN 
search from the very first frame. 

In addition to the tests with synthetic data, where exact error evaluation is pos- 
sible, we evaluated the performance of ELMO on a number of real video sequences. 
Figures 5-11 and 5-12 show a few frames from two of such sequences. Notably, the 
frame rate in these sequences was only four frames per second, creating significant 
inter-frame pose differences. With tracking algorithms strongly depending on the 
prior, this would normally pose much difficulty. However, ELMOdeals with this 
gracefully. 

5.4 Discussion 

In both of the tracking systems described in this chapter, an example-based pose 
estimation algorithm is a crucial component. In the swing dance animation system it 



Figure 5-9: Average and standard deviation of the ground truth error obtained using 
Condensation, SSC (PSH, in terms of [35]), ICP, and ELMO on six sequences of 
1000 images each. ELMO outperforms the Condensation, ICP and SSC algorithms. 
The average error per joint for ELMO is less than 5 cm. From [35]. 

allows for efficient evaluation of multiple hypotheses. In ELMO, it provides a means 
of automatic initialization and re-initialization, and in combination with the weak 
temporal model for the prior makes the tracker qualitatively less vulnerable to losing 
track. 

Two key properties of our similarity learning approach that make it possible are 
the classifierlembedding duality, that enables us to reduce the problem of evaluating 
a large hypothesis space to the problem of search in a database for neighbors under 
the Ll distance, and the setup for learning the similarity specific to the task at hand. 
The latter, as exemplified in the swing animation system described in this chapter, 
allows us to break down complex estimation problems into much simpler ones, leading 
to a winning divide-and-conquer architecture. 



Figure 5-10: Tracking results on two of the six test sequencss (for better clarity, only 
segments of the sequences are shown). The graphs report the ground truth error (vs. 
frame number) corresponding to Condensation, SSC, ICP and ELMO. (a) Fighting 
sequence, (b) Karate sequence. The error corresponding to the ELMO algorithm is 
almost always the smallest. From [35]. 



Figure 5-1 1: Tracking results extracted from the dance sequence. From [35]. 

- - I _ -  L 
Figure 5- 12: Tracking results extracted from the whuhite board sequence. Rom [35]. 



Chapter 6 

Learning Image Patch Similarity 

The ability to compare image regions (patches) has been the basis of many approaches 
to core computer vision problems, including object, texture and scene categorization. 
Developing representations for image patches has also been in the focus of much work. 
However, the question of appropriate similarity measure between patches has largely 
remained unattended. 

In this chapter we focus on a specific case study: learning similarity of natural 
image patches under arbitrary rotation and minor shift. Figure 6-1 shows a few 
examples of groups of patches that are similar to each other. Such a definition may 
not be broad enough, that is, some patches that do not fit this description still may 
be considered similar in the context of a given task. For instance, if the goal is 
to categorize an object, rather than recognize a specific instance, patches that look 
visually dissimilar at this low lever may still correspond to semantically matching 
parts.' However, we believe that for many reasonable tasks that involve matching 
patches, the underlying definition of similarity must include this limited case. 

Rat her than developing a new represent at ion that is invariant to the transfor- 
mation in question, we will consider two popular representations of patches: sparse 
overcomplete code and scale-invariant feature transform (SIFT). Specifically, we will 
investigate how the tools developed in this thesis can be used to improve matching 
with these represent at ions. 

Section 6.1 provides some background on algorithms that use patch matching, and 
reviews approaches to measuring patch similarity. We define the target similarity con- 
cept in Section 6.2, and the patch descriptors used in the experiments are introduced 
in Section 6.3. We then describe, in Section 6.4.2 an experimental evaluation that 
demonstrates an improvement in matching with both of the descriptor types by using 
a similarity-driven embedding learned with BOOSTPRO. 

' ~ o t e  that the framework presented in this chapter can be extended to learn such a similarity as 
well, as long as examples are provided. 



6.1 Background 

The main context in which comparing image patches has emerged in computer vision 
is that of high-level vision tasks, that can be described as scene understanding. This 
includes: 

Object recognition This means finding a specific object: a face of a certain person, 
a shoe of a particular make, a magazine etc. 

Object categorization and object class detection Rat her than looking for a spe- 
cific instance of an object, the interest here is in all objects that belong to a 
certain class, for an appropriate definition of the latter: any face, any car, etc. 

Entire image classification Sometimes the goal is not to localize, or determine 
the presence of, an object but rather to assign the entire image to a certain 
class. For instance, location recognition and texture classification belong to 
this category of tasks. 

Broadly speaking, approaches to these tasks can be divided into three groups with 
regards to how they represent image information. The first group consists of methods 
that rely on global features. This may include methods that collect a histogram of 
measurements over an entire image [82, 1011, or shape matching techniques that 
directly model an entire shape in a parametric form [104, 741. 

The second group consists of methods that operate on local image features, but 
do not directly operate on image patches. This includes methods that compute his- 
tograms of measurements over a limited region, be it measurements of shape 111, 551 
or filter responses [115, 1011. 

