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Abstract 

Major advances in the field of medical imaging over the past two decades have provided 
physicians with powerful, non-invasive techniques to probe the structure, function, and 
pathology of the human body. This increasingly vast and detailed amount of information 
constitutes a great challenge for the medical imaging community, and requires significant 
innovations in all aspect of image processing. 

To achieve accurate and topologically-correct delineations of anatomical structures from 
medical images is a critical step for many clinical and research applications. In this thesis, 
we extend the theoretical tools applicable to the segmentation of images under topological 
control, apply these new concepts to broaden the class of segmentation methodologies, and 
develop generally applicable and well-founded algorithms to achieve accurate segmentations 
of medical images under topological constraints. 

First, we introduce a digital concept that offers more flexibility in controlling the topol- 
ogy of digital segmentations. Second, we design a level set framework that offers a subtle 
control over the topology of the level set components. Our method constitutes a trade-off 
between traditional level sets and topology-preserving level sets. Third, we develop an algo- 
rithm for the retrospective topology correction of 3D digital segmentations. Our method is 
nested in the theory of Bayesian parameter estimation, and integrates statistical information 
into the topology correction process. In addition, no assumption is made on the topology 
of the initial input images. Finally, we propose a genetic algorithm to accurately correct 
the spherical topology of cortical surfaces. Unlike existing approaches, our method is able 
to generate several potential topological corrections and to select the maximum-a-posteriori 
retessellation in a Bayesian framework. Our approach integrates st at istical, geometrical, 
and shape information into the correction process, providing optimal solutions relatively to 
the MRI intensity profile and the expected curvature. 
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0.1 Notations 

In this dissertation, we make use of the following notations, which might be used as a 
reference throughout this dissertation. Bold fonts denote vectorial variables. 

Cortical surface: the cortical surface will be denoted by e .  

Spherical representation: The spherical representation of the cortical surface will be 
denoted by S. 

A mapping from the cortical surface e onto the sphere S is denoted by M. 

A rectangular decomposition of a compact surface (2 is denoted by 'D(e). We note u, e, 
and f the number of vertices, edges and faces in the decomposition 'D(e) respectively. 

The Euler-characteristic x of a surface t! is the number ~ ( e )  = v - e + f ,  computed 
from any polyhedral decomposition of the surface 'D(e). 

The genus of a surface (2 is g(e). It is related to  the Euler-characteristic x through 
the formula: x = 2(K - g), where K is the number of connected components of the 
surface. 

An evolving active contour is represented by I'. 

The level set representation of an evolving active contour I' is denoted by 4. 

The outward normal and mean curvature of a surface are denoted by n and H respec- 
tively. The velocity field of an active contour is denoted by v. 

Nn(x) is the set of grid points which are n-adjacent to  x ; we define N i ( x )  = Nn(x) \ 
{x}. 

Cn(x, X) is the set of n-connected components of X \ {x) that are n-adjacent to  x. 
Cn(X) is the set of n-connected components of X. 

N;(X, X) denotes the geodesic neighborhood of a point x E X of order k ;  NA(x, X) 
denotes ~ , k  (x, X) where k equals 2 ,3 ,  2, and 1 when n is 6 ,6+,  18, and 26 respectively. 

The topological numbers of a digital point x under the topology ( n , ~ )  are defined by: 
Tn(x,X) = ICn(x, NA(x) X))I and TE(x, X) = ICE(X, N+(x, X ) ) / .  

The extended topological numbers of a digital point x under the topology ( n , ~ )  are 
defined by: T z  (x, X) = / C, (x, X) I and TL (x, X) = I Cii(x, ff) 1 





Chapter 1 

Introduction 

The field of medical imaging has undergone revolutionary advances over of the past two 
decades. New medical imaging technologies have provided physicians powerful, non-invasive 
techniques to probe the structure, function, and pathology of the human body. A few years 
ago, only a small number of non-invasive techniques was available to radiologists. Besides 
much experience/practice, deep insight, even intuition, was required for clinical diagnostic 
imaging. In recent years, the improvement and the development of many image acquisition 
techniques, the enhancement of the general quality of the acquired images, advances in 
image processing and development of large computational capacities, have considerably 
eased this task. 

Acquisition of medical images in two (2D), three (3D), or higher dimensions, has be- 
come a routine task for clinical and research applications. Image acquisition techniques 
include magnetic resonance imaging (MRI) , magnetoencephalography (MEG) , 3D ultra 
sound imaging, computed tomography (CT), positron emission tomography (PET), single 
photon emission computed tomography (SPECT) , functional MRI (fMRI) , and diffusion 
weighted imaging (DWI). This increasingly vast and detailed amount of information needs 
to be interpreted in a timely and accurate manner in order to provide better diagnosis and 
treatment options for a family of clinical applications. It requires significant innovation in all 
aspects of image processing, such as image segmentation, image registration, visualization, 
compression and communication, among others. 

In medical image processing, the automated recognition of "meaningful" image compo- 
nents, anatomical structures, and other regions of interest, is a fundamental task commonly 
referred to as image segmentation. Image segment ation greatly facilitates visualization and 
manipulation of specific structures. It is a critical step that often dictates the outcome of 
the entire clinical or research analysis. 

One approach to image segmentation is to have a trained anatomist or technician man- 
ually label some regions of interests. However, manual approaches are considerably time 
consuming. For instance, the labeling of some or all the structures in the brain can take 
up to a week for high-resolution images. Also, manual or interactive segmentations, which 
are often restricted to 2D slice-wise processing, often suffer from inconsistency across seg- 
mented slices. Finally, studies have shown a large amount of variance among manual seg- 
mentations, an effect which seems to increase the risks related to inter- and intra-observer 
reliability [52, 291. 

Quantitative analysis of medical images requires reproducible, accurate and efficient 
segmentation methods. In medical imaging studies, the segmentation of a large number 



of images is often necessary for obtaining meaningful (i.e. statistically significant) results. 
Therefore, automated segmentation is desirable. However, the challenge is that images are 
usually corrupted by several artifacts, such as image noise, image intensity inhomogeneity 
or non-uniformity, and partial volume averaging effect. In recent years, many segmentation 
algorithms have been proposed and designed to account for such unwanted artifacts. While 
these techniques produce repeatable and accurate results, few of them guarantee that the ob- 
tained segmentations respect the true anatomy of the structures. Too often, segmentations 
contain small geometric inaccuracies that alter the true anatomy of the modelled structures. 
For instance, cortical segmentations often include handles that incorrectly connect different 
regions of the cortex. 

In medical imaging, the overall shape of a region of interest is prescribed by medical 
knowledge; it is usually known a priori. Segmentation techniques should be able to produce 
results that reflect the anatomy of the structures. Several clinical and research applications 
(e.g. visualization, surgical planning, surface-based processing of functional data, surface- 
based atlas, inter-subject registration, . . . ) depend critically on the accuracy and correctness 
of the representations. 

However, accurate segment at ion under anatomical consistency is challenging. Mat he- 
matically, the anatomical consistency refers to the notion of topological correctness of the 
segmented shape. One of the difficulties arises from the continuous nature of topological 
notions: they are difficult to transpose into a practical discrete framework that is applicable 
to the segmentation of medical images. Also, the anatomical consistency of a segmentation 
refers to the global connectivity of the geometric shape as well as to its local properties. 
This concept which is both local and global is difficult to model and integrate into the seg- 
ment ation process. Overall, few methods have been proposed to precisely locate structures 
of interest while ensuring the correctness of their topology (i.e. the correct anatomy). 

The objective of this research is to improve and extend the theoretical tools applicable to 
the segment at ion of images under topological constraints, to apply these concepts to broaden 
the class of segment at ion methodologies, and to develop generally applicable and well- 
founded algorithms to achieve accurate segmentations of medical images under topological 
constraints. Although the focus is on the segmentation of MR brain images, the set of 
potential applications extends well beyond the field of medical imaging. 

1.1 Segmentation of Brain Structures from Magnetic Reso- 
nance Images 

Excluding pathological cases, the shape of most macroscopic brain structures can be contin- 
uously deformed into a sphere. In mathematical terms, these structures have the topology 
of a sphere1. Particularly, this implies that most brain structures consist of one single 
connected object that does not possess any handles (i.e. holes) or cavities. This is the 
case for the subcortical structures, such as left and right ventricle, putamen, pallidum, 
arnygdala, hippocampus, thalamus, and caudate nucleus (Fig. 1-1-a), but it also holds for 
the cortex under some specific conditions. The human cerebral cortex is a highly folded 
ribbon of gray matter (GM) that lies inside the cerebrospinal fluid (CSF) and outside the 
white matter (WM) of the brain. Locally, its intrinsic "unfolded" structure is that of a 2D 
sheet, several millimeters thick. In the absence of pathology and assuming that the midline 

' ~ o ~ o l o ~ ~  is a mathematical discipline that aims at characterizing the connectivity of geometrical shapes. 
Necessary background in topology is reviewed in Chapter 2. 



Figure 1-1: a) Subcortical structures have a spherical topology. For instance, the shape of the 
hippocampus can be continuously deformed onto a sphere. b) The human cerebral cortex is a highly 
folded ribbon of gray matter that lies inside the cerebrospinal fluid and outside the white matter 
of the brain. The green surface represents the interface between WM and GM, and the red surface 
(i.e. the pial surface) models the interface between GM and CSF. When the midline connections 
between the left and right hemisphere are artificially closed, these two surfaces have the topology of 
a sphere. c) 3D rendering of the highly folded pial surface. Opposite regions of a sulcus are often 
self-touching. 

hemispheric connections are artificially closed, each cortical hemisphere can be considered 
as a simply-connected 2D sheet of neurons that carries the simple topology of a sphere2 
(Fig. 1-1-b). 

Many recent segmentation algorithms are able to identify and precisely locate diverse 
brain structures, albeit without ensuring the validity of final topology (i.e. the one of a 
sphere). Medical images often contain various artifacts that are difficult to predict and 
model. For instance, the finite resolution of images makes it particularly difficult to accu- 
rately locate the cortical pial surface that separates GM from CSF (Fig. 1-1-b). Opposite 
banks of the cortical gray matter ofken appear connected, and the interface between GM and 
CSF becomes invisible. This type of artifact is referred to as the partial volume effect, and 
is illustrated in Fig 1-2-a. Consequently, segmentation methods that ignore this constraint 
of "separation" often produce segmentations with erroneously connected regions. These 
regions form handles in the segmentation that are hard to detect and correct retrospec- 

2 ~ h e  true topology of the cortical surface is not the one of a sphere, due to the midline connections 
between the left and right hemisphere, such as the anterior and the posterior comrnisures. 

Figure 1-2: a) Due to the partial volume effect, it becomes hard to distinguish opposite banks of a 
the gray matter. b) Segmentation algorithm that do not constrain the topology often produce cortical 
segmentations with several topological defects (i.e. handles, cavities, disconnected components). c) 
A close-up of a topologically-incorrect cortical surface representation. 



tively [44, 28, 43, 561. Figure 1-2 shows an example of an incorrect cortical segmentation 
with several handles. 

Many clinical and research applications require accurate segmentations that respect the 
true anatomy of the targeted structures. However, only a few techniques have been proposed 
to achieve accurate and topologically-correct segmentations. Yet, these methods are limited 
by the several artifacts present in the images, and by the few topological concepts that are 
applicable to the segmentation of medical images. 

In the remainder of this chapter, we describe the significance of accurate and anatomically- 
consistent segmentation. We present the difficulties and challenges in MR Brain image 
segmentation and report the objective and contributions of this thesis. An overview of the 
dissertation concludes this chapter . 

1.2 Importance of Accurate and Anatomically- Consistent Seg- 
mentation 

Achieving accurate and topologically correct representations of different structures is of 
critical importance for various clinical and research applications. 

The cortex, which is a highly folded ribbon of gray matter, is composed of cortical neu- 
rons (pyramidal and granular/S tellate cells) that are oriented horizontally to the surface. Its 
functional organization is essentially 2-dimensional with functional units of cortical activity 
organized in groups of neurons, oriented perpendicularly to the surface. Consequently, stud- 
ies characterizing the functional organization of the brain require accurate models of the 
cortical surface [17]. These studies analyze how different regions of the cortex are connected 
and are related to each other. 

Small geometric errors in a segmentation can easily change the apparent connectivity of 
the segmented structure, posing a problem to studies that aim at analyzing the connected- 
ness of different regions. In particular, distances between regions can be changed, such that 
points appear much closer than they are (i.e. underestimation of true cortical (geodesic) 
distances). This is often the case in cortical representations, where small handles in the final 
segmentation artificially connect opposite banks of a sulcus. The accuracy and correctness 
of the represent at ions contribute the success of such studies. 

Many neurodegenerative disorders, psychiatric disorders, and healthy aging are fre- 
quently associated with structural changes in the brain. These changes, which can cause 
alterations in the imaging properties of the brain tissue, as well as in rnorphometric prop- 
erties of brain structures, can be captured and detected by elaborate segmentation tech- 
niques [29,55,96,95,22]. For instance, the thickness of the cerebral cortex carries important 
information relative to aging [83]. Accurate 3D models are necessary for estimating the true 
cortical thickness (met hods that only use 3D slices to estimate cortical thicknesses always 
lead to overestimated distances) . 

We provide a non-exhaustive list of potential applications that would benefit from ac- 
curate and topologically-correct representations. 

Visualization. The accurate and topologically-correct segmentation of various struc- 
tures allows the direct visualization of the 3D geometrical shape of the structures. 
Also, functional data can be easily projected and displayed onto the surfaces for illus- 
tration, visual analysis, and post-processing [17, 99, 161. 

e Spherical Coordinate System and Surface-based atlas. The analysis of cortical 



data is greatly facilitated by the use of accurate 2D models of the cortical sheet [17,99]. 
These models alleviate most problems of the 3D embedding space (such as the un- 
derestimation of true cortical distances or the overestimation of cortical thicknesses) . 
Also, models of the brain surface allow for the establishment of a global 2D coordinate 
system onto the whole cortical surface; these coordinate systems can then be used to 
generate 2D spherical atlases. The display and the analysis of anatomical (e.g. thick- 
ness) and functional (e.g. fMRI, MEG) data of the brain cortex is greatly improved 
by the use of surface-based atlases [23, 99, 31, 271. In addition, surface-based atlases 
can be used to evaluate and diagnose precisely brain abnormalities. Recent studies 
have found that Alzheimer's disease was associated with the thinning of GM volume 
and the enlargement of cortical sulci [91]. This information can be carefully inte  
grated into statistical surface-based atlases to help the early detection of Alzheimer's 
pathology [22]. 

a Shape Analysis. Structural changes in the brain can be captured and detected by 
elaborate segmentation techniques. These changes can be used to characterize many 
neurodegenerative disorders, psychiatric disorders, and healthy aging [29, 55, 96, 95, 
221. 

a Surface-based processing of functional data. The functional organization of the 
human cerebral cortex is essentially 2-dimensional. Projecting functional data (e.g. 
fMRI, MEG) onto valid representations of the cortical surface greatly facilitates and 
improves the identification and localization of various functional brain areas [17]. 

a Inter-sub ject Regist ration. Accurate and topologically-correct represent ations of 
specific structures of interest provide important anatomical landmarks (e-g. sulcal 
depth, cortical thickness, sulcal crest lines) that can be used to improve the registration 
of different subjects [31, 92, 981 

1.3 Challenges in Magnetic Resonance Image Segmentat ion 

The segmentation of medical images under topological constraints is a difficult task for a 
variety of reasons. 

First, segmentation algorithms operate on the intensity or texture variations of the im- 
age and are therefore sensitive to the artifacts produced by the image acquisition process. 
These limitations include image noise, image intensity inhomogeneity or non-uniformity, RF 
inhomogeneities, partial volume averaging effect, and subject motion. In the case of cortical 
segmentations, the partial volume effect makes it particularly difficult to accurately locate 
the pial surface of the cortex (Fig. 1-2-a). Due to its highly folded nature, opposite banks of 
the sulcus often appear connected, and small gaps between adjacent folds of the neocortical 
gray matter become invisible in finite resolution MR images. The detection of the substruc- 
tures is also difficult as many of them are defined by weakly visible boundaries. For instance, 
the intensity pattern of the thalamus in MRI images looks similar to the neighboring white 
matter. Segmentation methods cannot solely rely on the MR images in order to distinguish 
these structures, and prior information is often necessary to capture common at tributes 
of anatomical structures in a population. In general, segmentation techniques that do not 
integrate any topological constraints generate segmentations that often contain some small 
deviations from the true anatomy of the structures of interest. These deviations are called 



topological defects and can be of three types: cavities, disconnected components, or handles 
(i.e. holes) that incorrectly connect parts of the volumes (Sect. 2.2.4). We note that several 
good reviews of segmentation techniques can be found in the literature [103, 9, 751. 

Next, the integration of topological constraints significantly increases the complexity 
of the task. Topology is both a global and a local concept; small and local modifications 
of a geometric shape can change its global connectivity. Also, topology is intrinsically a 
continuous concept and topological notions are difficult to adapt into a discrete framework. 
Therefore, the amount of techniques available and applicable to the segment at ion of images 
are quite limited. 

Only a few automatic techniques have been proposed to produce topologically-correct 
segmentations. The current state of the art in medical image segmentation under topology 
control is reviewed in details in Chapter 2. Here we provide a brief summary of the relevant 
existing techniques. In general, they can be divided in two categories. 

One set of approaches incorporates directly the topological constraints into the seg- 
mentation process. Active contours and digital models, reviewed in Chapter 2, have been 
extensively used for this purpose. An initial model, carrying the correct topology, is de- 
formed, usually by gradient descent, while preserving its topology. However, these methods 
are quite sensitive with regard to initialization, and large geometrical errors are often pro- 
duced due to the strict topology preservation. The strict topology preservation is often too 
restrictive for most applications. The generation of cavities or disconnected components as 
well as the formation of handles is prevented. The primary concern is handles that are diffi- 
cult to retrospectively correct [44, 28,43, 561. On the other hand, changes in the number of 
connected components or cavities during the deformation of an object are less problematic. 
We tackle these limitations in Chapter 3 by introducing a concept based on the theory of 
digital topology. In addition, in Chapter 4, we describe a flexible segmentation technique 
that offers a subtle topological control. 

More recently, another set of approaches has been recently proposed to retrospectively 
correct the topology of already segmented images. These techniques, which do not enforce 
any topological constraints during the segmentation process, can focus on more accurate seg- 
mentations. However, the performance of these methods have not proved to be sufficiently 
satisfactory. First, they cannot be used to correct the topology of arbitrary segmentations, 
as they make assumptions about the topology of the initial input image. Also, they do 
not use any statistical information to locate and correct the topological defects, and the 
corresponding corrections may not correspond to the ones a trained operator would make. 
Particularly, for each topological defect, they only evaluate a small number of potential 
solutions, and most often fail to produce optimal solutions. We focus on the retrospec- 
tive topology correction of medical images in Chapters 5 and 6. Chapter 5 introduces a 
novel framework to retrospectively correct the topology of digital images, while Chapter 6 
is dedicated to the topology correction of cortical surfaces. 



1.4 Motivation 

Achieving accurate and topologically-correct segmentations of medical structures is a crucial 
step for many post-processing tasks in medical imaging. While existing methods can be 
effective, they have a number of limitations. The work presented in this dissertation is 
motivated by these limitations. 

a Topologically constrained segmentation methods are too restrictive. Meth- 
ods that aim at directly segmenting a structure of interest using strict topological 
constraints require an initialization of the model that is close to its final configura- 
tion. This is essentially due to the fact that topological barriers can easily lead to 
large geometrical errors, which are difficult to correct retrospectively. Medical images 
often contain artifacts (noise, image inhomogeneities, . . . ) or unexpected structures 
(tumors), which are hard to predict. Topologically constrained segment at ion met hods, 
which strictly preserve the topology of the initial contour, are too restrictive: they 
prevent the formation of cavities and disconnected components as well as the geners, 
tion of handles. A finer degree of control over topological changes would certainly be 
of importance. 

a Retrospective topological corrections may not be optimal. Most retrospective 
methods do not make full use of all available information. Most methods assume that 
the topological defects in the segmentation are located at the thinnest parts of the 
volume and aim at correcting the topology by minimizing the amount of modifications 
in the original segmentation. Most often, the resulting topological corrections do not 
correspond to the ones that a trained operator would make. This is illustrated by 
Fig. 1-3. 

Figure 1-3: Minimal topological corrections might not be optimal. Methods that aim at correcting 
the topology of a segmentation by minimizing the amount of modifications in the segmentation 
might not achieve valid corrections. a) A topological defect is identified in red on the original 
topologically-incorrect cortical surface. b) An incomct topological correction that was only based 
on the size of the defect. In this case, cutting the handle corresponds to a "smaller" modification 
of the surface than filling the corresponding hole. However, this topological correction is not the 
correct one and results in an inaccurate cortical representation. c) Correct topological correction 
realized by a trained operator. 

Most methods to retrospectively correct the topology cannot deal with 
arbitrary segmentations. Retrospective methods assume a fully-connected volume 
and cannot deal with segmentations that contain cavities of disconnected compo- 
nents. Subcortical segmentations are difficult to segment if solely based on intensity 



properties. Imaging artifacts, anat ornical variability, varying contrast properties, and 
poor registration, often result in segmentations that contain a few topological defects. 
While a small number of modifications is usually sufficient to correct the topology, no 
assumptions can be made on the topology of the initial segmentation. 

At most, two candidate solutions per topological defect are generated and 
evaluated. Methods to retrospectively correct the topology of an object fail to gen- 
erate multiple potential solutions in order to select an optimal solution. They only 
produce two solutions. In the case of a handle, these two solutions correspond to 
either cutting the handle or filling the corresponding hole. Other solutions, such as 
the ones a trained operator would make are not generated. This problem is usually 
inherent to the proposed framework that is not adapted to the generation of multiple 
candidate solutions. Figure 1-4 illustrates the difficulty of finding an optimal solution 
when the topological defect is complex. 

Figure 1-4: Some topological defects are quite complex and extremely hard to optimally correct. 
Existing methods only produce a few potential topological solutions and the chosen solution rarely 
is optimal. a) A complex topological defect formed by 3 handles. b) One sagital MRI slice of the 
topological defect, illustrating the complexity of the underlying MFU intensity profile. c) Optimal 
solution realized by our method developed in Chapter 6 under the supervision of a human expert. 
Note that the solution does not correspond to a simple cut of the main handle. d) Sagital cut of the 
MRI volume showing the location of the surface of the corrected defect. The optimal solution was 
optimized relative to the underlying MRI intensity profile and the expected local curvature of the 
surface. A human expert asserted the correctness and optimality of the solution. 

Also, in medical imaging, depending on the application, different types of information 
are required and different data structures are used; the most common cases are surfaces 
modeled by tessellations, and volumes that use 3-dimensional Cartesian grids. Even though 
the segmentation of a structure of interest relies in part on intensity information extracted 
from one or several 3-dimensional images, the data structure might not use the 3-dimensional 
grid to encode the final segmentation, e.g. tessellations. It is important to develop methods 
for both types of data structures, 3-dimensional volumes or surfaces. 



Objective and Contributions of this Thesis 

In this dissertation, we propose type-specific (i-e. surface-based or volumebased) methods 
to address previous limitations. We extend the set of tools applicable to the segmentation 
of medical images under topology control, and develop techniques to achieve accurate seg- 
mentations under topological constraints. Our contributions can be broadly divided in two 
categories. 

A - Topologically-constrained segmentation of medical images 

We first focus on methods that integrate topological constraints directly into the seg- 
mentation process. These methods which strictly preserve the topology of the models are 
quite sensitive with regard to their initializations, and to the presence of noise and unex- 
pected structures in the images. We address these limitations in the following: 

Definition of a novel digital concept. 
Topological concepts are hard to adapt into a discrete framework and the number 
of available tools are limited. We introduce a novel digital concept, the concept of 
multisirnple point, which offers more flexibility in controlling the topology of segmen- 
tations. 

a A new active contour framework. 
Deformable models have been extensively used for the purpose of image segmentation. 
We improve the control of topological changes with the level set method. Our method, 
the genus-preserving level sets, offers a subtle topological control over the topology 
of the level set components, and constitutes a trade-off between traditional level sets 
and topology-preserving level sets [46]. 

B - Retrospective topology correction of medical image segmentations 

In the second part, we focus on the retrospective topology correction of already segmented 
structures. Existing methods to correct retrospectively the topology of segmentations suf- 
fer from some important limitations. They do not integrate any statistical or geometric 
information into the topology correction process and they do not guarantee the optimality 
of the topological corrections. Our contributions address these limitations: 

Bayesian formulation 
We integrate st atistical and geometric information into the topology correction process 
using a Bayesian framework. The correction of a topological defect makes use of 
additional information, such as the underlying MRI intensity profile or the expected 
local curvature of the corrected defect. As a consequence, accurate solutions can be 
generated. 

Optimal correction of the topology 
While existing methods only evaluate a small number of potential topological correc- 
tions, and fail to produce optimal solutions, we introduce (in Chapter 6) a method 
that generates multiple potential solutions. The optimal correction is selected as the 
maximum-a-posteriori solution in a Bayesian framework. 



In addition, we propose two algorithms for the retrospective topology correction of the 
two most common data structures used in medical images: 3D digital images and surfaces. 

Topology correction of 3D binary images 
We develop an algorithm for the retrospective topology correction of 3D digital seg- 
mentations. Our method is phrased within the theory of Bayesian parameter estima- 
tion, and integrates statistical information into the topology correction process. In 
addition, no assumption is made on the topology of the initial input images. 

Topology correction of cortical surfaces 
We propose a genetic algorithm to accurately correct the spherical topology of cortical 
surfaces. Unlike existing approaches, our met hod is able to generate several poten- 
tial topological corrections and to select the maximum-a-posteriori retessellation in 
a Bayesian framework. Our approach integrates st at ist ical, geometrical and shape 
informat ion into the correction process, providing optimal solutions relatively to the 
MRI intensity profile and the expected curvature. 

Thesis Overview 

This thesis is organized in three parts. The first part consists of the necessary background 
to understand the contributions of our work. It corresponds to Chapter 2. Some elementary 
notions of topology are introduced and we describe how to apply these notions to discrete 
imaging. We summarize the current state of the art in medical image segmentation under 
topological constraints. Existing techniques to achieve accurate segment ations under some 
topological constraints are presented, and their limitations are described. 

The second part, consisting of Chapters 3 and 4, presents our contributions to topo- 
logically constrained segmentation. We focus on the limitations inherent to methods that 
strictly preserve the topology of an object. 

For this purpose, we introduce in Chapter 3 a new concept of digital topology that 
extends and generalizes the notion of simple points (this concept is clearly defined in 
Sect. 2.3.1). Simple points guarantee that the topology of a digital object is preserved 
during a deformation. However, the generation of cavities or disconnected components as 
well as the formation of handles are prevented. The extension of the concept of simple point 
to multi-label images, that we call multisimple point, ensures that no topological defects are 
generated while splitting or merging the components of the object. 

Based on this concept, in Chapter 4, we then introduce an active contour framework, 
where level sets evolve under topological control. Level set components are allowed to merge, 
split, be destroyed or generated, but not to produce any handle during the evolution. The 
resulting active contour evolution is more flexible than topology-preserving deformations. 
This algorithm, which introduces a finer degree of control over topological changes in level- 
set-based image segmentation, fills the gap between the original level set framework and 
topology-preserving level set methods. 

In the third part of this work, we focus on the retrospective topology correction of 
segmentations. It consists of Chapter 5 and Chapter 6. 

In Chapter 5, we develop a fully automated volume-based method to correct the topol- 
ogy of any binary volumetric segmentation under any digital connectivity. The novelty of 



our approach comes from the fact that any initial segmentation, containing disconnected 
regions, handles, or cavities, will be corrected. A multiple region growing process allows 
us to simultaneously work on different parts of the volume and to incorporate statistical 
information. 

Finally, in Chapter 6, we specifically focus on the cortical reconstruction problem that 
is intrinsically more challenging than the topology correction of subcortical structures. We 
introduce a technique that directly extends the approach taken by Fischl et al. in 1281, 
addressing most of its limitations (self-intersection, optimality, vertex elimination). Our 
approach integrates st at istical, geometrical and shape information into the correction pro- 
cess, providing optimal solutions relative to the MRI intensity profile and the expected 
curvature. 

