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Abstract
Pattern nesting refers to the process of arranging a set of predefined shapes to occupy the
least amount of space. This thesis discusses an automated pattern nesting system devel-
oped for the layout of complex, polygonal, two-dimensional shapes under translational
constraints on a roll of fixed width such that the length of material used is minimized. A
hierarchical representation that separates numerical and symbolic search is developed.
This representation avoids the creation of invalid layouts and facilitates genetic search.
Human pattern nesting strategies are incorporated in the probabilistic framework of
genetic algorithms. Models of human intuition are developed to identify and evaluate key
part locations for the numerical search. Intuitive justification for the identification of key
locations for the placement of parts in a layout and a model of human intuition to quantify
area waste created between part boundaries is developed. These models are used to effec-
tively restrict the search to a finite set of solutions. The probabilistic framework of genetic
algorithms is used for the symbolic search. The genetic search is augmented by the incor-
poration of human search reduction strategies.
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Chapter 1

Introduction

1.1 Automated Pattern Nesting

Pattern nesting refers to the process of arranging a set of objects in order to occupy

the least amount of space. Most human beings deal with this problem very often during

their day-to-day activities: arranging books on shelves, packing suitcases, arranging con-

tainers in refrigerators, to name a few instances. Often, there are restrictions on the way

the objects can be arranged and the overall space they can occupy. The total space avail-

able in a refrigerator is limited. In addition, placement of containers in a refrigerator is

restricted to the shelves inside. Access to the containers is restricted to one side and the

containers themselves have certain restrictions on the way they can be placed. The

arrangement of books and other objects on shelves has similar restrictions. In addition,

aesthetics and ergonomics play an important role in restricting the placement of objects.

For most of these activities, human beings use trial-and-error driven by their intuition and

understanding of the shapes of the objects to be arranged. In most cases, finding the best

arrangement possible is not necessary. Often, the definition of best is not very clear due to

the nature of requirements; e.g. comparison of aesthetic considerations with space limita-

tions. Also, the arrangements are changed frequently and this limits the amount of effort

that can be spent each time. However, commercial applications of this problem justify sig-

nificant efforts in finding better and better arrangements of objects. For mass manufac-

tured products such as automobiles and stereos, a good arrangement can be worth millions

to the manufacturer. For industries such as packaging and shipping, it is important to pack

as much cargo as possible in the available space. A good arrangement of cargo can reduce

the cost of shipping significantly.

Automation of repetitive tasks has always been of interest to human beings. Since

computers came into being, there has been significant interest in automating the process of
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pattern nesting. The process of developing a good layout is not yet fully understood, how-

ever, and the automated pattern nesting systems developed so far do not match the perfor-

mance of human experts. While it is not known whether human experts always find the

best possible layouts, most pattern nesting methods being developed attempt to match

human performance.

1.1.1 Forms in various dimensions and applications

The problem of placing shapes in order to occupy the least amount of space occurs

in different forms in different dimensions:

One-dimensional form: A set of one dimensional objects is given along with a set

of bins of the same size. The objective is to place the objects in the bins in order to occupy

the least number of bins (see figure 1.1.1.1). This is known as one-dimensional bin-pack-

ing or simply, bin packing. An application of this problem is for cutting pieces of stock

from available bars of a fixed length. The objective is to minimize the number of bars

used, while cutting all the pieces of required sizes.

D O

Objects to placed in bins

Figure 1.1.1.1 One-dimensional bin-i

Bins available for placement of objects
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Two-dimensional form: A set of two-dimensional objects is to be placed on a plane

with the objective of minimizing the total area occupied. Often, a set of rectangular shapes

is to be placed in a given rectangle, as illustrated in figure 1.1.1.2. This problem is known

I

Rectangles to be placed on blank Blank available for placement

Figure 1.1.1.2 Two-dimensional bin-packing of rectangles

as two-dimensional bin-packing. For VLSI layout (see figure 1.1.1.3), shapes to be placed

w

L

Figure 1.1.1.3 VLSI layout: rectangular shapes with wire routings.
Both length and width can be varied to minimize

the area of the total rectangular enclosure

are rectangular and have constraints on the placement of those shapes that arise from wire

15
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routings between these rectangles. Pattern nesting refers to be problem of placing a set of

free-form shapes in a rectangular area. This has applications in the garment, ship-building

and sheet-metal industries. Often, these shapes are to be cut from a roll of material of con-

stant width. The objective in that case is to use the shortest length of roll possible (see fig-

ure 1.1.1.4). In the ship-building industry, the shapes often occur in mirror images of each

other. In the garment industry, the shapes can usually be oriented only along certain direc-

W

v-I
L

W = Width of blank L = Length of layout

Figure 1.1.1.4 Pattern nesting for free form parts.

Width of material is fixed, length is minimized.

tions, to ensure matching patterns after sewing. The layout of sheet metal parts is usually

free of orientation and placement constraints.

Three-dimensional form: A set of three-dimensional shapes is to be placed in the

smallest enclosure. Most often, the enclosure is pre-determined; the objective is to fit all

the given shapes inside. For shipping of cargo, the shapes are usually simple, e.g. rectan-

gular boxes. Also, there are few restrictions on the placement and orientation of shapes.

The placement of the mechanical assembly under the hood of an automobile requires deal-

ing with complex shapes and a variety of functional constraints on the location and orien-

tation of parts that arise from requirements such as easy access to certain parts, prevention

16
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of damage due to the heat generated, kinematic and functional connections, feasibility of

assembly, etc. (Jay Kim, 1987). Design of consumer product housings (Wallace and Jak-

iela, 1993; Dighe and Jakiela, 1994) is often based on aesthetic, functional and manufac-

turing considerations. The placement of functional parts inside the housings is done after

the enclosure has been determined. In that case, the location and orientation of functional

parts inside is constrained by the placement of parts externally accessible, e.g. the place-

ment of buttons, speakers, etc. in a stereo restricts the placement and orientation of the

electronic parts inside.

1.1.2 Intractability of the problem
The problem of optimally arranging shapes is known to be computationally very

expensive. The solution space grows exponentially with the number of shapes. No algo-

rithms for optimal shape nesting are known. In fact, the problem of bin-packing is known

to be NP-hard (see Garey and Johnson, 1979), meaning that no algorithm is available that

can be guaranteed to solve such problems in exactly polynomial time; unless P = NP, only

an exponential-time search can guarantee the optimality of a solution. Such an exponential

time search, of course, can be carried out only for a trivially small number of shapes. The

other variants of this problem can be converted into the bin-packing problem (see Zhenyu

Li, 1994). The search for the optimum is made more difficult by a large number of invalid

layouts due to overlap of shapes. In one dimension, the placement of one part relative to

another without causing overlap is trivial; simple translation of parts relative to each other

is sufficient. This process cannot be generalized easily in higher dimensions, e.g., in two

dimensions, the parts each have three degrees of freedom. The choice of locations x, y, 0

for each part without causing overlap is not obvious; a variety of combinations of the loca-

tion and orientation variables can lead to an invalid arrangement. Thus, when a large num-

ber of parts are to be placed, the number of valid layouts are few. The search for a global

optimum suffers from two conflicting goals: area minimization and overlap minimization.

The same problem exists in three-dimensions where each part has six degrees of freedom.

17



1.2 Thesis goals

This thesis focuses on the problem of automated pattern nesting of two-dimen-

sional shapes. As mentioned earlier, this variant of the problem has applications in the

ship-building, garment and sheet-metal industry. The material used in these applications is

usually very expensive, and for the garment and sheet-metal industry, the parts to be

nested are used in mass-manufactured products. Thus, an extra one percent utilization in a

layout can result in savings of hundreds of thousands to millions of dollars. The shapes of

parts to be nested are complex, non-convex, and sometimes multiply-connected. The

shapes are to be cut from a roll of material, enforcing a constraint on the width of the lay-

out. Often, the shapes can be oriented only along a few directions. Besides these two con-

straints, there are no restrictions on the placement and orientation of the shapes on the

blank of material. This makes the understanding and application of complex geometric

aspects of the problem critical to obtaining good layouts. This is different from the one-

dimensional form of the problem, where shape geometry does not play a role in the opti-

mization process, and from the three-dimensional form, where functional constraints on

the placement and orientation of the parts limit the role of the geometric aspects in the

optimization process.

The goal of this research has been to develop an automated pattern nesting system

that can be practically used for the layout of two-dimensional, complex shapes in an

industrial environment. Human experts routinely perform better than most computer sys-

tems reported so far. Keeping this in mind, the aim has been to match human performance

most of the time.

1.3 Contributions

An automated pattern nesting system for layout of two-dimensional parts has been

developed. Non-convex, two-dimensional, polygonal shapes can be nested on a blank of

material using this system. Genetic algorithms (see Goldberg, 1989) are used as the basic

framework for optimization. The main contributions of this thesis are the development of

a hierarchical representation for the layout of general, two-dimensional, complex shapes

and the incorporation of human strategies in a hierarchical genetic search.

18



1.3.1 Hierarchical representation
Layout creation can be modeled as a sequential or a hierarchical process. Parts can

be placed one at a time, at a good location, and a good sequence of placement of parts can

be found. The hierarchical representation discussed in chapter 6 is based on this process.

The search for good locations for a single part or a group of parts is separated from the

order in which parts are placed or grouped. Such a hierarchical representation is different

from a totality representation in which placement of all parts is considered simultaneously,

and can be considered to be a generalization of the symbolic representation commonly

used for the layout of rectangles.

1.3.2 Human strategies
For the placement of a single part on a blank, only a few locations, termed corner

points, need be considered out of all valid locations possible. An intuitive explanation for

the focus of attention on these corner points is developed. A simple method based on force

equilibrium to identify these corner points is proposed. By using this method, the geomet-

ric aspect of the search can be made deterministic and trivial. The search for good solu-

tions can be restricted to a purely symbolic search: the best sequence in which shapes are

placed on the blank along with the best choice of individual corner points. The problem is

still NP-hard, but the role of the geometric aspects of the problem in the search can be

eliminated.

Human experts are able to identify what can be termed "good" locations for shape

placement. By placing a shape on a blank, voids are created between shapes. Identification

of locations where such voids are reduced seems obvious to humans. However, descrip-

tion of such locations via a computer algorithm is a difficult task. A model has been devel-

oped to quantify the waste area that arises from the voids created between shape

boundaries. A weighted sum of areas trapped between part boundaries is obtained based

on the distance of each area element from the boundary of the part being placed. A single

quantity capturing the waste between part boundaries can be used effectively to identify

good locations for part placement. This model has been developed by observing human

experts at work.

19



Human experts employ several strategies to efficiently create good layouts. Often,

large parts are placed first and the smaller ones are placed in the voids created between

them. Closely packed subgroups of parts in a layout are frequently retained in the subse-

quent layouts. Parts are exchanged within a layout to obtain shorter layouts or sometimes,

to create space for movement of other parts. Often, layouts are modified based on their

length; few parts are moved around if the layout efficiency is very close to the expected

efficiency and vice-versa. In the system described here, such strategies are incorporated

using the basic framework of genetic algorithms as a probabilistic optimization method.

None of the strategies alone is likely to produce very good layouts. For this reason, the

strategies are used probabilistically to maintain the possibility of finding the global

optima. Also, the calculation of probabilities to invoke any strategy is based on simple

quantities such as area, length, etc. No complex geometric reasoning is used, since such

reasoning could lead to domain specific search and results. These strategies help identify

good points in the solution space efficiently. This is crucial for a practical, automated sys-

tem useful for industry.

1.4 Organization of the thesis

This thesis is organized as follows.

Chapter 2 provides a brief introduction to genetic algorithms. The motivation and

philosophy underlying genetic algorithms are explained based on the theory of natural

selection. The basic steps involved in using a simple genetic algorithm are explained

along with the reasoning behind these steps. Two main principles important to the effec-

tiveness of genetic algorithms, the schema theorem and the building block hypothesis, are

discussed briefly. Chapter 5 and chapter 6 will revisit these principles in developing effec-

tive representations for pattern nesting. A comparison of genetic algorithms with other

optimization methods is made to provide more insight into the use of genetic algorithms.

Work of others related to this area is surveyed in chapter 3. The area of pattern

nesting has been of interest for over thirty years and the literature abounds with related

efforts. The work closest to this thesis is reviewed in this chapter and is divided into three

20



main categories: mathematical programming methods, heuristics-based methods and two

probabilistic methods: genetic algorithms and simulated annealing.

Chapter 4 describes different part placement and layout evaluation methods. Three

methods of part placement for pattern nesting are discussed along with their relative mer-

its: symbolic placement, naive placement (based on variables x, y, 0) and assembly-based

placement. Two layout evaluation methods are also discussed in chapter 4. Overlap area

calculation is the most commonly used method. However, it is computationally expensive

and some of the researchers use approximate estimates of overlap area. A new, efficient

method of layout evaluation is developed, based on the placement of seeds representative

of parts and the extent of maximum possible growth of these seeds.

Chapter 5 discusses are termed as totality approaches for pattern nesting. The

placement of all the parts is considered together in this approach. The disadvantages of

using a naive representation for part placement are illustrated by the examples. The exam-

ples also illustrate the computational effectiveness of evaluation of layouts based on

growth of shapes from representative seeds as against the calculation of overlap. An

assembly based placement of can be used in a totality approach by making the assembly

sequence of parts a part of the chromosome. This chapter also illustrates the use of

repeated speciation to improve the search potential of a totality approach.

