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Abstract
This thesis compares methods of solving the operator staffing problem as relates to a.
real-world telephone service system. The system studied is the Cardmember Services
Department at First USA Bank. The operator staffing problem asks for he minimum
number of operators to be staffed as a function of time so that a certain level of
performance is maintained. The performance level can be measured by the probability
that a caller must wait in queue before speaking to an operator. I model part of the
network as an infinite capacity queue with a Poisson arrival process and exponentially
distributed service times. Both the arrival and service processes are time-dependent.
I show that approximating the queue using an infinite server model yields similar
results to approximating it as a stationary queue with additional variability in the
arrival process.
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Chapter 1

Introduction

The purpose of this thesis is to investigate the operator staffing problem as it relates

to a real-world telephone service system. Given a service center to which incoming

calls arrive according to a probabilistic arrival process, the operator staffing problem

asks for the minimum number of operators to be staffed so that a desired level of

service is achieved. This level of service can be characterized in several ways, one of

which is the percentage of calls to the service center that are delayed. It is generally

assumed that the staffing level must be determined based on forecasts of number of

calls and handling time, and not in response to real-time system measurements.

1.1 The Subject: First USA

The real-world system to be analyzed is the Cardmember Service center of First USA

Bank, a credit card company. The company receives account-related inquiries via its

toll free telephone numbers 24 hours a day. Its objective is to effectively service as

many calls as possible at lowest cost.

Salaries of the telephone operators (also called agents or representatives) consti-

tute a major cost, as well as communications services (toll-free numbers and telecom-

munications equipment). Salaries are a function of the number of operators staffed,
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while telephone bills are calculated according to the number and length of calls. The

equipment costs, which come from amortized expenses and maintenance fees, are rel-

atively fixed. Calls that arrive while all operators are busy wait in a first come, first

served queue. The time these calls spend in queue adds to the length of the calls.

The planning problem at First USA can be divided into four components: call

forecasting, operator staffing, operator scheduling and call routing. Call forecasting

is the problem of estimating the number of calls throughout the day as well as the

processing time requirements of each call. The operator staffing component uses

the forecasted data to determine the number of representatives to staff at each time

interval. Scheduling refers to actual allocation of operators under constraints like the

total number of representatives available and the maximum consecutive number of

hours an individual can be asked to work. The issue of call routing arises from the

fact that there are two separate locations that can handle the calls.

The scope of this research is limited to the second component: server staffing.

Scheduling and routing constraints are ignored, and it is assumed that forecasting

results are reasonably accurate.

1.2 Methodology

The steps taken in the course of this research are as follows:

1. First I observed First USA's system to determine its constraints and charac-

teristics. This step culminated in the development of a model that is specific

enough to represent the major characteristics of the system and general enough

to allow mathematical analysis.

2. The next step was to study various methods of solving this and related models.

By solving I mean developing formulas or approximations for the performance

parameters of the model. The set of parameters might include the probability

that a caller must wait before speaking to an operator (probability of delay), or

10



the probability density function (pdf) for the number of calls being handled at

any given time. These concepts are further explored in Chapter 2.

3. Third, I chose the methods that were most applicable to this problem and

determined how they could be applied to First USA's system. I used these

methods to calculate staffing levels for randomly chosen days for which forecast

data was available.

4. Finally, I compared the performances of the methods and developed recommen-

dations as to how First USA should go about solving this problem.

1.3 Overview of Thesis

The remainder of the thesis is structured as follows: Chapter 2 gives an explanation

of basic queuing theory concepts necessary for understanding this research. It also

discusses prior research related to the subject. Chapter 3 describes First USA's system

and presents a queueing model of the problem. Chapters 4 and 5 discuss two methods

for solving this and similar models. Finally, the conclusion restates the purpose of

this research, the methodology and findings.
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Chapter 2

Background and Literature

Review

In this Chapter I will acquaint the reader with some basic queueing theory that is

necessary for understanding this document, and discuss related prior research.

2.1 Introduction to Queueing Theory

Queueing theory is the study of systems in which a stream of customers or jobs

arrive to be serviced. The jobs may be people arriving to a gas station, automobiles

to be processed on an assembly line, or in this case telephone calls to be handled by

operators. In some systems there are many servers (the gas pumps, assembly stations

or operators) available to process the jobs, and in others there may be only one. Jobs

that arrive while all servers are busy may wait in a queue or be rejected.