At the end of each chapter, we will refer to the main contributions that were presented 
and indicate the associated publications. The proofs of Chapter 4 are provided in Appendix 
A. Appendix B lists all of our publications. All the algorithms developed in this thesis are 
part of the freely available cortical surface reconstruction and flattening software Freesurfer, 
associated with [16, 30, 31, 27, 28, 29, 32, 84, 85, 861. 









Chapter 2 

Preliminaries: Theory of Topology 
in Medical Imaging 

In  this chapter, we present background material of central importance for this dissertation. W e  
introduce some elementary notions of topology and show how these notions can be adapted into a 
discrete framework and applied to the segmentation of medical images under topological constraints. 
Particularly, we introduce the essential concept of Euler-characteristic, and we describe the theory 
of digital topology. Isocontours methods are also presented. Next, we describe the current state-of- 
the-art segmentation of images under topological constraints. W e  first present methods that aim at 
directly integrating the topological constraint into the segmentation process, followed by approaches 
that try to  correct retrospectively the topology of already segmented images. The limitations of both 
approaches are explicated. 

2.1 Introduction 

This chapter presents background material of central importance for t h s  dissertation. We 
first introduce some general notions of topology and present the strong connections of 
topology with differential geometry. The Euler-characteristic and the genus of a surface 
are defined. Next, we show how the continuous theory of topology can be applied to 
the segment ation of medical images under topological constraints. Particularly, we de- 
scribe how topological notions can be adapted to the two most common data structures 
used in medical imaging: 3D voxel grids and surfaces. Also, we present methods for ex- 
tracting topologically-consistent isocontours from digital images. Finally, we present the 
state-of-the-art segmentation of medical images under topological constraints. The most 
common segment ation algorithms are described and their limit ations clearly reported. Some 
of the material presented in this section were taken from Mathworld [63] and the work of 
Bertrand [7, 81. We refer the reader to the following text books 170, 37, 481 for a complete 
introduction to topology and algebraic topology. 

2.2 General Notions of Topology 

2.2.1 A Continuous Theory 

Topology is a branch of mathematics that studies the properties of geometric figures that 
are preserved through deformations, twistings and stretchings, without regard to size and 



absolute position. In topology, the important mathematical notions are those of continu- 
ity and of continuous transformations; tearing, which would generate discontinuities, is 
prohibited. 

Topology studies the properties of spatial objects by abstracting their inherent connec- 
tivity while ignoring their detailed form. One of the central ideas is that geometric objects, 
such as circles, curves, surfaces, can be treated as objects in their own right, independently 
of how they are represented or how they are embedded in space. The exact geometry of 
the objects, their location and the details of their shape are irrelevant to the study of their 
topological properties. In essence, this amounts to characterizing the topology of an object 
by its number of disconnected components, holes and cavities, but not by their position. 
For instance, a circle is topologically equivalent to any closed loop, no matter how different 
these two curves may appear. Similarly, the surface of a coffee mug with a handle is topo- 
logically the same as the surface of a doughnut (this type of surface is called a one-handled 
torus). 

However, by ignoring the embedding space, it then becomes impossible to distinguish 
a torus from a knotted torus (Fig. 2-1-a). This has led mathematicians to define several 
levels of topological equivalence depending on the chosen set of continuous transformations. 
Given a specific set of transformations, two geometric figures represent the same topological 
object, or the same equivalence class, if both of them can be deformed into a third one by 
using continuous transformations from the considered set only. 

Figure 2-1: a-b) Two tori that are homeomorphically equivalent. They share the same intrinsic 
topology. However, they do not share the same homotopy type as one can not be continuously 
transformed into the other. c) A geometric object with a spherical topology; its Euler-characteristic 
is x = v - e + f = 8 - 12 + 6 = 2. d) A geometric object with a toroidal topology and an 
Euler-characteristic of x = v - e + f = 16 - 32 + 16 = 0. 

2.2.2 Notions of Topological Equivalence 

In this work, we are interested in locating anatomical structures from medical images. These 
structures are geometric entities, which are often referred to as topological spaces in the 
mathematics community. These shapes can be represented equivalently as surfaces or as 
volumes. Depending on the context, a topological space X might refer to the volume or 
surface representation. Using these two dual representations, two distinct levels of topolog- 
ical equivalence are usually considered. But we first need to introduce some mathematical 
definitions. 

Definition 2.1 Homeomorphism 
A n  homeomorphism M from a space X into a space Y is a continuous, one-to-one trans- 
formation with a continuous inverse M-'. 



Homeomorphisms have some important properties that we will use later in this dissertation 
(particularly in Chapter 6). The Jacobian JM = I 1 of the transformation1 is non-singular 
(i.e. strictly positive or strictly negative). This is, of course, the multidimensional analog 
of monoticity. Another important property of the Jacobian is the fact that it relates the 
n-dimensional volumes of X and Y: dny = JMdnx, where y = J(x). 

Definition 2.2 Homotopy 
An  homotopy is a continuous transformation from one function into another. A n  homotopy 
between two functions f and g from a space X into a space Y is a continuous map G : 
X x [O,1] -+ Y with G(x, 0) = f (x) and G(x, 1) = g(x), where x denotes set pairings. One 
says that two maps fo and fi are homotopic if there exists a homotopy connecting them, 
and one writes fo 11 fl. 

In simpler terms, two objects are said to be homotopic if one can be continuously de- 
formed into the other. For instance, a line segment is homotopic to a point, and a circle 
is homotopic to a solid torus. We note that, contrary to homeomorphism, homotopy does 
not consider the dimension of the topological objects. For instance, the unit ball in Wn, 
{x E Wn/ llxll 5 11, is homotopically equivalent to the point {x = 0). Other levels of 
topological equivalence can be defined by considering the dimensionality of the topological 
objects. Homotopy is one of the main concepts of Algebraic Topology. For more details on 
homotopies and algebraic topology, we refer the reader to an excellent book on algebraic 
topology [48]. 

Using these two sets of continuous transformations, two levels of topological equivalence 
are usually considered: 

Intrinsic Topology: the intrinsic topology of an object is defined by the set of properties 
that are preserved by homeomorphic transformations defined on the surface of the 
considered object. Under this set of equivalence, the embedding space is ignored: a 
knotted solid torus has the same intrinsic topology as a simple torus; and a hollow 
sphere is of the same topology as two spheres. 

Homotopy type: the homotopy type of an object is the set of properties that are 
preserved by homotopic transformations. Formally, we define two spaces X and Y 
to share the same homotopy type, or to be homotopy equivalent, if there are maps 
f : X + Y and g : Y -, X, such that the composition fog is homotopic to the identity 
map of Y ( f  o g rr Iy), and the composition g o f is homotopic to the identity map 
of X (g o f - Ix). Homotopy, which was first formulated by Poincarr6 around 1900, 
provides a measure of an object's topology by considering the embedding space. At 
this level of topological equivalence, a torus is topologically different from a knotted 
torus, since one cannot be continuously transformed into the other (Fig. 2-1-a,b). 

In this dissertation, the required level of topological equivalence is provided by homo- 
topy. The anatomical structures to be segmented define smooth 2D compact (i.e. closed) 

'The fact that the Jacobian exists might seem confusing at first. Indeed, we have only assumed that 
the mapping M was an homeomorphism, and we did not specify that the mapping M was differentiable. 
However, in dimension 1, 2, and 3, any pair of homeomorphic smooth manifolds are diffeomorphic! This 
surprising property does not hold in higher dimension. 



orientable manifolds2 embedded in the real 3D Euclidean space. For such LLsimple" surfaces, 
the study of their differential properties provides deep insights about their topology, as the 
topology of such surfaces have profound connections with differential geometry. 

2.2.3 Topology and Differential Geometry 

Differential geometry is the study of Riemannian manifolds. Differential geometry, which 
deals with metricable notions on manifolds, has some surprising and fundamental links with 
topology. The connections arise from a set of theorems of elementary geometry (we refer 
the reader to the book on elementary differential geometry of O'Neill for a proof of these 
theorems [71]). We first introduce a few notations and definitions. 

Definition 2.3 Rectangle and 2-segment 
A rectangle R is a region of the 2D plane R : a < u 5 b , c < u 5 d,  with (u,v) E It2. 
The interior RO of the rectangle R is the open set a < u < b , c < u < d. A &segment is 
a transformation from a rectangle R into R3 that is a one-to-one regular mapping from the 
interior R0 of the rectangle R into R3. 

Definition 2.4 Rectangular decomposition of a surface C? 
A rectangular decomposition of a surface e is a finite collection of one-to-one %segments 
whose images cover e in such a way that if any two intersect, they do so in either a single 
common vertex or single common edge. 

Theorem 2.1 Rectangular decomposition 
Every compact surface e has a rectangular decomposition I)(e). 

Theorem 2.2 Euler-characteristic of a rectangular decomposition 
If D(e) is  a rectangular decomposition of a compact surface e, let v, e, and f be the number 

of vertices, edges, and faces in iD(e). Then the integer (u - e + f )  is the same for every 
rectangular decomposition of e.  This integer ~ ( e )  is  called the Euler-characteristic of e.  

The fact that a rectangular decomposition is used to compute the Euler-characteristic 
of the surface is merely a convenience for the proof of the theorem. Arbitrary polygons 
could as well have been used to decompose e. In the resulting polygonal decomposition, 
the different polygons would still be required to fit neatly, but they would not have the 
same number of sides. An arbitrary polygonal decomposition is called a tessellation, while, 
when only triangles are used, the decomposition is called a triangulation of e. 

Theorem 2.3 Topological invariance of the Euler-characteristic 
If eM and eN are two compact orientable surfaces, x(enz) = x(eN) if and only if ehz and 
eu are homeomorphic. 

Thm. 2.3 is of central importance. It states that the Euler-characteristic of a surface 
is a topological invariant. Two surfaces that have the same Euler-characteristic share the 
same intrinsic topology. However, we note that the Euler-characteristic does not define the 
homotopy type of a surface, since the embedding space is being ignored. Particularly, this 
implies that a discrete representation of a surface using a polygonal decomposition with the 

2~ manifold is a topological space such that each of its points has a neighborhood that is homeomorphic 
to an open planar disk. 



desired Euler-characteristic might be self-intersecting in the 3D embedding space. We will 
discuss this important point later. 

The Euler-characteristic is of great practical interest because it can be calculated from 
any polyhedral decomposition 9 of the surface by x = v - e + f ,  where v, e and f denote 
respectively the number of vertices, edges and faces of the polyhedron 9. The Euler- 
characteristic of a sphere S is x(S) = 2 (Fig. 2-1-c). T h s  implies that any surface C? with 
x(e) = 2 is topologically equivalent (i-e. homeomorphic) to a sphere and therefore does 
not contain any handles. Surfaces with an Euler-characteristic ~ ( ( 2 )  # 2 have a topology 
that is different from that of a sphere. However, the Euler-characteristic does not provide 
any information about the localization of the topological differences. Also, Thm. 2.2 states 
that the way a surface is decomposed (i.e. tessellated) does not influence its topology. Any 
polyhedral decomposition of a surface will encode for the same intrinsic topology. 

In fact, any compact, connected, and orientable surface is homeomorphic to a sphere 
with some number of handles. This number of handles is a topological invariant called 
the genus. For example, a sphere is of genus 0 and a torus is of genus 1. The genus g is 
directly related to the Euler-characteristic x by the formula x = 2 - 2g. In the case of 
multiple surfaces involving K connected components, the total genus is related to the total 
Euler-characteristic by the formula: x = 2(K - g). 

2.2.4 On Topological Defects 

We have already mentioned that an anatomical structure can be either represented by a 
volumetric representation or by a surface representation, the two descriptions being dual 
representations. In this work, we call a topological defect any deviation from the spherical 
topology. Since we are considering 2D, smooth, orientable, and compact surfaces that are 
embedded in the 3D Euclidean space, 3 types of topological defects can be encountered: 

a Disconnected components: in the presence of image artifacts, segmentations often 
contain several connected components, which might either constitute parts of the 
same structure or erroneous pieces of a segmentation. 

a Cavities: cavities could be either the result of unexpected anatomical structures that 
are located inside the volume of interest, such as tumors, or, most frequently, the result 
of image artifacts. Cavities are usually easy to detect and correct retrospectively if 
interpreted as connected background components. 

Handles or holes: a handle or hole in a volume or a surface is identified whenever 
there exists a continuous loop that cannot be homotopically deformed onto a point 
within the manifold itself. These loops are called non-separating loops and constitute 
a fundamental concept of algebraic topology [48]. Particularly, these are used to define 
the fundamental group of an object [48, 621. 

Finally, we note that for each defect present in an object (i.e. the foreground object) 
there exists a corresponding defect in the background: a disconnected foreground com- 
ponent can be interpreted as a background cavity; a foreground cavity is a disconnected 
background component; and a handle in a foreground component defines another handle in 
the background component. 



This foreground/background duality provides a methodology to correct a topological 
defect [56, 441 (i.e. any deviation from the spherical topology). For instance, the presence 
of a handle in an object could be corrected by either cutting the handle in the foreground 
object, or cutting the corresponding handle in the background object. Cutting the back- 
ground handle can be interpreted as filling the corresponding hole. We will make use of this 
dual representation in Chapter 5. 

2.3 Topology and Discrete Imaging 

In order to apply topological concepts to a discrete framework and to define the topology 
type (i.e. homotopy type) of digital segmentations, the notion of continuity is transposed 
into discrete spaces and discrete objects, such as images and triangulations. This is obtained 
by replacing the notion of continuity with the weaker notion of connectivity. 

We describe how topological notions can be adapted to the two most common data 
structures used in medical imaging: 3D data structures and surfaces. Particularly, we 
present the main concept of digital topology, which provides a topological framework over 
the set of 3D digital images (see Sect. 2.3.1). In this work, we are interested in generating 
accurate surface representations of anatomical structures. For this purpose, we generate 
surfaces from segmented 3D volumes. This is achieved by using isocontour surface extraction 
methods (see Sect. 2.3.3). 

2.3.1 Digital Topology 

Digital topology provides an elegant framework that transposes the continuous concepts 
of topology to discrete images. In this theory, binary images inherit a precise topological 
meaning. In particular, the concept of homotopic deformation, which is required to assign 
a topological type to a digital object, is clearly defined through the notion of simple point. 
An extensive discussion of these concepts can be found in [62]. 

In this framework, a 3D image is interpreted as a graph. The vertices of the graph are 
the digital points (voxels in the image) and the edges are defined through neighborhood 
relations between points. We note that the resulting "discrete" topology is not an instance of 
mathematical topology ii la Munkres [70] and is somehow independent of standard topology 
theory. 

In this section, some basic notions of digital topology are presented. The following 
definitions are used to define discrete equivalents of topological continuous notions, such as 
continuity and homotopic deformations. All definitions are from the work of Bertrand, to 
which we refer for more details and proofs [7]. 

A - Connectivity 

A 3D binary digital image I is composed of a foreground object X and its inverse, the 
complement X. We first need to define the concept of connectivity, which specifies the 
condition of adjacency that two points must fulfill to be regarded as connected. Three 
types of connectivity are commonly used in 3D: 6-, 18- and 26-connectivity. Two voxels 
are 6-adjacent if they share a face, 18-adjacent if they share at least an edge and 26- 
adjacent if they share at least a corner (Fig. 2-2-a). In the following, we note Nn(x) the 
n-neighborhood of a point x, i.e. the set of grid points which are n-adjacent to x. We 
also set (x) = Nn(x) \ {x). Cn(X) denotes the set of all n-connected components of 



X and C, (x, X) the set of d l  n-connected components of X n-adjacent to a point x. The 
cardinality of a set S is denoted #S. 

In order to avoid topological paradoxes, different connectivities, n and 5, must be used 
for one digital object X and its complement 53. This leaves us with four pairs of compatible 
connectivities: (6,26), (6,18), (26,6) and (18,6). In order to distinguish the 6-connectivity 
for X associated with the 18-connectivity for X from the 6-connectivity associated with the 
26-connectivity for 7, a 6+-notation is used for the (6,18) pair of connectivities. Figure 2- 
2-b illustrates with a simple 2D example one type of topological paradoxes, known as the 
Jordan's curve paradox. Jordan's theorem states that every simple closed curve divides 
the plane in two compartments, one inside the curve and one outside of it, and that it is 
impossible to pass continuously from one to the other without crossing the curve. However, 
if the 8-connectivity is used for the blue and red curves in Fig. 2-2-b, they continuously 
intersect each-other. In order to avoid such topological paradoxes, a pair of compatible 
connectivities (4,8) must be used for both curves. The result yields one continuous curve 
and one discontinuous curve. In 3D, the same topological paradoxes appear; therefore, 
compatible connectivities must be used for the foreground and the background objects. 

Figure 2-2: a) The three different types of connectivity in 3D. b) A simple two-dimensional ex- 
ample of the Jordan's curve paradox: under the &connectivity, the two curves are continuous even 
though they intersect each other. In order to avoid such topological paradoxes, a pair of compatible 
connectivities (4,8) must be used for one curve and the other (one curve becomes discontinuous). 
The same topological paradoxes appear in three dimensions and compatible connectivities must be 
used for the foreground and background objects. c) Under the 6-connectivity, (n, E) = (6,26), the 
closed loop formed by the black dots cannot be homotopically deformed into a single point. It would 
remove a hole in the digital object, since the white dots are n-connected. 

One important consequence of the previous requirement is that digital topology does 
not provide a consistent framework for multi-label images. No compatible connectivities 
can be chosen for neighboring components of the same object. Therefore, digital topology 
is strictly limited to binary images. 

B - Path, Topological Defect and Elementary Deformation 

An n-path n is a sequence (possibly empty) of points xo ... x k  with n-adjacent to xi-1 for 
i = 1, ..., k .  The path is elementary if all points in the sequence are different except possibly 
xo = xk. An elementary n-path is simple if each point of n has, at most, two n-adjacent 
points in n. If xo = x k ,  then n is closed. Finally, we note that any path from xo to x k  

contains an elementary path and a simple path from xo to xk. 
Once the concepts of connectivity and path have been introduced, the notion of topo- 

logical defect can be defined. Similarly to the continuous formulation (see Sect. 2.2.4), 
topological defects in a digital volume are constituted of holes (i.e. handles), cavities, and 



disconnected components. While a cavity in an object X (resp. f?) is easily detected as a 
finite Si-connected (resp. n-connected) component of X (resp. X),  the notion of a hole is 
not simple to define. The presence of a hole in X (resp. z) is detected whenever there is 
a closed n-path (resp. %path) in X (resp. r) that cannot be deformed in X (resp. x) to 
a simple point. 

However, we need to clearly define the notion of deformation of a closed n-path. In the 
following, P, P I ,  PI, P2 and p, ul ,  u2 denote paths and points respectively. Let p E X 
be a point, called the base point. Let y c X and y' c X be two closed m-paths. We say 
that y' is an elementary n-deformation of y, noted y y', if y and y' are of the form: 

and: 
- for n = 6, we have u1.P.u2,u1.P'.u2 are included in a unit square (a 2 x 2 square). 
- for n = 6+, 18,26, we have ul.P.u2,ul.P'.u2 are included in a unit cube (a 2 x 2 x 2 

cube). 
Figure 2-2-c illustrates with a simple example why a 2 x 2 square needs to be used with the 
6-connectivity. If a 2 x 2 x 2 cube were to be used, the 26-connected white points would 
be crossed over. Finally, we say that y' is an n-deformation of y if there is a sequence of 
closed n-paths yo.. .yk, such that y = yo and yi-1 N yi for i = 1, . . . , k.  

C - Geodesic Neighborhoods and Topological Numbers 

Definition 2.5 Geodesic Neighborhood The geodesic neighborhood of a point x E X 
of order ic is the set N;(x, X )  defined recursively by: 

N; (x, X )  is the set composed of all points y of N& (x) (x, X)  n X, such that there exists 
an n-path n- from x to y of length less than or equal to k and all points of n-, except possibly 
x, belong to N&(x)(x, X )  n X. Geodesic neighborhoods can be interpreted as a discrete 
equivalent of the notion of open sets (see [37]). 

Using these geodesic neighborhoods, the topological numbers relative to the point x and 
the set X can be computed: 

Definition 2.6 Topological numbers 

The topological numbers are the number of connected components within certain geodesic 
neighborhoods. These numbers have been introduced by Bertrand in [7] as an effective way 
to characterize the topology type of a given voxel. The values of Tn(x7 X) and TE(x, X) 
characterize isolated, interior and border points as well as different kinds of junctions (see 
tab. 2.1). Their efficient computation, which only involves the 26-neighborhood, is described 



Figure 2-3: a) The 2&neighborhood of a digital object X.  Red points correspond to the foreground 
object X, while blue points correspond to the background object r. b) The geodesic neighborhood 
~ i ( x , X )  of the point x. c) The geodesic neighborhood N ~ ( x , X )  of the same point x. Note the 
crucial difference between both neighborhoods circled in red. The circled voxel explains why the 
topological numbers T6 and T6+ are different; we have T6(x, X )  = 2 and T6+(x,X) = 1. Conse- 
quently, the point x will be simple for the connectivity 6+ but not for the connectivity 6. 

in [8]. Figure 2-4 provides several examples of digital configurations with their associated 
topological numbers. N; (x, X)  denotes ~5 (x, X) , where k equals 2,3,2, and 1, when n is 
6,6+, 18, and 26 respectively. Using this notation, we have Tn(x, X)  = #Cn[N;(x, X)]. 

Table 2.1: Voxel topology types and topological numbers 

Topology Type of x E X 
isolated point 
interior point 

border point (simple point) 
curve point 

curves junction 
surface point 

surfaces junction 
surface(s)-curve(s) junction 

D - Simple Point and Homotopic Deformation 

Definition 2.7 Simple point A point of a binarg object is simple i f  it can be added or 
removed without changing the topology of both the object and the background, 2.e. without 
changing the number of connected components, cavities and handles of both X and 53. 

A simple point is easily characterized by the two topological numbers Tn(x, X)  and 
TE(x, 53): a point is simple if snd only if Tn(x, X) = ~ ~ ( x ,  X) = 1. 

The definition of a discrete homotopy follows from the concept of simple point. 

Definition 2.8 Homotopic deformation We define a homotopic deformation of an ob- 
ject X as a sequence of deletions or additions of simple points. 



Finally, two objects X and Y share the same homotopy type if there exists a sequence 
of transformations Xo ... Xk and a sequence of points x1 ... x k ,  such that Xo = X and 
Xi-1 = Xi U{xi) or Xi-l = Xi \ ( x i )  and the point is simple relative to Xi for i = 1, . .. , k .  

Figure 2-4: Examples of topological numbers for different digital configurations. The red points 
correspond to the foreground object X. a) A simple point: Tn = TE = 1. b) A non-simple point, 
Tn = 1, TFi. = 2. c) In this complex configuration, the point x will be simple or not depending on the 
chosen connectivity. The point x is simple only when the chosen connectivity is n = 6+ (implying 
that n = 18); in this case, we obviously have: Tn = 1, TT = 1. For all other choices of connectivity, 
the point is non-simple, but the reasons differ. For n = 6 (and A = 26), we have Tn = 4, TE = 1. In 
the other two cases (n = 18 and n = 26), we have T, = 1 but TE = 2. 

One final important comment needs to be made. Arbitrary digital homotopic deforma- 
tions might not be able to deform any initial object into another one that shares the same 
homotopy type. To explicate this point, let's consider two spherical objects, X1 and X2 
with x(XI) = x(X2) = 2, the first one being strictly included in the second one (XI c X2 
and XI # X2). We then consider the set Sxl,x2 of homotopic dilatations from X1 into 
X2 (i.e. successive additions of simple points x E X2). Our comment implies that not all 
deformations of Sxl,x2 will be able to deform the object X1 into the object X2. Some 
deformations d E Sx,,x2 might generate some digital objects Xd = d(X1) with Xd c X2 
and Xd # X2, such that every point x E X2 \ Xd is non-simple. 

This limitation is little known and has been, overtly or covertly, ignored in most (if not 
all) of the literature. Most often, this limitation can be disregarded as only highly random 
homotopic deformations will exhibit such behaviors. However, images that contain a lot of 
noise might seriously limit the applicability of digital homotopic deformations. 

Surfaces in Discrete Imaging 

We now turn to the transposition of continuous topological concepts to discrete surface rep- 
resentations. There are essentially two ways of representing a surface in discrete imaging. 
Surfaces can be either represented explicitly, by using parameterized models, or implicitly 
as the level set of some function defined in the 3D embedding space. Both types of represen- 
tations have advantages and disadvantages, and have been extensively used for the purpose 
of medical image segmentation [104, 61, 18, 16, 391. Particularly, the theory of active con- 
tours (or deformable models) constitutes a general technique of matching a "deformable" 
surface onto an image by means of energy minimization. This popular and powerful image 



segmentation method is presented in the next section. 

A - Explicit Representations 

An explicit representation models a surface by a set of vertices, edges, and faces, associated 
with a chosen parameterization of each face. The set of vertices, edges, and faces composes 
the polyhedral representation of the surface. The parameterization of the faces determines 
the exact geometry of the surface. For instance, tessellatio+ correspond to linear parame- 
terizations of each face, while splines use higher-order approximations. Triangulations are 
a special kind of tessellation, in which each face is a triangle. 

The topological invariance of the Euler-characteristic in Thm. 2.3 implies that explicit 
models unambiguously encode the intrinsic topology of the surfaces. Given a specific poly- 
hedral decomposition, the Euler-characteristic of the surface is easily computed using the 
formula x = v-e+ f .  For instance, a connected surface with an Euler-characteristic x = 0 is 
homeomorphic to a torus, and possesses a single handle. However, the Euler-characteristic 
does not provide any information on the location of the handle. 

While the intrinsic topology of the surface is directly encoded in the polyhedral de- 
composition, there is no guarantee that the surface represent at ion is not self-intersecting. 
As previously mentioned, the topological equivalence defining the intrinsic topology of a 
geometric entity ignores the embedding space. Consequently, additional precaution must 
be taken in order to ensure that the discretization of a surface does not generate self- 
intersections. Figure 2-5 illustrates this point with a simple 2D closed curve. Depending on 
the resolution of the discretization of the continuous curve, self-intersections may appear in 
the embedding space, even though the Euler-characteristic of the polyhedral decomposition 
does not change ( X  = v - e = 0). The self-intersection problem is important when the 
surfaces are iteratively deformed in order to match a targeted structure. We will discuss 
this point when we present the theory of active contours in the next section. 

Figure 2-5: a) a simple closed curve with the topology of a circle. b) One example of a polyhedral 
decomposition of the curve using 25 vertices and edges. The corresponding Euler-characteristic 
x = v - e = 0 is the one of a circle. c) Another discretization of the same curve using 14 edges 
and vertices. Note that the Euler-characteristic is still the one of a circle x = 0, even though the 
discrete representation of the curve self-intersects in the 2D embedding space. d) A close-up of the 
self-intersecting representation. 

Finally, we note that explicit representations can approximate surfaces at any level of 
precision, by using more refined meshes. Contrary to the theory of digital topology that 
constitutes a discrete approximation of the continuous space, and is therefore limited by 
the resolution of the 3D digital images, explicit representations can approximate accurately 
any surface by using high-resolution meshes. 



B - Implicit Representations 

Implicit models encode the surface of interest I? as the level set of a higher-dimensional 
function 4 defined in the embedding space. The function 4, defined on a 3D voxel grid, is 
usually the signed distance function of the surface with the contour being the zero level set 
of 4: r = $-l(o). 

This type of representation has several advantages. First, no explicit represent at ion 
and no parameterization are required. In the theory of active contours, this will prove 
to be a huge advantage as implicit representations can naturally change topology during 
the deformation of the model. Self-intersections, which are costly to prevent in parametric 
deformable models, are avoided and topological changes are automated. Also, many funda- 
mental properties of the surface r, such as its normal or its curvature, are easily computed 
from the level set function 4. 

However, these models can only represent manifolds of codimension one without borders, 
such as closed curve in IR2 or closed surfaces in El3. For the purpose of segmenting anatomical 
structures, the use of such representations is not a limitation. Another - more subtle 
- drawback of implicit representations is that, even though level sets achieve sub-voxel 
accuracy, the exact location of the contour depends on the image resolution. For instance, 
in the case of two self-touching banks of a sulcus, the finite image resolution and the 
topological constraint necessitate some voxels to be labeled as outside voxels (ideally, these 
voxels should be the ones belonging to CSF), therefore imposing a constraint on the location 
of the surface. Other limitations of the implicit representations are presented in the next 
section. 

