Inductive Position/Velocity Sensor Design and Servo Control of Linear Motor

by
Francis Yee-Hon Wong
B.S., Mechanical Engineering (1992)
University of California, Berkeley
Submitted to the Department of Mechanical Engineering in Partial Fulfillment of the Requirements for the Degree of Master of Science in Mechanical Engineering
at the
Massachusetts Institute of Technology
February 1995
(c)1995 Massachusetts Institute of Technology All rights reserved

Signature of Author \qquad
Department of Mechanical Engineering
October 1, 1994

Certified by

Kamal Youcef-Toumi Associate Professor
Thesis Supervisor

Accepted by \qquad
Dr. Ain A. Sonin

Inductive Position/Velocity Sensor Design and Servo Control of Linear Motor

by
Francis Yee-Hon Wong
Submitted to the Department of Mechanical Engineering on October 1, 1994 in partial fulfillment of the requirements for the degree of Master of Science in Mechanical Engineering

Abstract

A flexible automated palletizing system which uses linear stepper motor, operates under servo control is built. This is to replace the custom-designed mechanisms used in industry which requires significant modification when the palletizing pattern is changed. Sawyer linear stepper motor is chosen because of its high reliability and high position accuracy without any feedback. As a result, a highly flexible palletizer is built using Sawyer linear motor. The stepper motor driver is replaced by a digital servo motor driver using power amplifier with digital signal processing electronics. In this thesis, the development of the inductive position/velocity sensor is discussed. With the position sensor, linear motor system is able to operate under closed loop servo control.

Thesis Supervisor: Dr. Kamal Youcef-Toumi
Title: Associate Professor of Mechanical Engineering

Acknowledgement

I dedicate this thesis to Mom and Dad.
I would first like to thank my advisor Prof. Kamal Youcef Toumi for providing me such an opportunity to work on this project.

Special thanks to Henning, without his kindness and help I could not possibly finish the task of programming the controller and get all the hardwares working, especially the Digital I/O board. I appreciate his patience in putting up with my emails and faxes when I was desperate and annoying.

Thanks to Gladys for always being there for me, especially during times when I feel lost and don't know what to do.

I would like to thank Doug who get the sensing system up and running. I would like to thank other former and present member of the Pedigree-MIT research team: Irene Chow, Yuri Bendana, Pablo Rodriguez; and Hiroyuki Makimoto from Shinmaywa.

I appreciate the support from the rest of students in the Flexible Automation Laboratory at M.I.T. You guys make working in the lab "enjoyable".

I thank my family for their support.
Also, I would like to thank thousands of dogs and cats around the world who eat Pedigree Petfoods' products. I thank them for supporting the sponsor of this project.
1 Introduction 12
1.1 Palletizing 12
1.2 Industrial Practice 12
1.3 Project Overview 13
1.3.1 Description of Design 13
1.4 Thesis Content 15
2 Background of Linear Stepper Motor 16
2.1 Content 16
2.2 Operation Principle 16
2.3 Theory of Operation 20
3 Sensing Technology 24
3.1 Introduction 24
3.2 Definitions 24
3.3 Sensing Mechanisms 25
3.3.1 Capacitive Sensors 25
3.3.2 Proximity Sensor 26
3.3.3 Inductive Sensors 27
3.3.4 Resistive Sensor 29
3.3.5 Optical Position Sensors 30
3.4 Selection of Sensing Method 32
3.5 Summary 34
4 Sensor Development 35
4.1 Introduction 35
4.2 Sensor Fabrication 35
4.2.1 Sensor Testing 37
4.3 Signal Processing 38
4.3.1 Software Based Demodulation 38
4.3.2 Hardware Based Demodulation 38
4.3.3 Inductosyn to Digital Converter 41
4.4 Summary 43
5 Modelling and Simulation 44
5.1 Modelling Assumptions 44
5.2 Sensor Model 45
5.3 Deriving State Equations 46
5.4 Simulation \& Experimental Results 52
5.4.1 Frequency Response Test Simulation and Experimental Result 52
5.4.2 Simulation Results 56
5.5 Summary 63
6 Servo Motor Control 64
6.1 Introduction 64
6.2 Sensor system Design 65
6.3 Controller Hardware Layout 67
6.4 Software System Design 67
6.5 Real Time Software 68
6.6 Pitch counting algorithm 70
6.7 Control Law Implementation 70
CONTENTS 8
6.8 Commutation 71
6.9 Closed-Loop Servo Control Experimental Results 72
6.10 Summary 75
7 Conclusion 76
A Resources 77
B Calculation of Simulation Parameters 80
B. 1 Extimation of Reluctances 80
B. 2 Estimation of Coil Impedence 82
C Simulation Codes 84
C. 1 Frequency Response Simulation 84
C. 2 Sensor Model Simulation 87
D Digital Control Software 99

List of Figures

1.1 Two axis linear motor system 14
2.1 Simplified Version of the Basic Motor Unit 17
2.2 Simplifed Sawyer Linear Motor, Principle of Motion 18
2.32 dimensional linear motor and waffle platen 20
2.4 Air gap flux linkage 21
3.1 Parallel-plate capacitor 26
3.2 Inductive proximity sensor 26
3.3 Schematic of an LVDT 28
3.4 Linear Inductosyn [Slocum 1992] 29
3.5 Potentiometer as a position sensor. a:linear potentiometer;b:schematic 29
3.6 Photo sensor sensing displacement 30
3.7 Optical encoder 31
3.8 Laser interferometer 32
3.9 Schemetic of a capacitive position sensor discussed in [5] 33
4.1 Former inductive position sensor design 36
4.2 New inductive position sensor design 36
4.3 Input and Output Signal From a Moving Sensor 37
4.4 Schematic of hardware signal processing 39
4.5 F/V, frequency to voltage converter calibration curve 40
4.6 F/V converter output from oscilloscope 40
5.1 Schematic of inductive sensor 46
5.2 A bond graph model of the inductive sensor 47
5.3 Simplified bond graph of an inductive sensor with a voltage source 48
5.4 Frequency response simulation of sensor model without impedence 53
5.5 Schematic of frequency response experiment setup using HP 3562A Dynamic Signal Analyzer 53
5.6 Experimental result of a frequency response test 54
5.7 Simulation result of a frequency response test 55
5.8 Experimental frequency response at different locations within a pitch 56
5.9 Skeleton structure of sensor 57
5.10 Details within the Reluctance block 57
5.11 Details within the State Equations block 58
5.12 Simulation: (i) 4 V p-p sinusoidal excitation with 10 kHz frequency, (ii)sensor travelling at 100 pitch per second 59
5.13 Prototype of inductive sensor experiment 60
5.14 Simulation and experimental result of β versus d / p while keeping w constant at 1in 60
5.15 Simulation of β versus aspect ratio w / p with constant $d=0.008 i n$, $V_{\text {in }}=2 V$ and $d x / d t=100$ pitch $/ s$ 61
5.16 Experimental setup for Inductive sensor output verification using LVDT as a reference 62
5.17 Inductive sensor and LVDT position output comparison 62
6.1 Digital feedback control for the linear motor 65
6.2 Schematic of sensor circuitry 66
6.3 The structure of Main Routine 69
6.4 Typical output from Inductosyn to Digital Converter: each jump from255 to 0 represents advancing of one pitch70
6.5 Block diagram of the PID feedback loop 71
6.6 Relation between $f, f_{d a}, r$ and i. 73
6.7 Servo operation: P control 73
6.8 Servo operation: PD control 74
B. 1 Detail pole geometry of sensor 81
B. 2 A solenoid 82

Chapter 1 Introduction

1.1 Palletizing

In industry, the final product is usually packed in boxes or cans. This process is referred to as "primary packaging". In order to allow easy and efficient transportation from the manufacturing line to the distributors in bulk quantities, cans or boxes are collated onto larger cardboard boxes or trays - secondary packaging - which are then stacked onto pallets to form a large stack. This process is referred to as "palletizing." The pallet enables the cans and boxes to be easily loaded onto trucks and shipped to the distributors.

1.2 Industrial Practice

In practice, palletizing is usually done using custom-designed mechanisms and conveyor systems which can handle high volumes of packs with a high degree of reliability. In the manufacturing process, reliability is an important issue. This kind of palletizer system seldom needs maintenance and is able to operate continuously for a long period of time. However, when there is a change in the palletizing pattern, these machines require a significant amount of modification, or sometimes, replacement of the entire system. Hence, it is desirable to have a palletizing system with both flexibility and the required reliability.

1.3 Project Overview

This project is aimed at the development of a high-speed, flexible palletizing system which must be able to operate continuously in a reliable manner for a long period of time. The palletizer must be able to handle different-sized packs with different geometries of palletizing patterns.

1.3.1 Description of Design

A precise and reliable X-Y positioning device can be used to serve as a flexible palletizer, combined with high level control in software, palletizing pattern can be changed easily, thus significantly improve the flexibility.

Most X-Y positioning devices use ball screw systems and other gears to convert a rotary motor's output into linear motion. However, the accuracy of ball screw systems deteriorates with time due to wear. Power loss due to friction and backlash contribute to the non-linearity of gears. Complex and heavy designs with many moving parts and high inertia are further inherent problems of the conventional approach of using a ball screw machine as a precision X-Y positioning device.

The use of linear motors simultaneously eliminate all these disadvantages. Linear motors provide high operating velocities with a minimum of moving parts and direct power-to-motion transformation. The benefits of linear motors are even more significant for two-axis planar movements. Rather than combining two one-axis components, as has been attempted, two-axis linear motors can be used to achieve an extremely compact design. Floating on an air bearing over a supporting platen they allow for quasi-unlimited, nearly frictionless movements.

The solution chosen consists of a two-axis Sawyer linear stepping motor as the robotic manipulator for the palletizing task. Linear motors are known to be highly

Figure 1.1: Two axis linear motor system
reliable, and highly accurate even without any feedback control. Figure 1.1 shows the setup of such a system. It consists of a platen, and the forcer. An end-effector is mounted on the forcer to pick up the pallets.

Stepping motors are usually controlled by conventional stepping motor driver, which is open-loop. However, there are many drawbacks to such a control method. Under stepper motor control, maximum power is put into the motor most of the time, resulting in excessive heat dissipation. This can damage the platen and motor due to thermal wear and deformation. Also, without feedback the controller may demand motor acceleration in excess of the available acceleration capability of the motor, which results in the loss of synchronicity and thus "stalling". Accuracy of positioning is another problem, since missed steps may result in a large deviation of the motor's actual position from the desired position.

Therefore, the task is to design a flexible palletizer based on two-axis linear motor, develop a robust and accurate sensing sytem for position feedback, and develop a closed-loop servo motor control system.

1.4 Thesis Content

The objective of this thesis is to design and implement an inductive position/velocity sensor and a low level controller to enable closed loop servo control of linear motor system so that the motor can achieve high position accuracy.

Background of linear stepper motor is discussed in Chapter 2. Chapter 3 presents different types of sensing technology and the sensor selection criterion in our application. This is then followed by a discussion on the design and development of the inductive sensor in Chapter 4 and sensor modelling and simulation in Chapter 5. Chapter 6 describes the design of a digital servo motor control system and experimental evaluation of motor performance. Chapter 7 offers some conclusions and recommendations.

Chapter 2

Background of Linear Stepper Motor

2.1 Content

In this chapter, basic theories about the linear stepper motor and sensor will be discussed. Electromagnetic theories will be discussed in the next section, followed by the discussion on linear motors.

2.2 Operation Principle

A linear stepping motor, unlike its counterpart, the rotary stepping motor, produces linear instead of rotary motion. A rotary motor consists of two parts: the stator and the rotor. Motion is created when a changing electrical current results in a changing magnetic field; force is produced when the system attempts to minimize the energy stored. A linear motor follows the same electro-magnetic theory. The stator in the linear motor is a piece of metal with teeth on it, which is referred to as the platen. The size of the platen is the only limitation on the range of the motor's motion. The forcer, similar to the rotary motor rotor, consists of windings of coil which produces magnetic flux when current is passed through the coil to produce motion.

To understand how linear motors convert energy from the electrical to the magnetic domain and finally to the mechanical domain, we have to understand the structure of the linear motors. There are different variations in the design of linear motor, but the basic ideas behind them all are similar. In this section, we will look at the operation principle of Sawyer linear stepping motors.

The Sawyer linear stepping motor was invented in 1969. The design has not varied much since then. Figure 2.1 shows a simplified version of the basic unit of this type of motor. Those familiar with rotary stepper motor would have recognized the similarities between the rotary and linear stepper motors: the linear stepper motor is in fact an "un-rolled" rotary stepper motor. The linear motor consists of a forcer and a platen. In this case, the forcer is analogous to the rotor in the rotary motor while the platen acts just like the stator.

Figure 2.1: Simplified Version of the Basic Motor Unit

The platen is a sheet of metal with teeth. The distance between successive teeth is called the pitch. There are two sets of cores, phase A and phase B. They are put together in such a way that if teeth on the middle leg of phase A is aligned directly above a platen tooth, teeth of phase B on the middle leg will be off one quarter of a pitch, i.e., a phase difference of 90 degrees. The slider has to maintain an air gap between itself and the platen to allow the slider to move freely on the platen. A roller bearing, air bearing, or a combination of both is used to maintain the air-gap width. A roller bearing is less desirable than an air bearing because of the added friction between moving parts.

Figure 2.2: Simplifed Sawyer Linear Motor, Principle of Motion

A coil is wound on each of the cores, and a permanent magnet is placed between the two cores to "route" the magnetic flux in order to produce motion.

In order to see how this basic unit moves, we have to refer to figure 2.2. When a current of amplitude $+I$ is passed into the coil in phase A , its middle leg will try to align itself with the platen teeth so as to decrease the air-gap reluctance to a minimum, as shown in Figure 2.2(a). Now, if we turn off the current to phase A
and power up phase B with $+I$, the leg in the middle of phase B will align itself with platen teeth. Therefore, the slider has moved forward by a quarter of a pitch. (Figure $2.2(\mathrm{~b})$) If we now repeat the first step, the motor will only move back to its original position. Instead, we put in a current of $-I$ into phase A. The flux path is shown in Figure 2.2(c) and the outside two legs of phase A will align with the platen. By repeating this sequence of switching the current on the coils as in the Figure, we induced the motor to move forward step by step. This is called a cardinal step. In fact, we can scale the ratio between the current input to phase A and phase B to position the motor anywhere between the pitch.

From the switching pattern of a cardinal step, it is obvious that if the input current to phase A and phase B are two sinusoidal currents with a phase difference of 90° (i.e. one sine signal and one cosine signal) the motor can move continuously on the platen without stepping. In reality, each tooth on the simplified model is replaced by a number of smaller teeth. The typical pitch size is $1 \mathrm{~mm}(0.04 \mathrm{in})$, and the typical air-gap width is $0.02 \mathrm{~mm}(0.0008 \mathrm{in})$. The number of positions in which the motor can stay within one pitch depends only on the resolution of the sine and cosine wave-form. If the sinusoidal can be described only by 125 points, then the motor can achieve the precision of only $1 / 125$ of a pitch. This is referred to as micro-stepping. Two-dimensional motion is made possible by putting two sets of the basic unit as in Figure 2.1 in both x and y directions and replacing the rectangular toothed platen by a waffle platen. (figure 2.3)

Another advantage of employing linear motor is that it is possible to put a number of motors on the same platen. This allows parallel processing, thus enables manufacturing operations at higher speed and flow rate.

A number of companies manufactures linear motors, they are Parker Compumotor, Northen Magnetics, THK and NSK. Among them, only Northern Magnetics

Figure 2.3: 2 dimensional linear motor and waffle platen
produce two-axis linear stepper motor. THK and NSK recently put into market 1 axis servo linear motor with closed loop feed back control by putting a linear resolver on the platen track. The THK system uses a brushless servo motor drive and encoder feedback, but the performance gained by servo control is largely offset by the heavy design of the motor.

2.3 Theory of Operation

To understand the physics behind how linear stepper motors generate force and motion, let us look at a single pole on the motor tooth. (figure 2.4) Energy is stored in the air gap between the platen and the motor. The tangential force generated due to a displacement of $d x$ creates work. This amount of work equals the change in the energy stored in the air gap.

$$
\begin{gather*}
F d x=d E \tag{2.1}\\
F=\frac{\partial E}{\partial x} \tag{2.2}
\end{gather*}
$$

Figure 2.4: Air gap flux linkage
The air gap energy E is the time integral of the product of the magnetomotive force, $m m f$, and the time rate of change of magnetic flux, $\dot{\phi}$.

$$
\begin{equation*}
E=\int^{t} M \frac{d \phi}{d t} d t=\int^{\phi} M d \phi \tag{2.3}
\end{equation*}
$$

The mmf is related to the magnetic flux by

$$
\begin{equation*}
M=\mathcal{R}(x) \phi \tag{2.4}
\end{equation*}
$$

where $\mathcal{R}(x)$ is the reluctance. Hence the energy stored in the air gap is

$$
\begin{equation*}
E=\int^{\phi} \mathcal{R}(x) \phi d \phi=\frac{1}{2} \mathcal{R}(x) \phi^{2} \tag{2.5}
\end{equation*}
$$

Substituting equation (2.5) into equation (2.2), the force generated from one pole is

$$
\begin{equation*}
F=\frac{1}{2} \frac{d \mathcal{R}}{d x} \phi^{2} \tag{2.6}
\end{equation*}
$$

The reluctance is a function of motor position. It can be approximated by

$$
\begin{equation*}
\mathcal{R}(x)=\frac{1}{2}\left(\mathcal{R}_{\text {max }}+\mathcal{R}_{\text {min }}\right)-\frac{1}{2}\left(\mathcal{R}_{\text {max }}-\mathcal{R}_{\min }\right) \cos \left(\frac{2 \pi x}{p}\right) \tag{2.7}
\end{equation*}
$$

as described in reference [11]. This assumption ignores other higher order hamonics. Rearranging the equation we have

$$
\begin{equation*}
\mathcal{R}(x)=\mathcal{R}_{o}\left[1-k \cos \left(\frac{2 \pi x}{p}\right)\right] \tag{2.8}
\end{equation*}
$$

Therefore

$$
\begin{equation*}
\frac{d \mathcal{R}}{d x}=\mathcal{R}_{o} k \frac{2 \pi}{p} \sin \left(\frac{2 \pi x}{p}\right) \tag{2.9}
\end{equation*}
$$

Substituting equation (2.9) to equation (2.6)

$$
\begin{equation*}
F=\frac{\mathcal{R}_{o} k \pi}{p} \phi^{2} \sin \left(\frac{2 \pi x}{p}\right) \tag{2.10}
\end{equation*}
$$

The flux ϕ is the sum of flux from the permanent magnet, ϕ_{m}, and the coil flux, $\phi_{\text {coil }}$.

$$
\begin{equation*}
\phi=\phi_{m}+\phi_{c o i l} \tag{2.11}
\end{equation*}
$$

So, the force generated on one single pole is

$$
\begin{equation*}
F=\frac{R_{o} k \pi}{p}\left(\phi_{m}+\phi_{c o i l}\right)^{2} \sin \left(\frac{2 \pi x}{p}\right) \tag{2.12}
\end{equation*}
$$

As shown in reference [15], summing up all the forces generated at the poles of phases A and B, we have the total force, $F_{\text {total }}$:

$$
\begin{equation*}
F_{\text {total }}=\frac{\mathcal{R}_{o} k \pi}{p} \phi_{m}\left[\phi_{c A} \sin \left(\frac{2 \pi x}{p}\right)-\phi_{c B} \cos \left(\frac{2 \pi x}{p}\right)\right] \tag{2.13}
\end{equation*}
$$

By assuming the flux in the coils A and $\mathrm{B}, \phi_{c A}$ and $\phi_{c B}$, are proportional to the input currents to both coil. The coil flux is

$$
\begin{align*}
& \phi_{c A}=\phi_{c} \sin (\omega t) \tag{2.14}\\
& \phi_{c B}=\phi_{c} \cos (\omega t) \tag{2.15}
\end{align*}
$$

Substituting the above flux terms into equation (2.13) we get

$$
\begin{equation*}
F_{\text {total }}=\frac{\mathcal{R}_{o} k \pi}{p} \phi_{m} \phi_{c}\left[\sin (\omega t) \sin \left(\frac{2 \pi x}{p}\right)-\cos (\omega t) \cos \left(\frac{2 \pi x}{p}\right)\right] \tag{2.16}
\end{equation*}
$$

$$
\begin{equation*}
F_{\text {total }}=\frac{\mathcal{R}_{o} k \pi}{p} \phi_{m} \phi_{c} \cos \psi \tag{2.17}
\end{equation*}
$$

ψ is referred to as the force angle [15]. We can see that the force of the motor is proportional to the flux from the permanent magnet ϕ_{m}, average air gap reluctance \mathcal{R}_{o}, variation of reluctance k, coil flux ϕ_{c}, and the reciprocal of the pitch p .

Detailed discussion on theory of operation and modelling of linear stepping motor can be found in reference $[15,21,22]$.

Chapter 3

Sensing Technology

3.1 Introduction

Although a Sawyer Linear Motor has high position accuracy and reliability, operating the linear motor under servo control offers a much greater advantage over conventional stepper motor. When the command acceleration exceeds the dynamic force which the motor can produce, the motor will lost the synchronizity and stalls. This problem can be avoided by monitoring the actual motor response by feedback devices.

Commercially available one-axis servo linear motors use either a linear encoder or a magnetic scale along the track to provide position feedback. However, for two-axis linear motors these methods are not applicable since they depend on a fixed ruler along the pre-defined one-dimensional trajectory.

Selection of the feedback device is one of the most important issues in designing a motion controller. It is important to usderstand the differences and limitations of different devices.

The focus of this chapter is on various kinds of displacement and velocity sensors. Several sensor design for linear motors will also be discussed in this chapter.

3.2 Definitions

Before the discussion of different sensors, it is important to define some basic terms describing properties of sensors.

Accuracy is the difference between the measured value and the actual value. Resolution is the smallest detectable change which the sensor can measure. Repeatability is the consistency of sensor output to the same input. Slew rate is the accuracy of the sensor to a changing input.

3.3 Sensing Mechanisms

3.3.1 Capacitive Sensors

Capacitive transducer utilize the change in capacitance to measure the change in distance. The capacitance between two plates is given by:

$$
\begin{equation*}
C=\frac{q}{V}=\kappa \epsilon_{o} \frac{A}{d} \tag{3.1}
\end{equation*}
$$

C is the capacitance, q is charge in columb, V is the potential difference between the two plates, κ is the dielectric constant, ϵ_{o} is the permeability constant, A is the effective plate area and d is the plate separation. Change in any of the above parameters will result in a change in capacitance.

