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Abstract

Noise in adiabatic quantum computation can be modelled as a perturbation of the
problem Hamiltonian. For a type of noise called control error, the perturbation can
be considered to have the same structure as the problem Hamiltonian. If the problem
Hamiltonian, and therefore the noise, are 2-local, then the result of the adiabatic
algorithm can be simulated somewhat more efficiently than an algorithm with an
arbitrary problem Hamiltonain. Using optimized numerical methods, I present an
analysis of the effect of 1-local and 2-local control error on the success of an adiabatic
algorithm that solves the agree problem. Furthermore, I examine how the maximum
allowable noise, or success threshold, scales with the number of qubits. These analyses
suggest the existence of a minimum success threshold for the particular algorithm
considered in the presence of only 2-local noise on an arbitrarily large number of
qubits, as well as a polynomial decrease in success threshold with the number of
qubits.
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Chapter 1

Introduction

A classsical computer is a device based on the laws of classical mechanics and elec-
trodynamics that carries out algorithms describable in terms of mathematical logic.
A quantum computer is a device based on the laws of quantum mechanics capable of
carrying out similar algorithms. The laws of quantum mechanics are appealing for
the basis of a computational system, because they are believed to describe how nature
behaves on a fundamental level. Furthermore, several quantum algorithms have been
devised to solve computational problems more efficiently than any known classical
algorithms. Such algorithms include the Deutsch-Jozsa problem, the Grover search
problem, and the prime factorization of integers [1]. However, a large scale quantum
computer has yet to be built. One difficulty in building a quantum computer, is that
large scale systems tend to behave classically. Any such effect preventing a quantum
computer from behaving as expected is generally referred to as noise, and methods
for characterizing and correcting for noise are an important step towards large-scale
quantum computation. In this thesis, I consider a particular type of noise in one

model of quantum computation known as Adiabatic quantum computation.

Adiabatic quantum computation is an alternative to standard quantum computa-

tion. In all models of quantum computation, information is stored in quantum bits,
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or qubits. These qubits are represented by vectors of the form:

l¥) = af0)+B|1) (1.1)
lof? + 18 = 1, (1.2)

where the orthonormal basis states {|0),|1)} are referred to as the computational
basis. In standard quantum computation, qubits are manipulated by quantum gates,
which are unitary operators that act on quantum states representing qubits. Standard
quantum computation has been formulated in considerable detail [1], but many open
questions remain. Alternatively, adiabatic quantum computation is a Hamiltonian
based model of quantum computation, in which qubits are manipulated by changing
the Hamiltonian of the quantum system composing the quantum computer.

The work done for this thesis is a numerical study of noise in a particular adia-
batic quantum algorithm. The general formalism of adiabatic quantum computation
and a discussion of noise are presented in chapters 2 and 3. The specific adiabatic
algorithm studied numerically is presented in chapter 4. The methods and results of
the numerical simulations are presented in chapters 5 and 6. The conclusions drawn

from the results are summarized in chapter 7.

14



Chapter 2

Adiabatic Quantum Computation

As a Hamiltonian-based model, adiabatic quantum computation is performed by vary-
ing a parameter of the Hamiltonian of a quantum system. The parameter is varied
in such a way as to evolve the state from a known gound state of one Hamiltonian to
the unknown ground state of the other, which encodes to solution to a computational

problem.

2.1 History of Adiabatic Quantum Computation

The first quantum algorithms achieved by adiabatic evolution were presented in [2],
including an algorithm to solve the Grover search problem in the same running time as
standard Grover algorithm [3]. Small adiabatic algorithms have been experimentally
realized using nuclear magnetic resonance [4, 5]. Architectures for adiabatic quantum
computation have also been proposed using superconducting qubits [6] and phase
modulated laser pulses [7].

Although fault-tolerance techniques are well developed for standard quantum com-
putation, they have yet to be fully explored for adiabatic quantum computation.
Since it was first suggested that adiabatic quantum computation could be inher-
ently resistant to certain types of noise [8], the topic has received much attention
[9, 10, 11, 12, 13, 14, 15]. An error-correction scheme based on stabilizer codes has

also been proposed [16].
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Adiabatic quantum computation was shown to be as powerful as standard quan-
tum computation in [17]. Given that adiabatic quantum computation appears to be
resistant to certain types of noise, is as powerful as statndard quantum computation,
and has already been realized on a small scale, it appears to be a good candidate for

the realization of a large-scale quantum computer.

2.2 Formulation of Adiabatic Quantum Computa-

tion

The formulation of adiabatic quantum computation used in this thesis is based on

that of [2].

2.2.1 The Adiabatic Theorem

Adiabatic quantum computation is based on the quantum adiabatic theorem [18].
The adiabatic theorem applies to Hamiltonians with a parameter, s(t), that is varied

slowly over a time period 0 < ¢ < T'. For example, the parameter could be:

s(t) = % 2.1)

Let H(s(t)) be a time-dependent Hamiltonian with instantaneous eigenstates |I; s(t))

and ordered instantaneous eigenenergies Ej(s(t)) such that:

H(st)l;s(t)) = Ei(s@))l;s(2)) (2.2)
Eo(s(t)) < Ei(s(t)) <... (2.3)

Denoting the state at time ¢ as |1(t)), the adiabatic theorem states that if

[%(t = 0)) = |l =0;5(t) = 0) (2.4)
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and

Ey(s(t)) — Eo(s(t)) >0 forall 0 <t < T, (2.5)

then
Jim [(0; s(T)(T))| = 1. (26)

Further analysis suggests that given

v = iy (Ba(s(0) - Bo(s(0) @)
E = Joax, <l = 1;5(t) '%(s(t))l l=0; s(t)>' (2.8)
if
&
T> ;—2' (2.9)
then
(1 = 0; s(T)[%(T))| (2.10)

can be made arbitrarily close to 1.