So far, one has not specified how implicit representations can ensure that the topology 
of the encoded surface is the correct one. Since implicit representations make use of the 
underlying 3D voxel grid (through a signed distance function) to encode the contour of 
interest, digital topology can be used to specify the topology of the contour. The foreground 
object X is simply defined as the set of negative grid points (i.e. X = {x E IR3 I 4(x) 5 0))) 
and the background object fi; as the set of strictly positive grid points (i.e. fT = {x E 
IEt3 1 +(x) > 0)). Then, given a choice of compatible connectivities, the topology of the 
contour is determined unambiguously. 

Finally, we need to explain how we can generate an explicit representation from an 
implicit surface model. This leads us to the theory of isocontour extraction. 

2.3.3 From Images to Surfaces: Isocontour Extraction 

In the previous section, we described the manner in which topology can be adapted to the 
two most common data structures used in medical imaging. The ability to go from one 
representation to the next arises as a difficulty. As described in the following sections, it 
is possible to generate triangulations from 3D binary digit a1 segmentations, such that the 
resulting topology of the surfaces is consistent with the choice of digital topology. However, 
we note that it is not always possible to produce a digital binary volume, whose topology is 
similar to that of a given triangulation: digital topology constitutes a discrete approximation 
of the continuous space at a finite resolution, while triangulations approximate continuous 
surfaces at any level of precision. 



A - The Original Marching Cubes Algorithm 

The marching cubes (MC) algorithm was first introduced by Lorensen and Cline in 1987 [59] 
as a way to generate a polygonal decomposition from a scalar field sampled on a rectilinear 
grid. Given an isovalue, the MC algorithm extracts quickly a representation of the isosurface 
of the scalar field. Formally, an isosurface is defined as a surface that connects all the points 
of a 3D space that have the same associated function value; this function value is called the 
isovalue. 

Case0 Case l Case 2 

Case 5 

Case 8 

Case 9 

Case 12 Case13 . Case 14 

Figure 2-6: The 15 representative cases of the marching cubes algorithm. This figure was taken 
from [46]. 

The MC algorithm first partitions the data into a set of cubic (or rectilinear) cells, the 
cell vertices being the grid points. Based on the relative polarity of their scalar value (above 
or below the isovalue), each vertex is assigned a binary label, which indicates whether the 
grid point is inside or outside the isosurface. Then each cubic cell is processed sequentially. 
Patches that approximate the isosurface are produced within each cube, and the polygon 
patches are naturally joined toget her to form the final isosurface represent at ion. 

The tiling generated for each cubic cell is based on the assumption that there is exactly 
one surface intersection at a cube edge that connects oppositely labeled vertices, and there 
is no intersection if an edge connects two vertices of the same polarity. Also, no isolated 
components can be fully contained inside a cubical cell. Basically, these assumptions state 



that the resolution of the isosurface is that of the rectangular grid. Each vertex in a cubic 
cell has one of two possible labels, resulting in only 28 = 256 ways an isosurface can intersect 
a cube. Using rotational and complementarity invariance properties, the 256 cases can be 
reduced to 15 major cases shown in Fig. 2-6. The MC algorithm extracts a triangulated 
surface whose vertices lie on the edges of the cubic lattice, generating 0 to 4 triangles per 
cell. The exact location of each vertex is determined by linear interpolation from the values 
of the cubic lattice. 

Figure 2-7: Left: An incorrect tiling occurring on an ambiguous face in between case 12 and case 
3 with the 256-lookup table. Right: a) An ambiguous face. b) One possible tiling for the 6- or 
6+-connectivity. c) One possible tiling for the 18- or 26-connectivity. d) An ambiguous cube. e) 
One possible tiling for the 6-, 6+ or 18-connectivity. f )  One possible tiling for the 26-connectivity. 
The original MC algorithm, introduced by Lorensen and Cline, generate tilings corresponding to b) 
and e). 

This method is quite fast (one pass on the cubic grid is necessary to generate a triangula- 
tion), but the resulting triangulation might not reflect the topology of the underlying digital 
grid and may produce tiling inconsistencies. The left figure in Fig. 2-7 shows an ambiguous 
configuration that produces an inconsistent tiling. These inconsistent tilings are related to 
the so-called ambiguous face and ambiguous cube configuration (Fig. 2-7-right-a,d). The 
major differences between different MC algorithm implementations lie in how they choose 
between the two possible tilings for the ambiguous face and cube cases. Extensive discussion 
of isocontour extraction algorithms can be found in the thesis of Han [47]. 

B - Connectivity-Consistent Marching Cubes Algorithm 

The original marching cubes formulation is not able to generate topologically-correct iso- 
surfaces, since the resulting tessellations may contain tiling and topological inconsistencies. 
In [46], the authors proposed a connectivity-consistent marching cubes algorithm by build- 
ing a specialized case table for each type of digital topology. In this MC algorithm, the tiling 
for the ambiguous cases is determined by the choice of connectivity used for the underly- 
ing 3-dimensional cubic lattice. The coordinates of surface intersections are still computed 
using linear interpolation, but the resolution of ambiguous faces and cubes depends on the 
predefined digit a1 connectivity rule. In particular, Fig. 2-7c,e correspond to the chosen 
tilings when the black points are assumed to be 18-connected, and Fig. 2-7c,f illustrate the 
selected tilings when the black points are assumed to be 26-connected. Figure 2-8 illustrates 
that the mesh generated by this algorithm depends on the chosen connectivity pair. In this 



example, four different meshes are obtained from the same level set function. 

Figure 2-8: Mesh extracted from the same level set function by the topology-consistent marching 
cubes algorithm, when using different connectivity pairs. The voxel representations on the right 
correspond to two front views, one front left view and one front right view, of the binarized level set 
function (relative to the same isovalue used in the topologically-consistent marching cubes). 

2.4 State of the Art in Segmentation under Topological Con- 
straints 

The segmentation of anatomical structures under topological constraints has been an in- 
tensive area of research over the past years. Many segmentation algorithms are able to 
identify and locate precisely these structures, although without constraining the topology. 
Those include active contours [64, 65, 18, 104, 106, 1031 and digital techniques [74, 79, 100, 
29, 100, 1071. The resulting segmentations often contain several topological defects, such as 
disconnected components, cavities or handles, which do not correspond to the true anatomy 
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of the structures of interest. . ., . . 

Methods for producing topologically-correct segmentations can be broadly divided into 
two categories. A first set of approaches directly incorporates topological constraints into 
the segmentation process. These methods deform iteratively a model carrying the desired 
topology onto the desired anatomical structure while preserving the model topology. These 
"intuitive" methods have been intensively used for the purpose of medical imaging seg- 
mentations. Yet, the model evolution is often difficult to control and the accuracy and 
correctness of the final segmentation difficult to guarantee. 

Recently, new approaches have been developed to correct retrospectively the topology 
of an already segmented image. These techniques, which do not impose any topological 
constraints during the segmentation process, can focus on obtaining more accurate mod- 
els. However, while these methods guarantee that the final segmentations have a spherical 
topology, the accuracy of the topological corrections might not be one which that a trained 
operator would achieve. In particular, these methods fail to integrate statistical and geo- 
metrical information into the topology correction process, and the automatic extraction of 
accurate and topologically-correct segmentations is still a challenging problem. 

2.4.1 Topologically-Constrained Segmentations 

The topology-enforcing techniques proceed by deforming iteratively a model of known topol- 
ogy onto a targeted structure, while preserving its topology. Several techniques have been 
used for the segmentation of anatomical structures, with the topological constraint taking 
different forms depending on the chosen method. 1 .  



A - Active Contours 

Active contours, also known in the literature as snakes, active surfaces, deformable mod- 
els/contours/surfaces, represent a class of popular and powerful medical image segmentation 
methods due to their ability to combine low-level image information with high-level prior 
knowledge about object shapes [64, 1031. They constitute a general technique of matching a 
deformable model onto an image by means of energy minimization. A deformable model is 
a curve, a surface, or a higher-dimensional geometric object, that deforms within an input 
image subject to both internal and external forces and external constraints. Since their 
introduction by Kass et al. in [54], active contours have been applied in many computer 
vision research areas (image segmentation [12, 104, 61, 18, 16, 391, region tracking [68, 731, 
shape from stereo [25, 51, 24, 401, shape from shading [35, 1051, and shape from point 
clouds [5,  93, 1081, etc.). Comprehensive studies can be found in [64, 103, 651. 

This methodology has several remarkable features. Due to its high versatility in terms 
of the choice of a shape representation and the design of the evolution equation, active 
contours can be applied to various types of input data (n-dimensional images, unstructured 
point sets, . . . ) and to a large range of problems. Also, the use of a continuous geometric 
formulation has many benefits. It leads to a neat mathematical framework; it provides sub- 
pixel accuracy; it correctly models the continuity of shape, and allows one to incorporate 
some regularity assumptions or some complex prior information about the target shape, 
thereby yielding a good robustness to noisy and incomplete data. 

In this dissertation, we focus on 2D surfaces evolving in 3D images. In 3D, an active sur- 
face is represented by a family of closed surfaces I? : t E R+ + I'(t), where Vt E ER+, r ( t )  is a 
surface in ER3 that can be parameterized r ( t )  : p E E2 --+ r ( p ,  t) = [s(p, t), y(p, t), z(p, t)] E 
lit3. The variable t E R+ parameterizes the family of surfaces I? and p E R2 parameterizes 
each surface r ( t )  at a given time t. The geometric shape of the evolving contour is fully 
determined by the normal component of the driving force, while the tangential compo- 
nent only affects the parameterization. Consequently, the evolution equation can be always 
written as: 

vt 't R+ vp E na2 ar(p7 t, = ~ ( r ( p ,  t), t ) n ( ~ ( ~ ,  t), t), 
a t  

where F ( r ( p ,  t), t) is a scalar function evaluated at location r ( p ,  t) and n( r (p ,  t), t) rep- 
resents the outward normal to the closed contour r ( t )  at location r ( p ,  t). The vector field 
v(x, t )  = F ( x ,  t)n(x, t) is called the velocity field, and is designed to drive the evolving 
contour towards the desired boundary. 

As we have already seen in Sect. 2.3.2, surfaces can either be represented explicitly, by 
using parameterized models, or implicitly as the level set of a 3D function defined on the 
embedding space. In the theory of active contours, this leads to two different implementa- 
tions. The former encodes the manifold of interest with an explicit representation using a 
Lagrangian formulation, while the latter represents implicitly the contour as the level set 
of a function defined on higher-dimensional manifold in an Eulerian formulation [72]. We 
refer to the dissertation of Pons for an in-depth discussion of these concepts [77]. 

A. 1 - Explicit representations 

Explicit representations correspond to the type of parameterized representations proposed 
in the original snake model of Kass, Witkin and Terzopoulos [54]. Other types of param- 
eterized representations are found in the literature: finite elements [14, 661, B-spline [82], 



Fourier harmonics [go], superquadrics [94, 4, 51, . . . 
Parameterized models maintain an explicit representation of the contour and preserve 

the intrinsic topology of the initial contour. However, the preservation of the whole topol- 
ogy requires also the prevention of self-intersections, which proves to be computationally 
intensive and requires elaborate met hods to detect and prevent surface intersection during 
the evolution. To illustrate this point, let's consider an active contour modeled by a tessel- 
lation. A straight-forward implementation of surface self-intersections has a computational 
complexity of f 2, where f is the number of faces in the tessellation. Although the use of 
a coarsely discretized spatial lookup table will reduce the number of faces to be tested, 
resulting in a linear time complexity, this process is time-consuming and drastically slows 
down the active surface evolution [16, 611. 

In addition, the preservation of the initial topology is often a strong limitation to most 
explicit models, since explicit representations cannot change their topology during the evo- 
lution in order to fit the data topology. This is one important reason why the level set 
representation has received much interest in the deformable models literature. Several at- 
tempts have been made to overcome this problem. McInerney and Terzopoulos [65,67] have 
introduced the concept of T-snakes and T-surfaces, which are some topology adaptative 
deformable curves and triangulations. However, their approach is limited to a specific type 
of motion, where the model inflates or deflates only. Lachaud and Montanvert [57] propose 
a method based on the concept of 6-triangulation. Their approach is computationally inten- 
sive. A length parameter 6 is used'to control the sampling of the triangulation and to detect 
self-intersections, by monitoring the distance between pairs of neighbor and non-neighbor 
vertices. Delingette and Montagnat [20, 211 propose to modify the topology of an evolving 
simplex mesh with some elementary topological operators, but their approach needs manual 
interaction in 3D. Thus, a fully automatic and efficient handling of topology changes using 
explicit models remains an open issue. 

A.2 - Implicit representations 

Geometric active contours (i.e. level sets), which have been introduced by Caselles et 
al. [12], offer many advantages over explicit representations. In addition to their ease of 
implementation, level sets do not require any parameterization of the evolving contour. 
Self-intersections, which are costly to prevent in explicit deformable models, are naturally 
avoided and topological changes are automated. Also, many fundamental properties of the 
active contours, such as its normal or its curvature, are easily computed from the level set 
function. Last but not least, the theory of viscosity solutions [15] provides robust numerical 
schemes and strong mathematical results to deal with the evolution of the contour. 

However, the level set formulation has several disadvantages that limit its applicability. 
First, the level set formulation can only represent manifolds of codimension one without 
borders, such as closed curve in lit2 or closed surfaces in It3. Also, the representation 
of the contour of interest using the level set of a function defined on higher-dimensional 
manifolds leads to implement at ions that are much more comput at ionally expensive than 
explicit approaches. Some methods have been proposed to alleviate this problem, such as 
the narrow band method [I]. In this methodology, the function encoding the active contour 
is updated only in a small neighborhood (i.e. a narrow band) of the active contour, and the 
neighborhood is updated iteratively throughout the level set evolution. 

Another shortcoming of the level set formulation is the point-wise correspondence prob- 



lem. The implicit formulation and the absence of parameterization result in the loss of 
the point-wise correspondence during the evolution. Some recent work proposed a method, 
based on a system of coupled Eulerian partial differential equations, to overcome this limi- 
tation [76, 771. 

The ability to automatically change the topology of the active contour is often pre- 
sented as an advantage of level set methods over explicit deformable models. However, 
this behavior is not desirable in some applications. This is typically the case in biomedical 
image segmentation, where the topology of the target shape is prescribed by anatomical 
knowledge. In order to overcome this problem, a topology-preserving variant of the level 
set method has been proposed [46]. Their method is based on the theory of digital topol- 
ogy and uses the underlying embedding space to constraint the topology of the interior of 
the level set. However, the strict topology preservation necessitates an initialization of the 
active contour that is close to its final configuration in order to avoid topological barriers 
that can easily generate large geometrical errors. In the case of complex structures, like the 
cortical surface, such initialization proves to be extremely difficult. For this purpose, Han 
et al. have designed a complex algorithm to correct retrospectively the topology of a binary 
segmentation, thereby providing retrospectively an accurate initialization of the geometric 
active contours [44]. 

In the next two paragraphs, we present in more details the level set method. The 
standard level set formulation is presented first, followed by the topology-preserving method 
of [46]. 

A.2.a - The  Standard Level Set Formulation 

The level set method models the evolution of an active contour I' : t E R+ -+ r ( t ) ,  
where r ( t )  is a closed and embedded hypersurface in Bn, by the level set of a function 
defined on Rn. Although many functions could be chosen to represent the active contour 
I?, the signed distance function is preferred for its st ability in numerical comput ations. 

In more details, the moving contour r is represented by a level set function 4 : Bn xR+ -+ 

R such that: 

+(x, t) < 0 if x is inside r ( t )  
d(x, t )=O if x ~ I ' ( t )  
$(x, t )  > 0 if x is outside r ( t )  

A deformation of r under the velocity field v: 

corresponds to the level set formulation: 

One possible implementation of the level set evolution using an explicit time step is described 
in Alg. 1. 

A number of points need to be explicated. The above procedure updates all grid points 
in the image, when only the points close to the current active contour need to be updated. 
Some methods have been proposed to alleviate this problem, such as the narrow band 



method [I]. The grid points are updated only in a small neighborhood of the active contour. 
Also, in the level set formulation, the stability of the numerical evolution depends cru- 

cially on the chosen numerical schemes. The gradients and other derivatives require adapted 
numerical schemes, which depend on the type of velocity field or the type of partial differ- 
ential equation to be updated. 

Algorithm 1 Standard level sets - 
for all iterations do 

for all grid points x do 
Compute the new value of the level set function at (t + At) 
@(x, t + At) = +(x, t) + At V(X, t ) .V4(~,  t )  
if necessary then 

Reinitialize the distance function 4. 

Finally, we note that the distance function 4 needs to be regularly reinitialized during 
the evolution of the active contour. Some methods have been proposed to avoid this costly 
reinitialization step [41]. We refer the reader to the dissertation of Pons for more details [77] 
on the theory of level set. 

A.2. b - Topology-Preserving Level Sets 

The ability to automatically handle topology changes is a long-acknowledged advantage 
of the level set method over explicit deformable models, but may not be desirable in some 
applications where some prior knowledge of the target topology is available. This is typi- 
cally the case in biomedical image segmentation, where the topology of the organs and their 
mutual topological relations is prescribed by anatomical knowledge. 

In order to overcome this problem, a topology-preserving variant of the level set method 
has been proposed [46]. The level set function is iteratively updated with a modified pro- 
cedure based on the concept of sdmple podnt, borrowed from digital topology (see Sect. 2.3.1); 
the final mesh is obtained by a topology-consistent marching cubes algorithm (see Sect. 2.3.3). 
This method ensures that the resulting mesh has the same topology as  the user-defined ini- 
tial level set. 

Algorithm 2 Topology-preserving level sets. Han et al. [46] 
for all iterations do 

for all grid points do 
Compute the new value of the level set function 
if the sign does not change then 

Accept the new value 
else {sign change) 

Compute the topological numbers 
if the point is simple then 

Accept the new value 
else 

Discard the new value 
Set instead a small value of the adequate sign 

Han et al. [46] have used the concept of simple point to design a topology-preserving 
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variant of the level set framework. The binary object of interest is the interior of the contour, 
i.e. the domain where the level set function is strictly negative: X = {x I @(x) < 0). The 
digital topology of X is preserved during the evolution by means of a modified update 
procedure detailed in Algorithm 2. This approach prevents digital non-simple grid points 
from changing sign, thereby retaining the initial digit a1 topology throughout the level set 
evolution. 

For this method to be useful, it must be complemented with a topology-consistent iso- 
contour extract ion algorithm. Standard marching squares or marching cubes algorithm [60] 
do not generate topologically-consistent tessellations. In order to alleviate this problem, 
Han et al. have designed a modified connectivity-consistent marching contour algorithm, 
by building a specialized case table for each type of digital topology (see Sect. 2.3.3). Using 
the t opology-preserving level set algorithm and the topology-consist ent marching contour 
algorithm in conjunction, with the same digital topology (n, 5) throughout the process, 
guarantees that the output mesh is topologically equivalent to the user-defined initial level 
set. 

A.3 - Limitations of active contour methods 

All these methods have the advantage of allowing the user to specify the proper topology 
and not allowing it to change. Unfortunately, the energy functionals driving the defor- 
mation are highly non-convex and the attainment of the desired final surface most often 
requires an initialization of the model that is close to its final configuration. Furthermore, 
these methods often fail to represent accurately deep folds in the surface. In addition, local 
topological constraints can easily lead to large geometric inaccuracies in the final cortical 
representation that are difficult to correct retrospectively. In the case of cortical segrnen- 
tation, this can occur, for instance, when an erroneous segmentation results in a bridge 
connecting two banks of a sulcus. In order to maintain the correct topology, the surface 
must "drape" over the incorrectly classified region. Finally, one more subtle drawback of 
implicit represent at ions is that even though level sets achieve sub-voxel accuracy, the exact 
location of the contour depends on the image resolution. For instance, in the case of two 
self-touching banks of a sulcus, the finite image resolution and the topological constraint 
necessitate some voxels to be labeled as outside voxels, therefore imposing a constraint on 
the location of the surface. To solve this problem, Han et al. [45] have implemented a mov- 
ing grid algorithm, which aims at optimally deforming the underlying 3D grid for accurate 
implicit representations. 

B - Digital Homotopic Deformation 

Similarly to active contour models, digital approaches [62, 78, 10, 61 deform an initial re- 
gion with a known given topology (typically a single voxel carrying a spherical topology), 
by addition/deletion of points, minimizing a global energy functional while preserving the 
correct digital topology. Regions are grown or shrunk by adding points that will not change 
the region topology. Most of these methods are based on the theory of digital topology and 
the notion of simple point that we have reviewed in Sect. 2.3.1. 

The limitations of these methods are the same as those of active contours. The final 
segmentation is strongly influenced by the order in which the region is deformed, and also by 
local topological constraints which potentially lead to large geometrical errors. Particularly, 



the locations of the final cuts (i.e. the locations of the non-simple points) strongly depend 
on the order in which the points are added to the topologically constrained region. Also, 
these methods are limited by the resolution of the image and might not be able to represent 
deep folds in the structure. Finally, we note that the theory of digital topology does not 
provide a consistent framework for multi-labeled images and is therefore limited to binary 
images. Some approaches [78,6] ignore this issue by assigning the same connectivity rule to 
a l l  structures of interest - in which case, the connectivity has to be chosen equal to (6,26). 
However, in this inconsistent framework, it is not possible to guarantee all voxels to be 
assigned to a specific structure. Also, the detection of topological changes, i.e. the location 
of non-simple points, is more challenging, since topological numbers cannot be computed 
in a consistent manner. 

C - Segmentation by Registration 

Finally, some approaches have been proposed to match a template with a given topology 
onto a specified MRI image [13, 53, 61. These methods have the strong advantage of being 
able to enforce complex topology in the segmentation process, and to encode the spatial 
relationships that exist in between structures [6]. Yet, the design of elaborate templates 
that include several structures with the correct topology is challenging. 

Similarly to other topologically-constrained met hods, the topological preservation might 
lead to large geometrical errors in the final segmentation. Moreover, the projection of the 
template topology onto a given image is a non-trivial task [53]. 

D - Summary of the Limitations of Topologically-Constrained Segmentations 

Approaches that directly integrate the topological constraint into the segment at ion process 
have the advantage of allowing the user to explicitly specify the topology of the final seg- 
mentation. In the case of segmentation by registration, full brain models containing several 
structures can be matched onto a targeted image. 

However, these methods are highly sensitive with regard to their initialization, and 
accurate final configurations most often require an initialization of the models that is close 
to its final configuration. One of the main reasons is that the energy functionals driving 
the deformation are most often highly non-convex and the evolution easily trapped in local 
minima. The design of more elaborate energy functionals generally offers a solution to this 
problem. Another reason is that topologically constrained evolution often leads to large 
geometric errors, due to the topological constraint and the presence of topological barriers. 
This is the case for methods that aim at segmenting the cortex starting from one single 
object located deep inside the cortical surface. Large topological barriers are often generated 
during the template deformation leading to inaccurate final segmentations. This is mostly 
a result of the presence of noise in the image and of the fact that topologically constrained 
segmentation prevents the formation of cavities (easy to detect and suppress) as well as the 
formation of handles. 

Finally, we note that digital methods, as well as implicit representations that use the 3D 
embedding space to encode the surface of interest, are constrained by the finite resolution 
of the 3D grid. This might be problematic for the segmentation of the pial surface (the 
surface separating gray matter from cerebrospinal fluid), as opposite banks of a sulcus are 
often in tangential contact. 



Topologically constrained segment at ion met hods and their limit at ions is the focus of 
Chapters 3 and 4. In Chapter 3, using the theory of digital topology, we introduce a new 
concept that extends and generalizes the restrictive notion of simple point. Simple points 
preserve the topology of a digital object during a deformation. However, the generation of 
cavities or disconnected components as well as the formation of handles is prevented. The 
extension of the concept of simple point to multi-label images, which we call multisimple 
point, ensures that no topological defects are generated while splitting or merging th e 
components of the object.Based on this concept, in Chapter 4, we then introduce a new 
active contour framework that is more flexible than topology-preserving level sets. This 
algorithm introduces a fine degree of control over topological changes in level-set-based 
image segmentation. 

2.4.2 Retrospective Topology Correction 

Recently, new approaches have been developed to correct retrospectively the topology of 
an already-segmented image. These techniques, which do not impose any topological con- 
straints on the segmentation process, can focus on attaining more accurate models. Many 
segmentation techniques, using local intensity, prior probabilities, and/or geometric infor- 
mation regardless of topology, will be able to generate accurate cortical surfaces, with few 
topological inconsistencies. 

These methods can be divided into two main classes: volume-based methods that work 
directly on the volume lattice and correct the topology by additionldeletion of voxels [89, 
56, 441, and surface-based methods that aim at modifying the tessellation by locating and 
cutting handles [28, 431. 

A - Volume-based , Approaches 

Most volume-based approaches have been specifically designed to correct the topology of 
the cortical surface. 

In pioneering work, Shattuck and Leahy proposed a method to remove all the handles 
from a binary white matter segmentation of the brain [89]. They examine the connectivity 
of the segmentation to detect topological defects and minimally correct them by changing 
as few voxels as possible. One drawback of their approach is that the "cuts", which are 
necessary to correct the topological defects, can only be oriented along the Cartesian axes 
and give rise to "unnatural" topological corrections. Their method is based on the theory 
of digital topology but is limited to the 6-connectivity and has not been generalized for any 
other connectivity rule. 

Inspired by their work, Han et al. developed an algorithm to correct the topology of a 
binary object under any digital connectivity [44]. They detect handles by graph analysis, 
using successive foreground and background morphological openings to iteratively break the 
potential topological defects at the smallest scales. Contrary to the approach of Shattuck 
and Leahy, "cuts" are not forced to be oriented along cardinal axes. However, topological 
corrections at a specific scale depend on the choice of filter, either foreground or background 
morphological filter, which fails to evaluate simultaneously the effect of two complementary 
solutions (i.e. cutting the handle or filling the corresponding hole) on the corrected seg- 
ment ation. 



Kriegeskorte and Goeble use a region growing method prioritized by the distance-te 
surface of the voxels in order to force the cuts to be located at the thinnest part of each 
topological defect [56]. The same process is applied to the inverse object, offering an al- 
ternative solution to each cut. An empirical cost is then assigned to each solution and 
the final decision is the one minimizing the global cost function. It is important to note 
the limitations of methods that rely on distance ordering maps. For instance, in 2D, the 
distance from the object boundary can always help find the thinnest part of a non-uiliform, 
ring-shaped object. Unfortunately, this same effect does not hold in 3D if the ring-shaped 
object is actually a flat 3D object. Yet, in the case of cortical segmentations with "few" 
flat regions, the distance ordering provides a good solution for the location of topological 
defects at the thinnest parts of the volume. 

B - Surface-based Approaches 

Approaches of the other type operate directly on the triangulated surface mesh. 
Guskov and Wood [43] locate the topological defects present in the tessellation by sim- 

ulating wavefront propagation on the tessellation. A selected vertex is used to initialize a 
region growing algorithm, which detects loops (i.e. topological defects) in the triangulation 
where wavefront s meet. Topological correct ions are obtained through the use of opening 
operators on the triangle mesh, resulting in a fast method that depends on the initially 
selected vertex. 

In a similar work, Jaume [50] identifies minimal loops in the volume by wavefront prop- 
agation. This method assumes that the initial triangulation was generated through the use 
of a topologically-consistent algorithm (see sect 2.3.3). The minimal loops are then used 
to identify non-simple voxels in the volume, which are consequently deleted. Again, this 
approach orients the "cuts" along the Cartesian axes and generates "unnatural" topological 
corrections. 

Fischl et al. [28] proposed an automated procedure to locate topological defects by 
homeomorphically mapping the initial triangulation onto a sphere. Topological defects are 
identified as regions in which the homeomorphic mapping is broken and a greedy algorithm 
is used to retessellate incorrect patches, constraining the topology on the sphere S while 
preserving geometric accuracy by a maximum likelihood optimization. In this approach, all 
possible edges in a defective region are ordered using some measure; each edge is sequentially 
added to the existing tessellation if and only if it does not intersect any of the existing or 
previously added edges. 