Finally, the third group, of most relevance here, directly operates on image patches. 
Most of the methods in this group involve, in addition to matching the patches, a 
geometrical reasoning component. This component may involve a full model of joint 
location of parts as in constellation models [46, 711, or a more loose set of constraints 
like in random field models [91], or fragment-based approaches [3, 91. Some methods 
that have been proposed avoid modeling geometry altogether [107]. 

It should be emphasized that in addition to recognition and classification, other 
tasks may benefit from patch matching paradigm. Notable examples are fragments- 
based segment at ion [17] and wide-baseline stereo reconstruction [8 11. 

6.1.1 Patch similarity measures 

The question of measuring similarity between patches has not received very much 
attention in the computer vision literature. Usually, a standard distance measure is 
adopted for whatever representation is used. 



Pixel-based distance 

The simplest similarity measure consists of directly comparing the pixel values of the 
two regions, e.g. by means of the L1 distance 

This is rarely a useful measure, since it is extremely sensitive to minor transforma- 
tions, both in geometry (shifts and rotations) and in imaging conditions (lighting or 
noise). 

Correlation 

Normalized correlation between patches xl and xz is defined as 

where and a are the mean and standard deviation of pixels in xi. Because of 
the factoring in of the means it is much more robust than the pixel-wise distance. 
Normalized correlation has been used extensively in fragment-based recognition [3, 91, 
where it is assumed that viewing conditions are fixed, or alternatively that there 
exist examples from all viewing conditions-in other words, not matching a patch to 
a version of itself rotated by 90 degrees is acceptable. We would like to avoid such an 
assumption. 

Descriptor distance 

Another popular method is to compute a descriptor of each patch, and then simply 
apply a distance measure on the two descriptors. Most commonly the descriptors 
are vectors in a metric space of fixed dimensions and the distance of choice is L1. 
Matching with SIFT descriptors, discussed in detail in Section 6.3.2 is perhaps the 
most popular example of such an approach [76]. Another popular descriptor is the 
shape context [ll], often used when shape is believed to be the crucial component of 
the recognition system. Shape contexts are based on the local histogram of contour 
points in the vicinity of the selected location. The distance of choice for shape contexts 
is typically x2. 

Probabilistic matching 

A different approach is taken by some of the methods that instead of measuring 
distance between representations patches, evaluate directly the probability that the 
two patches belong to the same class. This is usually limited to models in which a 
fixed number of patch classes, called parts, are combined in some framework. A well 
known example of this kind is the family of constellation models [19, 461. 



Figure 6-1: Examples of similar patches from whitened images. Each column contains 
rotated and shifted versions of the same original patch, so that by definition patches 
in each column are similar. 

6.1.2 Interest operators 

An important aspect of any patch-based technique is the method for selecting the 
patches that are subsequently evaluated for similarity-both in the test image and 
in labeled training images. This issue is often coupled with that of descriptors and 
similarity, since the invariance in the descriptor is induced by providing it with an 
estimate of the transformation of the patch with respect to some canonical reference 
frame, for instance, the angle necessary to align the main axis of a region with the 
vertical axis, or the size of a region. 

There is a large number of interest operators, and extensive evaluation has been 
undertaken in a number of cases [102, 77, 71, 841. On the other hand, the role of these 
operators (and the role of the keypoint concept, in general) in object recognition is still 
somewhat controversial: recent results in [9, 14, 801 show that excellent performance 
can be achieved without using keypoints or interest operators at all. In general, we 
would like to remain agnostic on this issue, and focus on the analysis of descriptors and 
their role in similarity matching. When necessary (namely, with SIFT descriptors) we 
will assume that an appropriate detector has been applied, and therefore will make 
available the basic information that would normally be provided by such a detector 
(location and scale of the patch). 

6.2 Defining and labeling visual similarity 

For the purposes of the study in this chapter, we consider two patches to be similar 
if they could be obtained by taking an image and then rotating (and/or shifting by 
a small amount) the imaging device and taking an image again-and extracting the 
patches from the same image location. Equivalently, the two patches are similar if 
there exists a transformation, consisting of a shift by between zero to two pixels, 
followed by an arbitrary in-plane rotation, that makes the two patches be identical, 



up to pixel-level aliasing and possible boundary effects due to shift.2 
In terms of image representation, this definition of similarity resembles the low- 

level invariance believed to exist in the lateral geniculate nucleus (LGN) and higher 
areas in the primate visual cortex [39, 641. It also matches an intuitive notion of 
visual similarity that is related to semantics of the visual world: two patches are 
similar if they correspond to the same element of a physical scene. This leads to 
the idea underlying the slow- feature analyszs technique for unsupervised learning of 
spatio-temporal coding, and in particular invariance to transformations, in the visual 
cortex [116]. In SFA, a stimulus to the learning algorithm is constructed by simulating 
a "natural movie7'-a sequence of inputs obtained by moving a receptive field slowly 
(i.e., by applying only mild transformations to obtain the next frame) in the image. 
The objective of the algorithm is, in effect, to learn features that are efficient in 
encoding such sequences. 