2.2.2 Quantum Computation With the Adiabatic Theorem

Adiabatic quantum computation inovlves encoding a computational problem as a
Hamiltonian, and finding its ground state using adiabatic time-evolution. This is
achieved by preparing a system with an initial Hamiltonian Hp with an easily com-
putable ground state, then varying a parameter of the Hamiltonian slowly to change
it into the problem Hamiltonian Hp (the ground state of which encodes the solution
to a problem). The adiabatic theorem implies that if the system is prepared in the
(known) ground state of Hpg, it will remain in the ground state as the Hamiltonian is
slowly changed to Hp. The issue of encoding a problem as Hamiltonian is addressed

in Chapter 4.
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One possible choice for the initial Hamiltonian in a system with n qubits is:
n—1 1 .
Hg =Z§(1—a§g>). (2.11)
Jj=0

The eigenstates and eigenvalues of o, are:

1

%I+)=%E(I0)+I1)) = () (2.12)
1

axl—)=0xﬁ(|0)—|1)) = (=1|-). (2.13)

Since each term in (2.11) acts on a different qubit, they all commute and the ground
state of Hp is the tensor product of the ground states of each term. The ground state

of each term can be seen to be |+) with eigenvalue 0. The initial state is thus:

[¥(0) = [+)°*" (2.14)
= Sz (0)+ 1), (2.15)

which should be easy to prepare.

The adiabatic algorithm can be applied to any slowly time-varying Hamiltonian

beginning in Hp and ending in Hp. One such Hamiltonian is:

Ht) = (1 - %) Hp + = Hp. (2.16)

Letting s = t/T', (2.16) is equivalent to:
H(s) = (1—s)Hp + sHp. (2.17)
Since H(0) = Hp,

%(0)) = |l = 0;5(0)), (2.18)

satisfying (2.4). Denoting the (time-independent) ground state of Hp as |¢) = |l =
0; s(T)), so as long as (2.9) is satisfied, (2.10) implies that the system ends in the

18



ground state of the problem Hamiltonian:

[((T)|#)| =~ 1. (2.19)

2.2.3 Running Time

Since adiabatic time-evolution is dependent upon (2.9) begin satisfied, it defines the
running time T of the algorithm. Equation (2.9) gives a lower bound on the run-
ning time proportional to the squared inverse of the minimum gap -y between the
ground and first excited energy level at any point in the computation. Calculating
the minimum gap for an adiabatic quantum algorithm thus gives a lower bound on
the running time. However, as of the writing of this thesis, no general method exists

to find the gap.

2.3 2-Local Hamiltonians

A Hamiltonian is called k-local if it can be written as a sum of products of Pauli op-
erators with at most k£ non-identity operators in each product. Hamiltonians that are
k-local for some small &, which I refer to simply as local Hamiltonians, are important
because interactions involving many particles are difficult to realize physically. The
work in this thesis focuses on 2-local Hamiltonians in particular.

Although 2-local Hamiltonians are a small subset of all Hamiltonians, they are still
computationally powerful in the context of adiabatic quantum computation. In fact,
it has been shown that adiabatic quantum computation with 2-local Hamiltonians is

computationally equivalent to standard quantum computation [17, 19).
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Chapter 3

Noise in Adiabatic Quantum

Computation

Any physical implementation of a quantum computer will be imperfect and will have
to stand up to unideal conditions, generally known as noise. This chapter details
possible sources of noise, possible approaches to tolerating noise, and the parameters

that are likely to be important for handling noise in adiabatic quantum computation.

3.1 Sources of Noise

There are two sources of noise likely to be important in a quantum computer: the
environment, and control error. The environment could affect a quantum computer
in many ways. For instance, the qubits in the computer could be coupled to par-
ticles outside of the quantum computer, or there could be interactions between the
qubits beyond those considered in designing the quantum computer. Furthermore,
the adiabatic theorem is formulated for closed systems and coupling to an outside
environment could conceivably result in a deviation from adiabatic time-evolution.
Even in the absence of environmental noise, any physical implementation of a quan-
tum computer will only meet its specifications to some tolerance. The imperfections
in the implementation of a computation will cause noise, which I refer to as control

error.
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3.2 Fault Tolerance

Given that some level of noise is inevitable in any physical system, it is desireable to
have methods for guaranteeing a successful computation even in the presence of noise.
Such methods are generally known as fault-tolerance techniques. Fault-tolerance tech-
niques have been well developed in both classical computation and standard quan-
tum computation [1]. In both cases, noise is protected against using redundancy.
More specifically, the bits/qubits involved in the computation are encoded as logical
bits/qubits. Each logical bit/qubit is itself comprised of many physical bits/qubits,
creating redundancy. Computational operations are then performed on the logical
bits/qubits. The goal of this encoding procedure is to allow some of the fundamen-
tal building blocks of the system to behave incorrectly, an event known as a fault,
leading to a discrepancy in the physical bits/qubits known as an error, without the
computation producing an incorrect result, known as a failure. There are two types
of such encoding schemes: error correcting codes which can correct errors, and error
detecting codes which can be used to determine when the physical bits/qubits are in

error, but not to correct them.