A hierarchical approach developed for pattern nesting is discussed in chapter 6. In

this approach, instead of considering all parts at the same time, individual parts or pairs of

parts are treated one at a time. Two levels of optimization are used, each using a different

genetic algorithm as the search method. Numerical optimization is used at the lower level

to locate pairs of parts relative to each other, while the higher level search tries to find the

optimal symbolic arrangement of the shapes to be nested. An assembly based placement

approach that eliminates the problem of overlap is used at the lower level. Two representa-

tions are discussed; a binary tree based representation for the layout of shapes in a rectan-

gular enclosure and a string based representation for the layout of shapes on a blank of

material of given width. Modified crossover operators are used for both representations.
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Several different evaluation functions are discussed with illustrative examples.

Chapter 7 describes the incorporation of human strategies in the probabilistic

framework of genetic algorithms. These strategies are focused on the problem of pattern

nesting on a blank of fixed width. Certain key locations on the layout considered by

human experts for the placement of a single part can be identified as corners. The process

of finding these locations with an intuitive justification is developed. A model of waste

area created during the placement of individual parts in a layout is described. This model

has developed based on observation of human experts at work, and can be used to quantify

the potential detriment of voids between part boundaries in a very general manner. In the

remainder of the chapter, strategies used by human experts to effectively search for good

sequences in which the parts can be placed in the layout are discussed. These strategies are

used probabilistically in order to maintain the possibility of finding the global optima.

Conclusions from this work are presented in chapter 8. Also, possible extensions

of this work are discussed.
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Chapter 2

Genetic Algorithms

2.1 Origin and Philosophy

Genetic algorithms, developed by John Holland (1975), are based on the theory of

natural selection. Over a period of time (and generations), species adapted themselves to

better suit their surroundings. The theory of natural selection explains this process of evo-

lution and adaptation based on the "survival of the fittest" phenomenon. Individuals with

characteristics that were suitable for survival in their environment had higher life expect-

ancy and thus reproduced more. This led to a proliferation of their suitable characteristics

in the subsequent generations. Individuals became "fitter" for survival as generations pro-

gressed due to the process of combination of the characteristics of parents during repro-

duction. On the other hand, those individuals without such characteristics did not survive

long and reproduced less. Thus, the instances of their characteristics in subsequent genera-

tions decreased in number, resulting in a smaller number of "unfit" individuals over gener-

ations. Genetic algorithms mimic this process of evolution and adaptation for

optimization.

Characteristics of individuals depend on their genetic material. These characteris-

tics are represented in their chromosome. The genetic material of an offspring results from

a combination of the chromosomes of parents. This recombination occurs via what is

known as a "crossover" of genetic material. This is accompanied by certain infrequent,

random changes in the chromosome called "mutations". Genetic algorithms utilize the two

processes of crossover and mutation along with "reproduction" to produce offspring from

parents while exploring the solution space.

23



2.2 Optimization using Genetic Algorithms

A typical genetic algorithm for optimization works very much like the process of

evolution described above (see Goldberg, 1989). A population of individuals is created

with randomly chosen characteristics. Each individual is represented by a chromosome. A

typical chromosome representation is a string of binary numbers as shown in figure 2.2.1.

1 10101 101 1 1 1 1 10010001 101 1

Figure 2.2.1 Chromosome of binary numbers

The optimization variables are mapped to this string of binary numbers. Thus, the string

contains information that when decoded in a certain fixed manner, characterizes each indi-

vidual. This is illustrated in figure 2.2.2, where the two variables that govern the shape and

size of the rectangle, length and height, can be decoded from the string of binary numbers.

L H
10110 11100 H

L H
L

Figure 2.2.2 Dimensions of rectangle mapped to binary chromosome

A set of such individuals constitutes a population. A genetic algorithm begins with the

creation of a population of individuals, called the initial population. The bits in the chro-

mosomes of the initial population are set randomly to prevent bias towards any particular

characteristics.

After the creation of the initial population, each individual is evaluated according

to the optimization criterion and is assigned a "fitness" value. This fitness value quantifies

the ability of the individual to survive in the environment, which is the domain of the opti-

mization. The next generation of the population is created by choosing parents from the

population. This process is termed "reproduction". The selection of parents is probabilisti-
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cally based on their fitness value; individuals with higher fitness have a better chance of

being selected for reproduction. The probability of their selection is often calculated as:

Pselect = Fi?/Fi;

where,

F i = Fitness of individual i.

ZFi = Total fitness of the population.

Such a selection strategy ensures that "fitter" individuals" reproduce more. The

selection is made probabilistically since some individuals with lower fitness values do

contain some useful characteristics. This selection strategy is known as Roulette-Wheel

selection due to its probabilistic nature and the method of calculating the probability of

selection of each individual for reproduction.

The selection of parents for reproduction occurs in pairs. The two selected individ-

uals, known as parents, are mated to produce offspring via a crossover of genetic material.

Figure 2.2.3 shows a typical crossover operation. A location along the chromosome is ran-

1111

0000

111111 1111000000

000000 uuuu I I I i 
Parents Offspring

Figure 2.2.3 Single point crossover

domly chosen. The chromosome is divided into two parts at this location and the comple-

mentary parts of the chromosome from each parent are combined to produce offspring.

This is known as a single point crossover. In this manner, the characteristics of parents are

combined in their offspring. Crossover is not carried out on all parents. Sometimes, the

parents are carried into the next generation without alteration. This prevents the algo-

rithms from being overly destructive of existing genetic material. A certain probability
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associated with the crossover operation, called the probability of crossover (Pcross), deter-

mines whether two parents will be mated via crossover. This probability is usually fixed at

some value throughout the optimization procedure, although it can be varied as the search

progresses.

The mutation operation simply flips randomly selected bits in the chromosome

with a certain probability, known as the probability of mutation (Pmut). This is illustrated

in figure 2.2.4. Each bit in the chromosome can be considered to contribute to a character-

1111111111

| Bit flipped

1 11 1101111

Figure 2.2.4 Mutation

istic of the individual. Since the values of bits in the chromosomes of the offspring are

obtained from the values of the corresponding bits in one of the parents via reproduction

and crossover, the characteristics of individuals in each generation are limited to the char-

acteristics present in their parents. Since the parents themselves are selected from the ran-

domly created initial population, certain desirable characteristics may not be obtained.

Mutation ensures variety in the population and prevents premature convergence to subop-

timal individuals. The random nature of mutation makes it destructive and hence, it is used

sparingly. Similar to the probability of crossover, the probability of mutation is usually

predetermined for the search.

The original population is then replaced by this newly created one. This process is

repeated several times (generations) until some termination criterion is met, e.g. the aver-

age fitness or the fitness of the best individual does not improve in subsequent generations,

or the number of generations exceeds some number. This optimization process can be

26



summarized in figure 2.2.5.

Create Initial Population

Evaluate Fitness of each

Chromosome in Population

Select and Pair Parents

Mate Parents to

Produce Offspring

Perform Mutation on Offspring

Replace Current Population
with Offspring

Figure 2.2.5 Flow of a Simple Genetic Algorithm

2.3 Basic Mechanism of Genetic Algorithms

To understand the efficiency of genetic algorithms and to exploit their potential, it

is important to understand the schema theorem and the building block hypothesis. The

schema theorem, as described by Goldberg (1989), explains the proliferation of the char-
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acteristics of fitter individuals in a population. A schema in a chromosome can be thought

of as a pattern or arrangement of bits. Consider, for example, the substring 1111 in the

chromosome shown in figure 2.3.1. This substring forms a schema in the chromosome. It

can be shown that 3n such schemata exist in a binary coded chromosome of length n

1 1 1 1100 1 0 1 0

Figure 2.3.1 Schema 1111 of length 4

(Goldberg, 1989). Due to the use of the selection strategy explained above, the number of

instances of schemata associated with fitter individuals increases roughly exponentially

with the number of generations (Goldberg, 1989). Each schema represents a particular

characteristic of an individual, depending on the nature of the representation used. Thus, a

growth in the schemata associated fitter individuals implicitly leads to a proliferation of

their useful characteristics.

The building block hypothesis states that a combination of good building blocks

can lead to better ones. Genetic algorithms operate on the basis of this hypothesis, assum-

ing that good schemata can combine to produce better schema through the process of

crossover of genetic material. Although studies done by Bethke (1981) support this

hypothesis, it does not hold true for all application domains. Also, it may hold true for a

particular representation of a given problem and not for some other representation of the

same problem. The results of optimization of a set of variables can be different from those

obtained by transforming those variables into a different set. Thus, while using genetic

algorithms for optimization, it is important to use a chromosome representation for which

combining building blocks from two good individuals via crossover produces better indi-

viduals.

2.4 Comparison with other optimization methods

Genetic algorithms differ from other methods of optimization in four ways (Gold-

berg, 1989).
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1. GAs use a coding of the variables of optimization, not the variables themselves.

As shown in figure 2.2.2, the variables that govern the shape of the rectangle are mapped

to the string of binary numbers. Genetic algorithms operate on this string, searching for

the optimal values of the binary numbers.

2. GAs search with a population of points, as against a single point, in the search

space. The point to point methods of search can converge to a local optimum if the solu-

tion space is multi-modal (many-peaked). However, genetic algorithms operate on a set of

points simultaneously (a population of strings), searching for many peaks in parallel.

Thus, the probability of finding a false peak is reduced over methods that go from point to

point.

3. GAs use only the objective function value, not any auxiliary information such as

derivatives of the objective function. Many other optimization techniques require other

information besides the objective function value to find an optimum. For example, gradi-

ent search techniques rely on derivatives, calculated either analytically or numerically, to

reach the local minimum point corresponding to the current solution. Simulated annealing

requires the definition of a neighboring operator to go from one solution to another. Such

auxiliary information is not needed by genetic algorithms. They make use of a single

crossover operator for all optimization problems for which the variables are encoded as

chromosomes.

4. GAs use probabilistic transition rules. Deterministic rules work very well if they

are based on facts about the domain of optimization. Otherwise, since they limit the search

to certain regions of the solution space, using such rules could imply the potential loss of

the global optimum. As an example, a possible deterministic selection strategy could be to

select only a few of the best solutions from the population for reproduction. The roulette-

wheel selection strategy used by genetic algorithms takes into consideration the possibility

that a solution of lower fitness could have certain desirable characteristics, which when

combined with certain other characteristics in another solution, could produce a good

solution.
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Chapter 3

Related Work

The nesting problem is of importance to many industries and automating the pro-

cess of shape layout has been an active area of research since the advent of computers.

Most efforts can be broadly classified into three categories: mathematical and dynamic

programming, heuristics-based methods, and recently, probabilistic methods such as

genetic algorithms and simulated annealing.

3.1 Mathematical and dynamic programming methods

The dynamic programming methods typically use moves of shapes to be nested

along the axes and hence, are more appropriate for rectangular shapes than complex

shapes. A review of such methods is presented by Sarin (1983).

Recently, a research group at Harvard University, under the direction of Victor

Milenkovic, has reported work in pattern nesting using mathematical programming. They

use two-dimensional configuration spaces to prevent overlaps between pairs of polygons.

Li (1994) and Milenkovic et al. (1994) have developed translational compaction algo-

rithms which, given a pattern layout, increase the nesting efficiency through continuous

translation of the polygons. This is done by solving a sequence of linear programming

models of the layout. After each model is solved, polygon positions are updated and then

used to update the model. These compaction algorithms are very useful to gain an extra 2-

3 percent efficiency from an existing layout. They can compact hundreds of polygons; in

under one minute 150 polygons can be compacted on a 28 MHz SPARCstation (TM).

They have also implemented powerful algorithms for rotational compaction.

Work done by Daniels and Milenkovic (1994) is focused on developing transla-

tional containment algorithms which are used to create a new layout. Given a container

31

W___WIII__�UI__L_�*__IYII·ll---l��



and a set of polygons, the algorithms fit the polygons into the container, if a placement is

feasible. The algorithms are also able to detect infeasible situations. Their general

approach is to prune the two-dimensional configuration spaces, quickly check for a solu-

tion, and, if no solution is found yet, subdivide a configuration space and recurse. Some of

their pruning and checking techniques use linear programming. One checking method

uses linear programming to attempt to produce a nonoverlapping solution from an over-

lapping candidate solution. Their algorithms are practical for up to ten nonconvex poly-

gons. The number of polygons to be placed in a completely new layout is large, and so

they use a two-phase approach in which pieces are classified as "large" and "small". First

the large pieces are placed. Then they use containment to build groups of small items

which fit into the gaps determined by large neighboring pieces. Finally, they assign groups

to gaps.

3.2 Heuristics methods

The basic strategy in these methods is to find a set of rules that work well for the

specific application chosen. Examples of such applications are VLSI layout, ship-building,

and clothing layout. Not surprisingly, these methods work well for the specific application

and tend to break down if an unusual situation is encountered.

