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Sound Wave Scattering by Cylindrical Shells with Internal Structures

by Sewon Park

Submitted to the Department of Ocean Engineering in partial fulfillment of the
requirements for the Ocean Engineer degree

Abstract

In this thesis I study the mid-frequency scattering properties at beam incidence
from different kinds of cylindrical shells; empty shell, shell with stiffening rings, shell with
internal structures only and layered shell, the latter having the same internal structures.
The measurements and analyses were conducted over a mid-frequency range of 2 < ka <
12, where k is the acoustic wave number in water and a is the radius of the shell. Both
time and frequency domain representations of the scattered field are presented to illustrate
the evolution of observed backscattering processes.

The empty and layered shells have almost the same decay pattern of the signals
beyond the initial return. Also the shell with rings and the shell with internal structures
only have closely the same decay pattern. The decay rate for the empty shell is
0.064dB/gsec. A similar decay rate is observed for the layered shell, that is 0.071 dB/sec.
Decay rates for the ringed shell and internaled shell are smaller, they are 0.051 dB/gsec and
0.045dB/tsec.

The distribution of the rings store energy and become the major source of radiation
at later time. The internal structures also influence the radiation at later time. The rubber
attachments of the internal structures limit the shell's radial motion to prefer two
maximum and minimum ring motion. Therefore, the shell with internal structures and
layered shell show dominant second ring frequency response.
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1. Introduction

Acoustic scattering by four different cylindrical shells at normal incidence has been

analyzed. The incident wave is a short transient, such that we can exclude the interference

between the geometric field, which is initially scattered from the shell, and the radiation

field caused by the induced elastic waves in the shell. Therefore, the scattering can be

easily divided into the geometric field and the elastic field. The geometric field fills about

the first 30 pisec of the scattering signal. It depends on the geometry of the shell and the

basic properties of the shell like mass or elasticity of the shell. After the geometric field,

the induced waves which travel through the shell and its internal structures influence the

scattering process, until the whole energy received by the shell from the incident sound

wave, is consumed and reradiated into the water. Therefore, the different properties and

different structures of the shell make different contribution to the scattering in both the

geometric field and elastic field.

This research is motivated by an interest in the acoustic properties of ship and

submarine hulls. Internal structures are often resiliently mounted to the hull to inhibit the

local transmission of the vibration energy from machinery and supporting structure to the

hull. The presence of the resiliently mounted structures and structural discontinuities

imposed by hull stiffeners must influence the acoustic scattering properties of the hull.

Experimental and analytic studies of the scatter generated by plane wave

insonification of infinite cylindrical shells have been presented in a variety of references.

The effect of induced elastic waves and the azimuthal dependence of the scattered field

have been studied by Feit[1] and Marston[2,3]. Similar analytic studies of the plane wave

scattering from infinite cylindrical shells at oblique incidence, and the influence of helical

elastic waves, have been studied by Felsen and Ho[4,5,6]. There are a few experimental or

analytical studies of acoustic scattering from finite cylindrical shells or internally loaded
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shells. Maze et al [7] conducted experimental and theoretical studies of the influence of

the resonant excitation of elastic waves on finite solid cylinders at normal and axial angles

of incidence. Guo[8,9] has analytically studied the scattering effects of infinite cylinders

internally loaded with two dimensional mass spring systems or elastic plates. Scattering

from finite cylindrical shells with internal structures are studied by Corrado[ 10]. He

conducted experimental studies of the scattering from three of the shells considered here;

empty shell, ringed shell and internalled shell, for various angles of incidence. He also

analytically studied scattering from a finite empty cylindrical shell, but with perfectly

reflecting endcaps.

Scattering by a cylindrical shell in water is influenced by the induced dynamic

interaction between the exterior shell and the internal structure. Comparing the scattering

from the different shells helps us to understand and interpret the dynamics of the scattering

process. In the empty shell case, many fundamental scattering processes that are common

to the more complex shells are evident, and are more readily interpreted. In the shell with

ring stiffeners, the stiffness of the shell is changed along with its mass, and provide

discontinuities along the shell to axially propagating elastic waves. In the shell with

internal structures, the role of the internal structures is added to the ring stiffened shell

case. In the case of the layered shell, dissipation of the elastic waves along the shell by the

damping material between the sandwich shell may decrease the effect of the axially

traveling waves.

Shell designs are described in Chapter 2.

In Chapter 3, I study the lumped system response of infinitely long cylindrical

shells. Such simple models are used to study the initial scattering by the empty shell, ring-

stiffened shell and shell with internal structures. The stiffening rings and internal structures

are simplified as a uniform mass load. The analytical results are not close to the

experimental data. The stiffness changes by the distribution of the rings are not modeled
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by the uniform mass load. Also the simplified spring, damper and mass model could not

well model the internal structures. The uniform mass loading assumed decreases the initial

scattering by the shell. But the mass connected to a shell by a spring and a damper does

not influence initial scattering much.