Although this approach can attain reasonable surfaces in many cases, it is worth noting 
that the information necessary to evaluate the "goodness" of an edge does not exist in 
isolation, but only as a function of the tessellation of which the edge is a part. This is a 
critical point, as it implies that a greedy algorithm cannot in general achieve geometrically 
accurate surfaces, as the necessary information does not exist at the time the edge ordering 
is constructed. Another considerable subtlety needs to be noted. Every vertex in the 
original defect, even those present due to segmentation inaccuracies, will be present in 
the final retessellation, resulting in extremely jagged patches that only a strong smoothing 
would correct. As a consequence, the final configuration will approximately correspond to 
an average of all vertex positions in the original configuration. Finally, we note that, even 
though the final intrinsic topology will be the correct one (the one of a sphere, corresponding 
to an Euler number X = 2), the proposed method does not guarantee that the final surface 
will not self-intersect. 



C - Summary of the Limitations of Retrospective Topology Correction Algo- 
rithms 

Most of these methods assume that the topological defects in the segmentation are located 
at the thinnest parts of the volume and aim at correcting the topology by minimally mod- 
ifying the volume or tessellation (89, 44, 43, 501. Although they will often lead to accurate 
results, due to the accuracy of initial segmentations, topological corrections may not be 
optimal: additional information, such as the expected local curvature or the local inten- 
sity distribution, may lead to different corrections (i.e. hopefully comparable to the ones a 
trained operator would make). 

While these methods can be effective, they cannot be used to correct the topology of 
arbitrary segmentations, as they make assumptions on the topology of the initial input 
image. Most frequently, fully-connected volumes are assumed and cavities are supposed to 
be removed as a preprocessing step. In the case of cortical segmentations, the largest con- 
nected component will most often approximate accurately the final cortical surface, since 
the topological errors present in cortical segmentations are essentially handles. While T1- 
weighted MRI images3 have relatively good contrast in the gray/white matter areas, the 
highly folded nature of the cortical surface associated with the finite resolution of medical 
images often generates incorrect handles in segmentations produced by methods that do 
not constrain the topology. Therefore, the topology correction amounts to locating and 
correcting the handles present in the segmentation. On the other hand, the situation is 
different for subcortical segmentations. Subcortical segmentations are difficult to locate if 
solely based on intensity information. The modification of a small number of voxels is usu- 
ally sufficient to correct their topology, but one should not assume that handles are the only 
topological defects. Due to the presence of imaging artifact, anatomical variability, varying 
contrast properties, and poor registration, no assumptions can be made on the topology 
of the initial segment at ion. Especially, the selection of the largest connected component 
might exclude some large structures that will not be recovered by any (existing) topology 
correction met hods. 

We focus on the retrospective topology correction of already-segmented structures in 
Chapters 5 and 6. We propose two methods for both types of data structures commonly used 
in medical image segmentation, 3-dimensional volumes or surfaces. Each approach integrate 
additional (e.g. geometric, statistical) information to accurately locate and correct potential 
topological defects. A fully automated volume-based method to correct the topology of 
any binary volume volumetric segmentation under any digital connectivity is introduced in 
Chapter 5, while Chapter 6 focuses on the cortical reconstruction problem. 

3~1-weighted M H  imaging is the most common image modality used for cortical segmentation 
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2.5 Conclusion 

In this chapter, we covered the notions of topology that are of central importance to this 
dissertation. 

The essential notions of homeomorphism and homotopy, which are necessary to char- 
acterize the topology type of a geometric object, have been presented. We have clearly 
distinguished the intrinsic topology of an object from its homotopy type. Also, we have 
emphasized the connections linking topology and differential geometry that gave to defini- 
tion of the crucial notion of Euler-characteristic of a surface. The Euler-characteristic of a 
surface is a topological invariant that characterizes the intrinsic topology of an object. 

The adaptation of the continuous concepts of topology onto a discrete framework that 
is practical to the segmentation of medical images proves to be challenging. However, we 
have shown that topologically-consistent frameworks can be constructed by replacing the 
notion of continuity by the weaker notion of connectivity. The theory of digital topology is 
of central importance. In particular, we have introduced the important notions of simple 
point and topological numbers, and defined the discrete equivalent of homotopic deforma- 
tions based on the notion of simple point. Finally, we have presented isocontour extraction 
techniques and topology-preserving level sets. 

The essential notions presented in this chapter were: 

Intrinsic topology. 
The intrinsic topology is defined by homeomorphic deformations. 

Topology and homotopy type. 
The topology of an object is characterized by homotopic transformations. 

Euler-characteristic and genus. 
The Euler-characteristic of a compact connected surface e is the number ~ ( e )  defined 
by: 

X = U - e + f ,  

where u, e and f denote respectively the number of vertices, edges and faces of any 
polyhedral decomposition D of the surface e. The Euler-characteristic of a surface 
is a topological invariant, defining the intrinsic topology of a surface. The Euler- 
characteristic is related to mot her topologically invariant quantity, the genus g . We 
have the relation x = 2(K - g), where K is the number of connected components of 
the surface e. 
Simple point, topological numbers, and homotopic deformation. 
A simple point is a digital point that can be added or deleted from a binary ob- 
ject without changing the topology type of the object. Simple points are efficiently 
characterized by two topological numbers that can be computed locally from the 3D 
neighborhood of the point. Digital homotopic deformations are characterized as se- 
quences of addition or deletion of simple points. 









Chapter 3 

Mult isimple Points 

In this chapter, we introduce the digital concept of multisimple point. While simple points constrain 
the topology of a digital binary object to remain the same, multisimple points preserve only the number 
of handles i n  a digital volume. We introduce two extended topological numbers and derive necessary 
and suficient conditions for a point to be multisimple. Using this criterion, digital deformations 
that preserve the number of handles are designed. 

3.1 The Need for a New Digital Concept 

In this chapter and the following one, we focus on the limitations of segmentation tech- 
niques that directly integrate some topological constraints into the segmentation process. 
As mentioned in Sect. 1.4 and Sect. 2.4.1.D, the strict topology preservation is too restric- 
tive for most applications. We propose to tackle these problems using the theory of digital 
topology. This chapter consists of our theoretical contributions in digital topology while 
the next one describes a new segmentation methodology. 

Digital topology provides an elegant theory in which 3-dimensional images are assigned 
a precise topological meaning. In this framework, homotopic deformations of binary objects 
consist of iterative deletions or additions of simple points, i.e. points that do not change 
the digital topology of the initial objects. This set of homotopic deformations defines the 
classes of topological equivalence over the space of digital images. For instance, any object 
that can be homotopically deformed into a sphere is said to have the topology of a sphere. 
Homotopic deformations have been used extensively in image segmentation for the purpose 
of projecting the topology of a given template onto a structure. 

While being able to control the topology of a digital object is an attractive feature, 
forcing it to remain identical through an homotopic evolution imposes a strong constraint. 
In particular, homotopic deformations prevent the generation of cavities and disconnected 
components as well as the formation of handles. On the one hand, preventing the creation 
of handles that are difficult to correct retrospectively [89, 56, 44, 28, 431 is advantageous. 
On the other hand, changes of the number of connected components are less problematic, 
because the different components can be easily identified at post-processing time using 
standard region growing algorithms [36]. This is also the case for cavities, which can be 
interpreted as background E-connected components. 

In this chapter, we introduce the concept of mult is imple point that generalizes the 
notion of simple point. We introduce two new topological numbers, the extended topological 



numbers, which, used in conjunction to the topological numbers [7], allow us to distinguish 
different levels of topological changes. Furthermore, the multisimple point concept defines 
new sets of transformat ions that generalize the restrictive homotopic transformations. For 
clarity, the proofs are reported in Appendix A. 

3.2 Limitations of the Concept of Simple Points and of Topo- 
logical Numbers 

3.2.1 Simple Point and Topological Numbers 

A simple point can be added or deleted from a binary object without changing its topol- 
ogy type. In [7], Bertrand proposed an elegant way to characterize the topology type of 
a given voxel by introducing two topological numbers Tn(x, X) and Tz(x,X) computed 
from the adapted topological neighborhood N; (x, X) and Nk(x, x) respectively. Simple 
points are characterized by the necessary and sufficient condition Tn(x, X )  = TE(x, x) = 1. 
Section 2.3.1 describes the main notions of digital topology. 

Deletion or addition of non-simple points change the topology of a binary object. Non- 
simple points have many different topological types. These types correspond to interior or 
isolated points, and to different kinds of junctions. The values taken by the topological 
numbers Tn(x7 X )  and TE(x, X) can help characterize different topological types. For in- 
stance, an isolated point is characterized unambiguously by T,(x, X )  = 0, and an interior 
point by T~(X,  X) = 0. Other values of the topological numbers characterize different types 
of junctions, as listed in the table 2.1 and illustrated in Fig. 2-4 in Sect. 2.3.1. 

3.2.2 Limitations 

While it could be tempting to use the topological numbers to help characterize the different 
topological types of non-simple points, this approach is bound to fail. Topological numbers 
are locally computed from geodesic neighborhoods and do not carry any information on the 
global connectivity of the neighboring objects. Figure 3-1 illustrates this limitation with a 
simple example. The two circled voxels are characterized by the same pair of topological 
numbers, Tn(x, X )  = 2 and TE(x, X )  = 1, even though the deletion of one would disconnect 
the binary object in two components, while the deletion of the other would destroy one 
handle. 

Being able to disconnect and merge components without changing the number of han- 
dles is our objective. This would result in more flexible deformations, less sensitive to 
initialization and unexpected artifacts in the images to be segmented. Yet, the concept of 
topological numbers is too restrictive and necessitate the introduction of more elaborate 
topological criteria. 

3.3 Towards a First Characterization of Multisimple Points 

Our main objective is to provide a method to merge and split connected components, 
without generating handles. As we noted, the topological numbers of a point x are locally 
computed and do not carry any information on the global connectivity of the neighboring 
connected components of x (they measure the number of connected components in the sets 
N; (x, X )  and Nk(x, x)). In order to integrate information on the global connectivity, we 
consider the set Cn(x, X) of n-connected components of X \ {x) that are n-adjacent to x. 
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Figure 3-1: The two circled voxels are non-simple. Even though they possess different topology 
type, they are characterized by the same topological numbers, T,(x, X) = 2, T A ( x , ~ )  = 1. The 
removal of the right voxel would remove a handle in the voluine, while the removal of the left voxel 
would disconnect the object into two disconnected components. 

3.3.1 Merging and Splitting Connected Components 

We say that a point is rnultisirnple relative to an object X if and only if it can be added or 
removed without changing the number of handles and cavities of the object. Contrary to 
the case of simple points, the addition of a multisimple point may merge several connected 
components, and its removal may split a component into several parts. 

We consider the set Cn (x, X). If I Cn (x, X)  I = 1, the addition or the removal of x might 
respectively create or remove a handle and this would 4e the case if and only i f  the point 
x is non-simple. On the other hand, if the cardinality of the set Cn (x, X)  is strictly greater 
than one, the addition or the removal of x involves a merge or a split respectively. For each 
component C E Cn(x, X), taken separately, no handle is generated or removed if and only 
if the point x is simple relative to the single component C. 

Therefore, we define a point to be multisirnple relative to X if and only if it is simple 
relative to each component in Cn(x, X) taken separately,, resulting in an elementary criterion 
using topological numbers. 

Definition 3.1 Multisimple point x relative to X 
A point x E X is said to be rnultisirnple relative to X if and only if 

When merging or splitting connected components by adding or removing a multisimple 
point, the total genus (i.e. the total number of handles) of the different components is 
preserved. For example, a torus and a sphere merge into a torus. A double torus split into 
two tori or into a double torus and a sphere. We note th& under this condition, an isolated 
point is a multisimple point: components can appear OF disappear. The proof is provided 
in Appendix A. 



3.3.2 Generation of Cavities 

The concept of multisimple point evaluates if the addition or removal of a point changes 
the number of handles or cavities of an object. In particular, components may split into 
several connected components without introducing any handles or cavities. Using the fore- 
ground/background duality (Sect.2.2.4), we interpret the split of a foreground component 
as the generation of one or several background cavities. 

By duality, we propose a criterion for the generation of cavities, that prevents the gener- 
ation of handles and of disconnected components. We introduce the concept of multisimple 
point relative to  X. 

Definition 3.2 Multisimple point x relative to X 
A point x is  said to  be multisimple relative to  X if and only if: 

Similarly, we note that, under this condition, an interior point is a multisimple point, 
which allows cavities to be created or to disappear. 

3.3.3 A Sufficient Condition for Multisimple Points 

Based on the previous definitions, Def. 3.1 and Def. 3.2, we extend the concept of multisimple 
point to both foreground and background components. 

Definition 3.3 Multisimple simple point x relative to X or f? 
A point x is  said to be multisimple relative to  X or X i f  and only if: 

The addition or removal of a multisimple point x for X and X does not create or remove 
any handles in the volume, but allow for components to merge, split, appear or disappear. 

3.4 Characterization of Mult isimple Points 

3.4.1 Extended Topological Numbers 

Definition 3.3 provides a characterization of multisimple points that is sufficient. Any 
point x that verifies the criterion of Def. 3.3 can be removed or added to a digital object 
without generating or closing any handles in the volume. Yet, this characterization is not 
a necessary condition. Some voxels can be deleted or added to a digital object without 
introducing or destroying any handles in the volume, even though they would not verify the 
characterization of Def. 3.3. For instance, consider an empty cube C and a line segment 
L, such that the intersection L n C is exactly one single voxel x that is an extremity of L 
(Fig. 3-2). We focus on the object X = L U C. We note that x is not a multisimple point 



in the sense of Def. 3.3, since we have Tn(x, X )  = 2 and TE(x, X) = 2 under the topology 
n = 6 or n = 6+ (assuming that the sampling of these objects was well done as in Fig. 3-2). 
Yet, x can be removed from X and the number of handles preserved. 

Figure 3-2: e b )  Under the 6 or 6+-connectivity, the circled voxel does not verify the condition 
of Def. 3.3, since Tx(x, X) = 2. c) However, this voxel can be deleted from the digital object 
without introducing any handle in the volume. Therefore, definition 3.3 does not provide a necessary 
condition. 

As we mentioned in Sect. 3.3, if the cardinality of the set Cn (x, X )  is strictly greater than 
one, the addition or removal of a point x involves a merge or a split respectively. In order to 
capture these connectivity changes, we define two numbers, T$ (x, X )  and TL(x, x), which 
we call &ended topological numbers: 

Definition 3.4 Extended Topological Number T z  
The &ended topo2ogical number of a point x relative to an object X is: 

The condition T$(x, X )  > 1 implies that the deletion of the point x involves a split in 
the digital object X .  However, this condition does not guarantee that the genus of X (i.e. 
the number of handles) does not change. Before providing necessary and sufficient condi- 
tions of multisimple points, we introduce some useful properties of the extended topological 
numbers. 

3.4.2 Properties of the Extended Topological Numbers 

In this section, we derive a few properties of the extended topological numbers T z  and 
illustrate their relation to the topological numbers Tn. 

We first note that the extended topological numbers are always less than or equal to the 
topological numbers. Extended topological numbers characterize potential merges or splits 
only, while topological numbers control any kind of topological changes. 

Property 3.1 

In addition to splits and merges, the topological numbers characterize the potential 
formations of handles. For a given connected component C E Cn (x, X )  , the condition 



Tn (x, C) > 1 implies that the addition of the point x to X generates, at least, one handle 
in the connected component C. Therefore, the following property holds: 

Property 3.2 

T$ (x, X )  < Tn(x, X )  w 3C E Cn (x, X)  such that Tn (x, C) > 1 

or 

T:(x,x) =Tn(x,X) w VC E Cn(x7X) Tn(x,C) = 1 

Finally, we note that we have the following equivalence: 

Property 3.3 

Properties 3.2 and 3.3 illustrate the link between extended topological numbers and mul- 
tisimple points as defined in Def. 3.1. Using these properties, the definition of multisimple 
point can be reformulated as: 

Definition 3.5 Multisimple point x relative to X 
A point x E X is said to  be multisimple relative to X if and only if: 

3.4.3 Necessary and Sufficient Conditions 

To better understand the meaning of the extended topological numbers, we assume that 
the digital object X is composed of one single connected component. We focus on a point 
x E X such that the set Cn(x, X) is composed of one single component C. This is equivalent 
to choosing a point x E X such that X = C U{X} and T z  (x, X )  = 1. We first note that 
the removal of x does not disconnect the volume X ,  but might introduce an n-handle or 
remove an n-handle in the volume. The removal of an n-handle occurs if and only if we 
have Tn (C) > 1, which, using Pro. 3.2, is equivalent to the relation T z  (x, X)  < Tn (x, X). 
Similarly, an Si-handle is generated if and only if we have TE(C) > 1, i.e T$(x, X )  < 
TE(x, X). Therefore, we see that the preservation of the number of handles is guaranteed 
by the two relations: T$ (x, X )  = Tn (x, X )  and T$ (x, X) = TT(x, X).  

Since all components in Cn(, X)  are disconnected components, we see that a point is 
multisimple if and only if T: (x, X )  = Tn (x, X)  and T$ (x, X )  = TE(x, X)  . Consequently, 
we define a point to be multisimple for (x,X) by: 

Definition 3.6 Multisimple point x for (x,X) 
A point x is  a rnultisimple for (X,Z) i f  and only if: 

This condition ensures that no handles are generated in the background or foreground 
objects. This condition is also necessary, since the generation or the deletion of a han- 
dle implies that one of the topological numbers is larger than its corresponding extended 
topological number. 



3.5 Implement at ion Issues 

Given a digital image I, constituted of a binary object X composed of set of n-connected 
components Ck (i.e. X = U, Ck), and of the corresponding object Sf constituted of 5i- 
components C& (i.e. X = Ui C&), we show how to efficiently implement the concept of 
multisimple point. We describe a method to adequately modify the ' different connected 
components of X and 53 under topological control (i.e. using the concept of multisimple 
point), so that the topology of each component is known at all time. The only requirement 
is that the initial topology of the different connected components of X and z, Ck and Ck, 
must be known. 

In this process, we create and maintain a map L of labels over the 3D image I = X U X 
encoding for the different connected components of X and x. Each n- and Si-connected 
component is assigned a different label that is saved into the map L. Some care must be 
taken in order to ensure that the map of labels is correctly updated, so that every label in 
the map L corresponds to one specific component with a known topology. In this section, 
we refer to the object X as the foreground object and to X as the background object. 

3.5.1 Update of the Encoding Map of Connected Components 

In order to provide a consistent update scheme for the encoding map L, we consider the 
deletion and the addition of a multisimple point x E X U X. 

The deletion of a point x from an object X under the digital topology ( n , ~ )  might involve 
the split of several n-components or the merge of several %components. Information on 
how to update the label map is extracted from the topological numbers Tn, T,C, TE, and 
T The deletion of a multisimple point generates a merge of Si-components if and only 
if T$ > 1, and a split of n-components if and only if T,C > 1. Algorithm 3 describes 
how to consistently update the labels of the different connected components. Similarly, the 
addition of a point x in X should be interpreted as the deletion of a background point. 
Algorithm 4 describes the corresponding update scheme. 

3.5.2 Computational Complexity 

The map L of labels encodes the different connected components of X and Sf. Algorithms 3 
and 4 describe how to consistently update the labels of the different connected components. 
When a point is deleted or added to an object X,  the simple point condition, more restric- 
tive, is checked first, because it is computationally cheaper. If the point is non-simple, then 
Cn(x, X)  and Cii(x, X) are computed in order to check the multisimple criterion. 

Interestingly, if x is part of the background object and is a candidate for addition, 
Cn(x,X) can be deduced directly from the map L. Cn(x,X) is indexed by the set of 
n-adjacent labels of x. 

If x is a candidate for removal, the complete set Cn(x, X )  must be computed. The 
removal of the point x could disconnect the object X or remove a handle, therefore changing 
the global connectivity of X. Information on the resulting connectivity is not present yet in 
the set of neighbors N,*(x), and the set Cn(x, X)  must be computed using standard region 
growing algorithms [36]. Figure 3-1 illustrates this situation. The left circled voxel has one 
single neighboring component while the right circled voxel is adjacent to two components. 
This information can not be deduced from the set N,*(x). 

However, when dealing with components that do not possess any handles, the most com- 
mon situation in practice, the computation of Cn (x, X) involves local computations only. 



Algorithm 3 Deletion of a point x E X under the topology ( n , ~ )  

Compute Tn(x, X )  and TE(x, X) 
if isolated point {Tn(x, X) = 0) then 

Deletion of a n-component 
Delete the point x 
L(x) +- the only label %adjacent to x 
continue 

if interior point {TE(x, X) = 0) then 
Generation of a A-cavity 
Delete the point x 
L(x) +-- new label 
continue 

if the point is simple {Tn = Tsl. = 1) then 
Delete the point x 
L(x) +- the only label 5-adjacent to x 

else {non-simple) 
Compute the extended topological numbers T,f (x, X )  and ~ , f  (x, X) 
if the point is multisimple {T,f = Tn and T: = TE) then 

if TE> 1 then 
Merge of 5-components 
Merge the E-component s of CE(x, X) 

if Tn > 1 then 
Split of n-components 
Split the n-component that x belongs to 

Delete the point x 
L(x) t the only label E-adjacent to x 

else {;on-multisirnple) 
Prevent the deletion 

Since no handles are present in the initial volume, the geodesic neighborhood N; (x, X)  con- 
tains the necessary information on the connectivity of the adjacent components of Cn(x, X). 
The set of adjacent neighboring connected components Cn(x, X) can be replaced by the set 
cn(x, NA(x, X)). 

Merging 

The merging of connected components into one single component can be done easily using 
the label map L. If a point x is part of the background object and is a candidate for 
addition, Cn (x, X) can be deduced directly from the map L. The merging step assigns the 
same label to each neighboring connected components. 

Splitting 

One must be more careful when splitting components (i-e. split of a foreground component 
into several components or generation of cavities). This step requires the assignment of 
some unused labels to the new connected components that must be previously identified. 
This can be done in linear time using standard region growing algorithms. 



Algorithm 4 Addition of a point x E X under the topology ( n , ~ )  

Compute Tn(x7 X )  and TE(x, X) 
if isolated point {Tn(x, X) = 0) then 

Creation of a n-component 
Add the point x 
L(x) +- new label 
continue 

if interior point {TE(x, X )  = 0) then 
Deletion of a A-cavity 
Add the point x 
L(x) +- the only label n-adjacent to x 
continue 

if the point is simple {Tn = TE = 1) then 
Delete the point x 
L(x) + the only label n-adjacent to x 

else {non-simple) 
Compute the extended topological numbers T$ (x, X )  and T$ (x, X) 
if the point is multisimple {T$ = Tn and T; = TE) then 

if TE> 1 then 
Split of E-components 
Split the Si-components of CE(x, X) 

if Tn > 1 then 
Merge of n-components 
Merge the n-component that x belongs to 

Add the point x 
L(x) + the only label n-adjacent to x 

else {non-multisimple) 
Prevent the deletion 

3.6 Beyond Homot opic Deformat ions 

A homotopic deformation of a digital object X is a digital transformation that strictly 
preserves the digital topology of X.  Homotopic deformations are realized as sequences of 
additions and deletions of simple points. The concepts introduced in this chapter allow us 
to define new sets of transformations, which extend the restrictive notions of homotopic 
deformations. Depending on the criterion, we define 3 new sets of transformations. 

Based on Def. 3.1, we define a set of transformations that preserve the number of 
cavities and handles in an object, but allow the different components of the digital 
object to merge, split, appear or disappear. 

Definition 3.2 ensures that the number of foreground components does not vary, and 
that handles are not generated, resulting in a set of transformations that allow the 
number of cavities to vary only. 

The concept of multisimple point for (X,Z), Def. 3.6, prevents handles from disap- 
pearing or being created. The resulting deformations allow components to merge and 
split, appear or disappear, without generating handles during the deformation. We 
call this set of transformations the set of genus-preserving deformations. 



We note that the concepts introduced in this chapter can be used to characterize unarn- 
biguously the topological type of any voxel. Consequently, more elaborate transformations 
can be designed that behave exactly as desired by the user. 

3.7 Contributions of this Chapter 

Digital deformations involving simple points (i.e. homotopic deformations) preserve strictly 
the topology of a digital object. During the deformation, no handles, cavities, or discon- 
nected components are generated nor deleted. This concept leads to a large class of powerful 
segment ation algorithms under strict topology preservation. However, the strict preserve 
tion is a strong restriction that limits the applicability of these methods. In this chapter, 
we introduced the concept of multisimple point, which extends and generalizes the concept 
of simple point. Under this new criterion, deformations that preserve the number of han- 
dles but allow the number of components to vary can be designed. This will lead to new 
segmentation algorithms that are much more flexible than previous methods. This is the 
subject of the next chapter. 

The content of this chapter is a joint work with Gilles Bertrand, from the laboratory 
A ~ S I  (Laboratoire Algorithrnique et Architecture des Systkmes Informatique) at the ESIEE 
(Ecole Suphrieure d'Ing6nieur en Electronique et Electrotechnique). Part of this work has 
previously appeared in a technical report from the CSAIL [87]. 



Chapter 4 

Genus-Preserving Level Sets 

In this chapter, we present a method to exert a topological control over a level set evolution. Level set 
methods o$er several advantages over parametric active contours, i n  particular automated topological 
changes. In some applications, where some a priori knowledge of the target topology is available, 
topological changes may not be desirable. This is typically the case i n  biomedical image segmentation, 
where the topology of the target shape is prescribed by anatomical knowledge. However, topologically 
constrained evolutions often generate topological barriers that create large geometric inconsistencies. 
W e  introduce a topologically-controlled level set framework that greatly alleviates this problem. Unlike 
existing work, our method allows connected components to merge, split or vanish under some specific 
conditions that ensure no topological defects are generated. W e  demonstrate the strength of our 
method in  a wide range of numerical experiments and illustrate its performance on the segmentation 
of cortical surfaces and blood vessels. 

Beyond Digital Deformat ions 

In the previous chapter, we introduced the concept of multisimple point. The introduc- 
tion of this digital concept was motivated by the limit ations of topologically const rained 
segment ation techniques, particularly their sensitivity to different initializations and to the 
presence of noise or unexpected structures in the images. Multisimple points extend and 
generalize the restrictive concept of simple point. Based on this concept, we defined new 
digital transformations that are more flexible than homotopic deformations. 

Digital deformations are rarely used in medical image segmentation - much less fre- 
quently than active contour methods. The main reason is the difficulty to integrate cur- 
vature or shape information into the segmentation process using solely digital methods. 
Consequently, digital deformations are more sensitive to noise than active contour meth- 
ods. 

Nevertheless, the concepts introduced in the previous chapter can be used to design 
a flexible active contour framework. Similar to the approach described in [46], which im- 
ported the concept of simple point into the level set framework to design a topologically- 
preserving level set framework, we integrate the concept of multisimple point into the level 
set framework. Therefore, we combine the advantages of level set methods - particularly, 
the integration of curvature information into the segment ation process - with the subtle 
topological control offered by multisimple points. 



4.2 Active Contour Segmentation 

Active contours constitute a general technique of matching a deformable model onto an 
image by means of energy minimization (Sect. 2.4.1). Since their introduction by Kass 
et al. in [54], deformable models have benefited many computer vision research areas. 
Particularly, numerous algorithms based on the theory of deformable models have been 
proposed for the purpose of medical image segmentation [61, 18, 104, 46, 1061. 

Depending on the implementation, there are essentially two ways of representing an 
active contour. Parametric approaches encode the manifold of interest with an explicit rep- 
resentation using a Lagrangian formulation, while geometric active contours are represented 
implicitly as level sets of functions defined on higher-dimensiond manifolds in an Eulerian 
formulation [72]. Geometric active contours, which have been introduced by Caselles et 
al. [12], offer many advantages over parametric approaches. In addition to their ease of 
implementation, level sets do not require any parameterization of the evolving contour. 
Self-intersections, which are costly to prevent in parametric deformable models, are natu- 
rally avoided and topological changes are automated. Also, many fundamental properties 
of the active contours, such as the normal or the curvature, are easily computed from the 
level set function. 

The ability to automatically change topology is often presented as an advantage of the 
level set method over explicit deformable models. However, this behavior is not desirable in 
some applications. This is typically the case in biomedical image segmentation, where the 
topology of the target shape is prescribed by anatomical knowledge. In order to overcome 
this problem, a topology-preserving variant of the level set method has been proposed [46]. 
The level set function is iteratively updated with a modified procedure based on the concept 
of simple point from digital topology [7]; the final mesh is obtained with a modified topology- 
consistent marching cubes algorithm. This method ensures that the resulting mesh has the 
same topology as the user-defined initial level set. We refer to Sect. 2.4.1 for a more detailed 
description. 