Queueing systems are characterized by a string of characters of the following form:

G1/G 2 /s/k/Disp. Here G 1 represents the type of probabilistic process which governs

the arrival of customers and G2 represents the type of service time distribution. The

parameter s is the number of servers, and k - s is the size of the waiting area (k = oo

if the queue size is unlimited). A zero-capacity waiting area may be denoted by k = s

12



or k = O. Disp refers to the service discipline, or the rules used to determine the

order of service. This thesis will be concerned only with the first come first served

(FCFS) discipline, which means customers are accepted to service in the order that

they arrive. Other possible disciplines include last come first served (LCFS), where

the next customer to be serviced is the one that arrived most recently, and processor

sharing (PS), where servers divide their energy equally among the customers present.

For the purposes of this research, I will assume the service time distribution to be

identical for all servers. In cases where the network capacity and the service discipline

are omitted, an infinite capacity FCFS queue is implied.

The purpose of studying queueing systems is to determine formulas and approxi-

mations for such performance parameters as probability of delay, expected wait time

and blocking probability. The probability of delay is the probability that an arriving

customer has to wait in queue before being processed. The expected wait time is

the average amount of time that a customer has to wait in queue before beginning

service. When the queue size is finite, the blocking probability is the probability that

an arriving customer finds the system at full capacity and is rejected.

Fundamental to the study of queues in the notion of server utilization, which I

denote by p:

P = - (2.1)

The server utilization measures the long-term average percentage of time each

server is busy and is given by the ratio of the average arrival rate of customers (A)

and the average rate at which customers can be served (s/t). It has been shown

that larger systems can perform as well as smaller ones (with "good" performance

characterized by a low probability of delay) at higher utilization levels (see [7]). The

size of the system is characterized by the number of servers and the service rate.

For example, consider two systems with Poisson arrival processes and exponential

service time distributions (Table 2.1). A system with one server, a mean service

rate of 5 jobs per minute and a mean arrival rate of 3 jobs per minute will have a

13



Arrival Rate
Service Rate

# Servers
Delay Probability

Utilization

Example 2
3 jobs/min
5 jobs/min

1

0.6
0.6

23 jobs/min
10 jobs/min

3

0.6
0.77

Table 2.1: Comparison of utilization and performance levels for an M/M/1 queue
and an M/M/3 queue

steady state probability of delay of 0.6. A second system with 3 servers and a mean

service rate of 10 jobs per minute will have a 0.6 probability of delay in steady state

if the mean arrival rate is as much as 23.1 calls per minute. The server utilization in

the former case is 0.6, compared to 0.77 for the latter. In general queueing systems

require the utilization to be less than unity in order to be stable. If p > 1, jobs are

arriving faster than they can be processed, which means the number of customers

waiting in the system can only get infinitely larger as time goes on. When p = 1

the probabilistic nature of the arrival and service processes means that the number of

customers waiting in queue could be increasing or decreasing at any time. However, it

has infinite room to grow and only finite room in which to decrease (e.g. the number

of calls in queue can never go below zero). Therefore, the number of calls in queue in

the case of unit utilization is unbounded, meaning such a system is instable. For the

remainder of this thesis, the utilization will be assumed to be less than unity.

2.2 The M/M/1 Queue

Perhaps the simplest of all queueing systems is the M/M/1 queue, characterized by a

Poisson arrival process, an exponential service time distribution, and a single server

(Figure 2.2). The omission of the last two parameters implies that the queue has

infinite capacity and FCFS service discipline. The use of the letter "M" refers to the

memorylessness of the arrival and service distributions. This property implies that

14
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Poisson Amivals I Q
Queue Server (exponential)

Figure 2-1: The M/M/1 Queue

F2n i t 3

Figure 2-2: Marlkov chain governing an M/M/1 queue

the number of customers in the system (which includes customers in the queue as well

as those being serviced), denoted by N, can be represented by a Markov birth-death

chain as shown in Figure 2.2. The steady state probability density function of this

Markov Chain is as follows:

P(N = n) 1 + E p (l ). (2.2)

(Recall that p < 1.)