The measured backscatter at beam aspect from the different shells are examined in

Chapter 4. Both time and frequency domain representations are shown for the different

shells; empty shell, ring-stiffened shell, shell with internal structures only and layered shell

with the same internal structures. The internal structures change the basic scattering

properties of the shell and increase the initial scattering about 2dB. This small influence of

the internal structures is limited to the initial scattering. The elastic field decay rate for the

layered shell is similar to that of empty shell for times less that 800 tsec. The rings and

internal structures in the ring-stiffened shell and complex shell provide the additional

energy storage. Therefore, the decay rates for these two shells are lower than those for

empty shell and layered shell. Every shell has dominant scattering frequencies that relate to

elastic resonance frequencies. Variations of these frequencies cause changes in the major

scattering sources of the shell. Rings in the stiffened-ring shell, internalled shell and

layered shell become the major source of the radiation. The shell itself is the major

scattering source for the empty shell for all time, but for the others at later time, about

after 60 psec, the influence from the internal structures becomes dominant.
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2. Shell Designs

The design parameters of the four shells are summarized in Table 2. 1. See the

Conti and Dyer [11] and Corrado [10] references for primary information on these

designs. The design of the empty shell serves as the base exterior shell design for the other

three shells. The basic shell dimensions are illustrated in Figure 2.1. The ring stiffened

shell is comprised of the same exterior shell design configuration, but stiffened by four

large nickel rings that are unequally spaced along the axis of the cylinder, as illustrated in

Figure 2.1. The total mass of the rings equals the mass of the exterior shell, and they

introduce structural impedence discontinuities to waves propagating on the shell. The

internally loaded, complex shell was designed to provide a means of evaluating the effects

of resiliently mounted wave bearing structures. The internal structures are supported from

the rings of the stiffened shell, of the same configuration discussed above and illustrated in

Figure 2.1. The internal structures consist of a quadrant symmetric arrangement of one

inch diameter Delrin rods interconnected by cylindrical stainless steel masses as illustrated

in Figure 2.2. The stainless steal masses are individually supported from the ring stiffeners

by independent, triangular shaped rubber blocks made of EAR C 1002 Isodamp rubber.

The various internal components are all secured to one another with an epoxy compound.

The total mass of the internal structures and ring stiffeners is approximately three times

greater than the mass of the shell. In the layered shell, a rubber layer is sandwiched by the

two concentric shells each 0.000532m thick, over the complex shell. The rubber material

in this sandwich is 0.001m thick and also made of EAR C2206-03 Isodamp rubber.
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Table 2.1 Summary of Model Design Parameters

Configulation
Shell & Ring Material
Length Overall
Shell Radius
Shell Thickness
Ring Thickness
Ring Width
Mass Ratio, Rings/shell
Mass Ratio, Internals & Rings/Shell
Mass Ratio, Internals & Rings &
Layer/Shell

Ni-200
0 86m

0.05537m
0.000532m
0.01m
0.0125m
1

3

4

Approx. Shell Material Properties
Young's Modulus, E 2.2 x 1011 N/m 2

Density, p 8900 kg / m3

Poisson's Ratio, v 0.31
Compressional Plate Wave Speed 5270 m/s
Transverse Shear Wave Speed 3100 m/s

Approx. Delrin Material Properties
Measured Dynamic Modulus, E 3.7 x 109 N / m2

Density, p 1400 kg/ m3

Poisson's Ratio, v 0.35
Measured Compressional Speed of Rod 1625 m/s

Approx. Rubber Material Properties
Measured Dynamic Modulus, E 5.0 x 108 N / m2

Density, p 1289 kg/ m
3

Poisson's Ratio, v 0.28
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Shell Material: Ni-200
Shell Thickness: 0.000532 m

Endcaps: Right Circular Cones with Spherical Ends
Dimensions in meters

2650

I

.0931
No

.128 .190 .235 .093

0.739 1

0.862

0.111

-1

Figure 2.1 The Design Configulation of the Empty Shell Model and the location of the
Ring Stiffeners (From C. Corrado)

Figure 2.2 The Configulation of the Internal Structures (From M. Conti)
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3. Dynamic response of infinite cylinders at beam incidence;
lumped model

I have studied the initial or geometric scattering response of simplified models of

the cylindrical shells. The initial return from the shell may depend only on simple

properties of the shell, because the detailed dynamics of the shell mainly influence the

scattering later in time. At beam incidence, radiation by the induced elastic waves can not

affect the geometric return. Therefore, by studying a simplified model based on basic

properties of the shell, we might understand the initial scattering process. The basic

properties of the shell may include the geometry or structure of the shell, and its stiffness

and mass.

I assume that the shells are continuous, infinitely long, cylindrical shells. Therefore,

the effect of the elastic waves traveling along the axis of the cylinder is neglected. The

empty shell is modeled by an infinite uniform cylinder. The masses of the rings are added

to the infinite cylinder to model the ring-stiffened shell, by distributing them uniformly in

the axial direction. Therefore, the structural impedance discontinuity along the shell is

neglected. Also the stiffness increase by the ring distribution is not modeled well. For the

shell with internal structures, the mass of the internal structures is included with a spring

and damper model for the triangular shaped rubber blocks. The rubber block has many

natural frequencies and many complex mode shapes.