While such topological preservation is desired in some applications, it is often too re- 
strictive. Because the different components of the contour are not allowed to merge or to 
split up, the number of connected components remains constant throughout the evolution. 
This number must be known by the user a priori and the initial contour must be designed 
accordingly. Also, the sensitivity to initial conditions, which already limits the applicability 
and efficiency of active contour methods, is considerably increased. The initial contour must 
both have the same topology as the target shape and be close enough to the final config- 
uration, otherwise the evolution is likely to be trapped in topological dead-ends including 
large geometric inconsistencies (Fig. 4-1-b and Fig. 4-2-b). 

Although being able to control the topology of an active contour is an attractive feature, 
forcing it to remain identical through an evolution constitutes a strong constraint. In 
this chapter, we propose a method to exert a more subtle topological control on a level 
set evolution. Some a priori knowledge of the target topology can be integrated without 
requiring that the topology be known exactly. Our method greatly alleviates the sensitivity 
to initial conditions by allowing connected components to merge, split or vanish without 
introducing any topological defects (such as handles). For example, an initial contour with 
a spherical topology may split into several pieces, go through one or several mergings, and 
finally produce a certain number of contours, all of which are topologically equivalent to 
a sphere. A subset of these components may then be selected by the user as the desired 
output (typically the largest component if one spherical contour is needed, the others being 



caused by noise). 
Our approach is based on the concept of multisimple point that we have introduced in 

the previous chapter (see Chapter 3). This criterion ensures that no topological defects are 
generated while splitting or merging the components of the object. The resulting algorithm 
fills the gap between the original level set framework and topology-preserving level set 
methods. Some experiments presented at the end of this chapter illustrate some potential 
applications that could greatly benefit from our approach. 

4.3 Genus-Preserving Level Sets 

The simple point condition is an efficient way to detect topological changes during a level 
set evolution. However, in many applications, the topology-preserving level set method of 
Han et al. is too restrictive. 

The primary concern is topological defects such as handles, which are difficult to retro- 
spectively correct [89,56,44,28,43]. On the other hand, changes in the number of connected 
components during the evolution are less problematic. Different connected components are 
easily identified using standard region growing algorithms. A subset of them may be se- 
lected by the user as the final output, typically the largest one if a single component is 
needed, the others being imputable to noise in the input data. 

The concept of multisimple point that we previously defined allows distinct connected 
components to merge and split while ensuring that no additional handle is generated in the 
object. For example, an initial contour with spherical topology may split into several pieces, 
go through one or several mergings, and finally produce a specific number of surfaces, all of 
which are topologically equivalent to a sphere. 

4.3.1 Multisimple points 

The different values of Tn and TE characterize the topology type of a given point x, providing 
important information with regard to its local connectivity to the object X. In particular, 
isolated points are characterized by T, = 0 and TK = 1, while different junctions by 
T, > 1 and TE = 1. 

This additional information was exploited in Chapter 3 to carefully design a multi-label 
digital framework, which allows different connected components to split, merge or vanish 
under topology control. We defined a point to be multisimple if and only if it can be added 
or removed without changing the number of handles of the object. Contrary to the case of 
simple points, the addition of a multisimple point may merge several connected components, 
and its removal may split a component into several parts. 

We introduced two extended topological numbers, noted T$ (x, X) and ~ , f  (x, X), which 
used in conjunction to the topological numbers provide a characterization of multisimple 
point. A point is said to be multisimple if and only if we have: 

When merging or splitting connected components by adding or removing a multisimple 
point, the total genus (i.e. the total number of handles) of the different components is 
preserved. For example, a torus and a sphere merge into a torus. A double torus may split 



into two tori or into a double torus and a sphere. We note that, under this condition, an 
isolated and interior points are multisimple points, which allows components to disappear1. 

4.3.2 Genus-Preserving Level Sets 

With the concept of multisimple point in hand, we are now ready to describe our new 
level set framework. Similarly to the approach of Han et al. [46], we exploit the binary 
nature of the level set function 4 that partitions the. underlying digital image into strictly 
negative inside points and positive outside points. During the evolution, we maintain a map 
L of labels coding for the different connected components of X and r. Each connected 
component of X is represented by a set of connected negative points, and is assigned a 
specific label in the label map L. Similarly, connected components of X constitute sets of 
connected positive points, and are assigned distinct labels in L. The label map L is updated 
concurrently with the level set function 4. 

The update procedure for each grid point at each iteration is concisely described in 
Alg. 5. The update scheme for the label map is the same as the one described in Chapter 3. 
For clarity, we explain the main concepts. During the evolution, the simple point condition, 
more restrictive, is checked first, because it is computationally cheaper. If the point is 
non-simple, then Cn(x, X)  and CE(x, X) are computed in order to check the multisimple 
criterion. 

Algorithm 5 Level Sets Under To~oloay Control With Handle Preservation 
Compute the new value of the level set function 
if the sign does not change then 

Accept the new value 
else {sign change) 

Compute the topological numbers 
if the point is simple then 

Accept the new value 
Update L(x) 

else {non-simple point) 
if the point is multisimple then 

Accept the new value 
Update L(x) 

else 
Discard the new value 
Set instead a small value of the adequate sign 

If x is part of the background (resp. foreground) object and is a candidate for addition, 
Cn(x, X) (resp. cii(x7K)) can be deduced directly from the map L. If x is a candidate for 
removal in X (resp. in X),  the complete set Cn(x, X )  (resp. CE(x, X)) must be computed. 
However, when dealing with components that do not possess any handles, the most com- 
mon situation in practice, the computation of Cn(x7 X )  and Cii(x, x) only involves local 
computations. 

As noted in Chapter 3, the map of labels L needs to be carefully updated. The more 
complex case is the removal of a multisimple point involving a split. In this case, some 
unused labels must be assigned to the new connected components. Algorithm 6 describes in 

'NO components can be spontaneously created in a level set evolution. 



detail the update procedure for the label map. Note that components can only be generated 
through the splitting of an already existing component, as level set evolutions do not allow 
for the spontaneous generation of new disconnected fronts; . 

Algorithm 6 Update Scheme for the Evolution of Level Sets Under Topology Control 
Compute the new value of the level set function 
if the sign does not change then 

Accept the new value 
else {sign change) 

Compute the topological numbers 
if the point is simple then 

Accept the new value 
if negative new value then 

L(x) + the only foreground label n-adjacent to x 
else 

L(x) + the only background label %adjacent to x 
else {non-simple point) 

Compute the extended topological numbers T z  (x, X) and T$ (x, y)  
if the point is multisimple {T$ = Tn and T$ = Tir) then 

if negative new value then 
if TE > 1 then 

Splitting of E-component 
Split the E-component of Cii(x, X) 

if Tn > 1 then 
Merging of n-components 
Merge the n-component that x belongs to 

Add the point x 
L(x) + the only label n-adjacent to x 

else {positive new value) 
if TE> 1 then 

Merging of E-components 
Merge the 7i-components of Cir(x, x) 

if Tn > 1 then 
Splitting of n-component 
Split the n-component that x belongs to 

Delete the point x 
L(x) + the only label E-adjacent to x 

else {non-mu1 tisimple point) 
Discard the new value 
Set instead a small value of the adequate sign 

The resulting procedure is an efficient level set method that prevents handles from being 
created during the evolution, allowing the number of connected components (including 
cavities) to vary. We insist on the fact that digital topology does not provide a consistent 
framework for multi-label images. However, by ensuring that no components of the same 
object X or X are adjacent, topological inconsistencies are avoided. 



4.3.3 Implement at ion Issues 

We consider the evolution of an active contour I? under the velocity field v. The level set 
formulation is the following: 

where the isocontour 6-'(0) represents the evolving contour. As described in Chapter 2 
(see Sect. 2.4.1), the implementation of the level set method is computationally expensive. 
In order to increase the computational speed of geometric deformable models, a narrow 
band method is usually adopted [I]. Only the grid points that are in a small neighborhood 
of the active contour are updated during the level set evolution. 

During a level set evolution, most points of the narrow-band do not change sign and do 
not imply a potential change of topology. The simple point condition, which only involves 
local calculations, is computationally cheap and leads to an efficient algorithm (see [8] 
and [46]). 

Similarly, when the initial level set components do not possess any handles, multisimple 
points, which constitute a direct extension of the concept of simple points, only require 
local computations. This situation is the most common in practice, since one is most often 
interested in segmenting structures that have a spherical topology. 

The merging of connected components into one single component can easily be done 
using the label map L. If a point x is part of the background object and is a candidate for 
addition, C,(x, X) can be deduced directly from the label map and the geodesic neighbor- 
hood L n A?; (x, X). The merging step simply amounts to assigning the same label to each 
neighboring connected components. 

One must be more careful when splitting components (i.e. split of a foreground com- 
ponent into several components or generation of cavities). During the evolution, some 
components may need to be split into several components, which requires the assignment 
of some unused labels to the new connected components that must be previously identified. 
This can be done using standard region growing algorithms. 

Also, an update of the narrow band might generate a series of useless and computa- 
tionally expensive splits depending on the ordering of the points in the narrow band. This 
would be the case, for instance, when a one-voxel wide region is iteratively broken into sev- 
eral pieces. In order to avoid the useless generation of connected components, we prevent 
components from splitting during the first pass in the narrow band by refusing sign changes 
of candidate voxels for a split. They are assigned a small value of the appropriate sign and 
an indicative flag is used to signal a potential component split. After the first pass, the 
multisimple condition is re-evaluated for each candidate voxels and the components are ret- 
rospectively updated. Finally, we note that, in order to avoid useless multiple splits of the 
same component into several pieces, every candidate voxel that is adjacent to an updated 
voxel has its flag deleted once a split has happened. 



4.3.4 Variations on Topologically-Controlled Level Sets 

The proposed framework can be modified to allow more specific topological control during 
the level set evolution. The multisimple condition introduced in Chapter 3 can be used to 
distinguish different topological changes. The splitting of a component or the merging of 
several components correspond to the condition: 

while the generation of a cavity of the merging of several background components are 
characterized by: 

Tn(x,x) = 1 { T$ (x, X)  = R ( x ,  X )  ' 

We note that the condition Tn = 1 implies T$ = 1, which proves that the previous criteria 
characterize multisimple point. 

Using these specific criteria, one can design more elaborate level set frameworks that 
allow some specific topological changes only. For instance, using the criterion 4.1, one can 
design a level set evolution that allow foreground components to split or merge only. On 
the other hand, cavities can be controlled using the criterion 4.2. 



4.4 Experiments and Applications 

In this section, we show the interest of using the genus-preserving level set method for 
image segmentation. We present some experiments illustrating the performance of our 
approach and introduce some potential applications. We first apply our level set framework 
to two synthetic examples to demonstrate its ability to handle disconnected components and 
cavities. Next, two real data segmentation tasks are presented: the generation of cortical 
surfaces from MRI images and the extraction of blood vessels from MRA images. 

In the following, we have used a simplistic velocity field, which is a combination of an 
intensity-based term, ( I  - Ithres), and a mean curvature term, H: 

where I denotes the scalar image to be segmented, Ithres is a suitable intensity thresh- 
old, which separates the object from the background, n(x, t)) is the outward normal to 
the isosurface of the actice contour at location x, and a is a weighting parameter. The 

Figure 4-1: Segmentation of a 'C' shape using a spherical initialization. The top row shows cuts 
of the 3D shape locating the initial contour. a) Traditioilal level sets. b) Topology-preserving level 
sets. c) Genus-preserving level sets. Differences of behavior are circled in the images. In this case, 
our method behaves exactly like the standard level set method. Topology-preserving level sets are 
trapped in a deadlock. 



corresponding level set evolution equation is: 

More complex images would require more elaborate evolution laws. However, the choice 
of a particular segmentation method is not the issue here. We rather focus on the improve- 
ments brought by our approach, as regards to the management of the topology, relative to 
the standard level set method and to the topology-preserving method of [46]. 

4.4.1 Synthetic data 

Experiment 1: Segmentation of a 'C' shape 

First, we consider the segmentation of a simple 'C' shape under two different initial- 
ization~ (Fig. 41 and Fig. 4-2). Our method, columns c, is compared to the original level 
set formulation, columns a, and the topology-preserving model introduced by Han et al. [46], 
columns b. The differences of behavior are circled in the images. Two different initializa- 

Figure 4-2: Segmentation of a 'C' shape using a rectangular initialization. The top row shows cuts 
of the 3D shape locating the initial component. a) Traditional level sets. b) Topology-preserving 
level sets. c) Genus-preserving level sets. Differences of behavior are circled in the images. Our 
method is able to achieve a correct segmentation without generating a toroidal topology during the 
evolution. I 



tions (a little sphere in Fig. 4-1 and a larger box in Fig. 4-2) were used to test the sensitivity 
of each method to initial conditions. 

In these simple examples, both standard level sets and genus-preserving level sets yield 
the expected result. With the first initialization (Fig. 4-1-a,c) the two methods behave in 
exactly the same way, because no handle is generated during the evolution. During the 
evolution, three distinct components are generated, one of which vanishes, while the two 
other components merge, closing the 'C' shape. With the second initialization (Fig. 4-2-a,c) 
they behave differently. Standard level sets temporarily generate a toro'idal topology (row 
3, column a), whereas our method prevents the formation of the handle (row 3, column c) 
by delaying a merging until a split in another part of the object occurs. 

In contrast, topology-preserving level sets yield poor results. For the two different ini- 
tialization~, they get trapped in a topological deadlock. Although the final surface has the 
correct topology, it has large geometric errors (row 4, column b): a filament linking the 
two ends of the 'C' and a separating membrane at the middle of the 'C'. These topological 
barriers, generated during the evolution, are difficult to correct retrospectively. 

The behavior of our approach corresponds to a trade-off between standard level sets 
and topology-preserving level sets. Compared to the former, the formation or closing of 
handles is prevented. Compared to the latter, the ability to change topology under certain 
condition greatly alleviates the sensitivity to initial conditions. 

Experiment 2: Formation of cavities 

The second experiment, shown in Fig.4-3, illustrates the ability of our approach to gener- 
ate cavities during the evolution. The object to be segmented is a synthetic cube, containing 

Figure 4-3: Segmentation of a cube containing 3 cavities. 10 initial seed points were randomly 
selected. Note how components split, merge and disappear during the evolution, and how the active 
contour encloses cavities. 



3 large cavities. 10 seed points, randomly selected inside and outside the volume, were used 
to initialize the level set evolution reported in Fig.4-3. During the evolution, components 
merge, vanish and produce cavities, generating a final accurate represent ation constituted 
of 3 spherical cavities and the main object. We note that all the components are easily 
extracted, since they carry distinct labels that are iteratively updated during the evolution. 

4.4.2 Real data 

Two segmentation tasks are presented that illustrate the potential benefits of our novel level 
set framework : the segmentation of cortical surfaces from MRI and the extraction of blood 
vessels from MRA data sets. 

Experiment 3: Cortical segmentation 

Excluding pathological cases, the cortex, which corresponds to a highly-folded thin sheet 
of gray matter, has the topology of a sphere. The extraction of accurate and topologically- 
correct cortical representations is still an active research area. In this example, the cortical 
surface is initialized with 55 spherical components, automatically selected in a greedy man- 
ner, such that every selected point is located at a minimal distance of lOmm from the 
previous ones (Fig.5-3). Topology-preserving level sets could not handle such an initializac 
tion, since the number of components would remain constant throughout the evolution. As 
a consequence, only one initial seed could be used, leading to a slower segmentation process 
and potentially to topological deadlocks. Standard level sets yield a final cortical surface 
with 18 handles. On the other hand, using our method, the components progressively 
merge together and enclose cavities, resulting in a final surface composed of 6 spherical 
components: the cortical surface and 5 small cavities. 

Figure 4-4: Segmentation oft he cortex from an anatomical MFU. The initial level set was constituted 
of 55 connected components. The final surface has a spherical topology, corresponding to an Euler 
number of 2. The same level set evolution without topological control results in a final surface with 
18 topological defects (Euler number of x = -34) 



Experiment 4: Segmentation of blood vessels 

Finally, we show how our method could be applied to the segmentation of blood ves- 
sels from Magnetic Resonance Angiography. Because these vessels do not split and merge, 
their topology is the one of several distinct components with no handles (i-e. each compo- 
nent has the topology of a sphere). While traditional level sets produce segmentations that 
could include topological defects, topologically constrained level sets would result in a slow 
and laborious segmentation. Since the simultaneous evolution of several components, which 
cannot be merged together, can easily be trapped in topological dead-ends, each component 
would need to be iteratively initialized, when the evolution of the previous one has termi- 
nated. Moreover, when using an initialization with a bounding box, topology-preserving 
level sets yield a final surface with many geometrical inconsistencies due to topological bar- 
riers, displayed in Fig. 4-6. 

Figure 4-5: Segmentations of blood vessels in a 3D angiography under two different initializations. 
Top row: 20 seed points were selected to initialize the active contour, which generates 3 components. 
Bottom row: An enclosing contour is used to initialize the level set. After 9 merges and 99 splits, 
the final segmentation is constituted of 91 components, 53 of which were due to random noise. 

On the other hand, our method offers the possibility to concurrently evolve multiple 
components that can merge, split and vanish. The initial contour can be initialized by a 
set of seed points, manually or automatically selected, or by a single enclosing component, 
without affecting much the final represent at ion. 

Figure 4-5 shows the segment ation of an angiography under two different initializations. 
In a first experiment (top row), 20 seed points were automatically selected at the brightest 
locations in the MRA. The level set evolution iteratively merged most of the components, 
generating a final segment ation with 3 spherical components. In the second experiment 
(bottom row), one single global component, enclosing most of the object of interest, was 
used to initialize the active contour. During the evolution, 9 components merged and 99 



Figure 4-6: Segmentations of blood vessels from MRA produced by a) a topologically constrained 
evolution [46], starting from a bounding box b) our genus-preserving level set framework. The image 
contains several artifacts, which are mostly due to noise. As a consequence, several disconnected 
components are present in the final segmentation produced by our method. Topologically con- 
strained segmentation fails to segment out these disconnected components and produce an incorrect 
segment at ion. 

split producing a find segmentation composed of 91 components, 53 of which were single 
voxel components due to random noise in the imaging process. 



4.5 Contributions of this Chapter 

In this chapter, we introduced a new level set framework that offers control over the topol- 
ogy of the level set components during the evolution. Contrary to previous approaches that 
either do not constrain the topology or enforce a hard topological constraint, our method 
exerts a subtle control over the topology of each component to prevent the formation of 
topological defects, such as handles (or cavities depending on the application and the choice 
of active contour model). Distinct components can merge, split or disappear during the evo- 
lution, but no handles (or cavities) are generated. In particular, a contour composed solely 
of spherical components will only produce spherical components throughout the evolution. 
In this case, the most common situation in practice, all computations are local and the mul- 
tisimple point checking can be done efficiently. The only computational complexity comes 
from the generation of new components, as new labels need to be assigned to each. 

While the original level set model does not provide any topological control, topology- 
preserving level sets impose too restrictive of a constraint. Our framework establishes a 
trade-off in between the two models. Compared to the former, the formation of new han- 
dles and the closing of existing handles are prevented. Compared to the latter, the ability 
to change topology under certain conditions greatly alleviates the sensitivity to initial con- 
dit ions. Our framework offers a subtle topological control that alleviates most problems of 
topologically-constrained methods (i.e. sensitivity to initialization and noise, simult aneous 
evolution of multiple components and speed of convergence). The experiments presented 
in this chapter illustrate some applications that could potentially benefit from our approach. 

Finally, we also note that the proposed framework can be adapted to allow different 
levels of topological control during the level set evolution. Particularly, the two criteria 4.1 
and 4.2 can be used to distinguish different types of voxels, such as the ones leading to 
a split or a merge of components from the ones generating or destroying cavities, among 
others. 

The content of this chapter is a joint work with Jean-Philippe Pons, from the Odyssbe 
Project at the I.N.R.I.A. (Institut National de Recherche en Informatique et en Automa- 
tique) in Sophia-Antipolis, France. Part of this work has previously appeared in technical 
report from the CSAIL [87], a special issue of NeuroImage [26], and was presented at a 
workshop of the International Conference o n  Computer Vision [88]. 







Chapter 5 

A general digital framework for the 
topology correction of binary 
images 

W e  propose a method for automatically correcting the spherical topology of any binary segmenta- 
tion under any digital connectivity. A multiple region growing process, concurrently acting on the 
foreground and the background, divides the segmentation into connected components and successive 
maximum a posteriori decisions guarantee convergence to the correct spherical topology. In contrast 
to existing procedures that assume specific initial segmentation (e.g. full connectivity, no cavities, 
etc) and are designed for a particular task (e-g. cortical representation), no assumption is made 
of the initial image. Our method, applied to subcortical segmentations allows us to accurately cor- 
rect the topology of fourteen deep nuclei i n  a few minutes; the topology correction of each separate 
hemisphere white matter is achieved i n  approximately 30 minutes. 

Introduction 

In this chapter, we focus on the retrospective correction of the topology of 3-dimensional 
digital segmentations. Many segment ation algorithms produce 3-dimensional segment ations 
without constraining the topology. Only a few approaches, reviewed in Chapter 2, have been 
proposed to correct the topology of binary segmentations. 

While these methods can be effective, they cannot be used to correct the topology of 
arbitrary segmentations. They make assumptions on the topology of the initial input image 
and assume fully-connected volumes without cavities. However, for most segmentations, 
because of the presence of imaging artifacts, anatomical variability, varying contrast prop- 
erties, and poor registration, no assumption can be made on the initial segmentation. 

Also, most of these methods don't use any geometric or statistical information; they aim 
at correcting the topology by minimally modifying the volume or tessellation, i.e. with the 
smallest amount of voxel changes. Although such an approach will often lead to accurate 
results, due to the accuracy of initial segmentations, topological corrections might not be 
optimal. 

In this chapter, we introduce a fully automated volume-based method to correct the 
topology of any binary volumetric segment ation under any digit a1 connectivity. The novelty 
of our approach comes from the fact that any initial segmentation, containing disconnected 
regions, handles, and cavities, will be corrected. A multiple region growing process allows 



us to simultaneously work on different parts of the volume and to incorporate statistical 
information. At each step of our iterative topological correction, minimum cost decisions 
are taken and convergence is guaranteed. In the following sections, we discuss the main 
assumptions of the algorithm and present some results on subcortical and cortical data. An 
application of the proposed method for multiple subcortical segmentations concludes this 
chapter. 

5.2 Methods 

Our method is phrased within the theory of digital topology which establishes an elegant 
and efficient topological framework over the set of digital images. We correct the topology 
of any binary segmented volume So under a set of compatible digital connectivities ( n , ~ ) .  
Compatible connectivities (n,E), which are necessary to avoid topological paradoxes, repre- 
sent the connectivities used for the foreground object F and the background object B = F 
respectively. We refer to Sect. 2.3.1 for more details on digital topology. 

5.2.1 Notations 

In the next sections, we will need the following definitions and notations: 
Connected Components: we denote by C,(X) the set of n-connected components in the 
digital object X. The set of n-adjacent n-connected components to a point x in a digital 
object X is still denoted Cn(x, X).  
Residual and body labels: during the algorithm, different connected components are gener- 
ated, and voxels are assigned different labels. Body labels characterize voxels belonging to 
a body component with a known topology, and residual labels characterize voxels belonging 
to a component with an unknown topology. 
Seed point: a residual point of X that is simple or isolated relative to the body label points 
of X. Under this definition, changing the residual label of a seed point to body will not 
introduce any topological defects into the body component segmentation of X.  
Multisimple point: a residual point x E X that can be added to any of its adjacent body 
components (E Cn (x, X)) without introducing any topological defects. This concept was 
introduced in Chapter 3. The merging of a multisimple point into one of the adjacent body 
components, associated with the merging of the other adjacent body components into the 
first one, will not change the topology of the new component. We will make important use 
of this concept, as it allows us to work concurrently on different parts of the object, but 
still be able to control the whole topology of the resulting segmentation. 

5.2.2 Overview of the Approach: Bayesian Interpretation 

Our topology correction proceeds in two consecutive steps. First, the topological defects 
are accurately located using a multiple region growing process integrating statistical and 
geometrical information. Then, each defect is iteratively corrected by maximizing a fitness 
function that assesses the goodness of each topological correction. 

Our topology correction can be phrased within the framework of Bayesian parameter 
estimation theory: we search for the topologically-correct maximum a posteriori (MAP) 
estimate of the segment at ion S given an observed (potentially multi-spectral) image I. 

According to this approach, one can relate p(SI I), the probability of a segmentation S 
given the observed image I, to p(IlS), the probability of the image occurring given a certain 



segment ation, toget her with p(S) , the prior probability of the segment ation: 

In our Bayesian interpret at ion, the fitness function, assessing the goodness of each topo- 
logical correction, is the posterior probability P(SI I ) .  Different models for P(Sl I) are pos- 
sible. In the following, we introduce one model that captures the volumetric information 
present in digital segment at ion. More elaborate models (e.g. models integrating curvature 
information) are possible, and will be presented in Sect. 5.6. 

S(x) denotes the label of the voxel x, i.e. foreground or background. Assuming that 
the noise at each voxel is independent from all other voxels in the image, we can rewrite 
p(I1S) as the product of the distribution at each voxel v over the voxel grid V: 

Finally, we assume that the labels S(x), for all x E V, are independently distributed, which 
allow us to rewrite p(S) as the product of the distribution at each voxel over V: 

The last hypothesis might appear overly simplistic, as voxels are certainly not topologically 
independent. However, we note that the topological independence of neighboring voxels is 
intrinsically related to the image resolution. One voxel that would generate a handle in 
a binary segmentation at a specific resolution would not produce a topological defect at 
a higher resolution. Therefore, the latter assumption on the independence of each voxel 
should simply be interpreted as a way to integrate prior information into the segmentation 
process. Some voxels, due to their location relative to the overall image, are more likely to 
be labeled as foreground than others. 

Using Eq. 5.2 and 5.3, the probability distribution of the segmentation given the ob- 
served image can be rewritten 

We assume that we can compute the probability p(I(x)(S(x))p(S(x)) = p(I(x), S(x)) for 
each voxel x: we use p, (x, S(x)), p, (x) or p, to denote this joint probability. Consequently, 
we assign to each voxel a cost: e(x) = ln(p,(x, s(x))lp,(x, S(x)), which represents the 
variation in the probability of the MAP estimate, when changing the voxel label from S(x) 
to S(x) (Fig. 5-3-b).' 

Directly computing the MAP estimate of S in Eq. 5.1 under the spherical topological 
constraint is comput ationally intractable. Instead, we employ an iterative met hod on the 
initial segmentation So, which makes minimal decisions at each step. A block diagram of 
the algorithm is shown in Fig. 5-1. The algorithm proceeds as follow: first, a multiple 
homotopic region growing process segments each object (foreground and background) into 

Most segmentation procedures incorporate statistical information to accurately locate specific structures 
and the probabilities p, can be computed a pp'iop'i. However, this external information might not be available, 
and a different cost must be assigned to each voxel: we will discuss alternative cost options in Sect. 5.3.2. 
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Figure 5-1: Diagram of the digital topology correction algorithm 

a set of connected components. This set is composed of body components and of residual 
components, the latter corresponding to "links" connecting body components (Sect. 5.2.3). 
Schematically, the topology correction amounts to finding the components that should be 
removed (i.e. should be added to the inverse object), and the ones that should be kept. 
The whole process is iterative: a cost is assigned to each component and the algorithm 
modifies the segmentation into connected components (Sect. 5.2.4). At each step, the set 
of connected components is updated, and convergence is guaranteed by monotone increase 
of a threshold Tthres (Sect. 5.2.4). Figure 5-2 illustrates the simple concepts behind the 
algorithm and we will often refer to this figure to exemplify the explanations. For clarity, 
discussion of the main assumptions of the algorithm will be elucidated in the next section. 

5.2.3 Location of Topological Defects: Connectivity Graph Generation 

In order to correct the topology of a given binary image, one must first locate the set 
of topological defects present in the segmentation. Existing techniques for correcting the 
topology of binary segmentations assume that the topological defects are located at the 
thinnest parts of the volume and attempt to correct them by modifying a minimal number 
of voxels. Due to the accuracy of the initial segmentation, this assumption often leads 
to adequate corrections. However, additional information, such as statistical (i.e. local 
intensity distributions) and/or geometrical information (i.e. curvature), might improve the 
location of the topological defects and their correction. 