Albano and Sapuppo (1990) describe a branch-and-bound search method for cut-

ting irregular shapes by placing each successive part at the leftmost and lowest location

available on the blank. This search is further reduced by retaining only a certain number of

alternatives at each stage in the allocation. Although they deal with irregular shapes, they

limit their search to 180-degree rotation of the shapes. This restriction, along with the

placement policy is quite limiting as large voids can be produced in the layouts. Also, a

branch-and-bound strategy does not make use of the evaluation of one solution in order to

choose other solutions to explore, as genetic algorithms do. Thus, it is not a directed

search as genetic algorithms can be. Adamowicz and Albano (1976) describe a two stage

approach: (1) clustering of shapes into well packed rectangles; and (2) layout of rectan-

gles. Once the shapes are clustered into a rectangle, their relative positions are fixed and
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this can obviate potentially good solutions. This clustering seems to work well for cases

where shapes occur as mirror images of each other. Qu and Sanders (1987, 1989) have

attempted to solve a variation of the problem: rectangular blanks of various sizes to be

filled in an optimal manner by the shapes to be cut. They approach the problem in two

stages. In the first stage, a given blank is filled such that scrap is minimized. In the second

stage, the best sequence of blanks is chosen from the various blanks available. A set of

heuristics is used for the first stage and the second stage reduces the vast search space by

several methods such as backtracking. The first stage is limited by rectangular approxima-

tions of irregular shapes. In the ship-building industry, Cheok and Nee (1991) describe a

system that uses a shape processor to classify shapes as floors, brackets, etc., and as "big"

and "small". This is followed by a local optimization that finds the smallest rectangular

enclosure of similar parts and places small shapes into the void areas of big shapes.

Finally, the rectangles are arranged on the blank according to certain heuristics. The use of

shape similarity can be rather limiting for general applications. Also, according to the

authors, classification of shapes into few categories can lead to poor solutions if highly

irregular shapes are present. The system developed by Cai et al. (1987) for the clothing

industry is based on two sets of rules: layout rules and modification operators. Also, some

interesting criteria for evaluation of layouts, such as flatness of the profile formed by the

outermost shapes on the material stock, are used. Although modification operators provide

a way of backtracking, they operate locally and the notion of global optimality is not

addressed.

3.3 Probabilistic methods

Two probabilistic methods, genetic algorithms and simulated annealing, have

recently generated significant interest. Earlier applications of these methods to pattern

nesting have been limited to rectangular shapes. Fourman (1985) developed a symbolic

layout system using genetic algorithms for compaction of VLSI layouts that takes into

account connectivity constraints between rectangles. The chromosome uses labels such as

"above" and "right-of' to describe the relative locations of shapes. Such a symbolic repre-

sentation is not easily generalizable to n-sided polygons; the symbolic representation
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relies on the fact that parts are rectangular and the edges of rectangles are oriented parallel

to the principal axes. Smith (1985) describes a system that combines heuristic rules such

as "Skyline pack" and "Slide pack" to pack rectangles into a given bin with a genetic

search for the best order of the objects to be packed into the bin. His "order crossover" is,

in our opinion, the best alternative for the usual single point crossover which can produce

invalid configurations. Our efforts utilize this crossover with a more general, geometric

interpretation that will be described in section 6.3. Kroger et al. (1990) have developed yet

another symbolic representation for the layout of rectangles that locates rectangles above

and to the right of other rectangles. They have also developed a recombination operator

that produces valid offspring as an alternative to single point crossover. Again, generaliza-

tion of this representation to n-sided polygons is not obvious. In a more recent effort,

Reeves (1994) has reported attempts to combine heuristics with genetic search for one-

dimensional bin-packing with encouraging results. Also, his idea of reducing the search

space by removing objects that occupy a bin exactly is interesting although difficult to

generalize to higher dimensions for n-sided shapes. A hybrid approach combining local

optimization with genetic search for nesting general shapes has been developed recently

by Fujita et al. (1993). The local minimization ensures good local packing whereas the

genetic search based on "order" crossover tries to find the optimal order of the shapes. The

local optimization requires significant computation of overlap of polygons. In addition,

the violation of constraints must be penalized in combination with the search for the short-

est length of material stock. The choice of weighting factors used for different terms in the

evaluation function can be difficult and sensitive to the shapes. Although the local minimi-

zation tries to maintain the neighboring relationships between shapes derived from the

string chromosome by using an additional term in the objective function, it appears that a

single chromosome could map to various arrangement of shapes. This can prevent the

genetic algorithm from searching the solution space efficiently.

The efforts using simulated annealing seem to have been fewer than those using

genetic algorithms. The system described by Jain et al. (1990) is aimed at dealing with

sheet metal layouts with general shapes. The examples shown, however, are restricted to a

small number of shapes. Although this may not be a fundamental limitation, their
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approach is based on computation of overlap and becomes impractical if a large number of

shapes are present. Oliviera and Ferreira (1993) have recognized the problems associated

with overlap computation and report two different approaches based on simulated anneal-

ing to deal with this issue. The first one uses discrete raster approximations of the blank

and shapes to be laid out. The implementation described does not allow rotations of

shapes and the layout quality seems to be restricted by this fact. The raster approximation

of a shape is invariant under translations but not under rotations. This is a limitation if

rotations of shapes are to be allowed in the implementation. The other implementation

approximates the overlap areas by their rectangular enclosure. Such an approximation can

possibly mislead the search depending on the nature of the overlap polygon. We will

revisit the issue of approximation of overlap area in section 4.2.1

3.4 Summary of related work

The heuristics-based methods seem to suffer from a lack of generality in compari-

son to the probabilistic methods. The heuristic rules developed work well within certain

problem domains and break down easily if an unusual problem is encountered. Augmenta-

tion of the heuristic search with a branch-and-bound search is a useful step towards gener-

ality, although it is not directed as a genetic algorithm can be.

The probabilistic methods do not suffer from these limitations. So far, the efforts

using these methods are based mainly on naive representations of the problem that lead to

many invalid (overlapping) configurations. This leads to extensive computation and forces

the search to make a trade-off between minimizing area and minimizing overlap. The lack

of a meaningful mapping to the physical problem domain tends to make modification

operators such as crossover ineffective. Since the solution space grows exponentially with

the number of shapes, the search becomes inefficient when the number of shapes to be

nested becomes large. A representation and approach that completely eliminate the prob-

lem of overlap computation and that utilize the crossover operator in a meaningful manner

are described in the chapter 6.
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Chapter 4

Part Placement and Layout Evaluation

4.1 Part Placement methods

Part placement refers to the method and representation used for locating a part or a

set of parts in a layout. Several different methods and representations have been developed

by researchers in the area of pattern nesting. In this section, the two most commonly used

methods, symbolic placement and naive placement, are discussed. Also, a new assembly-

based placement method is described.

4.1.1 Symbolic placement
Consider the problem of placing a given set of objects in a given set of bins of

equal size, with the objective of minimizing the total number of bins used. This is shown

earlier in figure 1.1.1.1. In this one-dimensional case, the objects can simply be stacked

above each other in the given bins. As shown in figure 4.1.1.1, object B is placed on top of

object A in bin 1. The other bins are filled similarly, requiring 4 bins to place all of the

objects. This method of arranging the objects can be captured in a symbolic representa-

B

A

binl

E

D

C

bin2

H

G

F

bin3

K

J

I

bin4

Figure 4.1.1.1 One dimensional object placement in bins
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tion: B above A, D above C, etc. The bin used can be included in a modified representa-

tion: B above A in bini, D above C in bin2, etc. The optimal arrangement can be found by

searching over the possible different arrangements using such a symbolic representation.

Such a representation is very intuitive and natural; there are no gaps created between

objects in the bins.

For the two-dimensional problem of placing a given set of rectangles on a given

set of rectangular blanks, a similar symbolic representation can be used. In addition, let us

suppose that the rectangles cannot be rotated. Consider the placement of rectangle B on

the blank shown in figure 4.1.1.2, when rectangle A has already been placed. The four

sides of the blank are labeled boundaryL, boundaryR, boundaryB, boundaryT. The rectan-

gle B can be placed to the right of rectangle A, or above it. To the right of A, the rectangle

can be placed such that it borders the edge of the blank, i.e., it is above the lower edge

(boundaryB). Thus, location B1 can be described symbolically as: right-of A, above

boundaryB. Similarly, the location B2 can be described as: above A, right-of boundaryL.

This representation and method of placement is simple as long as the rectangles do not

overlap at the chosen locations. Consider placing an additional rectangle C after choosing

the lower of the two locations B 1 for rectangle B. The candidate locations for the place-

ment can be found by considering pairs of available edges in the existing layout: above A,

right-of boundaryL (Cl); above A, left-of B (C2); right-of B, above boundaryB (C3).

Notice that the locations C1 and C2 cause overlap of rectangles; only location C3 is valid.

Thus, a simple extension of the symbolic representation used in the one dimensional case

needs to be modified to account for the problem of overlap; we need to select one location

from all the valid locations. If more than one valid location were available for the place-

ment of rectangle C, we would apply the same criterion as that used for the placement of

rectangle B. This strategy for placement of objects can be described in the following steps:

i. Find all candidate locations by forming pairs of edges existing on the layout.

ii. Identify all valid locations from the possible locations.

iii. Place the rectangle at a valid location based on a predetermined criterion.

Thus, the symbolic representation and method used for part placement in one
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dimension can be modified for the placement of rectangular shapes in two dimensions.

B -c

Rectangle A placed on blank

C

Two possible locations for rectangle B

[

Three possible locations for rectangle C; only one valid location

Figure 4.1.1.2 Rectangle placement on a rectangular blank

Notice again that the representation naturally reduces gaps between parts by aligning the
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edges together. This is made possible since all the edges of the parts are parallel to the

coordinate axes. A similar representation can be used for arrangement of parts in three-

dimensions.

4.1.2 Naive representation

The symbolic representation described above cannot be easily extended to the case

where the parts to be placed are not rectangular. As an example, consider the placement of

polygonal part B shown in figure 4.1.2.1 when part A has been placed on the blank. Loca-

7•1

Polygon A placed on blank

Locations reached for polygon B using symbolic representation

Desirable location for polygon B

Figure 4.1.2.1 Symbolic representation for polygon placement

tions described symbolically are ambiguous, e.g., right-of A, above boundaryB. Part A
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does not have an edge parallel to the coordinate axes and the use of the description "right-

of A", is not specific enough. One could interpret the term "right-of A" to imply "to the

right of the bounding box of A", and this will yield the location B 1. Similarly, the descrip-

tion "above A, right-of boundaryL", could be interpreted to be the location B2. Consider-

ing locations B 1 and B2 for placement rules out many good candidate locations, e.g. B3,

which can be reached by rotating part B. Note that we have not defined what a good loca-

tion is. Intuitively, location B3 appears to be a good candidate1. Therefore, we could

restrict ourselves to a simple criterion like choosing the lowest valid location.

Thus, a symbolic representation for placement of parts of complex shapes is not

obvious. For this reason, a naive representation based on two coordinates of the part, x and

y, is often used. If the part shape has a rotational degree of freedom, an additional variable,

0, is included. This is illustrated in figure 4.1.2.2. If we return to the problem considered in

figure 4.1.2.1, the desired configurations like B3 can be reached. However, the number of

Y

X

Figure 4.1.2.2 Variables used to locate one shape

possible locations is infinite. In addition, the choice of values for variables x, y and 0 that

leads to the lowest valid configuration is not obvious. A search over the set of variables x,

y and 0 is required to locate the lowest possible configuration2 . This search is made diffi-

1. We will return to the problem of quantifying good locations in chapter 7. The locations B 1 and

B2 create large gaps between part boundaries and hence, can be considered to be less desirable.
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cult by the fact that a large number of configurations are invalid due to the overlap of

parts. In addition, the calculation of overlap is computationally expensive. A typical

objective function used for such as search is:

F = Minimize (Yi + P*(AoAi));

where,

Yi = Height of the highest vertex of the polygon to be placed;

Ao = Area of overlap with other polygons;

Ai = Area of the polygon to be placed;

P = Penalty factor for overlap.

4.1.3 Assembly based part placement
The problem of locating polygons can be viewed as a problem of actually assem-

bling them into position. Consider the trivial problem of finding the smallest area rectan-

gular enclosure for the two polygons shown in figure 4.1.3.1. The location of one polygon

is fixed. This polygons is allowed to rotate about its center. Along line L, the second poly-

gon is located and oriented in a random manner. This polygon is moved in the vertical

direction until it comes in contact with the fixed polygon. The location and orientation of

the moving polygon can be varied along with the orientation of the fixed polygon until an

optimal set of values is found. Notice that the expensive overlap computation operation is

eliminated since all resulting configurations are valid. The objective function has a single

term:

F = Minimize (Ai/At);

where,

Ai = Area of polygon i;

At = Area of the enclosing (smallest area) rectangle.

2. If several locations correspond to the lowest height, the lefmost of those locations can be cho-
sen.
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c. Optimal nesting

Figure 4.1.3.1 Assembly based part placement
to find the smallest rectangular enclosure

The three variables used in this approach are different from those used in the naive

approach. This transformation of variables is made possible by viewing the problem of

part placement as one of part assembly. This approach can be particularly useful when fea-

sibility of assembly of given shapes is an important consideration, e.g. the assembly of

components under the hood of an automobile. The naive representation can generate lay-

outs that cannot be assembled whereas this approach automatically generates a feasible

assembly procedure along with the optimal layout. Consider again the problem shown in

figure 4.1.2.1. As shown in figure 4.1.3.2, the assembly based approach can be modified to

find the lowest valid configuration on the blank. The polygonal part B can be dropped

from the line L along the vertical direction until it comes in contact with the edges of the

polygon A or the edges of the blank boundaryL, boundaryR and boundaryB. Thus, the

rectangular blank can be considered to be a bin made up of three edges: boundaryL,

43

III____·I_____UI___P___I_-_I

1



boundaryR and boundaryB. The parts are then dropped from the opening at the top of the

bin until they interfere with the edges of the bin or any of the parts placed before. Only

two variables Xm and Om are used to locate the parts. The objective function does not

require any penalty term for overlap of areas:

F = Minimize Yi;

where, Yi = Height of the highest vertex of the polygon to be placed.

