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ABSTRACT 

The macromolecular partition and diffusion coefficients are equally important in 
describing diffusion through gel membranes. The goals of this thesis were to determine 
what effects electrostatic, hydrodynamic and steric interactions have on the partitioning and 
diffusion of macromolecules in agarose gels. To accomplish this measurements of the 
partitioning and diffusivity of proteins and Ficolls were made in charged and uncharged 
agarose gels and theoretical predictions were developed for the effects of electrostatic 
interactions on the partitioning of charged spherical macromolecules in random fiber arrays. 

The effects of electrostatic interactions on the diffusion and equilibrium partitioning 
of fluorescein-labeled proteins in charged gels were examined using fluorescence recovery 
after photobleaching (FRAP) and gel chromatography, respectively. Measurements were 
made with bovine serum albumin (BSA), ovalbumin, and lactalbumin in SP-Sepharose 
(6% sulfated agarose), in phosphate buffers at pH 7 and ionic strengths ranging from 0.01 
to 1.0 M. Diffusivities in individual gel beads (D) and in the adjacent bulk solution (DJ 
were determined from the spatial Fourier transform of the digitized two-dimensional 
fluorescence recovery images. Equilibrium partition coefficients (@) were measured by 
recirculating protein solutions through a gel chromatography column until equilibrium was 
reached, and using a mass balance. Diffusion in the gel beads was hindered noticeably, 
with DID_ = 0.4 -0.5 in each case. There were no effects of ionic strength on BSA 

- 

diffusivities, but with the smaller proteins (ovalbumin and lactalbumin) D, increased 
slightly and D decreased at the lowest ionic strength. In contrast to the modest changes in 
diffusivity, there were marked effects of ionic strength on the partition coefficients of these 
proteins. We conclude that for diffusion of globular proteins through gel membranes of 
like charge, electrostatic effects on the effective diffusivity (D& = QD) are likely to result 
primarily from variations in @, with only small contributions from the intrarnembrane 
diffusivity . 

A theory has also been developed to predict the effects of electrostatic interactions 
on the equilibrium partition coefficient (@) of spherical macromolecules in gels, the gels 
being modeled as random arrays of fibers. The partitioning theory derived by Ogston 
(Trans. Faraday Soc. 54: 1754-1757, 1958) for neutral macromolecules and fibers was 
extended by using a Boltzmann factor, containing an electrostatic free energy, to modify the 
probability of fitting a sphere in a space between fibers. This approach, which is limited to 
dilute solutions of macromolecules, is approximate in that the only electrostatic interactions 
considered are those between the sphere and the nearest fiber. The electrostatic free energy 
was calculated from finite-element solutions to the linearized Poisson-Boltzmann equation 
for a sphere interacting with a long cylinder, both with specified surface charge densities. 
Free energies calculated for many combinations of sphere radius, fiber radius, separation 
distance, Debye length, and the surface charge densities of the sphere and fiber are 
presented as a correlation involving the various dimensionless parameters. When the 



sphere and fiber have like charges, decreases with increases in the sphere size, the 
volume fraction of fibers, the Debye length, and either surface charge density; results are 
presented to illustrate each of these effects. Predictions from the theory are in good 
agreement with recent measurements of fl> for proteins in moderately charged gels. 

To characterize the microstructure of the agarose gel a new technique was 
developed to measure the hydraulic permeability of reinforced gel membranes, allowing 
calculation of the Darcy permeability (K) of the gel. The method was applied to agarose 
with concentrations ranging from 2.0-7.3%. To create membranes which would be thin 
enough to yield easily measured filtration rates at modest applied pressures, yet be able to 
withstand handling, gels were cast on woven polyester meshes. The resulting membranes 
had thicknesses of 70-100 pm and a fractional open area of 0.32. To correct for the 
presence of the mesh, finite-element solutions were obtained for the pressure field in the 
three-dimensional region occupied by the gel. For the particular meshes employed here, 
the hydraulic permeability of the reinforced membrane was calculated to be 0.47-0.55 times 
that for a layer of pure gel, the exact value depending on the thickness of the composite 
membrane. The principal determinant of K was the agarose concentration, but there was a 
secondary effect of applied pressure. The Darcy permeability extrapolated to zero applied 
pressure (K_) varied from 616 nm2 for 2.0% agarose to 22 nm2 for 7.3% agarose. At a 
given gel concentration, the value for K_ was as much as twice the value for K measured at 
the maximum pressure difference of 20 P a .  The method used should be adaptable to a 
variety of other gel materials. 

The diffusivities of uncharged macromolecules in gels (D) are typically lower than 
in free solution (Dw), due to a combination of hydrodynamic and steric factors. To examine 
these factors, we measured D and Dw for dilute solutions of several fluorescein-labeled 
macromolecules, using an image-based fluorescence recovery after photobleaching (FRAP) 
technique. Test macromolecules with Stokes-Einstein radii (rs) of 2.1-6.2 nm, including 
three globular proteins (bovine serum albumin, ovalbumin, lactalbumin) and four narrow 
fractions of Ficoll, were studied in agarose gels with agarose volume fractions ((0) of 
0.038-0.073. The gels were characterized by measuring the hydraulic permeability of 
supported agarose membranes, allowing calculation of the Darcy permeability (K) for each 
gel sample. The diffusivity ratio Dmw, which varied from 0.20 to 0.63, decreased with 
increases in r or (0. Thus, as expected, diffusional hindrances were most severe for large 
macromolecules andlor relatively concentrated gels. According to a recently proposed 
theory for hindered diffusion through fibrous media, the diffusivity ratio is given by the 
product of a hydrodynamic factor (F) and a steric factor (S). The functional form is Dmw = 
F(~/K"~) S(f) ,  where f =[(rs + rf)/rJ2(0 and rf is the fiber radius. Values of DIDw calculated 
from this effective medium theory, without use of adjustable parameters, were in much 
better agreement with the measured values than were predictions based on other 
approaches. 

Thesis Advisor: William M. Deen 
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Chapter 1 

1. Background 

1. 1 Introduction 

Hydrogels are cross-linked polymers that have a high water content (up to 98% water). 

These gels have recently been found to have numerous applications in biomedical 

engineering and biotechnology. Therapeutic devices such as contact lenses, breast 

implants, and drug delivery capsules are composed of gels (Peppas, 1987). One strategy 

for developing implants for organ replacement is to encapsulate cells in gels which do not 

significantly interfere with the transport of nutrients or desired products (e.g., insulin from 

pancreatic islets) (Lacy et al., 1991). Due to their high water content, hydrogels provide an 

ideal matrix for cell growth and are commonly used to propagate bacteria and mammalian 

cells. Gels are also used to separate macromolecules in size-exclusion and ion-exchange 

chromatography and in electrophoresis. 

Several important body tissues have characteristics which are remarkably similar to 

hydrogels, for example connective tissue, vascular and epithelial basement membranes, and 

vitreous humor. The glomerular basement membrane (GBM) is a particularly interesting 

body tissue because it is one of the primary structures responsible for the filtration of blood 

in the kidney. High molecular weight proteins and cells are retained in the blood stream 

while large volumes of plasma and small molecules are allowed to pass through the GBM 

to be processed into urine. The GBM consists of collagen IV associated with 

proteoglycans and other extracellular components to form a fibrous gel-like structure. 



Robinson and Walton (1987) have suggested that the GBM can be accurately modeled as a 

random fiber matrix gel. In addition to restricting the transport of proteins based upon size, 

the glomerular capillary wall exhibits significant charge selectivity, which has been 

attributed in large part to the presence of fixed negative charges in the GBM (Kanwar & 

Venkatachalam, 1992). There are several diseases which can affect the microstructure of 

the GBM by changing the membrane thickness or by loss of net charge and thus will alter 

the protein filtration properties (Drumond and Deen, 1994). A better understanding of the 

filtration properties of proteins and exogenous polymers across the GBM in the normal and 

abnormal kidney could be obtained with theories for the partitioning and diffusion of 

charged macromolecules through charged gels. 

Chromatography media, which are widely utilized for purifying proteins consist 

largely of highly porous hydrogels. Traditionally, gel chromatography has been used to 

separate macromolecules based upon size (size-exclusion chromatography) and upon 

charge (ion exchange chromatography). A key characteristic and likewise a key drawback 

of ion exchange chromatography is that the gel and the solute must have opposite charge 

signs. That is either the gel or the solute must be negatively charged while the other is 

positive. Recently there has been interest in using chromatography to separate solutes 

having similar size and charge sign and but having differing charge densities (Dubin et al., 

1993). This has been termed ion exclusion chromatography. However, such separations 

are very difficult to develop empirically due to the fact that multiple physical phenomena 

need to be carefully balanced to exploit differing charge densities. In fact, a rigorous 

theory is needed which would be able to use the known physical parameters, such as solute 

radius, gel volume fraction and charge densities on the solute and gel matrix, in order to 

effectively develop such a separation technique. 



1.2 Overview of Transport through Gels 

Hydrogels are composed of macromolecules that are cross-linked, either physically or 

chemically, to form a highly hydrated polymer network. The volume occupied by the 

polymer fibers is usually between 2 - 10% of the total volume, the rest being filled with 

water. Due to the high water content of hydrogels there can be large voids between 

polymer fibers through which other macromolecules, such as proteins, may permeate. The 

characteristic spacing between the gel fibers can be as small as the radius of the gel fiber, r,, 

and as large as 50rp Measurements of the permeability of the gel to water have been used 

in determining this characteristic spacing. A review of the permeability measurements in 

gels is given in section 1.5.3 and a complete discussion is presented in Chapter 4. 

With most chemically cross-linked polymer gels, the gel fibers are flexible and 

mobile, allowing them to respond to environmental changes. In particular, electrostatic 

interactions between polymer fibers can cause a cross-linked gel, such as polyacrylic acid, 

to either expand or shrink with changing buffer pH and ionic strength. Such expansions 

and contractions change the microstructure of the gel and the volume fraction occupied by 

the polymer and often complicate determinations of the partition and diffusion coefficients. 

One particular gel, agarose, is unique in that it does not expand or contract with changing 

buffer conditions. This is due to the very rigid fibers that make up agarose gels. Because 

agarose is physically cross-linked and the fibers are composed of several individual agarose 

chains, there is relatively little mobility or flexibility. One particular advantage of using a 

rigid gel such as agarose in studies of electrostatic interactions is the elimination of 

variations in the volume fraction occupied by the fibers. With this particular gel, the effects 

of electrostatic interactions on the transport coefficients can be isolated from the effects of 

expansion and contraction of the polyelectrolyte gel. A review of the physical 

characteristics of agarose is given in section 1.6. 

When macromolecules partition into uncharged gel matrices the concentration inside 

the gel is lower than in the bulk solution. This is primarily due to steric effects. That is, 
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there is a certain volume that is occupied by the gel fibers and hence, is inaccessible to the 

solute. This is discussed in more detail in section 1.3. When the gel and solute are 

charged, electrostatic interactions will also affect the partition coefficient. Repulsion 

between the macromolecule and the gel will decrease the partitioning while attraction will 

increase the partitioning. As a result of the use of the partition coefficient in gel 

chromatography experiments there has been substantial interest in measuring the partition 

coefficient in neutral gels (see section 1.5.1) and in developing theoretical predictions (for a 

review see section 1.3). While there has been more recent interest in measuring the 

partition coefficient into charged gels (for a review see section 1.5. I), there has been no 

available theory to predict the effects of electrostatic interactions on the partitioning. 

Rates of diffusion are also strongly affected by the gel matrix. That is, the 

diffusivity of the macromolecules through gel matrices is restricted when compared to the 

diffusion in bulk solution. There are two components in this reduction; a frictional 

resistance and tortuosity. In the diffusion of macromolecules in well defined pores, the 

frictional resistance (hydrodynamic effects) have been found to be instrumental in 

predicting the reduction in mobility (for a complete review see Deen, 1987). In gels, the 

surfaces are less well defined than in a pore and it is difficult to know precisely where the 

gel fibers are for any given diffusing macromolecule. In addition, hydrodynamic effects 

are very long range and predictions or calculations for the diffusivity require the use of a 

many proximate fibers (Phillips et al., 1989;1990). The second reason for the reduction in 

the diffusivity is a tortuosity effect. Because the trajectory of a macromolecule through the 

gel matrix is not straight there is an increase in path length that will contribute to the 

reduction in the apparent diffusivity. The pertinent theoretical models for the diffusivity are 

reviewed in section 1.4, while a review of previous measurements of the diffusivity are 

discussed in section 1 S.2. 



When considering the flux of a solute across a charged gel membrane, both the 

partition coefficient and the diffusion coefficient are important. The steady state flux across 

a one-dimensional gel slab, N, is given by 

where 9 is the equilibrium partition coefficient (which is defined as the concentration 

inside the gel (base upon the total volume) divided by the concentration in the bulk solution 

at equilibrium), D is the intramembrane diffusivity, L is the thickness of the gel slab, C, 

and Co are the upstream and downstream concentrations in the external solution. From 

equation 1, it is apparent that both @ and D are necessary in describing the transport across 

gels. In many experiments using gel membranes researchers report the measured 

coefficient as D ,̂ (=@ D) and often refer to this as the "diffusivity". In this thesis, the term 

diffusivity is restricted to D (the intramembrane diffusivity) or Dw (the diffusivity of the 

solute in bulk solution). 

This thesis is concerned with determining what effects electrostatic, hydrodynamic 

and steric interactions have on the equilibrium partition coefficient and the diffusion 

coefficient of macromolecules in charged gels and with developing models to predict the 

coefficients from the molecular structure of the gel and the permeating solutes. To 

accomplish this we first determined the partitioning and diffusion of three proteins in a 

highly sulfated agarose gel at various ionic strengths. The techniques used and the results 

of the experiments are presented in Chapter 2. To model the partition coefficient of 

macromolecules in charged gels, Ogston's (1958) partitioning model (for the partitioning of 

neutral spheres into random fiber arrays) was extended to include electrostatic interactions 

as discussed in Chapter 3. One important parameter useful in characterizing the gel 

microstructure is the water permeability. These results along with a novel technique for 



measuring permeability are presented in Chapter 4. After ascertaining that the effects of 

electrostatic interactions were minimal on the diffusion coefficient (discussed in Chapter 2), 

experiments were performed in neutral agarose for a range of macromolecular sizes and gel 

concentrations to determine the effects of hydrodynamic and steric interactions on the 

diffusivity. The diffusion experiments and an effective medium model for predicting the 

diffusivity from independantly measurable parameters is presented and evaluated in Chapter 

5. 

1.3 Equilibrium Partitioning Theory 

In order to develop any theory for the partitioning of macromolecules into porous media, an 

accurate description of the microstructure is required. In describing the microstructure of 

porous media two types of models have been used, the cylindrical pore models and the 

random fiber matrix models. While there are specific types of porous media in which an 

array of cylindrical pores accurately describes the microstructure, such as the Nuclepore 

track-etched polycarbonate membranes, this model does not appear to characterize gel-like 

structures due to the lack of a specific pore radius for the gel. A better model of the gel 

structure is that of a random fiber array wherein the microstructure of the gel is that of an 

array of cylindrical fibers randomly placed and randomly aligned. In fact, the Ogston 

partition coefficient model based upon the random fiber array presented in section 1.3.1, 

works very well for the partitioning of proteins in gels as discussed in section 1.5.1. For 

charged random arrays and consequently charged gels there has been no corresponding 

partitioning theory. While there has been some work done on predicting the effects of 

electrostatic interactions on the partitioning of polyelectrolytes into charged pores as 

discussed in section 1.3.2., this is not directly applicable to charged gels. 



1.3.1 Uncharged Gels 

Ogston (1958) was the first to develop an expression for the available space within a 

uniform random suspension of fibers and to predict a partition coefficient for a dilute 

solution of spheres. For long fibers, the partition coefficient (the equilibrium solute 

concentration in the gel relative to that in bulk solution) is given by 

where (0 is the volume fraction occupied by the fibers, r, is the radius of the fibers, and r is 

the hydrodynamic radius of the spherical probe. This partition coefficient is based upon the 

total gel volume, including the volume occupied by the fibers. More recently, Fanti and 

Glandt (1990) used a density-functional theory to independently verify the Ogston 

expression and to predict the partition coefficient of concentrated spheres in a random array 

of fibers. A more detailed description of the development of the Ogston partition 

coefficient is given in section 3.2.1. and a comparison of the Ogston model to experimental 

data is discussed in section 1.5.1. 

1.3.2 Charged Pores 

Smith and Deen (1980; 1983) predicted the partition coefficient of a spherical polyion inside 

a charged pore by solving the linearized Poisson-Boltzmann equation for a solid sphere 

with either a constant surface potential or a constant surface charge density and for a porous 

sphere with a constant volumetric charge density. Johnson et al. (1989) experimentally 



measured the hindered diffusivity of charged micelles through charged Nuclepore 

membranes. They found excellent agreement between their data and the theoretical 

predictions of Smith and Deen. 

Lin and Deen (1992) calculated the partition coefficient of a linear polyelectrolyte 

inside a well defined cylindrical pore. Diffusion experiments using polystyrene sulfonate 

in track-etched polycarbonate membranes were compared to the theoretical predictions for 

the partition coefficient in conjunction with hydrodynamic models for the resistance of a 

sphere in a neutral pore (Brenner and Gaydos, 1977). Lin and Deen concluded that the 

charge effects seen in the diffusion experiments were governed primarily by partitioning. 

This suggests that the effects of charge on the effective diffusivity ( D ,̂ = 0) in gels 

might also parallel the effects of charge on the partition coefficient. 

1.4 Theory for Diffusion through Gels 

To date, predictions for the diffusivity of macromolecules through gels have been relatively 

unsuccessful. The reasons for the difficulty in developing a theory lie in the complexity of 

the hydrodynamic interactions between a mobile macromolecule and its surrounding 

environment. There has been substantial effort placed in predicting the diffusivity of 

spheres in straight cylindrical pores (as reviewed by Deen, 1987), but because the 

hydrodynamic interactions are very sensitive to alterations in the microstructure it seems 

unlikely that extensions of this particular model to fibrous structures will give accurate 

predictions. However, these theories yield insight into the nature and complexity of 

hydrodynamic interactions. Due to the difficulty in predicting the hydrodynamic 

interactions, arguments have been made which attempt to erroneously minimize their 

importance. The most well known and widely used model which does not include 

hydrodynamic interactions was developed by Ogston et al. (1973) and is based upon the 

stochastic jump probability of a sphere which is reviewed in section 1.4.1. While this 



model has not been especially successful in predicting diffusivities, as reviewed in section 

1.5.2, Ogston's model had been the only model available for many years. More recently, 

there have been efforts to use an effective medium approach to calculating the 

hydrodynamic interactions. As reviewed in section 1.4.2, Phillips et al.(l989; 1990) 

suggests that the Brinkrnan equation can be used to approximate the frictional resistance a 

sphere would encounter when diffusing through a porous medium. This has been more 

promising than the Ogston diffusion model primarily because it attempts to take into 

account hydrodynamic interactions which are known to be instrumental in describing the 

reduction in diffusivity a sphere experiences when diffusing through a cylindrical pore. 

1.4.1 Ogston Diffusion Model 

Ogston et al. (1 973) used the random fiber matrix model that was developed for the 

partition coefficient theory to predict the reduction in diffusivity of a sphere through a gel 

network. Their expression for the hindered diffusivity was based upon a stochastic jump 

through the spaces of a randomly oriented fiber network without considering 

hydrodynamic interactions. Assuming that any jump that would result in a collision with a 

fiber would not occur, Ogston formulated the probability of completing a jump. By 

assuming that the frequency of jumps inside the gel phase was the same as in the bulk 

solution, Ogston et al., used the jump probability to formulate an expression for the 

hindered diffusivity. 



where D is the intrarnembrane diffusivity, Dw is the free solution diffusion coefficient, (1) is 

the volume fraction of fibers, r is the radius of the spherical solute and r, is the radius of 

the gel fiber. 

This model does not include hydrodynamic interactions, which have been found to 

be instrumental in describing the resistance to the solute mobility in cylindrical pores. As 

discussed further in section 1.5.1, Ogston's stochastic jump model for the hindered 

diffusivity has had only limited success in describing existing experimental data and in fact 

tends to overpredict the diffusion coefficient. 

1.4.2 Effective Medium Model 

Phillips et al. (1989;1990) were the first to include hydrodynamic interactions in calculating 

the hindered diffusivity of a sphere in a fiber array. Their detailed hydrodynamic 

calculations were limited to solid spheres moving through beds of parallel fibers. They 

showed that if the hindrance is not too extreme, an effective medium approach that made 

use of Brinkman's equation could approximate the resistance encountered by the spherical 

solute. 

where F (=D/Dw) is the reduction in mobility of the sphere in the porous medium and K is 

the Darcy permeability. While this method has yet to be experimentally evaluated for gels, 

this is appealing in that the only two structural parameters necessary to describe the 

hydrodynamic interactions are the size of the macromolecule and the permeability of the gel 



phase. While there has been relatively few measurements of the Darcy permeability of gels 

(as will be discussed in section 1.5.3), Jackson and James (1986) have compiled a list of 

permeabilities of fibrous media and reviewed theoretical predictions for K based on 

hydrodynamic calculations for various arrangements of cylindrical fibers. They concluded 

that K for random, three dimensional arrays of fibers could be reasonably predicted by 

where rf is the fiber radius and d) is the volume fraction of fibers. Using equation 5 

predictions for the diffusivity using equation 4 can be made from the physical 

characteristics of the solute and gel, r,, rf and d). Because of the discrepancy (up to an 

order of magnitude) between the Jackson and James correlation (equation 5) and their 

reported permeability mesurrnents for a wide range of fibrous media, a complete evaluation 

of the Brinkman equation (equation 4) requires the use of the exact Darcy permeability. 

1.5 Previous Experimental Studies 

1.5.1 Partition Coefficient 

1.5.1.1 Neutral Gels and the Ogston Partition Coefficient 

Several researchers have determined the partition coefficients for a variety of proteins and 

for Ficoll in agarose hydrogels (Moussaoui et al., 1992; Boyer and Hsu, 1992; Laurent, 

1967). A comparison of Ogston' s partition expression (equation 2) to available 
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experimental data is given in Figure 1.1. As discussed in section 1.6, an average fiber 

radius of 1.9 nm was used in this analysis and the proteins and their sizes are shown in 

Table 1.1. The comparison between the predicted and experimental values is good 

indicating that the random fiber matrix model can be used to describe the microstructure of 

the uncharged gel phase. There is also extensive experimental work for the partition 

coefficient of proteins in cross-linked dextran gels (Sephadex) (Laurent and Killander, 

1964). Laurent and Killander provided a summary of the results obtained by the other 

authors and compared the results along with their own experiments to Ogston's partitioning 

theory. There was some uncertainty in the determination of the volume fraction of fibers, 

(I), of the Sephadex. The clearest value for (I) was measured by Laurent and Killander for 

Sephadex-200. A reanalysis of their experimental data for the partitioning of proteins on 

Sephadex-200 is shown in Figure 1.2 along with the Ogston partition coefficient 

expression (equation 2) using a volume fraction of fibers, <)) = 0.076. This was calculated 

using a water regain value of dried dextran of 19.9 grams H20 1 gram dextran and a partial 

specific volume of dextran of 0.61 (Laurent and Killander, 1964). While the comparison is 

favorable, the value used for the dextran fiber radius, 0.8 nml was also determined from a 

curve fit to Ogston's expression. Since the actual value for the dextran radius from 

molecular structure should be in the range of 0.2-0.3 nm (Laurent and Killander, 1964), 

there is some question about the use of Ogston's random fiber matrix model for gels 

consisting of flexible fibers, such as dextran gels. Water molecules bound to the surface of 

the dextran fiber may have also created an effective fiber radius bigger than the molecular 

structure of dextran. Further work done on the molecular configuration of dextran is 

needed before conclusions can be made. 

' The value cited by Laurent and Killander, 1963 was 0.7 nm for the curve fit to Ogston's 
expression. Our reanalysis of the curve fit gave a slightly different value of 0.8 nm. 
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Figure 1.1 Comparison of the Ogston partition coefficient expression (equation 2) with 
experimental data for the partitioning of proteins and ficolls in agarose with concentrations 
ranging from 243%. References and values for data are given in Table 1.1 
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Figure 1.2 Comparison of the Ogston partition coefficient expression (equation 2) for 
proteins in Sephadex-200 (cross-linked dextran). The value for the radius of the dextran 
fiber was determined using a curve fit of equation 2 which yielded a value of 0.8 nm. Data 
was from Laurent and Killander, 1964. 



Table 1.1 Literature values for the partition coefficients of proteins and ficoll in agarose. 

Protein Gel % r, (nm) Experimental Ogston (eq. 2) Reference 
0 0 

Ribonuclease 0.02 1.92 0.9 0.922 
Chymotrypsinogen A 
Ovalbumin 
BSA 
Aldolase 
Thyroglobulin 
Ribonuclease 
Chymotrypsinogen A 
Ovalbumin 
BSA 
Aldolase 
Thyroglobulin 
Ribonuclease 
Chymotr ypsinogen A 
Ovalbumin 
BSA 
Aldolase 
Thyroglobulin 
Myoglobin 
0-lactoglobulin 
Ovalbumin 
Albumin 
Hexolunase 
Catalase 
Immunoglobin G 
Ficoll 
Ficoll 
Ficoll 
Ficoll 
Ficoll 
Ficoll 
Ficoll 
Ficoll 
Ficoll 
Ficoll 
Ficoll 
Ficoll 
Ficoll 
Ficoll 
Ficoll 
Ficoll 
Ficoll 
Ficoll 
Ficoll 



Ficoll 
Ficoll 
Ficoll 
Ficoll 
Ficoll 
Ficoll 
Ficoll 
Ficoll 
Ficoll 
Ficoll 
Ficoll 
Ficoll 
Ficoll 
Ficoll 
Ficoll 

~ o u s s a o u i  et al. (1992); '~oyer  and Hsu (1992); '~aurent (1967) 

1.5.1.2 Partitioning in Charged Gels 

There is more limited work on studying the effects of charge on the partitioning of proteins 

in agarose gels. Crone (1974) quantified the effects of charge and ionic strength on the 

partition coefficient of four proteins eluting on a Sepharose 4B chromatography column. 

Dubin and Principi (1989) and Edwards and Dubin (1993) also determined the effects of 

ionic strength for protein partitioning in agarose gels. In all three cases the partition 

coefficient was found to decrease substantially with decreasing ionic strength indicating that 

indeed the partition coefficient can be affected by charge interactions. Experimental results 

for the partitioning of proteins in sulfated agarose gel are presented in section 2.4.1 and a 

more complete discussion of predictions for the partitioning in charged gels found in 

section 3.5. 

