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Abstract
This thesis presents a series of simulations of quantum computations using the adi-
abatic algorithm. The goal is to explore the effect of error, using a perturbative
approach that models 1-local errors to the Hamiltonian and estimates transition prob-
abilities out of the ground state. The data show that a perturbation in the z-direction,
parallel to the alignment of the computational basis, causes a greater error than one
in the x-direction, and show with good confidence (X2 = 1.7) that the variation is as
sin 0, where 0 is the angle of the error term. An attempt to explore the change in error
with the number of qubits was inconclusive--there was no measurable variation.

Thesis Supervisor: Professor Edward Farhi
Title: Department of Physics

3



4



Acknowledgments

I would like to thank Prof. Edward Farhi for my initial introduction to this topic, and

for his supervision of this project. I would also like to thank Prof. Peter Shor, Stephen

Jordan, Shay Mozes, and Edward Platt for their participation in the discussions that

led to the completion of the work contained herein.

5



6



Contents

1 Introduction 11

2 Adiabatic Quantum Computation

2.1 Outline of Quantum Computation .

2.1.1 Mathematical Framework.

2.2 Satisfiability. ...............................

2.3 The Problem Hamiltonian ........................

2.4 The Adiabatic Theorem .........................

2.5 The Computation .............................

2.6 Example of a 2-SAT Computation ....................

3 Computational Errors

3.1 Results of a Computation ........................

3.2 Modeling the Error.

4 Simulations

4.1 Generating Random Instances of 2-SAT and Random 1-Local Errors.

4.2 Locating the Minimum Gap.

4.2.1 The Quadratic Method ......................

4.2.2 Results . ..............................

4.3 The Angle of the Perturbation ......................

4.4 Dependence on n .............................

4.5 Conclusions ................................

7

15

15

16

17

18

19

20

21

25

25

28

33

33

34

34

36

36

37

39



A Simulation Code

A.1 Generating the Start Matrix ..

A.2 Generating the 2-SAT Instance

A.3 The Error Term .........

A.4 Finding the Minimum Gap . . .

41

41

42

43

43

8

..........................................

.....................

.....................



List of Figures

2-1 Energy levels in a 3-qubit example. The x-axis is s, the parameter that

runs from 0 to 1 over the course of the computation. Note the lack of

level crossings. . . . . . . . . . . . . . . . . ...... .. .... 23

2-2 The gap in the 3-qubit example ...................... 24

3-1 Energy levels in a 3-qubit computation corresponding to the logical

expression (xl A x2 A X3 ). The middle two levels are both triply degen-

erate. At the end of the computation, the ground state is the correct

state, 1000) and the three states with energy 1 are 1001), 1010), and 1100). 28

3-2 Energy levels in a 3-qubit computation of a Grover search. ...... 29

3-3 Simulation of the effect of an error at various times in an random 8-

qubit instance of 2-SAT. The dashed line shows the energy gap over

the course of the computation. The solid line shows the effect of an

error at each specific point in the computation. Specifically, the error

is a z-spin term (as described in Eq. 3.2), applied to a particular qubit.

e = . The overlap between the ground states of the perturbed and

unperturbed Hamiltonians is plotted ................... 30

4-1 5 iterations of the quadratic method to find the minimum gap. n=8.

The circles show intermediate steps in the iterative process, and the

cross shows the final result. ....................... 35

4-2 Distribution of minimum gap locations in 2000 randomly generated

10-qubit instances of 2-SAT. Median s = 0.54 .............. 36

9



4-3 The overlaps resulting from errors at various angles in 6-qubit instances

of 2-SAT. runs from 0 (z) to (i). Each data point consists of

2000 trials. The data are fit to a sine curve y = A + B sin(O) with a

X2 value of 1.7. ............................... 37

4-4 The overlaps resulting from errors of various magnitudes, at qubit num-

bers ranging from 5 to 11. No attempt is made to distinguish the 7

plotted lines, as they are not visually discernable. They are also not

resolvable from each other by an amount greater than the error bars.

Each data point represents 1000 trials. ................. 38

4-5 An expansion of the = 1 data set from Fig. 4-4. Note the y-axis scale. 39

10



Chapter 1

Introduction

Quantum computation is known to be more powerful than classical computation.

Though attempts to build functional quantum computers are still at early stages,

much progress has been made in the theoretical work necessary to eventually program

them. If a large-scale quantum computer is ever to be realized, however, it does

not suffice to only consider ideal behavior. The possibility of errors in computation

must be evaluated and specifically accounted for, in order to construct models of

computation which can scale to large sizes without the errors growing prohibitively

large. This thesis contains a discussion of errors in a particular type of quantum

computation that relies on adiabatically evolving Hamiltonians [2]. This method of

computation has been shown to be computationally equivalent to the more well-known

type that uses discrete unitary transformations [7].