Xm X; m Line L

boundaryT

boundaryL boundaryR

A boundaryB

Figure 4.1.3.2 Assembly-based approach to find lowest location

Notice that the operation of moving a polygon in a given direction is governed

purely by geometry; no simulation of dynamic behavior of objects is used. The interfer-

ence check required is done very simply by a set of line intersection checks. This is illus-

trated in figure 4.1.3.3. The intersection of vertical lines drawn through the vertices of the

fixed polygon with the edges of the moving polygon generates a set of distances (dmi) that

the moving polygon can travel without interference. Another set of distances (dfj) is simi-

larly generated by interchanging the roles of the two polygons in the computation. The

minimum of these distances is the amount the moving polygon can travel in the vertical

direction.
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gh vertices

Intersection points of vertical lines Polygon assembled
and polygon edges

Figure 4.1.3.3 Intersection checks for assembly of polygons

Since an interference check is required between every segment of a polygon and

the vertical line passing through every vertex on the other polygon (and vice-versa), the

order of computation for this interference check is O(m*n), if m and n are the number of

edges of two polygons to be placed optimally relative to each other. This is the same as the

order of computation (for the computation) of overlap, where an interference check

between every segment of a polygon and every segment of the other polygon is required.

However, besides the detection of intersection, overlap computation requires the computa-

tion of the actual polygon(s) of overlap and subsequently, the area of overlap. This can be

summarized as:

(To = Co*(m*n)) > (Ta = Ca*(m*n)), since Co > Ca.

where,

To = Time for overlap computation.

CO = Constant of overlap computation.

Ta = Time for assembly-based computation.

Ca = Constant of assembly-based computation.

The number of operations required for overlap computation is higher than those
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required for a simple interference check.

Note that certain configurations (see figure 4.1.3.4) cannot be reached using this

assembly-based part placement. Also, holes inside (multiply connected) polygons cannot

be filled by other polygons using this approach. This is a limitation of such an assembly-

based approach to part placement. For part placement in two dimensions, an additional

(third) dimension is available for part placement. Thus, when parts are cut from the blank

using the configuration shown in figure 4.1.3.4, they cannot be separated from each other

in the plane of the layout; they need to be disassembled along the vertical direction. The

same holds true for parts placed in holes inside other parts. However, for three-dimen-

sional parts and their arrangements, this advantage vanishes since no additional dimension

is available for assembly or disassembly of parts. In that case, an assembly based repre-

sentation and placement method is very useful for generating feasible configurations.

I I

I I

Figure 4.1.3.4 Configuration unreachable using assembly-based approach

4.1.4 Summary of part placement methods
Of the three methods described above, the symbolic representation is the simplest.

It has been widely used in application domains where the parts are rectangular, e.g. VLSI

layout. The naive representation is the most general, and it has been used in several of the

probabilistic approaches described in chapter 3. However, it suffers from the problem of

overlap computation and overlap penalization. This is discussed with examples in chapter

5. The assembly based representation avoids the problem of overlap of parts and generates

feasible layouts. Chapter 6 illustrates the use of this representation in a hierarchical

approach.
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4.2 Layout evaluation methods

After placing the given parts, the arrangement or layout must be evaluated accord-

ing to some criterion. Usually, the evaluation criteria are simple, e.g., length of the layout,

percentage efficiency of packing, etc. However, depending on the placement method used,

parts could overlap. In that case, the objective function must include a term to penalize the

extent of overlap. This section briefly discusses methods that have been used to evaluate

the overlap of parts and presents a new method as an alternative to overlap calculation.

4.2.1 Overlap evaluation
As mentioned in section 4.1.3, a direct computation of overlap area requires an

interference check of all polygons with each other, the formation of overlap polygons and

then the calculation of the areas of the overlap polygons. Since this direct evaluation is

computationally expensive, alternative methods are needed.

Ferreira and Oliviera (1993), have reported two such methods. The first one uses

discrete raster approximations of the parts and the blank. This is illustrated in figure

4.2.1.1. From such approximations, the elements of the blank covered by the parts can be

easily identified. The number of such pixels covered simultaneously by more than one

Figure 4.2.1.1 Discrete representation of blank and polygonal part
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polygon can be used as a good approximation of the actual overlap area. This approach

works very well when the parts are not rotated. The discrete raster approximations of the

parts remain the same under translation. The pixels covered by the approximation of a part

at any location can be obtained very simply by translating the original approximation.

However, the approximation needs to be recomputed if the part is rotated and, this is a lim-

itation of this approach. The second method uses the area of the bounding box of the over-

lap polygons as an approximation of the area of overlap. This is illustrated in figure

4.2.1.2. This requires interference checking between all the possible polygon pairs. How-

Figure 4.2.1.2 Bounding box of overlap polygon

ever, it eliminates the expensive operation of forming the overlap polygons for each poly-

gon pair. Thus, it provides a relatively inexpensive alternative. The accuracy of the

approximation depends on each case. As shown in figure 4.2.1.3, the bounding box of the

overlap polygon of polygons P1 and P2 approximates the actual overlap polygon very

well. The overlap polygon of polygons P3 and P4 is much smaller than its bounding box.

Notice that such cases occur in a large number of layouts, especially towards the end of

the search, when the edges of two parts tend to be aligned with a slight amount of overlap.
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Figure 4.2.1.3 Approximation of overlap polygon by bounding box

4.2.2 Part growth based evaluation

The basic purpose of overlap computation is to quantify the extent to which the

layout is invalid. The same purpose can be served by computing the extent to which the

layout is valid. Consider the process shown in figure 4.2.2.1. Parts are grown into their

original shape in predetermined steps starting at their area centers. Area centers of parts A

and B are located and oriented by the variables of placement x, y and 0. Starting from only
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the area centers, in each step, the parts expand by 1/ 10th of the actual size. The total num-

9

tCq

Figure 4.2.2.1 Part growth based layout evaluation

ber of steps in which the original size is reached can be varied. The growth process for any

part stops when the part interferes with another part or with the boundary of the rectangu-

lar enclosure. The number of steps any part can grow before interference occurs contrib-

utes to the measure of the validity of the layout. In figure 4.2.2.1, part A grows 5 steps and

part B grows 6 steps. Thus, the total validity of the layout can be considered to be 11/20 (=

(5 + 6)/(10 + 10)). This validity of the layout can be combined with the main optimization

criterion such as efficiency. As an example (see figure 4.2.2.2), if a single polygon C is to

be placed in a configuration that minimizes the height of its highest vertex when polygons

A and B have already been placed at locations where they grow to their full size, the fol-
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lowing objective function can be used:

F = Minimize (Yi - P*(Gi/Gm));

where,

Yi = Height of the highest vertex of the polygon i to be placed;

Gi = The growth of polygon i (number of steps);

Gm = Growth (number of steps) required to reach the original size;

P = Penalty factor for the invalidity of the layout.

Randomly chosen configuration Lowest possible configuration

Figure 4.2.2.2 Placement of part using growth based evaluation;
parts A and B are already placed; part C is to be placed

in the lowest configuration.

Each step of the growth process can be thought of as increasing the radius of the

polygons by a fraction of the total radius. Since the area of enclosing circle increases as

the square of the radius, if steps of equal size are used, the increase in area of the polygons

in every successive step is higher. Therefore, the radius of the enclosing circle (and hence,

the expansion) of the polygon can be calculated using the square root of the step number,

instead of the actual step number. This ensures similar increase in area of the polygons in

each growth step.

When n polygons are placed simultaneously, this method requires an interference

check of all the polygons with each other (O(n2 )) for each growth step and the computa-
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tion time varies depending on the number of growth steps used. However, the computa-

tionally expensive operation of forming the overlap polygons is eliminated. Thus, the

order of computation is the same as in the case of direct overlap evaluation, but the num-

ber of steps are different. Therefore, it provides an efficient measure of the validity of a

layout. When a total of 10 growth steps is used, the method is about 3 times faster than the

computation of actual overlap.
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Chapter 5

Totality Approach

Part placement can be approached in two basically different ways. Placement of all

the parts can be considered simultaneously in what we term a totality approach. All the

variables required to describe the locations and orientation of the parts are considered

simultaneously for optimization. This approach is very different from a hierarchical

approach, in which a single part or a set of parts, is placed at a time in the space available.

In this chapter, the totality approach is discussed. Three variables are required to locate

one shape on a plane. Using genetic algorithms for the minimization of the total area occu-

pied, the total (3n) variables required to locate n shapes are mapped to a chromosome. The

naive representation discussed earlier is used with a totality approach.

5.1 Representation

Figure 5.1.1 shows a set of parts to be arranged in the smallest possible rectangular

enclosure. The three variables (x, y, ) required to locate each shape on a plane can be

Figure 5.1.1 Polygons to be arranged in the smallest area rectangular enclosure

mapped to a binary chromosome as shown in figure 5.1.2. With the chromosome represen-

tation chosen, for a randomly generated set of values, overlap of parts is produced very

easily as shown in figure 5.1.3. The usual single point crossover can be used with such a

1111 01100011 0010 1101 1111 0110 1011 0001 0001 11000110
x y 0 x y 0 x y 0 x y 0

Polygon 1 Polygon 2 Polygon 3 Polygon 4

Figure 5.1.2 Location and orientation variables mapped to binary chromosome
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representation. Notice that in the chromosome shown in figure 5.1.2, the bits correspond-

ing to some polygons are closer to each other than others. As an example, the bits corre-

Figure 5.1.3 Overlap of polygons produced with randomly
generated values for the bits in the chromosome

sponding to polygons 1 and 2 are closer to each other than the bits corresponding to

polygons 1 and 4. This means that the probability of the bits corresponding to polygons 1

and 2 being carried into the offspring after a single point crossover is higher than the sim-

ilar probability for polygons 1 and 4. To overcome this bias caused by single point cross-

over, a modified crossover as shown in figure 5.1.4 can be used. This crossover is similar

in spirit to the single point crossover. The bits corresponding to a randomly chosen num-

ber of polygons are carried into one of the offspring directly. The bits corresponding to all

but one of the remaining polygons are carried directly into the other offspring, and a single

point crossover occurs on the substring of bits corresponding to the remaining polygon. In

figure 5.1.4, the bits corresponding to polygon 1 and 4 (selected randomly) are carried into

childl from parent 1 and into child2 from parent 2. The bits corresponding to polygon 2

(selected randomly out of the remaining polygons 2 and 3) are carried directly into child2

from parent 1 and into childl from parent2. A single point crossover occurs within the bits

corresponding to (the remaining) polygon 3. Such a crossover eliminates the positional

bias created by a single point crossover. We refer to this crossover as a modified single

point crossover.

The two methods of layout evaluation discussed in chapter 4, overlap computation

and growth based evaluation, can be used to quantify the validity of a layout. The fitness

function used for the evaluation of the layouts generated by a naive representation penal-

izes the invalidity of the layout.
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0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
x y 0 x y

Polygon 1

0

Polygon 2

x y 0

Polygon 3

x y 0

Polygon 4

Parent 1

1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111

x y 0 x y

Polygon 1 Polygon 2

0 x y 0 x y

Polygon 3 Polygon 4

Parent 2

0000 0000 0000 1111 1111 1111 0000 0001 1111 0000 0000 0000
x y 0 x y

Polygon 1 Polygon 2

0 x y

2I Polygon 
0 x y 0
3 Polygon 4

Child 1

1111 1111 1111 0000 0000 0000 1111 1110 0000 1111 1111 1111

x y 0 x y 0 x y

Polygon 1 Polygon 2 Polygon 3

0 x y

Child 2

Figure 5.1.4 Modified single point crossover

5.2 Overlap computation
The following fitness function is used when the overlap area of parts is evaluated

directly:

F = Minimize (At/(ZAi; i = l,..,n) + P*( (Aij/Aj; j=i,..,n); i=l,..,n)/((n 2));

where,

Ai = Area of polygon i;

At = Area of the rectangular enclosure;
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Aij = Area of overlap of polygon i and j;

P = Penalty factor for overlap.

Overlap area for each polygon pair is normalized by the area of one of the poly-

gons and penalized. Also, the entire summation is normalized by the total number of poly-

gon pairs possible. Thus, the maximum value reached by the penalty term in the fitness

function is 1.

Figure 5.2.1 shows layouts obtained for different values of the penalty factor P. As

can be expected, large values tend to produce layouts with little overlap but low nesting

efficiency and vice versa. Each of the results shown were obtained after 125 minutes of

computation on a 50 mips workstation. A simple genetic algorithm was used. The relevant

details of the genetic algorithm are listed below:

Crossover: Modified single point;

Population size: 100;

Number of generations: 300;

Probability of crossover: 0.65;

Probability of mutation: 0.003;

Selection method: Roulette-wheel based, with elitist selection.