We take this idea and apply it to the task of labeling similar image patches. For 
a given image patch in a natural image, any number of patches similar to it may be 
transforming the receptive field according to the desired similarity. So, if we want to 
ignore the rotation, images obtained by rotating the receptive field at a fixed location 
can serve as examples of similar pairs. If shifts by up to a certain number of pixels 
are to be ignored, any two shifts within those bounds will produce image similar to 
each other, etc. 

Figure 6-1 shows a few examples of sets of similar patches generated by the pro- 
cedure outlined above. Patches in each column are versions of one patch (top row), 
rotated by a random angle or shifted in random direction by 2 pixels. 

This notion of similarity adheres to the definition of equivalence given in Chap- 
ter 1. Also, as mentioned in Chapter 2, this notion of equivalence does not translate 
to a transitive equivalence relation in the patch space: taking a shifted patch and 
shifting it again will, again, create a similar pair, but the third patch may no longer 
be similar to the first one. 

6.3 Patch descriptors 

We will be focusing on two descriptors that have very different properties and were 
designed under very different objectives. The first one, the coefficients of a sparse 
overcomplete code, corresponds to a generative model of the patch, and is by design 
not invariant to transformations. The second, SIFT, is a constructed with a discrim- 
inative task in mind, specifically to be invariant under shift and rotation (when used 
in conjunction with an interest operator). 

2Note that we work with patches shape like a disk (up to the pixelation aliasing artifacts) rather 
than a more common rectangle. This is to diminish the artifacts introduced in the corners by rotating 
a rectangular patch. 



Figure 6-2: Descriptors for the patches in the third column from left in Figure 6-1. 
Left: SIFT descriptors. Right: coefficients of a sparse overcomplete code. 



6.3.1 Sparse overcomplete code 

A large body of work has been focused on construction of codes for natural images 
that would posses the key properties of the V1 cell populations, namely orientation 
selective and localized receptive fields. It has been shown in a number of studies [89, 
641 that these properties emerge as a result of a learning procedure whose objective is 
to maximize the fidelity of reconstruction along with maximum sparseness of response. 
The latter is believed to be an important principle of sensory coding in the brain, 
related to the st at istical properties of natural visual scenes[47]. 

Specifically, a sparse overcomplete code defines a generative model of the patch 
as a linear combination of C basis functions, that are themselves patches of the same 
dimension: 

C 

The general objective of constructing this code is, naturally, to reduce the reconstruc- 
tion error, which is measured by the energy in the residual. Under that objective 
alone, if we fix the basis functions, the optimal decomposition of a patch x, in terms 
of the coefficients a = [al, . . . , aclT could be found as 

a* = argmin llx - @all. 
a 

However, two key properties of the codes we are discussing here are overcompleteness 
and sparseness. The former means that the number C of basis function is higher than 
the dimension of x.  The latter means that a majority of coefficient have very low 
absolute value for any given patch. As a consequence of overcompleteness, (6.2) will 
generally not have a unique solution. This is where the sparseness property becomes 
important: the optimization criterion is augmented by a penalty term, that drives 
the coefficients to zero. This can be written [89] as 

a* = argmin llx - @all + AX S(a,), 
a c= 1 

where S(ac) is an appropriate cost function that, penalizes values away from zero. The 
specific form of this function is a matter of design; it should be noted that a choice of 
S corresponds to imposing a statistical model on the distribution of the coefficients 
(prior). For instance, the cost function 

S(a) = log (1 + a2) 

used in our experiments (following [89]) can be shown to correspond to the Cauchy 
prior. 

It is important to distinguish this coding scheme from coding with non-overcomplete 
representations. The main difference is that there is no closed-form solution to the 
optimization, and it has to approached with an iterative optimization algorithm per- 



forming gradient descent on the cost function. The algorithm, suggested in [89], starts 
with a random basis; a number of random patches are extracted from the training 
images, and the optimal coefficients with respect to the current basis are computed 
by means of gradient descent on (6.3). Given these coefficients, the basis functions 
are updated, with the objective to decrease the residual. The update rule is 

where q is the learning rate. The process is repeated iteratively, until no further 
significant changes in @ are recorded. 

Such codes have been successful in low-level vision tasks, such as image de- 
noising [98]. Some properties of this representations make it potentially appealing 
for recognition purposes: Sparseness makes the code likely to provide good discrim- 
inative power [8, 92, 31, and high reconstruction fidelity means that they encoding 
will likely retain relevant information from the original image patch. A key question 
though is how to compare two patches encoded in this fashion. 

The right column in Figure 6-2 shows the coefficient vectors for four similar patches 
(that appear in the third column from the left in Figure 6-1.) One immediate obser- 
vation from the figure is that there is a significant variation in the codes; this suggests 
that the naive use of Ll between the coefficient vectors a may not be a good choice 
of similarity measure between patches. 