1.5.2 Diffusion Coefficient 



1.5.2.1 Diffusion of Neutral Solutes in Gels 

Several methods have been used in measuring the hindered diffusivity of proteins in 

agarose; FRAP (fluorescence recovery after photobleaching) (Moussaoui et al., 1992), 

dispersion in chromatography columns (Boyer and Hsu, 1992) and quasi-elastic light 

scattering (Sellen, 1985). For all macromolecules the diffusivity inside the gel is 

substantially reduced when compared to their diffusivities in free solution. A comparison 

between the experimental reduced diffusion coefficient (DIDJ and the theoretical models, 

Ogston diffusion model and the effective medium model using the Brinkman equation (see 

section 1.4) are shown in Figure 1.3 and the parameters used in the predictions are given in 

Table 1.2. While both models tend to over predict the diffusivity, the Brinkman equation 

(equation 4) using the Jackson and James correlation (equation 5) appears to more closely 

predict the diffusivity than the Ogston diffusivity (equation 3). It may be fortuitous that the 

Brinkman equation (equation 4) compares more favorably with the experimental data 

because of the uncertainties in the Darcy permeability for agarose. To fully evaluate this 

model, measurements for the Darcy permeability are needed (and are presented in Chapter 

4) as well as an evaluation of the significance of the tortuosity of the gel matrix and its 

possible contribution to the reduction of the diffusivity. A full discussion of this is given in 

Chapter 5. 

Of the three experimental methods listed above, both the dispersion in 

chromatography columns and quasi-elastic light scattering have difficulty in obtaining 

accurate measurements for the diffusion coefficient. The dispersion in a chromatography 

column is highly dependent upon the packing of the gel beads. In addition the value 

measured using the dispersion is the effective diffusivity, Dew which is the product of <M3 

and so another measurement for 0 must be made with possible experimental errors before 

the diffusivity, D, is obtained. Sellen (1985) te~orted that when using QELS to measure 
I 

the transport of BSA in dextran gels it was sobetimes difficult to differentiate between the 

fluctuations of the BSA and the dextran fibril$. Since the agarose fibers are substantially 
I 
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Figure 1.3 Comparison of the Brinkman expression (equation 4) and the Ogston diffusion 
model (equation 3) to experimental data for the diffusivity of proteins in agarose gels. Both 
models tend to overpredict the diffusivity. Experimental data, parameters used in the two 
diffusion predictions and references are given in Table 1.2. 



more rigid than dextran fibers, this should not affect measurements in agarose gels. 

However, it is difficult to use this system on any other gel system in which the fibers 

fluctuate at rates similar to the diffusion rates of the permeating solute. For measuring 

diffusivities using FRAP, care must be used in interpreting the diffusion profiles inside of 

gel media. As discussed later in section 2.3.3 if the gel scatters light, the fluorescence 

signal is distorted and errors in the diffusivity are produced. 

Table 1.2 Literature values for the diffusivity of proteins in agarose. 

Darcy 
Protein Gel rs Experimental Ogston Permeability Brinkman Ref. 

Conc. (nm) D / 0  (eq- 3) (eq. 5) (eq- 4) 
Dm.. K (nm2) DIDm 

Ribonuclease 0.02 1.92 0.75 0.87 80.7 1 0.8 1 
Chymotrypsinogen A 0.02 2.24 
Ovalbumin 0.02 2.73 
BSA 0.02 3.6 
Aldolase 0.02 4.9 
Thyroglobulin 0.02 8.5 
Ribonuclease 0.04 1.92 
Chymotrypsinogen A 0.04 2.24 
Ovalburnin 0.04 2.73 
BSA 0.04 3.6 
Aldolase 0.04 4.9 
Thyroglobulin 0.04 8.1 
Ribonuclease 0.06 1.92 
Chymotrypsinogen A 0.06 2.24 
Ovalbumin 0.06 2.73 
BSA 0.06 3.6 
Aldolase 0.06 4.9 
Thyroglobulin 0.06 8.1 
Myoglobin 0.06 1.89 
6-lactoglobulin 0.06 2.74 
Ovalbumin 0.06 2.93 
Albumin 0.06 3.59 
Hexokinase 0.06 3.62 
Catalase 0.06 5.21 
Immunoglobin G 0.06 5.62 0.22 0.48 16.99 0.34 

~ o u s s a o u i  et al.(1992); Boyer and Hsu (1992) 
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1.5.2.2 Diffusion of Charged Macromolecules in Polyelectrolytes 

While we are unaware of any previous diffusivity measurements of charged 

macromolecules in charged gels, there are experimental measurements for the diffusivity of 

charged solutes in polyelectrolytes. Diffusion studies using charged probes in serni-dilute 

polymer solutions indicate that the effect of ionic strength on D may not be negligible. In 

tracer diffusion studies of bovine serum albumin (BSA) in DNA solutions (Wattenbarger et 

al., 1992) it was found that, upon increasing the DNA concentration from 0 to 30 mg/mL, 

the diffusivity of BSA in a 0.01 M NaCl solution decreased more than in a 0.1 M NaCl 

solution. At 30 mg/mL DNA, the tracer diffusion coefficient of BSA in 0.01 M NaCl was 

about 20% lower than in 0.1 M NaCl. Studies of the diffusion of polystyrene latex spheres 

in polyacrylic acid solutions (Phillies et al., 1987; 1989) also showed that a decrease in 

ionic strength lowered the diffusion coefficient. Whether any of these results are applicable 

to gels of relatively fixed structure (e.g., charged agarose) is unclear. 

7 -5.3 Darcy Permea bilities 

The permeability of water through gels is an important parameter in characterizing the 

microstructure. As previously discussed in section 1 A.2, the Darcy permeability is useful 

in predicting diffusion coefficients in random fiber arrays. The permeability through 

porous media is modeled using Darcy's law (equation 6) 

where v is the velocity of the fluid, 4 is the fluid viscosity, AP is the pressure drop across 

the membrane and K is the Darcy permeability. As noted previously in section 1.4.2, the 
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correlation (equation 5) given by Jackson and James '(1986) can be used to predict K from 

the volume fraction of fibers, (b, and the fiber radius, rf, for random fiber arrays with an 

uncertainty of about one order of magnitude. 

There have been relatively few measurements of the water permeability through gels 

and we are unaware of any previous measurements for the permeability of agarose. 

Because the water permeability is so small for all the gels, most of the experiments have 

been done in special chambers that are designed to either handle high pressures or measure 

very low velocities. The permeability of the gels that have been measured; polyacrylamide 

(White, 1960; Weiss and Silberberg, 1976; Tokita and Tanaka, 199 I), agar (Pallman and 

Devel, 1945), and gelatin (Pallman and Devel, 1945; Signer and Egli, 1950) are given in 

Table 1.1 along with the thickness and pressure drops used for the experiments. In 

examining the values cited for polyacrylamide there appears to be little agreement on the 

Darcy permeability with the values varying by two orders of magnitude for the same 

concentration of gel. While it is unclear exactly why there is such a discrepancy between 

the reported values it is clear that obtaining accurate values of the Darcy permeability may 

be difficult. An interesting observation that Weiss and Silberberg (1976) make is that when 

the cross-linker concentration is increased the permeabilility of the polyacrylamide increases 

at constant polyacrylamide concentration. This would indicate that the microstructure is 

becoming more open and that there are larger passage ways through the polymer matrix. 

This is somewhat counterintuitive because Weiss and Silberberg (1976) first assumed that 

the increase in cross-linker concentration would tighten the pores and reduce the volume 

fraction of fibers. In fact they concluded from the permeablity measurements that perhaps 

the cross-links were occuring non-homogeneously. Consequently, the localization of the 

cross-linkers would produce a gel with localized concentrations of polymer fibers. Thus it 

is possible that the Darcy permeability can be used to probe the homogeneity of the gel 

microstructure as well as the characteristic spacing of the fiber network. The work on 

measuring the permeability of Pallman and Devel(1945) is questionable considering the 



extremely large values of Darcy permeabilities. Considering the large descrepancy between 

their reported values and the other researchers, it must be considered that perhaps there was 

an error either in the experimental system or in the reporting of the permeability values. A 

novel method for measuring permeabilities in ultrathin gel membranes that can be used at 

low pressures and high velocities is described in section 4.2. and a complete discussion of 

agarose gel permeabilities is given section 4.4. 

Table 1.3 Literature values for the Darcy permeabilities of gels. 

8 
Polyacrylamide 4 

4 
7 
7 
7 
10 
10 
10 
10 
12 
12 
12 
12 
16 
16 

Polyacrylamide 5 
8 
10 
15 
20 
25 
30 
35 
2 
4 
8 



Gelatin 
Gelatin 

~ o k i t a  and Tanaka, 199 1 'weiss and Silberberg, 1976; 1977 'white, 1960 
'pallman and Devel, 1945 'signer and Egli, 1950 

I .  6 Physical Characteristics of Agarose Gels 

Agarose is a naturally occurring polysaccharide derived from seaweed. Unlike most 

chemically cross-linked gels, agarose is formed by a reversible physical cross-link. At 

high temperatures (generally above 80 OC depending on the agarose type) the agarose fibers 

are soluble in water. As the temperature of the solution decreases, the agarose fibers join to 

first form a-helical chains (Arnott et al., 1974). These chains can form larger fibers by 

bundling together. The gelation is usually complete by the time the solution reaches 40Â°C 

There is a significant thermal hysteresis in the heating and cooling of the agarose gel 

network. 

Because the agarose fibers consist of multiple chains, the gel network is very rigid. 

When sulfated there is little swelling or shrinking associated with changes in the ionic 

strength of the buffer. In chemically cross-linked gels, the fibers are typically formed by a 

single chain that has both flexibility and mobility. When charged, the repulsion between 

the single chains can cause the gel to swell substantially. This is not observed in agarose 

gels. Because the charged agarose gels do not swell, the spaces inside the gel remain 

constant over a wide range of ionic strength. 

Because the gels are formed by a random physical linkage between multiple chains, 

the agarose fiber radius used in any analysis is necessarily an average. To characterize the 

fiber radii, researchers have used several techniques, including light scattering (Obrink, 

1968), SAXS (Djabourov et al., 1989) and electron microscopy (Spencer, 1982; 
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Amsterdam et al., 1975; Waki et al., 1982; Whytock and Finch, 1991). The electron 

microscopy techniques give a range of fiber radii of 1 - 20 nm, but do not quantify the 

distribution of fiber sizes. Results from light scattering indicate that the average fiber 

radius is between 1.5 and 2.0 nm, while the SAXS results give a bimodal distribution of 

87% fibers with 1.5 nm radius and 13% with 4.5 nm radius, yielding an average radius of 

1.9 nm. The SAXS result is consistent with the values given using light scattering. 

The agarose fibril is a helix with internally bound water (Arnott et al., 1974), so 

that the volume fraction of fibers cannot be obtained directly from the agarose concentration 

and the dry density. For this structure Arnott and co-workers determined that the hydrated 

chain density is 1.4 g1mL. With a dry agarose density, pa, of 1.64 gImL (Laurent, 1967) 

and a water density of 1.0 gIrnL, the mass fraction of agarose in the fiber, ma, is 0.625. 

Denoting the mass concentration of agarose as C ,  the volume fraction of fibers in the gel 

can be determined by 

Using equation 7, the volume fraction of fibers in a 6% (by weight) agarose gel is (1) = 

0.059. Thus, coincidentally, the volume fraction of fibers is almost identical to the weight 

fraction of agarose. 

The primary backbone of agarose consists of 1,3-linked $-D-galactopyranose and 

1,4-linked 3,6-anhydro-a-L-glactopyranose (FMC, 1988). However, there are various 

groups that are substituted onto the agarose chain, half-ester sulfate groups, pyruvic acid 

ketal and methyl esters. The sulfate groups and the pyruvic acid ketal groups can confer 

charge onto the agarose chain. While the methyl esters are not charged, their content can 



affect the thickness of the agarose fibrils and the gelling temperature (FMC, 1988). 

Because the sources of agarose are so variable so is each batch of polymer. All agarose 

contains ester sulfate and it is generally reported as a % sulfate content. Generally, the 

percent sulfate is less than 0.35 %. On very pure batches the percent sulfate can be lower 

than 0.1% (Sigma, 1992). Pyruvate, which is present as a ketal condensed across the 4,6- 

position of some of the D-galactose residues, occurs in varying amounts in most batches, 

but the exact content is rarely reported. One property that is routinely reported is the EEO, 

which refers to the electro-osmosis of the agarose. The EEO value is calculated from 

EEO = -mr = 
OD 

OD + OA 

where OD refers to the migration distance of neutral dextran in electroosmotic flow and OA 

is the migration distance of albumin. Because the albumin is negatively charged, the 

albumin will move toward the positively charged electrode. The counter-ions for the 

slightly negatively charged agarose are positive and thus move toward the negatively 

charged electrode. This movement of positively charged ions sets up an electro osmotic 

flow that will sweep the neutral dextran toward the negatively charged electrode. The exact 

conditions for this measurement (i.e. the ionic strength, pH of the buffer solution, size of 

the dextrans or gel concentration) are not reported by FMC. However, FMC (1988) does 

show that there is a linear relationship between the value EEO that they report for each 

agarose batch and the total amount of charge (sulfate groups and pyruvate groups). At an 

EEO of 0.1, FMC (1988) indicates that the total charge on the agarose is -4.5 meq1100 

grams of agarose while at an EEO of 0.4 the total charge on agarose is - 18 meq1100 

grams. Assuming that the fiber radius is 1.9 nm and the hydrated density of agarose is 1.4 

g/mL then for an EEO = 0.1, the surface charge density would be -0.006 c/m2. For an 

EEO = 0.4 the corresponding surface charge density would be -0.023 c/m2. The charge on 



gelled agarose can also be determined from titration as done by Dubin (1994) for Superose 

12 (a beaded 12% agarose gel, chemically crosslinked to give a very rigid structure), who 

reported that the surface charge density of agarose is -0.01 1 c/m2. 

To determine the typical spacing inside an agarose gel, an analysis using the 

distribution of spaces in a random fiber matrix was used. Ogston (1958) derived a 

probability density function for the distance H from an arbitrary point to the surface of the 

nearest fiber in a random array. The result may be expressed as 

We computed the average distance to the closest fiber, <H> using 

With (I = 0.059 and r, = 1.9 nm, the average distance to the closest fiber is 5.4 nm. The 

average fiber spacing was estimated as 2<H>, or 11 nm. 





For uncharged gels there is considerable experimental information on the partition 

coefficients of proteins and other macromolecules as previously discussed in section 1.5.1 

Diffusivities within gels have received somewhat less attention, but available results clearly 

demonstrate that in neutral gels the macromolecular diffusivity is significantly reduced (see 

section 1.5.2). With regard to theory, Ogston (1958) derived a relationship to predict <t> 

for uncharged, spherical macromolecule within a randomly oriented array of cylindrical 

fibers, 

where d> is the volume fraction of fibers, r, is the radius of the sphere, and r, is the radius of 

the fibers as previously discussed in section 1.3.1. This expression, which is limited to 

very dilute solutions, agrees well with reported values for <t> of proteins and Ficoll in 

neutral agarose gels (see section 1.5.1). To describe the reduced diffusivity of a spherical 

molecule within a random fiber matrix, Ogston et al. (1973) proposed a stochastic jump 

model, which leads to the expression 

Equation 13, which has been used with some success to obtain semi-empirical correlations 

of diffusion data in gels (Ogston et al., 1973), does not consider hydrodynamic interactions 

between the mobile solute and the fibers as previously discussed in section 1.4.1. Phillips 

et al. (1989; 1990) suggested that hydrodynamic interactions might be approximated using 
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an effective medium approach, based on Brinkman's equation. As previously cited in 

section 1.4.2 the result was 

where K is the Darcy permeability of the fibrous medium. 

Relatively little information is available on the partitioning or diffusion of charged 

macromolecules in charged gels. The effects of charge on Defi for micelles (Johnson et al., 

1989) and linear polyelectrolytes (Lin and Deen, 1992) in track-etch membranes with 

straight, cylindrical pores have been explained fully by theoretical predictions of the effects 

on <I>, suggesting that for macromolecules in such pores there is little or no effect of charge 

on D. The extent to which this might also be true for macromolecules in charged gels is 

unknown. As outlined in section 1.5.2 diffusion studies using charged probes in semi- 

dilute polymer solutions indicate that the effect of ionic strength on D may not be 

negligible. In tracer diffusion studies of bovine serum albumin (BSA) in DNA solutions 

(Wattenbarger et al., 1992) it was found that, upon increasing the DNA concentration from 

0 to 30 mg/mL, the diffusivity of BSA in a 0.01 M NaCl solution decreased more than in a 

0.1 M NaCl solution. At 30 mg/rnL DNA, the tracer diffusion coefficient of BSA in 0.01 

M NaCl was about 20% lower than in 0.1 M NaCl. Studies of the diffusion of polystyrene 

latex spheres in polyacrylic acid solutions (Phillies et al., 1987; 1989) also showed that a 

decrease in ionic strength lowered the diffusion coefficient. Whether any of these results 

are applicable to gels of relatively fixed structure (e.g., charged agarose) is unclear. 

The purpose of this experimental work presented here is to assess the relative 

importance of charge interactions for <I> and D, by measuring the effects of ionic strength 

on the partition and diffusion coefficients of selected proteins in a gel of like charge. We 

chose three commonly used globular proteins (BSA, ovalbumin, and lactalbumin), whose 
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physical properties are fairly well characterized in the literature. Sulfated agarose gel was 

employed, primarily because it is a rigid polysaccharide which does not swell or shrink 

when exposed to changes in ionic strength, so that the volume fraction of fibers remains 

constant. In addition, the acidity of the sulfate groups ensures that the amount of charge on 

the gel is essentially independent of pH. 

2.2 Materials 

2.2.1 SP-Sepharose Characterization 

SP-Sepharose Big Beads@, a 6% sulfated agarose gel, was obtained from Pharmacia 

(Piscataway, NJ). The diameters of the hydrated gel beads ranged between 100 pm and 

300 pm. The charge on the SP-Sepharose was 0.23 meqIrnL packed bed, as determined 

by titration by Pharmacia. Using the void and total volumes of the packed bed, the volume 

fraction of fibers, and an agarose fiber radius of 1.9 nm (see section 1.6), the surface 

charge density was 0.42 C/m2. The gel beads were washed and suspended in 0.01 M 

sodium phosphate buffer, pH 7.1. 

2.2.2 Protein Characterization 

Three fluorescein-labeled proteins, bovine serum albumin (MW 68,000), ovalbumin (MW 

45,000), and lactalburnin (MW 14,200) were obtained from Molecular Probes (Eugene, 

OR). Aqueous samples were prepared by dissolving the fluorescent proteins (4 mgIrnL) in 

0.01 M sodium phosphate buffer, pH 7.1. The ionic strength was increased where desired 

by adding either 0.10 or 1.00 M potassium chloride, yielding final ionic strengths 

(including the phosphate buffer) of 0.1 1 or 1.0 1 M. Size-exclusion chromatography of 

each sample showed that there was no detectable free fluorescein present. The net charge 

of each protein was calculated by using published titration curves for the unlabeled protein, 
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and adjusting for the contribution of the carboxyl group on the fluorescein. The average 

number of fluorescein groups per protein molecule was reported by Molecular Probes to be 

5.3,2.3, and 1.3 for BSA, ovalbumin, and lactalbumin, respectively, and the pKa of the 

fluorescein carboxyl was taken to be 6.5 (Haugland, 1992). The size and charge 

characteristics of the proteins are summarized in Table 2.1. The Stokes-Einstein radii in 

Table 2.1 are based on the free solution diffusivities measured in the present study, as 

discussed in section 2.4.2. 

Table 2.1 Protein characteristics 

Protein Stokes Isoelectric Native Fluorescein Net 
Radius Point Protein Charge Protein 
(nm) ) Char e 

BSA - fluorescein 3.8 4.9* -33 5 -4.1 -37 
(Lot # 6531-1) 

Ovalb~mh 3.1 4.7* -1711 -1.8 -19 
- fluorescein 
(Lot # 652 1 - 1) 

Lactalbumin 
- fluorescein 2.3 5.1$ -8$ -1.0 -9 
(Lot # 6511-1) 
*Rigbetti and caravaggio, 1976 
$Shukla, 1973 
Â§Tanfor et al., 1955 
IIOverbeek, 1950 

2.3 Methods 

2.3. I Partition Coeificient using Chromatography Column 

Equilibrium partition coefficients were measured using a C- 10120 chromatography column 

(Pharmacia, Piscataway , NJ) containing approximately 1 2 mL of SP-Sepharose Big 

Beads@. The column had a sample applicator at the inlet and was connected to a peristaltic 

pump; the applicator and tubing volumes were 3 .O and 0.1 mL, respectively. A sample of 



volume Vi = 3.0 mL with an initial concentration Ci of - 0.25 mgImL of fluorescent protein 

was loaded on the column, and the eluent was recirculated at 0.5 d l m i n .  After the whole 

system had equilibrated (2 hr), the final protein concentration Cf was measured in a 1 d 

sample withdrawn fiom the sample applicator. Protein concentrations were determined by 

measuring the absorbance of the sample using a Shimadzu (Columbia, MD) UV-Vis 

spectrophotometer at 488 nm. A calibration curve for determining the final concentration 

was made by making dilutions of the initial sample. Preliminary experiments performed by 

recirculating the eluent through a flow cell in the UV spectrophotometer confirmed that 

equilibration was reached within 90 min. The void volume (Vo , the total liquid volume 

outside the gel beads, including the flow loop) was determined similarly by recirculating 

fractionated blue dextran ( M W  2 x lo6). The blue dextran was fractionated to eliminate any 

small residual dextrans that might penetrate into the agarose beads. A small disposable 10 

mL gravity feed column packed with SP-Sepharose was used to purify blue dextran. The 

equilibrium partition coefficient was calculated using an overall mass balance, as 

where Vt = 15.1 mL is the total volume (Vo plus bead volume). 

2.3.2 Diffusion Coefficient using Fluorescence Recovery A tter Photobleaching 

Samples for diffusion measurements were prepared by combining the gel bead suspension, 

the fluorescent protein, and potassium chloride to a final protein concentration of 1 mg/mL, 

and allowing the suspension to equilibrate. The suspension was then drawn into 300 pm 

rectangular glass microslide chambers (Vitro Dynamics, Rockaway, NJ), using a syringe 



attached to the microslide by silicon tubing. The ends of the microslide were blocked with 

a sealing compound (Hemato-seal, Fisher, Pittsburgh, PA). 

2.3.2.1 Fluorescence Recovery After Photobleaching 

Diffusion coefficients were determined by an image-based fluorescence recovery after 

photobleaching (FRAP) technique. A schematic of the apparatus is shown in Figure 2.1. 

The reliability of the method for measurements of diffusion in thick, light-scattering media 

was established by Berk et al. (1 993). The sample was placed on the stage of an upright 

microscope (Universal, Zeiss; Thornwood, NY) equipped for epi-fluorescence. The 

excitation filter (485 L-11 nm, band-pass), dichroic mirror (505 nm), and barrier filter (530 

nm, long-pass) are designed for fluorescein observation. By means of a beam splitting 

mirror, epi-illumination was provided by both a conventional mercury arc lamp (100 W 

lamp, Osram, Munich; with stable power supply and convection-cooled housing, models 

68806 and 60000, Oriel Corp., Stratford, CT) and by an argon laser (model 2020, Spectra 

Physics, Mountain View, CA). The laser operated in the TEMOO mode (i.e. the intensity 

obeyed a radially symmetric Gaussian profile). The beam was directed through the 

microscope epi-illumination port to the back focal plane of the objective. With the 20x, NA 

0.4 objective used for these experiments, the laser spot radius within the sample (the 

Gaussian radius of the attenuated beam projected onto a 50 pm thick layer of FITC 

(fluorescein isothiocyanate) solution) was -20 pm. The microscope image was projected 

directly to an intensified CCD camera (model 2400; Hamamatsu, Japan). Fluorescence 

images were digitized directly (DT-285 1 image processing board; Data Translation, 

Marlboro, MA; in an IBM PC-AT computer, Boca Raton, FL) and stored at a rate of 5 

images per second. Only the central portion (100 x 125 pixels) of the full 5 12 x 480 pixel 

image was stored for analysis. An electronic shutter in the laser light path and another 

directly before the camera allowed automated computer control of the laser exposure time 
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Argon Laser (488 nm) 

Bead Diameter: 
200 - 300 microns , / 
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Figure 2. I Schematic of apparatus used for fluorescence recovery after photobleaching 
(FRAP) to measure diffusivity coefficients 



and image collection sequence. The spatial sampling rates (vertical and horizontal distances 

between pixels, 0.917 and 1.13 pm, respectively) were calculated from an image of a stage 

micrometer. The error on the distances between pixels was estimated to be less than 5%. 

For each protein at each ionic strength, diffusion measurements were made with 

five separate gel beads. For any given agarose bead, seven measurements each were made 

of D and Dm. For the gel diffusivity (D) measurements, the bead was positioned so that its 

center was in the focal plane and directly in the laser path. To measure Dm the slide was 

moved laterally so that no beads appeared in the image. After a brief exposure to laser 

illumination (30 ms) the sample was observed under conventional epi-fluorescence 

illumination and the digitized fluorescence images were stored for later analysis. The 

fluorescence intensity in a region of the image far (2 200 pm) fiom the laser spot was also 

monitored, to detect the occurrence of photobleaching by the conventional light source; this 

additional bleaching was in the range of 0 to 2% of the total intensity over a 30 seconds 

monitoring period. To allow for complete recovery of the bleached areas, the gel diffusion 

measurements were alternated with the free solution diffusivity measurements. The room 

temperature was recorded (23 - 2gÂ°C and all difhsion coefficients were corrected to 20Â° 

using the Stokes-Einstein relation and an interpolation of the viscosity of water given by the 

CRC handbook (Weast and Astle, 1980). 

2.3.2.2 Fourier Transform Analysis of Dgfusion Data 

The data analysis of the diffusion data is based upon a Fourier transform of the fluorescent 

images recorded over the length of the experiment. This section describes the Fourier 

transform method and its application to the of the two dimensional diffusion equation 



where C is the concentration of the probe, t is time, D is the diffusivity and x and y are the 

spatial coordinates of the system. The Fourier representation of the concentration profile is 

given by 

w o o  

where fo is a characteristic frequency (see equation 24), u and v are wavenumbers, and 

A(u,v,t) are the Fourier coefficients. By substituting the Fourier representation of the 

concentration into the diffusion equation, non-dimensionalizing the spatial coordinates with 

the characteristic frequency, and defining a new variable, q 

we get an ordinary differential equation for the Fourier coefficients, now a function of the 

wavenumber, q, and time, t. 



Solving equation 19 leads to 

To determine the diffusivity, D, the Fourier coefficients, A(q,t), at each time need to be 

determined. The diffusion coefficient can be calculated for each separate frequency. 

For a digitized image, a discrete Fourier transform is used. Because the pixel 

dimensions have a finite size (i.e., they are an average of concentrations over the - 1 pm 

distance) the Fourier concentration profile must be truncated for frequencies higher than the 

Nyquist critical frequency, fc, which is given by 

where A is the distance between the pixels. In our case, the pixel distance for the 20X 

objective is approximately 1 pm, so the maximum frequency is - 0.5 (urn)-!. There is a 

slight difference in A between the x and y directions. In addition, only multiples of the 

critical frequency can be used in the Fourier representation of the concentration profile. 