The goal of fault-tolerance is to allow a computation of any size to succeed with
high probability when reasonable conditions on the amount of noise are met. In stan-
dard quantum computation, the conditions for fault-tolerance are summarized by the
threshold theorem [1]. The threshold theorem is centered on the idea of concatenated
codes. In a concatenated code, if a single application of an error correcting code is
not sufficient, then the encoded logical bits/qubits are themselves encoded, and so on.
Each round of encoding provides redundancy, but also introduces more components
that can have errors, so it is not obvious when this scheme is beneficial and when it
is harmful. In concatenated codes, operations on the unencoded bits/qubits are used
to construct logical operations on the encoded bits/qubits. The threshold theorem
states that for any error correcting code, there exists a constant threshold pg, such

that if the probability of a single fundamental operation failing p is less than pg, then
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the probability of the an encoded logical operation can be made to be

21:
Prail < Po (_p_) ) (3.1)
Do

where k is the number of code concatenations used. One possible goal for fault-
tolerance in quantum computation is to find an analagous result, allowing an arabi-
trary computation to be done adiabatically regardless of size as long as the probability
of a single qubit being in error is less than some constant. However, other techniques
may also be possible, such as error-resistance which preemptively stops errors from

occurring at all.

3.3 Modelling Noise as a Perturbation

Before attempting to correct or prevent errors, it is necessary to have a model for
them. The model considered in this thesis is a perturbative model in which noise is
treated as a perturbation added to the Hamiltonian.

A perturbative noise model is useful for modelling some types of noise and not
others. There are several ways in which a perturbation can be considered during the
process of an adiabatic algorithm, and each method is relevant for different types of
noise. A time-dependent perturbation could be applied during the entire adiabatic
evolution, a constant perturbation could be applied during the entire evolution, or a
constant perturbation could be considered only at the end of the evolution.

A time-dependent perturbation is a good model for statistical fluctuations that
could be caused by environmental noise. This type of perturbation is particularly
complicated because the rate and manner in which the perturbation varies is im-
portant in studying its effects. On the other hand, a constant perturbation during
the entire time-evolution is a good model for systematic noise, such as control error.
Though valid error models, the work in this thesis is focused on another model.

A constant perturbation at the end of the time-evolution is relevant to both sys-

tematic and statistical noise, under the assumption that time-evolution remained
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adiabatic throughout the running of the algorithm. Assuming that the system be-
gan in the ground state of the noisy Hamiltonian and evolved adiabatically, at the
end of the computation the adiabatic theorem implies that the state of the system
will be the ground state of the noisy final Hamltonian. The noisy final Hamiltonian
may thus be modelled as the problem Hamiltonian plus a perturbation regarless of
whether the perturbation is a result of a constant or time-varying process earlier in

the computation.

3.3.1 Structure of the Perturbation

The structure of a perturbation also determines what types of noise can be used to
model. For instance, there is no reason to expect noise from the environment to be
local. On the other hand, it is reasonable to assume that control error will not change
the structure of the interactions between qubits, just their magnitude and types. In
other words, control error in a k-local Hamiltonian can be reasonably modelled as
a k-local perturbation with interactions between the same groups of qubits as the
unperturbed Hamiltonian. The noise considered in this thesis is a perturbation of
the problem Hamiltonian with the same structure, and is thus primarily a model of

control error.

3.3.2 Noise Magnitude

Before continuing, the topic of classifying the magnitude of a perturbation requires
further discussion. For example, it is not immediately clear whether ol and oVo?
should be considered to be the same magnitude. The question of the magnitude of
noise is really a question of what the appropriate matriz norm on the corresponding
perturbation is. When considering the perturbation V' to be chosen uniformly at

random, a reasonable norm is the expectation of the magnitude of V acting on a

random vector v:
|V |I>= (VO)! (V). (3:2)
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It can be shown that (3.2) gives a matrix norm equal to the root-mean-square of the

eigenvalues of the matrix:

v = \/,\g+,\§+...+,\3_1

-~ (3.3)

1 2
= /3T, (3.4)

where d is the dimension of V.