The instability of the sparse overcomplete code is in fact a direct consequence of 
its key properties. Consider a particular patch, for which optimizing the coefficients 
in (6.2) makes a coefficient a, to have a high absolute value. If the same patch is 
shifted by one pixel, the basis function 4, will probably still account for some of the 
patch appearance reasonably well. However, there likely (due to the overcompleteness 
of the code) will be another basis function $j which will account for the shifted patch 
even better. Furthermore, the sparseness constraint will encourage the absolute values 
of both a, and a, to decrease. As a result, it will be more optimal from the perspective 
of reducing the cost function value to "keep" 4j and suppress 4, for the shifted patch. 
This explains the typical pattern in which even a small variation in the patch may 
cause significant changes in the code, and the resulting effect on similarity between 
transformed patches. 

6.3.2 SIFT 

The SIFT descriptor [77] is based on a histogram of oriented gradients within the 
region it describes. It is computed for a known location, scale and orientation in 
the image (provided by an interest operator). The descriptor is computed in the 
following way (the parameters given here are the ones used in our experiments, and 
can be varied when implementing the algorithm): 

The calculations are based on the appropriate level in the Difference-of-Gaussian 
pyramid, rather than on the original image. This induces scale-invariance. 

r, The orientation and magnitude of the intensity gradient are computed on a 



Figure 6-3: Examples of whitened images (four out of 100) used to train and test 
patch similarity measures. 

fixed 16 x 16 grid in the vicinity of the target location. The values are weighed 
by a high-bandwidth Gaussian window centered at the location. 

A smoothed histogram of gradient orientations is computed for each subregion of 
4 x 4 grid locations. With 8 bins in the histogram, this yields a qs--+f:~ional 
descriptor. 4 

Note that the and translation with this descriptor are 
subject to an operator. The main source of the 

on histograms and on gradients. 
intensity and to minor shifts. A 

detailed analysis of its stability is in [77]; the experiments presented below can 
be seen as an additional these properties of SIFT. 

Experiments 

In our experiments we used a collectidkcof 100 natural images taken from the Hernera 
database [59]. These images contaih natural and man-made scenes, indoors and 
out doors. , . I 



6.4.1 Collecting descriptors 

Sparse overcomplete code coefficients 

We used a code learned on a set of 250 natural images, not used in the descriptor 
evaluation. The images were whitened as described in [89], to flatten the power 
spectrum; this whitening appears to be critical to ensure proper convergence of the 
code learning algorithm. Figure 6-3 shows a few examples of the training images. 
The learned code consists of 1,100 basis function, for a disk-like patch of diameter 27 
pixels. The total number of pixels in a patch is 529, so that the code is more than 
twice overcomplete. Figure 6-4 shows a representative sample of the basis function 
in the code. Most of the emerging basis functions correspond to localized oriented 
 filter^,^ a typical result consistent with numerous reports in the literature. 

The set of patches used in the experiments was generated by the following pro- 
cedure. For each image, we selected 100 locations, subject to a minimal variance 
criterion: the intensity variance within a patch centered at a selected location should 
be at least equal to the variance within the image. For each location (r, c) we: 

Draw four random angles between 0 and 360") and for each angle extract a 
patch centered at (r, c) and rotate it by each of the angles; this produces four 
patches. 

Extract (with no rotation) patches centered at (c - 2, r - 2), (c - 2, r + 2)) 
(c + 2, r - 2) and (c + 2, r + 2). This produces another four patches. 

This results in a total of 80,000 patches: 100 imagesxlO0 locationsx8 similar 
patches associated with each location. For each patch we calculate the coefficients of 
the sparse code by applying the optimization in (6.3). The right column in Figure 6-2 
shows four examples of the resulting 1,100-dimensional descriptors for a set of similar 
patches in Figure 6-1. 

SIFT descriptors 

To collect SIFT descriptors for the same patches represented by the sparse codes, 
we use the original (unwhitened) images. For each of the 80,000 collected patches, 
we define a keypoint at the location of that patch and with the scale corresponding 
to the diameter of the patch. We do not, however, "disclose" the rotation, and the 
descriptor is computed assuming the rot at ion is zero degrees. 

The 128-dimensional descriptors were computed using the code from the Visual 
Geometry Group at Oxford.* The left column in Figure 6-2 shows the SIFT descrip- 
tors for the same patches as the codes on the right. 

3 ~ o t e  that in general, since there is no closed-form solution for a, it is not possible to infer the 
filter corresponding to a basis function 4 directly from 4, but rather one needs to estimate it on a 
sample of natural stimuli. 

4http : //www . robots. ox. ac . uk/~vgg/sof  tware/ 



Figure 6-4: Example basis function for the sparse overcomplete code used in the 
experiments. 225 out of 1100 basis functions are shown. Patch size is 529 pixels (an 
approximate disk with diameter 27). 