For a two dimensional digitized image of N x N pixels, the continuous image function, 

i(x,y) is approximated by 



Because of the limited number of data points we can only find Fourier transform 

coefficients for N discrete frequencies in the x and y directions, respectively. The 

frequencies are 

The Fourier coefficients are defined by 

which is approximately equal to 



N-1 N-1 

= a2 2; ~ ( j ,  k, t) e x p ( z ( u j  + vk)) 
j=0 k=0 N 

We can also define a dimensionless Fourier transform coefficient to be 

where C(j,k,t) is the concentration profile as a function of the pixel index j and k, and of 

time, t. To solve for the two dimensional Fourier coefficients, we need to define a constant 

w , 

and put the double summation in matrix form 

A(u, v, t) = w uJ^c(j, k, t) 



An illustration of this for j=0,3 and u = 0,3 holding k and v constant is 

A(O, v, t )  = wVk [c(o, k, t )  + C(1, k, t )  + C(2, k, t )  + ~ ( 3 ,  k, t ) ]  

A(1, v, t )  = wVkC(0, k, t )  + w ~ + " ~ c ( ~ ,  k, t )  + w ~ + " ~ c ( ~ ,  k, t )  + w ~ + " ~ c ( ~ ,  k, t )  

A(2, v,t) = wVkC(0, k, t )  + w ~ + " ~ c ( ~ ,  k, t )  + w ~ + " ~ c ( ~ ,  k, t )  + W ~ ' " ~ C ( ~ ,  k, t )  

A(3, V, t )  = wVkC(0, k, t )  + w ~ + " ~ c ( ~ ,  k, t )  + w ~ + " ~ c ( ~ ,  k, t )  + W ~ + " ~ C ( ~ ,  k, t )  w 

Instead of solving the above equation directly (it would take too long), the FFT algorithm 

expands the matrix, m+^. Numerical Recipes (Press, 1992) gives a more complete 

explanation about the mechanics of this algorithm. 

2.3.2.3 Padding and Windowing of the Discrete Fluorescence Image. 

In this image-based fluorescence recovery technique, the diffusion coefficient is calculated 

from the decay of Fourier coefficients in successive images. This approach is 

advantageous for two reasons: first, it reduces sensitivity to out-of-focus light because the 

resultant image distortion affects only the relative magnitude of each Fourier coefficient but 

not the rate of its decay; and second, solution of the diffusion equation is simplified in 

Fourier space. However, one potential source of artifact is the use of a discrete Fourier 

transform to approximate the true transform. In particular, the truncation of the finite image 

gives rise to spurious high frequency components (leakage or Gibb's phenomenon) that are 

unrelated to the actual image and therefore interfere with the diffusion fit. We employed 

two strategies to overcome this problem: padding and windowing. 

A discrete Fourier transform actually represents an infinitely repeating two- 

dimensional array of the image. Figure 2.2(a) shows a one-dimensional illustration of this 

feature: a discontinuity may exist at the boundary between image elements. Ideally, the 
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Figure 2.2 Illustration in one dimension of the padding and windowing algorithm for 
calculation of discrete Fourier transform (DFT) coefficients. The circles represent digitized 
image data corresponding to a photobleached spot (the original unbleached image minus the 
post-bleach image). Position (x) is scaled by the length of the data window. (a) The DFT 
of the data over the range x=0-1 represents the infinite waveform shown by the line. The 
discontinuities at x=0 and x=l cause spurious Fourier coefficients at high frequencies. (b) 
The data are reflected about the axes x=0 and x=l doubling the period to x=-0.5 to 1.5. 
The infinite waveform corresponding to the new DFT is now continuous. (c) A 
windowing function smoothly attenuates the borders with minimal distortion to the spot 
intensity profile. 



intensity of a processed image should smoothly approach zero at the periphery, because it 

is a differential image (pre-bleach minus post-bleach), but in practice there are spatial and 

temporal fluctuations in lamp intensity, detector gain, and out-of-focus fluorescence signal. 

To reduce this edge discontinuity effect, the image was multiplied by a 2-dimensional 

banning function (Brigham, 1974). This windowing function smoothly attenuates the 

image borders to zero. 

It is important for the validity of the windowing approach that the size of the 

photobleached spot be less than the size of the image. In these experiments, the spot 

diameter was approximately 50 pm, compared to an image size of 115 x 1 15 pm. To 

further minimize the distortion of the spot intensity profile, the image was padded prior to 

the windowing step in order to produce a larger effective image size. At each edge of the 

image, a new border was added; this border was a symmetric reflection of the original 

image, as illustrated in Figure 2.2(b). The resulting padded image was twice the size of the 

original image, but the infinite waveform described by the discrete Fourier transform of the 

image is similar to one produce without padding, except that the padded waveform had no 

discontinuities. The discrete Fourier transform of the padded image is no less accurate a 

representation of the true image; the advantage of this procedure is that the padded image 

can be windowed with less distortion of the spot at the center of the image. 

When we pad the window and double the number of pixels from N to 2N we 

introduce an extra frequency without adding any new information. This makes now both 

the zero frequency and the 1st frequency in each direction give erroneous information on 

the diffusional decay. When we discuss q, which is a function of both u and v, q is not 

valid for either u or v being equal to either 0 or 1. Which mean that the first four q values 

cannot be used in the diffusion calculation. 



2.3.2.4 Application of Fourier Transform Analysis to 3-D Gel Bead 

The actual bead system is not two dimensional as the above 2-D Fourier transform analysis 

would imply. There are two issues that needs to be directly addressed before using the 

aforementioned analysis. The first concern is that the two-dimensional image is recording 

the recovery of the free solution and the solution inside the gel bead. The second issue 

relates to using this technique in gel media that can scatter light. 

Assuming that we bleach a straight column through the fluorescent material both 

inside and above the gel bead, any two dimensional digitized image would record the 

recovery of both the solute inside the gel bead and the free solution above. By using the 

theory of image formation, Berk et al. (1993) showed that for our system that if the free 

solution is 100 pm above or below the focal plane then a Gaussian spot would be out of 

focus enough to appear uniform. Since there is no spatial variation in the image at this 

distance from the focal plane, there would be no contribution to the decay in the Fourier 

coefficients. This out of focus light would contribute to the zero order Fourier coefficient 

but since this does not decay it is not used for determining the diffusion coefficient. 

Consequently we chose to use gel beads that were at least 240 pm in diameter, so that 

when we focused on the center plane of the gel bead the free solution above the spot would 

be at least 100 pm above the focal plane. 

Another interesting issue in measuring the diffusivity is the distortion of the 

fluorescent signal when passing through light scattering media. As Berk et al. (1993) 

discuss, a major advantage of the Fourier transform method is that it can reliably measure 

diffusivities in thick gel media. The image recorded by the CCD camera is a convolution of 

the true concentration and the point spread function. The point spread function (PSF) is the 

distortion of a point source of light due to aberrations in the microscope lens, light 

adsorption and scattering properties of the sample. The Fourier transform of the point 

spread function is termed the optical transfer function (OTF). Since the point spread 

function (and thus the optical transfer function) is only dependent upon position and not 
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time, the Fourier transform of the image, Z(u,v, t) can be related to the Fourier transform of 

the concentration, C(u, v, t) by 

This implies that the ratio of images is exactly equal to a ratio of concentrations 

By measuring the decay of the spatial Fourier transform of the ratio of images, the 

diffusion coefficient can be calculated without determining the optical transfer function of 

the microscope, and without determining the true concentration distribution in the sample. 

2.3.2.5 Analysis of FRAP data 

The diffusion coefficient was determined by a spatial frequency analysis of successive 

images (Berk et al., 1993; Tsay and Jacobson, 1991). Each post-bleach image was first 

subtracted from the initial pre-bleach image, then subjected to a two-dimensional discrete 

Fourier transform. In order to reduce the high-frequency components due to truncation of 

the image (Gibbs phenomenon), we employed an image padding and windowing algorithm 

as described in section 2.3.2.3. The processed image array was then subjected to a discrete 

Fourier transform (two-dimensional fast Fourier transform subroutine; IMSL, Houston, 

TX) to obtain an array of complex Fourier coefficients, which were converted into 

magnitudes, I(j,k). Discrete spatial frequencies, u and v, were then calculated from the 
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indices j and k. The diffusion coefficient, D, was calculated from the decay of each Fourier 

coefficient in successive images: 

where q is the magnitude of the frequency (q2 = u2+v2), p is a parameter which accounts 

for incomplete recovery of the fluorescence (see below), and 4 = I(u,v,O). The decay of 

the coefficients corresponding to the lowest four frequencies was meaningless because of 

the padding and windowing process, but the next 20 to 30 components were observed to 

decay at approximately the same frequency-scaled rate. An initial estimate of D was 

obtained by the simultaneous fitting of several Fourier coefficients to equation 35 by a 

nonlinear least-squares method. For a fit of N Fourier components to the diffusional 

decay, there are N+2 independent parameters: the diffusion coefficient, D, the recovery 

parameter, p, and N separate initial values, 4. In order to maximize signal-to-noise ratio 

and temporal resolution, we chose the five lowest usable frequency components, because 

they had the greatest magnitude and decayed at the slowest rate. The estimate of D was 

refined by re-plotting these components in the form 



and performing a linear fit with 4 and p fixed. Linear regression of f(t) versus t was 

restricted to early times, such that f(t) 5 1. 

Figure 2.3 illustrates typical results from an analysis of a single photobleaching 

recovery for diffusion in free solution and within a gel bead. The diffusion coefficients in 

free solution and in the gel phase calculated from the decay of individual Fourier 

components are shown in Figure 2.4. The absence of a strong dependence of D on spatial 

frequency indicates that the method indeed measured diffusion within the bead and not 

within the free solution. If the fluorescence recovery was influenced by diffusion outside 

the bead volume, the lower frequency components, which contain more of the out-of-focus 

signal, would decay at a faster scaled rate and give higher diffusivity values. For each fit 

of an individual component, the standard error of the diffusion coefficient was typically 5 

to lo%, although some components could not be fit (standard error greater than 50%). 

When five or more components were combined for a global fit, as shown in Figure 2.3, the 

standard error of the estimate was only 1 to 2% and the correlation coefficient 3 was at 

least 97%. 

The parameter introduced in equation 35 is equivalent in principle to the fraction 

of the total protein which is immobile. Its values typically were between -3 and +8% for 

the free solution measurements and between 8 and 15% for the diffusion measurements in 

the gel beads. The results obtained for free solution, where no adsorption could be 

present, indicate that small non-zero values are without physical significance, and evidently 

arise from signal processing difficulties. Because the signal-to-noise ratio was lower in the 

gel media (the gel tended to scatter some of the light), the somewhat larger values of 

probably do not reflect actual adsorption of protein on the gel beads. This was confirmed 

by substituting the final post-bleach image in place of the pre-bleach image and repeating 

the analysis. This would have the effect of removing any residual spot due to an immobile 

fraction. The differential images should therefore decay entirely. The diffusion 

coefficients and values determined in this fashion were virtually the same as those 
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Figure 2.3 Calculation of the diffusion coefficient in a gel bead from one photobleaching 
recovery sequence, for BSA at an ionic strength of 1M. The temperature was 28.7 OC. The 
diffusion coefficient was calculated for each Fourier component for the free solution (Â¥ 
and for the gel phase (El), and overall diffusion coefficients were calculated by a global fit 
to equation 36 incorporating several components (-). 



Figure 2.4 Calculation of the diffusion coefficient at differing values of the spatial 
frequency. The individual diffusivity values at higher spatial frequencies are not 
significantly lower than the overall value. This is evidence that the overall value is a valid 
measure of diffusion within the bead and that the method is not sensitive to photobleaching 
in the surrounding free solution. Diffusivity measurements were at the same conditions 
given in Figure 2.3. 



calculated by the original method. We conclude that the true immobile fraction was less 

than 1%. 

2.3.3 Statistical Calculations 

For both the diffusion and partition coefficients, statistical differences as a function of ionic 

strength were assessed using an analysis of variance (ANOVA). In addition, the protein 

diffusivities for the three ionic strengths were compared using Tukey's method of multiple 

comparisons (Larson and Marx, 1986). Differences at the 95% confidence level were 

judged to be significant. Uncertainties in the diffusion and partition coefficients are 

reported as standard deviations. 

2.3.4 Partition Coefficient using Microfluorescence 

In normal fluorescent solutions, the concentration is directly proportional to the measured 

intensity. Since we were interested in measuring the partition coefficient of fluorescently 

labeled proteins, we wanted to utilize this phenomenon. To this end we explored a 

technique whereby we could measure the intensity of the protein solution both inside and 

outside the bead and by using a simple ratio calculate the partition coefficient. As discussed 

in section 2.3.4.1, the partition coefficient could not be determined directly from the ratio 

of the fluorescence intensity to that in the free solution. This could be due to the distortion 

of the fluorescence signal in the gel phase or from light scattering from the external solution 

that contributes constructively to the fluorescence signal. In an attempt to determine how 

much of the fluorescence signal from the external solution contributes to the measured 

fluorescence from inside the gel bead, a dual wavelength experiment was also proposed 

and is discussed in section 2.3.4.2. To determine the contribution of the external solution 

to the light measured inside the gel bead the fluorescence from a rhodamine B - dextran (2 



million Da) was measured. At this molecular weight the dextran does not penetrate into the 

gel and any signal dectected inside the gel bead is due to the external solution. Because the 

filters on the microscope can be readily changed the fluorescence intensity from each 

fluorophore can be measured directly without interference for the gel bead of interest. By 

then looking at the fluorescence intensity of a fluorescein labeled protein both inside the gel 

and outside and subtracting off the light contribution from the external solution (as 

measured using the dextran) the partition coefficient can be determined. But as discussed in 

section 2.3.4.2, while there was a significant portion of light being constructively scattered 

into the gel from the external solution, the dual wavelength method could not give accurate 

values for the partitioning. 

2.3.4.1 Partition Coefficient Measurement Using Direct Intensity 

If the fluorescence is directly proportional to the concentration both inside the gel bead and 

in the external solution it should be possible to use a ratio of intensities to determine the 

partition coefficient. For any gel bead in solution there will be some free solution above the 

bead that will contribute to the fluorescence signal. To account for this free solution 

contribution it would be necessary to know the size of the gel bead and the height of the 

microslide so that this contribution could be subtracted out. The most accurate method of 

determining both the size and the fluorescence signal from the gel bead would be to 

measure a line of fluorescence intensity across the bead and into the free solution. By 

doing this the bead size could be determined from the point where the fluorescence intensity 

starts to decrease. In addition there would be multiple points throughout the linescan that 

can be used to calculate the partition coefficient. Using the equipment setup for the 

diffusion experiments described above in section 2.3.2, a line scan of the fluorescence 

intensity could be made across a SP-Sepharose bead. A schematic of the system is shown 

in Figure 2.1. Because the illumination of the lamp is non-uniform across the field of view 



and can fluctuate with time, two linescans were needed. As shown in Figure 2.5 the first 

scan ( a reference linescan) was made across a uniform sample of dextran-fluorescein (2 

million Da) while the second scan was made across a gel bead. Because of the variations in 

the lamp intensity it is necessary to use the exact same pixels in the linescan for the 

reference and for the gel bead. To accomplish this the center of the gel bead was moved 

into the exact field of view where the reference linescan was taken. Because the dextran 

has such a high molecular weight it will not penetrate into the gel bead and should yield a 

partition coefficient of zero. A typical set of linescans is shown in Figure 2.5 where the 

fluorescence in arbitrary units is plotted versus the pixel number. To obtain a more 

accurate picture of the fluorescence intensity, the linescan with the bead was normalized 

with the reference linescan and a plot of the normalized intensity averaged for five sets of 

linescans is given in Figure 2.6. If the intensity measurements were directly proportional 

to the concentration inside the bead then we could determine the partition coefficient using 

the physical parameters of the microslide setup, the height of the microslide and the 

diameter of the gel bead. The intensity of each pixel, I, would be 

where H is the height of the microslide, E is the excitation of the fluorophore per unit 

height, B is the secant distance of the bead at that pixel point, and fl> is the partition 

coefficient. Using the external solution as a reference (where B = 0 ) then we can 

determine the partition coefficient from 



Pixels 

Figure 2.5 A linescan of the fluorescence intensity of dextran - fluorescein (MW 2 
million). The reference linescan is the fluorescence intensity across a uniform solution of 
labeled dextran. There are variations in the measured intensity because of variations in the 
illumination by the mercury arc lamp. The gel bead linescan is the fluorescence intensity of 
the exact same pixels as those in the reference linescan but with a gel bead in the center of 
the field of view. 
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Figure 2.6 The average linescan across a gel bead in equilibrium with dextran - fluorescein 
(MW 2 million) normalized with the reference linescan. Five sets of linescans were used. 



where R is the radius of the gel bead, xn is the distance from the first pixel to pixel n and xc 

is the distance to the pixel at the center of the bead. When we found that the calculated 

partition coefficient of dextran - fluorescein (2 million Da) was significantly higher than, 

we concluded that our assumption that the concentration of the macromolecule inside the 

gel bead was proportional to the measured intensity was erroneous. Since there was 

significantly more signal inside the bead than we had expected, one suggestion was that 

there was light being scattered into the bead from the external solution. When we measured 

the intensity of a small fluorophore, fluorescein, in equilibrium with the gel bead, the 

intensity of the solution inside the gel bead was higher than in the external solution! This 

was strong evidence that the gel phase was scattering light in a constructive manner for the 

microscope. 

2.3.4.2 Partition Coefficient Measurement Using Dual Fluorescence 

To account for the amount of light scattering into the gel bead from the external solution, a 

modification of equation 37 was made to include a term for the contribution of light 

scattered into the gel bead. The intensity at each pixel is then 



where the addition term, Q, is an unknown amount of light scattered to each pixel, n. 

To find Q (the amount of light scattered to the pixel point and contributing to that 

pixels intensity), another fluorophore rhodamine B was used. In contrast to fluorescein 

which is excited at 488 nm and emits at 5 15 nm, rhodamine B's excitation wavelength is 

555 nm and emits at 579 nm. This allows us to mix the two fluorophores and determine 

independently their concentrations. To determine the amount of light being scattered from 

the external solution, the rhodarnine B was conjugated to dextran (MW 2 million) which 

will not penetrate into the gel bead. So a scan of the rhodamine B labeled dextran should 

give us a direct measurement of Q since <S> = 0. 

The assumptions of this analysis include: (1) light from the outside solution is 

scattered into the gel bead and contributes to the image recorded by the camera; (2) the 

image recorded by the camera is the linear sum of the intensities in the pathway; (3) the 

light scattered into the bead from fluorescein in the exterior solution is the same amount of 

light scattered by rhodamine B; and (4) the illumination is uneven across the field of view 

and a line scan in the exterior solution only is needed to correct for non-uniform 

illumination. Each experiment was done using a 10 x 0.3 NA objective. Each point in the 

line scan was eight pixels wide and the value used for intensity was the average of the eight 

pixels. Five linescans were taken and averaged to yield a final intensity value for each 

pixel. 

Using a dual scan of the gel bead, one where the intensity of the fluorescein labeled 

protein is recorded and one where the intensity of the rhodamine B labeled dextran is 

measured the partition coefficient can be determined. The partition coefficient, <I>, can be 

solved for using equation 39 to yield 



where H is the height of the microslide, E is the excitation of the fluorophore by the 

mercury arc lamp at each pixel, B is the secant length intersecting the gel bead at each pixel 

and Q is the light scattered to the pixel from the surrounding solution. Each of these 

parameters must be determined to calculate the partition coefficient. 

The height of the microslide, H, is determined by placing the end of the slide under 

the microscope, recording the image and counting the number of pixels. Knowing the 

calibration of the pixel distance the height of the microslide can be determined. For the 

microslides that we used there was typically less than a 3% variation across the width of the 

microslide. To determine the amount of illumination for each pixel, H E(n), a reference 

linescan was done in solution away from the gel bead. Since we know that the microslide 

height, H, was constant, the specific illumination per pixel, E(n), could be determined. A 

typical example of the lamp variation across the video screen is shown in Figure 2.5. To 

determine the secant length, B(n), the radius of the bead was measured by taking a video 

image of the gel bead and counting the number of pixels across the widest portion of the 

bead. The secant length was calculated from 

where n, is the pixel at the center of the bead, n is the pixel number of interest, P is the 

pixel calibration (typically - 0.9 pm) 

Taking a linescan of the rhodarnine B labeled dextran and using the fact that the 

partition coefficient is zero, the values for Q(n) could be determined. Then doing a similar 



line scan of the fluorescein labeled protein across the same exact pixels (only a filter change 

was necessary) the partition coefficient, a, could be determined. An example of a 

normalized linescan for both the rhodamine B labeled dextran and BSA-fluorescein in 

equilibrium with SP-Sepharose at a buffer ionic strength of 1.01 M are shown in Figure 

2.7(a) and the partition coefficient calculated for each pixel is shown in Figure 2.7(b). 

There was no systematic difference between the partition coefficient values calculated for 

each pixel. The calculated partition coefficient for BSA-fluorescein was 0.43 which is 

considerably lower than the value measured using the gel chromatography of 0.67 as 

discussed in section 2.4.1. Since the partition coefficient of fluorescein should be close to 

unity, a measurement of fluorescein in SP-Sepharose was made in a buffer ionic strength 

of 1 .O1 and the results of the linescans and calculations of the partition coefficients are 

shown in Figure 2.8 (a) and (b). Because the partition coefficient of fluorescein is only 

0.53 this leads to some doubt about the validity of this method. 

One assumption made in using the dual fluorescence technique is that the scattering 

properties of the rhodarnine B and fluorescein are the same. To test this hypothesis several 

experiments were performed. In the first set of experiments, dextran (MW 10,000) labeled 

with fluorescein and tetramethyl rhodarnine (Molecular Probes, Eugene, OR) was 

equilibrated with the gel beads and linescans performed using the appropriate filters. 

Although the excitation and emission of rhodamine B and tetramethyl rhodamine are 

slightly different, a dual labeled dextran (MW 10,000) with both rhodamine B and 

fluorescein was not available. The difference between the linescans was less than 0.05% 

indicating that the light properties of the fluorescein was identical to that of tetramethyl 

rhodarnine (excitation: 541 nm; emission: 568 nm). Likewise when linescans were 

performed on a mixture of dextran - fluorescein (MW 2 million) and dextran - rhodamine B 

(MW 2 million) the difference between the linescans was again less than 0.05%. When 

BSA - fluorescein was combined with BSA - Texas Red, the difference between their 

linescans was also less than 0.05%. The excitation and emission wavelengths for Texas 
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Figure 2.7 Calculation of the equilibrium partition coefficient of BSA in SP-Sepharose at a 
buffer ionic strength of 1 M. (a) A normalized linescan of BSA - fluorescein and dextran - 
rhodamhe B in equilibrium with a gel bead. (b) The calculation of the partition coefficient 
for each individual pixel. Note the lack of vaxiation in the partition coefficient as a fhction 
of pixel number. 
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Figure 2.8 Determination of the partition coefficient of fluorescein in SP-Sepharose at 
ionic strength of 1 M. (a) The normalized linescans of fluorescein and dextran - rhodamhe 
B across a gel bead. (b) The calculation of the individual pixel partition coefficients of 
which the average is 0.53. Because the partition coefficient of fluorescein should be 
greater than 0.9 this leads to some doubt about the validity of the dual wavelength method 
for measuring partition coefficients. 
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Red were 589 nm and 615 nm, respectively. In the second experiment, the partition 

coefficient of BSA was measured inside the gel bead for a 0.01 M sodium phosphate, pH 

7.8, except this time the fluorescent probes were switched so that BSA was labeled with 

Texas Red and Dextran (MW 2 million) was labeled with fluorescein. With the BSA - 

Texas Red the partition coefficient was 0.18 while the BSA - fluorescein was 0.22. The 

two values were measured on different beads. The bead to bead variation is typically 10%. 

We concluded that the variation in fluorescent properties was negligible. 

The partition coefficients for three proteins were measured for lactalbumin, 

ovalbumin and BSA in three phosphate buffers, pH 7.1 with potassium chloride added to 

make a final ionic strength of 0.01 M, 0.1 M and 1.0 M. The experimental values are 

shown in Table 2.2. When compared to the values obtained using the gel chromatography 

column method as discussed in section 2.4.1, the partition coefficients obtained using the 

microfluorescence technique were substantially lower for the higher ionic strengths. 

Table 2.2 Comparison of the protein partition coefficients in SP-Sepharose using the 
microfluorescence technique and the gel chromatography method. 

Protein Ionic @ 
Strength (fluorescence) (chromatography) 

(W 

BSA - fluorescein 1-01 0.39 k0.01 0.67 k0.03 
0.1 1 0.38 kO.01 0.47 kO.01 
0.0 1 0.32 kO.01 0.29 k0.01 

Ovalbumin - fluorescein 1-01 0.44 kO.01 0.64 k0.02 
0.1 1 0.41 k0.01 0.59 k0.01 
0.0 1 0.32 k0.01 0.29 k0.02 

Lactalbumin - fluorescein 1-01 0.52 k0.02 0.78 k0.03 
0.1 1 0.45 kO.01 0.75 k0.04 
0.0 1 0.38 kO.01 0.44 k0.03 



While it was very encouraging to find that the calculated partition coefficient did not 

vary as a function of pixel distance as shown in Figure 2.7(b) for BSA and in Figure 

2.8(b) for fluorescein, the value of the partition coefficients place doubt upon the validity of 

this method. The measured partition coefficient for fluorescein using the microfluorescence 

technique was 0.53, which is substantially lower than the expected value (> 0.9). In 

addition the partition coefficients of the three proteins are lower than the values from the gel 

chromatography method which is calculated from a simple mass balance. It is interesting to 

note that at the lowest ionic strength where the partition coefficients are the lowest, the two 

methods come closer to agreeing. It is possible that the microfluorescence technique may 

be used to measure low values of the partition coefficient. However disappointing, it is 

concluded that the microfluorescent technique cannot give reliable results for the partition 

coefficient. 

This particular set of experiments does illustrate that the concentration of the 

fluorescent solution inside the gel bead is not directly proportional to the fluorescence 

intensity. This is especially important in the diffusion experiments that were discussed in 

section 2.3.2 making the need for the Fourier transform method all the more necessary for 

obtaining accurate values of the diffusion coefficient. 

2.4 Resul ts  

2.4. I Partition coefficients 

The partition coefficients for the proteins at the three ionic strengths are summarized in 

Table 2.3. For all three proteins there was a marked decrease in @ with decreasing ionic 

strength. This is the expected trend for proteins and gels of like charge, because there will 

be less screening of the repulsive electrostatic interactions at the lower ionic strengths. 



Table 2.3 Partitioning and diffusivity of proteins in SP-Sepharose. 

IoSc 
Protein Strength Dm D Dmm 0 

( 1 0-7 cm2/s) ( 1 0-7 cm2/s) 

BSA 1-01 5.7 k 0.2a 2.7 k 0.4b 0.47 2 0.07' 0.67 k 0.03 
0.1 1 5.8 k 0.4a 2.6 k 0.2b 0.45 k 0.05' 0.47 k 0.01 
0.0 1 5.7 k O.za 2.6 k 0.4b 0.45 k 0.07' 0.29 k 0.01 

Lactalbumh 1 . 0 1 9.2 k O S g  4.9 k 0.2 0.53 k 0.09 0.78 k 0.03 
0.11 9.3 k 0.gg 4.5 k 0.2 0.49 k 0.05 0.75 k 0.04 
0.01 9.9 k 0.6 3.8 k 0.4 0.38 k 0.04 0.44 k 0.03 

Diffusivities have been corrected to 20Â° using the Stokes-Einstein equation. Values are 
given as mean k SD Common superscripts indicate that quantities are not statistically 
different (95 % confidence level). 