We will examine the functionality of the adiabatic algorithm in the context of Sat-

isfiability, the quintessential NP-complete computational problem. One of the biggest

open questions about quantum computation is whether it will enable the solution of

NP-complete problems in polynomial time. It has already been shown to solve a

classically unsolvable problem, factorization of large numbers, in polynomial time, a

result which has wide implications in many aspects of computation [1]. Though no

algorithm has yet been found which demonstrates a similar speedup for NP-complete

problems, it remains an important area of research, and the adiabatic algorithm is

one approach being explored.
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Conventional computing relies on the concept of fault-tolerance, the idea that, so

long as the errors in an individual component lie within certain bounds, errors will

not compound as the size of the computer increases. For example, in the design of

digital logic gates, this is accomplished by specifying that components accept elec-

trical signals across a designated input range, which is specifically larger than the

corresponding output range of the previous component. In this way, even if there

is noise along the wire between the two components, the signal lies within the valid

input range and is interpreted as a 0 or 1. Since minor errors due to electrical fluc-

tuation get suppressed at every step, an arbitrary number of gates can be chained

together without allowing any errors to propagate down the line. Though this ex-

act approach, which relies on the digital nature of the components involved, does

not apply to quantum computation, the goal is still the same-design a system of

quantum computation in which errors do not compound as the system get larger. In

other words, the goal is to hold the error rate below a certain upper bound only by

specifying certain noise tolerances, regardless of the size of the computation.

This problem has not been heavily explored for the adiabatic algorithm, and it is

unknown whether it is possible. Here, we begin exploring some of the properties of this

algorithm with regards to errors. The next chapter will introduce adiabatic quantum

computation in more detail. It sets up the mathematical framework for computation

in general, and then outlines the adiabaticity condition and the limitations of the

algorithm. We will show how to construct the starting and ending Hamiltonians used

to solve 2-SAT. Though 2-SAT is not an NP-complete problem, it is very closely

related to SAT and Max 2-SAT, both of which are.

Chapter 3 explores the possibility of errors in more detail. It discusses some various

ways to model errors and some ways to evaluate their effects on a computation. We

will choose a criterion for successful computation, and a way to evaluate the success

probability of a specified type of error. The section concludes with some motivation

for the thought that noise might have the worst effect on a computation during the

point of minimum gap.

The final chapter presents the result of a series of simulations. The most concrete
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result is an analysis of the effect of error angle (angle of a hypothetical stray field,

relative to the reference axis of the computation), where we fit the dependence of error

magnitude on angle to a sine function. This is followed by an attempt to observe the

variation of error magnitude on the size of the computation, but it will be evident

from the data that much higher numbers of qubits must be explored for a complete

conclusion on the subject to be reached.
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Chapter 2

Adiabatic Quantum Computation

In 2000, Farhi et al. posited an algorithm for solving combinatorial problems on

a quantum computer [2]. This algorithm relied not on a series of discrete unitary

operators applied to the quantum basis, but rather on a continuous evolution of

Hamiltonians. Using the adiabatic theorem of quantum mechanics, one can conclude

that if the Hamiltonian is varied slowly enough, the system can be maintained in a

ground state. We will now outline how this can be used to solve problems.

2.1 Outline of Quantum Computation

A classical computer relies on bits, components which can occupy one of two states

(commonly called 0 and 1). A computer using n bits can exist in one of 2' possible

states at any one time. Computations are performed by discrete manipulations of the

bits, and the length of a computation is given by the number of such manipulations

required [1].

In contrast, a quantum computer relies on qubits, which are quantum 2-state

systems, such as spin- 1 particles. A single qubit may occupy an uncountably infinite

number of states, which are various superpositions of its two eigenstates, and we

usually represent it as a vector in a two-dimensional space. An ensemble of n such

systems is an n-qubit quantum computer. The computer moves in an abstract space

which is a direct product of the vector spaces representing each of the bits. Hence
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our computer has 2n basis states, corresponding to the valid states of the analogous

classical computer, and can exist in an arbitrary complex superposition of these states.

The quantum computer can be manipulated by two types of algorithms. The first

is by application of discrete physical inputs that correspond to unitary operators in the

vector space that represents the computer. Standard quantum computation is based

on "circuits" of these operators, which are each presumably to be implemented by

physical coupling between the qubits. As with classical computation, the complexity

of a problem relies on the number of such manipulations inherent in its solution. The

second method of quantum computation relies on slow, continuous evolution of the

Hamiltonian governing the qubits. This method will be further explicated in this

chapter.

2.1.1 Mathematical Framework

We will put aside some of the physical details of the construction of such a computer,

and cast it into an abstract mathematical setting. Here we outline the mathematical

conventions used throughout this paper.

We think of the qubits as electrons or other arbitrary spin-' systems. Our basis

states for purposes of computation are the eigenstates of these particles with respect

to the spin operator in the z-direction, S. We can call the eigenstates z), where

Iz = 0) = = ) and z 1) = Sz = . An n-qubit computer has 2n eigenstates

of the operator Sz 0 Sz .. 0 Sz, where each S, is the spin-z operator being applied

to the corresponding electron. There basis elements are of the form zl) Jz2) ... IZn),

where each Izi) represents the spin-z state of the ith electron. An n-vector z over the

set {0, 1 can represent an eigenstate, or a choice of bits z1, Z2 , ... , Zn.