6.4.2 Embedding the descriptors for similarity 

Under the similarity notion defined above, we can construct 280,000 similar and more 
than 3 x 10' dissimilar pairs out of the 80,000 patches. We randomly selected 6,000 
similar and 10,000 dissimilar pairs for training, and five times as many distinct pairs 
for testing. All the results shown in this section were computed on the testing pairs.5 

The embeddings for both SIFT and sparse codes were learned by running BOOST- 
PRO on the training pairs, using linear ten-term projections (linear combinations of 
10  dimension^.)^ Since the space of the combinations is very large, we initialized the 

5 ~ h e  baseline similarity measures which do not involve any learning have, of course, identical 
performance on the training and testing data. 

6 ~ e  experimented with smaller numbers of terms, however the results, measured on an indepen- 
dent validation set, were significantly worse. We believe this is due to the fact that with a random 
pair of dimensions, if they are "useless", not much can be done by the gradient ascent, whereas 
with ten dimensions, there is higher likelihood that at  least some are useful, and the projection 
coefficients are updated accordingly. 



' Similarity Pixels L1 on a L1 on H(a) SIFT H(S1FT) 
AUC 0.6049 0.5651 0.6847 0.8794 0.9633 

Table 6.1: Area under ROC for similarity measures compared in our evaluation. 
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Figure 6-5: ROC curves with sparse overcomplete codes. Dotted: L1 distance on 
pixels. Dashed: L1 distance on code coefficients. Solid: L1 in BOOSTPRO embedding. 

gradient descent from 100 random projections in every iteration of boosting, and se- 
lected the best among the finishing points of the 100 gradient ascent chains. In both 
cases, the boosting was run for 100 iterations, thus producing one hundred embedding 
dimensions-a dimensionality reduction for both descriptors, particularly significant 
for the sparse codes! However, one should keep in mind that this is not a new r e p  
resent ation of reduced dimension that retains all useful properties of the original 
one; the purpose of the embedding is explicitly to facilitate similarity detection, and, 
for instance, the generative power of the sparse code is lost in the 100-dimensional 
embedding. 

We are interested in the accuracy of matching similar patches. Since the match is 
decided by t hresholding a numerical value , namely, the distance either in the original 
descriptor space or in the embedding space, we can use the ROC curves to compare 
the models of similarity. These are shown in Figures 6-5 and 6-6, and the areas under 
the curves are given in Table 6.1. 

A comparison between the baseline ROC curves (dashed lines in Figures 6-5 and 6- 
6, and the area under the curves given in Table 6.1, confirm the intuition that the 



-- SIFT 

Figure 6-6: ROC curves with SIFT descriptors. Dashed: L1 on SIFT descriptors. 
Solid: L1 in BOOSTPRO embedding. I 

sparse code coefficients in their "raw" form are not effective for matching patches. 
The performance of both pixel-based match and the L1 distance on the sparse code 
coefficients is essentially not much better than random. 

The ROC of the distances in the similarity embedding, on the other hand, are 
clearly superior to those of the distances in the original descriptor space, both for 
SIFT and for the sparse codes. For SIFT, the embedding yields an improvement in 
the area under curve to more than 0.96, with the equal error rate of 0.8930 (i.e., the 
probability of detecting a correct match of 89.3% corresponds to probability 10.7% of 
false match). By comparing the patch paitrs misclassified by the two measures we can 
see that most of the gain is achieved in learning the rotation correspondences between 
the gradient histogram bins, and as a result the error rate on patches similar up to 
rotation is decreased with the embedding similarity. As for the shifts, the descriptor 
is already quite robust to matching shifted patches. These findings are in agreement 
with the analysis of SIFT performance in [77]. 

We also have analyzed the embedding of the sparse code coefficients. Figure 6-7 
shows, in each row, the basis patches which form the projection, with the coefficients 
written under the corresponding patches. The three rows correspond to the first three 
projections. Note that due to the non-convex nature of the optimization surface in 
BOOSTPRO, these are not necessarily, or even lik1y, the most efficient projections, 
but rather simply the projections that happened to be picked up first. This is also 
reflected in the magnitude of the a, values (the height of spikes in Figure 6-8). Often 
in application of AdaBoost these values decrease steadily, however this is not the case 



Figure 6-7: The first three projections in the embedding of sparse code coefficients 
learned with BOOSTPRO. The number under each basis patch is the coefficient in 
the projection. Thresholds, selected for each projection by applying Algorithm 4, are 
6.85, .16 and 0.003, respectively. The letters are used to identify the columns. 

here. 
We will discuss in some detail the top row of the figure, showing the first pro- 

jection; letters on top help identify the basis functions. Recall from Chapter 3 the 
general interpretation of the projections: two patches must fall on the same side 
of the threshold in order for the projection to contribute to the matching score (or, 
equivalently, for the projection not to contribute to the distance value in H.) Perhaps 
the best way to describe the effect of the individual components of the projection is 
to say that if for the two patches the coefficients for the basis function d have high 
value, and the coefficients for the function e have low value (i.e., large absolute value 
and negative sign), it increases their chances to be considered similar by the weak 
classifier associated with this projection. Note that the low frequency basis function 
g has a coefficient much higher than others, so that this particular projection largely 
looks at the spatial frequency of the features within the patch, so, for instance, two 
relatively "flat" patches will be likely considered similar by this projection. 