2.4 -2 Diffusivities 

The free solution and gel diffisivities for each protein at the three ionic strengths are 

summarized in Table 2.3. There was no effect of ionic strength on Dm for albumin, 

whereas for ovalbumin and lactalbumin Dm exhibited slight (but statistically significant) 

increases at the lower ionic strengths. The maximum variation in Dm with ionic strength 

was 7%, for lactalbumin. The free solution diffusivities are compared with literature values 

in Table 2.4. Because the effects of ionic strength on Dm were minimal, the "FRAP" values 

in Table 2.4 were obtained by pooling all of the present data; the Stokes-Einstein radii 

shown in Table 2.1 were calculated from these average values of Dm. As seen in Table 2.4, 

the values of Dm obtained here with fluorescein-labeled proteins are about 10% lower than 

typical values measured for unlabeled proteins using a variety of methods. It is likely that a 

systematic error of this magnitude could be caused by the propagation of error in the spatial 

frequencies caused by an error in the measurement of the pixel distance. This should not 



affect the diffusivity ratio, DIDw, since we used the same frequencies for both the free 

solution and gel phase diffusion measurements. 

Table 2.4 Comparison of free solution diffusivities to literature values (20Â°C 

FRAP Literature Literature Method* Reference 

BSA 5.7 k0.2 5.3 
5.8 kO.l 
5.9 
6.0 kO.l 
6.1 kO.l 
6.2 k0.4 
6.3 kO.l 
6.3 kO.l 
6.4 k0.9 

Flow fractionation 
Rayleigh light scattering 
Hydrodynamic stability 
QELS 
QELS 
Flow fractionation 
QELS 
Taylor dispersion 
FRAP 

Giddings et al., 1976 
Sellen, 1973 
Anderson et al., 1978 
Bor Fuh et al., 1993 
Raj and Flygare, 1974 
Bor Fuh et al., 1993 
Gaigalas et al., 1992 
Walters et al., 1984 
Jain et al., 1990 

Ovalbumin 6.7 k0.3 7.2 k0.2 Taylor dispersion Walters et al., 1984 
7.4 PFG NMR Gibbs et al., 1991 
7.7 k0.4 Row fractionation Bor Fuh et al., 1993 
7.9k0.2 QELS Bor Fuh et al., 1993 

Lactalburnin 9.2 k0.5 10.6 Sedimentation-diffusion Gordon and Semmett, 1952 

Returning to the results in Table 2.3, for all three proteins the gel diffusion 

coefficients were substantially lower than the corresponding free solution diffusivities. As 

with Dm, the value of D for albumin was not affected by ionic strength. The values of D for 

ovalbumin and lactalbumin decreased by moderate amounts at low ionic strengths, with 

maximum changes of 10 % and 23 %, respectively. The diffusivity ratio, DIDw, for all 

three proteins ranged from about 0.4 to 0.5, and exhibited the same trends with ionic 

strength as did D. 



Discussion 

The objective of this study was to compare the effects of electrostatic interactions on the 

diffusion and equilibrium partitioning of charged macromolecules in gels of like charge. 

The experimental design allowed both diffusivities and partition coefficients to be measured 

independently using identical gel beads. We are unaware of any previous data on charge 

effects in gels where both quantities were measured using the same test macromolecules 

and gels, under the same conditions. A particular advantage of the FRAP method is that 

direct comparisons could be made of diffasivities measured in gel beads and in the adjacent 

bulk solution. For the three anionic proteins (bovine serum albumin, ovalbumin, and 

lactalbumin) in sulfated agarose gels, there was a much stronger effect of ionic strength on 

the partition coefficient (G') than on the gel diffusivity (D), indicating that electrostatic 

interactions have a greater effect on partitioning. This suggests that the effects of charge on 

the effective diffasivity of a globular protein through a gel membrane (<I> D) will result 

primarily from alterations in G'. 

A consideration of length scales suggests that charge effects on G' should be 

important at the lower ionic strengths studied, but probably not at the highest ionic 

strength. Using the distribution of spacings calculated by Ogston (1958) for a random 

array of fibers, we estimate that the average distance between agarose fibers in the 6% gels 

studied was 11 nm (see section 1.6). The Debye length, the characteristic length for 

electrostatic interactions in electrolyte solutions, ranged from 3 nm at 0.01 M ionic strength 

to 0.3 nm at 1 M. Thus, at the lowest ionic strength the Debye length was a significant 

fraction of the interfiber spacing, and a protein molecule located at almost any sterically 

allowed position in the gel should have experienced some electrostatic repulsion. In 

contrast, the small ratio of Debye length to interfiber spacing at 1 M should have resulted in 

minimal electrostatic interactions. A comparison of the measured values of G' with those 



predicted by Ogston's partitioning theory for neutral spheres in random arrays of 

uncharged fibers suggests that this was in fact the case. As shown in Figure 2.9, the 

values of <I> measured in the 1 M buffer agree well with those predicted by equation 12. As 

already mentioned, the Og ston theory generally agrees well with previous measurements of 

<S> for uncharged macromolecules in neutral agarose gels (see section 1.5.1). 

For all three proteins the gel diffusion coefficient, D, was significantly reduced 

when compared to the free solution diffusivity, Dw. At the highest ionic strength, the 

values of D/D_ varied little among the proteins, ranging only from 0.47 to 0.53. However, 

the effects of ionic strength on D or D/D varied considerably, the magnitude of the 

changes following the order lactalbumin > ovalbumin > albumin. Thus, the effects of ionic 

strength on the gel diffusivity seemed to depend inversely on the Stokes-Einstein radius of 

the protein. This trend may be coincidental, in that other molecular properties (e.g., shape 

and charge density) may also influence protein mobility within the gel phase. If it is 

assumed that charge effects were minimal at the highest ionic strength, then it is legitimate 

to compare the measured values of D / D  with those predicted by equations 13 and 14. The 

value of K needed in equation 14 was estimated using a correlation given by Jackson and 

James (1986) for the hydraulic permeability of three-dimensional arrays of fibers as 

previously discussed in section 1 A.2. 
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Figure 2.9 Comparison of measured values of the partition coefficient with those predicted 
using the theory of Ogston (1958). equation 12. The partition coefficients are shown as 
mean kSD. The theory (developed for uncharged macromolecules and fibers) agrees well 
with the data at the highest ionic strength (1 M), where the electrostatic interactions are 
almost completely screened. 



With r, = 1.9 nm and (0 = 0.059 (see section 1.6), equation 42 gives K = 17.4 nm2. As 

shown in Figure 2.10, equation 13 consistently overestimated the value of D/Dm at 1 M, 

and also predicted a larger effect of molecular radius than was observed. Equation 14 gave 

more accurate values of D/Dm for these conditions, but it too predicted a greater sensitivity 

to molecular radius. It should be noted that the better predictions obtained with the 

effective medium theory may be fortuitous, in that the values of K were estimated from 

equation 42, rather than being measured for our specific gels. While we do not have the 

Darcy permeabilities for SP-Sepharose, measurements for agarose discussed in Chapter 4 

show that equation 42 does underpredict the Darcy permeability by a factor of 2 - 3. A 

discrepancy of this magnitude will give higher values for Dm_. 

Equations 12-14 were intended to apply only to uncharged systems, and it is clear 

that addition theoretical work is needed to describe electrostatic effects on partitioning and 

diffusion in charged gels or other charged, fibrous media. Our finding that ionic strength 

tended to have a much more pronounced effect on than on DIDm suggests that it would 

be especially useful to devote attention to the effects of charge on equilibrium partitioning 

as is done in Chapter 3. The good agreement between the Ogston partitioning theory and 

data obtained when charge effects are absent suggest that the geometric model employed, 

consisting of randomly oriented, cylindrical fibers, may provide a good point of departure 

in modeling the effects of charge on a. Of course, more predictive theories for D/D= of 

macromolecules in gels, both in neutral and in charged systems, are also needed as well as 

exact measurements for the Darcy permeability. Measurements for the permeability of 

agarose are presented in Chapter 4 while a more complete evaluation of equation 4 is given 

in Chapter 5. 
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Figure 2.10 Comparison of measured values of reduced diffusivity ( D m )  with those 
predicted using equation 13 (Ogston diffusion model) and equation 14 (Brinkman model). 
The reduced diffusivities are shown as mean Â±SD The agreement between theory and data 
at 1 M is better with the Brinkman model, but both theories show greater sensitivity to 
molecular size than do the experimental results. 



Chapter 3 

3. Theory for Partitioning of Charged Spheres 

into Random Fiber Arrays 

3.1 Introduction 

The partition coefficient (a) of a macromolecule between a gel and free solution is the gel- 

to-free-solution concentration ratio at equilibrium, the concentrations being based on the 

total volumes of the respective phases. The partition coefficients between gels and dilute 

solutions are important in chromatographic and membrane separations, as well as for 

understanding the transport of proteins and other macromolecules through various body 

tissues. As previously reviewed in section 1.3.1 Ogston (1958) modeled the crosslinked 

polymer of a gel as a random array of straight fibers, and used geometric arguments to 

derive an expression for the partition coefficient under conditions where steric exclusion is 

the dominant factor. The result was 



where ((> is the volume fraction of fibers, r is the sphere radius, and r, is the fiber radius. 

This elegant result was confirmed by Fanti and Glandt (1990), who used statistical 

mechanical methods to extend the theory to solutions which are not infinitely dilute (i.e., 

including hard-sphere interactions among solutes). 

For neutral agarose gels, and for charged agarose gels where the salt concentration 

was sufficient to completely screen electrostatic interactions, equation 43 has been found to 

yield excellent predictions (Laurent, 1967; Boyer and Hsu, 1992; Moussaoui et al., 1992; 

Johnson et al., 1995) as reviewed in section 1.5.1. However, in many systems the effects 

of charge on <S> are important. For example, studies using gel beads intended as 

chromatographic media have shown significant effects of ionic strength on <S> for various 

proteins (Dubin and Principi, 1989; Dubin et al., 1993; Edwards and Dubin, 1993; 

Schluter and Zidek, 1993; Johnson et al., 1995). As another example, ultrafiltration of 

macromolecules across the walls of renal glomerular capillaries has been shown to be 

highly dependent on molecular charge (Maddox et al., 1992), an effect which is likely to be 

mediated in large part by values of <S> in the glomerular basement membrane, a charged, 

gel-like structure. 

There has been no theory to predict <S> for charged macromolecules in arrays of 

charged fibers. To provide an approximate theory for dilute solutions, we have extended 

the approach of Ogston (1958) to include charge effects. This was done by using a 

Boltzmann factor, containing an electrostatic free energy, to modify Ogston's expression 

for the probability of fitting a sphere in a space between fibers. The electrostatic free 

energy was calculated from solutions to the linearized Poisson-Boltzmann equation for a 

sphere interacting with a long cylinder, both with specified surface charge densities. Most 

of the computational effort was devoted to determining the electrostatic potentials, using 

finite element methods, because no published results were available for sphere-cylinder 

systems. 



3.2 General Formulation for the Partition Coefficient 

3.2.1 Partition coefficient 

In the fiber-matrix model of Ogston (1958), which considered only steric exclusion, the 

partition coefficient for a dilute solution was determined from 

where the function g(h) is the probability of finding the closest fiber at a surface-to-surface 

distance h from the sphere. Performing the integration indicated in equation 44 leads to 

equation 43. As done previously in describing electrostatic effects for spheres in 

cylindrical pores (Smith and Deen, 1983; Brenner and Gaydos, 1977, Malone and 

Anderson, 1978), we introduced a Boltzmann factor which describes the relative 

probabilities of various energy states. Multiplying g(h) by this factor, we obtain 

where E(h) is the electrostatic free energy of the sphere-fiber system divided by kT, where 

k is Boltzmann's constant and T is absolute temperature. The energy is defined such that 



E(=) = 0; that is, the energy is taken to be zero when the sphere is distant from all 

cylindrical fibers. It is important to note that the energy term in equation 46 accounts only 

for interactions between the sphere and the nearest fiber. In an exact theory for dilute 

solutions, the sphere would interact with multiple fibers, and E would depend on multiple 

position variables, not just h. The present approach is expected to be most accurate when 

the Debye length is much smaller than typical interfiber spacings (i.e., for high ionic 

strengths and/or small (b). 

3.2.2 Electrical Potential 

The first step in calculating E(h) was to solve the linearized Poisson-Boltzmann equation 

for a sphere-cylinder system for various combinations of parameter values. The electrical 

potential was scaled by RTR, where R is the gas constant and F is Faraday's constant, 

yielding a dimensionless potential denoted by Y. The position coordinates were made 

dimensionless using the sphere radius r,. Thus, the linearized Poisson-Boltzmann equation 

was written as 

The parameter T is the ratio of the sphere radius to the Debye length (K"'), Ci_ and z are the 

free solution concentration and valence, respectively, of electrolyte species i, and e is the 

dielectric permittivity of the solvent. The dielectric permittivity is the relative dielectric 

constant multiplied by E-, the permittivity of vacuum (eo = 8.8542 x 10-12 C V"' m"). 



The boundary conditions were written in terms of a dimensionless separation 

distance (q), fiber radius (b), sphere surface charge density (o,), and fiber surface charge 

density (of). These quantities were defined as 

where qf and q, are the dimensional surface charge densities. Assuming that the dielectric 

constant of the solvent greatly exceeds that of the sphere or fiber (a good approximation for 

most organic materials in water), the constant-charge boundary conditions are 

where p is radial position in a spherical coordinate system centered at the sphere and r is 

radial position in a cylindrical coordinate system centered at the fiber. Far from the sphere 

and the fiber, the potential was taken to be zero. An examination of equations 47 - 5 1 

indicates that the dimensionless potential depends on five parameters, in addition to 

position; that is, Y! = Y(x; q, T, p, o,, of), where x is a dimensionless position vector. 



3.2.3 Free Energy and Interaction Potential Energy 

The change in free energy due to the interaction between the sphere and fiber is expressed 

as 

where the subscripts s, f, and sf refer to the isolated sphere, isolated fiber, and combined 

sphere-fiber system, respectively. Each of the G terms has been made dimensionless using 

an electrostatic energy scale, given by (~~/Fl 'er , .  As shown by Verwey and Overbeek 

(1948), the free energy for a system governed by the linear Poisson-Boltzmann equation is 

evaluated by integrating the potential over the charged surface(s), 

For the calculation of G,, Gf, and Gsf, the dimensionless area A (scaled by r:) is that of the 

sphere, the fiber, or the sum of the two, respectively. Thus, the change in free energy is 

calculated as 



where A and A, are the surface areas of the sphere and fiber, respectively. The respective 

surface potentials evaluated at infinite separation, denoted as fm, are given by 

Os (sphere) 'K == 

where & and K, are modified Bessel functions. The energy needed in equation 46 is 

obtained by multiplying AG by the ratio of the electrostatic and thermal energy scales: 

For water at 20Â° and r varying from 1 to 10 nm, EIAG varies from 0.1 1 to 1.1. 

3.3 Numerical Calcuations for the Change in Free Energy 

3.3.1 Finite Element Mesh Development 

The linearized Poisson-Boltzmann equation was solved using a Galerkin finite element 

method (FIDAP, Fluid Dynamics, Evanston, IL) on a Cray X-MP supercomputer. The 

three-dimensional domain was divided into brick-type elements, and quadratic basis 

functions were used to approximate the potential field. Because there were two planes of 

symmetry, solutions were obtained for only one-quarter each of the sphere and cylinder. 



The half-length of the cylinder was set at 5 times the sphere radius, which was found to be 

sufficient to give negligible truncation error in evaluating the integral over A, in equation 

54. The mesh was refined close to the cylinder and sphere surfaces, where the potential 

gradients were highest. A typical mesh is illustrated in Figure 3.1 (a), which is a view 

perpendicular to the axis of the cylindrical fiber. An example of an electrostatic potential 

field is shown in Figure 3.1(b), which is a similar view containing isopotential lines. To 

calculate AG, the average surface potentials on the cylinder and the sphere were needed. 

The potentials at the surface nodes were obtained from the FIDAP output file and integrated 

over the surfaces using Romberg integration (Press et al., 1992) with a fractional tolerance 

of 1 x 10'~. The potential field was calculated for two numbers of nodes at each set of 

conditions, and Richardson extrapolation was used to find AG. For this purpose the 

number of elements was increased uniformly throughout the mesh, from 972 to 2304. The 

exact free energy calculations for each value of T, B, T), q, and oc are given in Appendix 

A.I. 

3.3.2 Solution Convergence and Error Estimates 

For solutions of Laplace's equation with quadratic basis functions on a two-dimensional 

grid of N x N elements, the error in the field variable is expected to vary as N " ~  (Finlayson, 

1980). Similar rates of convergence are expected for the present problem, if N is taken to 

be the cube root of the total number of elements. The error in AG should be similar to that 

in Y, so that we expect the error in AG to vary as N'~. An example of the actual rate of 

convergence is shown in Figure 3.2. The "exact" value for AG was estimated by 

extrapolation from the last two points, using the theoretical slope of -3. The actual slope in 

this representative case, based on all points shown, was calculated to be -3.08. Because 

the relative sizes of the elements were forced to change as h was varied, the extrapolation 

was checked at selected values of h by performing calculations at a third 
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Figure 3.1 (a) The finite element mesh for t=l ,  B=l, and q= 1 viewed in a plane which 
includes the center of the sphere and the axis of the fiber. The full three dimensional mesh 
contains 2O,96 1 nodes. (b) Electrostatic potential field for the same view as shown in (a). 
Isopotential lines are are evenly spaced between *F = 0 and 0.87. 



AG * -AG 1 AG* 

1 10 100 

N = (Total ~lements)" 

Figure 3.2 Convergence of the electrostatic free energy with increasing numbers of 
elements. The abscissa (N) is the cube root of the total number of elements and AG* is the 
best estimate of DO. Richardson extrapolation was used to calculate AG*, based on the 
theoretical slope of -3 and the results for the two largest numbers of elements. The slope 
calculated form all of the points was -3.08, in excellent agreement with the theoretical 
slope. These calculations were for ~ = l ,  p= 1, and q=0.5. 



(higher) number of elements (4500). The extrapolated value of AG differed from these 

refined values by ~ 2 % .  The maximum deviations occurred at the largest values of q ,  

where the elements were stretched over the greatest distance and the potentials were the 

lowest. 

3.3.3 Correlation of Interaction Energy Results 

The linearity of the governing equations implies that the surface potentials are linear 

functions of the charge densities. It follows from equation 54 that AG has a quadratic 

dependence on 0, and a,, which we write as 

To evaluate the coefficients A,(q,~,p) in equation 58, results for AG were obtained for 950 

sets of parameter values, with 0.125 < q < 3.0,0.33 < T < 10, 0.25 < P < 2.0, and 0.06 < 

o-/ot < 8.0. For each set of q ,  T, and P the values of A, were computed by nonlinear 

regression of AG/(os 0.) vs. q/q. Each of the Ai coefficients was found to be positive for 

all conditions. To put the results in a convenient form, these "exact" values for A, were 

fitted using empirical correlations, as described below. 

To determine suitable functionalities for 4(q,T,P), we examined an analytical 

expression for the free energy of two unlike spheres (Ohshima, 1995) and numerical 

results for the case of a sphere close to a flat plate (Grant and Saville, 1995), both with 

constant surface charge densities. For two spheres the free energy remains finite at contact 

(q = O), and in the limit of small q (and large T ) the coefficients A, decrease exponentially 

with q. The two dominant terms in the free energy expression for a sphere near a charged 



plate (eq. 31 in Grant and Saville, 1995) also decay exponentially with q. To see if an 

exponential decay in q was approximately correct for the present problem, we first fitted 

the dependence of free energy on q by assuming that 

For any given combination of t and p, equation 59 was used to fit the results obtained for 

each 4 at 38 values of q ,  thereby yielding a pair of values for ui and vie This was done for 

each of 25 combinations of t and P and the values for ui and vi are shown in Table 3.1. 

Three measurements of the error in the curvefit are also shown in Table 3.1; RMS is the 

root mean square of the fractional residual error (the number of data points used in the 

mean was decreased by the number of parameters used in the curve fit); cres> is the 

average absolute fractional residual error and y2 is the sum of the square of the fractional 

residual errors. The fortran program, curvefitter.f, used to determine the curve fit 

parameters is found in the appendix in section A.4. The average absolute residual (<res>) 

obtained with equation 59 for any individual case was typically c 5%. Thus, the 

exponential decay in q was found to be an excellent approximation. One extreme 

combination of parameter values, t = 10 and p = 2, was exceptional in that the average 

residual was 17%. Because of its relatively poor fit to equation 59, this one combination of 

t and was excluded in developing the overall correlation discussed below. This reduces 

the number of total data points from 950 to 912. Caution should be used in using the curve 

fits for this combination o f t  and b. 
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The values of the 12 constants (a,, b,, c,, and d, for i = 1 to 3) obtained from a least-squares 

fit to a total of 912 data points are shown in Table 3.2. The average absolute residual was 

18.5 %. It was found that equation 60 provided a good compromise between accuracy and 

convenience. Although the 24 individual fits using equation 59 yielded smaller average 

residuals, those fits involved a total of 144 discrete values of u, and v,, and their routine use 

would require numerical interpolation of ui and v, in both T and p. As will be shown in 

section 3.4, partition coefficients computed using equation 60 did not differ appreciably 

from those computed using equation 59. 

The "cross" term in equation 58, Appp  expresses the major part of the screened 

repulsion or attraction between a charged sphere and a charged fiber. The terms involving 

0: and 02 represent the smaller effects which remain when only one of the two objects is 

charged. Even if one object is uncharged, its low dielectric constant distorts the potential 

field in the vicinity of the charged object and thereby increases the electrostatic free energy. 

The relative magnitudes of the three coefficients are illustrated for a typical case in Figure 

3.3. It is seen here that 4 and A, are small relative to A,, declining from a maximum of 

17% of A, at contact to <5% for q > 0.5. Thus, although there will be some effects of 

charge on the partition coefficient when only one object is charged, those effects will tend 

to be minor compared to those present when the sphere and fiber are both charged. 

Table 3.2 Constants for use in free energy correlation (equation 60) 



Figure 3.3 Relative magnitudes of the coefficients in the free energy correlation (equation 
58), for ~ = 1  and 8=1. 



3.4 Partitioning Predictions 

Partition coefficients were evaluated by numerical integration of equation 46 using a 

Fortran routine for Romberg integration (Press et al., 1992). To investigate the errors in <S> 

which might arise from the empirical correlations used to evaluate AG, results obtained 

using equation 59 and 60 were compared. These comparisons were made for each of the 

24 combinations of r and p, at two ionic strengths and two volume fractions of fibers. As 

shown in Figure 3.4, the two sets of results were virtually identical, the average difference 

being c 2%. Because the results obtained with equation 59 should have negligible error, 

their agreement with those from equation 60 validates the use of the latter, more 

approximate correlation for this purpose. All other results presented here for <S> are based 

on equation 60. It should be noted that because values of AG were computed only for 

0.125 < q < 3.0, evaluation of the integral in equation 46 requires extrapolation of the 

results to smaller and larger T). However, the nearly exponential decay of A, with q should 

make extrapolation errors minimal. Where the percentage errors in AG are likely to be 

greatest, at large q ,  the absolute values of AG are small and the Boltzmann factor in 

equation 46 is very close to unity. 

Figures 3.5-3.8 show a sampling of results for <S> obtained for spheres and fibers 

of like charge. The results calculated for neutral spheres and fibers using equation 43, the 

expression derived by Ogston, are included for comparison. As shown in Figure 3.5, 

repulsive interactions can cause <& to decline much more rapidly with increasing sphere 

radius (rJ than for the uncharged case. The effects of charge are greatest, of course, at the 

lowest ionic strength. Figure 3.6 shows that the decline in <I> with increasing volume 

fraction of the fibers (A) is also magnified by repulsive charge interactions. The effects of 

variations in the surface charge density of the sphere are shown in Figure 3.7. Increasing 

the sphere charge at a fixed Debye length has the same qualitative effect as increasing the 

Debye length (decreasing the ionic strength) at a fixed charge density. A plot like 
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Figure 3.4 Comparison of partition coefficients (0 )  calculated using the free energy 
correlatins given by equations 59 and 60. The results are for 24 combinations of T and p, 
each for d)=0.02 and 0.06 and for ionic strengths of 0.01 M and 0.05 M. Because the 
errors in equation 59 are small (generally < 5%), the corresponding values of 4> should be 
virtually exact. The agreement between the partition coefficients calculated using the two 
equations validates the use of the more approximate correlation (equation 60), in computing 
0. 



Figure 3.5 Partition coefficient (@) as a function of the sphere radius (rs) and the ionic 
strength, for spheres and fibers of like charge. The results are for d) = 0.06, rf = 2.0 nm, 
and qs = qf = -0.01 c/m2. Results from the Ogston expression for uncharged systems 
(equation 43)- are also shown. Repulsive charge interactions reduce @, and make it more 
sensitive to rs. 
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Figure 3.6 Partition coefficient ( a )  as a function of the volume fraction of fibers (A) and 
the ionic strength, for spheres and fibers of like charge. The results are for r = 4.0 nm, r, 
= 2.0 nm, and qs = q, = -0.01 Urn2. Results from the Ogston expression for uncharged 
systems (equation 43). are also shown. Repulsive charge interactions reduce a ,  and make 
it more sensitive to A. 
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Figure 3.7 Partition coefficient (a) as a function of the sphere radius (rJ and the sphere 
surface charge density (qs), for spheres and fibers of like char e. The results are for (t) = 5 0.06, r, = 2.0 nm, ionic strength = 0.01 M, and q, = -0.01 Clm . Results from the Ogston 
expression for uncharged systems (equation 43), are also shown. Repulsive charge 
interactions reduce fl>, and make it more sensitive to rs. 
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Figure 3.8 Partition coefficient (@) as a function of the sphere radius (rJ and the fiber 
surface charge density (q,), for spheres and fibers of like charge. The results are for <)> = 
0.06, r, = 1.9 nm, ionic strength = 0.01 M, and qs = -0.01 c/m2. Results from the Ogston 
expression for uncharged systems (equation 43), are also shown. Repulsive charge 
interactions reduce @, and make it more sensitive to rs. 



Figure 3.7, but with fiber charge varied as a parameter instead of sphere charge, gives 

results which are nearly superimposable as shown in Figure 3.8. This is related to the fact 

that the cross term in equation 58 tends to make the dominant contribution to the 

electrostatic free energy. Consequently, variations in a, have almost the same effect as 

equivalent variations in q. 

Figure 3.9 shows results for spheres and fibers of unlike charge. In this case there 

is a competition between electrostatic attraction and steric exclusion. For small r, the charge 

effects dominate, so that @ tends to increase with r,, reaching values greater than unity 

when the surface charge densities are sufficiently large. There is an initial increase in @ 

with r because, with surface charge densities held constant, there is an increase in total 

sphere charge. Eventually, though, <[> declines with increasing r, as the steric effects 

become more prominent. 