Displacement measurement can be made possible by sliding one plate over another, thus changing the effective area between. We can easily find out the relative displacement between the two plates from the capacitance measurement.

Other than relative motion between two capacitor plates, there are capacitive sensors with a movable dielectric which also changes the capacitance of the sensor.

Usually, capacitive position sensor is packaged in a probe. By measuring the capacitance between the probe and the target, the distance between them can be found. This method is considered as non-contacting because the probe does not touch the target.

Reference [8, 14] proposed two different design of position sensors by measuring

Figure 3.1: Parallel-plate capacitor
the change in capacitance between the electrodes.
Reference [16] described a design using linear motor cores as capacitive sensors to provide position feedback.

3.3.2 Proximity Sensor

Figure 3.2: Inductive proximity sensor

Figure 3.2 shows the composition of a proximity sensor. It consists of a wire wound iron core. The coil is connected to an oscillator. The oscillator excites the coil which
in turn generates a oscillating magnetic field. When a metallic object is placed close to the sensor, the magnetic field will induce eddy current in the target and energy is drawn. The result is a drop in the oscillator voltage. The oscillator is connected to a schmidt trigger which outputs a "high" or "low" voltage. The triggering point can be calibrated for different applications. In this case the resolution is very low.

3.3.3 Inductive Sensors

Faraday's law of electromagnetic induction states that:

$$
\begin{equation*}
V=-N \frac{d \Phi_{B}}{d t} \tag{3.2}
\end{equation*}
$$

The induced voltage in a N turn coil winding is equal to the rate of change of magnetic flux. Inductive transducers uses this fact for measurements. In equation (3.2), V represents the induced voltage, N is the number of turn of the coil and Φ_{B} is the magnetic flux. This equation can be rewritten into:

$$
\begin{equation*}
V=-N \frac{d(B A)}{d t} \tag{3.3}
\end{equation*}
$$

B is the magnetic field and A is the cross-sectional area of the coil. From equation (3.3), we can see that the induced voltage depends on: motion of the source of the magnetic field, varying the current which produces the magnetic field, changing the orientation of the source. [9].

Linear Variable Differential Transformers

LVDT (linear variable differential transformer) is one example of inductive sensor. It is a displacement transducer whose output is proportional to the position of the magnetic core.

Figure 3.3: Schematic of an LVDT

When the core is positioned at the center, the voltage induced in the two secondary coils are equal. Therefore, the output voltage is zero. However, when the core is shifted, the voltage induced in one of the secondary coil is larger than the other due to more flux linkage through the magnetic core to one of the coils. Measuring range depends on the dimension of the LVDT.

Inductosyn

Inductosyn ${ }^{1}$ consists of a scale and a slider. The scale has a strip of wire, known as the primary coil. The slider has two sets of coil mechanically positioned with 90° phase difference. The primary coil is connected to an oscillator. Voltage is induced by the varying magnetic field from the primary. The output of the two coils in the slider is:

$$
\begin{align*}
& V_{1}=A_{1} \sin (\omega t) \sin \left(\frac{2 \pi x}{p}\right) \tag{3.4}\\
& V_{2}=A_{2} \sin (\omega t) \cos \left(\frac{2 \pi x}{p}\right) \tag{3.5}
\end{align*}
$$

[^0]

Figure 3.4: Linear Inductosyn [Slocum 1992]
ω is the frequency of the oscillator, p is pitch width of the scale. The output from the two secondary coil is fed into Inductosyn to digital converter to recover the slider position for the microprocessor of the controller or display device.

3.3.4 Resistive Sensor

Figure 3.5: Potentiometer as a position sensor. a:linear potentiometer;b:schematic

Potentiometers are relatively simple resistive transducers. Potentiometers comes in various different forms, the most common ones are linear potentiometers and angular
potentiometers. Output of the potentiometer shown in Figure 3.5 is:

$$
\begin{equation*}
V=E \frac{d}{D} \tag{3.6}
\end{equation*}
$$

D and d are length of the coil and the wiper position respectively as shown in figure 3.5 (b). Displacement of the measurand is tranfered to displace the wiper and changes the potential across the wiper. If a voltage E is applied across the coil, the output from the wiper V is the ratio of the travel to the length of the coil.

3.3.5 Optical Position Sensors

Optical sensors can be divided into two main categories. One method uses photoelectric material to measure the change in displacement. Optical encoders, photodetectors are examples of this group of optical sensors. The other method uses wave properties of light to measure distance, for example, interferometers.

Reflecting surface
Figure 3.6: Photo sensor sensing displacement

Photo-detector

There are commercially available optical sensors which consist of an LED and photodetector. The LED output is focused to a spot in front of the sensor. The backscattered light form an image on the photodector. These kind of photo-sensors are usually used as a binary switch.

Optical Encoder

Figure 3.7: Optical encoder

Optical encoders measure displacement by counting scale lines with a light source and a photo-diode. The scale has alternating transparent and opaque sections. When the scale moves (translation or rotation), the photo-detector will switch on and off due to intermittent transmission of light. The output from the detector is a train of square wave pulses.

Interferometer

Another method to measure distance using light is called interferometry. Interferometry is the use of interfering property of light. Length interferometry nowadays usually use electronic fringe counting to count the fringe in the interference pattern so as to measure the distance. A laser beam is split into two orthogonal beams using a beam splitter. One beam is directed to a mirror on the object to be measured. This beam is reflected back and recombine with the other beam and interfere with a reference beam. Constructive interference occur when the path difference between the two beams are integral multiples of its wavelength. Destructive interference occur when the path difference is an odd number multiple of half-wavelength. Since interferometry uses wavelength of light to measure distance, it gives a very accurate measurement.

Figure 3.8: Laser interferometer

3.4 Selection of Sensing Method

As mentioned in the beginning of this chapter, a suitable sensing method is needed for feedback control of two dimensional linear motor. Since the motor operates in two-axis motion, all the sensors which have a guide or a fixed track which prohibits two dimensional motion cannot be used. Therefore, sensors like LVDT, Inductosyn, linear potentiometer, and linear optical encoders cannot be used.

Inductive proximity sensors does not meet the resolution requirement because it outputs one square pulse per pitch.

Reference[6] and [19] describes the use of interferometer as the feedback device for precise motion control of linear motor. However, only one motor can be used if a laser interferometer is chosen as the position sensor. Using more than one motor on the same platen can block the transmission of laser at times and interrupt the position feedback. This will keep us from using multi-motors on the same platen.

Reference [3] showed the use of an optical position sensor for micro positioning

Figure 3.9: Schemetic of a capacitive position sensor discussed in [5]
of linear motor. However, in our application, the span of travel is over the whole area of the waffle platen which exceed the working range of the photo sensor. The optical sensor described is only applicable to micropositioning of one dimensional linear motor.

Reference [5] also uses optical sensor to measure the reflectivity at different part of the platen to measure position changes. But the resolution of such a sensor is low, it can only distinguish between areas which is a groove, a tooth, or a transitional region at the boundary lines.

Reference [8] described a form of a capacitive displacement sensor design. Figure 3.9 shows the schematic of such a design. Such a design is practically very difficult to implement to two-axis linear motor systems because it requires a drive supply of different phases to be connected to the different poles on the waffle platen.

Reference [16] presented the use of motor cores as a capacitive sensor for position feedback. It uses the variation of capacitance between the motor cores and the platen to detect the change in motor position. Under clean room and controlled environment, capacitive sensor can provide high resolution position measurement. However,
most linear motor applications are not carried out under laboratory condition. Large variation in humidity and temperature in the work space is common in most industrial applications. In some manufacturing application, the environment in the assembly line has large variation in temperature and humidity. Capacitive sensors are known to be highly sensitive to temperature and humidity variation. Under these conditions, position sensing using capactive method is not desirable.

Inductive position sensors, like the Inductosyn, are very durable and can be used in vacuum and high pressure environments form $10^{\circ} \mathrm{K}$ to $180^{\circ} \mathrm{C}$ [24]. Inductive position sensing is chosen as the sensing method to use.

3.5 Summary

A number of sensors and their operating principles were discribed in this chapter. Based on this literature review, the inductive sensing method is chosen as the position measuring method for the application in two-axis linear motor.

Chapter 4

Sensor Development

4.1 Introduction

Design and development of a robust and accurate inductive position sensor will be discussed in this chapter, followed by the development of the sensor's corresponding electronics.

4.2 Sensor Fabrication

Previous research [11] attempted to obtain the maximum change in reluctance by having both secondary coils with 180° phase difference (Figure 4.1). However such a design cannot distinguish the direction of motion. In order to obtain direction information of the motion, a second identical sensor placed 90° out of phase from the original one in the same direction is required.

A new sensor is designed using operating principles of an inductosyn sensor. The two secondary coils are mechanically placed 90° out of phase. Instead of having the primary coil on the track, it is incorporated into the sensor core.

A drawing of the sensor is shown in Figure 4.2. The core is made of laminated material to reduce energy loss due to eddy currents. The core has two armatures, the teeth of the two armatures are placed mechanically 90° out of phase, i.e. when teeth on one armature is aligned with the platen teeth, teeth on the other armature is a quarter of a pitch off. The primary coil in the middle of the core serves as an electromagnet. Over the two armatures are the secondary coils. An sinusoidally oscillating

Figure 4.1: Former inductive position sensor design

Figure 4.2: New inductive position sensor design
voltage is used to excite the primary coil, creating a time varying magnetic field. Magnetic flux goes through the armature and then pass through the airgap into the platen. Magnetic energy is stored in the air gap. The air gap reluctance changes as a function of the relative position of the sensor to a pitch. Therefore the flux passing through the secondary coils and therefore the induced voltage at the coils is a function of position of the sensor.

The sensor is intended to sense changes in position in one direction. It is very

Figure 4.3: Input and Output Signal From a Moving Sensor
important that the thickness of the sensor is an integral multiple of a pitch. In this way, even if there is motion in the orthogonal direction, the overlap area between the sensor pole and the platen teeth will be constant and therefore no change in the air gap reluctance. The size of the sensor should not be large so that the motor will not be using most of the force generated to carry the sensor instead of using it on the payload. Simulation and experimental investigation of the sensor's sensitivity against various design parameters of the sensor will be discussed in the next chapter.

4.2.1 Sensor Testing

One set of the raw data from the inductive sensor is shown in Figure 4.3. The signal is an amplitude modulated sinusoidal voltage. Because the two secondary coils are 90° out of phase, the modulation envelope of the secondary coil outputs are also 90° out of phase. The carrier frequency is at the same frequency as the excitation frequency into the primary coil, but with a phase shift. The change in position resulted in a change in the amplitude.

4.3 Signal Processing

Although we know the position information is stored in the envelope of the amplitudemodulated output signal from the sensor, we still needed to recover the position from the compound signal for feedback control.

The signal can be described mathematically as:

$$
\begin{align*}
& V_{1}=\sin (\omega t)\left[K_{1}+A_{1} \sin \left(\frac{2 \pi x}{p}\right)\right] \tag{4.1}\\
& V_{2}=\sin (\omega t)\left[K_{2}+A_{2} \cos \left(\frac{2 \pi x}{p}\right)\right] \tag{4.2}
\end{align*}
$$

where ω is the excitation frequency, K_{1} and K_{2} are the transmitted carrier of the two coils, x is the sensor position and p is pitch length. Methods of recovering the position information will be discussed in this section.

4.3.1 Software Based Demodulation

The modulation envelope can be extracted by demodulating the sensor signal.
Demodulation can be done by using both hardware electronics or mathematical algorithms in software.

The simplest demodulation scheme is using a low pass filter. The lower frequency modulation envelope can be extracted by filtering off the high frequency carrier component. Digital low-pass filter algorithm can be implemented into the DSP board to perform the task of signal processing. However, the transmitted carrier K_{i} in equations (4.1) and (4.2) is not constant. A simple low pass filter method can only result in a floating sinusoidal signal.

4.3.2 Hardware Based Demodulation

A schematic of the electronic circuits to perform the demodulation is shown in figure 4.4. A frequency to voltage, F/V, converter from National Semiconductor model

Figure 4.4: Schematic of hardware signal processing
LM 2907 is added to the circuit to give a velocity feedback. This can be done because the frequency of the sinusoid envelope is proportional to the velocity of the sensor.

The low pass filters are 4th order Butterworth filter built from op-amps. The high frequency carrier signal is filtered out using a low pass filter. The output of the low pass filter is fed into a frequency to voltage (F / V) converter. The frequency of the modulation envelope (in Hertz) equals the speed of the motor in pitches per second. Calibration curve of the F/V converter is show in figure 4.5. Experimental result of the velocity signal from the F / V converter is shown in figure 4.6. Command velocity to the linear motor is at 300 pitch per second. The output of the F / V converter which is 0.5 V , agrees with the command velocity. The F / V converter cannot distinguish the direction of motion. Direction can be detected either by using hardware electronic circuitry or software algorithm detecting the phase difference between the signals from the secondary coils. With the direction detection, such a sensor is able to provide accurate velocity feedback. However, the signal from the low pass filter is not close

Figure 4.5: F / V, frequency to voltage converter calibration curve

Figure 4.6: F/V converter output from oscilloscope
to a sinusoid, the amount of distortion in its wave-form render it useless for position calculation.

F/V converter provides a source for velocity feedback, provided there is some external logic to distinguish between forward and backward motion.

4.3.3 Inductosyn to Digital Converter

Our sensor design is similar to that of an inductosyn sensor. In an inductosyn, the track is excited with the carrier wave. The waveform of the inductosyn sensor output is described by equations (3.4) and (3.5).

There are commercially available inductosyn to digital converters. These kind of converters are specialized chips which convert signal from an Inductosyn sensor into a binary number. Although our sensor design is based on the operating principle of inductosyn sensor, our signal from the sensor, as described in equations (4.1) and (4.2), is slightly different from that of an inductosyn. If we are able to convert our signal into the same form as the inductosyn, we can use an inductosyn to digital converters to resolve the sensor position.

A simple scheme is developed to perform the task without using complicated mathematical algorithms. If we have another identical sensor placed 180° from the original sensor, the output of this sensor will be:

$$
\begin{align*}
& V_{3}=\sin (\omega t)\left[K_{3}-A_{3} \sin \left(\frac{2 \pi x}{p}\right)\right] \tag{4.3}\\
& V_{4}=\sin (\omega t)\left[K_{4}-A_{4} \cos \left(\frac{2 \pi x}{p}\right)\right] \tag{4.4}
\end{align*}
$$

Multiply (4.1) and (4.2) by α_{1} and α_{2} and (4.3) and (4.4) by α_{3} and α_{4}, then subtract the corresponding signals, we have:

$$
\begin{align*}
& V_{5}=\sin (\omega t)\left[\left(\alpha_{1} K_{1}-\alpha_{3} K_{3}\right)+\left(\alpha_{1} A_{1}+\alpha_{3} A_{3}\right) \sin \left(\frac{2 \pi x}{p}\right)\right] \tag{4.5}\\
& V_{6}=\sin (\omega t)\left[\left(\alpha_{2} K_{2}-\alpha_{4} K_{4}\right)+\left(\alpha_{2} A_{2}+\alpha_{4} A_{4}\right) \cos \left(\frac{2 \pi x}{p}\right)\right] \tag{4.6}
\end{align*}
$$

By adjusting the gains α_{i}, so that:

$$
\begin{equation*}
\alpha_{1} K_{1}-\alpha_{3} K_{3}=0 \tag{4.7}
\end{equation*}
$$

$$
\begin{gather*}
\alpha_{2} K_{2}-\alpha_{4} K_{4}=0 \tag{4.8}\\
\alpha_{1} A_{1}+\alpha_{3} A_{3}=\alpha_{2} A_{2}+\alpha_{4} A_{4}=V \tag{4.9}
\end{gather*}
$$

we have:

$$
\begin{align*}
& V_{s i n}=V \sin (\omega t) \sin \left(\frac{2 \pi x}{p}\right) \tag{4.10}\\
& V_{c o s}=V \sin (\omega t) \cos \left(\frac{2 \pi x}{p}\right) \tag{4.11}
\end{align*}
$$

The transmitted carrier, K_{i}, is thus removed and the resultant signal is exactly in the same form as a regular indutosyn sensor output. Therefore, off-the-shelf Inductosyn to digital converter can be used to recover the motor position. This method requires the two sensors to be precisely placed 180° mechanically and careful balancing the gains α_{i}.

The advantage of using a converter can simplify the problem of building complex electronic circuits for computer interface.

There are limitations when using such a converter. The tracking rate of the converter has to be higher than the maximum operating speed of the motor.

The Inductosyn to digital converter used in our experiment is a Control Science 268B300 converter which has a resolution of 12 bit, but the maximum tracking rate is only 100 pitches per second. The final sensor setup will have a modified 268B300 series converter which is able to track the position up to 1000 pitches per second with a trade off in resolution to 8 bit.

Details on how the Inductosyn to Digital converter recovers the position information can be found in reference [7].

4.4 Summary

By using two identical sensors which are positioned mechanically 180° out of phase, and by subtracting the induced voltage from the corresponding secondary coils, we have a sensor output similar to that of iductosyn sensor. This allows the use of off the shelf inductosyn to digital converter and eliminate the need to build complex electronic circuits. The result is a sensing system which has a resolution of 8 bit. (i.e. $4 \mu m)$

Chapter 5

Modelling and Simulation

In this chapter, modelling of the inductive sensor will be discussed, followed by simulation and experimental evalution of the sensor. It is aimed at using a simple simulation model instead of complex finite element method to investigate the effects of various design parameters on the dynamics of the sensor.

5.1 Modelling Assumptions

A number of assumptions are made in order to obtain a simple but accurate model of the inductive sensor. Assuming the reluctance in the iron path is low, therefore only the primary coil, which act as an electromagnet, and the air gap reluctance are contributing to the dynamics of the system. The model does not take into account and flux leakage in the flux path. Thus we assume that the flux concentrates through the air gap between the sensor poles and the platen teeth.

As the sensor displaces across the platen, the reluctance across the air gap is assumed to be varying sinusoidally.

The air bearing is assumed to be static, which keeps the width of the air gap between the sensor poles and the platen teeth constant. This assumption allows us to model the air-gap reluctance variation as

$$
\begin{equation*}
\mathcal{R}=\mathcal{R}_{\text {offset }}+\mathcal{R}_{\text {amplitude }} \cos \left(\frac{2 \pi x}{p}+\theta\right) \tag{5.1}
\end{equation*}
$$

x is the position of the sensor, θ is the phase angle which represents the relative position of different poles on the sensor. However, the air bearing is not static but
introduce complex dynamics of its own, similar to that in a linear motor as described in reference $[1,10,17]$. The values $\mathcal{R}_{\text {offset }}$ and $\mathcal{R}_{\text {amplitude }}$ is calculated from the maximum and minimum reluctance which a single sensor pole can see. The values of the maximum and minimum reluctance can be estimated:

$$
\begin{equation*}
\frac{1}{\mathcal{R}}=\kappa \mu_{o} \frac{A}{z} \tag{5.2}
\end{equation*}
$$

where μ_{o} is permeability of free space and $\kappa=1$ the relative permeability of air, A the overlap area and z the distance between sensor and platen.. The minimum reluctance occurs when the sensor pole is aligned with the platen teeth, while the maximum occurs when they are completely misalligned. The reluctance is assumed to vary sinusoidally between these two maximum and minimum value. Estimation of the reluctances $\mathcal{R}_{\text {offset }}$ and $\mathcal{R}_{\text {amplitude }}$ can be found in Appendix B.

All the loses in the magnetic domain, such as hysteresis, eddy current, as well as other nonlinear effects like flux saturation and fringing are neglected.

In the mechanical domain, assumptions are made that the motion of the sensor is completely dominated by the motion of the motor. Any tangential force generated by the sensor is ignored since they are negligible when comparing to the force generated by the linear motor.

The coil inductance at the secondary coil cannot be ignored since the impedence effect is significant at high frequency. Early investigation revealed ignoring the coil impedence result in mismatch between simulation and experimental result at high excitation frequencies.

5.2 Sensor Model

Figure 5.1 illustrates the structure of the inductive sensor described in the previous section. The bond graph method as described in reference [13], is used to model the

Figure 5.1: Schematic of inductive sensor
system dynamics of the sensor.
A bond graph model of the inductive sensor is shown in figure 5.2. A zero junction is assigned to each point with distinct magnetomotive force. The platen is chosen as the ground reference. The primary and secondary coils acts as gyrators to convert energy between the magnetic and electrical domain. The excitation to the primary coil is assumed to be an ideal voltage source. Energy is dissipated in the two secondary coils by the coil resistance R_{o}.

5.3 Deriving State Equations

Figure 5.3 shows a completed bond graph model of the sensor driven by a voltage source with all the causality assigned. Note that there are a total number of four energy storage elements with integral causality displayed in Figure 5.3, therefore the number of independent states of the system should be of four. However, by following the method as described in reference [2], the number of independent states is three.

Keeping the causality in mind, at the zero junctions, we have two equations:

$$
\begin{equation*}
\dot{\phi}_{2}=\dot{\phi}_{i n}-\dot{\phi}_{1} \tag{5.3}
\end{equation*}
$$

Figure 5.2: A bond graph model of the inductive sensor

$$
\begin{equation*}
\dot{\phi}_{3}=\dot{\phi}_{4}-\dot{\phi_{i n}} \tag{5.4}
\end{equation*}
$$

Since we had assumed no flux leakage, by integrating equations (5.3) and (5.4), we also had two equations showing the continuity of flux:

$$
\begin{align*}
\phi_{2} & =\phi_{i n}-\phi_{1} \tag{5.5}\\
\phi_{3} & =\phi_{4}-\phi_{i n} \tag{5.6}
\end{align*}
$$

Figure 5.3: Simplified bond graph of an inductive sensor with a voltage source
The bond graph sensor model shows four energy storage elements with integral causality. However, if we look at the continuity of flux in the system, combining equations (5.5) and (5.6) gives an algebraic relation between $\phi_{1}, \phi_{2}, \phi_{3}$, and ϕ_{4} :

$$
\begin{equation*}
\phi_{1}+\phi_{2}=-\phi_{3}+\phi_{4} \tag{5.7}
\end{equation*}
$$

This shows that one of the four states is actually a linear combination of the other three states. Therefore one of the states is actually a dependent state which can be expressed as a linear combination of the other three. The system has only three states.