Additional information is directly integrated in a multiple homotopic region growing 
process. Similarly to existing methods, we assume that topological defects are more likely to 



Figure 5-2: Illustration of the algorithm principles. An initial binary digital image (a) is seg- 
mented into a set of connected components (e) by applying a multiple region growing process on 
the foreground object (b,c) and the background object (d,e). These two sets of connected compo- 
nents (foreground and background) constitute two connectivity graphs (f). The topology correction 
iteratively modifies the graphs until final convergence (g-1). A final homotopic deformation leads 
to the final binary segmentation (m). Detailed steps: g) Addition of the foreground component 
f-M1 associated with the merging of f-B2 into f-B1. h) addition of f-M2. Note that f-M3 and f-M4 
becomes residual component f-R3 and f-R2 respectively. i) Deletion of f-B6. b-R1 and bR2  are 
merged together into b-Rl. j) Deletion of b-R1, which leads to the merging of f-B4 into f-B4. k) 
Deletion of f-R3 and merging of b-B3 into b-B2. Deletion of b-B4 which causes f-R1 to vanish. 1) 
Deletion of b-R3 of f-R2, and final convergence. 

I 



be located at the thinnest parts of the volume; however, we observe that topology corrections 
often involve voxels with low probability. Therefore, the prioritization driving the expansion 
process is based on the following empirical function fp: 

which combines information from the posterior probability p, and from the dist ance-to- 
surface map. The distance-to-surface map of the object X represents the distance d(x, X) 
from one point x t X to its surface, i.e. its distance to the closest point(s) of X. The 
function fd is simply linearly built as fd(x) = with dm, = max d(x, X). Away 

XEX 
from the boundary of the object, the homotopic expansion process is mostly driven by 
the dist ance-to-surface map, whereas st at istical information becomes prominent in regions 
close to the borders. This function will locate residual comporients at thin parts of the 
volume, which have low probability (Fig. 5-3-c). We will discuss this prioritization in detail 
in Sect. 5.3.1. For each voxel x, the value fp(x, S(X)) can be interpreted as a confidence 
value, which reflects our confidence in the segmentation S(x) of the voxel x. 

Our multiple region growing process segments each object (foreground and background) 
into a set of connected components. This set is composed of body2 components, which carry 
a known spherical topology, and of residual components of unknown topology. Residual 
components correspond to "links" connecting body components and can be interpreted as 
topological defects. In order to generate this segment at ion, every point is initially assigned 
a residual label and body components are slowly expanded outward to incorporate new 
simple points. 

The multiple region growing process makes use of two threshold, T, and T, with Ts > Te. 
T, is used to locate the seed points and generate body components. A new body component 
will be created from a seed point x only if its confidence value fp(x) is above T,, avoiding 
over-segmentation. Te pauses the homotopic expansion of a body component when the 
values f, of the adjacent simple points fall below T,. 

As we will discuss further in Sect. 5.3.1, homotopic deformations that are driven by 
probability maps are highly sensitive to noise: inaccurate probability maps can introduce 
some incorrect topological constraints in the homotopic expansion, eventually leading to 
large geometric errors. The introduction of T, and Te, associated with the empirical proba- 
bility f,, minimizes the "noise" effects on the segment at ion and prevents over-segment at ion 
into connected components. It also reduces the influence of topological errors caused by 
incorrect segmentations. Incorrect segmentations are often the results of a few misclassified 
voxels that appear brighter or darker than expected relative to their tissue classes. The use 
of two thresholds tends to single out these misclassified regions, which often generates small 
disconnected body components. 

A - Foreground Object 

We remind the reader that a seed point will not introduce any topological defect into any 
of the body components, allowing us to start growing a new body component without 
introducing any topological artifact such as handles or holes. 

The region growing process proceeds as follow. Every voxel of the foreground object is 
first assigned a residual label, except the one with the largest confidence value &(x, F) that 

2 ~ o r  consistency with previous work, we use the same notations as the ones proposed by Han et al. in 
i441 



is assigned a body label. This seed point creates the first body component, which is then 
iteratively expanded by adding adjacent simple points y, prioritized by their confidence 
value: adjacent voxels are checked in decreasing order (the ones with the largest values 
first) and added if they are simple. This homotopic expansion pauses when the adjacent 
voxel confidence values fall below Te or stops when no residual voxel can be added to this 
body component without changing its topology. Then, the algorithm tries to grow another 
component by searching for the next seed point with the highest confidence value above 
T,. We keep generating and growing new body components until no new seed point, with 
f, > T,, is found. Then, the constraint fp > Te is relaxed and the multiple region growing 
process resumes. All the previously created components are homotopically expanded until 
no new simple point is found. Figure 5-2-b shows an example of the resuming of the multiple 
region process. 

Figure 5-3: a) An horizontal view of a white matter binary segmentation. b) The corresponding 
cost map c(x) = log m. Bright voxeIs have large costs. c) The segmentation into connected 
components : the single black component is the first body background component and has the 
topology of a hollow sphere. The pink components are foreground body components and the green 
and blue components are background and foreground residual components respectively. Notice that 
residual components tend to be located at low probability locations, i.e. low c ~ s t  regions (dark 
regions in b), and at the thinnest parts of the volume. . . F ' .  8 

Eventually, the second constraint fp > Ts, is relaxed and a final region growing process 
segments the remaining residual voxels into body components (in Fig. 5-2-c, this leads to 
the creation of components B5 and B6). 

Finally, the remaining residual voxels are segmented into residual connected components 
(Sect. 5.2.3). ' I  

I 
! , : r l  

B - Background Object 

The same multiple region growing process is applied to  the inverse object. However, since 
we are working on the background object, which is supposed to surround completely the 
foreground object, the first body component contains the set of voxels located at the border 
of the image (Fig 5-2-b). Therefore, the topology of the first background component will 



be the one of a hollow sphere. Then the algorithm proceeds as previously described (Fig. 5- 
2-d,e). 

C - Residual Segmentation 

The last step of the segmentation into connected components is the segmentation of the 
remaining residual voxels, into residual connected components. A residual voxel can be 
adjacent to one single body component or to several body components. Residual voxels 
that are adjacent to one single component are non-simple: if they were simple they would 
have been merged into the adjacent body component during the previous multiple region 
growing process. Components constituted of these voxels are called residual components, 
and components with residual voxels adjacent to several body components are called multi- 
residual components. Residual components represent "pure" topological defects, as they 
cannot be merged into the body label segmentation without introducing topological defects. 
On the other hand, multi-residual components can either be constituted of multisimple 
points or non-multisimple points. Their introduction allows us to consider more possibilities 
when correcting the topology. Finally, we note that the topology of the residual components 
is not known. 

The whole segmentation of the foreground object and the background object constitutes 
two non-fully connected graphs, which interact with each other (Fig. 5-2-f). Finally, a cost 
is assigned to each component: the cost of each component C is simply defined as sum of 
the cost of each voxel constituting the component: 

cost(C) = C c(x) = C log PS (x, S(x)) 
XEC XEC PS (x, S(x) ' 

The cost of one component reflects the variation in logk(S1 I)] (under our set of assump- 
tions), the logarithm of the probability of the segmentation S given the observed image I, 
if this component were deleted from X by adding its voxels to the inverse object X. More 
complex models, incorporating curvature information, could be considered. These more 
elaborate models would result in more complex fitness function. We will briefly discuss in 
Sect. 5.6 the potential integration of curvature information into our framework. 

5.2.4 Correction of Topology Defects: Graph Analysis 

Once all topological defects have been located (as a set of residual components), we exploit 
the topological foreground/background duality to iteratively correct them. Under the digit a1 
topology framework, every foreground topological defect has a corresponding background 
topological defect and vise-versa. For example, to a foreground disconnected component 
corresponds a background cavity and reciprocally. This implies that the correction of a 
topological defect can be realized by applying a transformation either to the foreground 
object or the background object (this is one of the main reasons why a pair of compatible 
connectivities is required in digital topology). This approach has already been used by 
several authors [44, 561, but in a less general framework than the one we develop here. 
The goal is to successively decrease the number of residual and body components, until 
one single body component per object remains: a foreground component with a spherical 
topology and a background component with the topology of a hollow sphere. 

The algorithm works on the background and the foreground simultaneously and proceeds 
iteratively: multi-residual components are considered first and merged into neighboring 



components if their constituting points are multisimple. Then, the lowest cost component 
C E Cn(X) is identified and deleted from the object X it belongs to. At each iteration, 
the algorithm updates the segment ation into connected components (i.e. the connectivity 
graphs) by resuming the region growing process. We now explain, in detail, the few steps 
of the topology correction. 

A - Addition of Multi-Residual Components: 

We have introduced the concept of multi-residual components to enlarge the panel of po- 
tential solutions and ensure that residual components are located at meaningful locations 
(Fig. 5-3-c). Multisimple points allow us to locally modify the component segmentation: 
body connected components might be fused together, but the topology is preserved. Given 
a connectivity graph, multi-residual components constitute connections between body com- 
ponent s. 

A multi-residual component is said to be multisimple if at least one of its constituting 
voxels are multisimple. At each iteration, multisimple components are merged into body 
components. The multi-residual component with the largest cost is first chosen and added 
to the body component segmentation if it is multisirnple: the component and its neighboring 
body components are merged into one single body component and the graph is updated. 

Algorithm 7 Addition of a Multi-Residual Component M E C,(X) 
Search among multisimple points in M, the search is prioritized by the confidence values 
given by f,. 
if no multisimple point then 

Stop. 
else (multisimple point} 

Merge this point into the largest adjacent body component B, and merge the other 
adjacent body components into this component. 
Tky to add the remaining points of M to the newly formed body component B, the 
points that cannot be merged into B form new residual connected components. 
Update the cost of the modified components and the status of multi-residual compo- 
nent s. 

Then, the next largest cost multi-residual component is considered for merging. For each 
merging, the status of the remaining multi-residual components is checked. The algorithm 
stops when all components have been added or the remaining ones are not multisimple. 
Figure 5-2 illustrates, with a simple example, this concept: the multi-residual components 
M2, M3 and M4 of Fig. 5-2-g corresponds to three potential connections between B1 and 
B2. The merging of M1 into B1, associated with the merging of B2 into B1 change the 
multi-residual status of the components M3 and M4 to residual R3 and R2 respectively in 
Fig. 5-2-h. 

B - Deletion of the Lowest Cost Component 

After the analysis of multi-residual components, we check if the algorithm has converged: 
if one single component per object remains, the algorithm has corrected the topology of 
the initial segmentation. If not, spherical topology is not achieved yet and consecutive 
decisions have to be taken. Assuming a decomposition into connected components, the 



algorithm identifies the lowest cost component among body, residual and non-multisimple 
multi-residual components. This component is deleted from C, (X) , meaning that each 
voxel of this component C E Cn(X) has its label changed to residual of the inverse object - 
X,  and the connectivity graphs are updated: 

Algorithm 8 Deletion of the Lowest Cost Component C E Cn(X) 

1. Deletion of C: C -+ C. Voxel labels are changed voxel to residual of 53. - 

2. Search among seed points in C. 
if no seed point then 

Go to 6. 
else {seed point x) 

if x is isolated then 
3. Generate a new body component 

else (x is simple) 
4. Merge this point into its neighboring body component 

5. Update the cost of the modified components. Go to 2. 
6. Segment the remaining residual voxels into residual and multi-residual components. 

We note fact that local decisions do not imply large geometrical errors. For instance, in 
Fig. 5-2-h,i, the deletion of the foreground body component B6 does not lead to the removal 
of any large component. 

C - Convergence 

Stated as previously, the algorithm is not guaranteed to converge: the deletion of a com- 
ponent might lead to the creation of even lower cost components in the inverse object. 
Therefore, we use a threshold Tthres that is monotonically increased at each iteration. 

Algorithm 9 Convergence 
O .  Set TthreS = -00. 
1. Update the multi-residual graphs by iteratively applying Alg. 7 to each multi-residual 
components. 
if Check convergence: X or has one single component then 

Stop. 
3. Find the set of lowest cost components {Ci] E C,(X) such that: 3Cj E 
{Ci) s.t. cost(Cj) > Tthres; set Tthres + cOst(Cj). 
4. Delete the components: Vx E UCi, set x --+ X 
if X has one single component then 

Stop. 
5. Apply Alg. 8 to the inverse object ff and go to 1. 

Similarly to the approach of Han et 81. in [44], this algorithm can be modified to force 
corrections to be made on one single object exclusively (foreground or background): it 
sufIices to constrain the search for lowest cost components to the inverse object. 

Finally, once the correct topology has been achieved, the algorithm homotopically maxi- 
mizes the posterior probability p(SII),  by looking for simple points that should be deleted 



(with a negative cost). Every simple point x of the segmentation S with a negative cost is 
added to its inverse object g(x). 

Finally, a topologically-consistent tessellation of the topologically-correct digital volume 
is generated using a connectivity-consist ent marching cubes algorithm (Sect. 2.3.3). 

5.3 Discussion of the Algorithm 

Before presenting some results, we discuss the main concepts and assumptions of the alge 
rithm. 

5.3.1 Multiple Region Growing Process 

The multiple region growing process, segmenting the initial objects (F and B) into con- 
nected components, is driven by a prioritization map fp, which aims at locating the defects 
at significant locations. This is a key point of the algorithm and a difficult task. We have 
decided to use a prioritization map which combines some statistical information about the 
segmentation and distance-to-surface information through a mixing parameter A. As pre- 
viously stated, our assumption is that most of the topological defects are more likely to be 
located at at the thinnest parts of the volume and that topology correction often involves 
few voxels. 

Similarly to the approach of Kriegeskorte and Goeble [56], a value of A = 0 will locate 
the topological defects at the thinnest parts of the volume. The approach proposed by Han 
et al. in [44] is based on the same assumption: a structuring element that is progressively 
dilated locates topological defects at thin parts of the volume. 

On the other hand, using only statistical information (A = 1) should locate the defects 
at locations with low posterior probabilities. However, we note that homotopic deform* 
tion are highly sensitive to noise and inaccurate probability maps easily lead to topological 
defects being incorrectly located. Some incorrectly segmented voxels might have a large 
joint probability p, (e.g. image artifacts, part i d  voluming effect, intensity inhomogeneities, 
etc). This could lead an expanding region to pass through these voxels and locate resid- 
ual components at incorrect locations. For this reason, we combine the two informations 
through the use of the mixing parameter A = 0.5. This method tends to decrease the noise 
issues and will still locate the defects at low probability location. More elaborate prioriti- 
zation maps, introducing local anisotropy into the growing process, are possible. Another 
approach, based on level-sets, is discussed in Sect. 5.6. 

Also, the multiple region growing process necessitates the definition of two thresholds 
Te and T,. The use of thresholds, to concurrently grow multiple components and pause the 
expansion process, minimizes the effects of noise on the segmentation. The first threshold 
T, will prevent the creation of a new component fcom an isolated seed point, when its 
confidence value fp is not large enough: only seed points with a large confidence value 
lead to the creation of a new body component, avoiding over-segmentation. The second 
threshold pauses the expansion of a body component, when the values fp(x) of adjacent 
simple points x become too low. The introduction of the threshold Te prevents a region 
from expanding over and passing through "unlikely" voxels to reach regions with higher 
confidence values, which would certainly locates some of the topological defects at incorrect 
locations. T, and Te are defined per object. Ts corresponds to the value for which 25% of 
the voxels have a higher confidence value. Te corresponds to the value for which 25% have 
a lower confidence value. 



Finally, we note that the initial seed points, generating the body components, could be 
interpreted as landmarks and initialized with the help an atlas at significant locations. 

5.3.2 Cost Function 

During the topology correction, each voxel is assumed to carry a cost of being modified. We 
have taken a Bayesian approach, modeling each voxel label as independent of its neighbors 
and assigning a cost c(x) = In@, (x, X ) / p ,  (x, x) to each voxel. This cost represents the 
variation in the logarithm of the posterior probability p(S(I) of the segmentation S given 
the observed image I and constitutes an efficient way to make iterative minimal decisions. 

However, the joint probability p, might not be available to the user. Alternative cost 
options are possible. Without any more information than an initial digital binary seg- 
mentation, the user might minimize the number of modified voxels at each step, therefore 
assigning a constant positive cost to each voxel. At each iteration, the algorithm will 
delete the smallest components, i.e. the ones with the least number of voxels. Or, using 
a monotonously increasing function of the distance-to-surface map, such as the previously 
defined function fd, one could weigh deep voxels more than others, making them less likely 
to be deleted. Finally, a sophisticated approach that we briefly discuss in Sect. 5.6 could 
incorporate curvature information. 



5.4 Results 

Our goal, when implementing this algorithm, was to develop a fully automated method that 
is able to correct the topology of digital binary segmentations, without any assumptions on 
the initial segmentations. In order to validate the proposed algorithm, we have applied our 
method to 26 brain segmentations, manually and automatically labeled. The Whole Brain 
Segmentation algorithm proposed by FiscN et al. in [29] was used to generate automatic 
brain segmentations and to compute the joint probabilities p, (x) = p(I (x), S(x)) for all 
voxels x. The pair of compatible digital connectivities that we use for all the experiments 
reported in this chapter is (6,18). In our experience, the choice of connectivity does not 
significant 1 y affect the results. We present some experiments on sub cor tical segment at ions 
and white matter segmentations. 

5.4.1 Description of the Data Set 

The data set used in this study was acquired using a Siemens Vision system in 1994/1995 
with the following parameters: TR: 9.70 ms; TE: 4.00 ms; TI: 621.00 ms; flip angle: 10.00j; 
1.25 sections (resampled to 1-mm isotropic). Data coma fkom studies reported in Buckner 
et al. [ll] and Logan et al. [58] and also later subjects imaged using the same anatomic 
protocol3. This data set consists of 6 Young Normal Control, 14 non-demented and 6 
demented adults. 

5.4.2 Subcortical Segmentations 

Each of the 26 subcortical segmentations is composed of k = 14 nuclei: left and right ventri- 
cle, putamen, pallidum, amygdala, hippocampus, thalamus, and caudate nucleus (Fig. 54). 
We apply our algorithm independently on each subcortical nucleus. Topology correction of 
an individual structure takes a few seconds on a current machine. 

Most subcortical segmentations have few topological defects. Results show that addition 
and deletion of very few voxels is necessary to correct the topology of each structure. Manual 
segment ations are corrected by changing the labels of approximately 0.05% of the tot a1 
number of voxels. Automatic segmentations require of the order of 0.1% of labels to be 
changed. A typical example is given in Fig. 5-4, which shows the segmentation of the right 
pallidum before topology correction (Fig.54-a) and after topology correction (Fig.5-4-b). 

3 ~ e  thank Randy Buckner and the Washington University Alzheimer's Disease Research Center for 
providing the data set. 

Figure 5-4: Results of the topology correction subcortical structures. a) Initial segmentation of the 
right Pallidurn (X = -4, g = 3). b) Topologically corrected right Pallidurn. c) The same structure 
after the homotopic deformation with 14 nucleus. 



In this example, the initial segment at ion contains 3 handles (Euler characteristic of the 
tessellation x = -4, genus g = 1 - x/2 = 3); the final surface has the correct spherical 
topology (X = 2 and g = 0). 

Applying the topology correction independently on each nucleus, some voxels are as- 
signed more than one label. Results show that this problem concerns less than 0.01% of 
the voxels. In our experiments, every multi-labeled voxel had, at most, one label that 
corresponded to a non-simple configuration. Consequently, a final modification of these 
multi-labeled voxels by deleting the "simple" labels generates valid subcortical segmenta- 
tions (i.e. with one label per voxel at most), which carries the correct topology. When 
these conditions hold, more sophisticated methods can be applied, as the one proposed in 
Sect. 5.5. Nevertheless, we are aware of the limitations of this approach, as we cannot 
guarantee (in theory) that no voxel has more than one non-simple labels. 

Cortical Segmentation 

The correction of the topology of the cortical surface is a much more challenging task. Its 
highly convoluted nature often produces numerous topological defects that interact with 
each other, and that are difficult to precisely locate and correct. We have applied our 
method to 26 brains in order to generate white matter segmentations with a correct spherical 
topology. Before applying the algorithm, we merge the ventricles into the white matter 
segmentation in order to avoid topological defects to be introduced in this area. We note 
that the medical structures caudate, putamen, and pallidum nucleus are considered to 
be part of the white matter segmentation. We apply the algorithm on each hemisphere 
separately. 

A - Convergence 

We first look at the convergence of our algorithm. A binary segmentation So of a hemi- 
sphere of white matter contains on the order of lo5 voxels (100 x 100 x 100 image domain). 
The multiple region growing process typically segments the binary volume So in approx- 
imately 50 body components and a few hundred residual components. During the first 
iteration of the algorithm most of the multi-residual components are merged into the body 

Figure 5-5: a) The threshold increase and the evolution of the probability p(S1I). After a number 
of iterations, the threshold becomes positive, because there is no obvious decision anymore. Con- 
sequently, the probability p(S1I) decreases. b) Number of body components as a function of the 
iteration number. Note the strong decrease of body components after one iteration, mostly due 
to the merging of multisimple components. c )  Number of residual components in function of the 
iteration number. 



segmentation, leading to a sharp decrease of the number of body components. After the 
first iteration, residual components are iteratively deleted, which corresponds to a quasi- 
constant decrease in the number of body and residual components. Figure 5-5 illustrates 
this decrease on a typical example, whose initial surface is shown in Fig. 56. After the 
first step, approximately 500 residual components remain; the algorithm also converges in 
approximately 500 iterations (Fig. 5-5-c) . 

The threshold Tthres, which is necessary to guarantee convergence, monotonously in- 
creases, reaching a positive d u e ,  after which the posterior probability p(SI I )  tends to 
decrease (Fig. 5-5-a). During the iterative topology correction, the algorithm often reaches 
a point, after which there is no obvious decision anymore. This reflects the fact that medical 
images often contain artifacts that perturb the topology of the segmentations. Incorrectly 
classified voxels represent ambiguous voxels with low confidence values. Modification of 
these voxels often correspond to a decrease in the probability p(S1I). In the final steps 
of the algorithm, the algorithm enforces topology correction by choosing for the "best" 
decisions (i.e. the ones that decrease the least the posterior probability p(SI I)). 

B - Results on Cortical Segmentations 

Similarly to subcortical segment ation results, approximately 0.1% of the total number of 
white matter voxels (this approximately corresponds to 100 voxels) need to have their label 
changed to achieve topology correction. Most of the computation time is taken by the md- 
tiple region growing process and a white matter segmentation is corrected in approximately 
30 minutes. Most of the modified voxels are located at the periphery of the white matter 
volume, since cortical segment ations contain few cavities or disconnected components. 

However, in some cases, the algorithm generated a few incorrect topological corrections, 
mostly in the regions of the temporal pole. Due to the partial volume effect, the temporal 
region contain numerous ambiguous voxels. Digital approaches, which fail to include addi- 
tional information, such as curvature information, into the topology correction process, are 
sensitive to the presence of image artifacts. One potential solution to alleviate this problem 
is proposed in Sect. 5.6. 

Figure 5-6: Initial Surface and Final Surface. The initial surface, generated under (n, E) = (6,18), 
has an Euler characteristic of x = -236. Some topological defects are circled in red. 



5.5 Extension: Homotopic Markov Random Field 

In the previous section, we have presented some results about the topology correction of 
subcortical structures. In this section, we describe a method to integrate curvature informa- 
tion into the segmentation process based on a variant of Markov Random Fields. We take 
an approach similar to the one presented in [29] and we refer to this work for a complete 
description of the Bayesian framework. We only present the main concepts of our approach. 

Once the topology of each structure has been independently corrected, additional infor- 
mation can be incorporated into the segmentation process of the image, such as curvature or 
prior information about the spatial distribution of the labels. The segmentation of an image 
is modeled by a Markov Random Field [29]. Briefly, segmentation W represents a complete 
segmentation into k different labels: each structure s is assigned a different label W,, such 
that Vx E s, W (x) = W,, and we search for the MAP estimate of p(W 1 I). We still assume 
that the noise at each voxel is independent from noise at all other voxels in the image, but 
the voxel labels are not supposed to be independently distributed anymore. We assume that 
the spatial distribution of labels can be well approximated by an anisotropic non-stationary 
Markov random field, which allows us to encode prior information about the relationship 
between labels as a function of location within the brain (i.e. non-stationary), as well as 
with local direction (i.e. anisotropic). Under this assumption, the prior probability of the 
full segmentation can be expressed as: 

where the 6 xi represent the 6 voxels in the positive and negative cardinal directions at each 
voxel location x. Finally, we incorporate curvature information into the Bayesian frame- 
work, as simple points are border points, for which the curvature can be easily computed 
curv(x). A 3-by-3-by-3 neighborhood is sufficient to compute the curvature of the label 
W(x) at voxel location x. We use a topologically-consistent marching cube algorithm to 
tessellate each cube (Sect. 2.3.3). 

The MAP estimate is the one maximizing the posterior probability: 

6 

P I  P I P  P I % n pc(curv(x)) (5.8) 
xEV i=l border x 

In order to apply this framework to the topologically correct subcortical segmentations, 
topology changes are avoided by working with homotopic deformations: only simple points 
are considered in a modified version of the iterated conditional modes (ICM) algorithm 
proposed by Besag (1986). At each iteration, only simple points are updated in a random 
order. We note that a point must be checked for being simple if one of its neighbors has 
been updated. 

Figure 5-7 shows the results of the topologically constrained subcortical segment ations 
applied to 14 structures. Most curvature artifacts, due to noise in the observed image, are 
removed from the initial segmentations, leading to more faithful surfaces. Each final surface 
carries the correct spherical topology, contrary to the initial ones, which had a total of 9 
topological defects ( X  = 10). 

The agreement between the automated and manual labelings is comparable to that 
obtained by comparing the labelings of different experts, although further testing on a 



Figure 5-7: Results of the topology correction subcorticd structures. The whole subcortical seg- 
mentations with 14 nucleus (left and right ventricle, putamen, pallidum, amygdala, hippocampus, 
thalamus, caudate nucleus) before topology correction (left) and after topology correction followed by 
an homotopic deformation (right). The initial surfaces had a total of 9 topological defects ( X  = 10). 

broader database is required. 

5.6 Future Work 

We have presented a new algorithm, correcting the topology of digit a1 binary segment at ion. 
Our topology correction was phrased within the Bayesian theory under a set of simplistic 
assumptions. More elaborate approaches can easily be integrated into our general frame- 
work. 

We note that probability maps are often corrupted by noise and homotopic deformations 
are known to be highly noise sensitive. In future work, we propose to overcome this lim- 
it ation by integrating level-set active contours into the region growing process. Level-sets 
constitute an efficient way to implicitly encode a surface using the embedding space (i.e. the 
3-dimensional grid). It is therefore possible to constrain the topology of a level-set active 
contour by using the digital topology of the underlying grid. We propose to generalize our 
region growing process using level set deformation under topological control (Chapter 4)) 
in which each digital component is represented by a level-set component. For each object S 
(foreground and background), we propose to deform its level-set representation 4s subject 
to the following velocity field: 

V(X, t) = [f&, S) - EH(x, t)]n(x, t) ,  

where H denotes the mean curvature of the contour at location x. The corresponding level 
set evolution is: 

84s (x, t) e 
= [-fp(x, S) + v4s 

a t  div(-)l l V4sI IV4sl 

The second term of this equation corresponds to a mean curvature motion, which enforces 
a smoothness constraint into the deformation process. Therefore, curvature information is 
naturally integrated into the segmentation process, establishing an efficient way to alleviate 
noise sensitivity. Using this framework, the fitness function, measuring the goodness of 



topological correction, could be written as: 

where a is an empirical coefficient, and H ( s )  represents the mean curvature of the sur- 
face (i.e. the boundary of the segmentation) at location s on the surface. This fitness 
function would favor configurations with relatively few misclassified voxels and with a re- 
sulting smooth surface. The empirical constant a establish a tradeoff between geometric 
information (e.g. curvature) and st'atistical information (e.g. misclassified voxels). 

Applied to the topology correction of white matter segmentations, this approach would 
certainly limit the effect of early wrong decisions during the graph analysis. The graphs 
are constituted of approximately 50 body components and several hundred residual com- 
ponents.When obvious decisions no longer exist, the algorithm enforces topology correction 
by using the monotonously increasing threshold to select the next "best" component. An 
early wrong decision may lead to large geometric inaccuracies that are difficult to correct 
retrospectively. However, we describe in the next chapter another surface-based approach 
that is more adapted to the topology correction of cortical representations. 