3.5 Discussion 

We have presented a theory for predicting the effects of electrostatic interactions on the 

equilibrium partitioning of spherical macromolecules in random fiber arrays. There has 

been recent interest in using electrostatic repulsion to enhance the chromatographic 

separation of molecules of similar size but differing charge densities (Edwards and Dubin, 

1993; Garcia et al., 1994). Most or all of the physical parameters in this model can be 

evaluated independently using light scattering, titration, or other measurements, so that the 

theory should be useful in identifying advantageous combinations of operating variables 

such as pH and ionic strength. The model should also provide insight into the charge- 

selective characteristics of biological barriers, such as the glomerular basement membrane 

(Maddox et al., 1992). 

The theory presented here should be most accurate for low fiber volume fractions, 

moderate to high ionic strengths, and low surface charge densities. The restrictions on 
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Figure 3.9 Partition coefficient ( a )  as a function of the sphere radius (rs) and the sphere 
surface charge density (qJ, for spheres and fibers of unlike charge. The results are for (1) = 
0.06, r, = 1.0 nm, ionic strength = 0.01 M, and q, = -0.01 c/m2. Results from the Ogston 
expression for uncharged systems (equation 43), are also shown. Attractive charge 
interactions increase <I>. 



fiber volume fraction and ionic strength are due to the fact that the only electrostatic 

interactions considered are those between the spherical macromolecule and the nearest 

fiber. At fiber volume fractions and ionic strengths such that the average distance between 

the fibers is comparable to the Debye length, the electrostatic free energy will be influenced 

by simultaneous interactions between the sphere and two or more fibers, not just the 

nearest neighbor. For spheres and fibers of like charge, we expect that interactions with 

additional fibers will tend to increase the free energy, so that the present model will tend to 

overestimate <S> (i.e., underestimate the extent to which <I> is reduced below its purely steric 

value). The restriction to low surface charge densities is due to the well-known limitations 

of the linearized Poisson-Boltzmann equation. Although derived by assuming that 

electrostatic potentials are << RT/F (z 25 mV at room temperature), errors in using the 

linearized Poisson-Boltzmann equation are usually minimal when potentials are < 2-4 RTIF 

(Hunter, 1986). The corresponding limits for the surface charge densities will depend on 

the ionic strength; the maximum acceptable values of the sphere and fiber charge densities 

can be estimated using equations 55 and 56, respectively. Given a high surface charge 

density (such that potentials exceed 4 RT/F), the linearized Poisson-Boltzmann equation 

will predict a higher value for the surface potential on a flat plate than will the non-linear 

form of the equation. Assuming that a similar relationship will hold for the potential field 

around a proximate sphere and cylinder, at high surface charge densities the linearized 

Poisson-Boltzmann equation would overestimate the energy of interaction for like charges, 

and thereby underestimate @. In that the effects of multiple-fiber interactions and 

linearization of the Poisson-Boltzmann equation tend to be in opposite directions, there 

may be some cancellation of errors in applying the model to real systems. 

We have previously reported measurements of <I> for globular proteins in highly 

sulfated agarose gels (SP-Sepharose), at various ionic strengths (Johnson et al., 1995). 

Using titration data provided by the manufacturer of these gel beads (Pharrnacia), we 

estimate a fiber surface charge density of 0.42 C/m2. At an ionic strength of 0.01 M, this 
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surface charge density gives an electrostatic potential of 38 RT/F for an isolated fiber, 

which far exceeds the limits for the linearized Poisson-Boltzmann equation. Of course, this 

isolated cylinder surface potential was calcuated using equation 56, which uses the 

linearized Poisson-Boltzmann equation to determine the relationship between the surface 

charge density and the surface potential. At these high potentials, though, the linearized 

Poisson-Boltzmann equation is invalid so the value of 38 RTIF should not be taken as an 

exact value but only as an indication that this surface charge density will result in potential 

fields that are out of range of the linearized Poisson-Boltzmann equation. Thus, we have 

not attempted to compare the theory with that set of data. However, the conditions 

employed by Edwards and Dubin (1993) to study the partitioning of bovine serum albumin 

(BSA) and p-lactoglobulin in a 6% agarose gel (Superose 6) appear to be within the 

limitations of the theory. Those authors used buffer solutions at pH 7.0 and ionic strengths 

of 0.02 M and 0.04 M. The average fiber spacing in a 6% agarose gel is approximately 1 1 

nm (Johnson et al., 1995), which greatly exceeds the maximum Debye length of 2.2 nm (at 

0.02 M). Moreover, the surface potentials of isolated proteins and fibers calculated from 

titration data (see below) are < 1.4 RTIF. 

To compare the theory with the data of Edwards and Dubin (1993), all of the 

physical parameters were estimated from independent measurements. As discussed 

previously in section 1.6 we estimate that for a 6% agarose gel the volume fraction of fibers 

is 0.059 and the average fiber radius is 1.9 nm. Titration data for Superose 12 (a similar 

gel with a higher agarose concentration) showed that at pH 7.0 the surface charge density 

was -0.01 1 CIm.2 (Dubin, personal communication). The net charge on BSA and p- 

lactoglobulin was determined from titration data to be -2 1 (Tanford et al., 1955) and - 13 

(Caiman et al., 1942), respectively. The surface charge densities of BSA and p- 

lactoglobulin were then calculated to be -0.022 CIm2 and -0.018 CIm2, respectively, 

assuming the molecular radii to be 3.5 nm (Johnson et al.,1995) and 2.9 nm (Cannan et 

al., 1942). A comparison between the predicted and measured partition coefficients is 

109 



Ogston 

1 

- 

Ogstor 

Theory 
0 Edwards and Dubin 

p-lactoglobulin BSA 

Figure 3.10 Comparison of theoretical predictions for the partition coefficient with the 
experimental data of Edwards and Dubin (1993) for two negatively charged proteins in a 
negatively charged gel (Superose 6). The predictions and data are in good agreement at 
both ionic strengths studied, 0.02 M and 0.04 M. Theoretical predictions based on the 
Ogston expression for uncharged systems (equation 43) are also shown. The values of the 
various input parameters used in the theories are given in the text. 
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shown in Figure 3.10. For both proteins there was a clear tendency for <S> to increase with 

ionic strength, and the model predicted the extent of those increases quite well. The 

strength of the electrostatic interactions is shown by a comparison with the theoretical 

predictions shown for uncharged systems. 

Two methods which have been proposed to approximate the energy of interaction 

are a linear superposition of the electrostatic fields, which has been argued to be valid at 

large separations, and the Deryaguin approximation, which is only valid for short 

separations and small Debye lengths (Glendinning and Russel, 1983 ). If it were 

sufficiently accurate, linear superposition (i.e., adding the potentials obtained for two 

isolated objects) would be very attractive for the present geometry because it would avoid 

the need for a finite element (or other numerical) solution for the potential field; however, 

the integrals in equations 54 and 46 would still need to be evaluated numerically. We tested 

linear superposition for a number of conditions, and found that for like charges it 

consistently underestimated the free energy. As shown for a representative case in Figure 

3.9, the linear superposition of potentials gave a value for AG which was too low at all 

separation distances. Moreover, the two curves converged very slowly (if at all) at large q, 

so that extrapolation of our results using equation 60 was preferable to linear superposition 

even at large separation distances. The Deryaguin approximation has been used with some 

success for short separation distances between spheres with constant surface potentials, but 

as Glendinning and Russel (1983) showed it is unlikely to work well for any system with 

constant surface charge densities. 

Although many proteins are compact enough to resemble spheres, their charged 

groups may not be uniformly distributed over their surface, as assumed here. Calculations 

by Grant and Saville (1995) for a nonunifomly charged sphere interacting with a charged 

surface show that charge heterogeneity can have a dramatic effect on the interaction energy. 

To incorporate a nonunifonn sphere charge in the present theory would require an 

averaging of energies over all possible sphere orientations relative to the fiber. At least as 
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Figure 3.1 1 Comparison of the "exact" free energy form the finite element solution with 
that obtained from linear superposition of the potential fields, as a function of the 
dimensionless separation distance (TI). The slopes for the exact and superpositon results 
are = - 1.2 1 and - 1.15, respectively, indicating that the convergence between the two 
methods is extremely slow. These calculations were for T = 1, = 1 and o, = CT, = 1. 



challenging to develop would be a theory for the partitioning of linear polyelectrolytes in 

gels. One motivation for such a theory derives from interest in separating polyelectrolytes 

using ion-exclusion chromatography (Dubin and Tecklenburg, 1985, Dubin et al., 1990; 

Garcia et al., 1994). A relatively simple theory has been proposed to describe the effects of 

charge on the partitioning of linear polyelectrolytes in straight pores (Lin and Deen, 1990), 

but accounting for all possible polymer conformations within a fibrous medium presents 

significant difficulties. Monte Carlo simulations provide one possible approach for 

modeling linear polyelectrolytes in fibrous media. 



Chapter 4 

4. Permeability of Agarose Gels 

4.1 Introduction 

The permeability of agarose gels is important in both describing the microstructure of the 

gel and in developing predictions for the diffusivity of macromolecules through the gel 

phase as previously discussed in section 1.5.3. Despite the importance of the permeability, 

relatively few measurements have been made for gels (as reviewed in section 1.5.3) and 

none for agarose gels. In addition, because the permeabilities are so low, the methods used 

for measuring permeabilities required the use of very high pressures and special equipment 

to measure low flow rates. A novel apparatus has been designed to measure permeabilities 

with low pressures and high velocities by using ultrathin agarose measurements. In 

addition, measurements of the penneabilty have been for concentrations ranging between 2 

- 7% agarose. 

Fluid flow through gels or other porous media is usually modeled using Darcy's 

law, 



where v is the fluid velocity , p is the viscosity, P is the pressure and K is the Darcy 

permeability. For a pressure drop AP imposed across a slab of thickness L, the superficial 

velocity obtained by integrating equation 61 is 

In the membrane literature "hydraulic permeability" usually refers to the proportionality 

constant relating v to AP, namely K/(p L), and that is how that phrase is used here. 

In an application such as protein separation by electrophoresis, where the main 

purpose of the gel is to suppress flow, the magnitude of K is unimportant as long as it is 

sufficiently small. In other situations, however, the amount of water flow induced by a 

given applied pressure is of special interest. For example, the rates of fluid flow through 

renal capillary basement membrane and the extracellular matrix of tumors are critical for 

maintenance of normal kidney function (Drumond and Deen, 1994) and the delivery of 

anti-cancer drugs (Jain, 1987), respectively. Even when diffusion is the only mechanism 

for solute tranport, K is useful for predicting the hydrodynamic effects of a gel on the 

mobility of a macromolecular solute (Kosar and Phillips, 1995; Johnson et al., 1995). 

The value of K has also been used to infer information on the microstructural characteristics 

of gels (Tokita and Tanaka, 199 1). 

Although there are a variety of reasons for measuring the hydraulic permeability (or 

K) of hydrogels, limited experimental information is available as was reviewed in section 

1.5.3. The hydraulic permeabilities of agar and gelatin have been determined by measuring 

water flow through a gel column (Pallman and Devel, 1945; Signer and Egli, 1950). 

Various approaches have been used also to measure K for cross-linked polyacrylarnide 

(Tokita and Tanaka, 199 1 ; White, 1960; Weiss and Silberberg, 1976). In general, 
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researchers have employed relatively thick samples (L ranging from -1 mm to several cm), 

requiring the use of fairly large applied pressures and/or the measurement of very small 

water flow rates. The experimental difficulties encountered are not trivial, as evidenced by 

values of K for a given concentration of polyacrylarnide which span two orders of 

magnitude (Tokita and Tanaka, 199 1; White, 1960; Weiss and Silberberg, 1976). 

As previously explained in section 1.6 agarose is a polysaccharide derived from 

seaweed, and is used extensively in chromatography and electrophoresis. Agarose gels are 

formed by a reversible, physical association of the polysaccharide chains. At high 

temperatures (generally > 80 OC, depending on the agarose type) the agarose chains are 

soluble in water. As the temperature is lowered, the agarose chains join to form a-helical 

fibrils (Arnott et al., 1974), which aggregate further to form larger fibers. Gelation usually 

occurs by the time the solution reaches 40 OC. Because the gels are formed by physical 

linkages among multiple chains, there is a distribution of fiber radii. Electron microscopy 

(Amsterdam et al., 1975; Spencer, 1982; Waki et al., 1982; Whytock and Finch, 199 1) 

has demonstrated a range of fiber radii of 1-20 nm, without quantifying the distribution of 

fiber sizes. Light scattering results (Obrink, 1968) suggest an average fiber radius of 1.5- 

2.0 nm. Data from small angle x-ray scattering (SAXS) (Djabourov et al., 1989) indicate a 

bimodal distribution, with a radius of 1.5 nm for 87% of the fibers and a radius of 4.5 nm 

for 13%, yielding a number-average radius of 1.9 nm. Despite its widespread use, there 

appear to be no previous measurements of K for agarose. 

We report here a simple method for measuring hydraulic permeabilities of gels at 

low pressures, which we used to obtain values of K for agarose with concentrations 

ranging from 2 to 7%. Membranes which were thin but which had sufficient mechanical 

strength were prepared by casting gels on a woven polyester mesh. Gel thicknessses as 

small as 70 pm were obtained in this manner. 



4.2 Materials and Methods 

4.2.1 Preparation of gels. 

Gels were made by first adding 10 ml of 0.0 1 M Phosphate buffer, pH 7 + 0.1 M KC1 to a 

measured amount of agarose powder (Type VI, high gelling; Sigma, St. Louis, MO) in a 

20 ml glass vial, and placing the resulting slurry in a 90Â° oven for 2-5 hr. The vial, 

which was sealed to prevent evaporation, was rotated by hand periodically to ensure 

adequate mixing. Two glass plates were also heated. To cast the membranes, a 2.5 cm 

diameter piece of woven polyester mesh (Spectrum Medical, Houston, TX) was placed on 

one of the glass plates. The mesh formed a square pattern with a fiber radius of 20 mm, a 

center-to-center fiber spacing of 93 mm, and a thickness of 70 mm. The hot agarose was 

quickly poured onto the mesh and the second plate used to form a sandwich. Care was 

taken to ensure that air bubbles were not trapped in the gel. The glass plates were then 

clamped together and allowed to cool to room temperature. Finally, the gel was immersed 

in 0.0 1 M phosphate buffer at pH 7.0 1 containing 0.1 M KC1, and stored (usually 

overnight) at 4OC. 

4.2.2 Hydraulic permeability measurements. 

The gel membrane was mounted on a porous frit inside a 3 ml ultrafiltration cell (Model 3, 

Amicon, Beverly, MA), which was then filled with the phosphateIKC1 buffer. The 

solution was forced through the membrane at a constant pressure using compressed 

nitrogen. The transmembrane pressure drop was monitored using a pressure transducer 

(Model DP15, Validyne Engineering, Northridge, CA) while the flow rate was determined 

by collecting and weighing the filtrate. The height of the water in the ultrafiltration cell was 

measured during the experiment and a correction was made for the hydrostatic pressure. 

After the flow measurements were completed (usually 2 repetitions at any given pressure), 



the membrane thickness was determined by placing the sample between two microslides 

and using a micrometer to determine the thickness both with and without the membrane 

present. The uncertainty in this measurement was estimated as k 3 pm. 

Hydraulic permeability measurements were made for agarose concentrations of 2.0, 

3.9, 5.6 and 7.3% (wlv). The volume fraction of fibers was calculated by dividing the 

weight fraction by 1.025 (section 1.6). To investigate the effects of compression of the 

membrane, results were obtained at five different pressures: 3,7, 10, 13, and 20 kPa. The 

effects of heating and cooling time in gel preparation were also examined. 

4.3 Numerical Calculation for Polyester Mesh Obstruction 

4.3.1 Correction factor for the effect of the fiber mesh. 

Because the open area was reduced considerably by the fiber mesh support, it was 

necessary to use a correction factor in computing K. This factor ($) was defined by 

rewriting equation 62 as 

Thus, in general 0 is $ is 1, with $ = 1 corresponding to the hypothetical case of no mesh. 

As shown in Figure 4.1, we modeled the mesh structure as a square array of intersecting 

cylinders. Four independent dimensions are the mesh fiber radius (R), the center-to-center 

spacing of the fibers (W), the thickness of the gel on the upstream side of the fibers (L,), 



Top View Side View 

Direction of Flow 

Figure 4.1 Model geometry used for calculating the pressure field and the correction factor 
for hydraulic permeability for mesh-supported gels. The woven mesh is represented as a 
coplanar network of intersecting cylinders of radius R, with a center-to-center distance W. 
The side view shows the total thickness of the membrane, L, and the thicknesses of gel 
layers upstream and downstream from the fibers, L, and Li, respectively. Because there 
are two planes of symmetry, the finite-element calculations used only 114 of a unit square, 
as indicated by the dashed box in the top view. 



and the total thickness of the membrane (L). With four dimensional lengths, the correction 

factor p must be a function of three dimensionless groups. These were chosen as 

Thus, p = B(a, A, y), where a is the ratio of open area to total area, A is the ratio of 

membrane thickness to fiber radius, and y is the fraction of the "excess" gel which is 

upstream of the fibers. 

The governing equation for the three-dimensional pressure field, P(x,y,z), was 

obtained by combining the continuity equation with Darcy's law to give 

Taking x as the direction normal to the membrane surfaces, the square mesh provides 

symmetry in both y and z. Accordingly, the domain chosen corresponded to only one 

quarter of a unit cell, as shown by the dashed square in the top view of Figure 4.1. The 

boundary conditions used were 

P = A P  atx = 0 

P = O  a t x = L  

n VP = 0 at fiber surfaces, symmetry planes 



where n is a unit normal vector. The pressure field and p were computed using a 

commercial finite element package (FIDAP, Fluid Dynamics International, Evanston, IL) 

on a Silicon Graphics Indigo workstation. The calculations were based on the Galerkin 

method with quadratic basis functions. As the number of nodes was increased, the average 

pressure gradients at the surfaces converged quadratically, as expected. The factor p was 

calculated as the pressure gradient averaged over the downstream surface,<-(<9P/&) I, = i>, 

divided by the macroscopic pressure gradient, APL. Using 5769 nodes in these three- 

dimensional simulations yielded errors of < 0.1 % in p. 

4.4 Results and Discussion 

4.4.1 Correction factor for polyester mesh support. 

In calculating the correction factor p needed to compute K from data obtained using mesh- 

reinforced gels, a simplifying assumption was that the mesh fibers were intersecting 

cylinders. The actual mesh was woven, so that the fibers were not uniformly coplanar. 

To estimate the error introduced by this assumption, we varied the parameter y, which 

corresponds to the fraction of the excess gel which is on the upstream side of the fibers. 

For 0.1 < y 5 0.9 there was less than a 3% change in p. This indicates that the exact 

location of the cylindrical fibers in the x direction is relatively unimportant. Although it 

was not practical to calculate p using an exact representation of the woven mesh, the 

intersecting cylinder model appears to be a reasonable approximation. Having found that p 

E P(a, \) only, the dependence of 8 on the remaining two parameters was determined 

using simulations where 0 S a < 1 and = 2.50, 3.75, and 7.50 (with y = 0.5). Figure 

4.2 shows the results, together with a power-law curve fit for each value of A., and the 



Figure 4.2 Effects of a, the fractional open area, and \. the ratio of membrane thickness to 
fiber radius, on the correction factor, p. The symbols show the finite-element results, and 
the curves are power-law fits of the form p = am. For A. = 2.50, 3.75, and 7.50 the 
exponents are m = 0.787,0.642, and 0.409, respectively. All results are for y = 0.5. 



Table 4.1 Simulations to determine the correction factor, p, for use in the permeability 
experiments. 

Name Nodes AP L R a y 3P13n I3 
mesh 
mesh 
mesh 
mesh 
mesh 
mesh 
mesh 
mesh 
mesh 
mesh 
mesh 
mesh 
mesh 
mesh 
mesh 
mesh 
mesh 
mesh 
mesh 
mesh 
mesh 
mesh 
mesh 
mesh 
mesh 
mesh 
mesh 
mesh 
mesh 
mesh 
mesh 
mesh 
mesh 
mesh 
mesh 
mesh 
mesh 
mesh 
mesh 
mesh 
mesh 
mesh 
mesh 
mesh 
mesh 
mesh 



exact values are tabulated in Table 4.1. For the actual membranes used R = 20 pm, W = 93 

pm, and 70 5 L 5 100 pm. Thus, a = 0.32 and 3.5 5 k 2 55.. For those particular 

conditions it was found that B was linear in L, varying from 0.466 at L = 70 pm to 0.548 

at L = 100 pm. 

4.4.2 Darcy permeabilities. 

Duplicate measurements of hydraulic permeability with a given membrane were usually 

within 1% of one another, and always within 2%. Membrane-to-membrane variations in K 

tended to be much larger, so that statistics were calculated on the basis of the number of 

membranes examined. There was no significant effect of varying the heating time in gel 

preparation from 2 to 5 hr, or of varying the refrigeration time before study from 1 to 24 

hi. We found, however, that if the solution was not carefully mixed during the several 

hours of heating, inhomogeneities in the gel could cause the permeability to vary by a factor 

of 2 or 3, especially at the higher gel concentrations. Even with careful attention to mixing, 

the variation in K between nominally identical membranes was as much as 27%. 

The hydraulic permeabilities were very sensitive to the gel concentration. As 

shown in Figure 4.3, the Darcy permeability at AP = 20 kPa decreased by more than 20- 

fold as the volume fraction of agarose (@) was increased from 0.019 to 0.072. As 

indicated by the straight line, there was approximately a power-law relationship between K 

and 0, with an exponent (slope) of -2.4. This contrasts with the slope of - 1.5 which is 

predicted from scaling theory for semidilute polymer solutions, and which has been 

observed experimentally for crosslinked polyacrylamide (Tokita and Tanaka, 199 1). The 

difference in these slopes is not surprising, given the very different crosslinking 

mechanisms (physical association of agarose fibrils vs. chemical crosslinking of 

poly acrylamide). 



Figure 4.3 The Darcy permeability for agarose gels, K, as a function of the volume fraction 
of fibers, (b. The symbols show the mean k SD for n = 5 membranes at each agarose 
concentration, with AP = 20 kPa. The best-fit line is given by K = 0.0244 (b'2.45. 



Figure 4.4 Effect of applied pressure, AP, on the Darcy permeability, K, for single 
membranes at each of four agarose concentrations. The fitted curves are of the form, K = 
K~ - CAP. The intercepts (K~)  are given in Table 4.2, and the slopes (in nm2/Wa) are c = 
1 1.5, 1.59, 1.35, and 0.488 for d) = 0.019, 0.038, 0.055, and 0.072, respectively. 



There was an effect also of the applied pressure, K decreasing for any given 

membrane as AP was increased. Figure 4.4 shows K as a function of AP, as determined 

using one membrane at each agarose concentration. The permeabilities decreased by 14- 

3 1 % when the pressure drop was increased from 3 to 20 kPa, the relationship between K 

and AP being approximately linear. Darcy permeabilities extrapolated to zero pressure drop 

(K.) were computed by applying the slopes from the data in Figure 4.4 to the mean values 

of k measured for all membranes at AP = 20 kPa (Figure 4.3). The values of K and K. for 

the various gel concentrations are shown in Table 4.2. Also shown in Table 4.2 are values 

of the correlation length, calculated as = K."~, which is a measure of interfiber spacing in 

the gel. Assuming that the average fiber radius is -2 nm, at the lowest gel concentration the 

interfiber spacing greatly exceeded the fiber radius, whereas at the highest gel concentration 

the fibers were only a few radii apart. 

Table 4.2 Darcy permeability of agarose gels. 

I) K K K (equation 7 1) 
(nm2) (niA(nm2) 

^ 
(nm) 

0.019 353k95 616 86 25 
0.038 101i-13 132 33 12 
0.055 25Â± 53 19 7 
0.072 15i-3 22 13 5 

Values of K are mean i- SD for 5 membranes at AP = 20 kPa. See text for explanation of 
other symbols. 

As discussed in section 1.4.2 Jackson and James (1986) reviewed theoretical 

predictions for K based on hydrodynamic calculations for various arrangements of 

cylindrical rods, and examined Darcy permeability data obtained from various types of 

fibrous media. They concluded that K for random, three-dimensional arrays of fibers could 

be predicted reasonably well by 



where rf is the fiber radius and (1) is the volume fraction of fibers. Using equation 71 with 

rf = 1.9 nm, as suggested by the SAXS data cited earlier, we obtain the predicted values of 

Darcy permeability shown in Table 4.2. The values from equation 7 1 were smaller than 

either of the experimental measures of Darcy permeability (K or K.), the discrepancies being 

greater at the lower gel concentrations. At the three highest gel concentrations, at least, the 

extent of agreement between equation 7 1 and the values of either K or K. (up to four-fold 

differences) is no worse than what one might expect, given the variablility in the 

experimental results reviewed by Jackson and James. Nonetheless, the increasing 

discrepancies at lower gel concentrations might be due to changes in the agarose 

microstructure. For example, the trend could be explained by a change in average fiber 

radius with gel concentration, r, increasing as (1) decreases, although we are not aware of 

any structural data which suggest such variations in fiber radius. Another possibility is that 

the interfiber spacings became more heterogeneous at the lower gel concentrations. The 

effect of unequal fiber spacings would be to increase K for given values of rf and ((1. 

4.4.3 Conclusion 

A novel technique was developed to measure the hydraulic permeability of fiber-reinforced 

gel membranes, allowing calculation of the Darcy permeability for the gel. The method 

was applied to agarose with concentrations ranging from 2.0-7.3%, providing what appear 

to be the first measurements of Darcy permeability for this material. A particular advantage 

in using this methodology is that, because the membranes are very thin (-100 mm), easily 

measured volumes of filtrate are obtained with modest applied pressures. This simple 

approach should be adaptable to a variety of other gel materials. 



Chapter 5 

5. Hindered Diffusion in Neutral Agarose and 

Evaluation of the Effective Medium Model 

5.1 Introduction 

The widespread use of hydrogels in areas such as liquid chromatography, drug delivery, 

and therapeutic implants, and the existence of various body tissues with gel-like 

characteristics (e.g., connective tissue and basement membranes), makes it important to 

understand the rates of diffusion of proteins and other macromolecules through these 

materials. In gels and in other porous media where the pore diameters, interfiber spacing, 

or other microstructural dimensions are comparable to the size of a diffusing 

macromolecule, the diffusivity tends to be lower than that in free solution, the percentage of 

the reduction increasing with molecular size. One approach for interpreting such diffusion 

data is to assume that the porous material consists of an array of cylindrical (or other 

regularly shaped pores), and to apply a hydrodynamic theory which extends the Stokes- 

Einstein equation to account for the effects of the pore walls (Deen, 1987). This theory, 

which is most completely developed for spherical molecules in long, straight pores, 

includes two factors which influence the average diffusivity of a neutral macromolecule in a 

pore. There is an increased hydrodynamic drag on the molecule (and consequent reduction 

in its mobility) caused by the pore walls, and there are steric restrictions on the positions 

which can be occupied by a molecule of finite size. Diffusion data obtained in track-etch 



membranes (which have straight, uniform pores) are generally consistent with the theory 

(Deen, 1987), so that the pore model is often a good choice for correlating hindered 

diffusion results in membranes. However, an array of straight pores bears little 

resemblance to the microstructure of a crosslinked, polymeric gel as previously discussed 

in Chapter 1. 