3.4 Relevant Properties of the Problem Hamilto-
nian

Several properties of the problem Hamiltonian can be used to gain insight into the
bahvior of noise. The relevance of several of these properties can be seen using
perturbation theory [20]. For an n-qubit Hamiltonian Hy with perturbation V' of

magnitude € and eigenstates |k) with energies Ej:
H = Hy+ €V, (3.5)

the non-normalized projector onto the perurbed ground state |0) is given by:

21
1

S = ; T g WK (3.6)
S° = —0)(0] (3.7)
A = (—1)m! > Shy gk ...y Ghmi (3.8)
kitke+...+kmy1=m
0)(0] = [0)¢0+ ) emA™ (3.9)
m=1

One relevant property is the gap, -y, between the ground state and first excited
state. Note that the mth order term in (3.9) contains m powers of S, which scales

each original energy eigenstate by the inverse of the difference between its energy

25



and the ground state’s. The energy gap between the ground state and state |k) must

be greater than or equal to 7, so the magnitude of the mth order correction to the

(%)n (3.10)

The gap is also important for thermodynamic reasons. At nonzero temperature

ground state is bounded by

T, if the system is in equilibrium, the probability of the ground state being thermally

excited to state |j) is proportional to:

e ot (3.11)

The most probable state to be thermally excited to is thus the first excited state with
probability:
e FaT. (3.12)

Another important property of the problem Hamiltonian is the density of states
in its energy spectrum. The density of states is important for the simple reason
that even if each state in the first excited energy level has a small amplitude in the
perturbed ground state, if there are many such states then the probability of the state
being excited to the first energy level may still be high.

Finally, the locality of the perturbation gives further insight into the effects of
noise. A 2-local perturbation acting on a basis state |k) produces a linear combination
of basis states no more than Hamming distance 2 away from |k). As (3.8) shows, A™
has m+1 different “k” variables that must sum to m in each term, which implies that
at least one must be equal to 0. Because S° is the projector onto the unperturbed
ground state, Equation (3.9) implies that for a 2-local perturbation, (k|0){0|%) is non-
zero only for terms of order d and higher, where d is the Hamming distance between
|0) and |k). Generally speaking, the Hamming distance between the unperturbed
ground state and another state |k) determines the order of perturbation theory at

which |k) may become a component of the perturbed ground state due to noise.
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3.5 Success Critereon

To classify the effects of noise on the success of an adiabatic quantum computation,
it is necessary to have a critereon for determining whether a computation was suc-
cessful. Since the ideal result of the computation is the ground state of the problem
Hamiltonian, the success critereon should somehow compare the ground state of the
noisy Hamiltonian to that of the ideal problem Hamiltonian. The standard measure
of the “distance” between two states is the fidelity [1]. The fideltity between two pure

states |¢) and |¢) is given by:

F(9),18)) = [(¢18)I. (3.13)

One reasonable definition of a successful computation would be when F(|0),[0)) >
1/2. When this critereon is met, performing the computation k times and choosing
the most commonly observed computational basis state, called majority voting, will
give the ground state of the ideal problem Hamiltonian with high probability.

It is more realistic to expect that majority voting will be performed on a qubit
by qubit basis, motivating another success metric. Letting |¢x) be the state of qubit
k in the ground state of the ideal problem hamiltonian, the probability of observing
qubit k in state |¢) is given by:

e = (0|1 ® |or) (r| ® I)|9). (3.14)

The probability of a successful computation is thus the product of (3.14) for each
qubit:

n—1
Dsuccess = Hpk- (315)
k=0

In this thesis, a computation is considered successful with the value of (3.15) is greater

than 1/2.
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Chapter 4

Agree on a Line

The adiabatic algorithm studied in this thesis is one designed to solve a the agree
problem on a line of qubits. The agree problem is a constraint satisfaction problem in
which the value of each qubit is constrained to be equal to that of its nearest neighbors,
and a single qubit is constrained to have the value |0). The solution is thus always
the bit string of zeros. The agree problem can be solved using an adiabatic algorithm
with a problem hamiltonian consisting of 2-local couplings between nearest neigh-
bors, which I shall refer to as the neighbor-coupling algorithm. Neighbor-coupling is
useful for numerical studies of errors for several reasons. Although nieghbor-coupling
is particularly simple, it contains many features characteristic of more complicated
algorithms. Furthermore, the energy spectrum of the problem Hamiltonian is easily
calculated and exhibits properties that could be important in classifying the effects

of error.

4.1 Problem Hamiltonian

The neighbor-coupling problem Hamiltonian on a line of n qubits consists of a term
for each pair of nearest neighbors and a single term for qubit 0. The nearest neighbor

terms assign an energy penalty if the neighbors disagree. The term for qubit 0 assigns
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an energy penalty for the state |1). The resulting Hamiltonian is:

n—2

1 1

5(1 - @)+ 3 Z(I.— o{B) gDy, (4.1)
k=0

4.2 Analysis of Problem Hamiltonian

Although quite simple, the neighbor-coupling algorithm is closely related to signif-
icantly more complex algorithms. A simple problem Hamiltonian is desirable for
comparisons of its properties at different numbers of qubits. For neighbor-coupling,
adding a qubit simply means adding a term to the problem Hamiltonian. Although
neighbor-coupling is simple, it is still potentially useful to study. Each term in the
Hamiltonian corresponds to a constraint in the agree problem. Such problems as
3-SAT are also constraint satisfaction problems that can be solved adiabatically (al-
though not necessarily efficiently) by adding a term to the problem Hamiltonian for
each constraint. This suggests that although the neighbor-coupling algorithm is triv-
ial, its behavior may give insight into the behavior of more complicated algorithms,
even those that could conceivably solve NP-complete problems efficiently.