Note that the logical z operator,

Lz= (I- o), (2.1)
2
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where az is the Pauli spin matrix

az= [ 1 (2.2)
0 -1

can be used to define our convention of states 10) and 11) in the computational basis.

Hence, a "measurement" of our quantum computer generally refers to an observation

of the operator Lz 0 L 0 ... 0 L., returning a sequence of O's and l's.

The price we pay for the seemingly infinite precision allowed by the continuous

milieu of quantum computation is unavoidable uncertainty. At the end of a compu-

tation, the system is in some state

In) = cz ) (2.3)

Unfortunately, the postulates of quantum mechanics dictate that final measurement

of the system does not give us complete information about the state 1ib), but rather

yields exactly one of the basis states [), with a probability given by

P(Z) = Ic,2 . (2.4)

At the end of any quantum computation, we desire Icul2 to be as large as possible,

for w the correct solution, expressed as a sequence of O's and l's.

2.2 Satisfiability

A classic NP-complete problem is satisfiability: does a given logical expression in

conjunctive normal form have at least one satisfying variable assignment?

Given a set of logical variables xi, we take a clause to be an arbitrary disjunction

("or") of any number of elements or their negations, such as (X 1 V X2 V ±3). A logical

statement in conjunctive normal form is an arbitrary conjunction ("and") of such

clauses. We are concerned in this paper with 2-SAT, the problem of satisfiability
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where each clause contains exactly two variables, for example:

(xl V x 2 ) A (X3 V :X4 ) A ( 2 V xl) (2.5)

2.3 The Problem Hamiltonian

Imagine that we concerned not only with whether or not a variable assignment satisfies

all of the clauses in a logical statement, but more specifically with the number of

clauses it violates (which may be zero). In addition, every clause has an energy cost

associated with violating it (which may all be 1, or some can be weighted more than

others). This allows us to cast the problem into quantum mechanics, by mapping the

logical variables onto qubits.

Take a 2-qubit case with one clause (xl V x2). The complete information about

this problem can be expressed as a Hamiltonian:

Hp = 11) (11l, (2.6)

or, as a matrix,

0 0 0 0
0 0 0 0

Hp= (2.7)
0 0 0 0

0 0 0 1

First of all, note that this Hamiltonian is diagonal in the computational basis, because

all computational basis states correspond to logical variable assignments that have

defined truth values for the clause. Secondly, the energy eigenvalue of any basis state

gives the number of clauses that it violates. As a consequence of this, the ground states

of the system, if they have energy 0, correspond to all possible satisfying assignments.

A similar procedure can be carried for any 2-SAT problem (and for any satisfia-

bility or cost-minimization problem). The diagonal of this Hamiltonian matrix will

encode the complete information about the existence of satisfying assignments. In
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fact, given the matrix elements themselves, the existence of a satisfying assignment

can be determined at once, by checking for zeros on the main diagonal. Unfortu-

nately, we cannot explicitly compute these elements in less than exponential time, for

it requires counted the clauses violated by each of the 2 basis states. The only way

we can build the Hamiltonian is as a sum on 2-local (equal to the identity in all but

a 2-qubit subspace) terms corresponding to the clauses. The trick, then, will be to

find the ground state of this "problem Hamiltonian."

2.4 The Adiabatic Theorem

What we shall see is that, unlike in other forms of computation, finding the ground

state will not require specific ingenuity on our part-we can set up a situation in

which Nature will hunt it out for us. This is accomplished by relying on the Adiabatic

Theorem.

A system evolves according to the Schr6dinger equation:

id (t)) = H(t) of (t)) (2.8)

Let the starting state 1()) be the ground state of the starting Hamiltonian H(O).

The relevant part of the Adiabatic Theorem tells us that the evolving state I|0(t)) will

always be the ground state of H(t), so long as the change of H(t) is "slow enough,"

and so long as there are no level crossings, degeneracies between the bottom two

eigenstates of H.

We can use this fact to perform our computation. If the physical Hamiltonian

is varied, slowly and without level crossings, from any Hamiltonian whatsoever (so

long as the system is in the ground state to begin with) to our problem Hamiltonian

as discussed above, a measurement of the ground state at the end will, with high

probability, yield the correct solution.

How slow is slow enough? This depends on the size of the gap. Specifically, let

us reparameterize the system in terms of s, a variable that runs from 0 to 1 as t runs
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from 0 to T, the endpoint of the computation:

i k l+(s)) = dtH(s) (s)) (2.9)

Throughout the rest of this paper, s will be used to measure the progress of the

computation. The Adiabatic Theorem tell us that the overlap between I(s = 1))

and the desired final ground statelo(l)) of Hp can be kept greater than 1 - 2, where

e depends on the square of the gap g between the two lowest eigenvalues of H at any

point in the computation, and on the local computation speed d. In other words,

the computation speed must vary like g2, in order to maintain large overlap in the

final state. Assuming a constant computation speed (which much be used unless the

location of the minimum gap is known in advance), the overall time of computation

goes like -2n [3] [5].