Penalty factor = 1.0

Figure 5.2.1 Layouts with different overlap penalty functions
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Penalty factor = 10.0

Penalty factor = 25.0

Figure 5.2.1 (continued) Layouts with different overlap penalty functions
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Penalty factor = 50.0

Figure 5.2.1 (continued) Layouts with different overlap penalty functions

5.3 Growth based evaluation

The alternative to overlap evaluation, growth evaluation, described in section 4.2.2

can be used to quantify the total validity of a layout. The locations and orientations of the

polygonal shapes are altered by a genetic algorithms search. After growing each shape in

predetermined steps until it interferes with the other shapes, the total growth is used as a

measure of the validity of the layout. The following fitness function can be used:

F = Maximize ((ZAi;i = 1,..,n)/At + G*(X(Gi/Gm);i=l,..,n)/n);

where,

Ai = Area of polygon i;
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At = Area of the rectangular enclosure;

Gi = The growth of polygon i (number of steps).

Gm = Growth required (number of steps) required to reach the original size.

G = Growth factor for validity of layout.

The second term in the fitness function measures the total validity of the layout.

The total growth possible is divided into Gm number of steps. The growth factor can be

varied just as the overlap penalty factor. Figure 5.3.1 shows layouts obtained for different

values of G.The polygons grow to their full size in 10 (Gm) steps. In the figures on the

right, the polygons have been grown until they come in contact with other polygons. If

they are allowed to grow further into their full size, they overlap with each other as shown

in the figures on the left. Again, for high values of G, the polygons in the layouts are

spread far away from each other. The polygons have grown closer to their original size

and thus have less overlap. The computation time required in this case for the same num-

ber of evaluations as in section 5.2 is much less: 30 minutes. This illustrates the computa-

tional efficiency of the growth based evaluation method. The number of steps in which the

parts are grown can be increased towards the end of the run for better accuracy. As men-

tioned in section 4.1.3, the polygons are expanded in each step by the square root of the

step number to ensure similar growth in each step.
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Growth factor = 0.2

Growth factor = 1.0

Figure 5.3.1 Layouts with different growth factors
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Growth factor = 5.0

Figure 5.3.1 (continued) Layouts with different growth factors
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Growth factor = 10.0

Figure 5.3.1 (continued) Layouts with different growth factors
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5.4 Limitations of a totality approach

The results shown in the previous section expose the limitations of a totality

approach. Parts overlap even at the end of the run. The packing densities obtained are not

satisfactory (The same polygonal shapes can be packed to obtain better packing efficien-

cies using a hierarchical approach, as illustrated in chapter 6). The poor results could be

attributed to the representation and the crossover used. As mentioned earlier, a randomly

generated set of values for the binary chromosome often leads to invalid layouts. The

crossover operation can also yield invalid layouts after mating two valid parents. This is

illustrated in figure 5.4.1. The two parents chosen for crossover are valid layouts, yet after

performing a crossover, the two offspring layouts produced are invalid. The building

Parentl Parent2

LE
Childl Child2

Figure 5.4.1 Destructive nature of crossover for a totality approach

block hypothesis on which genetic algorithms operate, does not hold true in this case.

Combining two good blocks from parent and parent2 does not lead to a better individual,

very often it leads to an invalid individual. A schema carried over into the offspring during

the crossover operation does not represent the same characteristic in the offspring as in the

parent. At first glance, since any schema represents the location and orientation variables

of some of the shapes being arranged, replicating these values in the offspring would

appear to carry over certain characteristics of the parent into the offspring. However, the
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characteristics and quality of a layout include the location and orientation of each part rel-

ative to the remaining parts. The two subgroups that are combined to produce offspring

are, by themselves, good building blocks, since the remaining parts are not placed over

them. These characteristics of the layouts are only implicitly represented in the chromo-

some; certainly, the crossover operation does not take into account the importance of the

relative positions of parts over absolute positions. This importance of positioning rectan-

gular parts relative to each other is captured in the symbolic representations described ear-

lier in section 4.1.1. In summary, a better representation than simply mapping the

variables x, y, 0 into a binary chromosome is needed.
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Chapter 6

Hierarchical Approach

This approach is termed "hierarchical" since it consists of two levels of optimiza-

tion. Given a set of polygons, a high level GA operates on symbolic arrangements of the

polygons and tries to find the optimal arrangement. A low level GA decodes these

arrangements in a certain manner and actually lays out the polygons by finding optimal

locations for each polygon in the arrangement. In this section, we describe two implemen-

tations of this hierarchical approach.

In the first implementation, a binary tree representation is used at the higher level.

The lower level GA is used to find the smallest area rectangular enclosure for a pair of

polygons or polygon "clusters". The representation is used to build a binary tree of poly-

gons by using the lower level GA at each node of the tree. This representation is used

when there is no constraint on the width or length of the desired layout. The higher level

GA searches for the arrangement of polygons in the binary tree that minimizes the area of

the total rectangular enclosure.

In the second implementation, a string based representation is used at the higher

level. The string represents the order in which polygons are packed on a blank of given

width. The lower level GA is used to optimally pack a single polygon on the blank. Poly-

gons are packed on the blank in the order represented by the string and the higher level

GA attempts to find the order that minimizes the length of the layout.

6.1 Binary Tree representation

As described in section 4.1.3, an assembly-based approach can be used to find the

smallest rectangular enclosure for two given polygons. This approach can be extended to

the case where the optimal enclosure for two clusters of polygons is to be found. This is
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illustrated in figure 6.1.1, where the smallest area rectangle enclosing the two clusters 1 &

2 is found. Notice that the two polygons in each polygon cluster (cluster 1 and cluster 2)

maintain their relative positions. It is thus possible to build up a binary tree of polygons

based on many such pairwise nesting operations as shown in figure 6.1.2. Each node in the

A B

Polygon cluster 1

CD

A B

C

Polygon cluster 2

Two polygon clusters Nested polygon clusters

Figure 6.1.1 Optimal nesting of polygon clusters

tree represents a search for the smallest area rectangle for two clusters of polygons; the

low level GA performs the evaluation of each node in the tree. After nesting two polygons

or two clusters of polygons, the resulting cluster of polygons maintains relative locations

and orientations among constituent polygons in all subsequent operations. The tree is

ABCDEFGH

ABCD EFGH

AB CD EF GH

A BC DE FG H

Figure 6.1.2 Binary tree representation

evaluated from the bottom up, resulting in a nesting process as illustrated in figure 6.1.3.

Since each node evaluation is restricted to two polygons or polygon clusters, the number
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of variables is always three, as explained in section 4.1.3. This ensures fast and robust

search at each stage.

Figure 6.1.3 Evaluation of binary tree

The choice of polygons to be paired with each other obviously governs the quality

of packing attained in each packing operation. The higher level GA finds the best tree. The

chromosome for this search is purely symbolic as shown in figure 6.1.4. The chromosome

appears at the bottom level of the tree, defining the tree uniquely. Such a binary tree repre-

sentation allows only polygon sets of size 2n to be packed. This limitation can be over-

come by inserting dummy polygons of zero area into the chromosome. The low level

search is not required if a polygon is paired with such a dummy polygon. The crossover

ABCDEFGH

Figure 6.1.4 Chromosome for binary tree representation

and mutation operators used for this search will be defined in section 6.3. No restrictions

are imposed on the length or width of the enclosing rectangles found at each stage of nest-

ing. The fitness function for the high level GA is:

F = (Ai; i=l,..,n)/At;

where,
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Ai = Area of polygon i;

At = Area of the enclosing (smallest area) rectangle.

Notice that both (i.e., the length and width) dimensions of the smallest area rectan-

gle can be varied as shown in figure 1.1.1.3. Thus, the binary tree representation is suitable

for the case where there is no restriction on the dimensions of the resulting enclosure.

Since the relative locations of polygons after each node in the tree is evaluated do

not change in the evaluation of the higher nodes, it is possible that the global optimum

may not be found. But for a problem of combinatorial optimization such as nesting, it is

perhaps more important to find satisfactory solutions in a reasonable amount of time. In

most cases, good local nesting tends to produce good nesting overall. This observation

about the nesting problem forms the basis of nesting polygons in a hierarchical manner.

The typical packing densities achieved even in the very beginning of the higher level

search are comparable to those obtained by a naive representation (chapter 5) towards the

end of the optimization run. This fact can be attributed to the local optimization carried

out at each node in the tree. Thus, average densities obtained by using a hierarchical repre-

sentation are higher than the average densities obtained by using a naive representation.

Such a hierarchical representation follows the building block hypothesis closely.

Each node finds the smallest area rectangular enclosure for two sets of polygons. The

combination forms a building block which in turn is combined with another such building

block that is created on the adjacent node at the same level in the binary tree. Genetic

algorithms rely on the hypothesis that combining two good building blocks leads to

another good block. This representation ensures that this hypothesis holds true by finding

optimum enclosures at each node in the tree. The hypothesis fails often in the case of a

naive representation, since well packed complementary parts of two parents can produce

an invalid layout upon combination via crossover.

6.2 String representation

Often, the given shapes are to be cut from a roll or blank of material of constant
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width, as shown earlier in figure 1.4, e.g., the layout of sheet metal parts or pieces of gar-

ments. Usually, this constraint of fixed width is accounted for using a penalty term for its

violation (see Fujita et al., 1993; Jain et al., 1990; Oliviera and Ferreira, 1993). This prob-

lem can be avoided by using a variant of the approach based on assembly explained earlier

in section 4.1.3. A "bin" of width W, equal to the blank width, is set up as shown in figure

6.2.1. The polygons to be packed are then assembled into the bin by "dropping" them

from line L sequentially. For each polygon i, an optimal configuration in the bin is found

by varying the location from which it is dropped and its orientation.The low level GA per-

forms this local optimization. Several criteria for this local optimization can be used. One

such criteria we use is the lowest location in the bin:

F = (Yi; i=l,..,n);

where,

Yi = Height of the highest vertex of the ith polygon (being currently packed) in the

bin.

It can be seen that the order in which the polygons are dropped into the bin con-

trols the quality of the nesting along with each local optimization. The higher level GA in

this case finds the best possible order. The chromosome used is a list of the polygons (fig-

ure 6.2.2) similar to the case of the binary tree described earlier, but with a very different

geometric interpretation. Evaluation of this chromosome is done by packing each succes-

sive polygon in the list from left to right as illustrated in figure 6.2.3. Once the optimal

location for a particular polygon in the bin is found, it is held fixed at that location for the

packing of the remaining polygons in the chromosome. The fixed width constraint is auto-

matically accounted for by restricting the range of locations of the polygon along the line

L to the width of the bin W. Only two variables govern the packing of each polygon, mak-

ing each local search very efficient. For the high level GA, the fitness function used is:

F = Minimize (Max {Yi I i = l,...,n});

where,

Yi = Height of the highest vertex of the ith polygon in the bin;

n = Number of polygons to be packed.
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Again, local minimization at each stage ensures a high packing density for each

layout as in the case of a binary tree representation. Similarly, the possibility of missing

the global optimum exists. This approach is a generalization of the "skyline-pack" algo-

rithm described by Smith (1985). The building block hypothesis works even in this case,

although in a different sense. Each stage of local optimization ensures attachment of a

good building block to the one constructed in the previous stage. The blocks are built in a

sequential manner, as against a hierarchical manner in the tree-based representation.
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ABCDEF

a. Blank available

Polygons
assembled
in this order

I X > l
.4 / D Ve L

b. Locating polygon
with low level GA

c. Polygon D assembled
with chosen x & 0

d. Optimal location
for polygon D

x 0
11101 10101

e. Chromosome for
low level GA

Figure 6.2.1 Low level GA for locating one polygon optimally
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ABCDEF

Figure 6.2.2 String chromosome

A

Figure 6.2.3 Stages of evaluation of a string chromosome

6.3 Geometric Interpretation of the Chromosome
The chromosomes used in both representations are the same, although the geomet-

ric interpretations are rather different. Figure 6.3.1 shows the mapping of the chromosome

in the case of the binary tree representation to the actual geometric domain. Each line rep-

resents a node in the tree. The line L1 divides the layout into two distinct regions. Each of

these regions is again divided into two distinct regions by lines L11 and L12. The geomet-
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rically meaningful schemata for this chromosome are represented by subtrees under every

node in the tree: AB, CD, ABCD. The number of such schemata is one less than the num-

ber of polygons. Here, by the term "geometrically meaningful schemata" we mean those

substrings of the chromosome which maintain the same meaning independent of the

remaining parts of the chromosome. Thus, for a chromosome such as ABCDEFGH, the

schema ABCD results in the same relative arrangement of the polygons (A, B, C, D) as in

the chromosome ABCDEHFG, whereas the schema FG present in both the chromosomes

does not. Notice also that the two child nodes of any node in the tree can be exchanged

without altering the result, e.g., the schemata AB and BA evaluate to the same result.

L12

ABCD Li

A B L1 
LI
Q L12 AB CD

Lll A B C D

Figure 6.3.1 Geometric interpretation of Binary Tree

For the case of the string-based representation, mapping of the chromosome to the

geometric domain is illustrated in figure 6.3.2. Each line represents a point along the

length of the chromosome. Thus, any point in the chromosome divides the layout into two

geometrically distinct regions: the substring to the left represents the regions below the

corresponding line in the layout and the substring to the right represents the region above.

During the process of packing polygons, the polygons packed earlier (those on the left

side in the chromosome) affect the packing of those packed later (polygons on the right),

but not vice-versa. Hence, the geometrically meaningful schemata in this case are defined

only by the substrings starting from the leftmost end of the chromosome string, e.g., A,
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AB, ABC, ABCD. Some other schemata such as CD, also map to a geometrically distinct

region, but the relative arrangement of the two polygons (C and D) will be different from

that shown in figure 6.3.2 if the schema in a different chromosome is, for example, BACD.