The energy spectrum of the problem Hamiltonian is easy to analyze because all
terms are diagonal in the computational basis, and therefore commute. Furthermore,
the eigenenergies of each term are 0 for computational basis states that satisfy the
corresponding constraint and 1 for states that do no. Given these facts, the eigenstates
are the computational basis states and their corresponding energies are simply the
number of unsatisfied constraints, and the degeneracy of each energy level is the
number of distinct ways to violate a given number of constraints.

The ground state and first excited states have some interesting properties. The
ground state is the unique computational basis states satisfying all constraints: |0)®".
The next energy level contains all computational basis states violating a single con-
straint. There are two types of such states. There is a single state, |1)®" violating
only the constraint on qubit 0. There are also n—1 states violating a single constraint

on nearest neighbors. The state which violates the constraint on qubits k£ and k+1 is
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given by |0)%|1)"~*. These lower energy states are interesting because they represent
two opposite extremes. In one case, there is a single state, very far from the ground
state in Hamming distance. In the other case there are many states very close to the

ground state in Hamming distance.
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Chapter 5

Simulation Techniques

In this thesis, I have used Monte Carlo simulations to study the effects of control
error on an adiabatic quantum algorithm. A closed-form mathematical description
of such effects would be very useful, but is not currently known and might not exist
at all. In the absence of a closed-form description, Monte Carlo techniques provide
an alternative means of gaining insight into the effects of control error. In general,
simulations of quantum computers appear to require resources exponential in the
number of qubits. However, small numbers of qubits can be simulated on classical
computers, and may still allow relevant trends to be identified. I have developed
an optimized algorithm to simulate the effects of control error on as many qubits as
possible, given time and space limitiations, in order to determine how these effects

scale with the number of qubits.

5.1 Overview

In this thesis, control error is treated as a perturbation of the ideal problem Hamil-

tonian. The noisy problem Hamiltonian H is thus:

H=H,+V, (5.1)
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where H,, is the ideal problem Hamiltonian and V is a perturbation. An alternative
model would be to consider the noisy Hamiltonian to be a unitary transformation of
the ideal Hamiltonian:

H=U'H,U. (5.2)

However, (5.1) is more general and includes Hamiltonians of the form (5.2). This can

be seen as follows:

H = U'HU (5.3)
= H,- H,+U'H,U (5.4)
= H,+V (5.5)
V = U'H,U - H. (5.6)

If it is assumed that the adiabatic theorem still governs the time-evolution of the
system, the final state of the system is the ground state of the perturbed Hamiltonian.
For this thesis, I assume that time-evolution is still adiabatic. Characterizing the
effects of control error is thus a matter of finding the ground state of the perturbed

problem Hamiltonian and comparing it to that of the ideal problem Hamiltonian.

5.1.1 Space Complexity

A system of n qubits has a Hilbert space of dimension 2", so in general, an n-qubit
Hamiltonian is a 2™ x 2" Hermitian matrix. In its most explicit form, such a matrix
has 4™ complex entries, which may be specified by 2 - 4" real numbers (the real
and imaginary parts of the complex entries). However, the amount of information
necessary to represent a Hamiltonian can be significantly less, especially for some
classes of Hamiltonians. Noting that Hamiltonians must be Hermitian, the entry in
row ¢ and column j, H; ;, must be the complex conjugate of H;;. Each diagonal entry
is thus real, and may be represented by a single real number. Each off diagonal entry
H; ; may be specified by two real numbers. Thus, once H;; is specified, H;; is also

specified, so each off diagonal pair my be specified by two real numbers. The number
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of real numbers required to specify an arbitrary Hermitian matrix is thus just the
number of entries, 4”. For example, a 1-qubit Hamiltonian can be specified by 4 real

numbers a, b, ¢, d as follows:

b+
=] ° ‘. (5.7)
b—ic d

Local Hamiltonians can be specified with even less information. A Hamiltonian
is fully specified by how it acts on each computational basis vector. The action of
a Hamiltonian H on a basis vector {m) can be seen easily using the outer product

notation:

n-—-1 n-1

H o= 3% Hkli)k (5.8)
7=0 k=0

Him) = > Hxls)(klm) (5.9)
3=0 k=0

n—1
= D _Hjnlj). (5.10)
3=0

In other words, when a Hamiltonian acts on a computational basis state [m), the
components of each computational basis state in the resulting state vector are given
by column m of H. A 2-local Hamiltonian is a sum of terms with at most two non-
identity Pauli operators, so when acting on a basis state, the result must be a sum
of basis states with two or fewer bits different from the original state. Therefore, any

column of an n-qubit, 2-local Hamiltonian has at most

(G - s

1, 1

(5.13)
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nonzero entries. The entire Hamiltonian thus has at most

7 1 2 1
2 <2n +2n+1) (5.14)

entries. Although still exponential in the number of qubits, this improvement is very

significant at small numbers of qubits.