The relation between the mmf's at the 1-junctions in the magnetic domain are:

$$
\begin{gather*}
M_{o u t 1}=M_{2}-M_{1} \tag{5.8}\\
M_{o u t 2}=-M_{3}-M_{4} \tag{5.9}\\
M_{i n}=M_{2}-M_{3} \tag{5.10}
\end{gather*}
$$

The constitutive equations for the energy storage elements in the magnetic domain are as follows:

$$
\begin{align*}
& \mathcal{R}_{1}: M_{1}=\mathcal{R}_{1}(x) \phi_{1} \tag{5.11}\\
& \mathcal{R}_{2}: M_{2}=\mathcal{R}_{2}(x) \phi_{2} \tag{5.12}\\
& \mathcal{R}_{3}: M_{3}=\mathcal{R}_{1}(x) \phi_{3} \tag{5.13}\\
& \mathcal{R}_{4}: M_{4}=\mathcal{R}_{4}(x) \phi_{4} \tag{5.14}
\end{align*}
$$

At 1-junction in the electrical domain at the primary coil and secondary coils, we have:

$$
\begin{gather*}
V_{g}=V_{i n}-V_{r} \tag{5.15}\\
V_{1}=V_{L 1}+V_{R 1} \tag{5.16}\\
V_{2}=V_{L 2}+V_{R 2} \tag{5.17}
\end{gather*}
$$

The three electrical resistance have the constitutive equations:

$$
\begin{align*}
& R_{r}: V_{r}=R_{r} I_{i n} \tag{5.18}\\
& R_{1}: V_{R 1}=R_{o} I_{1} \tag{5.19}\\
& R_{2}: V_{R 2}=R_{o} I_{2} \tag{5.20}
\end{align*}
$$

The The equations relating the energy conversion between electrical and magnetic domain at the gyrators $G Y_{1}, G Y_{2}$, and $G Y_{i n}$ are:

$$
\begin{align*}
& I_{1}=\frac{M_{\text {out } 1}}{N_{1}} \tag{5.21}\\
& I_{2}=\frac{M_{o u t 2}}{N_{2}} \tag{5.22}\\
& I_{\text {in }}=\frac{M_{\text {in }}}{N_{\text {in }}} \tag{5.23}\\
& \dot{\phi}_{1}=\frac{V_{1}}{N_{1}} \tag{5.24}
\end{align*}
$$

$$
\begin{align*}
\dot{\phi}_{4} & =\frac{V_{2}}{N_{2}} \tag{5.25}\\
\dot{\phi_{i n}} & =\frac{V_{g}}{N_{i n}} \tag{5.26}
\end{align*}
$$

Substituting equations (5.3) through (5.23) to equations (5.24), (5.25), and (5.26) yields:

$$
\begin{align*}
\left(1+\frac{L_{1}}{N_{1}^{2}}\left(\mathcal{R}_{1}+\mathcal{R}_{2}\right)\right) \dot{\phi_{1}}-\frac{L_{1}}{N_{1}^{2}} \mathcal{R}_{2} \dot{\phi_{i n}}= & \frac{1}{N_{1}^{2}}\left(-\left(L_{1}\left(\dot{\mathcal{R}_{1}}+\dot{\mathcal{R}}_{2}\right)+R_{o}\left(\mathcal{R}_{1}+\mathcal{R}_{2}\right)\right) \phi_{1}\right. \\
& \left.+\left(L_{1} \dot{\mathcal{R}}_{2}+R_{o} \mathcal{R}_{2}\right) \phi_{i n}\right) \tag{5.27}\\
\left(1+\frac{L_{2}}{N_{2}^{2}}\left(\mathcal{R}_{3}+\mathcal{R}_{4}\right)\right) \dot{\phi_{4}}-\frac{L_{2}}{N_{2}^{2}} \mathcal{R}_{3} \dot{\phi_{i n}}= & \frac{1}{N_{2}^{2}}\left(-\left(L_{2}\left(\dot{\mathcal{R}}_{3}+\dot{\mathcal{R}}_{4}\right)+R_{o}\left(\mathcal{R}_{3}+\mathcal{R}_{4}\right)\right) \phi_{4}\right. \\
& \left.+\left(L_{2} \dot{\mathcal{R}_{3}}+R_{o} \mathcal{R}_{3}\right) \phi_{i n}\right) \tag{5.28}\\
\dot{\phi_{i n}}= & \frac{R r}{N_{i n}^{2}}\left(\mathcal{R}_{2} \phi_{1}+\mathcal{R}_{3} \phi_{4}+\left(\mathcal{R}_{2}+\mathcal{R}_{4}\right) \phi_{i n}\right) \\
& +\frac{1}{N_{i n}} V_{i n} \tag{5.29}
\end{align*}
$$

This system of equations can be put in matrix form as:

$$
\begin{equation*}
\mathbf{P} \frac{d}{d t} \boldsymbol{\Phi}=\mathbf{Q} \boldsymbol{\Phi}+\mathbf{R} V_{i n} \tag{5.30}
\end{equation*}
$$

where

$$
\begin{gather*}
\mathbf{P}=\left[\begin{array}{ccc}
1+\frac{L_{1}}{N_{1}^{2}}\left(\mathcal{R}_{1}+\mathcal{R}_{2}\right) & 0 & -\frac{L_{1}}{N_{1}^{2}} \mathcal{R}_{2} \\
0 & 1+\frac{L_{2}}{N_{2}^{2}}\left(\mathcal{R}_{3}+\mathcal{R}_{4}\right) & -\frac{L_{2}^{2}}{N_{2}^{2}} \mathcal{R}_{3} \\
0 & 0 & 1
\end{array}\right] \tag{5.31}\\
\mathbf{Q}=\left[\begin{array}{lll}
q_{11} & q_{12} & q_{13} \\
q_{21} & q_{22} & q_{23} \\
q_{31} & q_{32} & q_{33}
\end{array}\right] \tag{5.32}
\end{gather*}
$$

with

$$
\begin{aligned}
q_{11} & =\frac{-1}{N_{1}^{2}}\left(L_{1}\left(\dot{\mathcal{R}}_{1}+\dot{\mathcal{R}}_{2}\right)+R_{o}\left(\mathcal{R}_{1}+\mathcal{R}_{2}\right)\right) \\
q_{12} & =0 \\
q_{13} & =\frac{1}{N_{1}^{2}}\left(L_{1} \dot{\mathcal{R}}_{2}+R_{o} \mathcal{R}_{2}\right) \\
q_{21} & =0
\end{aligned}
$$

$$
\begin{aligned}
& q_{22}=\frac{-1}{N_{2}^{2}}\left(L_{2}\left(\dot{\mathcal{R}}_{3}+\dot{\mathcal{R}}_{4}\right)+R_{o}\left(\mathcal{R}_{3}+\mathcal{R}_{4}\right)\right) \\
& q_{23}=\frac{1}{N_{2}^{2}}\left(L_{2} \dot{\mathcal{R}}_{3}+R_{o} \mathcal{R}_{3}\right) \\
& q_{31}=\frac{R_{r}}{N_{i n}^{2}} \mathcal{R}_{2} \\
& q_{32}=\frac{R_{r}}{N_{i n}^{2}} \mathcal{R}_{3} \\
& q_{33}=\frac{R_{r}}{N_{i n}^{2}}\left(\mathcal{R}_{2}+\mathcal{R}_{4}\right)
\end{aligned}
$$

and

$$
\mathbf{R}=\left[\begin{array}{c}
0 \tag{5.33}\\
0 \\
\frac{1}{N_{i n}}
\end{array}\right]
$$

and the vector $\boldsymbol{\Phi}$ contains the states ϕ_{1}, ϕ_{2}, and $\phi_{i n}$.

$$
\boldsymbol{\Phi}=\left[\begin{array}{l}
\phi_{1} \tag{5.34}\\
\phi_{4} \\
\phi_{i n}
\end{array}\right]
$$

Also note that $\dot{\mathcal{R}}_{i}$ represent $\frac{d \mathcal{R}_{i}}{d t}=\frac{\partial \mathcal{R}_{i}}{\partial x} \dot{x}$. By pre-multiplying equation (5.30) by \mathbf{P}^{-1}, we get,

$$
\begin{equation*}
\frac{d}{d t} \boldsymbol{\Phi}=\mathbf{A} \boldsymbol{\Phi}+\mathbf{B} V_{i n} \tag{5.35}
\end{equation*}
$$

$\phi_{i n}$ is chosen as one of the state variables since it is actually a linear combination of ϕ_{1} and ϕ_{2} or ϕ_{3} and ϕ_{4}.

The output of the sensor is the induced voltage at the two secondary coils. When measuring the two leads of the coil, we are actually measuring the voltage across the resistor and inductor in series. Therefore the outputs are expressed as:

$$
\begin{align*}
& V_{1}=N_{1} \dot{\phi}_{1} \tag{5.36}\\
& V_{2}=N_{2} \dot{\phi}_{4} \tag{5.37}
\end{align*}
$$

This can be written as a function of the states:

$$
\left[\begin{array}{l}
V_{1} \tag{5.38}\\
V_{2}
\end{array}\right]=\mathbf{V}=\mathbf{H} \frac{d}{d t} \boldsymbol{\Phi}
$$

where H is a 2×3 matrix:

$$
\mathbf{H}=\left[\begin{array}{ccc}
N_{1} & 0 & 0 \tag{5.39}\\
0 & N_{2} & 0
\end{array}\right]
$$

Substituting equation (5.39) into (5.35) will give us the output equation:

$$
\begin{align*}
\mathbf{V} & =\mathbf{H}\left(\mathbf{A} \Phi+\mathbf{B} V_{i n}\right) \\
& =\mathbf{C} \Phi+\mathbf{D} V_{i n} \tag{5.40}
\end{align*}
$$

In the following section, this model will be implemented in the computer simulation of the sensor.

5.4 Simulation \& Experimental Results

5.4.1 Frequency Response Test Simulation and Experimental Result

A frequency response test is performed for a stationary sensor. The input and output considered are respectively the input signal to the primary coil and the induced voltage in the secondary coil. Since the sensor is motionless, all the reluctances, \mathcal{R}_{i} are constant and the rate of change of reluctances, $\dot{\mathcal{R}}_{i}$ are zero.

Early investigation of the sensor dynamics ignored the impedence effect of the secondary coils. A frequency response simulation is shown in Figure 5.4.

The experimental result is obtained by using a Hewlett Packard 3562A Dynamic Signal Analyzer on a prototype sensor which is $0.05 m$ (2in) thick with an air gap of $25.4 \mu \mathrm{~m}$ (0.001 in). Dimension of the sensor poles and the platen teeth are 1 mm (0.04in) per pitch. A schematic of the experimental setup is shown in figure 5.5. The primary coil is connected to the source output of the signal analyzer which is also connected to the channel 1 input of the analyzer. The sensor output from one of the secondary coils is fed to channel 2 of the analyzer. The signal analyzer generates a sweep sinusoidal signal over a specified range of frequencies and measures the gain

Figure 5.4: Frequency response simulation of sensor model without impedence

HP3562A Dynamic Signal Analyzer
Figure 5.5: Schematic of frequency response experiment setup using HP 3562A Dynamic Signal Analyzer

Figure 5.6: Experimental result of a frequency response test
and phase relation between channel 1 and channel 2. Experimental result performed are shown in Figure 5.6. The two results do not match at high frequency. Ignoring the impedence might be the cause of the disagreement between the experimental and simulation result. Figure 5.7 shows the simulation result of a sensor model with coil impedence. Simulations are performed using the same physical parameters. Simulation codes can be found in Appendix C. The Bodé plots shows the gain and phase between the voltage input to the primary coil and the output of one of the secondary coils in the frequency range 0.1 Hz to $10^{5} \mathrm{~Hz}$. The DC gain and the phase of the model matches with the experimental result. This suggests that the mathematical model developed provides a good representation of the physical system and it can be used as a mean to investigate the effect of various parameters on the performance of the system.

The impedence of the secondary coils can not be ignored. Early model of the sensor ignored the coil impedence which resulted in a mismatch between simulation

Figure 5.7: Simulation result of a frequency response test
and experimental frequency response at high frequency.
If the coil impedence are ignored, the transfer function of the sensor (at a specified position) is found to be:

$$
\begin{equation*}
G_{1}(s)=\frac{845.9023 s^{2}+1.9171 \times 10^{6} s-4.6784 \times 10^{-6}}{s^{3}+7.0732 \times 10^{3} s^{2}+1.4026 \times 10^{7} s+7.2250 \times 10^{9}} \tag{5.41}
\end{equation*}
$$

Using the same parameters but including the coil impedence in the model, the transfer function of the sensor is:

$$
\begin{equation*}
G_{2}(s)=\frac{0.0743 s^{3}+817.4852 s^{2}+1.2405 \times 10^{6} s+4.7684 \times 10^{-6}}{s^{3}+5.9717 \times 10^{3} s^{2}+1.0094 \times 10^{7} s+4.6749 \times 10^{9}} \tag{5.42}
\end{equation*}
$$

It shows that the coil impedence introduces an zero to the model without changing the number of poles of the system. Bond graph model also shown that the two impedence had differential causality, therefore does not introduce any independent state to the system and the order of the system is not changed.

The experimental frequency response of the sensor along the platen is shown in figure 5.8. It shows a sinusoidal variation of the output gain across the distance

Figure 5.8: Experimental frequency response at different locations within a pitch of a pitch. Thus varifying the assumption that the air gap reluctance follows in a sinusoidal manner and the reluctance variation approximation is valid.

5.4.2 Simulation Results

The voltage source driven inductive sensor model was implemented in SIMULAB ${ }^{T M}$. A block diagram of the sensor model is shown in figure 5.9. The Reluctance block

Figure 5.9: Skeleton structure of sensor

Figure 5.10: Details within the Reluctance block
(figure 5.10) calculates the four different reluctances $\mathcal{R}_{1}, \mathcal{R}_{2}, \mathcal{R}_{3}$ and \mathcal{R}_{4}. associated with the air gap and the time rate of change of reluctances as the sensor moves across the platen. These reluctances are passed into the block State Equations, which contains all the state and output equations of the sensor derived in the previous section in equations (5.35) and (5.40).

Figure 5.12 shows the simulation result of the sensor output, at one of the seconday coils, when excited by a 10 kHz sinusoidal input with an amplitude of 2 volt is shown

Figure 5.11: Details within the State Equations block
in figure 5.12 . 10 kHz excitation is selected because this frequency is well above the operating speed of the motor whose maximum is around 1 kHz . The gain from the frequency response test shows that the variation in gain against the change of excitation frequency is very small. The output is an amplitude modulated sinusoid with a sinusoidal modulation envelope. The sensor being simulated has a thickness of $0.0254 m$ (1in), and an air gap of 0.127 mm (0.005 in). simulation result conforms with the actual output of the sensor. The envelopes of the outputs from the two secondary

Figure 5.12: Simulation: (i) 4 V p-p sinusoidal excitation with 10 kHz frequency, (ii)sensor travelling at 100 pitch per second
coils are 90° out of phase.
Here, a dimensionless quantity β which represents sensitivity is defined as:

$$
\begin{equation*}
\beta=\frac{V_{\max }-V_{\min }}{V_{\max }+V_{\min }} \tag{5.43}
\end{equation*}
$$

where $V_{\max }$ and $V_{\min }$ are the maximum and minimum value of the modulation envelope.

Three prototype sensors with different thickness are build to investigate the effect of thickness on the sensor outputs and to verify the findings of the simulation. Figure 5.13 shows a prototype used for the experiments. The sensor core is made of laminated material.

Figure 5.14 shows the simulation result of how β against the dimensionless quantity d / p. d is the air gap width while p is the pitch on the platen. The thickness of the sensor used in the simulation, g, is kept constant at $0.0254 m$ (1in). The sensitivity β decreases as the ratio d / p is increased.

Experimental investigation on the effect of air gap thickness on sensor sensitivity

Figure 5.13: Prototype of inductive sensor experiment

Figure 5.14: Simulation and experimental result of β versus d / p while keeping w constant at 1in

Figure 5.15: Simulation of β versus aspect ratio w / p with constant $d=0.008$ in, $V_{i n}=2 V$ and $d x / d t=100$ pitch $/ \mathrm{s}$
is carried out. Spacer of known thickness, $12.7 \mu m, 127 \mu m$ ($0.0005 \mathrm{in}, 0.005 \mathrm{in}$) is placed between the sensor and platen. The sensor is mounted on a fixture attached to the motor. The sensor air gap width, d, is the sum of motor air gap width and spacer thickness. The motor air gap thickness is measured by using a dial indicator. The sensor is then driven to move at a speed of 100 pitches per second. Output of the sensor is being monitored on an oscilloscope. Both simulation and experiment displayed the same trend of decreasing in sensitivity with increased air gap thickness.

Figure 5.15 shows simulation result of sensitivity against the aspect ratio w / p. Larger aspect ratio resulted in higher sensitivity. Experimental investigation is not complete because a large number of sensors with different aspect ratios are needed to carry out the experiment. Figure 5.16 shows an experimental setup to compare the inductive sensor with a reference LVDT. Both the LVDT and the inductive position sensor are mounted on a two-axis linear motor and the position outputs are logged by a computer. A trapezoidal velocity profile is used to drive the motor, with a 0.02

Figure 5.16: Experimental setup for Inductive sensor output verification using LVDT as a reference

Figure 5.17: Inductive sensor and LVDT position output comparison
second acceleration time, 0.02 second cruise time and 0.02 second deceleration time. The cruise velocity is set at 80 pitches per second. The result is shown in figure 5.17 Deviation between the inductive sensor and the LVDT is around 3.8%. Both position
readouts agree with each other. The inductive sensor shows oscillation which did not appear on the LVDT data. This is due to buckling of the LVDT connecting rod.

5.5 Summary

The inductive sensor described displayed an increase in sensitivity with increasing thickness. Sensitivity also increase when the air gap thickness is decreased. A prototype sensor demonstrated its ability to measure linear motor displacement. Using the sensor model simulation, various parameters can be optimized to achieve highest sensitivity within the size constraint. Because there is no fixed guide or scale attached, the sensor is fit for use in two-axis linear motors.

The resolution of the sensor is solely determined by the electronics involved. The prototype sensor electronics produce an 8 bit number representing the position within one pitch, thus providing a resolution of 4 micron.

Chapter 6

Servo Motor Control

6.1 Introduction

In the last chapter, both simulation and experimental result of sensor operation is demonstrated. The implementation of the inductive position/velocity sensor to operate the motor in servo motor control mode will be discussed in this chapter.

The hardware consists of the motor/platen system, an inductive position sensor system, a Digital Signal Processor (DSP) based servo motor controller, and the power drives. Figure 6.1 shows the configuration of the programmable digital servo motor controller which will be discussed in this chapter.

For the motor and power drives standard components were used. The DSP controller provides low-level motor control down to the generation of the current waveform; thus simple pulse-width modulated (PWM) current amplifiers without external motion logic could be used. This makes the system both cost-efficient and highly flexible since the controller characteristic is almost entirely defined by the DSP software. The software will be discussed in the next section.

Previous research by Schulze-Lauen [22] had presented a programmable digital servo motor controller using Digital Signal Processing (DSP) board and pulse-width modulated (PWM) amplifiers. The DSP itself is a microprocessor which can handle high-volume data transfer and manipulation at high speed. The DSP board is mounted in PC slot. The user communicates with the DSP through the PC computer. Position feedback is obtained through the use of LVDT.

Figure 6.1: Digital feedback control for the linear motor
The trajectory in which the user wants the motor to follow is generated by the PC computer in the form of a trajectory instruction list. This instruction list is download into the DSP board through the PC slot. The DSP board generates the appropriate motor current command signal output through a peripheral Digital to Analog (DAC) board. This command signal is amplified by the PWM amplifiers which drives the motor to motion.

6.2 Sensor system Design

As mentioned before, the feedback device is a crucial part in the design of a closed loop controller. There are one-axis servo linear motor available on the market which use either a linear encoder or a magnetic scale along the track to provide position feedback. However, for two-axis linear motors these methods are not applicable since they depend on a fixed ruler along the pre-defined one-dimensional trajectory.

Figure 6.2: Schematic of sensor circuitry

Reference [5] describes an optical feedback device for a two-axis linear motor, however, the resolution of such a design is low. The capacitive type sensor described in reference [16] has limited potential due to the sensitivity of capacitive sensor to environmental changes. Yet other sensing systems, some of which covered in [18], are too complex or too costly for X-Y stages in an industrial environment. Therefore a feedback system has to be found which is both robust and of high resolution.

An inductive position sensor described in the previous chapter is used for position feedback. An Inductosyn Digital Converter is used to recover the position information. The output of the converter is a digital number representing the position within one pitch. The overall position can be obtained by counting the number of pitches travelled. Figure 6.2 shows in detail the composition of the sensor circuitry.

The oscillator provides excitation frequency to the primary coils of the sensor as well as the reference signal to the Inductosyn to Digital Converter. Output from the sensor secondary coils are filtered to reduce and fed into the summer to remove the transmitted carrier, as described in Chapter 4. The processed signal is then connected to the SINE and COSINE input at the converter. Output of the converter is a 12 bit binary word representing the sensor's position within one pitch.

6.3 Controller Hardware Layout

The brain of the controller is a Digital Signal Processor board mounted inside a personal computer. The DSP runs the controller software, receives position information from the sensor, calculates the proper command from the control law, and outputs it to the motor drives. All the data manipulation for motion control occur inside the DSP. Communication with the user happens via the PC. This setup allows parallel processing: The DSP processes a high volume of data for motion control while the PC computer calculates trajectories and interfacing with the user.

Directly connected to the DSP board are three peripheral boards: Digital-toAnalog Converter (DAC) board, Analog-to-Digital Converter (ADC) board, and a Digital Input/Output (DIO) board. The DAC board produces the analog signals serving as inputs to the amplifier from the computed current command. The ADC board samples analog data and the DIO board reads digital position data from the sensor circuitry to the DSP board.

6.4 Software System Design

As discussed in the previous section, the PC-mounted DSP provides great flexibility with regard to the controller design. Furthermore, this configuration supports the development of a comprehensive software package comprising both low-level motor control and high-level trajectory control. Continuous exchange of information between the PC and DSP domains in connection with an easy-to-handle user interface puts the user in control of all activities. The result is a powerful, flexible, user-friendly linear motor system.

The software basically has to perform the following tasks:

1. Communicate with the user.
2. Generate appropriate motor motion trajectories.
3. Get motor information from DIO board and ADC board.
4. Calculate position command from the given trajectory.
5. Evaluate control law to obtain current magnitude and phase angle.
6. Generate current output for the single phases.

The software is divided into a DSP portion written in assembler and a PC portion written in C. All real-time operations are covered by the DSP code. The PC code has two levels: a set of routines for communication with the DSP, on top of which the application is implemented. The communication routines provide a high-level interface which makes the application immune to changes in the low-level control software. This modular approach allows comfortable programming of a wide range of applications and makes the software easy to maintain.