The number of such meaningful schemata equals the number of polygons.

ABCD

L1 L2 L3 L4

Figure 6.3.2 Geometric interpretation of string chromosome

6.4 Crossover and Mutation

Since the polygons to be nested are predefined, the traditional single-point cross-

over used for the higher level symbolic GA can lead to invalid chromosomes. This is illus-

trated in figure 6.4.1. The two parent chromosomes represent valid layouts, although the

offspring do not. Two instances of polygon B are created in child 1, while the polygon F is

missing. The order crossover suggested by Smith (1985) attempts to maintain one part of

each parent instead of recombining complementary parts from both parents. A crossover

point is chosen at random along the length of the chromosome. The left part of each parent

is carried into the offspring; the order of the remaining polygons is obtained by scanning

the other parent. Thus, in figure 6.4.2, the left part of parent 1 is copied into child 1

directly. It is important to preserve the left part of the chromosome since this represents a

meaningful schema as explained earlier in section 6.3. If the right part of the chromosome
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is preserved, the high level search would be equivalent to a random walk since the right

part does not represent any characteristics of the parent in the offspring. The order of the

remaining polygons D, E & F in childl is obtained from their order in parent 2. In our

opinion, obtaining the order from the other parent really has little geometric interpretation:

it is more of a random shuffling of the right half of the chromosome rather than a combina-

tion. This is the crossover operation used in the string-based representation. Thus, the

crossover operator preserves only geometrically meaningful schemata and allows the

characteristics of fitter parents to increase in number. This operator is similar in spirit to

the simulated annealing operator which finds a neighbor of a given solution.

Valid Parents

Parentl ABCDEF

Parent 2 CFADBE

t

Invalid Offspring

Childl ABCDBE

Child2 CFADEF

Crossover point

Figure 6.4.1 Single point crossover

Valid Parents

Parentl ABCDEF

Parent2 CFADBE

Crossover point

Valid Offspring

Childl ABCFDE

Child2 CFABDE

Figure 6.4.2 Order crossover

The mutation operator chooses at random a polygon and inserts this polygon at a

randomly chosen location to its left as shown in figure 6.4.3. This is done so that the pop-
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ulation does not remain sensitive to the initial, randomly created population. The cross-

over operator maintains the left part of each parent. Thus, substrings close to the left end

of any chromosome are likely to be similar to those in the initial population. For example,

if the initial population does not have any chromosome that has a particular polygon in the

leftmost position, the crossover operator alone is insufficient to produce such a chromo-

some. A mutation operator is necessary to offset this bias.

CFADB E CEFADB

Figure 6.4.3 Mutation

The crossover operator used in the tree based representation described above is a

variation of the order crossover. The chromosome for this representation is as shown in

figure 6.1.2 and 6.1.4; defining the bottom level of the tree defines the complete tree. In

this case, the crossover points are randomly chosen nodes in the binary tree (see figure

6.4.4). The entire subtree under the crossover point node is carried into the offspring with-

out alteration. This is based on the interpretation of the chromosome discussed in section

6.3, retaining geometrically meaningful schemata in the offspring. The remaining part of

the tree is obtained by using the order in which the remaining polygons appear at the bot-

tom of the tree defining the other parent. Again, this is more of a random shuffling of the

remaining polygons as in the case of the String based representation. This obviates any

need for a mutation operation. It is not possible to obtain the remaining part of the tree by

directly using the corresponding subtree in the other parent; this leads to invalid chromo-

somes, similar to a single point crossover used for the string representation.
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Parent 1

Crossover ABCDEFGH
Point \.

Subtree carried
into childl

EFGH

EF GH

A A
E FG H

Child 1

Crossover D B F G E H C A
Point

DBFG EHCA

DB FG EH CA

A A A
D BF GE HC A

Subtree carried
into child2

Child 2

ABCDFGEH

ABCD FGEH

Ak Ak
AB CD

AA

DBFGACEH

DBFG ACEH

Ak Ak
DB FG

A A
A BC DF GE H

AC

A
D BF GA CE H

Result of binary tree crossover

Figure 6.4.4 Crossover operator for the binary tree representation

6.5 Reducing Computation

The local optimization computation used for both representations requires mainly

intersection checks between sets of lines. Evaluation of one higher level chromosome

(processing a list or tree of polygons) can be shown to be O(n2 ), when n polygons are to be
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nested. However, the computation can be reduced by maintaining a record of previous

optimizations done at the lower level. For the case of the binary tree representation, at

each node, a tree optimally combines two polygons or two sets of polygons. The optimum

result of such a combination will be the same every time it is encountered in the search.

We compile a history of all such lower level optimizations as the higher level search pro-

ceeds. Thus, after evaluating a binary tree shown in figure 6.1.3, information for the fol-

lowing optimal arrangements is recorded: AB, CD, EF, GH, ABCD, EFGH, ABCDEFGH.

At a later point in the search, if the chromosome BADCEHFG is to be evaluated, the sub-

trees BA, DC and BADC need not be evaluated again. The results of the previous evalua-

tion of ABCD are inserted into the tree and repeated evaluation is avoided. Note that

swapping the locations of the children of a node does not alter the result: the subtree AB

results in the same packing as the subtree BA. This reduction in computation again is

based on the definite mapping of the chromosome to the geometry. The geometrically dis-

tinct regions or the building blocks for the tree shown in figure 6.1.3 are invariant through-

out the higher level search.

For the string based representation, a similar history of previous evaluations is

maintained. The optimal locations of polygons on the blank will not change, provided the

polygons are packed in the same order as before. After evaluating the chromosome shown

in figure 6.2.2, the result at each stage of packing as shown in figure 6.2.3 is recorded: A,

AB, ABC, ABCD, ABCDE, ABCDEF. When the initial part of any chromosome is the

same as any of these schemata, the lower level optimization (of that initial part) can be

avoided. If the chromosome to be evaluated is FABCDE, although the substring ABCDE

was evaluated before, it must be evaluated again since it does not appear at the beginning

of the chromosome and represents different relative locations of the polygons.

To maintain the history of computation, locations and orientations of all the poly-

gons for each evaluation of a higher level chromosome are stored. The storage required

for this purpose is bounded by the total number of evaluations carried out (number of gen-

erations times the population size) during the optimization run of the higher level GA.
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6.6 Implementation details

For the low level GA, a population size of 30 is used. A roulette-wheel based

selection is used along with an elitist selection strategy. Probabilities of crossover and

mutation used are 0.9 and 0.01, respectively. A termination criterion of 30 generations is

used. For the high level GA, a population size of 60 is used. The termination criterion used

is the number of generations (30). A roulette-wheel based selection is used along with an

elitist selection strategy. Probability of crossover used is 0.65. As mentioned earlier, muta-

tion is required only for the String based representation and its probability is 0.01.

6.7 Examples

In this section, results obtained by the two implementations of the hierarchical

approach described above are illustrated. Figure 6.7.1.1 shows results obtained by the

binary tree representation. (Note that fitness refers to packing density in the figures in this

section). The plots of the best packing density as well as the average packing density vs.

generation number are shown in figure 6.7.1.2. The plot of average packing density vs.

generation illustrates the point made earlier that the average packing density is reasonably

high from the very beginning of the run due to the local optimization at each stage. Figure

6.7.1.3 shows computation time per generation vs. generation number. The computation

time reduces as generations progress since fewer and fewer subtrees need to be evaluated

as explained in the previous section. A typical optimization run with 16 objects requires

about 2.0 hours on a 100 mips Silicon Graphics Indigo Extreme workstation. The figures

6.7.2 show results obtained for a jigsaw puzzle, where the parts fit together to form a rect-

angle. In this case, only 4 optimal solutions corresponding to 4 orthogonal orientations

exist. (Ideally, the packing density of an optimal packing should be 1.00, although due to

clearance allowed between parts, optimal density is only about 0.91.) The tree based rep-

resentation is unable to find a global optimum. This illustrates the limitation of the repre-

sentation. By pairing objects at each stage, the possibility of finding the global optimum is

eliminated, except in certain special cases. Figure 6.7.3 shows layouts of rectangular parts.
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Figure 6.7.1.1 Sample layouts using binary tree representation
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Figure 6.7.1.3 Computation time per generation for binary tree representation
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Figure 6.7.2.1 Jigsaw puzzle attempted with binary tree representation
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Fitness = 0.684

Figure 6.7.2.2 Layout of jigsaw puzzle using binary tree representation
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Fitness = 0.790

Fitness = 0.843

Figure 6.7.3 Layout of rectangles using binary tree representation

With the String representation, seven different fitness functions were tried for the

low level search. In optimally locating a single part, voids are created in the pack which

are inaccessible to parts that are assembled later. The void area adds to the total waste in

the packing. This area under the part that cannot be accessed later by other parts is termed

the shadow area of that part. This is illustrated in figure 6.7.4.
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Polygon assembled

.Shadow aea of
polygon B

Figure 6.7.4 Shadow area of a polygon

Some of the lower level fitness functions described below specifically attempt to

reduce this waste.

1. Minimize Height:

F = Minimize (Yi);

where,

Yi = Height of the highest vertex of the ith polygon.

2. Optimize packing density at each stage:

F = Maximize ((ZAk; k = 1,...,i)/(Yi*W));

This can be thought of as a normalized measure of height.

3. Reduce scrap at each stage:

F = Maximize (Si/Si+l);

where,

Si = Scrap at each stage;

= (W*Max {Yk I k=l,...,i} - (Ak; k=l,...,i));

This attempts to lower the scrap at each stage in comparison to the earlier stage.
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Since the scrap of the previous stage is constant for the search, this also can be

thought of as a normalized measure of height.

4. Minimize shadow area:

F = Minimize (Asi);

where,

As i = shadow area of polygon i;

This attempts to minimize the total waste by reducing the waste at each stage.

5. Optimize packing density with penalty for shadow area:

F = Maximize ((ZAk; k=l,...,i)/(Yi*W) - (Asi/Ai)2);

6. Minimize height with upper limit on shadow area:

F = Minimize (Yi);

s.t. F = 1000.0 if Asi > 0.5*Ai;

By assigning a very high height value, part locations that waste large areas are dis-

carded.

7. Optimize shadow area and select lowest in height:

F = Minimize (Asi), and select solution with lowest height from three best solu-

tions.

The search attempts to reduce the shadow area, but at the end of the optimization,

out of three locations with the smallest shadow area, the lowest location is chosen.

Figures 6.7.5 show results of layouts restricted to blanks of fixed width using the

string based representation for each of the fitness functions discussed above. The compu-

tation time per generation (see figure 6.7.5.9) does not drop as rapidly as in the case of the

binary tree representation. This could be due to the fact that the number of possible differ-

ent chromosomes is higher than in the case of the tree representation. A typical run for this

representation using 10 polygons takes about 2.5 hours of computation, which is higher
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than for the tree based representation. A possible reason for this could be the nature of the

chromosome leading to less repetition of computation than in the case of the binary tree

representation. Again, due to the limitations imposed by a single optimality criterion at the

lower level of search, a jigsaw puzzle (see figures 6.7.6) cannot be solved by this represen-

tation. (The ideal density for this jigsaw puzzle is not 1.00, but 0.92). Results obtained for

a set of rectangles are shown in figure 6.7.7.

Some trends about the fitness functions emerge from the examples in figure 6.7.5.

The fitness function based only on height (figure 6.7.5.1) works the best, although normal-

izing height (figure 6.7.5.2) seems to work almost as well. Minimizing scrap at each stage

(figure 6.7.5.3) works similarly, since the scrap quantity from the previous stage used in

the fitness function is constant throughout the lower level optimization, and the scrap

quantity for each stage is based on height. Trying to minimize the shadow area (figure

6.7.5.4) leads to several closely packed structures that do not attempt to minimize the

height at each stage, leaving the higher level GA with few good candidates to choose

from. By allowing only a certain amount of shadow area at each stage and minimizing

height, well packed structures (figure 6.7.5.5) are obtained. Similarly, penalizing the

shadow area (figure 6.7.5.6) provides satisfactory results. By minimizing the shadow area

and choosing the lowest location from a few (in this case 3), of the best alternatives, the

notion of maintaining a low overall height of the pack can be addressed (figure 6.7.5.7).

This approach is rather ad hoc and the results reflect this fact. A more sophisticated

method would require identifying a few local minima and selecting the lowest location

from them.
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Fitness = 0.734

Figure 6.7.5.1 Sample layouts using height based fitness function

Fitness = 0.733 Fitness = 0.757

Figure 6.7.5.2 Sample layouts using normalized height as fitness function
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Fitness = 0.700

Figure 6.7.5.3 Sample layouts for minimizing waste at each stage

Fitness = 0.581 Fitness= 0.621

Figure 6.7.5.4 Sample layouts using shadow area based fitness function
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Fitness = 0.727

Figure 6.7.5.5 Sample layouts for minimizing height and penalizing shadow area

Fitness = 0.706 Fitness = 0.715

Figure 6.7.5.6 Sample layouts using height based fitness function
with shadow area as constraint
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Fitness = 0624

Figure 6.7.5.7 Sample layouts for minimizing shadow area,
selecting the lowest location
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Figure 6.7.5.9 Computation time per generation for String representation
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Figure 6.7.6.1 Jigsaw puzzle attempted with string representation
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Fitness = 0.704

Figure 6.7.6.2 Layout of jigsaw puzzle using string
height based fitness function

based representation,

Fitness = 0786 Fitness = 0.793

Figure 6.7.7 Layout of rectangles using string based representation,
height based fitness function
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Chapter 7

Incorporation of Human Strategies

7.1 Review of totality and hierarchical approaches

Both approaches described in the previous two chapters, totality and hierarchical,

have characteristics that arise from the representations used. The totality approach is very

general, in that it has the potential to reach any point in the solution space, except those

obviated due to the level of descretization of the range of variables used. However, the

representation and crossover operator used are largely ineffective. The hierarchical

approach relies on a set of local optimizations to build good solutions. The representation

and crossover operators allow the building block hypothesis to hold true for this approach.