A finite element method is used to find the natural frequencies and mode shapes of

the rubber block. The two dimensional motion of the rubber block with the internal mass is

analyzed. Figure 3.1 shows the lowest natural mode shape and the first 40 natural

frequencies of the rubber block. The lowest natural frequency of the rubber block with the

internal mass is ka=0.6. The damper has damping which is in inverse proportion to

frequency. Figure 3.2 shows the diagrams for the shell with stiffened ring model and the

shell with internal structure model.
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I calculated the impulse response function for three of the four kinds of shells;

empty shell, ring-stiffened shell and complex shell. The basic equations and formulations

are shown in Appendix A. Figure 3.3 shows the Gaussian bandpass filter impulse response

used in calculations, which is the same Gaussian filter used in experimental data analysis.

Magnitudes of the impedance functions, for a force F applied as in Fig 3.2, are

shown in Figure 3.4. The extra masses affect the impedance function throughout the entire

frequency range. The effect becomes larger after ka=2. The maximum impedance is shown

at the resonance frequency of the spring/mass model in the internal shell case. After the

maximum impedance, the impedance function of the shell with internal structure model

becomes identical to the ring-stiffened shell model. Therefore, when the frequency is

larger than the resonance frequency of the rubber block/internal mass system, the internal

structure has no effect on the vibration of the shell. The impulse response function in

Figure 3.5 shows that there are no differences between the ring-stiffened shell and the shell

with internal structures. But there is a 30 % decrease of the impulse response from the

empty shell case to the other two cases. The initial returns from the shells have a negative

sense, and that is consistent with the pressure release cylinder.

The uniform mass loading of the rings and radiation inertia, which vibrates with the

shell, creates the response decrease. But the mass of the internal structures does not

influence the response. Because the impulse frequency band excludes the resonance

frequency of the internal structures, hardly any energy can propagate through the spring to

vibrate the internal structure. The impulse responses are calculated with different

resonance frequencies of the internal structure. The impulse response return magnitudes

are decreased as the resonance frequencies of the internal structures are increased. Figure

3.6 shows the impulse response function depends on the resonance frequencies of the

internal structure. The simple spring and damper model can not contribute to the

scattering much regardless of the resonance frequency of the model.
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Fig 3.1 Natural frequencies of the rubber block with delrii and stainless steel mass inside.
At 10kHz, ka=2.3.(up) Lowest natural modeshape for the rubber block with delrin and
stainless steel mass inside. Motion is caused by a force acting on the arc, and parallel to
the vertical axis.(down)

12

50

x



Mring
Mshell
Mrad
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x 
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Ksprung

M

Rrad

Fig 3.2 Diagram for Cylindrical Shell with Stiffening Rings (up). Cylindrical Shell with
Internal Structures Model (down). The spring mass, sprirng and resistance refers to the
sprung internal structures.
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Fig 3.3 Gaussian Bandpass Filter (up), mean 27.3 kHz and standard deviation 13.2 kHz.
Gaussian bandpass filter Impulse Response (Down), 6 dB down at Band Edges of the
Frequency Range 2.75 < ka < 11.7
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Fig 3.5 Gaussian bandlimited impulse response fiunction of three shell models (-- Empty
shell, -. Shell with stiffening rings, - Shell with internal structures)
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Fig 3.6 (Up) Bandlimited impulse response functions with increasing resonance
frequency of the internal structure. Arrow shows the changing direction as the resonance
frequency increases from ka=0.6 to ka=12. The break line shows the impulse response
function for the empty shell. (Down) Maximum return in impulse response as the
resonance frequency changes.
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4. Sound scattering from the four different shells at beam
incidence; analysis of measurements

4.1 Introduction

From the analytical calculation of a simple lumped approximation for an infinite

shell, I have studied a few of the possible bases of scattering from the actual shell and how

the mass affects the initial scattering. In the real experimental data analysis, we also have

to consider the influence of the finiteness of the shell and axially traveling waves. The

structural design differences of the shells also affect the sound scattering. Distribution of

the rings and internal structures change the basic properties of the shells and influence the

scattering process.

Beam incidence, monostatic sound scattering data are analyzed for each of the four

shells.

4.2 Empty shell

In the empty shell, at least for beam incidence, we can consider this as a infinite

shell only if the length of the cylinder is long enough. The waves on the shell, which are

induced by the plane sound wave, propagate in the axial as well as circumferential

direction. If the axial waves are damped out before they get back after they hit the end of

the shell, we may consider this shell as an infinite shell.
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The bandlimited impulse response of the empty shell at beam incidence is shown in

Figure 4.2.1 . This time domain representation of the scattering results from a

deconvolution of the source signal from the scattered field measured at a radius of r=2m.

The initial return from the shell has a negative sense that is consistent with a pressure

release surface. After the geometric return, there are a series of returns which have a 62-

66 ,sec period. These are produced by radiation from the induced circumferential

compressional wave and have an opposite sense with respect to the initial return. The

radiation losses that occur as the induced compressional wave circumnavigates the shell,

are partially the cause for the observed decay. The logarithm of the magnitude of the

analytic signal representation of the backscattered signal is shown as a function of time in

Figure 4.2.2. I have used this representation to calculate the decay rate of the

backscattered signal. A least squares linear fit of the envelope yields a broadband

amplitude decay rate of 0.064 dB/ptsec. In this calculation I exclude the initial return and

the returns that are less than -75dB, as the latter could include noise.