Generally, the magnitude of the coefficients in the projection determines the im- 
portance of the corresponding basis function (within that projection). The signs 
are only meaningful relative to the signs of the other projection components. For 
instance, the sign of the function d is not important by itself: its contribution to 
similarity judgment on two patches that both have ad  = 3 will be the same as for 
two patches with a d  = -3 (in both cases it will "move" both patches in the same 
direction relative to the threshold.) However, in combination with other basis func- 
tions and their signs in the projection in the same projection the sign does play a 
role: if two basis functions are likely to correspond to similar patches their sign will 
likely match. For instance, a patch with a f  = 1 and a patch with ah = 1 will have a 
positive contribution from the corresponding projection coordinates (i.e. they will be 
"moved" towards the same side of the threshold); this probably is explained by the 
possibility of a shift that move a vertical edge on the right side of the patch in the 
right-left direction. 



Finally, Figure 6-8 shows the embeddings themselves, for the same example patches 
as the descriptors in Figure 6-2. This figure provides a visual illustration of the im- 
proved correspondences between the representations of similar patches (much more 
noticeable with SIFT.) 

6.5 Discussion 

The main conclusion from the experiments presented here is that it is beneficial to 
learn a similarity model, rather than to rely on properties of a descriptor and use 
the metric as a proxy for such similarity. This is the case both when the descriptor 
in question is not designed to be invariant to transformations, as is the case with 
the sparse overcomplete codes, and when it is specifically designed with such invari- 
ance in mind, which is the case with SIFT. For both descriptors, it pays off to learn 
a similarity model, as far as the matching quality measured by ROC is concerned. 
Our experiments also suggest that for matching similar image patches under rota- 
tions and minor shifts, the best method among the ones investigated is to use the 
SIFT descriptor of the region, embedded into a similarity-reflecting space by applying 
BOOSTPRO. 

Another important conclusion is that the sparse overcomplete codes for image 
patches can be potentially used in a matching-based framework, if a proper similarity 
measure (or equivalently a proper embedding of the code) is used, rather than the 
naively applied L1 distance. While the improvement is still not enough to place this 
descriptor in the same "league" with SIFT, we believe that certain characteristics 
make it appealing and warrant further looking into its use in recognition. First, it 
is based on a generative model of natural images, and thus can exlain the patch in 
terms of the fundamental visual elements comprising it. Second, the performance 
achieved here did not require any information from an interest operator, of the kind 
necessary to apply SIFT. This may be an appealing property for approaches that do 
not use the keypoint paradigm. 

An aspect of our approach to modeling visual similarity of patches that distin- 
guishes it from other approaches, is that we do not impose an invariant representation 
directly. Instead we learn a represent at ion that makes similarity under the transfor- 
mations explicit, thus causing the matching to become invariant. Another key aspect 
is that similarity is learned, not hand-crafted into the model. This is promising from 
the perspective of class-specific or object-specific matching, when similarity is defined 
in different ways for different classes, or when the type of patches to be compared is 
restricted. Of course, this promise has to be evaluated in further experiments, which 
are in the focus of our ongoing work. 

The implications of this study on "downstream" applications to recognition and 
classification also remain to be seen. Our goal here has been to separate the patch 
similarity measure from the context in which is is used by an overall recognition strat- 
egy, under the assumption that any strategy would benefit from a better matching 
component. Further experiments are needed to quantify the effect of the improve- 
ment in matching on the accuracy in the final task of a system. Experiments in 



this direction should extend the notion of similarity (or, equivalently, invariance) to 
affine transformations not included in our experiments above, namely, out-of-plane 
rotations. However, we expect that the effect of learning the embedding will be main- 
tained in this extended framework. Another issue that may require special care is 
the selection of informative patches. An almost "flat" patch may be, under most 
reasonable definitions of visual similarity, similar to any other flat patch however es- 
tablishing such a match may not be informative from a classification or recognition 
perspective. More generally, some patches are more useful than others for a particular 
object class. This leads to the idea of class-specific visual similarity between patches. 
We have not yet developed an approach that would achieve this but some ideas are 
discussed briefly in the next chapter. 



Figure 6-8: Embeddings of the codes shown in Figure 6-2. Left: BOOSTPRO on SIFT. 
Right: BOOSTPRO on sparse code coefficients. 





Chapter 7 

Conclusions 

In this concluding chapter we summarize the contributions of this thesis and the 
possible impact as we see it, and discuss the important directions of future work. 