2.5 The Computation

As shown in the preceding sections, if we can construct a starting Hamiltonian which

can be continuously varied to the problem Hamiltonian, we can perform our compu-

tation. Construction of the starting Hamiltonian, for our problem, will be simple. We

want a starting state which is uniform superposition of all the computational basis

states, to avoid biases in the results of the computation. In our physical model of a

spin system, this is accomplished by starting with all the magnetic alignments in a

horizontal direction (perpendicular to the z-axis). This corresponds to a Hamiltonian

made up of spin operators in the x-direction (to keep our computations real) on every

qubit.

To remain within our mathematical framework of 0 and 1 eigenvalues, we build

the starting Hamiltonian Hs as follows:

Hs= 2(I - x)i (2.10)
i
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(i over all qubits), where

1 2(( [ 1 ( [0 J) [-2 2 (2.11)
2 2 1 0 1 1

Also, since our starting Hamiltonian is made up of ax, terms and our final Hamil-

tonian is made up of a- terms, we will generally avoid symmetries that can lead to

level crossings.

For the course of this discussion, the rate of variation in our computation will be

constant:

H(s) = (1 - s)Hs + sHp, (2.12)

where
t

s= (2.13)

T being the total time required. We do not know, a priori, where on the scale of

s = 0 to s = 1 the minimum gap will reside in a particular computation. Without

that information, there is nothing to be gained from a more complex variation of

the speed. For an interesting example of where knowledge of the gap over time can

improve computation speed, see the adiabatic solution to the Grover search problem

[4] [6].

2.6 Example of a 2-SAT Computation

Here we demonstrate the computation of a typical 2-SAT problem. We will use a

randomly generated 3-qubit instance of 2-SAT:

(. 2Vx 3) A( 2 Vx 3 ) A(x2 Vx 3 ) A (x1l X2)A (x1 Vx3) A ( VZ3) A (xl V 3)A (xl Vx 2)A (xl Vx 2)

(2.14)

The duplicate terms effectively serve to weight some clauses more strongly than others.

This has no bearing on the presence of a solution, but does alter the evolution of the

system.
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Using a convention where 0 corresponds to a "true" value of a particular variable,

and 1 to "false," we can construct the problem Hamiltonian

00000000
03000000
00100000
00010000
00003000
00000300
00000050
00000002

(2.15)

The starting matrix consists of the logical

qubit. To act with a one-qubit operator on

product with an identity in every other place:

x-operator (Eq. 2.11) acting on every

a particular qubit, we form a direct

I
2

1
Hs = Lxi --

i

3

-1

-1

0

-1

0

0

0

-1 -1

3 0

0 3

-1 -1

0 0
-1 0

0 -1

0 0

0 -1

-1 0

-1 0

3 0

0 3

0 -1

0 -1

-1 0

0 0 0
-1 0 0

0 -1 0

0 0 -1

-1 -1 0

3 0 -1

0 3 -1

-1 -1 3

(2.16)

(2.17)

The computation proceeds, parameterized by s, according to Eq. 2.12. We see

in Fig. 2-1 how the energy levels evolve in time. At s = 0, we have the uniformly

superposed eigenstates of H(O) = Hs. At s = 1, the eigenstates of the Hamiltonian

are computational basis states, and each energy level corresponds to an entry in the

problem Hamiltonian, and hence to the "cost" (degree of unsatisfaction) of one of the
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variable assignments in the initial problem. Since, at s = 1, there is a unique ground

state, our inital problem had a unique solution, and since there are no level crossings,

an adiabatic computation would find this solution.

Of interest to us is the gap between the first two energy levels, as the computation

proceeds. As discussed above, the size of the gap determines the chance of a "level

jump" which causes an error in the final result. This gap is displayed in Fig. 2-2.

It, in general, is smallest near the middle of the computation, but this is not always

the case. Later on, the location of the minimum gap in a variety of cases will be of

interest to us, as this is the most likely location for an error to occur.

4.

3.

a) 2.

0)

1.

0.

5

4

5

3

5

2

5

5

5

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

s=t/T

Figure 2-1: Energy levels in a 3-qubit example. The x-axis is s, the parameter that
runs from 0 to 1 over the course of the computation. Note the lack of level crossings.
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0.
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s=t/T

Figure 2-2: The gap in the 3-qubit example.
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Chapter 3

Computational Errors

Adiabatic quantum computation has been proven to be computationally equivalent

to discrete quantum computation. Specifically, there exists a method to convert any

discrete quantum computation (implemented as a sequence of unitary gates) into

an adiabatic form [7]. What is relatively unexplored, however, is the fault-tolerance

properties of adiabatic computation. If this method of computation is ever to be

realized, some understanding will have to be gained about its behavior in non-ideal

conditions.