However, due to the local optimization based approach, the global optimum is not reached

in many cases. Also, the local optimization requires a good criterion for the placement of

parts.

7.2 Motivation

It has been observed that human pattern nesting experts outperform automated lay-

out systems developed so far. The human eye can notice very critical characteristics of the

shapes to be placed. In so doing, large amounts of visual information is processed. Often,

such observation and information extraction processes are very complex and difficult to

describe in a systematic manner that can be implemented as a computer algorithm. As an

example, the observation of similarity between two shapes comes easily to humans, but it

is a non-trivial task to do so computationally. The success of human experts in pattern

nesting could be attributed to this capacity to process and extract visual information. The

work described in this chapter is motivated by this success. It is an attempt to understand

and model human intuition in order to develop effective pattern nesting algorithms. The

work has focused on the problem of creating layouts of parts on a blank of fixed width.
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Also, only translations of parts have been considered.

7.3 Human strategies

The approach taken by human experts to pattern nesting can be termed hierarchical

or sequential; one part is placed at a time to develop a complete layout. The layouts thus

created are partially modified to create better ones. The extent of modification depends on

the quality of the layout and the nature of the layout: better layouts tend to be modified

less and vice versa. The nature of modifications done to a layout depend largely on the

shapes of the parts and their arrangement in the layout. While the overall nature of the

placement and modifications strategies is very complex, certain characteristics and trends

emerge. These strategies can be broadly classified into three categories: location identifi-

cation, location evaluation, and sequence search reduction.

7.3.1 Location identification

Consider the placement of part B shown in figure 7.3.1.1 after part A has already

been placed on the layout. The part A is considered fixed at the location shown. Human

experts generally consider the locations B1, B2, B3 shown in figure 7.3.1.1 for placement.

Locations such as B4 and B5 are not considered. We term the locations B1, B2, B3 as

"corner locations" or simply "corners". This method of considering only the corner loca-

tions for placement seems rather ad-hoc at first glance and one suspects that this could

eliminate potentially good layouts. We investigate this placement method and its scope

and limitations.
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Figure 7.3.1.1 Part placement at corner locations

Consider the trivial, one dimensional problem of placing three rectangles on a

blank such that the length of the layout is minimized. We follow the simple strategy of

placing the parts in the leftmost location and varying the sequence in which the parts are

placed. The sequence ABC can be evaluated by placing the parts sequentially as shown in

figure 7.3.1.2. Similarly, all the possible (3!) sequences can be evaluated leading to the

same length of layout. In figure 7.3.1.3, we extend our strategy to a more complex one

Figure 7.3.1.2 Corner placement strategy for one dimensional nesting problem.

dimensional case. The parts shown have the same width, although they have shape details

that require a particular arrangement to achieve the minimum length layout. Consider the

evaluation of the sequence ACB. After placing A in the leftmost possible location, C is
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placed in the leftmost available location. Part B follows similarly to produce the subopti-

mal layout shown in figure 7.3.1.3 (b). It would seem that the strategy of placing part C at

the leftmost location is the cause of the failure to produce the optimal layout. If part C is

placed away from the corner location as shown in figure 7.3.1.3 (c), then part B can be

placed in the gap created between A and C to produce the optimal layout. However, we

also need to consider other sequences such as ABC. If we follow the simple strategy of

placing the parts in the leftmost possible location at each stage, the resulting layout is opti-

mal. The following reasoning explains the success of the strategy:

For one-dimensional layout, if a candidate location (1) of a part in the evaluation of

a sequence (Si) is not a corner location but corresponds to the global optimum, that loca-

tion (1) can be reached via a different sequence (Sj) wherein it will be a corner location.
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(a) Optimal layout of three parts

(b) Evaluation of sequence ACB using corner placement strategy

(c) Alternative location of C in the evaluation of sequence ACB
leading to optimal layout.

Figure 7.3.1.3 Corner placement strategy for extended
one dimensional nesting problem
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(d) Evaluation of sequence ABC using corner placement strategy

leading to optimal layout.

Figure 7.3.1.3 (continued) Corner placement strategy for extended
one dimensional nesting problem

Thus, while placing a part during the evaluation of a given sequence, we need only

consider the corner locations. We need to consider one more possibility before extending

our reasoning to the two dimensions. Consider the layout shown in figure 7.3.1.4. The

location of part B is not a corner location. However, B can be moved to the leftmost (cor-

ner) location in the gap between A and C as shown, without affecting the quality of the

layout. In fact, B can be moved to any location within the gap between A and C without

affecting the quality of the layout. If B is moved to the leftmost location, part C can be
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moved to its left, producing a better layout. Thus, the locations of any part that are not cor-

ner locations can be reduced to corner locations by moving that part in the leftward direc-

tion. If this process is applied to all the parts that are not at corner locations, the layout

quality can be improved. Thus, only corner locations need to be considered in placing a

single part; other locations do not correspond to the global optimum. The reasoning devel-

oped earlier needs to be modified in the following manner:

For one-dimensional layout, if a candidate location (1) of a part in the evaluation of

a sequence (Si) is not a corner location but corresponds to the global optimum, that loca-

tion (1) can be reached via a different sequence (Sj) wherein it will be a comer location,

else that location (1) does not correspond to the global optimum, since the reduction of that

location to the nearby corner location (') leads to improvement in the layout quality.
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Location of part B away from the corner

Part B moved to local corner without affecting layout quality

Figure 7.3.1.4 Non-corner placement reduced to corner placement
without affecting layout quality

For the two dimensional case, we can identify the corners by locally moving the

parts to the leftmost as well as the uppermost or the lowermost locations. This is shown in

figure 7.3.1.5. Starting from the location Bi", part B is moved upward (to location Bi')

until it comes in contact with the upper boundary of the layout. It is then moved to the left

until it comes in contact with part A (at location B 1). Starting from other locations and
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similarly moving part B, the locations B2 and B3 (figure 7.3.1.1) are reached. The loca-

r--4

Figure 7.3.1.5 Reaching corner locations by moving
along two perpendicular directions.

tions B 1, B2 and B3 correspond to locations where the boundary of part B is in contact

with at least two different points of the existing boundaries in the layout, such that the nor-

mals of the existing boundaries at the contact points are non parallel. This is illustrated in

figure 7.3.1.6. Each normal serves to reduce one degree of freedom of placement. Since

we are considering only translations, each part has two degrees of freedom of placement.

By ensuring contact at two different points, these two degrees of freedom are eliminated.

It is as if the part is forced into the corners by applying two forces Fx and Fy, and the

existing boundaries provide normal reactions that balance these forces. The normals obvi-

ously must be nonparallel to balance the two nonparallel forces applied. Since we allow

only translations of the parts and not rotations, we need not consider moment imbalance

about the center of mass of the part. As a result of the translational constraint, we assume

that sufficient torque is supplied at the center of mass to balance the moment imbalance

created by the applied forces and the normal reactions provided by the walls. This process

enables us to identify the corners directly.
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Figure 7.3.1.6 Two non parallel normal forces at contact points on existing
boundaries balance applied forces.

We try to extend the reasoning developed earlier to the two-dimensional case.

Consider the location B5 in figure 7.3.1.1. This location can be reached after placing other

parts before placing part B during the evaluation of a different sequence. For example, the

sequence ACDB leads to the location B5 (see figure 7.3.1.7 (a)). Notice that B5 is not a

corner location in that sequence. We can move part B from B5 to reduce that location to a

corner location (B5') as shown in figure 7.1.3.7 (b). Notice that the quality of the layout is

unaffected. This is true since the part D governs the length of the layout, not part B. If the

shape of part D is different as in figure 7.3.1.7 (c), the layout length is governed by B. In

this case, notice that we can actually improve the layout by moving B to a nearby corner

from B5. Thus, we can see that in the evaluation of a particular sequence, a location that is

not a corner location, can be ignored since it will occur as corner location in a different
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sequence, or can be reduced to a corner location either without affecting the quality of the

layout or actually improving the quality of the layout. There are

(a) Non corner location of part B.

(b) Part B moved to local corner location; layout quality is unaffected.

Figure 7.3.1.7 Non corner locations reduced to corner locations for
two dimensional nesting problem. Strictly leftward part
movement ensures layout quality is unaffected or improved.
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(c) Non corner location of part B for a different shape of part D.

(d) Local corner location for part B; layout quality is improved
since movement is strictly leftward.

Figure 7.3.1.7 (continued) Non corner locations reduced to corner locations
two dimensional nesting problem. Strictly leftward part
movement ensures layout quality is unaffected or improved.

exceptional cases where placement of a part at a corner location prohibits another part

from reaching a desired location in the layout. As an example, the optimal layout shown in

figure 7.3.1.8 cannot be reached using a corner placement strategy. However, such cases

are rare and most good layouts can be reached using corner placement.

This reasoning about the corner placement strategy provides an important simplifi-
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cation:

Out of the infinite possible layouts, the search can be restricted to a finite number

of layouts, generated by considering only the corner locations while placing each part.

Figure 7.3.1.8 Optimal layout unreachable using corner placement strategy

Thus, the possibilities for each sequence can be denoted as: (A1,A2,...) (B1,

B2,...), etc. There are n! possible sequences for n parts. The number of possible layouts

cannot be predicted; this number depends on the actual shapes of the parts. A number of

corners are usually available for placing a single part.

In figure 7.3.1.9, a simple jigsaw puzzle is solved using this corner placement

strategy, following the sequence DACB for placing the parts. For placing part D, two cor-

ners are available. If the upper corner is chosen, two corners are available for the place-

ment of part A. Choosing the lower corner creates three corners for the placement of part

C. If the lowest corner is chosen, two corners are available for the placement of part B.

The upper corner corresponds to the global optimum. Thus, following the sequence

DACB solves the jigsaw puzzle, if the appropriate corner is chosen at each stage. Notice

that other sequences (DBAC, DABC, ACDB, ADBC, ADCB) lead to the same result if

the appropriate corner is chosen at each stage. Also, for the placement of each part in any

sequence, an infinite number of locations are available; by focusing on corner locations,

the optimal layout can be created very quickly.
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Figure 7.3.1.9 Jigsaw puzzle solved using corner placement approach
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7.3.2 Location evaluation
It is impossible to evaluate each possible layout, even when the corner placement

strategy is used. Out of the several corners possible at each stage, it is often useful to con-

sider only one location. Humans choose locations that reduce gaps between part bound-

aries in order to produce tightly packed layouts. In this section, we describe a model can

be used to reduce gaps between boundaries of parts and minimize the waste area that is

created in part placement.

Consider again the corner locations shown in figure 7.3.1.1. Out of the three loca-

tions shown, the location B 1 appears to be a good choice in order to produce a tightly

packed layout. This choice is very intuitive to human eye if the sole criterion is to place

part B at a location where the gaps between the part boundaries are minimized. However,

we need to quantify this intuition in order to use it in an automated nesting system.

While placing part B on the layout, it is important not to create gaps (between

boundaries) that cannot be occupied by parts that are to be placed subsequently. The areas

that cannot be accessed by the subsequent parts can be treated as waste areas. A simple

measure of this waste is not obvious if the shapes the parts to be placed subsequently are

not known. Thus, we develop a measure based on the probability of the surrounding areas

being occupied later. Consider the points P1, P2 and P3 in the layout shown in figure

7.3.2.1. After placing part A at the location shown, the likelihood of the region around

point P1 being occupied by subsequent parts appears to be lower than that of the region

around point P2. This could be attributed to the fact that point P1 is surrounded (although

not from all sides) by part boundaries closer to it compared to point P2. If a subsequent

part is to occupy the region around point P1, that part must have regions that fit between

the boundaries surrounding P1. Similar reasoning holds for point P2. At this point, we

cannot make any assumptions about the sizes and shapes of the parts that are to follow; we

can only make a reasonable guess about which of the points is more likely to be occupied.
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Figure 7.3.2.1 Points on the layout with different accessibility.

Placement of a part at any location can be considered to affect the likelihood of the

regions close to its boundaries being occupied by subsequent parts: the regions closer to

the boundaries are more adversely affected. Thus, the placement of any part creates an

effect of inaccessibility of areas near its boundaries in the layout. The regions covered by

the part, of course, are absolutely inaccessible to any subsequent parts. We estimate the

total waste by taking a weighted sum of the areas surrounding the part boundaries. This is

illustrated in figure 7.3.2.2. Part A is already placed on the layout and the placement of

part B at the location shown is considered. Moving away from the boundary of part B,

area elements of equal width are created until another boundary (of the layout or another

part) is reached. The width of these area elements is chosen based on the characteristic

part size1. A similar process is carried out starting from the vertices of the part boundaries,

using cylindrical area elements.

1. Choosing area elements with dimensions smaller than 1/100th of the characteristic parts size can
provide sufficiently accurate resolution.
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Areas around the part boundary contribute to waste area.