The number of real numbers necessary to fully specify a 2-local Hamiltonian is
not necessarily the same as the number of nonzero entries. In fact, it is much less.
Since an n-qubit 2-local Hamiltonian is a sum of products of two Pauli operators,
the Hamiltonian is fully specified by specifying the real coefficient’ multiplying every
possible product of two Pauli operators. There are ('2') distinct pairs of qubits. For
each pair, there are 3 choices for the Pauli operator acting on the lower index qubit,
and 3 for the operator acting on the higher index qubit. The number of real numbers

necessary to specify an n-qubit 2-local Hamiltonian is thus:

9(7;) = gn(n ~1). (5.15)

5.1.2 Time Complexity

The time required to construct a Hamiltonian is dependent upon how it is represented.
Representing a Hamiltonian as a 2-dimensional array necessarily requires each entry
to be set at least once, taking (2(4"™) worst-case time to construct n qubits. However,
if the Hamiltonian is stored as a sparse matrix, only the nonzero entries need to be

set. Given (5.14), the worst-case time necessary to construct a 2-local Hamiltonian

Q (2" (%rﬁ + %n + 1)) . (5.16)

Again, for small numbers of qubits, this is a significant improvement.

as a sparse matrix is thus

11f the coefficient had an imaginary component, the resulting matrix would not be Hermitian.
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5.2 Implementation

All simulations for this thesis were written in MATLAB? and optimized for 2-local
Hamiltonians. The ideal problem Hamiltonian and a random perturbation are first
generated in a representation that requires size polynomial in the number of qubits
and that allows additions to be done in polynomial time. The noisy Hamiltonian is
then constructed as a sparse matrix from these, requiring time and space exponen-
tial in the number of qubits. Finally the lowest eigenstate is found using standard

techniques.

5.2.1 Pauli Representation

The noisy Hamiltonian is initially constructed in a representation consisting of the
coefficients of each possible 2-local Pauli operator, which I shall refer to as the Pauli

representation. The most general form of an n-qubit 2-local Hamiltonian is:

n—-1n-1 3 3

H= Z Z Z Z Cj,k,l,mdl(j)O',(:ln). (517)

§=0 k=0 I=1 m=l

Note that the index of the fourth sum begins at [ to avoid double counting. The
coefficients c¢;x m are stored in six matrices: CXX ,CXY CXZ CYY CYZ C%Z. The
matrix CXX contains the coefficients c; 1,1, CX¥ contains the coefficients c;,1 2, and
so on. Row 7 and column j of each matrix correspond to qubits 7z and j. For instance,
the element C.5Y is the coefficient cj,1,2. Note that when j = k, the coefficent
corresponds to the product of two Pauli operators on the same qubit. The j = k case
is used to achieve the identity operator and 1-local Pauli operators.

The manipulation of the Pauli representation matrices is hidden behind an ab-
straction consisting of the functions mk2loc, add2loc, and addiloc. The function
mk2loc creates and returns a data structure containing the Pauli representation of an
n-qubit, 2-local Hamiltonian. The function add2loc returns a copy of a Pauli repre-

sentation structure with a 2-local term added to it. The function add1loc returns a

%the code is available at http://alum.mit.edu/www/elplatt/programs.
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Operator | |0) Multiplier | |1) Multiplier | Bit Flip? |
Oy 1 1 yes
Oy i —1 yes
0, 1 -1 no

Table 5.1: The action of the Pauli operators on computational basis states in terms
of bit flips and scalar multiplications.

copy of a Pauli representation structure with a 1-local term added to it. The ideal

problem Hamiltonian and random perturbation are created using these functions.

5.2.2 Sparse Matrix Construction

Once the noisy Hamiltonian has been constructed as a Pauli representation data
structure, it must be converted into a sparse matrix to find the lowest eigenstate.
The algorithm used for the conversion is based on the observation that a Pauli oper-
ator’s action on a computational basis state can be described as a conditional scalar
multiplication and/or a bit flip. The action of the Pauli operators in these terms is
summarized in Table 5.1. The algorithm begins with an empty 2" x 2" sparse matrix
H. It then loops through each computational basis state |k), qubit pair, and 2-local
operator type. For each combination, it performs the necessary bit flips and scalar
multiplications to find the resulting basis state |j) and its coefficient, then adds the
coefficient to the sparse matrix element H;;. Pseudocode for the algorithm used to
construct the sparse matrix is given in Figure 5.2.2. Once again, the code used in
this thesis hides the algoirithm behind and abstraction provided by the matrix2loc

procedure.

After the sparse matrix has benn constructed, all that remains is to find the
eigenvector corresponding to the smallest eigenvalue. I use the standard MATLAB

procedure eigs to determine the ground state eigenvector of the final sparse matrix.
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allocate sparse matrix H

for each basis state |j)
for each qubit !
for each qubit m

z+ CYX

// apply multiplication corresponding to oy
if bit [ of j equals 0 then
Z— 1z
else
Z — —1z
end if

// apply bit flip corresponding to o,
|k) «— flip bit [ of |j)

// apply bit flip corresponding to o,
|k) « flip bit m of |k)

// update sparse matrix
Hj,k — Hj,k +z

// repeat for other Pauli operators
end for

end for
end for

Figure 5-1: Pseudocode for an algorithm to construct a sparse matrix from a Pauli
operator representation of a 2-local Hamiltonian.
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5.3 Simulations Performed

The techniques described in this chapter were used to determine the fraction of suc-
cessful runs of the neighbor-coupling algorithm for agree on a line for different types
of noise, different numbers of qubits and different noise magnitudes. Simulations were
performed with 1-local noise, and again with 2-local noise. Qubit numbers ranged be-
tween 3 and 9. For each type of noise and number of qubits, many trials were carried
out for a range of noise magnitudes. The results of these simulations are presented

and analyzed in the next chapter.
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Chapter 6

Simulation Results and Analysis

This chapter presents results from the simulation techniques described in the previous
chapter applied to determine how the probability of a successful computation varies
with noise magnitude and the number of qubits. A summary of the simulations run

is given in Table 6.1.