3.1 Results of a Computation

Essentially, an adiabatic computation can fail in one of two ways. Either the fi-

nal Hamiltonian produced by the computer is not precisely identical to the desired

problem Hamiltonian, and so its ground state is not the solution state, or something

causes the quantum system to make a level transition at an intermediate point in the

computation.

In general, a minor variation in the "path" of the computation should have no

effect, so long as it does not shrink the gap by a factor significant enough to defeat

the adiabaticity condition. This is an important point-the continuous nature of the

computation might lead one to believe that it would be susceptible to infinitesimal

errors, but the adiabatic nature of it means that this is not necessarily the case. In
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many cases, an error of nontrivial size may perturb the path in such a way as to

have no effect on the final result. Unfortunately, any detailed exploration of this

assertion would be extremely difficult, as it would require a way to predict the effect

of a random perturbation on the energy gap.

An important question to ask is: how much error in the final result of the com-

putation is acceptable? In other words, we want to know what our criterion is for

declaring a computation successful. Since a computation can be repeated a large

number of times, we have to consider what methods we might have for extracting

the correct solution out of a list of nonidentical outputs. For example, consider the

two computations presented in Figs. 3-1 and 3-2. The first is a case of satisfiability

where every clause contains one variable, such that there is a unique correct solution,

specified one bit at a time. Here, the three lowest-lying incorrect eigenstates of the

problem Hamiltonian all differ from the correct solution by exactly one bit. Even

in the case of a severe error in which the probabilities of all four of these outcomes

(the correct solution 1000) and the three lying nearest it 1001), 1010), and 100)) were

equal, we would be able to discern the correct answer. For, in each bit, we would find

a 0 of the time, and a 1 of the time. As such, a sort of "vote" at each bit location

would clearly yield an answer of 000, even though the state 1000) was not a favored

outcome.

The second example, however, does not afford us this advantage. It is a 3-bit

Grover search. This is an unstructured search, in which there is one correct solution,

7 incorrect solutions, and no further information. It is not technically an instance

of satisfiability, but is a related problem that can be solved adiabatically [4]. The
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problem Hamiltonian is

00000000
01000000
00100000
00010000
00001000
00000100
00000010
00000001

(3.1)

As seen in this matrix and in Fig. 3-2, all incorrect states are equally likely. It

is possible that some type of error would cause the computation to return any of

the incorrect states with equal probability. In this case, a "voting" approach like

the one mentioned above would quickly be stymied. The difference is that in this

case, incorrect states which are erroneous in most or all of the bits are still possible

outcomes of simple errors, so we cannot rely on the assumption that any particular

bit will be correct in the majority of trials.

In order to achieve a correct solution in the Grover problem, the final state of the

computation must have a large overlap with the correct solution state. No weaker

criterion will suffice. In the case of a general satisfiability problem, there is no easy

way to improve upon this requirement. There is always the possibility, for example,

that in a particular instance the state with every bit incorrect will violate only a

small number of clauses and be a likely outcome of an erroneous computation. In

some cases, knowledge of the problem's clause structure can be of some use. For

example, if the qubits can be partitioned into two subsets, and all the clauses only

involve qubits from one of the two sets, then a form of analysis in which the outcomes

of the two halves of the problem are evaluated independently (like the individual

qubits in the first example above) will yield a correct result more frequently than one

which simply searches for the most common complete output.

Since the instances examined in this paper are generated randomly, we will not
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(D 1.5
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1

0.5

11
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

S

Figure 3-1: Energy levels in a 3-qubit computation corresponding to the logical ex-
pression (xl A x2 A x 3). The middle two levels are both triply degenerate. At the end
of the computation, the ground state is the correct state, 1000) and the three states
with energy 1 are 1001), 1010), and 1100).

have specific knowledge of the clause structure of any particular instance. As such,

the metric we will use to evaluate the effect of an error will be overlap between the

erroneous and the correct state. This should correlate to the fraction of computation

trials which return the correct result.

3.2 Modeling the Error

There are a variety of ways to model the sorts of error that can arise in a computa-

tion. For example, one could try to model a thermal error by considering the whole

computer as coupled to an external environment. These sorts of analyses can easily

get rather complicated. And since, in the general case, we know little about the gap

and other factors might be affected by arbitrary perturbations, more progress is to be

made by considering the effects of specific types of errors than can be modeled more

easily.

One simple error to imagine, as mentioned above, is that the final Hamiltonian
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)
a)
a)

S

Figure 3-2: Energy levels in a 3-qubit computation of a Grover search.

is not precisely the desired one. In actuality, this will always be the case, due to

uncertainties in the physical setup of the computer. If the rest of the computation

goes as planned, however, the system should still reach the ground state of the actual

Hamiltonian. The probability of success in this case would be equal to the overlap

between the ground states of the correct Hamiltonian and the actual one. This

provides a good first approach to analysis of errors, as it encapsulates the notion that

an adiabatically evolving system will wind up in the correct ground state, even in the

event of small fluctuations along the way.