Area elements start from the boundary of the part.

Figure 7.3.2.2 Creation of area elements to quantify waste area.
Weights attached to elements decrease with distance

from the boundary of the part being placed.

Each of these area elements is considered to contribute a decreasing amount to the

total waste created by the placement of part B. The contribution to waste or the penalty

factor of each area element is obtained from the function e-x as shown in figure 7.3.2.3.

The distance from the boundary has been normalized by a characteristic part size to main-

tain uniformity of the penalty factor regardless of the actual part sizes1. A maximum pen-

alty of 1.0 is attributed to the elements next to the boundary of part B. The function

approaches zero asymptotically since a small effect of the boundary can be assumed to be

felt even at large distances from it. A linearly decreasing penalty function would reduce to

1. This characteristic part size can be obtained in several ways. One possible method is to use the
square root of the average of the areas of the parts.
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zero at a particular value of the normalized distance. The choice of this value would have

to be arbitrary. To avoid this, a function that approaches zero asymptotically is chosen.

Wf = waste

=e-

0 distance from part boundary
X = characteristic dimension

Figure 7.3.2.3 Waste evaluation function

This evaluation can explain human intuition about the choice of location B 1 over

B2 and B3 as shown earlier in figure 7.3.1.1. The location B1 appears to create less waste

between boundaries as compared to B2 and B3. Thus, from the candidate corner locations

for the placement of a single part, we choose the one that minimizes the waste calculated

in the manner described above. This restricts the search to strictly n! possible layouts.

Revisiting the example illustrated in figure 7.3.1.9, notice that at each stage, the corner

location that appears to intuitively reduce the gaps between part boundaries is chosen. For

example, from the two possible corners for part D, the choice of the upper corner is intui-

tive. The measure of waste area developed quantifies this intuition about placement and

facilitates the automation of the process of pattern nesting.

For the jigsaw puzzle solved in figure 7.3.2.4, the selection of a corner from those

available for each stage using the waste quantification does not lead to the optimal layout

shown. The sequences (with appropriate comer selection) that can lead to the optimal lay-

out are the following: DACB, DABC, DBAC, ACDB, ADBC, ADCB. If part D is placed

first, the upper corner creates less waste than the upper corner, although the lower corner

corresponds to the global optimal. Similar reasoning holds true if part A is placed first.

Thus, for a given set of shapes, if the global optimum is reachable using the corner place-
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ment strategy, restricting the placement to a single comer location (that corresponds to the

Figure 7.3.2.4 Jigsaw puzzle solved using corner placement approach
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lowest amount of waste as defined earlier), can prevent the search from reaching that opti-

mum. However, by choosing the location that corresponds to the minimum amount of

waste, we ensure that tightly packed layouts are produced. This allows good layouts to be

produced quickly.

7.3.3 Sequence search reduction
By placing parts at corner locations the search is limited to a finite number of pos-

sible layouts. By selecting one corner of those possible for the placement of each part, the

search is restricted to n! sequences. Genetic algorithms can be used as the basic search

method to find the sequence that corresponds to the minimum length of the layout. The

chromosome used for this optimization is the same as that developed for the string based

representation (along with the crossover and mutation operators) described in chapter 6.

This genetic search can be augmented by incorporating sequence search reduction strate-

gies that are motivated by the approach of human experts. By using these strategies,

human experts evaluate very few sequences and layouts. Some of the strategies can be

easily adapted into the probabilistic framework of genetic algorithms, while many are very

complex. In this section, the incorporation of simple strategies is described. As mentioned

earlier, humans are aided by large amounts of visual information processed very rapidly.

Such information is unavailable to computer algorithms, since the acquisition and process-

ing of this information is a difficult task. It is necessary to rely on the trial and error of

genetic algorithms to make up for the lack of useful information. The incorporation of the

search reduction strategies described in this section is probabilistic, and simple quantities

such as length, area related to the parts are used for estimating relevant probabilities.

7.3.3.1 Biased Initial Population

Heuristics can be used to create the initial population for a genetic search. An

example of such heuristics is placing large parts earlier. Instead of classifying the parts as

large and small, the initial population is created by first assigning a probability to the parts

proportional to their area, or a characteristic dimension. After assigning a probability to

the parts, a roulette-wheel selection is used to select and order the parts; larger parts have a

higher probability of being selected. Of course, after selecting a part, the next roulette-
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wheel selection is limited to the remaining parts.

Other heuristics such as pairing of parts that occur in mirror images of each other

can be used similarly. Different heuristics are expected to work well in different applica-

tion domains. If a heuristic is known to work well in a particular domain of application, it

can be similarly incorporated using probabilities calculated based on simple quantities and

characteristics. Heuristics alone cannot be guaranteed to produce good layouts. However,

they can be used as good starting points for a genetic search.

7.3.3.2 Selection of crossover point

Human experts tend to modify layouts based on their quality: layouts that are

longer are modified more and vice versa. This strategy is incorporated by choosing the

location of the crossover point in the chromosome based on the quality of the layout. The

crossover point has a higher probability of being closer to the left end of the chromosome

for a longer layout and vice versa. This probability is calculated as follows:

The length of the layout corresponding to the chromosome selected for crossover

is known. A factor based on the length termed crossover bias factor (CBF) is cal-

culated.

CBF = L/Lm;

where,

L = Length of the layout;

Lm = Length of the minimum area layout possible.

Length of the layout based on a nesting efficiency of 1.00 is the minimum length

possible. This minimum length can be used as a normalizing factor. The probability of the

crossover point being placed at the leftmost end of the chromosome is CBF times the

probability of the crossover point being placed at the rightmost point in the chromosome.

The probability of selection of the crossover point at locations between the two ends

reduces linearly from the leftmost to the rightmost end of the chromosome. In this manner,

the selection of crossover point can be biased, yet probabilistic. A deterministic selection

of the crossover point based directly on the length of the layout can eliminate some possi-
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bly good candidate solutions.

7.3.3.3 Estimation of layout length

It is often possible for a skilled human to quickly estimate the expected length of a

good layout for the given shapes by inspecting the shapes. This judgement is developed by

experience in an application domain. For an automated system, such estimation is not pos-

sible. However, during the optimization process, the best layout obtained at any stage can

be used as a guideline. Such estimation is important since it is then possible to modify the

criterion for selection of a corner location to account for the expected length. This is

shown in figure 7.3.3.3.1. The part G is the last part to be placed and the location G1 cre-

ates less waste compared to the location G2. However, at this stage, it is important to limit

the length to the minimum. This can be achieved if the evaluation function has a term to

account for the estimated length of the layout:

F = Minimize (Aw + P*(L - Le)/Le);

where,

Aw = Area waste created at the location considered;

L = Length of the layout if the location considered is chosen;

Le = Estimated length of the layout;

P = Penalty factor for exceeding the expected length.

=0 if L <Le.

This evaluation function restricts the placement of parts to the area limited by the

expected length. The smallest layout length obtained up to that point can be used as the

expected length.
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Figure 7.3.3.3.1 Minizing length as well as waste area
towards the completion of layout.

7.3.3.4 Other strategies

Several other strategies are used by human experts to limit their search to rela-

tively few layouts. An example of such strategies is the exchange of similar parts within

the layout to reduce the length. This exchange of parts requires identification of similari-

ties between the patterns to be exchanged and also the ability to reason about the shape

details. Another strategy is to maintain tightly packed groups of parts in the layout without

alteration. A measure for the extent to which parts are tightly packed could be very useful,

although such a measure is not obvious. Such strategies are difficult to automate and their

potential benefits may not justify the computational effort.

7.4 Example layouts

In this section, layouts generated by the automated system that uses the human

strategies described so far are illustrated. Layouts are created sequentially: the automated

system places one part at a time on a blank of given width. All the corner locations avail-

able for placement at each stage are identified. These locations are compared with each

other based on the waste quantification model developed above. The corner location that

minimizes the area waste is selected for placement. Each layout is created by placing all

the parts sequentially. Genetic algorithms, enhanced by the incorporation of the sequence

search reduction strategies, are used to search for the best sequence of part placement.
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The automated system comes close to matching the performance of human

experts. The layouts illustrated in figures 7.4.1 and 7.4.2 were generated using this auto-

mated system. The part shapes are used in an industrial application, and were also nested

by human experts. Figures 7.4.1 show layouts of 28 parts generated by the system over 2

hours of computation on a 100 mips workstation. A layout expert achieved an efficiency

of 80.02% for the same data set. Figures 7.4.2 show similar results for a larger data set (36

parts) over 8 hours of computation on a similar workstation. Again, the system comes

close to the efficiency achieved by an expert, 82.41%.
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Figure 7.4.1 Layouts created by the automated pattern nesting system (28 parts)
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Figure 7.4.2 Layouts created by the automated pattern nesting system (36 parts)
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Chapter 8

Conclusions and future work

8.1 Conclusions

Pattern nesting is a problem of industrial and commercial importance. Although

the specific requirements for each application are different, the main concern remains the

same: occupation of the least amount of space. Due to the complexity of the problem, it is

necessary to use general, probabilistic search methods to obtain good solutions with mini-

mum computational effort. The basic philosophy of genetic algorithms proves effective to

this end: the search effort is concentrated probabilistically in the regions of the solution

space that appear promising. This is achieved in moving from one solution to another by

maintaining some of the characteristics of the original solution in a resulting solution. For

pattern nesting, the relative arrangements of some of the parts in a layout can be retained

in layouts resulting from it. The arrangement of the remaining the parts is varied to sample

a nearby point in the solution space. The hierarchical representation and the appropriate

crossover operators facilitate this process. The lower level of optimization selects only

valid locations in the layout. Reduction of repeated computation is possible with such a

representation, since a meaningful schema of the higher level chromosome results in the

same arrangement of parts in any chromosome. Also, via the lower level of optimization,

the parts are placed at locations where the gaps created between the part boundaries are

minimum.

Human experts limit the part placement to certain key locations which we term as

corners. This placement process can be justified intuitively by examining one dimensional

cases and by extending the reasoning to two dimensions. The corner locations of parts can

be compared against each other on the basis of the waste area created between them.

Again, the intuition of human experts can be modeled in a simple manner to effectively

quantify the waste areas. It is possible to develop a model that is very general and does not
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make any assumptions about the specific part shapes. This effectively restricts the search

to a finite set of solutions enabling the creation of good layouts in a computationally effec-

tive manner. Genetic algorithms provide an effective probabilistic framework for the

search of sequences of part placement that lead to good layouts. The basic genetic search

can be augmented by probabilistically incorporating human strategies that depend on very

simple and general quantities such as length, area, etc. The probabilistic incorporation of

these strategies allows the occurrence of good solutions that are cannot be reached by such

strategies. The use of simple part characteristics to evaluate probabilities maintains gener-

ality of approach and domain independent applicability. Complex strategies that depend

on inspection of part shapes cannot be modeled effectively; it is essential to rely on trial

and error.

This thesis offers the first known models of human intuition for pattern nesting.

These models are a step toward matching human performance in pattern nesting. Of the

pattern nesting systems reported so far, the use of human expertise has been limited to the

symbolic level. e.g., classification of parts into a few categories, and the subsequent place-

ment strategies that depend on the use of such classification. The pairing of parts that

occur as mirror images of each other is another example of incorporation of human strate-

gies only at a symbolic level. Such incorporation of human strategies is limited in its

scope and applicability. The choice of location for a part in a layout is difficult to describe

by the use of a vocabulary such as "concave with convex", "small with large", etc. The

model of waste area between part boundaries is very general. This model works at the

very basic level of relations between part shapes pertaining to the area gaps between their

boundaries. Since the model depends on a large number of points around the boundary to

quantify the waste area, the model accounts for minute shape details.

The application of human strategies in a deterministic manner limits the type of

layouts that can be generated; only those layouts that can be described by a limited vocab-

ulary are generated. With probabilistic incorporation of human strategies, it is possible to

achieve good layouts that cannot be described by a set of heuristics. The philosophy of

genetic algorithms is retained in the incorporation of human strategies: the exploration of

124



the solution space is concentrated in the regions that show promise. For problems of the

nature of pattern nesting, this intuitively is the best philosophy, lacking knowledge of

provable facts about the problem domain.

8.2 Future Work

Several extensions of this work are possible. In the immediate future, additional

search reduction strategies can be incorporated. Also, a method to identify tightly packed

subgroups can be developed. These subgroups would be retained probabilistically in sub-

sequent layouts with the possibility of effectively reducing the search space. The effec-

tiveness of each individual sequence search strategy described in chapter 7 can be studied.

In the present system, part locations are selected based on the waste area quantifi-

cation. The best location according to this criterion is selected. Some of the other corners

that also create tightly packed layouts could be considered for placement. The symbolic

chromosome could be augmented to specify the choice of location along with the

sequence of parts. Again, the selection of location could be made probabilistic, with the

probability of selection being governed by the amount of area waste created.

The current system works under translational constraints. The generalization of the

identification of corner points when parts can rotate would be interesting. It would be

interesting to see if the idea of force balance can be extended to moment balance when the

parts can rotate. Since the waste area quantification is not restricted to part placement

under translational constraints, it could be used directly even when parts are rotated.

Extensions to three dimensions would be similar. As discussed in chapter 6, the

method of assembly based placement would be really advantageous over other methods,

since it simulates the process of getting parts into their desired locations. The quantifica-

tion of waste area could be extended to volumes, by using volume elements that descretize

the space around the parts.
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