6.1 Success Fraction vs Noise Magnitude

Figures 6-1 and 6-2 show the fraction of successful trials, f, for 1-local and 2-local noise
respectively. Each trial yielded a binary value corresponding to whether the simulated
algorithm would find the solution to the agree problem. The success fraction was

approximated as:

f== (6.1)

where k is the number of successful trials, and N is the total number of trials. The
error bars shown were determined by assuming that at each noise magnitude, there
is some fixed probability of a successful computation, p. A series of several trials is

thus described by a binomial distribution[21] with variance:

a3 =n’p(1 - p), (6.2)
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k-Local Noise | Qubits | Min Noise | Max Noise | Divisions | Trials / Division |
1 3 0 2.12 30 2500
1 4 0 2.12 30 1000
1 5 0 2.12 30 500
1 6 0 2.12 30 300
1 7 0 2.12 30 250
1 8 0 2.12 15 250
1 9 0 2.12 15 150
1 3 70.7 70.7 1 2500
1 4 70.7 70.7 1 1000
1 ) 70.7 70.7 1 500
1 6 70.7 70.7 1 400
1 7 70.7 70.7 1 250
1 8 70.7 70.7 1 200
1 9 70.7 70.7 1 150
2 3 0.5 3 30 2500
2 4 0.5 3 30 1000
2 ) 0.5 3 30 500
2 6 0.5 3 30 300
2 7 0.5 3 30 250
2 8 0.5 3 15 200
2 9 0.5 3 15 150
2 3 50 50 1 2500
2 4 50 50 1 1000
2 ) 50 50 1 500
2 6 50 50 1 300
2 7 50 50 1 250
2 8 50 50 1 150
2 9 50 50 1 150

Table 6.1: Summary of simulations performed.
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Success Fraction vs 1-Local Noise Magnitude
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Figure 6-1: Success fraction vs noise magnitude for 1-local noise.
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Success Fraction vs 2-Local Noise Magnitude
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Figure 6-2: Success fraction vs noise magnitude for 2-local noise.
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where n is the number of simulations. The variance of the estimate of the mean from

n trials is given by [21]:

o2 =

3 |,

(6.3)

Combining (6.2) with (6.3), and assuming p =~ f, the standard deviation of the
estimate is:
fa-1)

One inference that can be made from the simulation data is that for large noise
magnitudes, the fraction of successful trials approaches a constant. Classically, large
random noise would imply that the value of each bit was random. If this is also the
case in the simulations, one would expect the probability of computing a given bit

correctly to be 1/2 which gives the limiting success probability:

. 1\"
51523 Dsuccess = (5) . (6-5)

Figures 6-3 and 6-4 show the high-noise success fraction as a function of the number of
qubits for 1-local and 2-local noise. The 1-local noise data matches 6.5 well. However,

the 2-local noise data suggests a limiting success fraction of:

1 n—1
lim Pguccess = (5) . (6.6)

Figure 6-2 also demonstrates that 2-local noise does not significantly hinder the com-
putation until near € = 0.5. Both behaviors of the simulations of 2-local noise can be
explained by considering the neighbor-coupling algorithm in more detail.

Just as 2-local terms are used in the neighbor-coupling algorithm to enforce agree-
ment between neighboring qubits, 2-local noise terms in the algorithm affect only the
agreement of neighboring qubits, not their individual values. In other words, 2-local
noise terms do not bias individual qubit values. Since the neighbor-coupling algo-
rithm with 2-local noise has a single 1-local term (on qubit 0), no other terms in the
Hamiltonian bias the value of qubit 0 and it is always computed correctly. The high-

noise probability of success given by (6.6) now makes sense because only n — 1 qubits

45



Limiting Success Fraction vs Number of Qubits for 1-Local Noise
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Figure 6-3: High-noise limiting success fraction for 1-local noise plotted on a semi-log
scale.
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Limiting Success Fraction vs Number of Qubits for 2-Local Noise
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Figure 6-4: High-noise limiting success fraction for 2-local noise plotted on a semi-log
scale.
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have random values. For the same reason, the value of qubit 1 is only biased by its
coupling to qubit 0, so its value can only be incorrect when the noise magnitude is
greater than the magnitude of the coupling term between qubits 0 and 1, explaining

the behavoior in Figure 6-2.

6.2 Success Threshold vs Qubit Number

The simulation data show how the success probability of the algorithm varies with
noise, but the important question for fault-tolerance is how the success probability
varies with the number of qubits. If there is no small finite noise magnitude for which
an arbitrarily large computation can succeed, the algorithm is not inherently fault-
tolerant. To determine how the the success probability scales with the number of
qubits, I have found the largest allowable noise, or success threshold, for a successful
computation for a range of qubit numbers.