However, there is still the possibility that, even in an adiabatically evolving sys-

tem, a perturbation of some kind will "bump" the system up to an excited state.

Presumably, the time when the computation is most vulnerable to this sort of error

is at the point where the gap is smallest. These errors are the focus of this paper.

A simple way to imagine the error is as a stray magnetic field affecting one of the

spin systems. This will add a term to the Hamiltonian which consists of spin operators

on a single qubit. Specifically, imagine that a qubit is exposed to a field of strength

e, and that this perturbation occurs over a time scale which is very short compared

to time scale of the whole computation. We can then consider the unperturbed
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Hamiltonian to be constant, equal to (1 - s)Hs + sHp. The sudden, non-adiabatic

addition of the error changes the Hamilton to be equal to:

H' = (1 - s)Hs + sHp + e'zxi, (3.2)

for some qubit i (for a field in the z-direction). We are concerned with transition

probability from the ground state up to any other state. In the case of an instanta-

neous perturbation to an otherwise constant Hamiltonian, the state of the system will

remain the same (the ground state of the unperturbed Hamiltonian) at the moment

of the perturbation. It will now be a linear combination of states of the perturbed

Hamiltonian. If the evolution of the system at all other times is adiabatic, then the

probability that the system will remain in the ground state is equal to the overlap

between the perturbed and unperturbed Hamiltonians at the moment of the error.

s

Figure 3-3: Simulation of the effect of an error at various times in an random 8-
qubit instance of 2-SAT. The dashed line shows the energy gap over the course of
the computation. The solid line shows the effect of an error at each specific point in
the computation. Specifically, the error is a z-spin term (as described in Eq. 3.2),
applied to a particular qubit. = 2. The overlap between the ground states of the
perturbed and unperturbed Hamiltonians is plotted.

This is the method we will explore in this paper. For an examination of the
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behavior of this model in a typical, randomly chosen instance, see Fig. 3-3. This

graph shows the effect of a constant error, of the sort described above, when applied

at any point in this computation. For reference, the gap is also shown. Though there

is not a specific relation between the two, we see that the error is worst near the

middle of the computation, where the gap tends to be smallest. The specific location

of both of these minima varies between instances. As we approach the end of the

computation, the Hamiltonian H(s) is very similar to the problem Hamiltonian Hp,

and small perturbations have less of an effect.

For consistency, when we compare overlaps and success probabilities in different

conditions, we will apply the error at a constant value of s. This should give a more

uniform basis for comparison than trying to locate the minimum gap (or the point

of minimum success probability) for each particular trial. The value of s used be

determined by finding the average point of minimum gap over a large number of

trials.
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Chapter 4

Simulations

Here we present a series of simulations which use the methods described in the pre-

ceding section. There are three sets of experiments. The first is to determine the

average location of the minimum gap, the second is to examine the effect of the angle

of the perturbation on the error, and the third is to compare error magnitudes at

different qubit numbers.

4.1 Generating Random Instances of 2-SAT and

Random 1-Local Errors

For each trial, we must generate Hs, Hp, and an error term.

Hs is constant among all trials will the same number of qubits. It is easily gener-

ated recursively. Hsl = L. (see Eq. 2.11). For n > 1:

Hsn = Hs(n-l) 0 I + I®(n-1) 0 L., (4.1)

where the 0 are tensor products.

Hp is diagonal, and is produced by adding clauses to an empty matrix until the

number of zeros on the main diagonal is equal to exactly 1 (this is how we generate

uniquely satisfiable instances). If the number of zeros on the main diagonal ever

reaches 0, the entire process is restarted from an empty matrix.
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A clause is generated by choosing two qubits at random, and applying to them a

matrix of the form
0000
0000
0000
0001

, (4.2)

with the 1 at any location on the diagonal. This is analagous to a 2-bit OR clause.

The error term is generated by choosing a qubit a random and applying to it

E = E(sin(0)Lx + cos(0)Lz) = 2 2 i (4 3)
L sin(0) 2 sin(0) + cos(0) 

All matrices used in these simulations are stored in a "sparse" format, a list of

nonzero values indexed by location, rather than as a conventional table. This improves

computational efficiency, due to the large numbers of zero entries in these matrices.

4.2 Locating the Minimum Gap

As discussed in the preceding section, we want find one particular point in the compu-

tation (i.e. one value of s) at which we will perform the ensuing computations of the

effects of error. The precise location of this point is not of overwhelming importance,

but the data showed previously indicate that the effects of the error will be most

noticeable near the point of minimum gap.

4.2.1 The Quadratic Method

Computing the gap at an arbitrary point in the computation requires finding the

two lowest eigenvalues of a 2n-by-2n matrix. In order to run a large number of trials

efficiently, we want to minimize the number of times we must take these eigenvalues.

To do so, we use the following iterative algorithm, commonly called the "quadratic

method" for locating minima of a smooth function with a small number of evaluations:

1) Evaluate the gap at three arbitrary points sl, s2, and S3 to obtain values yl, Y2,
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and y3. Here we use .25, .5, and .75 as starting values of s.