Figure 4.2.4 shows the same analysis as in Figure 4.2.2 but in different frequency

bands. I used three partially overlapping Gaussian windows to observe the decay rate of

signal returns depending on the frequency band. Each window is shown in Figure 4.2.3. I

choose the low frequency band from 10kHz to 24kHz (2.35 < ka < 5.64), the mid

frequency band from 20kHz to 34kHz ( 4.70 < ka < 7.99), and the high frequency band

from 30kHz to 44kHz ( 7.05 < ka <10.34 ). In each band, the decay rates are same, and

are about 0.063dB/psec. At beam incidence the transverse shear waves propagate with no

radial displacement component and do not contribute to the scattering. The decay of the

returned signals is partially caused by the radiation losses as the compressional wave

circumnavigates the shell. So these radiation losses do not depend on the frequencies. But

because the rate is so much smaller than the theoretical radiation loss rate of

0.089dB/psec,we must consider that the energy is partially stored in the finite shell, no

doubt due to induced compressional axial waves[12].
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The speeds of the poorly radiated flexural waves are not fast enough to travel all

the way to the end of the shell. In the frequency bands I used, the time it takes for flexural

waves to travel the entire shell is 3200 - 1600 jtsec depending on the frequency. So the

signal returns for the empty shell are only caused by the induced compressional waves.

These induced compressional waves have to have specific periods and frequencies to fit

into the shell circumference. The first ring frequency is 15kHz with a 66~tsec period. The

second ring frequency is 30kHz with a 33g1sec period. The magnitudes of the spectral

function from the Fourier transform of the bandlimited impulse response are shown in

Figure 4.2.5. To exclude the initial return, the first 30gsec of the data are excluded. In the

empty shell case, after 800ptsec, the signals are too small to consider as a scattering signal

from cylinder. So the data after 800gsec are excluded. Figure 4.2.5 shows the dominant

frequency responses to be at the first and second ring frequencies. The analysis for the

total time has the shape of the Gaussian bandpass filter, except for the dominant responses

near the first and second ring frequencies. This shape disappears as the analysis goes to the

later time.

For the empty shell, the induced compressional waves mostly control the scattering

process after the geometric return. In our frequency band, the first and second ring

frequency waves are mostly acting throughout the scattering process. The decay rate is

determined only partially by the radiation loss during these compressional waves

circumnavigating the shell, since the measured values are only about 70% of the

theoretical decay rate.

4.3 Shell with stiffening rings
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In the case of the shell with stiffening rings, the axial wave motion can affect the

scattering more strongly. The induced flexural waves do not influence the scattering

process of the empty shell, because flexural waves are too slow for the overall length. In

the ring-stiffened shell, these flexural waves propagate to the rings, interact with rings, and

radiate. The time it takes to excite the shortest bay can be calculated by the round trip

travel time for flexural waves. I used flexural wave group speeds in a plate of the same

thickness of the shell to calculate the round trip time. The round trip time is about

350isec at a frequency of 27 kHz. So I expect that scattering by the shell itself may be

dominant before 350g.sec. The scattering by the rings, which are exited by induced

compressional and flexural waves between the rings, may be the major effect on the

scattering process after 350[sec.

The bandlimited impulse response is shown in Figure 4.3.1. The geometric return

is about same as for the empty shell. But the elastic response after the initial return lasts

longer than that of the empty shell. Figure 4.3.2 shows the logarithm of the magnitude of

the analytic signal representation of the bandlimited impulse response. I extract two decay

rates. The first decay rate of 0.05 ldB/gpsec is calculated from the first 350gsec of the

signal. This is the decay rate before the flexural wave can excite the shortest bay. The

signal after 350ptsec has a 0.01 ldB/!sec decay rate. Therefore, after the bays are exited,

the decay rate is decreased to one fifth. But even before one of the bays being excited, the

decay rate is still smaller than the empty shell case. This is so because the rings can be the

energy transfer mechanism during this time.

Figure 4.3.3 shows the logarithm of the magnitude of the envelope of the three

different frequency bandlimited impulse responses. I extracted the decay rates for these

frequency bands. Because the flexural waves are dispersive, the time it takes for the

flexural waves to excite the shortest bay is different for each frequency band. Before the

flexural waves excite the shortest bay, the decay rates are 0.030dB/psec for the low

frequency band, 0.056dB/sec for the mid frequency band and 0.085dB/psec for the high
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frequency band. After the flexural waves excite the shortest bay, which are after 450 !.sec

for low frequency band, after 350 psec for the mid frequency band and after 250 tsec for

the high frequency band, the decay rates decrease remarkably. These are 0.0032dB/psec

for the low frequency band, 0.0066dB/jsec for the mid frequency band and

0.0114dB/ptsec for the high frequency band. These decay rates increase as the frequency

band goes higher. Compared to the empty shell case, which have the same decay rates for

all three frequency bands, the decay rates for the shell with stiffening rings case depend on

the frequency band.