A more realistic microstructural model for gels, at least for those with relatively stiff 

polymer chains, is a randomly oriented array of straight, cylindrical fibers of radius r, and 

fiber volume fraction (b. This model was proposed by Ogston et al. (1973) to describe 

diffusion of spherical macromolecules through solutions of linear polymers, as reviewed in 

section 1.4.1. An expression for the diffusivity in the polymer solution was derived from 

stochastic arguments, by considering the probability that a molecule of radius rs would 

encounter spaces of sufficient size to permit its movement. The result, which is equally 

applicable to a fiber-matrix model for diffusion in gels, was 

where D and D_ are the diffusivities in the gel (or polymer solution) and in free solution, 

respectively. As used in equation 72, D is the macroscopically observable diffusivity 

defined for solute concentrations based on the total gel volume. Macroscopic (or effective) 

diffusivities in structured media are sometimes defined using concentrations based on the 

volume of the continuous phase (fluid), and the definition used is not always stated, 

causing much confusion in the literature. This distinction between these definitions is 

discussed by Ogston et al. (1973) and by Johansson and Lofroth (1993). 

Equation 72 is based on the probability distribution of fiber spacings used by 

Ogston (1958) to predict equilibrium partition coefficients for macromolecules in fiber 



arrays. The fiber-matrix concept is supported by partitioning data for proteins in 

crosslinked dextran gels (Laurent and Killander, 1964) and agarose gels (Laurent, 1967; 

Dubin and Principi, 1989; Boyer and Hsu, 1992; Moussaoui et al., 1992; Johnson et al., 

1995). Equation 72 successfully correlated diffusion data for macromolecules in various 

polymer solutions (Ogston et al., 1973), although it was found that the values of r, needed 

to fit diffusion data were usually larger than those obtained from partitioning data. This 

suggests that equation 72 may have a tendency to overestimate DID_ as was discussed in 

section 1.5.2. 

One factor not considered in the derivation of equation 72 is hydrodynamic 

interactions between the fixed fibers and the diffusing macromolecule, analogous to those 

seen in pores. Phillips et al. (1989, 1990) addressed this issue by using Stokesian 

dynamics and generalized Taylor dispersion theory to compute the long-time (macroscopic) 

diffusivity of a sphere moving through a viscous fluid contained within a periodic array of 

parallel fibers. It was proposed that the diffusivity could be estimated for other fiber 

arrangements by treating the fiber array as an effective medium characterized only by its 

Darcy permeability, K. The Darcy permeability is the intrinsic conductance of the fiber 

array for pressure-driven flow of water, and dl2 is a hydrodynamic screening length or 

correlation length which is of the order of magnitude of the fiber spacing. Using 

Brinkman's equation (Brinkman, 1947) to compute the drag on a sphere moving through 

such a medium, it was suggested that D/D E F, where 

F(L)=[~+(L) vie ~ i e  +YX l ( r s  I] 



Kosar and Phillips (1995) have shown that the Brinkman model for describing screened 

hydrodynamic interactions gives results equivalent to models of the Kirkwood-Riseman 

type, in which the effects of fixed polymer chains are described using a distribution of 

immobile point forces. The only structural information in equation 73 is that embedded in 

K. Thus, the model implies that macromolecular diffusivities in gels or other fibrous media 

can be predicted from a single, macroscopic (flow vs. pressure) measurement; the values of 

rf and <j) and the details of fiber spacing and orientation are not needed. Comparisons of 

equation 73 with the results of rigorous calculations showed fairly good agreement for 

parallel fibers in square arrays, with rs/rf = 1 (Phillips et al., 1989). However, subsequent 

results for smaller or larger values of r,/rf and for less uniform fiber arrangements were 

not as promising (Phillips et al., 1990). Overall, as previously shown in section 1.5.2 

equation 73 consistently overestimated DIDm. 

On the basis of hydrodynamic arguments, Brady (1994) has proposed that the 

hydrodynamic and steric effects which influence the diffusivity of a macromolecule in a 

fibrous medium can be separated into two multiplicative factors. According to this 

approach, the hydrodynamic effect of the fibers can be approximated using the Brinlunan 

result, the function F in equation 73. The other factor is a steric or tortuousity effect, given 

by a function which we term S. The overall functional dependence is of the form 

The steric factor S is calculated from the effective diffasivity of a point-size molecule in an 

array of fibers whose centers are positioned as in the actual system, but which have a 
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radius of rf + r,. In other words, the volume fraction of fibers is augmented, according to 

the size of the actual molecule of interest. This adjusted volume fraction of fibers is given 

in equation 75 as f. Results are available to calculate S(f) for various regular or random 

arrays of fibers (Perrins et al., 1979; Johansson and Lofroth, 1993; Tomadakis and 

Sotirchos, 1993). Brady (1994) noted that for diffusion normal to regular arrays of parallel 

fibers, evaluating S using the results of Perrins et al. (1979) provided excellent agreement 

between equation 74 and the rigorous calculations of Phillips et al. (1989, 1990). Thus, 

equation 74 may provide a way to obtain simple and accurate predictions of 

macromolecular diffusivities in gels. 

Various methods have been employed to measure D for proteins and other compact 

macromolecules in gels and polymer solutions as was reviewed in section 1 S.2. 

Techniques used in recent years include fluorescence recovery after photobleaching 

(FRAP) (Hou et al., 1990; Jain et al., 1990; Moussaoui et al., 199 1, 1992; Wattenbarger et 

al., 1992; Berk et al., 1993; Saltzman et al., 1994; Johnson et al., 1995), pulsed-field- 

gradient NMR (Gibbs et al., 1992), and holographic interferometry (Kosar and Phillips, 

1995). Methods involving transient diffusion into a thick slab of gel (Cameron et al., 

1994; Leloup et al., 1990) and dispersion in a chromatography column (Boyer and Hsu, 

1992) have also been employed; these approaches are somewhat less direct, in that they 

measure only the product of D and the gel-to-free solution partition coefficient. Despite the 

amount of experimental activity in this area, there is little data with which to test the 

hydrodynamic theories for hindered diffusion in gels. In particular, there is a paucity of 

information on the values of K in gels where diffusion measurements have been made. The 

purpose of this study was to provide such data by measuring the diffusion coefficients of 

several well-characterized macromolecules in agarose gels, varying both r, and <I>. The 

Darcy permeability was determined for each gel sample, and r, for agarose was obtained 

independently from the literature, so that all of the parameters needed to apply equations 72 

- 74 could be evaluated. 



5.2 Methods and Materials 

5.2. I Proteins and narrow fractions of ficoll. 

Three fluorescein-labeled proteins, bovine serum albumin (BSA), ovalbumin, and 

lactalbumin were obtained from Molecular Probes (Eugene, OR). Size-exclusion 

chromatography indicated that there was no free fluorescein present, so that the proteins 

were used without further purification. Four narrow fractions of Ficoll were obtained by 

special order from Pharmacia LKB (Piscataway, NJ) and labeled with fluorescein using a 

procedure described in the following paragraph. Fresh aqueous samples were prepared by 

dissolving the fluorescent macromolecule in a buffer consisting of 0.01 M sodium 

phosphate and 0.1 M potassium chloride at pH 7.0. In each case the macromolecule 

concentration was 1 mg/mL. 

The Ficoll samples were labeled with DTAF (dichlorotryazinyl amino fluorescein, 

Sigma, St. Louis, MO) using a procedure described by De Belder and Granath (1973). 

Because the fluorescein is very light sensitive, preparations should be made in minimal 

light and the reaction container should be covered. For each Ficoll sample, 2 grams was 

dissolved in 60 mL of distilled water using a magnetic stirrer. A pH probe was inserted to 

insure that the pH remained above 10. Fifty mgs of DTAF was added to the ficoll solution. 

At pH values below 10, DTAF is relatively insoluble. The pH was adjusted to be above 10 

(but always below 11) by adding 1 N sodium hydroxide. As the reaction proceeds the pH 

drops, so monitoring is necessary to ensure that the sample is kept above pH 10. The 

labeling procedure usually occurs over the first 15 minutes but the reaction was always 

allowed to proceed for at least 2 hours. At the conclusion of the labeling procedure, the pH 

was adjusted downward to pH - 7 using 1 N hydrochloric acid. Samples were purified 



from unreacted label using 10 mL desalting chromatography columns (Bio-Rad, Hercules, 

CA). The desalting columns were rinsed with distilled water before use. Distilled water 

was used to ensure that when the sample was freeze-dried there was no residual salt. The 

columns head space was filled with distilled water and 0.3-0.5 mL of the unpurified ficoll 

solution was layered under the water at the surface of the bed using a disposable glass 

pipette. As the solution migrated down the column two bands appeared. The ficoll- 

fluorescein was slightly more orange than the free fluorescein and by the time the first 

drops of the orange band reached the bottom of the column there were two distinct bands. 

The first band (the orange ficoll-fluorescein) was collected and pooled. Once all the 

purified ficoll-fluorescein had been collected the samples were immediately frozen. It is 

important to minimize the exposure of the fluorescein to any light source and the length of 

time spent in any solution. Once the purified solution was frozen (usually overnight) the 

sample was freeze-dried and stored desiccated in the freezer until used. 

There are two methods for determining the amount of fluorescein attached to the 

ficoll solution. The preferred standard is sodium fluorescein, not DTAF which is relatively 

insoluble in water at pH values below 10. The exact concentration of the standard will 

depend upon the method used. The fluorescein content can be determined using a 

spectrofluorimeter (excitation 480 nm; emission 5 15 nm) which will measure the 

fluorescence of the sample or by using a spectrophotometer and measuring the UV 

absorption of the fluorophore at 280 nm. By comparing either the fluorescence or the UV 

absorption of the ficoll-fluorescein solution to the standard solution the number of 

fluorophores per ficoll molecule can be determined. The spectrofluorimeter is much more 

sensitive than the spectrophotometer and more dilute samples can be used. There are two 

problems with using this method, however. If a significant portion of the fluorophores 

have been bleached, the spectrofluorimeter will not record the bleached molecules, thus 

underestimating the true number of fluorescein groups per ficoll. In addition, the excitation 

and emission characteristics of the fluorophore are highly dependent upon the types of 



chemical groups attached so the emission characteristics of the standard fluorescein solution 

may in fact be different than the attached fluorophore. In addition, the fluorescence of 

fluorescein is dependent upon the pH of the solution. At low pH the fluorescence is 

significantly smaller than at higher pH. (Fluorescein in fact has been used as a sensitive 

pH indicator.) The pKa of the fluorescein is also dependent upon the type of chemical 

structure attached via the linker arm. The pKa of free fluorescein is - 6.5 (Haugland, 

1992). Presumably, the attachment of other chemical groups do not affect the p& 

drastically, but to ensure the maximum fluorescence the fluorescein determination should 

be made in buffer solutions that have a pH of at least 8. The second method uses the UV 

absorption of the fluorescein at 280 nm. While this method requires more sample, the UV 

absorption is unaffected by bleaching and will therefore provide a more accurate method for 

determining fluorophore concentration. This is particularly good for ficoll solutions which 

do not normally adsorb in the UV spectrum. 

The characteristics of the seven fluorescein-labeled macromolecules are summarized 

in Table 5.1. For Ficoll, the weight-average molecular weight (MJ and polydispersity 

index (w, where is number-average molecular weight) are values supplied by the 

manufacturer. The diffusivities and Stokes-Einstein radii were obtained from the diffusion 

data, as described below. 

Table 5.1 Properties of test macromolecules for diffusion experiments in agarose. 

Lactalbumin 14,200 '10.10k0.70' 2.12 
Ovalbumin 45,000 7.15k0.77 3 .OO 

BSA 68,000 5.97k0.44 3 -59 
Ficoll2 1 K 2 1,300 1.22 7.06k0.42 3 -03 
Ficoll37K 37,400 1.18 5.63kO. 18 3.80 
Ficoll6 1K 60,700 1.15 4.45kO. 18 4.82 
Ficoll 105K 105,000 1.13 3.44kO. 14 6.23 

-- -- -- 
Diffusion coefficients are given as meankSD for 5 measurements, corrected to 20 OC. 



5.2 -2 Agarose gel Preparation and Characterization 

Gels were made by first adding 10 rd of the phosphate-KC1 buffer to a measured amount 

of agarose powder (Type VI; Sigma, St. Louis, MO) in a 20 rd glass vial, and placing the 

resulting slurry in a 90Â° oven for 3 hr. The vial, which was sealed to prevent 

evaporation, was rotated by hand periodically to ensure adequate mixing. Two glass plates 

and several rectangular glass microslide chambers with dimensions of 0.3 x 3 x SO mm 

(Vitro Dynamics, Rockaway, NJ) were also heated. To cast membranes for hydraulic 

permeability measurements, a 2.5 cm diameter piece of woven polyester mesh (Spectrum 

Medical, Houston, TX) was placed on one of the glass plates. The mesh formed a square 

pattern with a fiber radius of 20 pm, a center-to-center fiber spacing of 93 pm, and a 

thickness of 70 pm. The hot agarose was quickly poured onto the mesh and the second 

plate used to form a sandwich. The glass plates were then clamped together, taking care to 

ensure that air bubbles were not trapped in the gel. To form a gel for diffusion 

measurements using the same batch of agarose, the heated solution was drawn into one end 

of a microslide by capillarity; this was done immediately after casting the membrane. 

Separate microslide gels were prepared for use with each of the seven test macromolecules. 

After the gels (in membrane or microslide) cooled to room temperature, they were 

immersed in the phosphate-KC1 buffer and stored overnight at 4OC. Samples were 

prepared with agarose concentrations ranging from 3.8 to 7.4% (wlv). Weight fractions 

were converted to volume fractions by dividing by 1 -025 (section 1.6). 

As discussed in section 1.6 native agarose has very little net charge (the agarose 

used in the experiments was type VI with a sulfate content of ~0.15% and an electro- 

osmosis reduced migration rate, -q = 0.04; Sigma, St. Louis, MO) and that the amount of 

fluorescein label attached (@ 1 fluorescein per Ficoll molecule) was insufficient to give 

Ficoll a significant charge. Moreover, in highly charged, sulfated agarose gels the 



diffusivities of the three proteins have been shown to have little or no dependence on ionic 

strength at ionic strengths as high as 0.1 M as discussed in section 2.4. Thus, there should 

be no significant effects of charge in the experiments reported here. 

5.2.3 Permeability Experiments 

The Darcy permeability of each agarose sample was obtained by measuring the hydraulic 

permeability of the mesh-reinforced membrane, as described in Chapter 4. Briefly, the gel 

membrane was mounted on a porous frit inside a 3 mL ultrafiltration cell (Model 3? 

Amicon, Beverly, MA), and the phosphate-KC1 buffer forced through the membrane at a 

constant pressure drop of 17 P a  using compressed nitrogen. The transmembrane pressure 

drop was monitored using a pressure transducer (Model DP15, Validyne Engineering, 

Northridge, CA) and the flow rate was determined by collecting and weighing the filtrate. 

The thickness of the hydrated membrane was measured using a micrometer, by placing the 

membrane between two microslides of known dimensions. The Darcy permeability was 

calculated as 

where p is the viscosity of water, Q is the filtrate volume per unit time, L is the membrane 

thickness? (= 0.495) is a correction factor to account for the presence of the polyester 

mesh support, A (= 1.5 cm2) is the exposed area of the membrane, and AP is the pressure 

drop. 



5.2.4 Diffusion Experiments 

Samples for diffusion measurements were prepared by drawing a solution of the 

fluorescent macromolecule into a microslide containing the agarose gel, using a syringe 

attached to the microslide by silicon tubing. The gel and solution were allowed to 

equilibrate for 2 hr, a time which was sufficient to yield diffusional equilibrium at the test 

locations in the gel (typically centered -100 rnm from the gel-solution interface). Diffusion 

coefficients were determined using an image-based FRAP technique as discussed in detail 

in section 2.3.2. The image-based FRAP technique using a spatial Fourier transform has 

the advantage that the results are insensitive to the actual radius of the bleached spot. This 

is especially important for measurements in gels which scatter light, such as agarose, 

because the bleached radius changes as a function of depth in the sample. The consequent 

uncertainties in the true bleached radius make it difficult to obtain reliable results using a 

direct photometric analysis. For each test macromolecule, five measurements each were 

made of the diffusion coefficient in the gel (D) and in free solution (DJ. To allow for 

complete recovery of the bleached areas (-20 mrn initial radius), the gel measurements were 

alternated with the free solution measurements. The room temperature was recorded (23 - 

29 O C ) ,  and all diffusion coefficients were corrected to 20 OC by assuming that Du/T (or 

DJVT) is constant, where T is absolute temperature. 

5.3 Results 

The free-solution diffusivities measured for the three proteins and four Ficoll 

fractions are given in Table 5.2. Also shown is the corresponding Stokes-Einstein radius 

(rJ, calculated as 



where kÃ is Boltzmann's constant. The Stokes-Einstein radii shown for the proteins are 

very close to those obtained previously using various methods, as summarized in Table 

2.4. Likewise, the values of r, for Ficoll are all within 6% of those measured by 

quasielastic light scattering using unlabeled samples (Oliver et al., 1992). Overall, the test 

macromolecules had radii ranging from 2.1 to 6.2 nm. 

Table 5.2 Diffbsivity ratios (DIDm) for individual gel samples. 

Molecule A B C D E F 
Lactalbumin 0.62k0.04 0.63k0.03 0.47k0.03 0.45k0.05 0.34k0.03 0.30+0.03 
Ovalbumin 0.57k0.05 0.55k0.03 0.38k0.02 0.44k0.02 0.25k0.03 0.32k0.03 
BSA 0.61k0.07 0.53k0.04 0.40k0.01 0.36k0.03 0.27k0.02 0.28k0.03 
Ficoll21K 0.62k0.03 0.60k0.06 0.46k0.02 0.47k0.02 0.26k0.02 0.39k0.03 
Ficoll37K 0.55k0.04 0.53k0.03 0.42k0.05 0.40k0.02 0.26k0.01 0.30k0.02 
Ficoll61K 0.48k0.03 0.45k0.03 0.3710.09 0.33k0.02 0.21k0.00 0.23k0.01 
Ficoll l05K 0.43k0.03 0.35k0.03 0.28k0.02 0.25k0.01 0.20k0.02 0.23k0.02 
All values shown are meanBD for 5 measurements. 

The six agarose samples used, identified as A-F, had the properties summarized in 

Table 5.3. Two samples each were made with agarose volume fractions ((b) of 0.038, 

0.055, and -0.072. The measured Darcy permeability (K) varied by an order of magnitude 

over this range of gel concentrations, decreasing as gel concentration was increased. 

Individual measurements of K were reproducible to within 1-2%, so that the differences in 

Table 5.2 between nominally identical gels were evidently due to differences in the gel 

microstructure. This variability in K among agarose samples, noted previously in Chapter 

4, is the reason care was taken to measure Darcy permeabilities in gels made from the same 

agarose solutions as the samples used for the diffusion experiments. 
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Although the gel concentration is the main determinant of the Darcy permeability for 

agarose, there is a significant effect also of the applied pressure, K decreasing in an 

approximately linear manner with increasing AP as discussed in section 4.4. Values of the 

Darcy permeability extrapolated to AP = 0 are shown in Table 5.3 as q,. The extrapolation 

of K to zero applied pressure was done by using values of aic/a(AP) estimated previously at 

the respective gel concentrations (section 4.4). 

Table 5.3 Characteristics of agarose gels used in diffusion experiments. 

Gel 0 K (data) KO K (equation 
bm2) (nm2) 78) 

Also shown in Table 5.3 are the values of K predicted from a correlation given by 

Jackson and James (1986) for fibrous media, 

where r, is the fiber radius. For these calculations we assumed an average fiber radius for 

agarose of 1.9 nm, which is the number-average value obtained from small angle x-ray 

scattering data (Djabourov et al., 1989). (This and other measurements of r, for agarose are 

discussed in section 1.4) It is seen that equation 78 is in excellent agreement with the 

values of K, at the highest gel concentration, but the agreement worsens as gel 



concentration is decreased, the correlation underpredicting the (extrapolated) experimental 

results by a factor of 3-4 at the lowest gel concentration. Previous measurements of Darcy 

permeability given in Chapter 4 for agarose show similar deviations from equation 78; the 

reason for these deviations is not clear. 

Table 5.2 and Figures 5.1-5.3 show the results for the gel-to-free solution 

diffusivity ratio, D/Dm. Values of D and Dm measured in succession were paired to 

compute an individual value for the ratio, and the results averaged over the five repetitions 

to obtain the mean k SD values shown in Table 5.3. For each test macromolecule, the 

diffusivity ratio decreased as the gel concentration increased. For any given gel sample, the 

diffusivity ratio generally decreased as the probe radius increased. In other words, as one 

would expect, the hindrances to diffusion were most severe for large macromolecules 

andlor relatively concentrated gels. The significance of the theoretical curves in Figures 5.1 

- 5.3 is discussed in section 5.4. 

5.4 Discussion 

The present experiments were designed to test the diffusivity predictions given by 

equations. 5.1-5.3. As mentioned earlier, the function S in equation 74 may be evaluated 

using available results for various arrangements of cylindrical barriers. Two such 

arrangements are considered here. Using the result of Perrins et al. (1979) for transport 

perpendicular to the axis of a square array of cylinders, one gets 
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Figure 5.1 The reduced diffusion coefficients D/Dm of proteins and ficolls in 3.8 % agarose 
gels. The radius of the proteins is calculated using equation 77 and the error bars are given 
as kSD. The three solid lines represent theoretical predictions. 
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Figure 5.2 The reduced diffusion coefficients D/Dm of proteins and ficolls in 5.5% agarose 
gels. The radius of the proteins is calculated using equation 77 and the error bars are given 
as H D .  The three solid lines represent theoretical predictions. 
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Figure 5.3 The reduced diffusion coefficients Dmw of proteins and ficolls in 7.3% agarose 
gels. The radius of the proteins is calculated using equation 77 and the error bars are given 
as kSD. The three solid lines represent theoretical predictions. 



Equation 79 was obtained by dividing eq. 14 of Perrins et al. (1979) by 1 - f. (The result 

of Perrins et al. is analogous to a transmembrane diffusivity based on external 

concentrations, so that it must be divided by the partition coefficient, which for a point-size 

molecule in a fiber array with volume fraction f is 1 - f.) Johansson and Lofroth (1993) 

used Brownian dynamics simulations to calculate diffusivities for spherical macromolecules 

moving through random, overlapping arrays of polymer chains. Their calculations were 

for diffusing molecules of finite rs, but without hydrodynamic interactions, so that their 

diffusivity ratios were equivalent to S. Using a curve fit to the simulations for straight 

polymer chains with f < 3, their results are expressed as 

Tomadalus and Sotirchos (1993) review many other results which could be used to 

evaluate S, including their own Monte Car10 simulations for diffusion of point-size 

molecules through randomly oriented, overlapping arrays of cylinders. (To obtain S from 

any of the results summarized by Tomadakis and Sotirchos, one must divide their "inverse 

formation factor'' by 1 - f, as done above for the result of Pemns et al.; f is related to their 

"matrix volume fraction,'' E, by E = 1 - f.) 

Equation 79 implies that S + 1 - f for f + 0, in agreement with the result for 

diffusion normal to a dilute array of parallel cylinders (Koch and Brady, 1986). 

Approximately the same limiting behavior for f + 0 is exhibited by equation 80; the 

theoretical limit for randomly oriented cylinders is S + 1 - (213)f (Koch and Brady , 1986). 

The main distinction between regular and random arrays of fibers is in their behavior at 

large f. This is illustrated in Figure 5.4, which compares the results for S obtained from 



Figure 5.4 The steric factor, S(f), for random (equation 80) and square (equation 79) 
arrays. The critical value off for a square array, fc, is 0.785 and is indicated by an arrow. 
S(f) asymptotically reaches zero for a square array at fc. 



equations 79 and 80. The results for square and random arrays are very similar for f < 0.5, 

as shown also by Tomadakis and Sotirchos (1993). However, for fibers in a square array 

there is a critical volume fraction fc = wI4 = 0.785 at which all fibers touch, so that for 

diffusion normal to the fibers S = 0 for f 2 fc. For random arrays there is no such sharp 

cutoff in S. The behavior of S(f) for large f is important for the present data, in that f = 

1.33 for the largest Ficoll in the most concentrated agarose gel. The fact that there were 

measurable diffusivities for f > f strongly suggests a disordered arrangement of the 

agarose fibers. Accordingly, equation 80 was used for all comparisons with the data. 

The measured diffusivity ratios are compared with predictions from equations 72 - 

74 in Figures 5.1-5.3. In calculating the hydrodynamic contribution to the diffasional 

hindrance we used the Darcy permeability extrapolated to zero pressure drop, K_, because 

that value should be most representative of the gel microstructure during the diffusion 

measurements. In addition, there were small differences in K for each gel, so the plotted 

lines for equations 72 - 74 represent the average of the two predictions at each q,. Using 

this method the error in the given predictions is less than 5%. At each gel concentration, the 

effective medium theory of Brady (1994) yields much better predictions than the other two 

approaches, which systematically overestimate Dm_. Closer inspection reveals that, 

although the measured values of D/D_ for molecules of intermediate size were predicted 

very accurately by equation 74, the model gives a stronger dependence of D/D_ on r, than 

was observed. These differences in slope notwithstanding, the agreement between the data 

and the predictions of equation 74 seems to us very impressive, given that there were no 

adjustable parameters in the calculations. 

It was mentioned earlier that equation 74 gives values of D/D_ which agree very 

closely with the rigorous computational results of Phillips et al. (1989; 1990) for the 

diffusion of spheres of finite size normal to the axis of parallel arrays of fibers. One of the 

requirements in applying equation 74 to actual gels is that K be known. As seen in Table 



5.3, the correlation given by equation 78 can be counted on to give only the correct order of 

magnitude for K. In Chapter 2 we estimated K for sulfated agarose beads from equation 78 

and, partly because of what seems to have been a cancellation of errors, obtained fairly 

accurate predictions of protein diffusivities from equation 73. Because K was measured for 

each gel sample in the present study, we assume that the discrepancies in slope in Figures 

5.1-5.3 have more to due with inaccuracies in the steric factor (S) than in the hydrodynamic 

factor (F). Although, as already discussed, the diffusion data are inconsistent with a 

regular, parallel arrangement of agarose fibers, the actual arrangement may differ from the 

random, overlapping network produced by the simulations leading to equation 80. In other 

words, at least for gels with relatively stiff polymer chains, the application of equation 74 

may be limited more by an inadequate knowledge of the actual microstructure than by any 

inherent limitations in the effective medium approach. 