Summary of thesis contributions 

The central problem addressed in this thesis is the problem of modeling a boolean 
similarity concept, which is conveyed only be means of examples of what constitutes 
similar and dissimilar pairs under that concept. Before we summarize the specific 
technical contributions in the remainder of this section, below are the main conclu- 
sions we see emerging from our work. 

a It is usually beneficial to learn a model for the similarity relevant to the task, be 
it regression, classification or retrieval. It rarely hurts, and usually improves the 
performance of the end goal application. Of course, the precise gain of learn- 
ing similarity for any given application can be assessed by standard validation 
techniques. 

a Such learning can be successfully done directly from examples of similarity judg- 
ment specific for the task, with minimal assumptions regarding the properties of 
the underlying similarity concept. In many cases, for instance when the task in- 
volves regression, the learning procedure including labeling similarity examples 
can be completed fully automatically. 

In some problems, such as pose estimation, example-based methods have been 
generally overlooked since it is commonly assumed they are computationally 
infeasible. It does not have to be the case; with suitable embedding technique 
it may be possible to provide a way of extremely efficient example-based estima- 
tion in complex, high-dimensional problems. Our approach, to our knowledge, 
is the first to combine the power of learning task-specific similarity with the 
general embedding framework that allows this. 



7.1.1 Learning algorithms 

The basis of our approach is to construct an embedding 

such that low distance between H ( x )  and H(y) corresponds, with high probability, 
to positive label assigned by the similarity S(x, y). The main advantage of this 
approach, and what distinguishes it from the alternatives known to us, is that it 
achieves two important goals: 

It provides us with a set of similarity classifiers on pairs of examples. This set is 
parametrized by the value of the threshold on distance in the embedding space 
H. 

It reduces the problem of similarity search to the problem of search for neighbors 
with respect to the L1 distance. As a result, we are able to leverage stateof- 
the-art search algorithms like LSH, that have sublinear running time. 

In Chapter 3 we have presented a family of learning algorithms that construct an 
embedding of the form described above: 

Similarity Sensitive Coding (SSC) The algorithm1 takes pairs labeled by similar- 
ity, and produces a binary embedding space H, typically of very high dimension. 
The embedding is learned by independently collecting thresholded projections 
of the data. This algorithm improves the performance of examplebased meth- 
ods on some data sets, and has been used however its utility is largely limited 
to cases when the underlying similarity is close to L1 distance, with some mod- 
ifications. This algorithm has been successful in articulated pose estimation 
domain, as described in Chapters 4 and 5. 

Boosted SSC This algorithm2 addresses the redundancy in SSCby collecting the 
embedding dimensions greedily, rat her than independently. It also introduces 
weighting on the dimensions of H. We have applied this algorithm to the 
tasks of pose and orientation estimation for an articulated tracking application, 
described in Chapter 5. 

BoostPro This algorithm is a generalization of Boosted SSCin that the dimensions 
of the embedding are no longer limited to axis-parallel stumps. We have intro- 
duced a continuous approximation for the thresholded projection paradigm in 
which a gradient ascent optimization becomes possible. This algorithm further 
improves the performance of example-based methods on standard benchmark 
data. We also show its performance on articulated pose estimation, in chapter 4. 
Finally, we have used this algorithm to learn visual similarity of image patches, 
and have shown significant improvement over standard similarity measures used 
with two patch descriptors. 

'published in [105]; joint work with P. Viola. 
2~ublished in [93]; joint work with L. Ren, J. Hodgins, H. Pfister and P. Viola. 
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Semi-supervised learning For each of these three algorithms we have presented a 
semi-supervised version which only requires pairs similar under S, in addition 
to a set of unlabeled individual examples in X. 

7.1.2 Example-based pose estimation 

In chapters 4 and 5 we have introduced a new approach to pose estimation from sin- 
gle image. Contrary to previously proposed approaches, it does not use a parametric 
model that is to be fitted to the image. Instead, it uses the learned similarity embed- 
ding to search a large database of images with known underlying poses. As a result, 
the notoriously difficult problem of fitting the articulated pose model is reduced to 
two much simpler, and much faster, steps: search in a database for (approximately) 
nearest neighbors, and fitting a local low-order model t o  the retrieved neighbors. To 
our knowledge this approach achieves state-of-the-art performance while requiring 
significantly less time per image than alternative approaches. 

7.1.3 Articulated tracking 

The main impact of our approach on articulate tracking is in providing a way of 
automatic initialization of the tracker and, effectively, subsequent re-initialization 
in every frame. In Chapter 5 we have described two tracking systems that take 
advantage of this ability. Both systems have been demonstrated to be superior, in 
terms of combined speed, accuracy and robustness, to state-of-the-art alternatives. 

7.1.4 . Patch similarity 

In Chapter 6 we have described another application of the similarity learning frame- 
work: learning visual similarity of natural image patches under rotation and small 
translation. For two patch descriptors (the sparse overcomplete code coefficients and 
the very popular SIFT descriptor) we have shown that by learning an embedding 
of the descriptor with BOOSTPRO and using the distance in the embedding space, 
we can significantly improve the matching accuracy. The main contributions of this 
study are: 

This is the first attempt, to our knowledge, to improve the matching accuracy 
of standard (and widely used) descriptors by learning a similarity model specific 
to the invariant properties the matching is intended to capture. 