In the shell with stiffening rings, the early decay rates are smaller than the empty

shell. Hence, the ring stiffeners and the bays between them must provide the energy

storage mechanisms to decrease the radial amplitude at the shell exterior. And at later

time, the rings and bays radiate the stored energy.

Magnitudes of the spectral function of the bandlimited impulse response function

are shown in Figure 4.3.4 and Figure 4.3.5. The Fourier analysis of the first 30psec to

350ptsec signal is shown in Figure 4.3.4 (a). The break line shows the Gaussian bandpass

filter that can be interpreted as the spectral function for the input impulse signal. The

Fourier analysis of the first 350p±sec response has the shape of the input signal. Figure

4.3.4 (b) shows the magnitude of the spectral function for the 3501tsec to 120011sec

response signal. These still reflect the shape of the input signal.

Figure 4.3.5 shows the magnitude of the spectral function of the bandlimited

impulse response for different time periods. The spectral density for the 30iisec to

1200psec response has peaks near 17kHz, 22kHz and 31kHz, the first and third of which

may correspond to the first and second ring frequencies. But these frequencies, if they are

the ring frequencies, are shifted a little to higher frequencies compared to the empty shell

case. These frequency shifts, especially for the second ring frequency, are more noticeable

especially when the first 100lsec or 200tsec response signals are excluded as shown in
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figure (b) and (c). The shifted ring frequencies, especially evident at t>100sec, indicate

that the main scattering sources are moved from the shell to the rings. Because the mean

circumference of the rings is smaller than that of the shell, the induced compressional

waves traveling through the rings have higher ring frequencies than those of the shell. The

mean ring radius is 9% smaller than the shell radius, and can easily account for the

observed values. But the 22kHz peak has no ready explanation. Nonetheless, the

agreement of the prediction with the measurement at 17 and 31 kHz suggests quite

strongly that these are indeed related to ring motion.

When the shell with stiffening rings is insonified by the plane wave, first the

induced compressional waves, which circumnavigate the shell, are the main source for the

scattering. After axial flexural waves reach the rings the scattering from the rings becomes

the dominant scattering process. Therefore, the ring frequencies are more readily observed

in the spectral function of the response for the later time, as we have seen in Figure 4.3.5.

4.4 Shell with Internal Structures

The internal structures of the shell may provide additional energy storage for the

scattering process. The interaction with the internal structures might be frequency

dependent. Figure 4.4.1 shows the natural frequencies of the internal structures. These

natural frequencies are analytically calculated. The longitudinal and flexural coupled

motions in the derlin rods connected to stainless steel masses are considered in this

analysis. The analysis, summarized in Appendix B, shows that the modal density of the

internal structures in our frequency band is high, and we can consider that the internal

structures respond through the entire frequency range.
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The bandlimited impulse response of the shell with the internal structures is shown

in Figure 4.4.2. There is about 25% increase in amplitude of the first return(about 1.9 dB)

compared to the empty shell case. Thereafter, the responses become more complicated

than the shell with stiffening ring case. But the decay rates from the logarithm of the

magnitude of the analytic signal representation (Figure 4.4.3) are 0.045 dB/gsec for the

first 350 gsec and 0.0081 dB/!gsec for the time after 350 psec, and are similar to those

from the shell with stiffening rings. The decay rates for the different frequency band are

shown in Figure 4.4.4. The decay rate increases when it goes from the low frequency band

to the mid and high frequency bands. These rates are 0.032 dB/gsec for the low frequency

band, 0.078 dB/gsec for the mid frequency band, and 0.076 dB/gsec for the high

frequency band. The decay rate seems to be unchanged when it goes from mid to high

frequency. After the flexural wave transition, the bays, which are excited by the flexural

waves, influence the scattering, with decay rates of 0.0011 dB/gsec, 0.0108 dB/gsec and

0.0087 dB/gsec. These increase from low to mid and high frequencies, although the high

frequency value is somewhat smaller than the mid frequency one.

The magnitude of the spectral function from the Fourier analysis of the 30 gsec to

350 !Usec signals are shown in Figure 4.4.5(a). The spectral function of the first 350 gsec

signal has the shape of the Gaussian input spectral function. But the spectral function of

the later time signals, as shown in Figure 4.4.5 (b), does not have the Gaussian shape any

more. It is more like a constant response versus frequency.

Figure 4.4.6 shows the magnitude of the spectral function from the Fourier

analysis of the different time periods of the bandlimited impulse response. Figure (a)

shows the spectral density of the 30 sec to 1400 gsec signal. It shows the first ring

frequency at 17kHz and the second at around 31 kHz. The 22kHz component noted for

the ring stiffened shell, is now more diffusely seen as a broader peak from about 20 to

26kHz. When I exclude the first 100 gsec of the signal, which is Figure (b), the first and

the second ring frequencies are more noticeable. Also, the response at the second ring
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frequency is bigger than the response at the first ring frequency. The 20 to 26kHz broad

peak is notably absent in this time domain, while it was observed(as a narrower peak) for

t> 100tsec in the ring stiffened shell. The internal structures are attached to the shell by

four rubber block elements, and have quadrant symmetry. These four attachments provide

a reaction at the rings that guides their radial motion to the second ring frequency. After

200 ptsec, the spectral response function is generally spread uniformly in frequency.