The application level with the user interface and trajectory generation have been covered otherwise. In the following sections we will only take a closer look at some aspects of the DSP portion of the software. The structure of the DSP code is shown in Figure 6.3.

6.5 Real Time Software

The DSP software is entirely interrupt driven. Actions is invoked by setting certain modes, like RESET, Calibration, Single Instruction or Trajectory Execution. Depending upon the mode the meaning of the different interrupts change, but generally is as follows:

IRQ0 is driven by the timer on the ADC board, providing sampling frequency for ADC and DIO boards.

Main Routine

Figure 6.3: The structure of Main Routine

IRQ1 is driven by the DSP on-board timer and used for various purposes, e.g. by the built-in stepping motor controller during calibration.

IRQ2 is triggered by the host PC's write of a new mode to a designated register on the DSP board and thus control the program flow.

The desired motor trajectory is described in a velocity table downloaded to the DSP board. Storing velocity rather than position has the advantage of a more compact description from which position can easily be derived by "integrating", i.e. summing up of the velocities.

Figure 6.4: Typical output from Inductosyn to Digital Converter: each jump from 255 to 0 represents advancing of one pitch

6.6 Pitch counting algorithm

From the position sensor the DIO board only reads the position of the motor within one pitch. The overall displacement is obtained by a software algorithm counting pitches. Figure 6.4 shows a typical position signal from the sensor circuitry. The position of the sensor within one pitch is represented by an 8 bit number (0 to 255). Whenever the sensor crosses a pitch, the 8 bit word will either overflow or underflow. Since the sampling rate is very high in comparison to the maximum operating speed, the motor will not be able to displace a distance more than one pitch during successive sampling periods. Using the default sampling rate of 40 kHz , even if the motor is operating at 1000 pitches per second, the distance travelled within a sampling period is 0.025 pitch. Therefore by comparing the previous reading and the current reading, if the difference between the two values is larger than 6.375 counts (0.025 pitch), the sensor must have advanced a pitch or moved backward by a pitch.

6.7 Control Law Implementation

The force produced by the motor is roughly proportional to the current magnitude and the sine of the lead angle. The controller output provides both values. This

Figure 6.5: Block diagram of the PID feedback loop
makes sophisticated control algorithms possible.
In the first version of our linear motor driver, however, a simple PID controller was implemented to facilitate testing of the entire system. The lead angle was preset by the user. The error is calculated as difference between the position read by the sensor and the commanded position calculated from the given trajectory, and the current magnitude is computed proportionally, subject to the motor's maximum current rating. All controller and motor parameters can be set by the user at runtime.

With the project running stable the implementation of a more complex controller is the next step at hand. Full state feedback with estimator can be implemented using linear motor models developed in [22], [21] or [1].

6.8 Commutation

When the current magnitude has been determined there remains the task to properly distribute the current to the separate phases of the motor. This is comparable with a brushless rotary servo motor where the current has to be commutated according to the motor's position.

In our two-phase motor phases A and B have a fixed phase difference of 90°. When
the following current is applied to the phases:

$$
\begin{align*}
i_{A} & =I_{o} \sin (\omega t) \\
i_{B} & =I_{o} \cos (\omega t) \tag{6.1}
\end{align*}
$$

each value of ωt corresponds to an equilibrium position x of the motor within a pitch determined by:

$$
\begin{equation*}
\omega t=\frac{2 \pi x}{p} \tag{6.2}
\end{equation*}
$$

If ωt is equal to $2 \pi x / p$, the motor will stays at the equilibrium position x. Therefore, in order to move the motor it is necessary that ωt at all times be greater than the right hand side of the Equation (6.2). Therefore, the position sensor reading is not only used to calculate the error, but also keep the phase angle ahead of the actual motor position. The lead angle is added to the motor position and the resulting value is then used to obtain the sine and cosine term in Equation (6.1).

The number of entries in these tables also determines the number of discrete equilibrium positions the motor can assume, i.e. the positioning resolution of the Sawyer motor. This demonstrate once more how much the behavior of the motor can be defined purely by software.

6.9 Closed-Loop Servo Control Experimental Results

With the sensing system, corresponding hardware and software, a digital servo motor controller is implemented and tested.

Figure 6.7 shows the result of servo motor control. The derivative control gain is set to be zero. Data shown in the figure are inductive sensor readings. Using the reference trajectory shown, the motor performance is recorded for varying proportional

Figure 6.6: Relation between $f, f_{d a}, r$ and i.

Figure 6.7: Servo operation: P control

Figure 6.8: Servo operation: PD control
control gain. The lead angle is kept constant at 90°. Higher P-control gain results in faster rise time with trade off in increased overshoot.

The underdamped nature of Sawyer motor is clearly displayed. Implementation of derivative control greatly reduces motor vibration as well as the overshoot demonstarted by high proportional control gain. A comparison of motor performance with and without D-control is shown in figure 6.8. The P-control gains and the D-control gains are listed in the figure. The two response using $k_{p}=5000$, introduction of derivative control greatly reduce the settling time. However, the rise time is decreased slightly.

During high speed operation, excessive vibration can cause missing of steps or stalling, when the motor is operated using conventional stepping motor controller. Digital servo control is capable of introducing damping via derivative control and improve motor performance considerably. For low velocities, on the other hand, servo control provides smooth motion where stepping control tends to advance the motor jerkily.

6.10 Summary

Various components, both hardware and software, are described in this chapter. A digital sevo motor controller for two-axis linear motor is demonstrated. Since all the control law and commutation are implemented in software, the system is highly flexible.

Chapter 7

Conclusion

A digital servo controller for two-axis linear motors has been developed. Significant performance improvements have been achieved, including small power consumption and heat dissipation, reliable positioning, and smooth motion. A robust and accurate solution for the two-axis position measurement problem has been presented.

These results make the two-axis linear motor fit for industrial applications, especially for automation. The implemented software controller offers great flexibility and provides a comfortable high-level interface for future development. As an example application, a robotic palletizer was designed and implemented in our laboratory using time-optimal trajectories [25]

Further work will be carried out on a variety of issues. Details of the motor behavior remain to be investigated. The sensor system can be further developed to provide higher resolution in a more compact design. The resolution is limited by the electronics. When higher resolution and faster tracking rate Inductosyn to Digital Converter is available, significant improvement in the motor performance can be made. The DIO board which serves as the sensor-computer interface also limits the size of the digital word representing the position for controller use. The 16 bit word used in the DSP program is not fully utilized.

A digital servo motor controller presented transforms Sawyer Linear Stepping Motor into full servo motor. Advantages of such a system includes reduced heat dissipation, and provides smooth motion. Introduction of derivative control greatly improved motor's vibration problem.

Appendix A

Resources

The following companies were the supplier of the products we used in this project.
The complete address is given for each company for further references.

- Analog Devices, Inc.

DSP Division
One Technology Way, P.O. Box 9106
Norwood, Massachusetts 02062-9106
(617) 461-3672

- Borland International, Inc.

1800 Green Hills Road, P.O. Box 660001
Scotts Valley, California 95067-0001
(408) 438-5300

- Control Sciences, Inc.

9509 Vassar Avenue
Chatsworth, California 91311-4199
(818) 709-5510

- Farrand Controls

Division of Ruhle Companies, Inc.
99 Wall Street
Valhalla, New York 10595-1447
(914) 761-2600

- Loughborough Sound Images

Epinal Way
Loughborough, Leics LE11 0QE, England
(0509) 231843

- The Math Work, Inc.

24 Prime Park Way
Natick, Massachusetts 01760
(508) 653-1415

- NorMag, Inc.

Northern Magnetics, Inc.
16124 Wyandotte Street
Van Nuys, California 91406
(818) 997-8675

- NSK Corporation Precision Products Division

Bsoton, Massachusetts
(508) 468-7723

- Parker Hannifin Corporation

Compumotor Division
5500 Business Park Drive
Rohnert Park, California 94928
(707) 584-7558

- Spectrum Signal Processing, Inc.

8525 Baxter Place

100 Production Court
Burnaby, British Columbia V5A 4V7, Canada
(604) 421-1764

- THK Co., Ltd.

Head Office
3-6-4, Kami-Osaki
Shinagawa-ku, Tokyo 141, Japan
(03) 440-1819

Appendix B

Calculation of Simulation Parameters

B. 1 Extimation of Reluctances

In the estimation of the maximum and minimum reluctances between the sensor poles and the platen, the expression for magnetic reluctance for parallel plates are used:

$$
\begin{equation*}
\frac{1}{\mathcal{R}}=\kappa \mu_{o} \frac{A}{z} \tag{B.1}
\end{equation*}
$$

The constant κ is the relative permeability of air which is $1, \mu_{o}$ is the permeability of free space which has a value of $4 \pi \times 10^{-7} \mathrm{H} / \mathrm{m}$.

The geometry of the two armatures on the sensor are identical, the only difference is they are spaced mechanically 90° out of phase. Assuming the reluctance between the sensor pole and the platen varies sinusoidally, the reluctances each pole sees on one armature differs from that sees by poles on the other armature by a phase angle of 90°.

Figure B. 1 shows the exact geometry of the sensor. Leg 2 a and leg 2 b are in phase. In the simulation, the reluctances these two legs see are grouped together as \mathcal{R}_{2}. While \mathcal{R}_{1} is the reluctance leg 1 sees.

The reluctance \mathcal{R}_{1} or \mathcal{R}_{2} can be estimated by the sum of all the area overlaps,

$$
\begin{equation*}
\frac{1}{\mathcal{R}}=\mu_{o}\left[\sum_{j} \frac{A_{j}}{z_{j}}\right] \tag{B.2}
\end{equation*}
$$

\mathcal{R} is at a minimum when the poles align with the platen teeth. Therefore minimum reluctance of \mathcal{R}_{1} is:

$$
\begin{equation*}
\frac{1}{\mathcal{R}_{1 \text { min }}} \approx \mu_{o}\left[6\left(\frac{0.02 \frac{w}{2}}{d}\right)+6\left(\frac{0.02 \frac{w}{2}}{d+0.02}\right)+5\left(\frac{0.02 w}{d+0.04}\right)\right] 0.0254 \tag{B.3}
\end{equation*}
$$

Figure B.1: Detail pole geometry of sensor
and minimum reluctance for \mathcal{R}_{2} is:

$$
\begin{equation*}
\frac{1}{\mathcal{R}_{2 \min }} \approx \mu_{o}\left[6\left(\frac{0.02 \frac{w}{2}}{d}\right)+6\left(\frac{0.02 \frac{w}{2}}{d+0.02}\right)+4\left(\frac{0.02 w}{d+0.04}\right)\right] 0.0254 \tag{B.4}
\end{equation*}
$$

Similarly, maximum reluctances for \mathcal{R}_{1} and \mathcal{R}_{2} used in equation (5.1) are:

$$
\begin{align*}
& \frac{1}{\mathcal{R}_{1 \max }} \approx \mu_{o}\left[6\left(\frac{0.02 w}{d+0.02}\right)+5\left(\frac{0.02 \frac{w}{2}}{d+0.02}\right)+5\left(\frac{0.02 \frac{w}{2}}{d+0.04}\right)\right] 0.0254 \tag{B.5}\\
& \frac{1}{\mathcal{R}_{2 \max }} \approx \mu_{o}\left[6\left(\frac{0.02 w}{d+0.02}\right)+4\left(\frac{0.02 \frac{w}{2}}{d+0.02}\right)+4\left(\frac{0.02 \frac{w}{2}}{d+0.04}\right)\right] 0.0254 \tag{B.6}
\end{align*}
$$

The maximum and minimum reluctances for leg 3 and leg 4 are the same as that of leg 2 and leg 1 respectively. The values $\mathcal{R}_{\text {amplitude }}$ and $\mathcal{R}_{\text {offset }}$ are obtained by:

$$
\begin{align*}
\mathcal{R}_{\text {offset }} & =\frac{1}{2}\left(\mathcal{R}_{\max }+\mathcal{R}_{\min }\right) \tag{B.7}\\
\mathcal{R}_{\text {amplitude }} & =\frac{1}{2}\left(\mathcal{R}_{\max }-\mathcal{R}_{\min }\right) \tag{B.8}
\end{align*}
$$

The reluctance across the air gap is:

$$
\begin{equation*}
\mathcal{R}_{i}=\mathcal{R}_{i-\text { offset }}+\mathcal{R}_{i-a m p l i t u d e} \cos \left(\frac{2 \pi x}{p}+\theta_{i}\right) \tag{B.9}
\end{equation*}
$$

Figure B.2: A solenoid
with the phase angle:

$$
\theta_{i}= \begin{cases}0 & \text { when } i=1 \tag{B.10}\\ \pi & \text { when } i=2 \\ \frac{\pi}{2} & \text { when } i=3 \\ \frac{3 \pi}{2} & \text { when } i=4\end{cases}
$$

B. 2 Estimation of Coil Impedence

Figure B. 2 shows a solenoid. Inductance of a solenoid can be calculated by:

$$
\begin{equation*}
L=\mu_{o} \mu_{r} n^{2} A h \tag{B.11}
\end{equation*}
$$

where μ_{o} is the permeability of free space, μ_{r} is the relative permeability, n is the number of turn per unit length, h is the length of the solenoid and L is the inductance of the solenoid. For the secondary coil in the prototype sensor being tested, the inductance can be calculated:

$$
\begin{aligned}
\mu_{o} & =4 \pi \times 10^{-7} \mathrm{H} / \mathrm{m} \\
h & =0.01 \mathrm{~m} \\
n & =6000 t u r n s / \mathrm{m} \\
A & =6.5 \times 10^{-4} \mathrm{~m}^{2}
\end{aligned}
$$

using equation (B.11) the coil inductance L is found to be $0.294 m H$.

Simulation Codes

C. 1 Frequency Response Simulation

Frequency Response simulation is performed on MATLAB. All the physical parameters are initialized in init.m, and freqsim.m generates the state space matrices. Gain and phase response are obtained by using the bode command in matlab which generate the bode plot using the state space matrices.

File: init.m

```
%Init.m
%initialize all the variables for current source sensor
%simulation cursim.m
%Francis Yee-Hon Wong
%6/13/94
L=2.94e-4;
L1=L;
L2=L;
d1=0.008;
d2=0.02 + d1;
d3 = 0.04 + d1;
u = pi * 4e-7; % (H/m)
lamwidth = 0.02; % thickness of 1 lamination (in)
lamnum = 150; % total number of lamination
%width = lamwidth*lamnum; %(in)
%width = 1;
area = 0.02 * width * 6; % area of sensor teeth (in^2)
Ro = 2.7; % secondary coil resistance (ohm)
Rr = 2.6; % primary coil resistance (ohm)
N1 = 60; % number of winding in secondary coil1
N2 = 60; % number of winding in secondary coil2
Nin = 50; % number of winding in primary coil
%permeanance P (H)
Pmin1 =u* (6*0.02/d2 + 5*0.01/d2 + 5*0.01/d3)*width*0.0254;
%reluctance R (H^-1)
Rmax1 = 1 / Pmin1;
Pmax1 = u * (6*0.01/d1 + 6*0.01/d2 + 5*0.02/d3)*width*0.0254;
Rmin1 = 1 / Pmax1;
A11 = (Rmax1 - Rmin1) / 2;
K11 = (Rmax1 + Rmin1) / 2;
Pmin2 = u * (6*0.02/d2 + 4*0.01/d2 + 4*0.01/d3)*width*0.0254;
Rmax2 = 1 / Pmin2;
Pmax2 = u * (6*0.01/d1 + 6*0.01/d2 + 4*0.02/d3)*width*0.0254;
Rmin2 = 1 / Pmax2;
A12 = (Rmax2 - Rmin2) / 2;
K12 = (Rmax2 + Rmin2) / 2;
p = 1; % pitch/pitch
Velocity = 100; % pitch/s
G = (Nin^2 * Ro) / (N1^2 * Rr);
freq = 10000; % excitation frequency
radfreq = freq * 2 * pi; % excitation in rad/sec
```

File: freqsim.m

```
% freqsim.m
% genernate matrix for frequency response
% and obtain bode plot of frequency response
init;
rho = ang * pi / 180; %rho = 2*pi*x/p + theta
R1 = K11 + A11 * cos(rho);
R2 = K12 - A12 * cos(rho);
R3 = K12 + A12 * sin(rho);
R4 = K11 - A11 * sin(rho);
q11=1 + L1*(R1+R2)/N1^2;
```

```
q12=0;
q13=-L1*R2 /N1^2;
q21=0;
q22=1 + L2*(R3+R4)/N2^2;
q23=-L2*R3/N2^2;
q31=0;
q32=0;
q33=1;
[q11 q12 q13; q21 q22 q23; q31 q32 q33];
r11 = - Ro * (R1 + R2) / (N1^2);
r12 = 0;
r13 = Ro * R2 / (N1^2);
r21 = 0;
r22 = - Ro * (R3 + R4) / (N2^2);
r23 = Ro * R3 / (N2^2);
r31 = Rr * R2 / (Nin^2);
r32 = Rr * R3 / (Nin^2);
r33 = - Rr * (R2 + R3) / (Nin^2);
[r11 r12 r13; r21 r22 r23; r31 r32 r33];
S = [0; 0; 1/Nin];
A = Q\R;
B = Q\S;
H = [N1 0 0; 0 N2 0];
C = H * A;
D = H * B;
h = logspace(0,5,100);
f = h/(2*pi);
[mag,phase] =bode (A,B,C,D,1,h);
db = 20 * log10(mag);
clg
subplot(211);
semilogx(f,db(:,1))
grid;
xlabel('Frequency (Hz)')
ylabel('Gain (dB)')
subplot(212);
semilogx(f,phase(:,1));
grid
xlabel('Frequency (Hz)')
ylabel('Phase (deg)')
```


C. 2 Sensor Model Simulation

All the state and output equations derived in Chapter 5 are implemeted in SIMULAB. The block diagrams with all the simulab block can be found in figure 5.9, 5.10 and 5.11. The matlab M-file, voltsim, is listed in this section.

File: voltsim

```
function [ret,x0,str]=voltsim(t,x,u,flag);
%VOLTSIM is the M-file description of the SIMULAB system named
VOLTSIM.
% The block-diagram can be displayed by typing: VOLTSIM.
SYS=VOLTSIM(T,X,U,FLAG) returns depending on FLAG certain
% system values given time point, T, current state vector, X,
% and input vector, U.
FLAG is used to indicate the type of output to be returned in SYS.
    Setting FLAG=1 causes VOLTSIM to return state derivitives, FLAG=2
        discrete states, FLAG=3 system outputs and FLAG=4 next sample
        time. For more information and other options see SFUNC.
        Calling VOLTSIM with a FLAG of zero:
        [SIZES]=VOLTSIM([],[],[],0), returns a vector, SIZES, which
        contains the sizes of the state vector and other parameters.
        SIZES(1) number of states
        SIZES(2) number of discrete states
        SIZES(3) number of outputs
        SIZES(4) number of inputs.
        For the definition of other parameters in SIZES, see SFUNC.
        See also, TRIM, LINMOD, LINSIM, EULER, RK23, RK45, ADAMS, GEAR.
% Note: This M-file is only used for saving graphical information;
% after the model is loaded into memory an internal model
% representation is used.
% the system will take on the name of this mfile:
sys = mfilename;
new_system(sys)
simulab_version(1.01)
if(0 == (nargin + nargout))
    set_param(sys,'Location', [320,271,624,463])
    open_system(sys)
end;
set_param(sys,'algorithm', 'RK-45')
set_param(sys,'Start time', '0.0')
set_param(sys,'Stop time', '0.05')
set_param(sys,'Min step size', '0.000001')
set_param(sys,'Max step size', '.000001')
set_param(sys,'Relative error','1e-5')
set_param(sys,'Return vars', '')
add_block('built-in/Scope',[sys,'/','Scope1'])
set_param([sys,'/','Scope1'],...
    'Vgain','0.100000',...
    'Hgain','0.010000',...
    'Window',[373,204,653,424],...
    'position',[225,132,245,158])
add_block('built-in/Scope',[sys,'/','Scope'])
set_param([sys,'/','Scope'],...
    'Vgain','0.100000',...
```