There are potential effects of polymer structure on the diffusivities of 

macromolecules in gels. The most successful theory tested here, which uses equations 73 

and 80 in equation 74, is based on fibers which are straight and immobile. Agarose fibers 

are expected to be relatively rigid, because they are aggregates formed from multiple 

polysaccharide chains. Indeed, there is little motion of agarose chains detectable by 

dynamic light scattering (Mackie et al., 1978), so that assuming that the fibers are 

stationary on the time scale of macromolecule diffusion should be an excellent 

approximation. Fibers in alginate gels have similar characteristics. However, the chains in 

gels formed from crosslinked polymers, such as polyacrylamide and dextran, may exhibit 

motions comparable to that of a diffusing solute. For example, Tanaka et al. (1973) 

reported a collective diffusivity for a 5% polyacrylamide gel, by dynamic light scattering, 

of 2.4 x 10"' cm2/s. An effect of fiber curvature on S is revealed by simulations of 

Johansson and Lofroth (1993) in which chains were constructed having various persistence 

lengths; when the persistence length was made sufficiently small, there were significant 

increases in S. However, those simulations were still based on immobile polymer chains. 



A theory capable of describing the effects of local motions in a polymer chain on F and/or S 

would be of considerable interest. 

There are similarities as well as differences between the diffusion of rigid spheres in 

gels and in semi-dilute (entangled) polymer solutions. In extremely dilute gels or 

solutions, there is negligible hindrance to diffusion, and the diffusivity is given by the 

Stokes-Einstein equation (a rearrangement of equation 77). When the system is not quite 

as dilute, but the diffusing macromolecule is still smaller than the typical separation 

between polymer chains ( r  < K )  the steric and hydrodynamic factors governing diffusion 

should be very similar in the two situations. Kosar and Phillips (1995) discuss theoretical 

evidence that hydrodynamic screening in a polymer solution is similar to that for an array of 

fixed obstacles, both conforming to the Brinkman model. For large macromolecules or 

particles (r, >> K"~), however, a gel and a polymer solution will behave quite differently. 

Whereas the crosslinked structure of the gel will eventually prevent translation of the 

particle, entanglements in a polymer solution can break and reform, so that the particle 

diffusivity does not fall to zero. Instead, as discussed by Kosar and Phillips (1995), there 

is a second Stokes-Einstein regime, with the applicable viscosity now being that of the 

polymer solution, rather than that of the solvent. 



Chapter 6 

6. Concluding Remarks 

6.1 Conclusions 

Electrostatic interactions, molecular size, and gel concentration have been examined for 

their effects on the partition and diffusion of macromolecules in gels. Before this thesis 

there had been few measurements of and no reliable method to predict the transport 

properties of macromolecules in charged gel membranes. Previous theoretical predictions 

for the partition coefficient ignored any colloidal interactions (other than steric) and 

predictions for the diffusion coefficient of macromolecules in gels had been unsuccessful. 

The work presented in this thesis both determined the effects of the fundamental molecular 

parameters on the transport coefficients and provided a method to theoretically predict the 

partition and diffusion coefficients of macromolecules in charged gels. 

Measurements of the two transport coefficients for three proteins, BSA, ovalburnin 

and lactalbumin, in SP-Sepharose a sulfated agarose gel, demonstrate that the effects of 

electrostatic interactions are most pronounced in the partition coefficient, with only small 

contributions to the diffusion coefficient for the smallest protein at the lowest ionic 

strength. Sulfated agarose gels were chosen because they do not swell or shrink with 

changing ionic strength, thus keeping the microstructure of the gel constant with changing 

electrostatic interactions. The experimental methods allowed the direct measurement of both 

the partitioning and diffusion coefficient. While the partition coefficient was measured 

using a mass balance on a recirculated gel chromatography column, the diffusivity was 



directly measured with fluorescence recovery after photobleaching (FRAP). Most 

traditional methods of measuring the diffusion coefficient gave values for the effective 

diffusivity (which is the product of the partition coefficient and the diffusivity) so 

consequently the diffusivity could not be directly measured, resulting in large errors in 

reported diffusivities. Using FRAP with a spatial Fourier transform analysis allowed the 

determination of the diffusivity in light scattering media such as agarose gel. Without this 

special analysis, there are errors in the measured diffusivity (as discussed in Chapter 2). 

By determining that the effects of electrostatic interactions were primarily governed by the 

partition coefficient, this allowed the separation of the theoretical modeling of the transport 

problem into two areas; the electrostatic effects on the partitioning of macromolecules into 

charged gels and the prediction of the diffusion coefficient in uncharged gels. 

With the theoretical model presented in Chapter 3, predictions for the partition 

coefficient can be readily made knowing the fundamental molecular parameters, the size of 

the macromolecule, the volume fraction of fibers in the gel, the radius of the gel fiber, the 

ionic strength of the buffer and the surface charge densities on the macromolecule and the 

gel. When comparing the theoretical model predictions to experimental data for the 

partitioning of two proteins, BSA and p-lactoglobulin in Superose 6 (a 6% agarose gel), 

there was very good agreement. One of the inherent limitations to the theoretical model is 

that the electrostatic potentials must be low (because we used the linearized Poisson- 

Boltzmann equation in determining the energy of interaction) thus restricting the 

partitioning model to macromolecule 1 gel systems in which the surface charge densities are 

low. Application of this model to highly charged gels would result in an underprediction of 

the partition coefficient. In addition, the theoretical predictions should only be made for 

relatively dilute gels. By assuming that the energy of interaction is governed primarily by 

the macromolecule and its nearest fiber, the contributions from the other surrounding fibers 

were neglected. When the gel becomes more concentrated, the electrostatic contributions 

from the other fibers may not be negligible. The main benefit of this theoretical model is 



that predictions can be made for the effects of electrostatic interactions on the partition 

coefficient only from the independently measurable molecular parameters. 

After determining that the effects of electrostatic interactions were small on the 

diffusion coefficient, our experimental and theoretical efforts focused on the effects of 

molecular size, gel concentration, and gel microstructure. While the size of the 

macromolecules and the gel concentration are readily available, the details of the agarose 

microstructure had not been completely determined. The average fiber radius of the 

agarose gel had been measured as reviewed in section 1.6, however, a key parameter, the 

Darcy permeability had not been determined. A review of the literature (see section 1.5.3) 

showed that wide discrepancies between permeability measurements for polyacrylamide 

and gelatin. In addition, special equipment was needed to measure high pressures andlor 

low flow rates because the gel were cast into thick gels. To eliminate the need for the 

special equipment, a novel method for casting the gels onto an ultrathin polyester mesh 

support was developed. A commercially available ultrafiltration cell could then be used to 

measure the permeabilities. Darcy permeabilities measured for agarose concentrations 

ranging between 2% and 7.3% showed a power law dependence with the permeability 

decreasing with increasing gel concentration as described in Chapter 4. After characterizing 

the gel microstructure with the Darcy permeability, the diffusion coefficient of proteins and 

ficolls in a range of agarose concentrations was determined. Quantification of the effects of 

macromolecular size and gel concentration on the diffusivity showed conclusively that as 

the gel concentration increased and the solute size increased the reduced diffusivity ( D R )  

decreased as explained in Chapter 5. With this experimental data, an effective medium 

theory proposed by Brady (1994) that made use of the Brinkman's equation for the 

hydrodynamic resistance and molecular simulations that predicted the tortuosity through the 

gel network was evaluated. Comparisons between the effective medium theory and the 

diffusivity measurements in agarose were remarkably good especially considering that the 

only parameters needed for the theory were the size of the solute and the gel fiber and the 



Darcy permeability of the gel. The effective medium model proved to predict diffusivites 

very well. 

With the theoretical models for the partition and diffusion coefficients, the transport 

of charged solutes through charged gels can now be predicted using independently 

measurable parameters. 

6.2 Recommendations for future work 

While the comparisons between the theoretical models for the partition and 

diffusion coefficients and the experimental data were very favorable, there are a number of 

notable restrictions to their use. In particular, the partition coefficient is limited to low 

surface charge densities, dilute gels and higher ionic strengths. It would be of use to 

extend the range of this theory. To incorporate higher surface charge densities, the non- 

linear Poisson-Boltzmann equaiton would need to be solved for the energy of interaction. 

To look at higher gel concentrations and lower ionic strengths, the incorporation of the 

electrostatic interactions from the other fibers would be needed. In addition to extending 

the presented theory, it would also be of interest to further evaluate the model with more 

experimental data. There was only limited data available to compare the model to. More 

measurements of proteins in agarose and other slightly charged gels is needed to give a 

complete evaluation of the validity of the theoretical predictions for the partition coefficient. 

The pedictions from the effective medium theory for the proteins and ficolls in 

agarose gel compared very favorably. however, agarose is a gel that has very rigid fibers 

and so consequently the microstructure does not change with time or environmental 

conditions. It would be of interest to determin how well this model works for other 

polymer gels that have significantly more flexibility and mobility on the microscale. 

Possible gels to examine could include cross-linked dextran and polyacrylamide. In 

addition, many biological systems are composed of complex mixtures of polymers. 



Measurements of the diffusivity through complex gels may yield a greater understanding of 

the link between the gel microstructure and the reduction in diffusivity. These experiments 

could be readily performed using either the FRAP technique described in Chapter 2 or 

using a standard diffusion cell. 

While this thesis has been mostly concerned with the diffusive transport of 

macromolecules through gels, convective transport is important in many biological and 

industrial systems. There has been no experimental determination or proposed theories to 

describe the convective transport of macromolecules through gels. It would be of great 

interest to determine what effect the gel structure and colloidal interactions have on 

convective transport. Experimentally, fluorescence recovery after photobleaching can be 

used effectively to determine the convective transport of fluorescently labeled 

macromolecules. 



Appendix A 

A. 1 Free Energy Calculations for a Sphere and a Cylinder 

The free energy calculations for a sphere near a cylinder calculated using a finite element 

solver program, FIDAP, as discussed in Chapter 3 are given in Table A. 1. In addition the 

linear superposition approximation was used to approximate the free energy and those 

values are also listed in Table A. I. For the numerical simulations, the free energy was 

calculated by solving the linearized Poisson-Boltzmann equation (equation 47) for a sphere 

near a cylinder. Because there are two planes of symmetry it is only necessary to calculate 

the energy of interaction for one-quarter sphere near a one-quarter cylinder and multiply 

ther resulting value by four. This was done for all variations given in Table A. I. To 

calcualte the change in free energy from the solution to the Poisson-Boltzmann equation, 

the surface potential values were obtained from the FIDAP output and integrated over the 

surface of the sphere and cylinder using a Fortran program given in the following section to 

five the free energy values. The free energy was calculated at two element densities (972) 

and (2304) and Richardson's extrapolation used to obtain the most accurate value of the 

free energy as discussed in section 3.3.2. 



Table A. I Summary of sphere I cylinder free energy calculations. 
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A.2 Fortran Programs 

The Fortran programs used in the development of the equilibrium partitioning theory are 

given here. 

The program "e1ec.f' shown in section A.2.1 was used to integrate the Ogston 

probability distribution times the Boltzmann distribution of energy states. To obtain the 

energy of interaction between the sphere and the cylinder the general correlation of the free 

energy results (equation 60) was used. 

The program "qcornpare.f' given in section A.2.2 was used to read the nodal data 

points from the FIDAP output file and integrate over the surface of the cylinder and the 

sphere to give the change in free energy of putting one-quarter sphere near one-quarter 

cylinder. 

The program "curvefitter.f' was used to curvefit the results for the change in free 

energy and is given in section A.2.3. This program used Powell's method to obtain the 

best fit to a given form of an equation. 

A.2.1 Calculation of the effects of electrostatic interactions on the partition 

coefficient. 

* * * * * * Numerical Integration of Electrostatic 
* ** * ** Partition Coefficient using Sphere / Cylinder 
* * * * * * Linear Superposition Approximation 
*************** 
* Erin M. Johnson 
* Aug 13, 1992 revised April 20, 1994 
* 

REAL DIF,INF,OGSTON,VAL(l5),ERROR,BB(lO) 
CHARACTER*30 PARAM(15) 
INTEGER I,J * 

* read the input parameters from approx.txt 



READ(15,s)J 
D 0 9 9 1 =  1,J 
READ( l5,4)PARAM(I) 
READ( i ~,*)vAL(I) 
WRITE(*, *)PARAM(I),VAL(I) 

CONTINUE 
PARAM(g)=IDim Sphere Po t1 
PARAM(9)=IDim Cylinder Pot1 
PARAM( lO)=IDim Sphere Charge' 
PARAM(1 l)=IDim Cylinder Charge' 
PARAM(l2)='Kappa * Sphere Rad' 
PARAM(l3)='H / Sphere Rad' 
PARAM(l4)='Dim y direction1 

FORMAT(A30) 
FORMAT(I1) 
INF = 1 .Oe-7 
DO 54 JI = 1,s 
VAL(4)=BB(JI) 
DO 55 RI = 0.05,5.0,0.05 
VAL(2)=RI* le-9 

CALL QROMB (0. ,INF,DIF,VAL) 

OGSTON=EXP(-VL(6) *( 1 +VAL(2)/VAL(3)) * ( 1 +VAL(z)NAL(3))) 
ERROR = (OGSTON-DF)/OGSTON* 100 

WRITE(*, *) 
DO 77 I = 1,15 
WRITE(* ,*)PARAM(I),VAL(I) 
CONTINUE 

WRITE(* ,*) 
WRITE(*,*)'Ogston Partition Coefficient = I,OGSTON 
WNTE(*,*)lElectrostatic Partition Coeff. = ' ,DF 
WRITE(*, *)'Percent Difference = ',ERROR 
WRITE(*,*) 

CONTINUE 
CONTINUE 
CONTINUE 





FUNCTION CURVEFIT@ 1 ,s2,DL,HK,RRAD,VV) * 
REAL s 1 ,s2,DL,HK,RMD,VV(l 5) * 

CURVEFIT=A+B+C 
RETURN 
END ....................................................................... 

* This subroutine integrates using Rhomberg's rule. It came from 
* Numerical Recipes * 

SUBROUTINE QROMB(A,B ,SS,V) 
PARAMETER (EPS=l .E-6, JMAXz300, JMAXP=JMAX+ 1, K=5, KM=K- 1) 
DIMENSION S(JMAXP),H(JMAXP) 
REAL V(15) 
H(l)= 1. 
DO 11 J=l,JMAX 

CALL MIDPNT(A,B,S(J),J,V) * mITE(*,*) 'QROm: after trapzd: S and J are : ',S(J),J 
IF (J.GE.K) THEN 

CALL POLINT(H(J-rn),S(J-rn),K,O.,SS,DSS) 
IF (DS(DSS).LT.EPS*DS(SS)) RETURN 
IF (DS(SS).LT.EPS) THEN 

ss=o.o 
RETURN 

ENDIF 
ENDIF 
S(J+ l)=S(J) 
H(J+ l)=OZ*H(J) 





X=X+DEL 
11 CONTINUE * 
* WRITE(l3,*) X 
* WRITE(*,*) 

S=O.5*(S+(B-A)*SUWNM) 
IT=2*IT * WRITE(*,*)'S= ',S,' IT = ',IT 

ENDIF 
* WRITE(*,*) 

RETURN 
END ....................................................................... 

* 
SUBROUTINE POLINT(XA,YA,N,X,Y,DY) 
PARAMETER (NMAX= 10) 
DIMENSION XA(N),YA(N),C(NMAX),D(NMM) 
NS= 1 
DIF=ABS(X-XA( 1 )) 
DO 11 I=l,N 
DIFT=ABS (X-XA(1)) 
IF (DIFT.LT.DIF) THEN 

NS=I 
DIF=Drn 

ENDIF 
C(I)=YA(I) 
D(I)=Y A(1) 

11 CONTINUE 
Y=YA(NS) 
NS=NS- 1 
DO 13 M=l,N-1 
DO 12 I=l,N-M 
HO=X A(1)-X 
HP=XA(I+M)-X 
W=C(I+ 1)-D(1) 
DENzHO-HP 

D(I)=HP*DEN 
C(I)=HO*DEN 

12 CONTINUE 
IF (2*NS .LT.N-MITHEN 
DY=C(NS+ 1) 

ELSE 
DY=D(NS) 
NSzNS- 1 

ENDIF 
Y=Y+DY 

13 CONTINUE 
MTURN 
END 

SUBROUTINE LINEAR(S S ,V) 









11 continue 
s=(s+(b-a)*sudtnm)l3. 

endif 
return 
END ........................................................................ 

SUBROUTINE TRAPZDS(A,B,S,N,V) * 
* WRITE(*,*)'Inside trap N = ',N 

II? (N.EQ. 1) THEN 
S=O,5*(B-A)*(SPHFUNC(A,V) 

$ +SPHFUNC(B,V)) 
* WNTE(*,*)'TRAPZD: S = ',S 

IT= 1 
ELSE 

IT = (N-1)*2 
* WRITE(*,*) 'IT = ',IT 

TNM=IT 
* WRITE(*,*)'TNM = ',TNM 

DEL=(B -A)/TNM * WRITE(*,*) ' DEL = ',DEL 
X=A+O.S *DEL * WRITE(*,*)'Del = ',DEL,' X = ',X 
SUM=O. 
DO 11 J=l,IT * WRITE(*,*)lTRAP: J = l,J,' IT = ',IT, ' DEL = ',DEL 

SUM=SUM+SPWUNC(X,V) * WRITE(*,*)'TRAP: Sum = ',SUM 
X=X+DEL 

11 CONTINUE * 
* WRITE(l3,*) X 
* WRITE(*,*) 

S=O.S*(S+(B-A)*SUWNM) 
IT=2*1T * WRITE(*,*)lS= ',S,' IT = ',IT 

ENDIF 
* WRITE(*,*) 

RETURN 
END *************%****************************************************** 

* This is used in integrating a function. (Numerical Recipes)P. 120 * 
SUBROUTINE midpntc 1 (a,b,s,n,V) 
INTEGER n 
REAL a,b,s,V(l5) 
INTEGER it,j 
REAL ddel,del,sum, tnm,x 
if (n.eq. 1) then 

s=(b-a)*cylfunc l(0.5 * (a+b),V) 
else 



it=3 **(n-2) 
tnm=it 
del=(b-a)/(3. * tnm) 
ddel=del+del 
x=a+O.S *del 
sum=O. 
do 11 j=l,it 
sum=sum+cylfunc 1 (x,V) 
x=x+ddel 
sum=sum+c ylfunc 1 (x,V) 
x=x+del 

11 continue 
s=(s+(b-a) *surn/tnm)/3. 

endif 
return 
END ........................................................................ 

SUBROUTINE TRAPZDC 1 (A,B,S,N,V) 

WRITE(*,*)'Inside trap N = ',N 
IF (N.EQ. 1) THEN 

S=O.S*(B-A)*(CKFUNC 1 (A,V)+CYLFUNCl (B,V)) 
WRITE(*,*)'TRAPZD: S = ',S 

IT= 1 
ELSE 

IT = (N-1)*2 
WRITE(*,*) 'IT = ',IT 

TNM=IT 
WRITE(* ,*)'TNM = ',TNM 

DEL=(B - A)/TNM 
WRITE(*,*) ' DEL = ',DEL 

X=A+O.S*DEL 
WRITE(*,*)'Del = ',DEL,' X = ',X 

SUM=O. 
DO 11 J=l,IT 

WRITE(*,*)'TRAP: J = ',J,' IT = ',IT, ' DEL = ',DEL 
SUM=SUM+CmFUNC 1 (X,V) * WRITE(*,*)'TRAP: Sum = ',SUM 

X=X+DEL 
11 CONTINUE * 
* WRITE(l3,*)X 
* WRITE(*,*) 

S=O.5*(S+(B-A)*SUmNM) 
IT=2*IT * WRITE(*,*)'S= ',S,' IT = ',IT 

ENDIF 
* WRITE(*,*) 

RETURN 
END .................................................................... 

* This is used in integrating a function. (Numerical Recipes)P. 120 











READ( 1 6,94)LABEL(7) 
READ(l6,*)VALUE(7) 

* WRITE(*,*)VALUE(~) 
READ( 1 6,94)LABEL(8) 
READ(l6,*)VALUE(8) 

* MIE(*,*)VALUE(8) 
READ(l6,94)LABEL(9) 
READ(l6,*)VALUE(9) 

* WRITE(* ,*)VALUE(9) 
READ(l6,94)LABEL(lO) 
READ(l6,*)VLUE(lO) 

* WRITE(* ,*)VALUE( 10) 
READ(l6,94)LABEL(ll) 
READ(l6,*)VALUE(ll) 

* WRITE(*,*)VALUE(l 1) 
READ(16,94)LABEL(l2) 
mAD(l6, *)VALUE( 12) 

* WRITE(*,*)VALUE(l2) 
READ(16,94)LABEL(l3) 
READ(l6,*)VALUE(l3) 

* WRITE(*,*)VALUE( 13) 
mAD(l6,94)LDEL(l4) 
READ(l6,*)VALUE(l4) 

* determine what type of boundary conditions we used 
TLAB=LABEL(6) 
BCSPH=TLAB( 1 : 6) 
LABTzLABEL(7) 
BCCYL=LABT( 1 : 6) * 

*read the simulation variables from sc.txt 
90 FORMAT(A20,I 10) 
91 FORMAT(5El5.8) 
92 FOMAT(2X,I2,2X,I4) 
93 FOMAT(3X,I3,2X,I4,2X,I4,2X,I4,2X,I4) 
94 FORMAT(A) * 

FIL='sphcy 1' 
IF(VALUE(7).EQ.O) FIL = 'isosph' 
IF(VALUE(6).EQ.O) FIL = 'isocyl' * 
FILENAME = FIL//'.FPNEUT' 
WRITE(* ,*)FILENAME 
OPEN(l2,FILE=FILENAm,STATUS='OLD') 

* FILENAME = FIL//'.ELEM ' 
* WRITE(* ,*)FILENAME 
* OPEN(l4,FILE=FLENAME,STATUS='OLD') 

FILENAME = FILKZrad ' 
WMTE(*, *)FILENAME 
OPEN( 15,FILE=FILENAME,STATUS='NEW') 
FILENAME = FIL//'.Zxyz ' 
WRITE(*, *)FILENAME 
OPEN( 1 9,FILE=FILENAME,STATUS='NEW') 
FILENAME = FIL//' .output' 
WRITE(* ,*)FILENAME 



OPEN(2 1 ,FILE=FILENAME,STATUS='NEW') 
FILENAME = FILlI'.Zarea ' 
WRITE(*, *)FILENAME 
OPEN(2O,flLE=FILENME,STATUS='NEW') 
FILENAME = FILII' .Zp1ane1 
WRITE(*, *)FILENAME 
OPEN(22,FILE=FILENAME,STATUS='NEW') * 

* read the neutral f ie  for the simulation variables 
READ(1 2,9O) XCOORD,NODES 
READ( 12,9 1) (X(I),I=I ,NODES) 
WRITE(*, *)'Read X' 
READ(l2,9O) YCOORD,NODES 

* set norm variables to zero 
FMAX = 0.0 
FSQUARE = 0.0 
PMAX = 0.0 

* get simulation variables from sc.txt 
RADS = VALUE(2) 
RADC = VALuE(1) 
TAU = 1 .O/VALUE(3) 
CC = VALUE@)+VALuE(l) 
SC = VALuE(8)+VALUE(l)+VALuE(l)+VALm(4)+VALuE(2) 
WRITE(*,*)ICenter of cylinder and sphere: ',CC,SC 

* set the constants on the isolated spherelcylinder potentials 
F(BCSPH.EQ.'bcfluxl) THEN 
PSIS = VALUE(6)1(1 ./RADS+TAU) 
SIGMAS = VALUE(6) 

ELSE 
PSIS = VALUE(6) 
SIGMAS = VALUE(6)*(1 ./RADS+TAU) 

ENDF 

F(BCCYL.EQ.'bcflux') THEN 
LAMBDAC = TAU*BESSKl (TAU*WC)  
PSIC = V&m(7)*BESSKO(TAU*WC)LAMBDAC 
SIGMAC = VALUE(7) 
LAMBDAC = BESSKO(TAU*WC) 

ELSE 
PSIC = VALUE(7) 
LAMBDAC = BESSKO(TAU*WC) 



SIGMAC = V&m(7)*TAU*BESSKl(TAU*MDC)LMDAC 
ENDIF 
WRITE(*,*)'Calculated psic and psis : ',PSIC,PSIS 
WNTE(*,*)'Calculated sigmac and sigmas : ',SIGMAC,SIGMAS * 
FSQUARE=O.O 
CSQR=O.O 
PMAX = 0.0 
CMAX = 0.0 
IN=o 

* find the exact potential to compare to simulation results 
DO 11 J =  1,NODES 

DIFF = 0.0 
RS = SQRT((X(J)-SC)*(X(J)-SC)+Y(J)*Y(J)+Z(J)*Z(J)) 
RC = SQRT((X(J)-CC) * (X(J)-CC)+Z(J) *Z(J)) 
IF(RS .GE.RADS) THEN 

IF(RC.GE.RADC) THEN 
EXACT(J) = PSIS*UDSRS*EXP(TAU*(UDS-RS)) 
EXACT(J) = EXACT(J) + PSICLWDAC*BESSKO(TAU*(RC)) 
ELSE 
EXACT(J) = PSIC+PSIS *RADS/RS *EXP(TAU*(MDS-RS)) 

ENDIF 
ELSE 
EXACT(:J) = PSIS+PSICLMBDAC*BESSKO(TAU*(RC)) 

ENDIF 
* calculations for the norm 

DIFF = ABS(EXACT(J) - PHI(J)) 
IF(EXACT(J) .NE.O) THEN 

P = DIFF/EXACT(J) 
ELSE 

P=O 
ENDIF 
FSQUARE = FSQUARE + DIFF*DIFF 
IF(DIFF.GT.FMAX) THEN 

IF(EX ACT(J) NE.0) THEN 
FMAX=DIFF 
MN=J 

ENDIF 
ENDIF 
IF(P.GT.PMAX) PMAX = P 

* calculations to see if the box is big enough 
IF(Y (J) .EQ.VALUE(9)) THEN 

IN=IN+l 
CKPHI(J)=PSICLMBDAC*BESSKO(TAU*(RC)) 
CDIW=ABS (CYLPHI(J)-PHI(J)) 
CSQR = CSQR + CDIW*CDIFF 
IF(CDFF.GT.CMAX) THEN 

CMAX = CDIFF 
J L = J  
XCmPHI=CYLPHI(J) 

ENDIF 
ENDIF * 

11 CONTINUE 



FSQUARE = FSQUAREmK(N0DES) 
IF(IN.GT.0) THEN 

CSQR = CSQRREL(IN) 
ELSE 

WRITE(*,*)'no nodes on cylinder cut' 
ENDF 
IF(XCYLPHI.GT.O.WOO1) THEN 

CPER = AB S ((XCYLPHI-PHI(JL))KCKPHI) * 100. 
ELSE 

WRITE(* ,*)'Max diff in cylinder potential is c 0.0000 1 ' 
CPER = 0.0 

ENDIF 

IF(CPER.GT.5.) WRITE(*,*)'! ! ! ! May not be a good mesh ! ! ',CPER 
Percent=AB S((EUCT(m)-PHI(m))EXACT(MN)) * 100. 