The internal structures do not seem to influence the decay rates greatly. Thus they

provide at most small additional energy storage for the scattering process, but they spread

the energy more uniformly throughout the frequency band. And the way the internal

structures attach to the shell restricts the shell's radial motion. Therefore, the radial

motion of the shell prefers the second ring frequency, which has two maximum and two

minimum radial displacements along the shell's circumference.

4.5 Layered shell

In the layered shell, damping along the shell makes the scattering process much

like the empty shell, at least for t<350Otsec. The elastic waves, which travel through the

shell surface to the rings, are now damped by the rubber layer between the sandwich shell.

Therefore, the rings and internal structures are hardly excited at early times by the induced

waves along the shell and could not influence the early radiation process.

The bandlimited impulse response and logarithm of the magnitude of the analytic

signal representation are shown in Figure 4.5.1 and Fig 4.5.2. Only the first return is

similar to the shell with internal structures only. But after that the signals are much like the

empty shell case. The initial decay rate is 0.071 dB/jisec, which is similar to that of the
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empty shell. But damping along the shell probably increases the decay rate for t>350jgsec

compared to that of the empty shell. Envelope functions for the different frequency bands

are shown at Figure 4.5.3. The decay rates are calculated from the peak signals greater

than -76dB. They are 0.044 dB/gsec for the low frequency band, 0.061 dB/tsec for the

mid frequency band and 0.052 dB/tsec for the high frequency band. That varying decay

rates depend on frequency indicates that the damping, as well as the elastic process, may

depend on frequency.

The magnitudes of the spectral function of the impulse response are shown in

Figure 4.5.4 and Figure 4.5.5. In the period 350 !tsec to 1200 Iisec, the magnitude of the

spectral function shows maxima around the first and second ring frequencies, (although

the second ring frequency is at 27kHz instead of 30 kHz). This indicates that the radiation

by the induced compressional waves on the shell still has a major effect on the scattering

process. Unlike the internal structures only case, the internal structures in the layered shell

have little influence on the scattering energy even in this later period. But Figure 4.5.5

shows that the second ring frequency dominates the first ring frequency in all frequency

bands. The four rubber block attachments influence the induced compressional waves to

prefer second ring frequency radial motion, due to the quadrant symmetry of the internal

structures.

The damping layer causes scattering from the layered shell to be similar to the

scattering from the empty shell, for t<300pxsec. In this time domain, rings and internal

structures do not store enough energy to contribute to the scattering. But, the four rubber

attachments causes second ring frequency radial motion of the shell to be dominant at later

times. Damping along the shell increases the decay rate at later times to 0.032dB/gsec

which is larger by about a factor of 4 than that of the internalled shell. This effect depends

on frequency.
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Fig 4.2.1 Measured Gaussian Bandlimited Monostatic Impulse Response of the Empty
Shell at Beam Aspect for a Frequency Range 2.75 < ka < 10.0 and a Radial Distance of
r=2m from the Target Center, normalized by the amplitude of the incident wave.
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Impulse Response of the Empty Shell at Beam Aspect, 2.75 < ka < 10.0 (Envelope is from
Fig 4.2. 1).
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Fig 4.3.1 Measured Gaussian Bandlimited Monostatic Impulse Response of the Shell
with Stiffening Rings at Beam Aspect for a Frequency Range 2.75 < ka < 10.0 and a
Radial Distance r=2m from the Target Center.
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Fig 4.3.3 Logarithm of the Magnitude of the Envelope of the (a) Low Frequency
Bandlimited Impulse Response ( 2.35 < ka < 5.64 ), (b) Mid Frequency Bandlimited
Impulse Response ( 4.70 < ka < 7.99 ), (c) High Frequency Bandlimited Impulse
Response ( 7.05 < ka <10.34 ), for Shell with Stiffening Rings at Beam Aspect.
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Fig 4.3.4 Magnitude of the Spectral Function of the Bandlimited Impulse Response of
the Shell with Stiffening Rings for the time (a) 30 psec < t < 350 psec, (b) 350 pLsec < t <
1200 sec; break line shows the Gaussian Bandpass Filter.
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Fig 4.3.5 Magnitude of the Spectral Function of the Bandlimited Impulse Response of
the Shell with Stiffening Rings at Beam Aspect for the period (a) 30 sec < t < 1200
[xsec, (b) 100 [sec < t < 1200 psec, (c) 200 psec < t < 1200 psec
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Fig 4.4.2 Measured Gaussian Bandlimited Impulse Response of the Shell with Internal
Structure at Beam Aspect for a Frequency Range 2.75 < ka < 10.0 and a Radial Distance
of r=2m from the Target Center.
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Fig 4.4.4 Logarithm of the Magnitude of the Envelope of the (a) Low Frequency
Bandlimited Impulse Response ( 2.35 < ka < 5.64 ), (b) Mid Frequency Bandlimited
Impulse Response ( 4.70 < ka < 7.99 ), (c) High Frequency Bandlimited Impulse
Response ( 7.05 < ka <10.34 ), for Shell with Internal Structures at Beam Aspect.
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Fig 4.5.1 Measured Gaussian Bandlimited Impulse Response of the Layered Shell at
Beam Aspect for a Frequency Range 2.75 < ka < 10.0 and a Radial Distance of r-2m from
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Fig 4.5.5 Magnitude of the Spectral Function of the Bandlimited Impulse Response of the
Layered Shell at Beam Aspect for the period of (a) 30 gsec < t < 1200 gsec, (b) 100 gsec
< t < 1200 gsec, (c) 200 gsec < t < 1200 gsec
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5. Conclusion