2) The three points can be placed exactly on some parabola y = as2 + bs + c.

3) Let 4 be the location of the minimum of this parabola: s 4 = - 2a'

4) Evaluate the gap at s4

5) Out of S1,S2, and S3, throw away the one which produced the largest gap.

6) Repeat from (2), using the two remaining starting values, and s4, as the three

starting values.

After some algebra, we find that steps 2 and 3, the determination of 4 from the first

three points, can be accomplished by the following equation:

(s2- s2) + y2(s32 - s) + y3(sl2 - s2)

2 (yl(s2 - S3) + y2(S3 - S1) + y3(l1 - 82))

An example of the outcome of this method is shown in Fig. 4.4. The circles, showing

intermediate steps, are quite near the minimum, demonstrating the fast convergence.

In fact, the last three points are almost indistinguishable from the final result.
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0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

S

Figure 4-1: 5 iterations of the quadratic method to find the minimum gap. n=8. The
circles show intermediate steps in the iterative process, and the cross shows the final
result.
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4.2.2 Results

2000 trials were run on random 10-qubit instances. In each case, 5 iterations of the

above algorithm were used to locate the minimum gap. The results are displaying in

Fig. 4-2. The median location for the minimum gap was found at s = 0.54. This is

the value of s used for future trials.

I

U

0.1 0.2 0.3 U.4 U.0

S
. 0. U7 U. U.8 1

Figure 4-2: Distribution of minimum gap locations in 2000 randomly
qubit instances of 2-SAT. Median s = 0.54.

generated 10-

4.3 The Angle of the Perturbation

In our error model, based on a stray spin term in the Hamiltonian, the error can come

in different directions. A az term corresponds to a perturbing field parallel to the

computational axis, or a a, term, perpendicular to it. Here we examine the effect of

the angle on the final overlap (our criterion for success).

2000 trials were run at each of 41 different angles, evenly spaced between 0 = 0

(ao) and 0 = 2 (a,). A new random 6-qubit instance of 2-SAT and a new error term,
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Figure 4-3: The overlaps resulting from errors at various angles in 6-qubit instances
of 2-SAT. 0 runs from 0 (z) to (a,). Each data point consists of 2000 trials. The
data are fit to a sine curve y = A + B sin(0) with a x2 value of 1.7.

with = 1, were generated for each trial. The error term was used to perturb the

Hamiltonian at s = .54, and the overlap taken between the original and erroneous

Hamiltonians.

The results are shown in Fig. 4-3. The data fit extremely well to a sine curve with

an arbitrary vertical offset. In general, we can conclude that z-errors are significantly

worse than x-errors.

4.4 Dependence on n

An overarching point of interest is how the effect of an error changes with the size of

the computation. Unfortunately, simulating large computations is extremely difficult,
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as the number of entries in the Hamiltonian matrix quadruples with each qubit added.

Here we present an attempt to detect any variation in error magnitude at low numbers

of qubits.

A series of simulations was run at qubit numbers from 5 to 11. 20 different

error magnitudes were used, ranging from = 0.1 to = 2. = 2 is a rather

large "perturbation," even larger than the magnitude of a single 2-SAT clause, but

extending the measurements out this far may have amplified some variations between

qubit numbers. 1000 trials were run at each value of n and E.

1
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QC

0

0.8

0.75

0.7

0.65

0.6

0.55

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Figure 4-4: The overlaps resulting from errors of various magnitudes, at qubit num-
bers ranging from 5 to 11. No attempt is made to distinguish the 7 plotted lines, as
they are not visually discernable. They are also not resolvable from each other by an
amount greater than the error bars. Each data point represents 1000 trials.

As visible in Fig. 4-4, there is no clear variation among the 7 data sets-they are

almost exactly superimposed. To make this even more apparent, the 7 points from
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Figure 4-5: An expansion of the = 1 data set from Fig. 4-4. Note the y-axis scale.

one particular value are juxtaposed clearly in Fig. 4-5. There is no visible trend in

the effect of the error. It is constant, to the extent that we can observe.

4.5 Conclusions

The first major result of these experiments, the strong variation of error magnitude

with the angle of the perturbation, fits with what one would expect for this sort of

computation. Since each qubit settles into either a spin-up or spin-down orientation

over the course of the computation, a magnetic disturbance in one of those two

directions has a 50% chance of forcing it in the wrong direction, causing a significant

error. An perturbation in the perpendicular (x) direction, on the other hand, puts

exactly the same type influence on a qubit as does the starting Hamiltonian Hs which

is already acting on it with some strength, so it seems likely that this error would not

be as destructive.

The second portion of the results leaves many questions unanswered. Is it possible

that the error caused by a constant-sized perturbation is, in fact, constant as the

number of qubits increases? This not inconsistent with our data, but is highly unlikely.
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Among other reasons, since the minimum gap size gets smaller as n increases, a smaller

perturbation should be necessary in order to effect a transition. The experiments here

raise the question of how far one must go in order to see a significant variation. Here,

we more than doubled the number of qubits without seeing a measurable change.