Contributions of this Chapter 

In this chapter, we have presented a new algorithm that corrects the topology of digital bi- 
nary segmentation. No assumption is made on the topology of the initial segmentation, and 
spherical topology is achieved under any choice of digital topology. A Bayesian framework 
allows us to integrate statistical information into the topology correction. Our algorithm 
can enforce exclusively background or foreground corrections. Applied to subcortical seg- 
mentations, the topology of fourteen deep nuclei is corrected in a few minutes, and white 
matter topology correction is achieved in about 30 minutes. 

To our knowledge, this approach is the first one that has been proposed to integrate 
statistical information into the topology correction. Our method, nested in the theory of 
Bayesian parameter estimation, selects maximum a posteriori topological solutions based 
on the available information present in the image (i.e. intensity). 

In addition, we have suggested two ways of integrating geometric information into our 
Bayesian framework. We have introduced a homotopic Markov Random Field segmenta- 
tion that incorporates curvature information using the border points of the segment at ion. 
Finally, we have proposed to generalize our framework using genus-preserving level sets, 
thereby integrating curvature information directly into the segment at ion process. 

Part of this work has been presented at the conference Medical linage Computing and 
Computer-Assisted Intervention [85]. 



Chapter 6 

A Genetic Algorithm for the 
Topology Correction of Cortical 
Surfaces 

I n  this chapter, we focus o n  the retrospective topology correction of surfaces. W e  propose a technique 
t o  accurately correct the spherical topology of cortical surfaces. W e  construct a mapping from the 
original surface onto the sphere t o  detect topological defects as minimal non-homeomorphic regions. 
A genetic algorithm corrects each defect by finding the maximum-a-posteriori retessellation i n  a 
Bayesian framework. During the genetic search, incorrect vertices are iteratively identified and 
eliminated, while the optimal retessellation is  constructed. W e  address the mapping dependency 
problem by generating several configurations corresponding t o  diflerent spatial optimal retessellations. 
Applied t o  synthetic and real data, our method generates optimal topological corrections with only a 
few iterations. 

6.1 The Cortical Reconstruction Problem 

In this chapter, we focus on the generation of accurate representations of the cortical surface 
under the spherical topological constraints. Although we constrain the final topology of the 
cortical sheet to be that of a sphere, the proposed approach extends to any local planar 
topology. 

6.1.1 Cortical Anatomy 

The human cerebral cortex is a highly folded ribbon of gray matter that lies inside the cere- 
brospinal fluid and outside the white matter of the brain. Locally, its intrinsic "unfolded" 
structure is that of a two-dimensional (2-D) sheet, which is several millimeters thick. The 
analysis of cortical data is greatly facilitated by the use of accurate 2-D models of the 
cortical sheet [17, 991, which alleviates most drawbacks of the three-dimensional embed- 
ding space (such as the underestimation of true cortical distances or the overestimation of 
cortical thicknesses). 

In the absence of pathology, each cortical hemisphere is a simply-connected 2-D sheet 
of neurons that carries the simple topology of a sphere. There has been extensive research 
dedicated to the extraction of accurate and topologically-correct models of the brain surface 
that allows for the establishment of a global 2-D coordinate system onto the cortical brain 



surface. However, because of its highly convoluted nature that results in most of its surface 
being buried within folds, noise, imaging artifacts, partial voluming effects and intensity 
inhomogeneities, the automatic extraction of accurate and topologically correct cortical 
surfaces is still a challenging problem. 

6.1.2 Limitations of Previous Approaches 

Met hods for producing accurate cortical segment at ions under topological constraint have 
been reviewed in Chapter 2. 

Most methods that have been proposed [43, 89, 44, 501 assume that the topological 
defects in the segmentation are located at the thinnest parts of the volume and aim at 
correcting the topology by minimally modifying the volume or tessellation. These met h- 
ods, which rely on the accuracy of the initial segmentations, often produce valid cortical 
representations, even though the topological corrections may not be optimal: additional 
information, such as the expected local curvature or the local intensity distribution, may 
lead to different corrections, i.e. hopefully comparable to the ones a trained operator would 
make. 

Only a few techniques have been proposed to integrate additional information into the 
topology correction process [56, 281. However, for each topological defect, these methods 
fail to produce more than two potential solutions. In the specific case of a handle, the two 
potential solutions usually correspond to either cutting the handle or filling the correspond- 
ing hole. However, the exact location of these potential solutions is most often determined 
based on some criteria that ignore the underlying MRI intensity profile and/or local curve 
ture and the resulting corrections can never be optimized relative to these parameters. 

6.1.3 Approach 

For a given topological defect, the MRI intensity profile contains important information 
regarding the location and position of the potential topological correction. The resulting 
corrected surface should be located at the border of the white and gray matter, with white 
matter tissue being inside the surface and gray matter outside. Also, the smoothness of 
the corrected defect should match the smoothness of the rest of the cortical surface. This 
information should be used to guide the generation of optimal topological corrections. 

In order to make full use of the available information, we propose a technique that di- 
rectly extends the approach taken by Fischl et al. in [28], addressing most of its limitations. 
In their previous work, Fischl et al. proposed an automated procedure to locate topological 
defects by homeomorphically mapping the initial triangulation onto a sphere. Topological 
defects are identified as regions in which the homeomorphic mapping is broken and a greedy 
algorithm is then used to retessellate incorrect patches. The main limitations of their ap- 
proach are the following: 

1) Even though the final intrinsic topology will be the correct one (i.e. that of a sphere) 
the method does not guarantee that the final surface will not self-intersect. 

2) Every vertex present in the original topologically incorrect surface will be present in 
the final retessellation, resulting in extremely jagged patches. 

3) The information necessary to evaluate the "goodness" of an edge does not exist in 
isolation, but only as a function of the tessellation of which the edge is a part. This implies 
that a greedy algorithm cannot in general achieve geometrically accurate surfaces, as the 
necessary information does not exist at the time that the edge ordering is constructed. 



In order to extend the greedy retessellation developed in [28], we propose to take a 
somewhat different approach, and evaluate the goodness of fit of the entire retessellation, 
not of individual edges. We introduce a genetic algorithm to explore the space of possible 
surface retessellations and to select an optimal configuration. During the search, incorrect 
vertices are iteratively identified and eliminated from the tessellation. Our method proceeds 
as follow: 

1) Generate a mapping from the original cortical surface onto the sphere that is maxi- 
mally homeomorphic. Each topological defect is identified as a set of overlapping triangles. 

2) Discard the tessellation in each defect and generate an optimal retessellation using a 
genetic algorit hm to search the space of potential retessellations. 

In addition, we note that the space of potential retessellations is dependent on the initial 
mapping. We address this problem by generating a set of well-chosen distinct mappings. 
The resulting method is a completely self-contained topology correction algorithm, which 
determines optimal topologically correct solution based on the MRI intensity profile and 
the expected local curvature. 

6.2 Identification of Topological Defects 

We identify the presence of topological defects in the surface by computing its Euler- 
characteristic. In the presence of topological defects1, we generate a mapping from the 
cortical surface e onto the sphere S that is maximally homeomorphic and identify each de- 
fect as a set of overlapping faces. This step is identical to the approach developed by Fischl 
et al. in [28]. Briefly, the identification of topological defects begins with the inflation and 
projection of the cortical surface e onto a sphere S. Next, we generate a maximally home- 
omorphic mapping M : e 4 S by minimizing an energy functional that directly penalizes 
regions in which the determinant of the Jacobian matrix of M becomes zero or negative; 
these regions are non-homeomorphic regions (Sect. 2.2.2). Finally, the topological defects 
are identified by regions, where the homeomorphism is broken (i.e. regions with negative 
determinant or, equivalently, regions with overlapping faces). The following detailed steps 
were taken from [28]. 

6.2.1 Initialization of the Mapping: Spherical Inflat ion 

The initial mapping of the cortical surface to that of a sphere could be accomplished by 
simply projecting each point of the cortical surface to the closest point on the sphere. Doing 
so would result in large regions of the initial mapping being non-homeomorphic. 

Instead, we use a simple procedure to unfold and smooth the folded cortical surface so 
that it approaches that of a sphere whose origin is the centroid of the initial surface. The 
algorithm consists in iteratively updating the position of each vertex based on a smoothness 
force Fs, and a radial spherical force FR: 

 he Euler number of a surface is a topological invariant (Sect. 2.2.3). For a tessellation, it can be easily 
computed as: x = #vertices - #edges + #faces 



where xk is the position of the kth vertex at iteration number t and the smoothness force 
Fs is given by: 

where: 
Nk is the set of vertices neighboring the kth vertex; 
V is the number of vertices in the tessellation; 
nk and nk are the surface normals at location k and its transpose, respectively. 

The smoothness term Fs moves each vertex in the direction of the centroid of its neighbors, 
while projecting out the average inwards movement this creates over the entire surface. The 
radial term simply drives each vertex toward the surface of a sphere with the desired radius 
R: 

F R  = (Rk - xk) (6.3) 

where Rk is the radial projection of z k  onto the sphere with radius R. 
We use an R on the order of lOOmm as this results in a sphere with about the same 

total surface area as an average cortex, and a XR of 0.25 to allow sufficient smoothing to 
take place during the spherical inflation. Once the infiation has converged, the surface is 
projected so that it lies precisely on the surface of a sphere of radius R. 

6.2.2 Quasi-Homeomorphic Mapping 

Once the initial spherical configuration Mo has been established, we generate a mapping 
M that is maximally homeomorphic, which we term a quasi-homeomorphic mapping. In 
generating the mapping M, we are only concerned with its topological properties, that is, we 
wish M1 to be as close to a homeomorphism as possible. A mapping is a homeomorphism if 
the determinant of its Jacobian matrix is non-singular, and the mapping itself is continuous. 
This is of course the multidimensional analog of monoticity. To construct the mapping, we 
minimize an energy functional that directly penalizes regions in which the determinant 
becomes zero or negative, thus encouraging positive definiteness. Note that this is the only 
term in the energy functional - no preservation of metric properties is needed. 

The Energy Functional 

More specifically, noting that the Jacobian yields a measure of the deformation of an oriented 
area element under the mapping M, the energy functional EM limits the penalization of 
compression primarily to negative semi-definite regions. If the initial area on the folded 
surface of the ith face is A:, and the area on the spherical surface S at time t of the 
numerical integration is A:, then the energy functional is given by: 

The logarithmic nonlinearity limits the penalization of compression primarily to negative 
semi-definite regions, as can be seen in the plot in Fig. 6-1-a. Ri is an approximation of 
the Jacobian of the transformation M (Sect. 2.2.2). The extent to which highly compressed 



Figure 6-1: a) Non-linearity of the energy functional EM b) Tkiangle properties 

positive definite regions are penalized is determined by k .  In practice, we used a value for 
k of 100. 

Numerical Implement at ion 

In order to complete the definition of the topology term of the energy functional, we consider 
the ith triangle in the surface tessellation, with edges ai and bi connecting the vertex 
to two of its neighbors xi and xj respectively. In the spherical representation, the normal 
vector field can be given a consistent orientation on the surface2 using the embedding space, 
and As becomes an oriented area, which may take on negative values indicating folds in 
the surface. The normal vector is chosen as pointing outward on the surface of the sphere %=a( the sphere is centered at the origin). 

Using the chain rule, the directional derivative of EM with respect to the position of 
the kth vertex: 

aEM 3EMi3A: -=-- axk aAi axk @s5) 

The first factor is given by Eq. 6.6. The second is the change in the area of the ith triangle 
caused by moving the kth vertex, which can be computed from the prior description of the 
metric properties of the tessellation using the chain rule as: 

with 

The partials of the change in the legs with respect to a change in the vertex position are 

 h his is always possible except in pathological cases such as the Mobius strip that are said to be non- 
orient able. 



dependent on what position the vertex in question occupies in a given triangle 

[-1, -1, -1IT : k = i  
[I, 1, llT : k = l  
[0, 0, OIT : otherwise 

dbi [-I, -1) -1lT : k = i  
[I, 1, llT : k = j  
[0, 0, OIT : otherwise 

6.2.3 Identification of Topological defects 

The resulting mapping M - from the initial tessellation C to the sphere S - is maximally 
homeomorphic. The surface is examined for regions of non invertibility, as these are areas 
where the current tessellation must be discarded and a new one constructed in order to 
ensure the proper topology. Mult ivalued regions, containing overlapping triangles, const i- 
tute topological defects where the homeomorphic mapping is broken. M associates at each 
vertex v of the initial cortical surface C a vertex vs  = M(v) on the sphere S. Vertices with 
spherical coordinates that intersect a set of overlapping triangles are marked as defective 
and topological defects are identified as connected sets of defective vertices. 

6.3 Optimal Topology Correction using a Genetic Algorithm 

6.3.1 Definition of the Retessellation Problem 

Once a topological defect has been identified, its tessellation is discarded. The retessellation 
problem can then be stated as follows. 

Given a set of defective vertices, each of which has been assigned a spherical 
location by the quasi-homeomorphic mapping M, find the vertices that should 
be kept in the defect and the set of edges connecting them, so that an energy 
functional, measuring the goodness of the retessellation, is maximized. 

Topological inconsistencies, which are resulting from mislabeled voxels in the segmenta- 
tion process, generate tessellations that include incorrect vertices. These vertices should be 
identified and discarded from the final solution. A potential topological correction of the 
defect corresponds to the generation of a new tessellation such that no edge intersection 
occurs in the spherical surface. 

Many such tessellations exist, and one would like to select an optimal solution that 
maximizes the goodness of fit of the retessellation. Before describing our method, we diverge 
slightly from the main topic in order to evaluate the size of the considered space. 

Evaluation of the size of the space of potential retessellations 

In order to evaluate the size of the space of potential retessellations, we consider one 
single defect, constituted of nb bordering vertices and nu inside vertices. For this defect, 
the number of potential edges is N = (nu + nb)((nu + nb) - 1)/2. The Euler-characteristic 
of the retessellated patch is equal to: x = (nu - n, + nf)  = 1, where n, and nf are the 



number of edges and faces inside the defect respectively. For a topologically correct spheri- 
cal surface, every face has exactly 3 edges and every edge is bordering 2 faces exactly. This 
implies that we have the following relation: 3(n + nb) = 2(ne + 2nb) or nf = 2/3ne + nb/3. 
Therefore, the number of added edges in the final topologically correct retessellation exactly 
is : n, = (nb - 3) + 3n,,. Therefore, we can approximate the size of the space of potential 

(nb -3)+3nv retessellation by C;;' = C(n,+nb ((nv+nb)-,),2. However, we note a set of added edges im- 
h poses constraints on the set of ot er potential added edges, and that this constraint actually 

decreases the size of the space. Nevertheless, the edge ordering will be used to naturally 
discard vertices in the retessellation. This implies that the space of potential retessellations 
depends on the ordering of the edges, leading to a space of extremely large dimensionality. 

We evaluate the fitness of a corrected region with the maximum-a-posteriori estimate of 
the retessellation, given geometric information about the observed surface, and the under- 
lying MRI values. The numerical technique we propose to explore in the maximization of 
the fitness function is a genetic algorithm [3, 19, 34, 80, 102, 1011 or GA (for a good intro- 
duction see 1691). The GA is an appropriate choice for this type of problem as the space to 
be searched is potentially quite large (the defects can contain upwards of 300,000 candidate 
edges), and there is no easy way to compute gradient information. More importantly, we 
define a set of genetic operations used to propagate information from one generation to the 
next that correspond to "relevant" surface operations. 

6.3.2 A Genetic Algorithm for the Surface Retessellation 

Genetic Algorithms were developed by John Holland in the 1960s as a means of importing 
the mechanisms of natural adaptation into computer algorithms and numerical optimiza- 
tion [49], with much subsequent theoretical work [38]. In genetic algorithms, a candidate 
solution to a problem is typically called a chromosome, and the evolutionary viability of 
each chromosome is given by a fitness function. Typically, genetic algorithms are defined 
by different operators: Selection, Crossover and Mutation. 

Selection: the selection of chromosomes from a population for reproduction, usually 
based on their fitness. 

Crossover: the generation of a new chromosome by combining parts of two "parent" 
chromosomes, roughly patterned after the biological process of recombination of two 
haploid, or single-chromosome, individuals. 

Mutation: the random change of parts of a chromosome (typically with relatively low 
probability). 

In the next paragraphs, we explain the role of these operators in detail and specify how 
their definition is meaningfully tailored to the current problem. 

A - Representation and Retessellation 

Perhaps the most important decision in the construction of a GA is the choice of repre- 
sentation for the underlying problem. Here we have a number of constraints that must be 
satisfied that lead to the representation we use. These essentially amount to the requirement 
that every potential edge be represented exactly once in an ordering for the retessellation. 



This guarantees that the retessellation will result in the proper topology [28]. Thus the 
representation we choose is an edge ordering, represented by a permutation of N integers. 
The retessellation procedure then simply involves adding edges in the order specified by the 
permutation. 

Such a procedure will generate retessellated patches that include all vertices present 
in the defect, resulting in irregular jagged surfaces. In order to alleviate this problem, 
we directly encode the vertex selection into the representation. Given an edge ordering, 
we iteratively construct the corresponding tessellation and discard isolated vertices that 
are located inside formed triangles. During the retessellation, every time an newly added 
edge generates a triangle, inside vertices that are not connected are simply discarded. This 
way, edges added first in the retessellation will force their bordering vertices to be included 
in the final retessellation. The edges added last, which most often generate the surface 
irregularities, will consequently be discarded. 

Figure 6-2: a) Example of a topological defect containing 2 handles and constituted of 183 defective 
vertices. b) Result of the clustering of the non-intersecting edges into 5 segments. c-e) These 
candidate retessellations represent different configurations of the initial population generated using 
the edge clustering. f) The optimal solution generated by our genetic approach in 15 generations 
after 4 mutations and 8 crossovers. 

B - Selection of the Initial Population 

The selection of the initial population is particularly significant for the considered problem. 
The space to be searched is potentially quite large and the selection of a "good" initial 
population can drastically improve convergence of the algorithm. Topological defects are 
constituted of sets of overlapping triangles. The intersecting edges on the sphere S corre- 
spond to different topological paths in the original cortical surface C. In order to generate an 
initial population with a large variance (i.e. composed of individuals with large shape differ- 
ences) we first group the non-overlapping edges into different clusters. Using the spherical 
quasi-homeomorphic mapping M, intersecting edges are iteratively segmented into different 
clusters. Next, these clusters are used to select the initial population of chromosomes. We 
say that a chromosome is generated from a cluster Ci, if the first edges (in the ordering) 
constituting this chromosome comes from Ci. Consequently, chromosomes generated from 
different clusters will have different shapes, hopefully leading to an initial population with 
a large variance. Figure 6-2 provides a few examples of initially selected chromosomes in 
the case of a simple topological defect. 

C - Mutations and Crossovers 

The two most important operations used in GAS are mutation and crossover. Mutation 
involves the random modification of a part of the code of an "individual" in the population 
and crossover the exchange of a part of the code of an "individual" with another one in the 



population. We define these operations in order to accommodate the nature of the current 
problem. Intersecting edges represent choice between different surface configurations. In the 
following section, we note Ii the set of edges intersecting the edge ei: li = {ej(int(ei, ej) = 
I), where int (ei, ej) is the intersection operator, and returns 1 if edge ei intersects edge ej  , 
and 0 otherwise. 

C.l - Mutations: the mutation operation, described in Alg. 10, corresponds to a random 
swap operation of intersecting edges in the ordered representation. This procedure will allow 
the selective exploration of the different retessellations represented by different members of 
Ii, thus reducing the size of the effective search space. 

Algorithm 10 Mutation Operator 
for all edges in the ordering ei E (3 do 

Draw a random number r from Uw(O, 1) the uniform distribution on the real numbers 
between 0 and 1 
if r 5 p,,t then 

Draw a random number k from UN(l, IIil) the uniform distribution on the natural 
numbers between 1 and 1 Iil 
Exchange the positions of ei and ej  where ej  is the kth entry in the set &. 

C.2 - Crossovers: the crossover operator we define is the random combination of permu- 
tations (see Alg. 11). Some care must be taken here to insure that every edge is represented 
exactly one time. Towards that end, the crossover operator will add a random number of 
edges from each parent retessellation, only if that edge has not been added. The crossover 
operator will randomly select one of the permutations to draw from first, then copy a ran- 
dom number of edges from it to the "offspring" retessellation. For each edge, we draw a 
random number r from UR(O, I), and stop copying edges if r < 1/2. Next, a random number 
of edges will be copied from the second parent, if they are not already represented in the 
offspring. This procedure will continue until every edge is represented. 

Algorithm 11 Crossover Operator 
Two parent orderings (31  and (32 indexed by two integers k l  = k2 = 0 ; a = 1 
Draw a random number r from UR(O, 1) 
if r < p,,t then 

Set a = 2 
repeat 

Set e = ek, E Oa and set k ,  = ka + 1 
if e E Odst then 

add edge into offspring chromosome: 2 + Odst 
Draw a random number r from Uw(O, 1) 
if r 5 pm,t then 

Set a = (a + l)mod[2] 
until all edges are represented in (3dst: 1 Odst 1 = 1 Oa 1 

It is important to note that the previously defined genetic operations carry meaningful 
geometric operations. Mutation, which randomly swaps the ordering of intersecting edges, 



corresponds to local jumps from one configuration to another one. The crossover operation 
naturally combines different parts of the code from the two candidate tessellations, gener- 
ating a configuration that often expresses distinct local surface properties of both parents. 
In addition, since the edge ordering naturally encodes which vertices are discarded (the 
vertices included last being discarded), the crossover operation, which iteratively combines 
two edge orderings, most often generates offspring chromosomes that preserve the best 
geometric characteristics of the parents (most likely, the same vertices will be discarded). 

D - Fitness and Likelihood Functions 

We use some prior knowledge about the cortex to define the fitness function. A cortical 
surface is a smooth manifold e that partitions the embedding space into an inside part, 
composed of white matter, and an outside part, composed of gray matter. We characterize 
the goodness of a retessellation by measuring two of its properties: 

the smoothness of the resulting surface, 

the MRI values I inside and outside the surface. 

Formally, the posterior probability of the ith retessellation Ti is given by: 

The likelihood term p(Ile, Ti) encodes information about the MRI intensities inside and 
outside the surface. Each retessellated patch, being topologically correct, separates the 
underlying MRI volume into two distinct components3, an inside part e- and an outside 
part e+. An acceptable candidate solution should generate a space partition with most of 
its inside and outside voxels corresponding to white and gray matter voxels respectively. In 
order to estimate the likelihood p(IJe,  Ti), we assume that the noise is spatially independent. 
This probability can be rewritten: 

v;, 

~ ( I l e ,  T i )  = n PW(I(X)I~, z) n ~g(I (x) le ,  Ti) n p(gi(v), wi(v)le, T,) , (6.11) 
X E ~ -  XE e+ ~ = l  
\ d / * v 

volume- based information surface-based information 

pw (I(x) le, Ti) and p,(I(x) le, Ti) are the likelihood of intensity values at location x in the 
volume inside and outside the tessellation respectively, p(gi (v), wi (v) 1 e, T,) is the joint like- 
lihood of intensity values inside and outside the tessellation at vertex v in tessellation Ti. 

Geometric information can be incorporated via p(Ti(e), which represents priors on the 
possible retessellation. For example, p(Ti 1 C) could have the form: 

where n1 and n2 are the two principal curvatures of the surface, computed at vertex v. 
Given that the vast majority of the surface is in general not defective, we fortunately 

have ample amounts of data with which to estimate the correct forms of the distributions 

3 ~ e  use the angle weighted pseudu-normal algorithm to compute the signed distance of the tessellation [2]. 
The voxel grid is partitioned into inside negative values and outside positive values 
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p(Ti 1 e), pg ( I  (x) 1 e, ir,), pw ( I  (x) 1 e,  T,) and p(gi, wi 1 e, c). In particular, the single tissue 
distributions pg ( I  (x) 1 e, T,) and pw ( I  (x) 1 e, 5) are locally estimated around each topological 
defect in a region that excludes the defect itself (we exclude all voxels that intersect one 
of the N potential edges). This makes the resulting procedure completely adaptive and 
self-contained, in the sense that no assumptions need to be made about the contrast of 
the underlying MRI image(s), and no training or parametric forms are required for p(Ti 1 e) . 
An example of the estimation of p(gi, wi 1 e, T,> and p(Ti 1 e)  is given in Fig. 6-3. Image b) 
shows the joint distribution of gray and white matter given the surface computed using 
the non-defective portion of the graylwhite boundary representation of a single subject. 
Note the diagonal character of the distribution, indicating that the intensities are mutually 
dependent - brighter white matter typically means brighter gray matter due to factors such 
as bias fields induced by RF inhomogeneities and coil sensitivity profiles, as well as intrinsic 
tissue variability. One possible form of the priors on the tessellation is given in Fig. 6-3-c, 
which shows the joint distribution of the two principal curvatures ~1 (green) and rc2 (red) 
computed over the non defective portion of a single surface. It is important to note in 
this context that all these distributions can only be applied after a candidate retessellation 
has been completed, as the graylwhite joint density requires surface normals, gray and 
white intensity distributions necessitate the underlying MRI volume to be partitioned in 
two separate components and the principal curvatures require the calculation of the second 
fundamental form, all of which are properties of the surface, not of individual edges. 

Figure 6-3: a) Example of the gray and white matter distributions estimated locally from a given a 
topological defect. b) Joint distribution of gray and white matter given the surface computed using 
the non-defective portion of the graylwhite boundary representation of a single subject. The gray 
and white matter intensity are two correlated variables, as indicated by the diagonal structure of 
the joint distribution. c) Joint distribution of two principal curvatures of the surface. 

E - Optimization Using Active Contour Patches 

During the genetic search, candidate patches Ti are selected based on their fitness value 
p(ir, 1 e, I) .  Due to the spherical topological constraint, each patch defines a valid manifold 
that can be treated as an active contour with fixed boundaries. Each patch is locally de- 
formed in order to maximize the posterior probability p(Ti 1 e, I). Instead of deriving the 
exact Euler-Lagrange equation of the active contour Ti for the energy functional p(T, 1 e, I ) ~ ,  
we use an approximation procedure. We note that the fitness function of a chromosome 
measures the smoothness of the resulting surface and the MRI intensity profile inside and 

4 ~ h e  Euler-Lagrange equation is computationally unstable as it contains third-order derivatives. 



outside the surface. We simply update the position of each interior vertex xr, of the candi- 
date tessellation based on a smoothness force Fs and an MRI intensity-based force FM: 

The smoothness force is the same one as the one defined in Eq. 6.2. The intrinsic curvature- 
based force enforces a smoothness constraint on the deformed active contours and tends to 
minimize the prior term p(TilC'). The MRI intensity-based force FM is designed to drive 
the active contour towards the true boundary separating the gray from the white matter: 

where the targeted value Tv is computed from the gray and white matter distributions. The 
mean intensity and variance of the gray and white matter intensities are estimated from the 
respective distributions pg and p,, denoted by p9, 09, pw and ow, and the local threshold 
Tv is co~nputed based on the Mahalanobis distance: 

At each iteration, we measure the exact fitness function p(Ti 1 e, I) of the active contour 
and stop the deformation when the fitness function is maximized. The constant Xh4 is 
empirically set to 0.5. 

F - Iterative Elimination of Vertices 

During the genetic search, some vertices will be consistently discarded from the best patches. 
These vertices, which are the ones that were erroneously kept in the initial cortical tessel- 
lation, should be identified and eliminated from the final tessellation. To this end, we 
introduce in our genetic search, an elimination operator, which selectively eliminates the 
worst vertices from the defect. The elimination step operates as follows: after every few it- 
erations, we eliminate the vertices that were consistently discarded from the best candidate 
patches. 