The initial or geometric returns of the shells at beam aspect are -3 8.7dB re. r=2m

for the empty shell, -38.5dB for the ring stiffened shell, -36.7dB for the internalled shell

and -36.4dB for the layered shell, or about -37.6dB±+1. dB for all cases. These results are

quite different from the simplified lumped-system model analysis, and shows that the

distributed rings can not be modeled by a simple uniform extra mass on the shell. Because

of the small range (1. IdB ), the role of internal structures and other complexities in the

geometric return can be neglected.

The decay rates obtained from the beam aspect backscattering data are

summarized in Table 5.1. First and subsequent decay rates are calculated for each

bandwidth: total frequency band 12 - 42 kHz, low frequency band 10 - 24 kHz, mid

frequency band 20 - 34 kHz, and high frequency band 30 - 44 kHz. The time that

separates the first and subsequent decay rates are 350 Usec for the total frequency band,

450 gsec for the low frequency band, 350 psec for the mid frequency band and 250 gsec

for the high frequency band. These times are calculated from the round trip group delay

through the shortest bay of the shell by the flexural wave in that frequency band. In the

empty shell case, the round trip travel time by the flexural wave through the entire shell is

around 1500 .tsec, for which data are not available. Therefore, only the first decay rates

are tabulated for the empty shell.

For the total frequency band, the first decay rate for the empty shell is higher than

those for the shell with stiffening rings and the shell with internal structures only, and

about the same as for the layered shell. The first decay rates for the empty shell do not

change with frequency. The shell with stiffening rings and the shell with internal structures
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have similar first decay rates. The added internal structures provide energy storage and the

decay rates are less than the empty shell case, especially at low frequency where the decay

rates for both are much smaller than the empty shell case. The decay rates are larger at

high frequency. The layered shell is much like the empty shell, except that it has a little

larger first decay rate because of damping on the shell. And the layered shell has different

decay rates as a function of frequency.

Fig 5.1 compares the maxima from the envelope function for each shell. The empty

shell and the layered shell have very similar decay patterns. Also, the shell with stiffening

rings and the shell with internal structures have similar decay patterns. The influence of the

rings and internal structures are best seen after 350 gsec; for the ringed shell and

internalled shell, the decay is measureable to 1400 gsec, but for the layered shell it is quite

weak due to the layer.

The induced compressional waves, which circumnavigate the shell, are the major

source of the scattering process for the empty shell. From Fourier analysis, the empty shell

radiates elastically mostly through the first and second ring frequencies. The measured

major scattering frequencies are 16 kHz and 32 kHz. These are very close to the

calculated first and second ring frequencies, 15kHz and 30kHz. The shell with the

stiffening rings also has the same major elastic scattering frequencies as the empty shell.

But the analysis in the later time period shows that these frequencies are shifted to higher

frequencies by about 2kHz.

In all shells, the major source of the scattering is the induced compressional waves

on the shell for the early time. But, for all but the empty shell, the stiffening rings store

energy, and become a major source of scattering, and they radiate preferentially at the ring

frequencies. In the shell with internal structures(internalled and layered), the attachments

of the four rubber blocks influence radial ring motion to prefer the second ring frequency.
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But late in time(after 200 gsec), the internal structures of the internalled shell only

influence the scattering and there is no dominant scattering frequency. The internal

structures of the layered shell however do not interact much with the shell even at the later

time. Therefore, there is still preferential scattering through first and second ring

frequencies. The damping along the shell reduces energy storage in the rings and internal

structures, so they can not contibute as much to the radiation at a later time.
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Table 5.1 Decay Rates (dB/psec) from the Logarithm of the Magnitude of the Envelope
of the Gaussian Bandlimited Impulse Response. Where there are two entries, the top one
is for the initial decay, the bottom for the subsequent decay. ( Subsequent decay rates are
obtained after 350 psec for 12 - 42 kHz band, after 450 ,isec for 10-24 kHz band, after
350 gisec for 20 - 34 kHz and after 250 psec for 30 - 44 kHz.) Missing subsequent decay
rates are caused by concern for noise contamination.
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Bandpass Filter
12kHz- 10kHz- 20kHz- 30kHz-

42kHz 24kHz 34kHz 44kHz
Empty Shell 0.064 0.065 0.065 0.063

Shell with 0.051 0.030 0.056 0.085
Stiffened Rings 0.011 0.0032 0.0066 0.0114

Shell with 0.045 0.032 0.078 0.076
Internal Structures 0.0081 0.0011 0.0108 0.0087

Layered Shell 0.071 0.044 0.061 0.052
0.032
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Appendix A

Lumped model analysis for infinite cylinders

Radiation from an infinitely long cylinder has been studied by Morse[ 13]. The
equations which governs the radiation pressure field is the Helmholz Equation.