The fact that the learned similarity is measured by the L1 distance in the 
embedding space is very significant from the computational point of view, since 
in a large-scale recognition system we may need to probe databases with millions 
of patches for similarity to the input set of patches. Our framework allows us 
to apply algorithms like LSH, and perform this search in sublinear time. 



7.2 Direction for future work 

Theoretical investigation An open theoretical quest ion that arises from the work 
presented here pertains to the class of similarity concepts that can be attained by the 
embedding algorithms presented in Chapter 3. By departing from the framework 
of LSH to similarity-sensitive framework introduced in Section 2.4.2, we extend the 
class of similarities from L1 to a more general family. It would be interesting to 
characterize the properties of this family, and the connections between the geometry 
of a similarity concept in Af2 and the extent to which an embedding learned by our 
algorithms can represent that concept. 

Evaluation We believe that a number of interesting additional experiments would 
be useful to better understand the differences between algorithms and the conditions 
under which each algorithm is best applicable. Such experiments include an eval- 
uation of boosted SSC on more tasks, in addition to the pose estimation task in 
Chapter 5, to better understand its capacity and limitations and an investigation 
into better ways of setting the bound G on the TP-FP gap in SSC. In addition, 
we are investigating improved strategies of selecting the projection terms (i.e. the 
dimensions used in a projection) in BOOSTPRO, especially for high-dimensional r e p  
resent at ion where even approximating the exhaustive search of the space of fixed-size 
term combinations is impractical. 

Another aspect of empirical evaluation that should be improved is in the area of 
comparing pose estimation algorithms. Although lack of a standard articulated pose 
benchmark with known ground truth (neither real images nor realistic synthetic ones) 
makes this difficult, it is important to compare alternative approaches; one approach 
we are aware of which may provide a suitable alternative has been recently proposed 
in [2]. 

Extending the similarity framework In the Introduction we mention definitions 
of similarity that are more refined than the boolean notion addressed in this thesis. 
The algorithms presented here are developed to deal with the boolean case, however 
we believe they can be extended to learning ranking. The main change in the formu- 
lation is the transition from the classification of pairs to the classification of triples. 
Recent work [5] suggests that an embedding can be learned that represents ranking 
under known distance functions. We believe that it may be possible to extend such 
an approach to the case when the ground truth ranking is conveyed only by examples, 
in a spirit similar to our extension of the LSH. One important application of such 
extension would be in information retrieval, where feedback often is available in the 
form of ranking rather than just binary labels on the results. 

Learning features for visual classification The results presented in Chapter 6 
suggest a promising direction of future research in the use of learned similarity. It 
would be interesting to investigate the effect of embedding the descriptors (and the 
improved matching accuracy) on classification performance. Below we present an 



idea for integration of the similarity learning approach developed in this thesis in a 
multi-category classification architecture. 

Evidence from neuroscience [39] suggests that the majority of cells in the visual 
pathway may be placed within a computational hierarchy. As the level in the hierar- 
chy increases, which roughly corresponds to retino-cortical direction (away from the 
retina), 

The invariance increases: features become less sensitive to various transforma- 
tions. 

Selectivity increases: it takes a more distinctive image elements to activate a 
feature. Consequently, higher layers should be more overcomplete and sparse. 

Receptive fields become larger. 

Receptive fields become more complex (more non-linear, in particular). 

From a computational point of view, the order in the hierarchy corresponds to 
order of processing: the lowest level corresponds to measures computed directly from 
the image pixels, and the values in subsequent layers may be computed from the 
values obtained in the lower levels. However, it is not clear how the flow of sensory 
information and decisions across the hierarchy is organized in the brain; in particular, 
there exists a huge number of feedback projections along the visual pathway, the 
function of which is not fully understood. 

It would be interesting to explore a hierarchical representation organized in ac- 
cordance with t he computational principles mentioned above. Finding t he learning 
algorithm for constructing such a hierarchy is the main challenge in designing such an 
architecture. An interesting approach could be to learn the lower, less selective layers 
in an unsupervised way, while the higher, more selective layers could be better learned 
on a per-category basis, perhaps in conjunction with learning object- or part-specific 
similarity operators, along the lines developed in this thesis. 

Figure 7-1 shows a "cartoon" of this approach. An appealing property of it is that 
lower-level features are necessarily shared between all categories, while higher-level 
features are more likely to be unique for a given class (although the learning algorithm 
should probably allow for sharing in later layers as well). 

It's important to emphasize the difference between this approach and, say, the 
standard multi-layer neural network where a designated output layer is the only one 
affecting the decision. In the proposed hierarchy there is no output layer per se, 
but rather the entire set of features is considered in similarity calculations. This is 
achieved by allowing any feature to be used in similarity-reflecting embeddings for 
the highest (categorical) level. 



Class A, 

A2 
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Figure 7-1: A cartoon of the proposed hierarchical representation, showing the sharing 
of the features and the two-stage learning architecture. A representation for a given 
image patch may include any of the features from the lower (generic) layers and any 
of the features from the higher, class-specific layers. 
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