The proposed approach is implemented with the following parameters. The initial pop- 
ulation size is chosen depending on the number of defective vertices. The retessellation 
process is quadratic in the number of vertices contained within the convex hull of each 
defect. Typical defect contains on the order of 100 vertices for a population size of 20 
candidate retessellations. At each step of the genetic search, a new population is generated 
from selected chromosomes based on their fitness. Given a population of individuals, the 
top one third is selected to form the elite group. These chromosomes are kept for the next 
generations. The worst individuals, corresponding to the bottom one third, are replaced 
with mutated copies of the best. Finally, the remaining ones are generated from crossover 
operations from parents iteratively chosen from the elite population. The mutation rate 
p,,t is experimentally chosen to be 10%. The algoritlzm stops when no new best candidate 
has been found for the past 10 generations. For a large topological defect of size 100 ver- 
tices, the algorithm usually converges in less than 50 generations, which corresponds to a 
computational time of approximately 10 minutes on a 1-G-Hz Pentium IV. Typical topolog- 



ical defects contain less than 50 vertices, and are usually corrected in a couple of minutes. 
An optimal configuration is usually the result of approximately 30 genetic operations, 80% 
of which are crossovers and 20% mutations. The elimination operator is applied every 5 
generations. The number of discarded vertices depends on the topological defect. In some 
cases, more than 40% will be eliminated. 



6.4 The Mapping Dependency Problem 

6.4.1 Definition of the Mapping Dependency Problem 

Given a quasi-homeomorphic mapping from the initial cortical surface onto the sphere, 
the genetic algorithm that we introduced generates optimal solutions. However, we note 
that the space to be searched is dependent on the initial spherical location of the defec- 
tive vertices. The spherical location of the defective vertices reduces the space of potential 
retessellations by constraining the relative connectivity of some vertices. Particularly, some 
tiling configurations might not be attainable, as these configurations might lead to overlap- 
ping faces on the sphere. This implies that, in some cases, the genetic search might not be 
able to produce desired solutions. 

For most defects, "quasi-opt imal" configurations are achieved during the genetic search. 
This is essentially due to the small size of the defects, which often takes the form of one 
single handle of size smaller than 5mm. We use the term "quasi-optimal" to indicate the fact 
that the resulting solution might not be the best solution, but still provides an excellent 
approximation that does not lead to any detectable errors (visually and in terms of the 
fitness function). For such small defects, the initial spherical projection does not span the 
entire space of potential configurations, but the initial mapping produces "quasi-optimal" 
configurations that have similar fitness values to true optimal configurations. Also, we note 
that the active contour model used for each generated patch greatly reduces the impact of 
the spherical mapping onto the final solution. 

Figure 6-4: a) Original defect: red and green vertices represent inside and border vertices respec- 
tively. b) One sagital view of the defect c) Corresponding spherical projection. d) Original defect. 
The vertices in the circled regions have the same location on the sphere. e) Incorrect solution gen- 
erated by the genetic algorithm using the spherical mapping. This solution corresponds to the best 
candidate within the space of potential retessellation constrained by the initial spherical mapping. 

However, in rare cases (only with very large defects in our experience), the mapping de- 
pendency problem is important. Figure 6-4 illustrates this problem on a real data example. 
The defect consists of 343 vertices and an average size 20mm. The solution generated by 
the genetic algorithm is presented in Fig 6-4-e . The circled vertices in Fig 6-4-d have the 
same spherical location in the defect. Therefore, no candidate solutions could be generated 
to include these vertices all at once. To address this problem, we propose to generate several 
well-chosen mappings corresponding to different optimal ret essellations, and to simply select 
the best candidate retessellation as the final solution. We estimate the size of each defect 
D by computing the geodesic distance (onto the cortical representation) of each interior 
vertex to the border of the defect dD. The size sr> of each defect is simply estimated by 
sm = 2 max d ( v ,  aD). If this size is greater than lOmm, we apply the procedure described 

v E B  
in the next sections to generate several mappings. 



Figure 6-5: a) Location of a single defect onto the sphere. b) The same defect projected onto the 
2D plane using the 2D unit sphere. The border vertices are regularly mapped onto the unit circle 
U(0,l) and the interior vertices are positioned at the center of the circle. c) Positions of the inside 
vertices in one possible mapping generated using the procedure described Sect. 6.4.3. 

6.4.2 From the Sphere to the Plane 

The initial quasi-homeomorphic mapping M could be used to generate several mappings Mi 
leading to different configurations. While the border vertices of a defect are fixed on the 
sphere and prevented from moving, we wish to update the position of the inside vertices, 
therefore generating several different quasi-homeomorphic mappings. However, as shown in 
the example provided in Fig. 6-5-a, the spherical location of the defects may take the form 
of complex shape, which are rarely convex. For these complex shapes, the modification of 
the position of the interior vertices proves to be difficult, as the topology of each defect 
has to be preserved. Specifically, this means that interior vertices must be prevented from 
crossing the closed contour formed by the border vertices5. Generating several mappings 
(i.e. perturbing the positions of the inside vertices under the non-crossing constraint) within 
complex non-convex shape is extremely difficult. 

In addressing this problem, we use the fact that the border of each defect defines a closed 
curve, which can be projected onto the 2D plane. The retessellation problem can then be 
transposed from the sphere onto the 2D plane. Given a specific defect, we project its border 
vertices regularly along a unit circle U(0,l) in the 2D plane. The interior vertices are then 
initially positioned at the center of the circle (Fig. 6-5-b). Using the 2D plane and the unit 
circle U to generate several mappings give rise to several advantages. First, checking for 
intersecting edges is easier on the plane than on the sphere. Next, the unit circle U has a 
convex shape. Modifying the position of the interior vertices, while forcing them to stay 
inside the convex shape U is much easier than using the original spherical mapping. The 
convexity of the unit circle and Thm. 6.1 presented below motivate the relaxation procedure 
that we have adopted to generate several quasi-homeomorphic configurations (described in 
the next section). 

6.4.3 Generating Different Mappings 

In order to generate different mappings, we first cluster proximal interior vertices in the 
original cortical surface into a set of p groups by using a modified k-means algorithm. First, 
p vertices are randomly selected among the interior vertices. These vertices constitute the 
initial means xi of each group Ci. The remaining vertices are then assigned to the closest 

 his is a consequence of the Jordan curve theorem, which states that any simple closed curve partitions 
the plan into an inside region and an outside region 



Figure 6-6: a) Original defect. b) Clustering of proximal vertices using a k-means algorithm with 
10 clusters. c-e) Different Mappings generated using a relaxation procedure that ignores one cluster 
at a time. Figure e) represents the resulting mapping when the blue cluster in figure b) is ignored. 

(using geodesic distances) group. Then, the most "central" vertex of each cluster (i.e. the 
one minimizing the geodesic average of each cluster CVEC, d ( q ,  u ) )  is chosen as the new 
cluster representant, and we iterate the procedure until convergence. Figure 6-6-b shows 
the result of the clustering process into 10 clusters. The number of clusters is based on the 
size of the defect and empirically set to p = [?I. 

Next, we generate p mappings in the 2D plane, by applying p iterative relaxation pro- 
cedures. Given a chosen cluster Ci, the positions of the interior vertices are iteratively 
updated to be at the average of their neighboring vertex positions, excluding the vertices 
that belong to the chosen cluster Ci. The motivation for this procedure is based on the 
following theorem (Tutte [97], Floater [33], Richter-Gebert [81]) : 

Theorem 6.1 Topology of a planar graph 
Given a planar 3-connected graph with a boundary f i e d  to a convex shape in  IR2, the positions 
of the interior vertices form a planar triangulation (i.e. none of the triangles overlap) i f  
and only if each vertex position is some convex combination of its neighbor's positions. 

Theorem 6.1 implies that the method of barycentric coordinates generates all possible 
valid embeddings of the graph in the plane, given the (convex) positions of the boundary. 
This theorem has been vastly used for the purpose of parameterizing 3D meshes [42]. In 
general, the method of barycentric coordinates can be formulated as the solution of a 2D 
vector Laplace equation on the interior vertices, an equation which can be numerically solved 
using a relaxation procedure. This implies that given a valid 2D manifold with a planar 
topology, the relaxation procedure that we use will converge towards a planar triangulation, 
therefore eliminating overlapping faces. 

Once the p mappings have been generated, we simply apply the genetic algorithm to 
each configuration and select the best solution (the one with the best fitness). 

6.5 Implementation Issues 

The approach proposed in this chapter requires the frequent evaluation of binary edge-edge 
intersection operators. During the correction of a typical topological defect, containing 
approximately 50 defective vertices, the proposed met hod evaluates more than lo7 edge- 
edge intersection test s. By the intrinsic nature of the quasi-homeomorphic mapping, which 
aims at minimizing regions with negative areas (i.e. negative Jacobian), topological defects 
correspond to extremely dense regions, with vertices potentially being as close as 10-~rnrn. 
At this scale, floating rounding errors are frequent and lead to 'Lcatastrophic" results: a non- 
detected intersection often leads to topologically inconsistent retessellations with incorrect 
Euler-numbers (i.e. surfaces with the incorrect topology ) . 



In order to address this problem, we replace all float computations with exact calcu- 
lations. To do so, we approximate the spherical location x of each vertex v with rational 
numbers (E, g, E), where the accuracy of the approximation can be taken as high as de- 

sired6. We note that we cannot ensure that each vertex lies exactly onto the sphere (i.e. 
d 

11  ( , g, E) 11 # R), but this point is unimportant, since only the direction of the vector Ox 
matters. 

Once every spherical vertex is approximated by a set of rational coordinates, the edge- 
edge intersection can be evaluated using only exact computations. Consequently, the result 
of a test becomes a robust binary value that is no longer sensitive to rounding errors. 

More specifically, the intersection test consists of the successive evaluation of simple 
cross-product and dot-product operations. To illustrate this point, we consider four spher- 
ical vertices d, where i E {1,2,3,4). Each vertex v-as some spherical coordinates 

n A 

xi = (d 4 d )  respectively. The edge x1x2 is intersecting the edge7 x3x4 if and only 
9; ) 9; ) 9; 

if: 
1) the two points x3 and x4 are located on both sides of the virtual spherical geodesic going 
through the two points x1 and x2, 
2) reciprocally, if the two points x1 and x2 lies on both sides of the geodesics going through 
the points x3 and x4. - 

In evaluating these conditions, we denote by tu the vector xixi, and by nii the vector 
9. We note that, since the sphere is assumed to be centered at location 0 = (0,0,0), 

the vector nu is also the normal at location q. We have: 

i j X$ + X; t, = (x', - xi)  and n: = - 
2 ' 

The first condition is then equivalent to: 

and the second one to: 

The approximation of the original spherical coordinates with a set of rational coordinates 
needs to be done only once at the end of the spherical mapping and before the detection 
of the topological defects. Also, we note that the same approach can be used for planar 
defects, where each vertex location in the 2D plane is approximated by a set of rational 
coordinates. 

 he set of the rational numbers Q is dense in the set of the real numbers R. 
7 ~ ~ o  vertices define a unique shortest geodesic onto the sphere. For clarity, we call this geodesic an edge. 



6.6 Results and Discussion 

Before reporting results of the proposed approach on synthetic and real datasets, we measure 
the goodness of our method relative to a random search algorithm. This is to verify that 
our approach actually improves the speed of convergence and that the genetic operations 
allow the generation of superior candidate retessellations. 

6.6.1 Genetic versus Random Search 

We compared our approach with a random search algorithm, in which random permutations 
of the edge ordering were iteratively generated. The graphs in Fig. 6-7 illustrate the strength 
of our approach on a real data example. The topological defect is shown in Fig. 6-2-a. For 
each method, the first candidate tessellation corresponded to the solution generated by the 
greedy approach proposed in [28] with its vertices added last being discarded (Sect. 6.3.2.A). 
Compared to a random search, the genetic search converges much faster (at least, second 
order magnitude). The genetic algorithm boosts the overall fitness of the population by 
keeping the best representations at each generation and producing new candidates using 
the elite population. In a few generations composed of a small number of chromosomes (20 
chromosomes per generation in this example), the genetic search is able to produce new 
optimal retessellations (Fig. 6-2-f) . 

-11 I 
number of g e n d  patches 

a) 

Figure 6-7: a) Evolution of the log of the fitness function during the genetic search. b) Evolution 
of the log fitness function during a random search. Note how the genetic search iteratively improves 
the average fitness of each generated chromosome, which, as a consequence, will be able to generate 
new optimal chromosomes. On the other hand, random retessellation rarely generates new optimal 
patches. In this defect, which was constituted of 183 vertices, even after 50000 random draw, the 
fitness function of the best randomly generated chromosome was still 5 order of magnitude below 
the best GA chromosome (generated as the 300th offspring during the 1 5 ~ ~  generation). 



6.6.2 Application to Synthetic Data and Real Data 

A - Synthetic Data 

In order to validate the proposed method, we first generated surfaces containing simple 
topological defects (handles, holes). These data were used to explore the performance of 
the algorithm in terms of typical topological defects. The underlying MRI volumes were 
generated by adding white noise to the expected tissue intensities : gray and white intensity 
values were drawn from Gaussian distributions G(pg = 90, og = 5.0) and G(pw = 110, ow = 
5.0) respectively. Figure 6-8, top row, illustrates the behavior of the algorithm with regard 
to different MRI volumes, when the same topological defect has to be corrected (left: a 
simple handle). We note that traditional active contour models could not have generated 
the same results due to the amount of noise in the images and the presence of large local 
minima in the energy functional. 

Figure 6-8: Results of our proposed approach on different phantom examples. The same topological 
defect (left: a small handle constituted of about 100 vertices) is corrected using different underlying 
MRI volumes. In each case, our approach generated an optimal configuration corresponding to the 
expected solution. 

B - Real Data 

We have applied our proposed approach to 43 real images. The dataset is composed of MRI 
volumes of different qualities, from different populations. Results were evaluated by experts 
to assess the correctness of the final corrections. 

B.l - Description of the Data Set 

Validation data came from several data sets. They were a mix of pulse sequence (SPGR, 
MP-RAGE) , scanner types (Siemens 1.5T, GE 1.5T) and pathology (normal control, schizophre 
nia and Alzeihmer's). 

Seventeen scans were acquired in 2000/2001 using a Siemens Sonata system with the 
following parameters: TR: 7.25 ms; TE: 3.22 ms; TI: 600.00 ms; flip angle: 7.00j; 1.3-mm 
sections (resampled to 1 mm isotropic). This data set consists of 8 young (YNC), 7 elderly 
normal controls (ENC), and 2 Alzeihmer's (AD). 

The second data set was acquired using a Siemens Vision system in 1994/1995 with 
the following parameters: TR: 9.70 ms; TE: 4.00 ms; TI: 621.00 ms; flip angle: 10.00j; 
1.25 sections (resampled to 1-mm isotropic). Data comes from studies reported in Buckner 
et al. [ll] and Logan et al. [58] and also later subjects imaged using the same anatomic 
protocol8. This data set consists of 6 Young Normal Control, 14 non-demented and 6 
demented adults. 

* w e  thank Randy Buckner and the Washington University Alzheimer's Disease Research Center for 



B.2 - Discussion of the Results 

The algorithm was able to generate correct solutions that the initial greedy approach [28] 
failed to produce. Methods that do not integrate statistical and geometric information will 
often fail to produce solutions comparable to the ones a trained operator would make. This 
is illustrated in Fig. 6-9, where valid solutions do not always correspond to minimal correc- 
tions (i.e. cutting the handle in the two examples of Fig. 6-9). Only general approaches that 
integrate additional information can lead to correct solutions. In addition, to our knowl- 
edge, our approach is the only one that has been proposed to explore the space of potential 
solutions in order to select the best correction to a topological defect. 

To evaluate the quality of the corrections, we compute the average Hausdorff distance 
for each defect between automatically corrected surfaces (using our method) and manually 
corrected surfaces produced by a trained operator. The average Hausdorff distance is less 
than 0.2mm. 

An average cortical surface contains on the order of 50 topological defects, most of which 
axe relatively small: most defects contain less than 50 vertices, and me corrected in a couple 
of minutes. Larger defects, with more than 100 vertices, correspond to a computation time 
of approximately 10 minutes. We note that the retessellation process is quadratic in the 
number of vertices contained within the convex hull of each defect. Consequently, a full brain 
is corrected in approximately 2 hours on a 1-GHz Pentium IV machine. More importantly, 
we note that the whole process could be parallelized, since each defect is independent of the 
other. Consequently, a full brain could be corrected in approximately 10 minutes. 

Figure 6-9: Topology correction of a cortical representation. The initial surface was constituted 
of 30 defects (Euler number X = -58). Compared to the greedy approach of Fischl et al. [28], 
which failed to find the correct solutions in many defects, our approach was able to generate valid 
solutions. This is illustrated on two examples, in which valid topological solutions do not correspond 
to minimal corrections. 

Moreover, we note that the proposed method does not directly prevent the final surface 
from self-intersecting. Self-intersecting configurations typically have low fitness values and 
are naturally discarded during the genetic search. The self-intersecting constraint could 
be directly integrated into the retessellation process, but would drastically slow down the 
proposed approach. In our experience, final, corrected representations rarely intersect (less 
than one in ten thousand faces, which corresponds to approximately 1 defect per brain). 
To ensure that the solution generates a valid manifold, we check retrospectively that the 
final retessellation does not self-intersect. In the case of self-intersection, we re-apply the 

providing the data set. 



genetic algorithm with the additional constraint of generating only valid candidate patches. 
Self-intersecting patches are identified and discarded from the population. 

Our method has been applied to 43 real images, i.e. 86 brain hemispheres that each had 
on average 50 defects. Only one single defect, the one used as an example throughout this 
section, has been identified to be inaccurately corrected, and necessitated the generation of 
several mappings. This seems to imply that, in most cases (i.e. in more than 99.9% of the 
cases) the genetic algorithm used in conjunction to the original spherical mapping produces 
correct topological corrections. 

Figure 6-10: a) Original defect. b) Solution generated by the genetic algorithm from the initial 
quasi-homeomorphic mapping. c) Best solution generated from the mapping in Fig. 6-6-e. 

In the case of an incorrect topological correction, the method proposed in Sect. 6.4 
provides a simple solution by generating a few optimal retessellations corresponding to 
different mappings. Figure 6-10 illustrates the final solution that was generated using the 
mapping shown in Fig. 6-6-e. 

Finally, we note that Thm. 6.1 opens new research directions for the direct integration of 
the mapping problem into the topology correction process. Applied to different (potentially 
random) relaxation procedures, vertices, whose position is not some convex combination of 
its neighbor's positions, could be identified and eliminated from the retessellation process. 
Future research would require the investigation of relaxation procedures that would limit 
the number of "non-convex" vertices, and we note that this is deeply related to finding how 
and where to "cut" handles in the defect. 



6.7 Contributions of this Chapter 

We have proposed an automated method to accurately correct the topology of cortical rep- 
resentations. Our approach integrates statistical and geometric information to select the 
optimal correction for each defect. In particular, we have developed a genetic algorithm 
that is specifically adapted to the retessellation problem. Iterative genetic operations gen- 
erate candidate tessellations that are selected for reproduction based on their goodness of 
fit. The fitness of a retessellation is measured by the smoothness of the resulting surface 
and the local MRI intensity profile inside and outside the surface. The resulting procedure 
is completely adaptative and self-contained. During the search, defective vertices are iden- 
tified and discarded while the optimal retessellation is constructed. 

Given a quasi-homeomorphic mapping from the initial cortical surface onto the sphere, 
our method will be able to generate optimal solutions. For each defect, the space to be 
searched (i.e. the edge ordering) is dependent on the spherical location of the defective ver- 
tices. Some configurations of the quasi-homeomorphic mapping could lead to optimal but 
incorrect retessellations. In order to address this limitation, we have proposed to generate 
several quasi-homeomorphic mappings producing different spatial optimal retessellations. 
The final chosen retessellation is the one achieving the best fitness function. 

To our knowledge, this approach is the only one that has been proposed to explore the 
space of potential solutions in order to optimally select the best correction to a topological 
defect. Some care was taken in order to ensure that no floating rounding errors occurs 
during the topology correction. 

Finally, we note that the proposed approach is not restricted to spherical topologies, 
and that it can be used to correct the planar topology of any set of vertices. 

A preliminary version of this work was presented at the conference Information Pro- 
cessing i n  Medical Imaging [86]. 



Chapter 7 

Conclusion 

This dissertation concerns the accurate segmentation of medical images under topological 
constraints. We have made a number of contribution to advance several aspects of the 
field of medical image segmentation and offer new research perspectives. On the theoretical 
level, we have introduced the digital concept of a multisimple point and derived necessary 
and sufficient characterizations. On the methodological level, we have developed a novel 
active contour framework for the evolution of level sets under topology control, the genus 
preserving level sets. Also, we have phrased the topology correction of segmentations into 
a Bayesian framework that naturally integrates st at istical and geometrical information into 
the topology correction process. On the application level, we have proposed two algorithms 
for the retrospective topological correction of digital 3D images and 2D cortical surfaces. 
To our knowledge, no techniques had been previously introduced to naturally integrate 
additional information into the topology correction process, to explore the whole space of 
potential topological corrections, and to produce optimal solutions with respect to the un- 
derlying MRI intensity profile and the expected curvature in a rigorous manner. 

The concept of multisimple point extends the notion of simple point that is often too 
restrictive for most applications. Using this criterion, new sets of digital deformations have 
been proposed to generalize the restrictive notion of homotopic deformation. 

This concept has been used to design new segmentation algorithms that are much more 
flexible than previous methods. First, we have improved the control of topology changes 
with the level set method. We developed a new active contour framework for the evolution 
of level sets with preservation of the genus: the genus-preserving level sets. Our method 
offers a subtle topological control over the topology of the level sets, and constitutes a 
trade-off between traditional level sets and topology-preserving level sets. 

Also, the concept of multisimple point has been used to develop a method for automat- 
ically correcting the spherical topology of any 3D binary segmentation under any digital 
connectivity. In contrast to existing procedures that assume specific initial segmentation 
(e.g. full connectivity, no cavities, etc) and are designed for a particular task (e.g. corti- 
cal representation), no assumption is made on the initial image, and spherical topology is 
achieved under any choice of digit a1 connectivity. Also, our topology correction algorithm 
is nested in the theory of Bayesian parameter estirnation, which allows the integration of 
statistical information into the topology correction. 

Finally, we have introduced a genetic algorithm for the correction of the topology of cor- 
tical surfaces. Unlike existing approaches, our met hod is able to generate several potential 



topological corrections and to select the maximum-a-posteriori retessellation in a Bayesian 
framework. Our approach integrates statistical, geometrical and shape information into 
the correction process, providing optimal solutions with regard to the MRI intensity profile 
and the expected curvature. The resulting procedure is completely adaptative and self- 
contained. 

The methods developed in this dissertation have been validated using synthetic and real 
data. Some experiments on synthetic images and real MR images have demonstrated the 
advantages of the genus-preserving method and have illustrated some potential applications 
that could greatly benefit from our approach. Our algorithm for the topology correction 
of 3D binary images has been successfully applied to subcortical segmentations and white 
matter segmentations. Applied to synthetic and real data, our genetic algorithm generated 
optimal topological corrections with only a few iterations. 

Finally, some potential directions for future research have been highlighted in each 
chapter. 

The concept of multisimple point can benefit several research areas that rely on digital 
theory: image segmentation, computer graphics, digital image processing, and so on. For 
instance, this concept could be used to design new thinning algorithms that would pre- 
serve some specific characteristics of a digital object. Also, multisimple points could help 
characterize some invariant properties of digital objects, such as the Betti numbers. 

In Chapter 4, we introduce a genus-preserving level set framework, and we propose 
some potential applications that could benefit from our approach. In addition, this level 
set framework could be integrated into our digital topology correction met hod described 
in Chapter 5. The use of curvature information in the segmentation process would greatly 
reduce the sensitivity to noise and would improve the location and correction of the topo- 
logical defects. This approach would certainly reduce the impact of early wrong decisions 
during the graph analysis. 

Also, it is in our interest to integrate the generation of several random mapping con- 
figurations directly into the retessellation process, ensuring search over the whole space of 
potential retessellation. Particularly, Thm. 6.1 opens new research directions for the di- 
rect integration of the mapping problem into the topology correction process. Applied to 
different (potentially random) relaxation procedures, vertices, whose position is not some 
convex combination of its neighbor's positions, could be identified and eliminated from the 
retessellation process. 

In conclusion, in this dissertation, we have improved the theoretical tools applicable to 
the segmentation of images under topological constraints, proposed novel methodologies for 
image segmentation, and developed well-founded algorithms to achieve accurate segment e 
tion of medical images under topological constraints. Additionally, we have presented the 
reliability and applicability of these methods as compared to existing techniques in the field. 







Appendix A 

Proofs 

Multisimple point x relative to X 
A point x E X is said to be multisimple relative to X if and only if 

Proof 
In  order to verify that the concept of multisimple point does not introduce any topological 
defects i n  the volume, we need to  show that the addition or deletion of a multisimple point x 
does not introduce any holes or cavities i n  any of the connected components C E Cn(x,X) 
or X, where X = {x) Ui Ci. 
A simple point x E X, characterized by Tn(x, X) = TE(x,X) = 1, can be removed without 
changing the topology of the image. This implies a one-to-one correspondence between the 
connected components, the holes of X and X and the connected components, the holes of 
X \ {x) and U{x), the n-connectivity being used for X and the ii-connectivity being used 
for X. Using this property, the proof can easily completed as follow. 

Holes 
Since the connected components Ci E Cn(x,X) are not adjacent, any simple closed 
path i n  X = {x) Ui Ci is strictly contained i n  Cj U{x) for one of the connected compo- 
nents Cj. The multisimple criterion, which ensures that the point x is  simple relative 
to the component Cj, guarantees that the addition or deletion of x does not create any 
n-holes i n  the process. Similarly, any simple closed ;iT;-path i n  the background compo- 
nent X U{x) is contained i n  C for any of the components C E Cn(x, X). Therefore, 
Eq. A . l  ensures that no Ti-holes are created i n  X. 

Cavities 
The point x is simple relative to each component C E Cn(x,X). A s  a consequence, 
its addition or deletion does not introduce any cavities i n  any of the components C or 
its complement c. Finally, we note that no cavities other than the ones formed by the 
n-connected components of Cn(x,X) are generated i n  X. If this were the case, since 
the components of Cn(x,X) are not adjacent, this would mean that the cavity would 
have been created i n  one of the components C E Cn(x7 X), which would contradict 
what we have just proven. 



Multisimple point x relative to X 
A point x is said to be multisimple relative to W if and only iE 

- - -- 

Proof 
The proof is the same as the one of Eq. A.1, where every digital topological notion is replaced 
by its dual notion: X + ST, n + si,. . . 

Proof 
Topological numbers characterize potential merges or splits, while topological numbers con- 
trol any lcind of topological changes. I n  addition to splits and merges, the topological numbers 
record the potential formations of handles. For a given connected component C E Cn(x,X), 
Tn(x, C) > 1 implies that the addition of the point x to  X results in the generation of, at 
least, one handle in the connected component C. 

First, we have VCi E Cn(x, X), Tn(x, Ci) 2 1. W e  note that we cannot have Tn(x, Ci) = 
0 ,  because Ci is adjacent to x. 
Also, we note that, since the wmponents Ci E Cn(x, X) are not adjacent (2.e. V(i, j )  s.t. i # 
j Ci n Cj = {0}) ,  we have the following set equality: 

where the union is disjoint. Therefore, we have the following equality: 

Finally, we can derive the above equations: 

T;(x)X) = Icn(x,X)( 5 C JN;(x,Ci)l = IN;(x,X)I = Tn(x,X), 
i 

since V i  IN; (x, Ci) 1 > 1. W e  have the equality T$ (x, X) = Tn (x, X) if and only all the 
wmponents Ci of Cn (x, X) verify I N; (x, Ci) I = 1 (i. e. Tn (x, Ci) = 1). W e  note that we 



also have : T$ (x, X) < Tn (x, X) H 3C E Cn (x, X) such that T, (x, C) > 1. 

Multisimple point x for ( ~ , f f )  
A point x is a multisimple for (x,X) if and only if 

Proof 

Given a connected component Ci of Cn(x,X), the addition of the point x to the digital 
object Ci will not generate an n-handle if and only if Tn(x, Ci) = 1. Since all components of 
Cn(x, X) are non-adjacent, no n-handle is generated i n  X if and only i f  we have Tn(x, Ci) = 

1 for all components Ci. Using Eq. A.4, this is equivalent to  the condition T,S(x,X) = 
Tn(x, X). Similarly, we have that the deletion of x from X will not generate any %handle 
i n  X if and only if we have T$ (x, f?) = TE(x, f?). Consequently, the deletion or addition 
of x will not generate or delete any handle i n  the volume (i.e. x is a multisimple point) if 
and only if Eq. A.5 is verified. 
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