APPENDIX C. SIMULATION CODES

'Hgain', $0.010000^{\prime}, \ldots$
'Window', [100,101,380,321], ...
'position', [225,12,245,38])

```
% Subsystem 'Sensor'.
new_system([sys,'/','Sensor'])
set_param([sys,'/','Sensor'],'Location',[292,78,558,232])
open_system([sys,'/','Sensor'])
add__block('built-in/Inport',[sys,'/','Sensor/in_2'])
set_param([sys,'/','Sensor/in_2'],...
    'Port','2',...
    'position',[15,100,35,120])
add_block('built-in/Outport',[sys,'/','Sensor/out_2'])
set_param([sys,'/','Sensor/out_2'],...
    'Port','2',...
    'position',[215,80,235,100])
add_block('built-in/Inport',[sys,'/','Sensor/in_1'])
set_param([sys,'/','Sensor/in_1'],...
    'Port','1',...
    'position',[15,45,35,65])
add_block('built-in/Outport',[sys,'/','Sensor/out_1'])
set_param([sys,'/','Sensor/out_1'],...
    'Port','1',...
    'position',[215,30,235,50])
% Subsystem 'Sensor/Reluctance'.
new_system([sys,'/','Sensor/Reluctance'])
set_param([sys,'/','Sensor/Reluctance'],'Location',[58,112,561,457])
add_block('built-in/Outport',[sys,'/','Sensor/Reluctance/out_4'])
set_param([sys,'/','Sensor/Reluctance/out_4'],...
    'Port','4',...
    'position',[335,255,355,275])
add_block('built-in/Outport',[sys,'/','Sensor/Reluctance/out_3'])
set_param([sys,'/','Sensor/Reluctance/out_3'],...
    'Port','3',...
    'position',[335,205,355,225])
add_block('built-in/Inport',[sys,'/','Sensor/Reluctance/in_1'])
set_param([sys,'/','Sensor/Reluctance/in_1'],...
    'Port','1',...
    'position',[5,190,25,210])
add_block('built-in/Outport',[sys,'/','Sensor/Reluctance/out_2'])
set_param([sys,'/','Sensor/Reluctance/out_2'],...
    'Port','2',...
    'position',[335,150,355,170])
```

```
APPENDIX C. SIMULATION CODES
add_block('built-in/Outport',[sys,'/','Sensor/Reluctance/out_1'])
set_param([sys,'/','Sensor/Reluctance/out__1'],...
    'Port','1',...
    'position',[335,110,355,130])
add_block('built-in/Note',[sys,'/','Sensor/Reluctance/x'])
set_param([sys,'/','Sensor/Reluctance/x'],...
    'position',[70,165,71,166])
add_block('built-in/Constant',[sys,'/','Sensor/Reluctance/Amplitude'])
set_param([sys,'/','Sensor/Reluctance/Amplitude'],...
    'Value','A1',...
    'position',[170,80,190,100])
add_block('built-in/Constant',[sys,'/','Sensor/Reluctance/Offset'])
set_param([sys,'/','Sensor/Reluctance/Offset'],...
    'Value','K1',...
    'position',[235,55,255,75])
add_block('built-in/Product',[sys,'/','Sensor/Reluctance/Product3'])
set_param([sys,'/','Sensor/Reluctance/Product3'],...
    'inputs','2',...
    'position',[240,260,265,280])
add_block('built-in/Sum',[sys,'/','Sensor/Reluctance/Sum3'])
set_param([sys,'/','Sensor/Reluctance/Sum3'],...
    'inputs','++',...
    'position', [290,255,310,275])
add_block('built-in/Product',[sys,'/','Sensor/Reluctance/Product2'])
set_param([sys,'/','Sensor/Reluctance/Product2'],...
    'inputs','2',...
    'position',[240,210,265,230])
add_block('built-in/Sum',[sys,'/','Sensor/Reluctance/Sum2'])
set_param([sys,'/','Sensor/Reluctance/Sum2'],...
    'inputs','++',...
    'position',[290,205,310,225])
add_block('built-in/Product',[sys,'/','Sensor/Reluctance/Product1'])
set_param([sys,'/','Sensor/Reluctance/Product1'],...
    'inputs','2',...
    'position',[230,155,255,175])
add_block('built-in/Sum',[sys,'/','Sensor/Reluctance/Sum1'])
set_param([sys,'/','Sensor/Reluctance/Sum1'],...
    'inputs','++',...
    'position',[295,150,315,170])
add_block('built-in/Product',[sys,'/','Sensor/Reluctance/Product'])
set_param([sys,'/','Sensor/Reluctance/Product'],...
    'inputs','2',...
    'position',[235,115,260,135])
add_block('built-in/Sum',[sys,'/','Sensor/Reluctance/Sum'])
set_param([sys,'/','Sensor/Reluctance/Sum'],...
    'inputs','++',...
```

```
APPENDIX C. SIMULATION CODES
                            'position',[290,110,310,130])
add_block('built-in/Note',[sys,'/','Sensor/Reluctance/C1'])
set_param([sys,'/','Sensor/Reluctance/C1'],...
    'position', [320,100,321,101])
add_block('built-in/Note',[sys,'/','Sensor/Reluctance/C4'])
set_param([sys,'/','Sensor/Reluctance/C4'],...
    'position', [320,245,321, 246])
add_block('built-in/Note',[sys,'/','Sensor/Reluctance/C3'])
set_param([sys,'/','Sensor/Reluctance/C3'],...
    'position',[320,195,321,196])
add_block('built-in/Fcn',[sys,'/','Sensor/Reluctance/Fcn3'])
set_param([sys,'/','Sensor/Reluctance/Fcn3'],...
    'Expr','-cos(u)',...
    'position',[160,265,200,285])
add_block('built-in/Fcn',[sys,'/','Sensor/Reluctance/Fcn2'])
set_param([sys,'/','Sensor/Reluctance/Fcn2'],...
    'Expr','cos(u)',...
    'position',[160,215,200,235])
add_block('built-in/Note',[sys,'/','Sensor/Reluctance/C2'])
set_param([sys,'/','Sensor/Reluctance/C2'],...
    'position', [320,140,321,141])
add_block('built-in/Fcn',[sys,'/','Sensor/Reluctance/Fen1'])
set_param([sys,'/','Sensor/Reluctance/Fcn1'],...
    'Expr','-sin(u)',...
    'position',[160,160,200,180])
add_block('built-in/Fcn',[sys,'/','Sensor/Reluctance/Fcn'])
set_param([sys,'/','Sensor/Reluctance/Fcn'],...
    'Expr','sin(u)',...
    'position',[160,120,200,140])
add_block('built-in/Gain',[sys,'/','Sensor/Reluctance/Gain'])
set_param([sys,'/','Sensor/Reluctance/Gain'],...
    'Gain','2 * pi / p * Velocity',...
    'position',[115,190,135,210])
add_block('built-in/Scope',[sys,'/','Sensor/Reluctance/Scope1'])
set_param([sys,'/','Sensor/Reluctance/Scope1'],...
    'Vgain','1.000000',...
    'Hgain','0.100000', ...
    'Window',[100,100,380,320],...
    'position',[110,107,130,133])
add_line([sys,'/','Sensor/Reluctance'],[315,265;330,265])
add_line([sys,'/','Sensor/Reluctance'],[315,215;330,215])
add_line([sys,'/','Sensor/Reluctance'],[320,160;330,160])
add_line([sys,'/','Sensor/Reluctance'],[315,120;330,120])
add_line([sys,'/','Sensor/Reluctance'],[260,65;270,65;270,115;285,115])
add_line([sys,'/','Sensor/Reluctance'],[265,125;285,125])
add_line([sys,'/','Sensor/Reluctance'],[265,125;265,155;290,155])
add_line([sys,'/','Sensor/Reluctance'],[270,220;285,220])
```


APPENDIX C. SIMULATION CODES

```
add_line([sys,'/','Sensor/Reluctance'],[270,220;270,260;285,260])
add_line([sys,'/','Sensor/Reluctance'], [195,90;210,90;210,120;230,120])
add_line([sys,'/','Sensor/Reluctance'],[205,130;230,130])
add_line([sys,'/','Sensor/Reluctance'],[205,130;205,160;225,160])
add_line([sys,'/','Sensor/Reluctance'],[205,170;225,170])
add_line([sys,'/','Sensor/Reluctance'],[205,170;205,215;235,215])
add_line([sys,'/','Sensor/Reluctance'],[205,225;235,225])
add_line([sys,'/','Sensor/Reluctance'],[205,225;205,265;235,265])
add_line([sys,'/','Sensor/Reluctance'],[205,275;235,275])
add_line([sys,'/','Sensor/Reluctance'],[270,270;285,270])
add_line([sys,'/','Sensor/Reluctance'],[140,200;140,225;155,225])
add_line([sys,'/','Sensor/Reluctance'],[140,225;140,275;155,275])
add_line([sys,'/','Sensor/Reluctance'],[140,200;140,170;155,170])
add_line([sys,'/','Sensor/Reluctance'],[140,170;140,130;155,130])
add_line([sys,'/','Sensor/Reluctance'],[260,165;290,165])
add_line([sys,'/','Sensor/Reluctance'],[275,165;275,210;285,210])
add_line([sys,'/','Sensor/Reluctance'],[30,200;110,200])
add_line([sys,'/','Sensor/Reluctance'],[90,200;90,120;105,120])
```

\% Finished composite block 'Sensor/Reluctance'.
set_param([sys,'/','Sensor/Reluctance'], ..
'position', [55,16,90,94])
\% Subsystem 'Sensor/State Equations'.
new_system([sys,'/','Sensor/State Equations'])
set_param([sys,'/','Sensor/State Equations'],'Location', [95,43, 630, 713])
add_block('built-in/Inport',[sys,'/','Sensor/State Equations/in_5'])
set_param([sys,'/','Sensor/State Equations/in_5'],...
'Port', '5', ..
'position', [10,545,30,565])
add_block('built-in/Outport',[sys,'/','Sensor/State Equations/out_2'])
set_param([sys,'/','Sensor/State Equations/out_2'],...
'Port', '2',...
'position', [475,345,495,365])
add_block('built-in/Inport',[sys,'/','Sensor/State Equations/in_4'])
set_param([sys,'/','Sensor/State Equations/in_4'],...
'Port', '4',...
'position', [5,325,25,345])
add_block('built-in/Inport',[sys,'/','Sensor/State Equations/in_3'])
set_param([sys,'/','Sensor/State Equations/in_3'],...
'Port','3',...
'position', [5, 255, 25, 275])
add_block('built-in/Inport',[sys,'/','Sensor/State Equations/in_2'])
set_param([sys,'/','Sensor/State Equations/in_2'],...
'Port','2',...
'position', [5,185,25,205])
add_block('built-in/Inport',[sys,'/','Sensor/State Equations/in_1'])

APPENDIX C. SIMULATION CODES

```
set_param([sys,'/','Sensor/State Equations/in_1'],...
    'Port','1',...
    'position',[5,115,25,135])
add_block('built-in/Outport',[sys,'/','Sensor/State Equations/out_1'])
set_param([sys,'/','Sensor/State Equations/out_1'],...
        'Port','1',...
        'position',[435,50,455,70])
add_block('built-in/Gain',[sys,'/','Sensor/State Equations/Gain3'])
set_param([sys,'/','Sensor/State Equations/Gain3'],...
        'Gain','G',...
        'position',[165,405,185,425])
```

add_block('built-in/Integrator', [sys,'/','Sensor/State
Equations/Integrator'])
set_param([sys,'/','Sensor/State Equations/Integrator'],...
'Initial','0',...
'position', [310,115, 330,135])
add_block('built-in/Sum',[sys,'/','Sensor/State Equations/Sum'])
set_param([sys,'/','Sensor/State Equations/Sum'],...
'inputs','-+',...
'position', [210,115,230,135])
add_block('built-in/Product',[sys,'/','Sensor/State Equations/Product'])
set_param([sys,'/','Sensor/State Equations/Product'],...
'inputs','2',...
'position', [150, 110, 175,130])
add_block('built-in/Integrator', [sys,'/','Sensor/State
Equations/Integrator1'])
set_param([sys,'/','Sensor/State Equations/Integrator1'],...
'Initial', '0',...
'position',[415,210,435,230])
add_block('built-in/Note',[sys,'/','Sensor/State Equations/phil'])
set_param([sys,'/','Sensor/State Equations/phil'],...
'position', [350,100,351,101])
add_block('built-in/Note',[sys,'/','Sensor/State Equations/phi2'])
set_param([sys,'/','Sensor/State Equations/phi2'],...
'position', [450,200,451,201])
add_block('built-in/Product',[sys,'/','Sensor/State
Equations/Product1'])
set_param([sys,'/','Sensor/State Equations/Product1'],...
'inputs','2',...
'position', [150,180,175,200])
add_block('built-in/Gain',[sys,'/','Sensor/State Equations/Gainl'])
set_param([sys,'/','Sensor/State Equations/Gainl'],...
'Gain', 'Ro /(N1^2)',...
'position', $(250,115,270,135])$
add_block('built-in/Note',[sys,'/','Sensor/State Equations/phildot'])
set_param([sys,'/','Sensor/State Equations/phildot'],...

APPENDIX C. SIMULATION CODES

'position', [265,100,266,101])
add_bblock('built-in/Product',[sys,'/','Sensor/State Equations/Product2'])
set_param([sys,'/','Sensor/State Equations/Product2'],...
'inputs','2',...
'position', [180, 250,205,270])
add_block('built-in/Sum',[sys,'/','Sensor/State Equations/Sum1']) set_param([sys,'/','Sensor/State Equations/Sum1'],...
'inputs', '++',..
'position', [125,225,145,245])
add_block('built-in/Sum',[sys,'/','Sensor/State Equations/Sum2']) set_param([sys,'/','Sensor/State Equations/Sum2'],...
'inputs','++',...
'position', [125, 320, 145, 340])
add_block('built-in/Integrator', [sys,'/','Sensor/State Equations/Integrator2'])
set_param([sys,'/','Sensor/State Equations/Integrator2'],...
'Initial', 0 ', ...
'position', [320,310,340,330])
add_block('built-in/Product', [sys,'/','Sensor/State
Equations/Product3'])
set_param([sys,'/','Sensor/State Equations/Product3'],...
'inputs','2',...
'position', [175,315,200,335])
add_block('built-in/Sum',[sys,'/','Sensor/State Equations/Sum3'])
set_param([sys,'/','Sensor/State Equations/Sum3'],...
'inputs','+-',...
'position', [235,310,255,330])
add_block('built-in/Gain',[sys,'/','Sensor/State Equations/Gain2'])
set_param([sys,'/','Sensor/State Equations/Gain2'],...
'Gain','Ro /(N2^2)',...
'position', [275,310,295,330])
add_block('built-in/Sum',[sys,'/','Sensor/State Equations/Sum4'])
set_param([sys,'/','Sensor/State Equations/Sum4'],...
'inputs', '-+', ..
'position', [215,380,235,400])
add_block('built-in/Product', [sys,'/','Sensor/State Equations/Product4'])
set_param([sys,'/','Sensor/State Equations/Product4'],...
'imputs','2',...
'position', [275,365,300,385])
add_block('built-in/Gain',[sys,'/','Sensor/State Equations/Gain4'])
set_param([sys,'/','Sensor/State Equations/Gain4'],...
'Gain', 'G', ..
'position', [120,470,140,490])
add_block('built-in/Sum',[sys,'/','Sensor/State Equations/Sum5'])

```
set_param([sys,'/','Sensor/State Equations/Sum5'],...
    'inputs','+++',...
    'position',[205,462,225,498])
add_block('built-in/Product',[sys,'/','Sensor/State
Equations/Product5'])
set_param([sys,'/','Sensor/State Equations/Product5'],...
    'inputs','2',...
    'position',[265,455,290,475])
add_block('built-in/Product',[sys,'/','Sensor/State
Equations/Product6'])
set_param([sys,'/','Sensor/State Equations/Product6'],...
    'inputs','2',...
    'position',[240,520,265,540])
add_block('built-in/Sum',[sys,'/','Sensor/State Equations/Sum6'])
set_param([sys,'/','Sensor/State Equations/Sum6'],...
    'inputs','+-++',...
    'position',[340,447,360,493])
add_block('built-in/Gain',[sys,'/','Sensor/State Equations/Gain5'])
set_param([sys,'/','Sensor/State Equations/Gain5'],...
    'Gain','Rr / (Nin^2)',...
    'position',[385,460,405,480])
add_block('built-in/Note',[sys,'/','Sensor/State Equations/phi2dot'])
set_param([sys,'/','Sensor/State Equations/phi2dot'],...
    'position',[370,205,371,206])
add__block('built-in/Note',[sys,'/','Sensor/State Equations/phi4'])
set_param([sys,'/','Sensor/State Equations/phi4'],...
    'position',[355,300,356,301])
add_block('built-in/Note',[sys,'/','Sensor/State Equations/phi4dot'])
set_param([sys,'/','Sensor/State Equations/phi4dot'],...
    'position',[300,295,301,296])
add_block('built-in/Gain',[sys,'/','Sensor/State Equations/Gain6'])
set_param([sys,'/','Sensor/State Equations/Gain6'],...
    'Gain','N1',...
    'position',[320,50,340,70])
add_block('built-in/Gain',[sys,'/','Sensor/State Equations/Gain7'])
set_param([sys,'/','Sensor/State Equations/Gain7'],...
    'Gain','N2',...
    'position',[370,345,390,365])
add_block('built-in/Gain',[sys,'/','Sensor/State Equations/Gain8'])
set_param([sys,'/','Sensor/State Equations/Gain8'],...
    'Gain','Nin/Rr',...
    'position',[155,545,175,565])
add_line([sys,'/','Sensor/State Equations'],[395,355;470,355])
add_line([sys,'/','Sensor/State Equations'],[30,335;120,335])
add_line([sys,'/','Sensor/State Equations'],[345,60;430,60])
add_line([sys,'/','Sensor/State Equations'], [30,125;145,125])
add_line([sys,'/','Sensor/State Equations'],[75,125;75,415;160,415])
```


APPENDIX C. SIMULATION CODES

add_line([sys,'/','Sensor/State Equations'], [180,120;205,120]) add_line([sys,'/','Sensor/State
Equations'], [180,190;190,190;190,130;205,130])
add_line([sys,'/','Sensor/State Equations'], [235,125;245,125])
add_line([sys,'/','Sensor/State
Equations'],[150,235;160,235;160,255;175,255])
add_line([sys,'/','Sensor/State Equations'], [150,330;170,330])
add_line([sys,'/','Sensor/State Equations'], [205,325;230,325])
add_line([sys,'/','Sensor/State
Equations'],[210, 260; 215, 260; 215, 315; 230, 315])
add_line([sys,'/','Sensor/State Equations'], $[260,320 ; 270,320])$
add_line([sys,'/','Sensor/State Equations'], [300, 320;315,320])
add_line([sys,'/','Sensor/State
Equations'], 335,$125 ; 410,125 ; 410,90 ; 105,90 ; 105,115 ; 145,115])$
add_line([sys,'/','Sensor/State Equations'], [105,115;105,230;120,230])
add_line([sys,'/','Sensor/State Equations'], [105,230;105,370;270,370])
add_line([sys,'/','Sensor/State Equations'],[145,480;200,480])
add_line ([sys,'/', 'Sensor/State
Equations'], [440, 220; 465, 220; 465, 165; 85, 165; 85, 185;145,185])
add_line([sys,'/','Sensor/State Equations'], [85,185;85,240;120,240])
add_line ([sys,'/','Sensor/State
Equations'], [85, $240 ; 85,445 ; 240,445 ; 240,460 ; 260,460])$
add_line([sys,'/','Sensor/State
Equations'], [345, 320;395, 320; 395, 290;150, 290; 150, 320;170, 320])
add_line([sys,'/','Sensor/State Equations'], [150, 320;150,525;235,525])
add_line([sys,'/','Sensor/State Equations'], [295,465;335,465])
add_line([sys,'/','Sensor/State
Equations'], [305, 375;315,375;315,455;335,455])
add_line ([sys,'/','Sensor/State
Equations'],[270,530;315,530;315,475;335,475])
add_line([sys,'/','Sensor/State Equations'], $[365,470 ; 380,470])$
add_line([sys,'/','Sensor/State
Equations'], [410, 470;420, 470; 420, 270;325, 270; 325, 220; 410, 220])
add_line([sys,'/','Sensor/State
Equations'],[190,415;200,415;200,395;210,395])
add_line([sys,'/','Sensor/State
Equations'],[230,480;245,480;245,470;260,470])
add_line([sys,'/','Sensor/State Equations'], $[30,195 ; 145,195])$
add_line([sys,'/','Sensor/State Equations'], $[60,195 ; 60,480 ; 115,480])$
add_line([sys,'/','Sensor/State
Equations'], [60,480;60,510;180,510;180,490;200,490])
add_line([sys,'/','Sensor/State Equations'], [30,265;175,265])
add_line([sys,'/','Sensor/State Equations'], 90,$265 ; 90,325 ; 120,325])$
add_line([sys,'/','Sensor/State Equations'], $[90,325 ; 90,385 ; 210,385]$)
add_line([sys,'/','Sensor/State Equations'], [90,385;90,535;235,535])
add_line([sys,'/','Sensor/State
Equations'], 990,$460 ; 180,460 ; 180,470 ; 200,470])$
add_line([sys,'/','Sensor/State Equations'],[275,125;305,125])
add_line([sys,'/','Sensor/State Equations'], [285,125;285,60;315,60])
add_line([sys,'/','Sensor/State Equations'], [300,320;300,355;365,355])
add_line([sys,'/','Sensor/State
Equations'], 240,$390 ; 255,390 ; 255,380 ; 270,380])$
add_line([sys,'/','Sensor/State Equations'], [35,555;150,555])
add_line ([sys,'/','Sensor/State
Equations'], $[180,555 ; 325,555 ; 325,485 ; 335,485])$
% Finished composite block 'Sensor/State Equations'.
set_param([sys,'/','Sensor/State Equations'],...
'position',[145,13,195,117])
add_line([sys,'/','Sensor'],[40,110;110,110;110,105;140,105])
add_line([sys,'/','Sensor'],[200,90;210,90])
add_line([sys,'/','Sensor'],[40,55;50,55])
add_line([sys,'/','Sensor'],[200,40;210,40])
add_line([sys,'/','Sensor'],[95,25;140,25])
add_line([sys,'/','Sensor'],[95,45;140,45])
add_line([sys,'/','Sensor'],[95,85;140,85])
add_line([sys,'/','Sensor'],[95,65;140,65])
% Finished composite block 'Sensor'.
set_param([sys,'/','Sensor'],...
'position',[125,53,160,117])
add_block('built-in/To Workspace',[sys,'/','Time'])
set_param([sys,'/','Time'],...
'mat-name','t',...
'buffer','100000',...
'position',[100,17,150,33])
add_block('built-in/To Workspace',[sys,'/','Output1'])
set_param([sys,'/','Output1'],...
'mat-name','V1',...
'buffer','100000', ...
'position',[210,62,260,78])
add_block('built-in/To Workspace',[sys,'/','Output2'])
set_param([sys,'/','Output2'],...
'mat-name','V2',...
'buffer','100000', ...
'position',[210,92,260,108])
add_block('built-in/Clock',[sys,'/','Clock'])
set_param([sys,'/','Clock'],...
'position',[10,15,30,35])
add_block('built-in/Sine Wave',[sys,'/','Sine Wave'])
set_param([sys,'/','Sine Wave'],...
'amplitude','2',...
'frequency','10000*pi',...
'phase','0',...
'position',[30,100,50,120])
add_line(sys,[165,100;205,100])
add_line(sys, [180,100;180,145;220,145])
add_line(sys,[165,70;205,70])
add_line(sys,[180,70;180,25;220,25])
add_line(sys,[55,110;85,110;85,100;120,100])
add_line(sys,[35,25;95,25])
add_line(sys,[50,25;50,70;120,70])
% Return any arguments.
if (nargin | nargout)
% Must use feval here to access system in memory

```
if (nargin > 3) if (flag == 0)
eval(['[ret,x0,xstr]=',sys,'(t,x,u,flag);']) else eval(['ret =', sys,'(t,x,u,flag);']) end
else [ret, \(x 0\), str] \(=\) feval(sys);
end
end

\section*{Appendix D}

\section*{Digital Control Software}

The digital servo control software consists of a user interface which is written in Borland C++, and a DSP section written in DSP assembly. C++ code listing of the user interface can be found in reference [22]. This section contains only the DSP section of the controller software modified to integrate the inductive sensor and the corresponding electronics to the system.

The DSP section of the controller software consists of a system description file \(l m d a . s y s\), and a servo motor driver program \(l m d a . d s p\).
```