Since the success probability must be estimated by repeated simulations at a fixed
noise magnitude, the success thresholds were determined by fitting a function to the
success fraction curves and numerically finding where it crosses 1/2. It is important
to note that although the functional form of the success curves is not known, a
function consistent with the data points will provide a reliable estimate of the success
threshold.

The functional form for the fit was chosen based on several considerations. The
success probability must be identically 1 for a noise magnitude of ¢ = 0 and must
level off to a constant for high noise magnitude. Both of these features are met by a
decaying exponential, however the success probability appears to remain close to 1 for
small € rather than decaying exponentially. By multiplying a decaying exponential
by a function that is approximately a growing exponential for small € and a constant
for large €, a plateau for small € can be achieved. The low and high € limits of the

hyperbolic tangent meet this requirement, suggesting:

g(€) = e~ (1 + tanh(e)) (6.7)
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Qubits | 3 4 ) 6 7 8 9
X2 0.8911.34]1.21|1.25|1.66|0.74 | 0.67

Table 6.2: Reduced chi squared values for fits of the success fraction data for 1-local
noise.

Qubits | 3 4 5 6 7 8 9
X2 10.61(062|0.690.76|0.98 | 1.15 | 1.54

Table 6.3: Reduced chi squared values for fits of the success fraction data for 2-local
noise.

as a possible fitting function. To allow for more flexibility in the fit I have used a
polynomial in € for the argument of the hyperbolic tangent. Inserting fit parameters

and scaling the function to level off to a constant gives the fitting function:

Fle) =C+ (1 —C)e™ (1 . psinh(ce’ +de? + fe)>

cosh(ge3 + he? + ie) (6:8)

where C is the high-noise success probability and a, b, ¢, d, f, g, h, i are fit parameters.
An example of the success fraction data fit to (6.8) is shown in Figure 6-5. The
reduced chi squared values (x2 )for each fit are shown in Tables 6.2 and 6.2. In
general, the x2 values are all near 1, confirming that the fits are consistent with the

data.

The success threshold was determined from the fits using a simple numerical
technique. The fit function was evaluated for 10,000 evenly spaced noise magnitudes
in the same range as the simulations. The smallest noise magnitude for which the
value of the fit function was less than 1/2 was chosen to be the success fraction. The
uncertainty oy in value of the success fraction at that noise magnitude was determined
by applying the standard error propagation formula [21] to the the uncertainties of the
fit parameters as calculated by a standard nonlinear fitting routine. The uncertainty
of the success threshold o; is thus given by dividing by the magnitude of the slope of
the fit function (6.8):
daf

de

o =04/ | L] (6.9)
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Success Fraction vs 1-Local Noise Magnitude for 3 Qubits
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Figure 6-5: Example fit of success fraction curve.

50



Success Threshold
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Figure 6-6: Success threshold as a function of the number of qubits for 1-local noise.

The resulting success thresholds are shown in figures 6-6 and 6-7. The success thresh-
olds are also shown plotted on a semi-log scale in figures 6-8 and 6-9, as well as a
log-log scale in figures 6-10 and 6-11. If the decline in success threshold is exponential,
the data should be linear on the semi-log scale. If the decline is polynomial, the data
should be linear on the log-log scale.

Comparing figures 6-8 and 6-9 with figures 6-10 and 6-11 shows that the data
much closer to linear on a log-log scale, suggesting that the success threshold for the

neighbor-coupling algorithm decreases polynomially in the number of qubits.
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Figure 6-7: Success threshold as a function of the number of qubits for 2-local noise.
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Figure 6-8: Success threshold as a function of the number of qubits for 1-local noise
ploted on a semi-log scale.
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Success Threshold vs Number of Qubits for 2-Local Noise
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Figure 6-9: Success threshold as a function of the number of qubits for 2-local noise,
plotted on a semi-log scale.
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Success Threshold vs Number of Qubits for 2-Local Noise
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Figure 6-11: Success threshold as a function of the number of qubits for 2-local noise,
plotted on a log-log scale.
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Chapter 7

Conclusion

The numerical simulations performed for this thesis give insight into the behavior
of the neighbor-coupling algorithm for the agree problem on a line of qubits in the
presence of control error. One of the most interesting results is the apparent existence
of a minimum success threshold when only 2-local noise is present. The existence of
such a threshold implies that a neighbor-coupling algorithm of arbitrary size will
succeed as long as the noise in the system is 2-local, shares the structure of the
problem Hamiltonian and has a magnitude less than that of the terms in the problem
Hamiltonian.

The simulations have also shown that the successs threshold for the neighbor-
coupling algorithm decreases with the number of qubits for all types of noise con-
sidered. The simulation data for both 1 and 2-local noise suggest that the success
threshold scales polynomially with the number of qubits rather than exponentially.

Further studies to determine how the success threshold scales with the number
of qubits in the neighbor-coupling algorithm would be insightful. It would also be
insightful to consider how the success threshold changes as the magnitude 1-local term
on qubit 0 and the 2-local terms between the other qubits are varied independently.
Finally, the existence of a noise threshold for the case of 2-local noise suggests an
approach for constructing fault tolerant adiabatic algorithms when 1-local noise can
be ignored. As such, it would be useful to determine when 1-local noise can be

ignored, as well as what the computational power of such algorithms would be.
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