The first logical extension of this experiment would to extend it to as high a

dimension as possible, something which is only achieved through a large increase in

computational power. A conclusive result might be a long way away, however. Even if

a larger number of qubits revealed an increase in the effect of errors, it might require a

yet far larger number to identify the behavior and growth of the error. Without that

information, good estimates as to the large-scale success of the computation model

would be difficult. Other follow-ups might involve simulations of various ways of

countering the error, but even these run into computational constraints. Attempting

to actively introduce robustness against error will generally involve adding qubits,

which further shrinks the size limits within which we can collect data. Nevertheless,

even at these small qubit numbers, such analysis may begin giving insight into future

possibilities for error corrections.

We have only scratched the surface of the deep topics which will need to be

addressed if large-scale computation is ever to be realized. The most significant

limiting factor is the ability to simulate the behavior of the large quantum systems

using the computational tools of today. Progress is being made, however, and these

models of computation still hold much promise for successful applications in the

future.
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Appendix A

Simulation Code

A collection of the some of the code described earlier in the thesis.

A.1 Generating the Start Matrix

This recursive function quickly builds the starting matrix in sparse format.

function[H_S] = BuildStartMatrix2(k)

if k==l

H_S = sparse([1/2,-1/2;-1/2,1/2]);

H_S = kron(BuildStartMatrix2(k-1),speye(2));

%base case

%recursive call

M = [1]; % builds the new term to be added

for i = l:k

if i==k

M=kron(M,sparse([1/2,-1/2;-1/2,1/2]));

else

M=kron(M,speye(2)); %speye is the identity matrix

end

end

H_S=H_S+M;

end
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A.2 Generating the 2-SAT Instance

These functions generate Hp for a random 2-SAT instance on a given number of

bits k. It returns a vector of length 2k which contains the diagonal of the problem

Hamiltonian.

function[V] = UniquelySatisfiableInstance(k) %V is the diagonal of H_P

V=zeros(l, 2k);

while NumberOfSatisfyingAssignments(V)=l %Stop if unique sat. assignment

if NumberOfSatisfyingAssignments(V)==O

V=zeros(1, 2k); %Restart

else

V=V+RandomClause(k); %Add another clause

end

end

function[n] = NumberOfSatisfyingAssignments(vec) %number of zeros in a vector

n=O;

for i = :length(vec)

if vec(i)==0O

n=n+1;

end

end

function[Vi = RandomClause(k) %generates a random, 2-bit OR clause

i=ceil(rand*k); %choose one random qubit

j=i;
while j==i %choose a second, distinct qubit

j=ceil(rand*k);

end

V= [1];
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for q = :k

if (q==i I q==j) %if one of these two qubits

if rand<.5

V=kron(V, [0,1]); %multiply in part of a clause

V=kron(V, [1,O]);

end

else

V=kron(V, [1,1]); %multiply in the identity

end

end

A.3 The Error Term

This function generates the error term, as described in Eq. 4.3

function [M] = ErrorTermTheta(k,mag,theta)

M = sparse([magl);

errmat=(sin(theta)*[1/2,-1/2;-1/2,1/2]+cos(theta)*[1,0;0,0]);

%choose a bit at random

for i = l:k

if i==j

M=kron(M,sparse(errmat)); %apply the error to this bit

else

M=kron(M,speye(2));

end

end

A.4 Finding the Minimum Gap

This is an implementation of the method described in section 4.2.1.
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function [smin,gapmin,recordx,recordy] = MinGap2(iter, startH,finalH)

%returns the final point (smin, gapmin) as well as record of intermediate points

x=zeros(4,2); %main array. Col 1 is x, col 2 is y

x(1,1)=.25;

x(2,1)=.5; %initial x-values

x(3,1)=.75;

recordx=zeros(1, iter);

recordy=zeros(1, iter);

for i = 1:3

x(i,2)=Gap2(x(i,1),startH,finalH); %evaluate the first three points

end

for i = :iter

x(1:3,1:2)=sortrows(x(1:3,1:2),-2); %sort the three points by y-value

x(4,1)=(x(1,2)*((x(2,1))^2-(x(3,1))^2)+x(2,2)*((x(3,1))-2-(x(1,1))^2)

+x(3,2)*((x(1,1))-2-(x(2,1))^2))/(2*(x(1,2)*(x(2,1)-x(3,1))

+x(2,2)*(x(3,1)-x(1,1))+x(3,2)*(x(1,1)-x(2,1))));

%locate the minimum

x(4,1)=min(max(x(4,1),O),1); %truncate to within [0,1]

x(4,2)=Gap2(x(4,1),startH,finalH); %evaluate the new point

recordx(i)=x(4,1);

recordy(i)=x(4,2);

for j = 1:3 %store new values in rows 1-3 for next iteration

x(j,1)=x(j+1,1);

x(j,2)=x(j+1,2);

end

end

smin = x(4,1);

gapmin = x(4,2);
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