V 2p + k 2p = O (1)
Equation (1) in cylindrical coordinate is

Ir + I + = (2)

We can solve Equation (2) by using the method of seperation of variables. First,
we assume the solution of Equation (2) in the form

p = R(r)((O)Z(z)e - ' (3)

where R is a function of r alone, 1 is a function of 0 alone and Z is a function of z alone.
If (3) is introduced into equation (2), we get three ordinary differential equations

dZ + k2Z = (4)

d2 + m2 = (5)
do 2 i+d ( R (k2- (6)rdr dr - r

where m must be an integer for the solution to be continuous at b =0=27c and,

k2+ k2 = k.

Equation (4), (5) and (6) all have analytic solutions in the form of
Zkc _-iktzzZ e' e-iZ

P ao cos m, sin mq
R c Jm(krr),Nm(krr)

We assume the cylinder as infinitely long so that there is no z dependence in the
pressure field. Now we will only consider cos 0 as the angular dependence. Therefore,
k, = 0 and m=l. So, the pressure field solution is

p = Acos4J,(kr)+ iN(kr)]e'i
and when r-a

p = A cos 4J(ka) + iN(ka)]e'
= A cos OH,(ka)e't

where, H(ka) is the Hankel function of first kind.
From the pressure field at r=a, we get the reaction force per unit length F in the x

direction
2fx

F= Jpacos tdo = AacHl(ka)e '

0
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From the relationship between the particle velocity and pressure
1 >

iA cos4H 2(ka)- Ho(ka)]e'
2pc

the velocity in the x direction is

U= MiA [H2(ka)-H.(ka)]e
2p

and the impedence function is

F = i2pc H,(ka)
U Ho(ka)- H,(ka)

The impedence function can be rewritten as

Z = -ica,.d + Rrd

Mrad = pm2pI Im(f (ka))
ka

R,ad = apc Re(f(ka))

f(ka)= 2i H(ka)
Ho(ka)- H2(ka)

where M,ad is known as radiation mass or added mass and Rrad as radiation

damping.

The impedence functions for the three different shell models which shown in
Figure 3.2 are

Z,., =-i OM + RdZempy = i i + Rrad
M = rad +Mshell

Z,,,ring = -i + Rad

M = Mad + MS,h, + Mg

z - i [-M- i,t(Rad + R) + KsIl- o 2Ms-i ,R + K.]-[iR- Kj]2
Zmteal - o 2M -ilR 8 +Ks

and each K, and R, are given by

K,= 
= O

Ms

.1K,

The impedence functions are derived previously from the radiation pressure field.
From the ratio between radiation pressure field and incident pressure field, the impedence
function can be expressed as,
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Z = Zp (r =a)
pr(r = a)

and, the ratio of the incident pressure field to radiation pressure field can be
expressed as follows.

4 A,(ka)' (r = a)= 2 A J,(ka)
Pr A, H,(ka)

-2,,- pc )Ar 2{1 DOCo
A, 1- p c N +i (ka) N2(ka)- N.(ka)

pOco) k p J, (ka) (ka)
pc are the density and sound wave speed of the inside fluid and poCo are those of the

outside fluid.

From the impedence function Z, we can derive the frequency transfer function H.

H(ka) F (ka) Uad (ka)= R d (2a)
F,. Ff Z

Inverse Fourier Transform of the Gaussian filtered frequency transfer function
leads to the Gaussian Impulse response function.

G(ka)H(ka)= H(ka)

HI(ka) -*h (t)
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Appendix B

Natural modes of internal structures in the cylindrical shell

In this analysis, the delrin rod can have compressional and bending wave motions.
But the stainless steel mass only has the role of mass which can have rotational and
transitional inertia. For the coupling between the bending wave and longitudinal wave,
the coupling constant es is given as an eccentricity which has the dimension of length.
In this analysis 0.005m is taken for coupling constant. The variables and constants
used in the equations are shown in Figure B. 1.

y u (P

T D

II i l II ! i

xl x2 x3

G: Shear modulus (1.4e9 N/m)
E: Young's modulus (3.7e9 N/m)
p, : Density of the rod (1400 kg/m3 )

A: Cross-sectional area of the rod (5.067e-4 m2 )
I: Moment of inertia of the section (2.043e-8 m4 )

M: Mass of the stainless steel (0.068 kg)
Lm: Length of the stainless steel (0.0173 m)

J: Rotational inertia of the stainless steel (4.437e-6 kg m2 )

L1: Length of the first bay (0.2176 m)
L2: Length of the second bay (0.1727 m)
L3: Length of the third bay (0.1102 m)

Figure B. 1 Variables and Constants used in analysis.

Governing Equations

1 Timosenko Equation for bending motion [1]
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2 Equation for longitudinal motion [1]

pA =EA

Boundary Conditions for coupled motion

@ xl=0

cx

AG(joi -

dt2

d2 yl_

d t2
Lm td p,

2 a2

Lm )
2 T-I

+ - KAG q-
2K dx j

@xl=L1, x2=0~2
EA MO2

dX at2
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