APPENDIX D. DIGITAL CONTROL SOFTWARE
{ Linear Motor Driver
{ Version 1.1
{
{ High Speed Flexible Automation Project
(Laboratory for Manufacturing and Productivity
(Massachusetts Institute of Technology
{
ADSP-2100 Chapter:
{ System Definition File
{ 1mda.sys
{
{ Written by Henning Schulze-Lauen
{ 03/06/1993
{ Modify by Francis Y. Wong for servo control using 32 ch DIO board
{ July 1994
{ Aug 2, 1994 start actual modification using DIO board and inductive sensor
{
{These system specifications will yield an Architectural Description File
{ for use with the Spectrum (= LSI) system board. The following settings of
(hardware links are assumed here and in the remaining LMD software:
{
(ADSP-2100 System Board:
LK 1 - Program memory size 8K * 24
LK 2 - INT1 source selection Timeout
LK 3 DAC trigger source Timeout X
LK 4 - ADC trigger source Timeout X
LK 5 - PC interrupt select none
LK 6 - PC port base address a = H\#0290
LK 7 - DAC conversion gain
LK 8 - Sample/Hold function
5V peak X
S/H
X
LK 9 - INT2 source selection PC write to CommPC (Port0)
x = since we are not going to use the on board DAC/ADC functions,
we don't care about those settings.
DSPLINK on the ADSP-2100 system board was assigned 12 I/O space.
While the 32 Channel Digital I/O board took 8 I/O space and the
32 Channel ADC and the 16 Channel DAC each took 2 I/O space, there's
(nothing left for further expansion.
{
32 Channel Digital I/O Board:
{ DSPLINK base address: 3FF0 - 3FF7
{ LK 1 - Default
{ LK 2 - offset address H\#0000 jumper @A,B,C,D,E
(LK 3,4,5 - routing closed = disabled
{ external timer from ADC will be used for DIO or software generated trigger
{ source
{
(32 Channel Analog Input Board:
DSPLINK base address: 3FF8 - 3FF9
LK 1 - DSPLINK base address e = H\#0008
LK 2 - ADC trigger source none = software trigger
16 Channel Analog Output Board:
DSPLINK base address: 3FFA - 3FFB
LK 1 - DSPLINK base address f = H\#000A
LK 2,4,6,8 - DAC trigger source
closed = software trigger
LK 3,5,7,9 - DAC reference voltage
closed = internal 8.192 V

```
```

.system
LinearMotorDriver_ADSP2100_LSI;
.adsp2100;
{ Memory Segmentation
}
.seg/pm/abs=h\#0000/ram/code pmp[16384]; {program storage}
.seg/pm/abs=h\#4000/ram/data pmd[16384]; {data storage in program memory}
.seg/dm/abs=h\#0000/ram/data dmd[8192]; {data storage in data memory}
{ ADSP-2100 On-Board Communication
}
.port/dm/abs=h\#3FFC adaDataNow; {R/W D/A Write, A/D Read \& convert immediately}
.port/dm/abs=h\#3FFD adaData;
.port/dm/abs=h\#3FFE timerCtrl;
.port/dm/abs=h\#3FFF
commPC;
{ Communication with External Boards via DSPLINK
}
{ 32 Channel Digital I/O Board
{ Digital I/O base address in DSPLINK I/O space
}
.port/dm/abs=h\#3FF0 dioPortA; {R/W Port A I/O Register}
.port/dm/abs=h\#3FF1 dioTimer0; {W Timer 0}
.port/dm/abs=h\#3FF2
.port/dm/abs=h\#3FF3
.port/dm/abs=h\#3FF4
.port/dm/abs=h\#3FF5
.port/dm/abs=h\#3FF6
.port/dm/abs=h\#3FF7
dioPortB; {R/W Port B I/O Register}
dioTimer1; {W Timer 1}
dioPortC; {R/W Port C I/O Register}
dioStatusCR; {R Status Register, W control Register}
dioPortD; {R/W Port C I/O Register}
ResetConfig; {R Reset, W Port Configuration Register}
{ 32 Channel Analog Input Board
{ DSPLINK addresses 4 and 5
}
.port/dm/abs=h\#3FF8 adcStatusCR; {R Status Register, W Control Register}
.port/dm/abs=h\#3FF9 adcDataTimer; {R input value, W Timer Register}
{ 16 Channel Analog Output Board
{ DSPLINK adresses }6\mathrm{ and }
}
.port/dm/abs=h\#3FFA dacCR; {R/W Control Register}
.port/dm/abs=h\#3FFB dacDataTrigger; {W output value, R software trigger}
.endsys;

```
\{ [Servo]
\{
\{ High Speed Flexible Automation Project
\{ Laboratory for Manufacturing and Productivity
\{ Massachusetts Institute of Technology
\{
\{ ADSP-2100 Chapter:
\{ Main File
\(\{\quad\) lmda.dsp
\{
\{ Written by Henning Schulze-Lauen
\{ 06/05/1993
\{ Modified by Francis Yee-Hon Wong
\{ 07/1994
\{
\{ Revised
\{ 08/19/1993 C++ interface revised, new non-servo modes added
\{ 08/22/1993 Instruction list download added
\{ 08/28/1993 General revision and corrections
( \(07 / \mathrm{XX} / 1994\) Modification for 2D servoing using inductive sensor
\{ 08/02/1994 add DIO interface with CSI IR/D
\{
\{
\{ This program is a digital servo controller for the Linar Motor. According to
\{ the position and velocity feedback through the ADSP-2100's ADC and DIO the proper
\{ current output is generated and fed to the power amplifier through DAC's.
\{
\{ The ADSP-2100 Chapter of the Linear Motor Driver consists of the following
\{ files:
\{ 1mda.sys
\{ 1mda.dsp
lmda_sin.dat
\{ To use this program you will need to run the C++ Chapter of the Linear
\{ Motor Driver.
The code is not well documented after the modification, and sometimes
might cause confusion. ADC board in this version of the servo motor
controller is used only as a timer for all the position feedback. All
the steps in calibrating \(A D C\), getting scaling factors can be ignored.
However, in the future, it can be used as a mean for velocity feedback.
The hardware layout is tailored for the inductive position sensor and
its corresponding electronics.
- Francis Wong 10/7/94
( Programmer's Notes
\(\{\)
\{ I. Basic Idea
\{ As for all decent programs the basic idea is rather simple. It's just the \{ technical constraints that force the programmer to write lots of complicated
\{ code wich make the software so impressive to the unprepared reader. Some of
\{ the details that I found to be most confusing will therefore be covered in
\{ the following sections.
\{
\{ But before diving into technicalities you might want to take a look at what
\{ the program is all about. (Names in parantheses are related variables.\}
\{
```

APPENDIX D. DIGITAL CONTROL SOFTWARE
{ A controller necessarily has four elements:
{
(1. obtaining the command,
{ 2. acquiring the current value of the control variable(s),
{ 3. comparing 1 and 2 and evaluating the control law,
{ 4. generating the output.
{
{ Besides that every program needs some form of communication with it's
{ environment, especially the user. In this case the only information exchange
{ takes place with the high-level C++ control software, which in turn talks
{ to the user. See section II.
{
{ ad 1. The command is obtained though the C++ interface by either receiving
{ a velocity command (velXcdBuf, velYcdBuf) and the time during which this
{ velocity is to applied (timelimit) into the instruction buffer or by
{ downloading a complete trajectory, i.e. a sequence of such instructions
{ into the ADSP-2100 memory (instrList). If no command is available, zero
{ velocity is assumed.
{
{ Also, the controller needs a position command (posXcd, posYcd) which is
{ obtained by integrating velocity, i.e. adding up velocity in every timestep.
{ The timestep is determined by the sampling frequency generated by the
{ ADSP-2100 32 Channel Analog Input Board clock and timer, referred to as ADC
{ Board timer or ADtimer.
{
{ ad 2. The control variables are motor position (posX, posY) and velocity
{ velX, velY) measured by sensors. The sensor reading is processed by the ADC
{ and DIO
{ Boards. The ADC Board timer triggers samples at the programmed sampling
{ frequency (adClock, adTimerRatio). At the end of each conversion (which
{ takes about 4 us to complete) an interrupt informs the ADSP-2100 that new
{ data is available which starts in turn the control law evaluation.
{
{ The IR/D provide a 12bit position. The DIO board has 32 channel input which
{ divided into four 8 bit ports. One 8bit port is used for reading position
{ in one direction, i.e. the resolution is 8 bit. Pitch counting is done using
{ software. The format for position data is still 16.16 while the LS 8bit of the
{ Lo word is not used. In the future, velocity feedback from the sensor electronic
{ can be done via the ADC board.
{
{ ad 3. The calculation of errors and application of the control law are quite
{ straight forward and self-explanatory. The applied algorithm is PID with
{ constants (k1, k2, ...) passed by the C++ software. This algorithm should be
{ expanded to some sort of state space control, but time was too short, as
{ usual. The controller outputs are current amplitude and phase angle = pos
{ within one pitch + lead angle. Amplitude and lead angle determine the force
{ exered by the motor, as can easily be seen from the underlying equations.
{ At this time the lead angle is maintained cont = 90 degrees, which urgently
{ needs improvement.
{
{ ad 4. The output is generated based on the control law evaluation results.
{ For a two phase motor, two channels of output per axis have to be driven,
{ one giving I * sin(phi), the other one I * sin(phi+delta), where I is the
{ current amplitude, phi the phase angle and delta the phase difference
{ between phases A and B, normally 90 degrees. The sine value is looked up in
{ a precalculated sine table.
{
{
{ II. About Modes and Program Operation
{
{ The various functions of this program are invoked by calls from the C++
{ software running on the host PC. A function, or mode, is started by writing
{ the respective mode number to the bidirectional port commPC. However, only

```
```

APPENDIX D. DIGITAL CONTROL SOFTWARE
\{ Modes $0,1,5,6,8$, are true modes, meaning that they remain active and \{ govern software operation until a termination condition occurs. All other \{ modes are rather function calls, performing the respective function once and \{ then returning to one of the modes listed above. The active mode is stored (in dm(mode).
{ Mode 0
Mode 1 -
Mode 2 - Set system parameters according to data in parameter buffer,
then retire to previous mode. Serves as handshake for writing
of new system parameters by C++ software.

```

Mode 4

Mode 3
Shutdown - Set all DAC outputs to 0 and idle. Initial mode. Power calibration - Set all DAC channels to constant value to allow calibration of current output. The output value is determined by dm (pwrCalAmp) which should be set by C++ software before Mode 1 is called.
Mode 2 - Set system parameters according to data in parameter buffer, then retire to previous mode. Serves as handshake for writing of new system parameters by C++ software. Calibrate position sensors, i.e. determine scaling factor for position reading from \(A D C\), then retire to previous mode. Note that this mode will result in motor movement (stepping mode). Define current motor position as \(\mathrm{x}=0, \mathrm{y}=0\) and reset position
``` command, then retire to previous mode.
Servo Modes -
Mode 5 - Initialize servoing - Set velocities to zero and enable ADC End of Conversion interrupt handling. If necessary, calibrate position sensors (Mode 3). Note that no higher mode can be invoked before sensors have been calibrated.
Mode 6 - Move the motor for the time and at the velocity given by an instruction from PC. The instruction must be available in ADSP-2100's Instruction Buffer at the time Mode 6 is requested, but will not be executed until any running instruction has been completed. As soon as instruction execution starts Instruction Buffer is ready for receiving new data, which is signaled to PC by a dummy write to port commPC. When the instruction's time elapses Mode 6 returns to Mode 5, provided that no new instruction has been submitted by a new Mode \(6 . .9\) request.
Mode 7 - Same as Mode 6, but will execute new instruction immediately without regard to any instruction currently running.
Mode 8 - Move the motor for the times and at the velocities given by an instruction list downloaded from PC. Instruction list must be available in instrlist buffer, but will not be exectued until any running instruction has been completed. When the last instruction elapses Mode 8 returns to Mode 5, provided that no new instruction has been submitted by a new Mode \(6 . .9\) request. Instruction Buffer Ready will be signaled to PC when last instruction is fetched.
Mode 9 - Same as Mode 8, but will execute new instr list immediately without regard to any instruction currently running.
\{ - Direct Memory Access. The PC can read and write ADSP-2100's memory. Here
\{ used for transmitting instructions and instruction lists. Handshaking:
\{ New data available is signaled to ADSP-2100 by write of appropriate Mode to commPC. Acknowledge (i.e. buffer ready for next write) is signaled to PC by ADSP-2100 dummy write to commPC, causing the respective status register bit to go high. The PC also accesses ADSP-2100's memory to read data from sampling buffer or other variables for analytic purposes; no handshaking is defined for these operations.
\{ All operations are interrupt driven. Interrupts are triggered by the \{ following events:
\{ IRQO - \(\quad A D C\) End of Conversion. Provided that \(A D C\) control register is IRQO - \(\quad\) ADC End of Conversion. Provided that ADC control register is later EOC's) are triggered by ADC timer timeout, the Analog Input Board's 8 MHz clocked timer thus being the time base for all our operations. I.e. as soon as new data is available the controller will be activated and output new control values. IRQ1 - System Board's 4 MHz clocked timer timeout. Used for low-level multi-purpose timing tasks; timer frequency \(=1 \mathrm{kHz}\).
IRQ2 PC write to communication register commPC.
IRQ3 - Not currently used.
NB1 These interrupts are assigned in a somewhat unfortunate manner by LSI's engineers: IRQO has the lowest priority, but should have the highest since this is the most time critical operation. On the other hand communication with the PC has a high priority but should have the lowest. For this reason we can't use nested interrupts and have to include a few awkward constructs.

NB2 To ensure consistency of the sampled data it is mandatory to observe a few precautions with respect to the state of the ADC conversion process. The convention is that on leaving a \(n y\) interrupt routine the \(A D C\) must be tracking (i.e. not holding old values), the conversion channel set to 0 (\(x\) axis read) with hold after conversion, interrupt on EoC enabled. Moreover, when leaving IRQ2 routines the ADC data register must contain a valid (i.e. recent) \(x\) axis value. Reason: there might be a IRQO leftover that has been produced simultaneously with or after IRQ2 and causes a call to the IRQO handler the very moment we return from IRQ2. (This is one of the problems caused by LSI's weird interrupt assignment. It could be solved by a Clear Interrupt instruction which the ADSP-2100 to my knowledge has not.\} However, routines taking less than one ADC timer cycle and not affecting the contents of the ADC register don't need to care. They can assume that the values had been valid on entering the routine and thus will be so on exit.
V. About Numbers and Units
\{
\{ For better understanding of the program it is necessary to make a few remarks \{ about numbers and units. All physical data carry numbers a \(n\) d units, which (is sometimes forgotten. Here, every effort has been made to declare units
\{ explicitely for each variable and to avoid operations that multiply some
\{ velocity in inch/minutes by time in seconds and have as result a temperature
\{ measured in degrees Fahrenheit, using a conversion factor that only the
\{ programmer knows (or not). If at some point a unit conversion becomes
\{ necessary it will be noted explicitely, too.
\{
\{ Before talking about units, though, it is important to understand the way
\{ numbers are represented here. The ADSP-2100's standard single precision
\{ format is signed 1.15 fixed point, meaning that there is 1 bit (i.e. the
\{ sign bit) left of the radix and 15 bits to the right. Thus, a 16 bit variable \{ can hold numbers between -1 and \(0.999 \ldots\) with a resolution of \(2^{\wedge}(-15)\).
\{
\{ Although not all numbers used here require a sign bit (and therefore could \{ have a one bit higher precision by using a 0.16 format), the 1.15 format is \{ recommended for use wherever reasonably possible to make full use of the \{ ADSP-2100's resouces. The instruction set is optimized for 1.15 operations, \{ e.g. multiplication of two 1.15 numbers gives a 1.31 result, which by using \{ the hi word can be easily rounded to 1.15 . Multiplication of two 0.16 numbers \{ on the other hand yields a 7.33 result in the 40 bit output register and \{ requires an additional shift operation to maintain the format. Note that \{ ADSP-2100 fixed-point multiplication rule is P.Q * R.S = (P+R-1). (Q+S+1).
\{
\{ Nevertheless some other formats have to be used here, notably an 16.0 integer
\{ and a 16.16 double precision. The 16.0 is used for 'countable' things like \{ microsteps and indexes and is assumed to be signed unless noted in the \{ declaration as u16.0. The 16.16 is always signed and requires two memory \{ locations for storage: a 16.0 high word and a 0.16 low word.
\{
\{ One very special format is the 5.11 ADC input format. Immediately after (reading the 1.15 ADC register the data is converted by a 4 bit right shift (for further processing. This is no loss in precision, since only the ADC's
\{ 12 MSbit are significant. The advantage is that this notation allows at least (one add/subtract of \(A D C\) data without overflow checking (\(0.75+0.5=1.25\) or
(\(0.3-(-0.9)=1.2\) etc. exceeds 1.15 format) and without upgrading data to \{ timeconsuming double precision values. Of course, 2.14 had the same effect, \{ but 5.11 allows the use of a 14.4 scaling factor [pitch/full scale ADC input], \{ since \(5.11 * 12.4=16.16\), which in turn gives a higher precision for the (scaling factor than \(2.14 * 15.1=16.16\).
\{
\{ Units are noted together with the variable precision in brackets in the
\{ declaration part. The following general rules apply. You will find that
\{ most units are relative units, e.g. fractions of some other value, rather \{ than SI units, to minimize computational effort.
```

dimension unit(s)

```
length \(\quad 1\) - pitch, either 16.16 of 1.15 , the latter only giving a position within one pitch. One pitch is about 1 mm . 2 - microsteps, 16.0. This is only used for relative position within a pitch, each pitch having \(n\) microsteps, where \(n\) is called resolution. Conversion is thus [1.15 pitch] * resolution [16.0 microsteps/pitch] \(=[16.0\) microsteps \(]\). Although no stepping operation occurs here we still use 'microstep' because there is only a discrete number of physical motor equilibrium points or detent positions in each pitch. It is helpful to keep in mind that each entry in the sine table corresponds to one such detent position, so the number of entries in the sine table is not only equal to but determines the resolution.
angle \(\quad 1\) - fractions of 360 degree, 1.15.
2 - microsteps, 16.0.
NB 'Length' and 'angle' are used as equivalent terms throughout the program. They are coupled by the fact that one full sine cycle of EM excitation is completed for each pitch the motor advances: 1 pitch: \(=360 \mathrm{deg}\), so 1 microstep \(=360 /\) resolution deg. Note that expressing a given distance in length or angle results in the same numeric value: \(\mathrm{a}=0.25\) can be read as \(a=0.25\) pitch or \(a=0.25 * 360 \mathrm{deg}=90 \mathrm{deg}\). So the interpretation of a distance as length or angle is arbitrary; angles are normally used if terms have been directly transfered from rotational motor control (e.g. lead angle) and reflect the modulo type of that variable (\(-270 \mathrm{deg}=90 \mathrm{deg}=450 \mathrm{deg}=. .\). ,

.init
posXerrLo: 0;
.init posXerrHi: 0;
.init posYerrLo: 0;
.init posYerrHi: 0;
\{*

\section*{\{* \(\}\)}
\{*\} .init ixa: 0;
\{*\} .init ixb: 0;
.var/dm/ram
.init maxMode: servoMode;
.init mode: 0;
.init imode: 0 ;
.init instrReady: 0;
.init stepcount: \(0 ;\)
.var/dm/ram
. var/dm/ram
.init scratch: \(0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0\);
. var/dm/ram
.init timelimitLo: 0;
init timelimitfi:
.init velXcdBuf: 0;
.init velYcdBuf: 0;
.var/pm/ram
.init instrList: 0,0,0;
.var/circ/pm/ram
. var/dm/ram
.init adcInCount: 0;
.init adcInNibble: 0;
.init adcInLo: 0;
\{Position error \(=c d-\) measured position\}
\{ [16.16 pitch].\}
ixa, ixb;
\{Current output \(x\) axis.\}
maxMode, mode, imode, instrReady, stepcount;
\{Current maximum legal mode of operation,\}
\{ see intro II.\}
\{Mode of operation.\}
\{Mode of op for System Board timer. That
\{ timer is used for several purposes and\}
\{ imode determines on timeout which\}
\{ interrupt server is to be called.\}
\{Set to non-zero if new instr from PC is\}
\{ ready for execution.\}
\{Used for stepping the motor.\}
scratch[16];
\{Working memory for subroutines\}
timelimitLo, timelimitHi, velXcdBuf, velYcdBuf;
\{Instruction buffer, accessed by PC\}
\{- timelimit [32.0 1/sampling frequency].\}
\{- \(x, y\) vel command [1.15 pitch * sampling\}
\{ frequency].\}
\{NB timelimitLo is referenced by system parameter\}
\{ instrBuffer as start address for PC writes to\}
\{ instruction buffer.\}
instrList[3*400];
\{Instruction List Download Buffer\}
\{PC can download instr list for autonomous\}
\{ execution by ADSP-2100 here. Format of \}
\{ each \(3 * 24\) bit entry is: \}
\{ - time [24.0 1/sampling frequency], \}
\{ - velXcd, velYcd [1.23 pitch * sampling\}
\{ frequency] \}
adcIn[15000];
\{Rest of pmd used as adc input buffer for\}
\{ storage of pos samples.\}
adcInCount, adcInNibble, adcInLo;
\{Counts adc readings down. If 0 , no\}
\{ samples are stored.\}
\{Toggles between upper and lower half\}
\{ of 24 bit pm location for storage\}
\{ of two pieces of 12 bit data in oneQY\}
\{ location.\}
\{Keeps the first reading of each pair\}
\{ until second reading is available for\}
\{ storage of both in 24 bit location.\}
```

APPENDIX D. DIGITAL CONTROL SOFTWARE

```
jump ADCirh;
jump SBTirh;
jump GetMod; rti;
\{IRQO - triggered by \(A D C\) end of conv\}
\{IRQ1 - triggered by elapsed SBtimer\}
\(\{I R Q 2\) - triggered by PC write to commPC\} \{IRQ3\}
```

$\{M$ a in Code
}
{Initialization
}
imask=b\#0000
icntl=b\#01111
10=resolution;
{10 keeps size of circular sine}
{ buffer for access by i0.}
m0=0;
17=0;
i6=^adcIn;
16=%adcIn;
m6=1;
ar=0;
{Initialize 24 bit word pmd to 0.}
px=0;
{ Don't forget 8 LSbit.}
cntr=%adcIn;
{ Loop count = buffer size.}
do _MO until ce;
M0: pm(i6,m6)=ar;

call SetPar;	\{Initialize system parameter.\}
call IniSBT;	\{Initialize system board timer.\}
call InitDA;	\{Initialize all DAC channels to 0.$\}$
call InitAD;	\{nitialize ADC to not use IRQ0\}
	$\{$ until scaling factor determined, \}
call InitDio;	$\{$ i. e. no servoing.\}
imask=b\#0101;	

Main Interrupt Loop
}
do Wait until forever; {Idle until interrupt occurs.}
Wait: nop;
{Disable all interrupts}
{Interrupts edge-sensitive, no nesting}
{m0 for non-modify access; note that}
{ m2 will be calculated in SetPar.}
{17 used for jump tables.}
{Pointer to adc input buffer.}
{Interrupt Routinnes
}
{ IRQ2 handler - interrupts from PC write to commPC:
{ Set Mode according to PC communication
{
{ Alternate entrypoints:
{ SelMod - Set Mode to ar, no validity check!
{ In: -
{ Out: -
{ Chgd: ax0,ay0,ar,af,i7,m7; InitDA, CalDA, SetPar, CalPos, IniADT,
{ SetP0, SetV0, Instr, RstIL
}
GetMod: ax0=dm(mode); {Save old mode for further use.}
ar=dm(commPC); {Read mode value from PC port,}
ar=pass ar; { make sure it's non-negative}
if lt rti;
ay0=dm(maxMode); { and within limit.}
af=ar-ay0;
if gt rti;