WRITE(*,*)'NODES = ',NODES 
WRITE(*,*)'L2 NORM = ',FSQUAREi 
WRITE(*,*)'MAX NORM = ',FMAX 
WRITE(* ,*) 
WRITE(*, *)'Percent max error = ',PERCENT 
WRITE(*,*)'Node with the maximum error ',MN 
WRITE(* ,*)'X, Y, Z ',X(MN),Y(MN),Z(MN) 
WRITE(*, *)'PHI AND EXACT ',PHI(MN) ,EXACT(MN) 
WRITE(*,*) 
WRITE(*,*)'The cylinder L2 norm is : ',CSQR 
WRITE(*,*)'The cylinder max norm is : ',CMAX 
WRITE(*,*)'The % cylinder max err is : ',CPER 

120 FORMAT(A) 
121 FORMAT(A,lX,F7.1) 

WRITE( 19,120)'X coordinate' 
WRITE( 19,l 20)'Potential1 
WRITE(19,12 l)'xrnin1,0.O 

WRITE( 1 9,12 1)'xmax1,2*VLUE(l)+2*V&UE(2)+VLUE(4)+2*VLUE(8) 
WRITE(l9, 12l)'yrnin',O.O 
WRITE(19,12 1 )'ymax1,PS1C+PSIS 
WRITE(l9, 12l)'end1 
WRITE(19,120)'1 .Oe32 1 1 1' * 
DO 99 J = 1,NODES 

IF(Y(J).EQ.O.O) THEN 
IF(Z(J).EQ.O.) WRITE(l9,9 1) X(J),PHI(J) 

ENDIF 
99 CONTINUE 

WRITE(l9,120)'1 .Oe32 4 9 5 ' * 
DO 66 J = 1,NODES 

IF(Y(J).EQ.O.O) THEN 
IF(Z(J) .EQ.O.) WRITE(l9,9 1) X(J),EXACT(J) 

ENDIF 
66 CONTINUE * 



WRITE(22,120)tX coordinate' 
WRITE(22,120)tY coordinate' 
WRITE(22,l 20)'horzt 
WRITE(22,12 l)txorgt, 1-25 
WRITE(22,12 l)'yorg',2.0 
WRITE(22,120)tlabl 1 
WRITE(22,120)' 4.5 5.0 -O.zt 

WRITE(22,120)tTwo Dimensional Potential Profilet 
XMAX=~*VALUE( 1)+2*vmm(2)+vmm(4)+2*v~~m(g) 
YMAX=S  VALUE(^) 
WRITE(22,12 l)txlen',9.0 
WRITE(22,12 l)'ylent,YMM*9.0KMM 
WRITE(22, 121)txmint,0.0 
WRITE(22,12 1 )'xmaxt,XMAX 
WRITE(22,12 l)tymin',O.O 
WRITE(22,12 l)'ymaxt,5*VALUE(2) 
WRITE(22,12 l)'endt 
WRITE(22,120)t 1 .OeX 1 10' * 
IF(PSIS.GE.PS1C) THEN 

CON = PSIS 
ELSE 

CON = PSIC 
ENDIF 
AUTO=CON/lO. 
CON=CON+AUTO 

DO 202 L=l,lO 
CONSON-AUTO 
K=O 

DO 20 1 J= NODES, 1 ,- 1 
IF(Z(J).EQ.O.) THEN 

DIFFER=rnS(PHI(J)-CON) 
IF(DIFFER.LT.O.0 1) THEN 

K=K+ 1 
TX(L,K)=X(J) 
TY(L,K)=Y(J) 
CONPHI(L)=CON 
KNUM(L)=K 

ENDIF 
ENDIF 

201 CONTINUE 
* write values to file 

DO 206 1=1 ,K 
 WRITE(^^,^ 1 )TX(L,I),TY(L,I) 

206 CONTINUE 
IF(K.GT.0) WRITE(22,120)'1 .Oe32 1 10 ' 

202 CONTINUE .................................................. 
* read the node numbers for each element from *.ELEM * 

FILENAME = FTLILELEM ' 
OPEN( 1 4,FILE=FILENAME,STATUS=tOLD') * 





WNTE(2O9*)1,(V(J,KK),KK= 1,6) 
303 CONTINUE ..................... 
* calculate the areas ..................... 
* WRITE(*, *)'Before Calling Qromb ',K,I 

V(10,2)=0. 
CALL QROMB (- I., 1. ,EA,V) * 
EAREA(K,I)=EA * WRITE(*,*)'The element area is : ',K,I,EA * WRITE(2O,*)'The element area is : ',EAREA(K,I) 
WRITE(20, *) 
mA(K)=AEA(K)+EmA(K, I )  .................................... 

* calcuate the accuracy of the nodes .................................... 
WRITE(l5,*)'The nodal radius for group: element: ', K, I 
WRITE( 15,32)'Element Number1,'Calcu1ated Radius', 

+ 'Actual Radius','Percent Error' 
32 FOMAT(Al4,lX,A2O,lX,Al4,lX,Al4,lX,Al4) 
33 FOMAT(4X,I5,8X,Fl6. l3,6X9F6.2,7X,F1O.7) 

DO 69 L=2,10 

IF (K.GE. 10) THEN 
M=(X(EL(K,I,L))-SC)**2 

W(L)=SQRT(U+RY+E)  
W E M P = V k U E ( 2 )  
MDEWz(VmUE(2)-MD(L))NUm(2) * 100. 

ELSE 
M=(X(EL(K,I,L))-CC)* *2 
W ( L ) = S Q R T ( U + E )  
W T E M P = V U W (  1) 
MDEW=(VKrn(l)-MD(L))NALrn(l)* loo. 

ENDIF 
WRITE(l5,33)EL(K,I,L),MD(L),RADTEMP,MDEM 

69 CONTINUE * 

* calculate the average element potential and flux ................................................. 
EPOT(K,I)=O.O 
EFLUX(K,I)=O.O 
EEXT(K,I)=O.O 
ELIN(K,I)=O.O 
DELF(K,I)=O.O * 
V(10,2)=4.0 
CALL QROMB (- I., 1. ,EPOT(K,I) ,V) 
V(10,2)=5.0 
CALL QROMB (- I., 1. ,EFLUX(K,I) ,V) 
V(10,2)=6.0 
CALL QROMB (- I., 1 . ,EEXT(K,I) ,V) 









+ +GFLUX( 1 2) *AREA( 1 2))lCYLAREA 
WRITE(2 l,106)tAve Potential1,CYLP0T,'Average Fluxt,- 1 .O*CYLFLUX 
WRITE(2 1 ,*) 
WRITE(2 l,20)tSphere Summary : Groups 13- 18 ' 
SPHAREA=AREA(l3)+AREA(l4)+AREA(l s)+AREA(l6)+AREA(l7)+ 

+ AREA(18) 
SPHEXACT=3.14159*VALUE(2)**2 
WRITE(2 1,l 06)'Area1,SPHAREA,'Exact Areat ,SPHEXACT 
SPHERR = (SPHEXACT-SPHAEA)/SPEXACT* 100 
WRITE(2 1,106)'% Error in Areat,SPHERR 
SPHPOT=(GPOT(l3)*A~A(l3)+GPOT(l4)*~A(l4)+GPOT(l s)*AREA(lS)+ 

+ GPOT(l6)*AREA(l6)+GPOT(l7)*mA(l7)+GPOT(l8)*AREA(l8) 
+ )/SPHAREA 

SPHFLUX=(GKUX( 13) *AREA( 13)+GFLUX(14)*AREA(l4)+ 
+ GFLUX(l5)*AREA(l5)+GKUX(l6)*AmA(l6)+GEUX(l7)*AmA(l7)+ 
+ GFLUX(l8)*MA(lS))/SPHAREA 

WRITE(2 1,106)'Ave Potential1,SPHP0T,' Average Flux1,- 1 .O* SPHFLUX 
WRITE(2 1 ,*) 
WRITE(2 1,13 l)UL,UL,UL,UL,UL,UL 

WRITE(2 1 ,*) 
 WRITE(^ 1,21)'~imulation Change in Free Energy Summary' 
WRITE(2 1, *) 
 WRITE(^ 1, i06)SPh part delta F1,DELTAG(1), 

+ 'Cyl part delta Ft,DELTAG(2) 
WRITE(2 1, *) 

lo8 FOMAT(2X,A30,2X,F 1 1.6) 
WRITE(2 l,108)tSphere and Cylinder delta F', 

+ (DELTAG(l)+DELTAG(2)) 
WRITE(2 1 ,*) 
WRITE(2 1,108)'Linear Sup CyllSph delta F1,SUP 
WRITE(2 1 ,*) 
WRITE(2 1,13 l)UL,UL,UL,UL,UL,UL 

WRITE(2 1, *) 
WRITE(2 1,2 1)'Comparison of Free Energy to Approximationst 
WRITE(2 1 ,*) 
WRITE(2 1, 108)'Simulation delta F', 

+ 4. * (DELTAG(l)+DELTAG(2)) 
WRITE(2 l,108)tLinear Superposition delta Ft,4*SUP 
WRITE(2 1, *) 
SPHSUP=4.*3.14159*VALUE(l)*VALm(2)/ 

+ (VLUE(4)+VALUE(l)+VALUE(2))*PSIC*PSIS 
+ *EXP(-TAU*VALUE(4)) 

WRITE(2 1,108)'Linear Sup SphlSph delta Ft,SPHSUP 
Al=VALuE(l) 
A2=VALUE(2) 
HR=VALUE(4) 
L M = S  QRT((A2* (HR+A 1 )/A l/(HR+A2)))+S QRT( A 1 * (HR+A2)/A2/(HR+A 1)) 
GAM=SQRT(A 1 *A2l(HR+A l)/(HR+A2)) *EXP(TAU*(A 1 +A2)) 
BELLF=2.*3.14159/TAU 

+ *A 1 *A2*(HR+A l)*(HR+A2)/(HR+Al +A2)/((A 1 +A l)*(HR+Al+A2) 
+ -A1 *A1 -A2*A2)*((PSIC**2+PSIS**2+LM*PSIC*PSIS)* 
+ LOG(1 +GM*EXP(-TAU*(HR+A 1 +A2))) 
+ + (PSIC**2+PSIS **2-LM*PSIC*PSIS)* 
+ LOG(1 -GM*EXP(-TAU*(HR+A 1 +A2)))) 









S(J+l)=S(J) 
H(J+ l)=OZ*H(J) 

11 CONTINUE 
PAUSE 'Too many steps.' 
END ....................................................................... 

* 
* This subroutine integrates using Rhomberg's rule. It came from 
* Numerical Recipes * 

SUBROUTINE QROMB2(A,B,SS,V) 
PARAMETER (EPS=l .E-6, JMAXz300, JMAXP=JMAX+ 1, K=5, KM=K- 1) 
DIMENSION S(JMAXP),H(JMAXP) 
REAL V(10,6) 
H(l)= 1. 
DO 11 J=l,JMAX 

CALL TRAPZDS (A,B ,S(J), J,V) * WRITE(* ,*)'QROMB2: after trapzd ', S(J),J 
IF (J.GE.K) THEN 

CALL POLINT(H(J-KM),S(J-KM),K,O.,SS,DSS) 
IF (ABS(DSS).LT.EPS *ABS(SS)) RETURN 

ENDIF 
S(J+ 1 )=S(J) 
H(J+ l)=O.Z*H(J) 

11 CONTINUE 
PAUSE 'Too many steps.' 
END ....................................................................... 

SUBROUTINE TRAPZDT(A,B ,S ,N,V) * 
* WRITE(*,*)'Inside trap N = ',N 

IF (N.EQ. 1) THEN 
S=0.5*(B-A)*(TOVERT(A,V) 

$ +TOVERT(B,V)) 
WRITE(*,*)'TRAPZD: s = ',s 

IT= 1 
ELSE 

IT = (N-1)*2 
WRITE(*,*) 'IT = ',IT 

TNM=IT 
WRITE(*, *)'TNM = ',TNM 

DEL=(B -A)/TNM 
WRITE(*,*) ' DEL = ',DEL 

X=A+OS*DEL 

DO 1 1 J= I ,IT 
WRITE(*,*)'TRAP: J = 'J , '  IT = ',IT, ' DEL = ',DEL 
SUM=SUM+TOVERT(X,V) 

WRITE(*,*)'TRAP: Sum = ',SUM 
X=X+DEL 
CONTINUE 



* WRITE(13,*) X 
* WRITE(*,*) 

S=0.5*(S+(B-A)*SUM/TNM) 
IT=2*IT * WRITE(*,*)'% ',S,' IT = ',IT 

ENDIF 
* WRITE(*,*) 

RETURN 
END ................................................................ 
SUBROUTINE TRAPZDS(A,B ,S,N,V) * 

* WRITE(*,*)'Inside trap s N = ',N 
IF (N.EQ. 1) THEN 

S=0.5*(B-A)*(SOVERS(A,V)+SOVERS(B ,V)) 
* WRITE(*,*)'TRAPZD: S =  ',S 

IT= 1 
ELSE 

IT = (N-1)*2 
* WRITE(*,*) 'IT = ',IT 

TNM=IT 
* WRITE(*,*)'TNM = ',TNM 

DEL=(B -A)/TNM 
* WRITE(*,*)'DEL=',DEL 

X=A+0.5*DEL * WRITE(*,*)'Del = ',DEL,' X = ',X 
SUM=O. 
DO 11 J=l,IT * WRITE(*,*)'TRAP: J = ',J,' IT = ',IT, ' DEL = ',DEL 

SUM=SUM+SOVERS (X,V) * WRITE(*,*)'TRAP: Sum = ',SUM 
X=X+DEL 

11 CONTINUE * 
* WRITE(13,*) X 
* WRITE(*,*) 

S=0.5*(S+(B-A)*SUMyTNM) 
IT=2*IT * WRITE(*,*)'S= ',S,' IT = ',IT 

ENDIF 
* WRITE(*,*) 

RETURN 
END ................................................. 
FUNCTION TOVERT(S,V) * 
REAL S,V(10,6) * 
V( 10, 1)=S 
CALL QROMB2(- 1 ., 1 .,SS,V) 
TOVERT = SS 

RETURN 
END ............................................................ 



* 
FUNCTION SOVERS(T,V) * 
REAL V(10,6),JACOB,S,G11 ,G22,G12,X(9),Y(9),Z(9),T 
REAL FIELD(9) * 
S=V(lO, 1) * WRITE(*,*)' Inside Severs; S and T are : ',S,T 
DO 101 1=1,9 
X(I)=V(I, 1) 
Y(I)=v(I,~) 
Z(I)=V(I,3) 
IF(V(10,2).EQ.4.) FIELD(I)=V(I,4) 
IF(V(lO,2).EQS.) FIELD(I)=V(I,5) 
IF(V(10,2).EQ.6.) FIELD(I)=V(I,6) 

101 CONTINUE * 
G1 l=DNDS(S,T,X)**2+DNDS(S,T,Y)**2+DNDS(S,T,Z)**2 
G22=DNDT(S,T,X)**2+DNDT(S,T,Y)**2+DNDT(S,T,Z)**2 
G 12=DNDS(S,T,X)*DNDT(S,T,X)+DNDS(S,T,Y)*DNDT(S,T,Y)+ 

+ DNDS(S,T,Z)*DNDT(S,T,Z) 
JACOB=ABS(Gll*G22-G12*G12) 
IF(V(10,2).GE.0.5) THEN 
Fl = QUAD(S,T,FIELD) 

ELSE 
Fl= 1.0 

ENDIF 
SOVERS=Fl *SQRT(JACOB) 
RETURN 
END ....................................................................... 
FUNCTION QUAD(S ,T,W) * 
REAL S,T,W(g),TEMP,R(g) * 

DO 101 1=1,9 
TEMP = TEMP+R(I) * W(1) 

101 CONTINUE * 
QUAD=TEMP 
RETURN 
END 



FUNCTION DNDS(S ,T, W) 

REAL S9T,R(9),W(9),TEMP 

TEMP=O .0 

R(l)= O.Z*T*(l .-T)*(l.-2.*S) 
R(2)=-OX*T*(l .-T)*(1.+2.*S) 
R(3)= OZ*T*(l .+T)*(1.+2.*S) 
R(4)=-OZ*T*(l .+T)*(l.-2.*S) 
R(5)=-0.5*T*(l .-T)*(-2.*S) 
R(6)= O.5*(1 .-T*T)*(1.+2.*S) 
R(7)= OS*T*(l .+T)*(-2.*S) 
R(8)=-0.5*(1 .-T*T)*(l.-2.*S) 
R(9)= (-2.*S)*(l .-T*T) 

DO 101 1=1,9 
TEMP=TEMP+R(I) * W(1) 
CONTINUE 

DNDS=TEMP 
RETURN 
END ....................................................................... 
FUNCTION DNDT(S,T,W) * 
REAL S9T,R(9),W(9),TEMP * 

DO 101 1=1,9 
TEMP=TEMP+R(I) * W(1) 

101 CONTINUE * 
DNDT=TEMP 
RETURN 
END ....................................................................... 

* 
SUBROUTINE POLINT(XA,YA,N,X,Y,DY) 
PARAMETER fNMAX= 10) 



DIF=ABS(X-XA( 1)) 
DO 11 I=l,N 
DIFT=AB S (X-XA(1)) 
IF (DIFT.LT.DIF) THEN 

NS=I 
DIF=DIFT 

ENDIF 
C(I)=YA(I) 
D(I)=Y A(1) 

11 CONTINUE 
Y=YA(NS) 
NS=NS-1 
DO 13 M=l,N-1 
DO 12 I=1 ,N-M 
HO=XA(I)-X 
HP=XA(I+M) -X 
W=C(I+ 1 )-D(1) 
DEN=HO-HP 
IF(DEN.EQ.O.)PAUSE 
DEN=W/DEN 
D(I)=HP*DEN 
C(I)=HO*DEN 

12 CONTINUE 
IF (2*NS .LT.N-M)THEN 
DY=C(NS+l) 

ELSE 
DY=D(NS) 
NS=NS- 1 

ENDIF 
Y=Y+DY 

13 CONTINUE 
RETURN 
END ....................................................................... 



A.2.3 Curve fit routine used to determine coefficients for equation (59) and (60) 

program curvefitter 
implicit real*4(a-h,o-z), integer(i-n) 
common/ data11 tetbm(50000),phi(50000),tetslit(50000),pe(50000) 
common/ data21 hh(50000) ,delg(50000) ,es(5OOOO) ,ef(5OOOO) 
common/ data31 ndata,nparamsfit 
common/ array1 params(15),lista(15) 
common/ results1 res(50000),avres,ms,tetabmth(50000) 
dimension p(l5),xi(l5,l5),stnderr2(l5),covar(l5,l5) 
dimension fiv(5000),fii(5000),ci(5000) 

C INPUT PARAMETERS 

nparamsmax = 15 
print*,'number of parameters to be fitted ?' 
read*, nparamsfit 

c nparamsfit = 3 
if (nparamsfit .gt. 15) then 

print*,'which should be fitted ? # 1 ,2  or 3 ? ' 
do 03 i= 1 ,nparamsfit 

read* ,lista(i) 
03 continue 

v= 1 
do 05 i=nparamsfit+ 1 ,nparamsmax 

do 07 k= 1 ,nparamsfit 
if (lista(k) .eq. v) v=v+l 

07 continue 
lista(i) = v 
v=v+ 1 

05 continue 
else 

do 09 i= 1 ,nparamsfit 
lista(i) = i 

09 continue 
endif 
ftol = 1.0e-5 
print*,'initial value for param 1 (A) ?' 
read*, a 
print*,'initial value for param 2 (B) ?' 
read *, b 
print*,'initial value for param 3 (C) ?' 
read *, c 
print*,'initial value for param 4 (D) ?' 
read *, d 
print*,'initial value for param 5 (E) ?' 
read *, e 
print*,'initial value for param 6 (F) ?' 



read*, f 
print*,'initial value for param 7 (G) ?' 
read*, g 
print*,'initial value for param 8 (H) ?' 
read*, h 
print*,'initial value for param 9 (Q) ?' 
read *, q 
print*,'initial value for param 10 (R) ?' 
read *, r 
print*,'initial value for param 11 (S) ?' 
read *, s 
print*,'initial value for param 12 (T) ?' 
read*, t 
print*,'initial value for param 13 (U) ?' 
read*, u 
print*,'initial value for param 14 (V) ?' 
read*, v 
print*,'initial value for param 15 (W) ?' 
read*, w 

open(unit= 1 ,file='delg.txt',status='old') 
read(1, *)ndata 1 
ndata = ndatal 
do 100 i= 1 ,ndata 1 

read(1, *)pe(i),pfi(i),M(i),es(i),ef(i),delg(i) 
100 continue 
* close(1 ,status='keep') ................................................. 
C DEPOSU ALL PARAMETERS (TO BE FEED AND TO BE FIT) IN PARAMS(1) 

params(1) = a 
params(2) = b 

do 240 i= 1 ,nparamsmax 
p(i) = params(lista(i)) 
do 230 J = 1 ,nparamsfit 

xi(i,j) = 0.0 
if (i.eq.j) xi(i,j) = p(i)*O. 1 

230 continue 
240 continue 







100 continue 
avres = avreslntotal 
rms = sqfi(chisql(ntotal-np~msfit)) 
return 

end 

c POWELL'S ROUTINE 

* subroutine P ow ell * 
SUBROUTINE POWELL(P,XI,N,NP,FTOL,ITER,FRET) 
PARAMl3TER (NMM=4O9ITMM=4w) 
DIMENSION P(l5),XI(l5,l5),W(nmax),~T(nmax),XIT(nmax) 

FRET = chisq(P) 
DO 11 J=l,N 

PT(J)=P(J) 
CONTINUE 

ITER=O 
ITER=ITER+ 1 
FP=FRET 
IBIG=O 
DEL=O. 
DO 13 I=l,N 

DO 12 J=l,N 
XIT(J)=XI(J,I) 
CONTINUE 

FPTT=FRET 
CALL LINMIN(P,XIT,N,FRET) 
IF(ABS (FPTT-FRET) .GT .DEL)THEN 
DEL=AB s (FPTT-FRET) 
BIG=I 

ENDIF 
CONTINUE 
IF(2.*mS(FP-FWT).LE.FTOL*(BS(FP)+BS(FmT)))WTUW 
IF(ITER.EQ.ITMM) then 

print*, 'Powell exceeding maximum iterations.' 
return 

endif 
DO 14 J=l,N 

PTT(J)=2. *P(J)-PT(J) 
XIT(J)=P(J)-PT(J) 
PT(J)=P(J) 
CONTINUE 

FPTT =chisq(PTT) 
IF(FPTT.GE.FP)GO TO 1 
T=2. *(FP-2. *FRET+FPTT) *(FP-FRET-DELI* $2-DEL*(FP-FPTT)* *2 
IF(T.GE.O.)GO TO 1 
CALL LINMIN(P,XIT,N,FRET) 



DO 15 J=l,N 
XI(J,IBIG)=XIT(J) 

15 CONTINUE 
GO TO 1 
END 

* subroutine linmin * 
SUBROUTINE LINMIN(P,XI,N,FRET) 
PARAMETER (NMAX=8O,TOL= 1 .E-4) 
EXTERNAL FlDIM 
DIMENSION P(n) ,XI(n) 
COMMON FlCOM/ NCOM,PCOM(NM),XCOM(NMAX) 
NCOM=N 
DO 11 J=l,N 
PCOM(J)=P(J) 
XICOM(J)=XI(J) 

11 CONTINUE 
Ax=o. 
XX=l. 
CALL MNBRAK(AX,m,BX,FA,FX,FB) 
FRET=BRENT(AX,XX,BX,TOL,XMN) 
DO 12 J=l,N 

XI(J)=XMIN *XI(J) 
P(J)=P(J)+XI(J) 

12 CONTINUE 
RETURN 
END 

* subroutine mbrak 

SUBROUTINE MNBMK(AX,BX,CX,FA,FB ,FC) 
PARAMETER (GOLD= 1.61 8034, GLIMIT= loo., TINY= 1 .E-20) 

FA=f 1 dim(AX) 
FB=f 1 dim(BX) 
IF(FB .GT.FA)THEN 
DUM=AX 
AX=BX 
BX=DUM 
DUM=FB 
FB=FA 
FA=DUM 

ENDIF 
CX=BX+GOLD*(BX-AX) 
FC=f 1 dim(CX) 

1 IF(FB .GE.FC)THEN 
R=(BX-AX) *(FB -FC) 
Q=(BX-CX) *(FB -FA) 
U=BX-((BX-CX)*Q-(BX-AX)*R)l(2. *SIGN(MM(ABS(Q-R),TINY),Q-R)) 
ULM=BX+GLMrn*(CX-BX) 
IF((BX-U)*(U-CX).GT.O.)THEN 
FU=f 1 dim(U) 
IF(FU.LT.FC)THEN 





DO 11 ITER=l,rrMAx 
XM=O. 5 * ( A+B) 
TOL 1 =TOL*BS(X)+ZEPS 
TOL2=2.*TOLl 
IF(BS(X-XM).LE.(TOL2--5 *(B-A))) GOT0 3 
IF(ABS(E).GT.TOLl) THEN 

R=(X- W) * (FX-FV) 
Q=(X-V) * (FX-FW) 
P=(X-V)*Q-(X-W)*R 

Q=BS(Q) 
ETEMP=E 
E=D 
IF(ABS(P).GE.BS(.5*Q*ETEMP).OR.P.LE.Q*(A-X).OR. 

* P.GE.Q*(B-X))GOTOl 
D=P/Q 
U=X+D 
IF(U-A.LT.TOL2 .OR. B-U.LT.TOL2) DzSIGN(TOL1 ,XM-X) 
GOT0 2 

ENDIF 
1 IF(X.GE.XM) THEN 

E=A-X 
ELSE 

E=B-X 
ENDIF 
D=CGOLD*E 

2 IF(BS(D).GE.TOLl)THEN 
U=X+D 

ELSE 
U=X+SIGN(TOL 1 ,D) 

ENDIF 
FU= f ldim(U) 
IF(FU.LE.FX) THEN 

IF(U.GE.X) THEN 
A=X 

ELSE 
B=X 

ENDIF 
v=w 
FV=FW 
w=x 
FW=FX 
x=u 
FX=FU 

ELSE 
IF(U.LT.X) THEN 
A=U 

ELSE 
B=U 

ENDIF 
IF(FU.LE.FW .OR. W.EQ.X) THEN 
v=w 
FV=FW 



ELSE IF(FU.LE.FV .OR. V.EQ.X .OR. V.EQ. W) THEN 
v=u 
FV=FU 

ENDIF 
ENDIF 

11 CONTINUE 
PAUSE 'Brent exceed maximum iterations.' 

3 XMIN=X 
BRENT=FX 
RETURN 
END 

* hnction f 1 dim * 
FUNCTION F l  DIM(X) 
PARAMETER (NMAX=80) 
COMMON /FlCOM/ NCOM,PCOM(NMM),XICOM(NMM) 
DIMENSION XT(nmax) 
DO 1 1 J= 1 ,NCOM 

XT(J)=PCOM(J)+X*XICOM(J) 
CONTINUE 

FlDIM = chisq(XT) 
RETURN 
END 
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