```
\begin{tabular}{|c|c|c|}
\hline Selmod: & \[
\begin{aligned}
& d m(m o d e)=a r ; \\
& i 7=\wedge _ \text {JT1; } \\
& m 7=a r ; \\
& \text { modify }(i 7, m 7) ; \\
& \text { jump (i7); }
\end{aligned}
\] & ```
{Save new mode permanently.}
{Get jump table base adress}
{ and modify according to mode.}
{Obtain jump address}
{ and go!}
``` \\
\hline _JT1: & \begin{tabular}{l}
jump Mode0; \\
jump Mode1; \\
jump Mode2; \\
jump Mode3; \\
jump Mode4; \\
jump Mode5; \\
jump Mode6; \\
jump Mode7; \\
jump Mode8; \\
jump Mode9;
\end{tabular} & \\
\hline Mode 0 : & ```
    call InitDA;
rti;
``` & \{Set all DAC channels to 0.\} \\
\hline Mode1: & \[
\begin{aligned}
& \text { call CalDA; } \\
& \text { rti; }
\end{aligned}
\] & \{Set all channels to preset DAC\} \{ calibration amplitude.\} \\
\hline Mode2 : & ```
 dm(mode) =ax0;
call SetPar;
call IniADT;
rti;
``` & ```
{Restore old mode.}
{Re-initialize system parameters}
{ and ADC Board timer.}
``` \\
\hline Mode3: & ```
 dm(mode) =ax0;
call CalPos;
rti;
``` & \begin{tabular}{l}
\{Restore old mode.\} \\
\{Calibrate scaling factors.\}
\end{tabular} \\
\hline Mode4: & ```
    dm(mode) =ax0;
call SetP0;
rti;
``` & ```
{Restore old mode.}
{Set zero point.}
{*** But: what about returning state}
{of outputs to previous state???}
``` \\
\hline Mode5 : & ```
    ay0=servoMode;
af=ax0-ay0;
if 1t jump _M50;
dm(mode) =ax0;
rti;
``` & ```
{Initialization is only necessary if}
{ we are coming from a lower mode.}
{Otherwise restore old mode because}
{ we don't want to interrupt any}
{ running instruction.}
``` \\
\hline _M50: & call SetV0; & \{Set all velocities to 0.\} \\
\hline & ```
ar=dm(offsetValid);
ar=pass ar;
if eq call SetPO;
``` & ```
{Is valid offset available?}
{ No, so make this reference pos.}
``` \\
\hline & ```
ar=dm(scaleValid);
ar=pass ar;
if eq call CalPos;
``` & ```
{Is valid scaling factor available?}
{ No, so calibrate position sensors.}
``` \\
\hline & rti; & \\
\hline Mode6: & ```
    ay0=servoMode;
dm(instrReady)=ay0;
af=ax0-ay0;
if gt rti;
``` & ```
{Indicate with non-zero value that}
{ new instr is ready; use servoMode}
{ to save a load in next step.}
{Is ADSP-2100 already in Mode 6..9?}
 If yes, next instr will be fetched}
 automatically when current instr}
``` \\
\hline
\end{tabular}

```

APPENDIX D. DIGITAL CONTROL SOFTWARE
if ge jump sc_1;
ar = ay0 + 1;
dm (posXHi) $=$ ar;
jump cont;
SC_1: ar = ax0 - ay1; if ge jump SC_2; jump cont;

SC_2: ar=ay0-1; dm(posXHi) =ar;
cont: si $=d m(d i o P o s X)$; sr = lshift si by 8 (lo); dm (posXLo) =sr0;
ar=readixa \{readposY\}; dm(adcStatusCR) =ar;
call Sample; mr0=dm (posXLo) ; mr1=dm (posXHi) ; \{call Sample; \} ay0=dm(posXcdLo); ay1=dm(posXcdHi); ax0=dm(posXerrLo); ax1=dm(posXerrHi); si=dm(velXcd); sr=ashift si by 1 (10);
call CtlLaw;
dm (posXcdLo) =ay0;
dm (posXcdHi) =ay1;
$d \mathrm{~m}$ (posXerrLo) $=\mathrm{ax0}$; dm (posXerrHi) =ax1;
call SetDAx;
call WtEoC2;

```
si=dm(adcDataTimer);
```

si=dm(adcDataTimer);
{sr=ashift si by -4 (lo);
{sr=ashift si by -4 (lo);
ar=readposX;
ar=readposX;
dm(adcStatusCR)=ar;
dm(adcStatusCR)=ar;
mr=ar*my0 (ss);
mr=ar*my0 (ss);
dm (posYLo) =mr0;
dm (posYLo) =mr0;
dm(posYHi)=mr1;
dm(posYHi)=mr1;
ay0=dm(posYcdLo);

```
```

ay0=dm(posYcdLo);

```
```

\{ if so, check if it's moving backward in SC_1\}
\{ if not, increment pitchX by 1\}
\{Check if difference is larger than 200\}
\{If so, must have been moved back a step\}
\{keep pitchX as it was and go on\}
\{Decrement pitch pitchX by 1\}
\{left justify everything\}
\{Prepare input for y read\}
\{ and invoke that conversion, so that\}
\{ y conversion is on the way while we\}
\{ are doing the following calc's\}
\{now I have 8bit word from sensor in dioPosX\}
\{16 bit word for pitches in posXHi\}
\{Store sample in adc input buffer.\}
\{Get old commanded x position.\}
\{Get old x position error.\}
\{Get commanded x velocity and adjust\}
\{ format 1.15 -> 16.16 by left shift.\}
\{With mr = x pos, $\mathrm{sr}=\mathrm{x}$ vel command, \}
$\{$ ay $=$ old x pos command, $\mathrm{ax}=$ old $\}$
\{ x pos error evaluate control law\}
\{ and return controller ouput mx0 = \}
\{ amplitude, i0 = phase angle, as\}
\{ well as ay $=$ new x pos command, \}
\{ $a x=$ new x pos error.\}
\{Save return values in memory.\}
\{Prepare x axis output according to\}
\{ mx0 and i0.\}
\{Now wait until the above initiated y \}
\{ conversion gets ready. This should\}
\{ normally be the case when we\}
\{ arrive here.\}
\{Fetch data from conversion register\}
\{ and convert 1.15 -> 5.11 format.\}
\{Prepare next x read.\}
ay1=dm(posYcdHi);
si=dm(velycd);
sr=ashift si by 1 (lo);
ar=sr0+ay0;
ay0=ar;
$d m($ posYcdLo $)=a r ;$
ar=sr1+ay1+C;
ay1=ar;
$\mathrm{dm}(\mathrm{posYcdHi})=\mathrm{ar}$;
call Ctllaw;
\{Control Law evaluation.\}
\{*\}_Sv1: \quad i $0=0$;
\{*\} $\quad m x 0=d m(a m p l i t u d e) ;$
call SetDAy;
ar=dm (mode);
ay0=servoMode;
af=ar-ay0;
if le rti;
ay0=dm(timeLo);
ay1=dm(timeHi);
ar=ay $0-1$;
$d \mathrm{~m}($ timeLo $)=a r$;
(B\} $\quad \mathrm{ax} 1=0$;
ay0=ar,
\{ax1=0 would be obsolete if ar=ax0+c-1\}
ar=ay1-ax1+C-1;
dm(timeHi)=ar;
af=ar or ay0;
if ne rti;
ar=dm(instrReady);
ar=pass ar;
if eq jump _Sv0;
call Instr;
rti;
_Sv0: call SetV0;
ar=servoMode;
dm (mode) $=$ ar ;
rti;
\{ ADC interrupt handler 2:
\{ Operation prohibited by Mode 0
\{
\{ In: -
\{ Out: -
\{ Chgd: ar; WtEoC
\}
NoOper: ar=dm(adcDataTimer); \{Fetch data to clear conversion reg.\}
\{ Without this no further interrupt \}
\{ would be generated.\}
ar=readposy;
\{Also initiate y conversion in order\}
call WtEoc;
ar=dm(adcDataTimer);
ar=readposX;
dm (adcStatusCR) $=$ ar;
rti;
\{ to make the $A D C$ tracking again on\}
\{ so fulfill the convention about the\}
\{ ADC state on rti.)
\{Reset ADC status\}
\{ and prepare to read x axis data.\}
\{Time=0?\}
\{ No, so return, wait for next pulse.\}
\{Otherwise check for new instruction.\}
\{If none available\}
\{ set vel=0 and terminate Mode 6..9.\}
\{New instruction ready, so fetch it.\}
\{Set velocities to zero\}
\{ and retire to lowest servo mode,\}
\{ i.e. do not execute instructions.\}

```
{ IRQ1 handler - timeout from System Board timer
{
{ In: -
{ Out: -
{ Chgd: m7,i7; Step,Flag
}
SBTirh: m7=dm(imode); {Get internal mode; no dimension}
    i7=^_SB0; }\quad{\begin{array}{ll}{\mathrm{ check since program generat}}\\{}
    modify(i7,m7); {Obtain jump address}
    jump (i7); { and go!}
_SB0: rti;
    jump Step;
    jump Flag;
{ SBT interrupt handler 1:
{ Move motor one step in stepping operation
{
{ In: i4,i5 = x,y axis phase angle, i.e. current position [microsteps]
{ m4,m5 = x,y axis velocities [microstep * SBtimer output freq]
{ mx0 = amplitude [fractions of maxAmplitude]
{ dm(stepcount) = current step number
{ Out: i4,i5 = new x,y axis phase angle
{ dm(stepcount), ar = step number-1
{ Chgd: i0,ay0; SetDAx,SetDAy
}
Step: modify(i4,m4); {Increase x axis phase angle by}
    i0=i4; { velocity and copy result to io for}
    call SetDAx; { call to SetDAx, setting DAC output.}
    modify(i5,m5); {Same for y axis.}
    i0=i5;
    call SetDAy; {Set y, strobe all channels to output.}
    ay0=dm(stepcount); {Decrease step counter}
    ar=ay0-1; { return one copy each in ar and}
    dm(stepcount) =ar; { dm(stepcount).}
    rti;
{ SBT interrupt handler 2:
{ Set timeout flag
{
{ In: -
{ Out: ar=1 for timeout.
{ Chgd: -
}
Flag: ar=1;
    rti;
{other subrout in nes
}
{ Set system parameters for paramter buffer
{
{ Alternate entrypoint:
{ SetV0 - set all commanded velocities to zero
{ In: -
{ Out: System parameters set according to parameter buffer
( Chgd: ar,af,mx0,my0,mr,si,se,sr,m1,m2; system parameters
```

```
APPENDIX D. DIGITAL CONTROL SOFTWARE
}
SetPar: ar=dm(PBamplitude)
    dm(amplitude)=ar;
    mx0=dm(leadAngle);
    my0=resolution;
    mr=mx0*my0 (su);
    m1=mr1;
    mx0=dm(phaseBadv);
    mr=mx0 * myo (su);
    m2=mr1;
    ar=dm(PBk1);
    dm(k1)=ar;
    ar=dm(PBk1Exp);
    dm(k1Exp)=ar;
    ar=dm(PBk2);
    dm(k2) =ar;
    ar=dm(PBk2Exp);
    dm(k2Exp)=ar;
    si=dm(calibrVel);
    se=exp si (hi);
    si=h#4000;
    sr=ashift si (hi);
    dm(calibrVel)=sr1;
    my0=resolution;
    mr=sr1*my0 (uu);
    dm(calibrInc)=mr1;
    si=dm(calibrLength);
    sr=norm si (hi);
    sr=ashift sr1 by 1 (hi);
    dm(calibrStepcount)=sr1;
mx0=dm(signX);
my0=dm(PBsignX);
dm(signX)=my0;
mr=mx0*my0 (ss);
af=pass mr1;
    {ar=dm(posXscale);
    {if lt ar=-ar;
    {dm(posXscale)=ar;
mx0=dm(signY);
my0=dm(PBsignY);
dm(signY) =my0;
mr=mx0*my0 (ss);
af=pass mr1;
{ar=dm(posYscale);
{if lt ar=-ar;
{dm(posYscale)=ar;}
rts;
```

```
    {Convert fractions of pitch * SBtimer}
{ freq to microsteps * SBtimer freq.}
{Now get motor travel length during}
{ calibration and convert into time,}
{ i.e. number of pulses to go, by}
{ dividing length by velocity. Divide}
{ is realized by shift over the neg}
{ exponent of calibrVel+1. (Do it }
{ yourself on a piece of paper using}
{ the ADSP-2100 shift rules to see}
{ that all this is working out.) }
{Get old x axis sign}
{ and save new sign from par buffer.}
{Has sign changed?}
{ If yes, change sign of scaling}
{ factor.}
{Same for y axis sign.}
```

\{Transfer lead angle to ml and convert\}
\{ units from 1.15 fractions of 360 deg\}
\{ to 16.0 microsteps.\}
\{Transfer phase B advance to m 2 , \}
\{ converting degrees to microsteps.\}
\{Transfer P controller constant.\}
\{Transfer D controller constant.\}
\{Get motor velocity during calibration\}
\{ and make sure it's a power of 2 by\}
\{ deriving the exponent and shifting\}
\{ a single ' 1 ' into that position.\}
\{Convert fractions of pitch * SBtimer\}
\{ freq to microsteps * SBtimer freq.\}
\{Now get motor travel length during\}
\{ calibration and convert into time,\}
\{ i.e. number of pulses to go, by\}
\{ dividing length by velocity. Divide\}
s realized by shif over the neg
\{ yourself on a piece of paper using\}
\{ the ADSP-2100 shift rules to see\}
\{ that all this is working out.) \}
\{Get old x axis sign\}
\{ and save new sign from par buffer.\}
\{Has sign changed?\}
\{ If yes, change sign of scaling\}
\{ factor.\}
\{Same for y axis sign.\}
\{ Initialize system board timer
\{
\{ In: -
\{ Out: -
\{ Chgd: ar,af
\}
IniSBT: ar=sbTimerRatio
af=-ar;
ar=af+1;
dm(timerCtrl) $=$ ar;
rts;
\{Get clock divisor. Timer must be\}
\{ loaded with -sbTimerRatio+1 to \}
\{ obtain timer output frequency of \}
\{ sbClock/sbTimerRatio.\}
\{ Initialize ADC board
\{
\{ In: -
\{ Out: -
\{ Chgd: ay0,ar,af; IniADT
\}
InitAD: $a r=0$; \quad Reset the $A D C$ control register\}
ay0=b\#00100000; dm (adcStatusCR) =ar; dm (adcStatusCR) $=$ ay0; dm (adcStatusCR) =ar;
_IADO: ar=dm(adcStatusCR); af=ar and ay0;
\{ the sample/hold chip\}
\{Wait until calibration is done,\}
\{ which is indicated by SR bit $5=1$)
if eq jump _IADO;
call IniADT;
ar=readIdle;
call WtEoC;
ar=dm(adcDataTimer); rts;

```
{ Initialize ADC board timer
{
{ In: -
{ Out: -
{ Chgd: ar,af
}
IniADT: ar=dm(adTimerRatio);
        af=-ar;
        ar=af+1;
        dm(adcDataTimer)=ar;
        rts;
{ Initialize all DAC channels to 0
{
{ In: -
{ Out: -
{ Chgd: ar; SetDA
}
InitDA: ar=0; {With initialization value in ar}
    jump SetDA; { drop to SetDA.}
```

\{ Output calibration value to all DAC channels
\{
\{ Alternate entrypoint:
\{ SetDA - Set all channels to value in ar.
\{ In: -
\{ Out:
\{ Chgd: ar, ay0
\}
CalDA: ar=dm(pwrCalAmp); \{Set all channels to preset DAC\}
\{ calibration amplitude. This allows\}
\{ the user to measure the current\}
\{ output of the amplifiers and to\}
\{ adjust DAC and amplifier gain\}
\{ accordingly.\}
SetDA: ay0=h\#00F0;
\{Direct DAC data to channel 0 [h\#xxFx\}
dm (dacCR) $=$ ayo;
\{ allows simultaneous s/w trigger of \}
$d m($ dacDataTrigger $)=a r ; \quad\{$ all channels] and prepare DAC output. $\}$
ay0=h\#00F4;
dm (dacCR) $=$ ay0;
\{Direct DAC data to channel 4\}
$d m($ dacDataTrigger $)=a r$;
\{ and prepare DAC output.\}
ay0=h\#00F8;
$d m($ daccR $)=$ ay0;
\{And so on...\}
dm(dacDataTrigger)=ar; ay $0=$ h\#00FC;
$d m(\operatorname{dacCR})=a y 0 ;$
dm (dacDataTrigger) $=$ ar ;
ar=dm(dacDataTrigger); \quad TTrigger preset values to outputs.\}
rts;


```
    {ar=sr0-ay0;
    {ay1=dm(calibrLength);
    {ay0=0;
    {divs ay1,ar;
    cntr=15;
    do _C3 until ce;
    _C3: divq ar;
    {dm(posYscale)=ay0;}
    ar=dm(calibrInc); {Full of relief that this difficult}
    ar=-ar; { task is done we must not forget to}
    m4=ar; { return the motor to its origin.}
    m5=0 {*ar*}; { Of course, the servo loop would do}
    ar=dm(calibrStepcount); { this for us as soon as activated,}
    call GoStep;
    { but that seemed kind of rude.}
    { NB i4, i5 still contain the motor}
    { position from the outbound run.}
    call InitDA; {Switch off everything to not waste}
    { power and reduce heat generation}
    { until motor is actually used.}
    ar=1;
    dm(scalevalid)=ar;
    {Indicate that calibration data is}
    { valid and set maximum legal mode}
    ar=totalModes;
    { to include all servo modes.}
    dm(maxMode) =ar;
    ar=readposX; {Now, all set, we can allow the ADC}
    call WtEoC1; { to bother us with interrupts, as}
    { indicated by control reg bit 7,}
    { which will invoke Servo. Thus, by}
    { enabling the interrupt, Modes 3}
    { and 4 become executable.}
    { Note that the last read of }y\mathrm{ data}
    { put the ADC back to continuous}
    { tracking. We wait for EoC before}
    { returning to provide valid data in}
    { the ADC register immediately after}
    { the return (see Intro IV, NB2).}
    rts;
{ Set current motor position as x=0, y=0 reference point
{ and reset command position.
{
{ In: -
{ Out: dm(posXoffset), dm(posYoffset) = new pos offset [5.11 ADC input units]
{ Chgd: ar,si,sr,mx0,i0; InitDA, Delay, WtEoC
}
SetP0: mx0=dm(amplitude); {Prepare mx0 to hold the amplitude}
    { used for calls to SetDA and step,}
    { the latter called implicitly}
    { through an IRQ1 (see below).}
call InitDA; 
```

```
APPENDIX D. DIGITAL CONTROL SOFTWARE
```

call Delay;
ar=readIdle; call WtEoC;
ar=0;
\{dm(posXoffset)=ar;
$\{\mathrm{dm}$ (posYoffset)=ar;
dm(pitchX) $=$ ar;
cntr=16;
do _SPO until ce;
ar=readposX;
call WtEoC;
si=dm(adcDataTimer);
ax0=0;
dm(dioPortD) =ax0;
ax0=h\#0000;
dm (dioPortD) $=a x 0$;
nop;
ax0=h\#0001;
sr0=dm(dioPortA);
dm (dioPortD) =ax0;
\{sr=ashift si by -4 (lo); \{ format adjust 1.15 -> 5.11,\}
ay0=dm(posXoffset);
ar=sr0+ay0;
\{dm(posXoffset)=ar; \}
\{ar=readposy
call WtEoC;
si=dm(adcDataTimer);
\{ax0=h\#0000;
\{dm(dioPortD) =ax0;
\{nop;
\{sr0=dm(dioPortB) ;
\{ax0=h\#0001;
\{dm(dioPortD) $=\mathrm{ax0}$;
\{sr=ashift si by -4 (lo);
\{ay0=dm(posYoffset);
\{ar=sr0+ay0;
\{dm(posYoffset)=ar; \}
_SP0: nop;
ar=dm(posXoffset);
ay $0=8$;
ar=ar+ay0;
sr=ashift ar by -4 (lo);
\{dm(posXoffset)=sr0; \}
\{ar=dm(posYoffset);
\{ay0=8;
\{ar=ar+ay0;
\{sr=ashift ar by -4 (10);
\{dm(posYoffset)=sr0; \}
ar=0;
dm (posXcdLo) $=$ ar ;
$d m$ (posXcdHi) $=$ ar;
\{Get accumulated x offset,\}
\{ prepare for proper rounding,\}
\{ and divide result by 16\}
\{ to obtain the x offset.\}
\{Same for y axis.\}
\{Reset commanded position to prevent\}
\{ runaway on return to servoing.\}
\{ down in its new position.\}
\{Now we have to make sure that we get\}
\{ a fresh value since the $A D C$ regs \}
\{ might still hold data from the time\}
\{ when we entered this routine.\}
\{ Setting the ctrl reg to readIdle\}
\{ will reset $A D C$ to tracking at the \}
\{ end of this conversion.\}
\{Calculate x and y offsets as\}
\{ average over 16 measurements to\}
\{ avoid reading some peak value that\}
\{ might occur just at this time.\}
\{Next ADtimer pulse will initiate\}
\{ x axis data conversion.\}
\{Get x position reading,\}
\{read from DIO board\}
\{ and accumulate in posXoffset.\}
\{Same for y axis.\}
\{read from DIO board\}

```
APPENDIX D. DIGITAL CONTROL SOFTWARE
    dm(posYcdLo) =ar;
    dm(posYcdHi)=ar;
    dm (posXLO) =ar;
    dm(posXHi)=ar;
    dm(pitchX)=ar;
        call InitDA; {Switch off everything to not waste}
        { power and reduce heat generation}
        { until motor is actually used.}
    ar=1;
    {Indicate that offset is valid.}
    dm(offsetValid)=ar;
    ar=readposX; {Return to normal sampling (see Intro}
    call WtEoC1; { IV, NB 2).}
    rts;
{ Reset command velocities to zero
{
{ In: -
{ Out: -
{ Chgd: ar
}
SetV0: ar=0;
    dm(velXcd)=ar;
        dm(velYcd)=ar;
        rts;
{ Reset pointer into instruction list
{
{ In: -
{ Out: i4,14,m4,m5 set for access of instruction list
{ Chgd: -
}
RstIL: i4=^instrList;
    14=0;
    m4=1;
    m5=0;
    rts;
{ Fetch next instruction and initialize execution variables
{
{ In: i4 = pointer to current instruction [Mode8,9]
{ Out: i4 = pointer to next instruction [Mode8,9]
{ Chgd: ay0,ar,af,si,sr,i7,m7
}
Instr: m7=dm(mode); {Check mode - where do we get next}
    { instruction?}
    17=^_I0; {Get jump table base address.}
    modify(i7,m7); {Obtain jump address}
    jump (i7); { and go!}
_IO: rti;
    rti;
    rti;
    rti;
    rti;
    rti;
    jump Instr1; {Mode 6 or 7 - get instruction from}
    jump Instr1; { PC instruction buffer.}
```

```
APPENDIX D. DIGITAL CONTROL SOFTWARE
```

jump Instr2;
jump Instr2;
Instr1: ar=dm(timelimitLo)
$d m($ timeLo $)=a r$; ar=dm(timelimitHi); $d m(t i m e H i)=a r$;
ar=dm (velXcdBuf);
dm(velXcd) =ar;
$a r=d m$ (velYcdBuf);
$d m(v e l Y c d)=a r$;
ar=0;
$d m($ commPC $)=a r$; $d m($ instrReady $)=a r$;
rts;
Instr2: si=pm(i4,m4);
sr=ashift si by 8 (lo); si=px;
sr=sr or ashift si by 0 (lo);
$d m($ timeLo $)=s r 0$;
dm (timeHi) $=\mathrm{sr} 1$;
ar=pm(i4,m4);
$d m($ velXcd $)=a r$;
ar=pm(i4,m4);
$d m($ velYcd $)=a r$;
ar=pm(i4,m5);
ay0 0 px;
af=ar or ayo;
if ne rts;
$a r=0$;
$d m($ commPC $)=a r$;
$d m($ instrReady $)=a r$;
\{Mode 8 or 9 - get instruction from\}
\{ instrList.\}
\{Load timelimit from Instr Buffer\}
\{ into time counter [32.0 \}
\{ 1/sampling frequency].\}
\{Load velocities from Instr Buffer\}
\{ [1.15 pitch * sampling frequency]. \}
\{Dummy write to commPC informs PC\}
\{ that we are ready for next instr.\}
\{Reset instrReady until PC responds\}
\{ with new instruction.\}
\{Load timelimit from current instrList\}
\{ position and convert 24.0 into two\}
\{ word 32.0 format.\}
(10) ;

正

\{Load velocities.\}

```
rts;
\{ Calculate control variables from deviation
\{
\{ In: mr0,1 = motor position as measured [16.16 pitch]
\{ \(\operatorname{sr0}, 1=\) commanded motor velocity [16.16 pitch * sample frequency]
\{ ay0,1 = old commanded position [16.16 pitch]
\{ ax0,1 = old position error ( \(=\) pos - commanded pos) [16.16 pitch]
\{ Out: \(m x 0=\) amplitude \([1.15\) fractions of maxAmplitude]
\{ \(\quad i 0=\) phase A phase angle [16.0 microsteps]
\{ ay0,1 = new commanded position [16.16 pitch]
\{ ax0,1 = new position error [16.16 pitch]
\{ Chgd: ay0,ay1,ar, se,sr,mx0,mx1,my0,my1,mr; scratch
\}
Ct1Law: my0=mr0,
ar=sr0+ay0;
\{Save pos (10) in my0 for further use.\}
\(d m(\) scratch +0\()=a r\);
\(a y 0=a r\),
\{Determine new commanded position by\}
ar=sr1+ay1+C;
\(d m(\) scratch +1\()=a r\);
\{ adding cd vel * sample time to old\}
\{ cd position; since vel is in units\}
\{ of pitch/sample time we save the\}
ay1=ar,
ar=ay \(0 \rightarrow\) mro; \(\quad\) \{Calculate pos error \(=\) pos cd - pos. \}
\(d m(\) scratch +2\()=a r ; \quad\{\) Result in \(m x\) and scratch. \(\}\)
```

$\mathrm{mx} 0=a r$,
ar=ay $1-m r 1+C-1$;
$d m($ scratch +3$)=$ ar;
$m y 1=d m(k 1)$
mx1=ar,
$m r=m x 0 * m y 1$ (us);
$\mathrm{mr} 0=\mathrm{mr} 1$;
$\mathrm{mr} 1=\mathrm{mr} 2$;
$m r=m r+m x 1 * m y 1$ ($s s$);
se=exp mrl (hi);
se=exp mr0 (lo);
ar=se;
ay0 $=d m(k 1 E x p) ;$
ar=ar+ay0,
se=ay0;
if le jump _CL0;
astat $=\mathrm{b} \# 01000000$;
se=0;
_CLO:
miv sat mr;
sr=lshift mr0 (lo);
; (hi);
ay0 $=m x 0$;
ay1=mx1;
ar=ay0-ax0;
$m x 0=a r$,
ar=ay1-ax1+c-1;
my1 $=\mathrm{dm}(\mathrm{k} 2)$;
mx1=ar,
$m r=m x 0 * m y 1$ (us);
$\mathrm{mr} 0=\mathrm{mr} 1$;
$m r 1=m r 2$;
$m r=m r+m x 1 * m y 1$ (ss);
se=exp mr1 (hi);
se=exp mr0 (lo);
ar=se;
$a y 0=d m(k 2 \operatorname{Exp}) ;$
ar=ar+ay0,
se=ay0;
if le jump _CL1;
astat=b\#01000000;
se=0;
_CL1: if mv sat mr ;
ay1=sr1,
sr=lshift mr0 (lo);
$r=s r$ or ashift mr1 (hi);
\{Save relative P control in ay1\}
\{ before using sr again.\}
\{Relative D control in sr1.\}
$\{*\} \quad d m($ scratch +4$)=a y 1$;
$\{*\} \quad d m($ scratch +5$)=$ sr1;
ena ar_sat;
ar=sr1+ay1;
dis ar_sat;
my1=dm(amplitude);
mr=ar*my1 (rnd);
$\mathrm{mx} 0=\mathrm{mr} 1$;
mx1=resolution;
$m r=m x 1^{*}$ my0 (uu);
sr=ashift mr1 by -1 (hi);
\{ P controller: multiply error by kl.\}
\{ (Save pos error (hi) in mx1.)\}
\{ Multiplying the mantissa is\}
\{ a double precision mult with kl's\}
\{ LSW=0, thus $16.16 * 1.15=16.32$, the
\{ result's LSW being dropped to\}
\{ return to 16.16 format. The result
\{ is shifted according to kl's exp.\}
\{ Before shifting the exponents are\}
\{ checked to avoid overflow; if sum\}
$\{$ of exponents is >0, saturation of \}
\{ mr is forced by setting mv status\}
\{ bit. NB The final 16.0 result in\}
\{ sr1 is interpreted as 1.15, this\}
\{ being an implied division by $\left.2^{\wedge} 15!\right\}$
\{ For double prec mult rules see\}
\{ ADSP-2100 Applications Handbook\}
\{ (1987), Volume 1, pp. 2-10.\}
\{D controller: get derivative of pos\}
\{ error $=$ (new error - old error) / \}
\{ sampling time. Since the time base\}
\{ is constant, we save the division, \}
\{ which makes the result by a factor\}
\{ of the magnitude of sampling freq\}
\{ too small; k2 will have to balance\}
\{ this.\}
\{Process derivative in mx analog to\}
\{ P controller. \}
\{Add relative P and D control to\}
\{ obtain total relative control value\}
\{ which is multiplied by the maximum\}
\{ current amplitude and stored in mx0\}
\{ for transfer to SetDAx.\}
\{Now we still need the phase angle\}
\{ which is determined by the pos\}
\{ within one pitch $=$ fractions of $\}$
i0=sr1;
modify(i0,m1);
\{ pos (0.16 in my0), transformed into\}
\{ 16.0 units of microsteps. Note that\}
\{ $16.0 * 0.16=15.17$, which makes a \}
\{ subsequent right shift necessary.\}
\{The desired lead angle [microsteps]\}
\{ is added to the motor detent pos.\}
\{ 'modify' is used instead of 'add'\}
\{ to implement 'mod resolution'.\}
$\{*\}$
jump _CL3;
$\begin{array}{ll}\{*\} & \mathrm{mx} 1=\mathrm{mx} 0 ; \\ \{*\} & \text { i. } 1=\mathrm{i} 0 ;\end{array}$

$\{*\}$	ar=pass ar;
$\{\star\}$	push sts;
$\{*\}$	ar=abs ar;
$\{*\}$	if av ar=not ar;
$\{*\}$	my1=dm (amplitude);
$\{*\}$	mr=ar*my1 (rnd);
$\{*\}$	$m \times 0=m r 1 ;$

\{*\} i0=sr1;
$\{*\} \quad \mathrm{m} 3=\mathrm{ml}$; \{Get lead angle\}
$\begin{array}{ll}\{*\} & \text { pop sts; } \\ \{*\} & \text { if ge jump _CL2; }\end{array}$
$\begin{array}{ll}\{*\} & \text { if ge jump _CL2; } \\ \{*\} & \text { ar=m1; }\end{array}$
$\{*\} \quad$ ar=m1; \quad Negate lead angle for negative\}
\{*\}
\{*
$\left\{{ }^{*}\right\}$ _CL2 $:$
$\{*\}$
$\{*\}$ CL $3:$
ay $0=d m($ scratch +0$)$; $\quad\{$ Get return variables from scratch; \}
ay $1=\mathrm{dm}($ scratch +1$) ; \quad\{$ ay $=$ new commanded position, $\}$
$a x 0=d m($ scratch +2$) ; \quad\{\quad$ ax $=$ new position error. $\}$
ax1=dm (scratch+3);
rts;
\{Store sample data in ADC input buffer
\{
\{ In: si = data to be stored
\{ Out: -
\{ Chgd: ay0, ay1, ar, af,si,sr, px; dm(adcInCount), dm(adcInNibble)
\}
Sample: ay $0=d m(a d c I n C o u n t) ; \quad$ \{Decrement and check sample counter\}
ar=ay0-1;
if lt rts; $\{<0$, so return w/o sampling $\}$
_Sa0: dm(adcInCount)=ar; \{Save new sample count \}
$\mathrm{px}=\mathrm{dm}$ (dioPosX); $\{8$ LSbit in 8 bit px register. $\}$
\{sr=lshift sr0 by -8 (lo);\} \{Right justify the remaining 4 MSbit \}
si=dm(posXHi);
sr=lshift si by 4 (lo);
ay0 $=\operatorname{sr} 0$;
ay0 $0=0 \mathrm{x} 0 \mathrm{FFF}$;
ar=ax0 and ay0;
\{ar=ar or ay0; \}
pm(i6,m6) $=a r$;
rts;
\{Store x trajectory data in buffer
\{
\{ In:

\{*\} mr=mx1*my0 (rnd);
\{* call SaveTj; \{\}
my $0=d \mathrm{~m}(\mathrm{i} 0, \mathrm{~m} 2)$; \quad \{Get phase A value, \}
$m r=m x 0 \star_{m y} 0$ (rnd),
\{ multiply by amplitude\}
my $0=\mathrm{dm}(\mathrm{i} 0, \mathrm{~m} 0) ; \quad\{$ (\& get phase B value!),
$\mathrm{dm}($ dacDataTrigger $)=\mathrm{mr} 1$; \quad \{ and prepare DAC output $\}$
$\{*\} \quad d m(i x a)=m r 1$;
ar=h\#00F4;
\{Direct DAC data to channel 4.\}
dm (dacCR) =ar;
mr=mx0*my0 (rnd);
\{Multiply phase B value by amplitude, \}
$d \mathrm{~m}$ (dacDataTrigger) $=\mathrm{mr}$ 1;
\{ and prepare DAC output.\}
\{*\} $\quad \mathrm{dm}(\mathrm{ixb})=\mathrm{mr} 1$;
rts;
\{ Set DAC channels for y axis
\{ and strobe all preset channels to output
\{
\{ In: mx0 = amplitude [1.15 fractions of maxAmplitude]
\{ i0 = phase angle [16.0 microsteps]
\{ Out: io = phase angle + phase B offset [16.0 mircosteps]
\{ Chgd: ar,my0,mr
\}
SetDAy: ar=h\#00F8; \{Same game as x axis\}
$d m($ dacCR $)=a r ; \quad\{$ using channels 8 and 12\}
$\mathrm{my} 0=\mathrm{dm}(\mathrm{i} 0, \mathrm{~m} 2) ;$
$m r=m x 0 * m y 0(r n d)$,
$\mathrm{my} 0=\mathrm{dm}(\mathrm{i} 0, \mathrm{~m} 0)$;
dm (dacDataTrigger) $=\mathrm{mr} 1$;
ar=h\#00FC;
dm (daccR) =ar;
$\mathrm{mr}=\mathrm{mx} 0 * \mathrm{my} 0$ (rnd);
$\mathrm{dm}($ dacDataTrigger $)=\mathrm{mr} 1$;
ar=dm(dacDataTrigger); \quad Here we go... Trigger prepared\}
\{ values for all phases to outputs.\}
rts;
\{ Initiate conversion and wait for result
\{
\{ Alternate entrypoints:
\{ - WtEOC1 skips masking of EoC interrupt enable
\{ - WtEoC2 just waits for EoC, does not initiate.
\{
\{ NB This routine converts $A D C$ data without using IRQ0
\{ and can thus be used if invoking the servo controller
\{ is not desired.
\{
\{ In: ar = control reg mask containing channel no and hold/tracking demand
\{ Out: -
\{ Chgd: ay0,ar,af
\}
WtEoc: ay0=b\#01111111; \{Make sure to disable IRQ0.\}
ar=ar and ay0;
WtEoc1: dm(adcStatusCR)=ar; \{Set channel for next read. Depending\}
\{ on the previous state of the $A D C$ \}
\{ this either immediately starts a\}
\{ conversion for the given channel\}
\{ (if ADC was in Hold) or it requests \}

```
                            { that the next conversion initiated}
                            { by an ADtimer timeout be done for}
{ the given channel.}
{Dummy read causes status reset.}
WtEoC2: ay0=b#10000000;
{Poll for End of Conversion, indicated}
    do Wc0 until ne;
                            { by ADC status reg bit 7 = 1.}
    ar=dm(adcStatusCR);
    af=ar and ay0;
_Wc0: nop; {Check condition here.}
    rts;
{ Run motor in stepping operation
{
{ In: i4,i5 = x,y axis phase angle = current position [mircosteps]
    m4,m5 = x,y axis velocities [microsteps * SBtimer output freq]
    ar = number of steps to go
    mx0 = amplitude [fractions of maxAmplitude]
{ Out: i4,i5 = new x,y axis phase angle
{ Chgd: ar,l4,15,m4,m5,dm(imode),dm(stepcount); Step; uses SBtimer
}
GoStep: dm(stepcount)=ar;
    {Set cntr to desired number of steps.}
    ar=dm(signX);
    ar=pass ar;
    ar=m4;
    if lt ar=-ar;
    m4=ar;
    ar=dm(signY);
    ar=pass ar;
    ar=m5;
    if lt ar=-ar;
    m5=ar;
    14=resolution;
    {Set 14, 15 to resolution to make i4,}
    15=resolution;
    ar=0;
    dm(imode)=ar;
    imask=b#0010;
    ar=1;
    dm(imode)=ar;
    ar=dm(stepcount);
    do _GS0 until eq;
    ar=pass ar;
_GSO: nop;
    imask=b#0000;
        rts;
{ Delay cntr * 1e-3 sec
{
{ In: cntr
{ Out: -
{ Chgd: cntr,ar; uses SBtimer
```

\}
Delay: ar=0;
dm (imode) =ar;
imask=b\#0010;
ar=2;
dm (imode) $=a r$;
do _W1 until ce;
ar=0;
do _WO until ne;
ar=pass ar;
_W0: nop;
_W1: nop;
imask=b\#0000;
rts;
\{Reset interrupt mode to 0 so that\}
\{ any old IRQ1 will result in nop\}
\{ when enabling IRQ1 here.\}
\{Now set interrupt mode to flagging\}
\{ timeouts in ay0 on IRQ1.\}
\{Loop for cntr timeouts.\}
\{Reset timeout flag.\}
\{Wait for timeout. Timeout is flagged\}
\{ by interrupt server as ay0=1.\}
\{Test condition here.\}
\{Disable interrupt when done.\}

```
{ Initialize DIO board
{
{ Procedure in initializing the DIO board according to Spectrum's user manual
{ 1. Dummy read to reset both port configuration register and control register
{ 2. Write to Control Register: dioStatusCR
{ 3. configure ports by writing to Port Configuration Register: ResetConfig
{ 4. Set the sampling rate for Timer 0 or Timer 1 (if necessary): dioTimer0/dioTimerl
{ 5. Read/Write I/O port Registers: dioPortA/dioPortB/dioPortC/dioPortD
}
InitDIO: ax0=dm(ResetConfig); {Dummy read to reset everything to default}
    ax0=h#0200;
    dm(dioStatusCR) =ax0;
    ax1=h#1000;
    dm(ResetConfig) =ax1;
    ax0=h#0001;
    dm(dioPortD)=ax0;
    rts;
```

 .endmod;

Bibliography

[1] Joe Abraham. Modelling the Sawyer Linear Motor. 2.141 Term Paper, Massachusetts Institute of Technology, Cambridge, Massachusetts, 1992.
[2] J. Beaman, R. C. Rosenberg, "Clarifying Energy Storage Field Structure in Dynamic Systems" Proceedings of the 1987 American Control Conference, pp. 1451-1456. 1987.
-[3] Colin J. H. Brenan, Tilemachos D. Doukoglou, Ian W. Hunter and Serge Lanfontaine. "Characterization and Use of a Novel Optical Sensor for Microposition Control of a Linear Motor" Review of Scientific Instruments, 64(2), 349. February, 1993.
[4] Irene A. Chow. Design of a Two-Axis Linear Motor. S.M. Thesis, Massachusetts Institute of Technology, Cambridge, Massachusetts, 1993.
[5] Lee Clark. Fibreoptic Encoder for Linear Motors and the like. United States Patent 5324934, Magamation Incorporated, NJ, Jun. 28, 1994.
[6] William J. Cornwell, Tex M. Dudley, William H. Lee. System For Linear Motor Control. United States Patent 4455512, General Signal Corporation, Stanford, CA, Jun. 19, 1984.
[7] D. Crawford, F. Y. Wong, K. Youcef-Toumi, Modeling and Design of a Sensor for Two dimensional Linear Motors. Laboratory for Manufacturing and Productivity Report, Massachusetts Institute of Technology, Cambridge, Massachusetts, 1994.
[8] Antoni Fertner and Anders Sjölund. "Analysis of the Performance of the Capacitive Displacement Transducer" IEEE Transactions on Instrumentation and Measurement, Vol. 38, No. 4. August 1989.
[9] Jacob Fraden. AIP Handbook of Modern Sensors, American Institute of Physics, New York, 1993
[10] Paul D. Gjeltema. Design of a Closed Loop Linear Motor System. S.M. Thesis, Massachusetts Institute of Technology, Cambridge, Massachusetts, 1993.
[11] Guzmán, Manuel M.M. Design and Implementation of an Induction Sensor for Linear Stepper Motor Applications. B.S. Thesis, Massachusetts Institute of Technology, Cambridge, Massachusetts, 1993, May.
[12] P. Hariharan,"Interferometry, Optical". Encyclopedia of Lasers and Optical Technology.
[13] Dean C. Karnopp, Donald L. Margolis and Ronald C. Roseberg. System Dynamics: A Unified Approach. John Wiley \& Sons, Inc. New York, 1990
[14] Peter B. Kosel, Gregory S. Munro and Richard Vaughan. "Capacitive Transducer for Accurate Displacement Control" IEEE Transections on Instrumentation and Measurement, Vol. 1-M-30, No. 2. June 1981.
[15] Benjamin C Kuo. Theory and Application of Stepper Motors, 1972-1973 Proceedings, Symposium on Incremental Motion Control System and Devices, West Publishing Co., 1974.
[16] Gabriel L. Miller. Capacitively Commuted Brushless DC Servomotors. United States Patent 4958115, AT\&T Bell Laboratories, Murray Hill, NJ, Sep. 18, 1990.
[17] Matthew E. Monaghan. Analysis and Design of Precision Magnetic Bearings. S.M. Thesis, Massachusetts Institute of Technology, Cambridge, Massachusetts, 1993.
[18] Jack I. Nordquist, et al. "Constant Velocity Systems Using Sawyer Linear Motors". Proceedings, 15th Annual Symposium on Incremental Motion Control Systems and Devices, B. C. Kuo, Editor. Champaign, Illinois, 1986.
[19] Edward H. Philips. Gas Bearing $X-Y-\theta$ Stage Assembly. United States Patent 4742286, Micro-Stage, Inc., Chatsworth, CA, May 3, 1988.
[20] National Semiconductor Corporation. Power IC's Databook, Technical Communications Dept., Santa Clara, California, 1993.
[21] Rodriguez, Pablo. Development of a Linear Motor Model for Computer Simulation. S.M. Thesis, Massachusetts Institute of Technology, Cambridge, Massachusetts, 1993.
[22] Henning Schulze-Lauen. Development of an Enhanced Linear Motor Drive for a High Speed Flexible Automation System. Diploma Thesis, Rheinisch-Westfälische Technische Hochschule, Aachen and Cambridge, Massachusetts, October, 1993.
[23] H. Schulze-Lauen, F. Y. Wong, K. Youcef-Toumi, Modelling and Digital Servo Control of a Two-Axis Linear Motor. Laboratory for Manufacturing and Productivity Report, Massachusetts Institute of Technology, Cambridge, Massachusetts, 1994.
[24] Alexander H. Slocum. Precision Machine Design, Prentice Hall, New Jersey, 1992.
[25] Yuri Bendaña. Time-Optimal Motion Control of Two-Dimensional Linear Motors. S.M. Thesis, Massachusetts Institute of Technology, Cambridge, Massachusetts, 1993.

$$
3654-3
$$

[^0]: ${ }^{1}$ Inductosyn is a registered trademark of Farrand Control