The probability of delay is simply the probability that an arriving customer sees

more than one customer already in the system. Because "Poisson arrivals see time

averages" (PASTA) (see [4]) the probability of delay is equal to the probability that

there are one or more customers in the system at any time:

Pdla = 1- P(N = 0) = p (2.3)

2.3 The M/M/s Queue

The M/M/s queue is a generalization of the M/M/1 queue where there may be

more than one server. As discussed earlier, this queue can offer the same level of

15
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Figure 2-3: Markov chain governing an M/M/s queue

performance as an M/M/1 queue at a higher level of utilization, however analysis is

more complicated because the death rate in the governing Markov birth-death chain

varies depending on the number of jobs in the system (see Figure 2.3): it is Ni if

N < s and s if N > s. The resulting steady state pdf for N is as follows for n < s:

P(N=n) = (sp)n(Q)
1 + Es-(sp)k(1) + (SP)STk=1 k! (S!(1-p))

and for n > s:

P(N = n) = (sp)n (Ss-n) 

1 + k=l (sp)k (k) + (sP)s (s!(l1-P))
(2.5)

The probability of delay is given by:

s-1
Pdelay = 1- P(N = k).

k=O
(2.6)

2.4 General Arrival and Service Processes

A general arrival and/or service distribution is denoted by the letter "G". Current

literature does not offer any closed-form solutions for the distributions of the perfor-

mance parameters of a G/G/s queue, as its interarrival and service time distribu-

tions are not made explicit by its description. The G/G/oo queue, however, is more

tractable because the effects of queueing are eliminated: customers arriving to the

infinite server queue go straight to service and are not affected by those already in

16

(2.4)



the system.

The G/G/oo queue is rarely observed in real life, however it is often used to

approximate the more common G/G/s queue. In cases where the finite server system

under consideration has a low level of utilization, this infinite server approximation

performs well because arriving customers are more likely to find a server free, thus

queueing is diminished.

In the G/G/oo queue, the steady state pdf of the number of customers in the

system approaches a normal distribution as the arrival rate increases with respect to

the service rate (see [7]):

lim P(N > s) = - s- Ps (2.7)

In Equation (2.7) z represents the heavy traffic peakedness, which is a measure of

congestion when the system is relatively full:

z = 1 + (c- 1) i[1 -G(t)] 2dt (2.8)

Heavy traffic peakedness will be discussed in further detail in Chapter 5. ~[x] is the

standard normal density function, defined by:

4[x] = P[A'(O, 1) < x] = d e-() 2 dx (2.9)

2.5 Nonstationary Queues

All of the queues discussed above are time-invariant, i.e. the parameters by which they

are described (arrival and service rates, number of servers, etc.) do not change with

time. In nonstationary queueing systems, some parameters may be functions of time.

This is the case at First USA, for example, where the call arrival rate at midday is

much larger than at 2:00am. Time dependence is typically denoted by a subscript 't' in

the system description (e.g. Mt/Gt/st). Nonstationary systems are extremely difficult

17



to analyze and offer no closed-form solutions such as Equations (2.2) through (2.9).

Indeed, they are the subject under investigation in this thesis.

18



Chapter 3

First USA

In this chapter I provide a description of the telephone service system to be studied,

develop the model to be used in this research, and discuss the assumptions and

simplifications of the model.

3.1 Overview

Figure 3-1 shows a diagram of First USA's Cardmember Services telephone network.

There are two locations where cardmember calls are handled: Wilmington, Delaware

and Austin, Texas. Each site is equipped with two Voice Response Units, or VRUs.

The VRUs are automated computer systems that answer calls and run prerecorded

scripts. Through touch-tone technology callers can communicate with the VRUs,

navigating through menus and retreiving information about their own accounts. Each

VRU can handle twelve calls at one time.

Calls to the Cardmember Services Department are routed to one of two sites (the

methodology behind the routing procedure is beyond the scope of this thesis). When

a call arrives at a site it is first directed to a VRU. There are some exceptions to

this rule, for example calls that require TTY (telephone typewriter) communication

for hearing-impaired cardmembers are routed directly to an agent. These and other

19
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direct to rep (DTR) calls make up approximately 6.5% of the total calls received.

If all 24 VRU ports at a site are busy with other calls, normal incoming calls wait

in the VRU queue. Each location has a FCFS VRU queue with a capacity of 30 calls.

Calls that arrive while the VRU queue is full go straight to the agent queue. This

phenomenon is referred to as VRU overflow. Calls that have been in the VRU queue

for more than 10 seconds also contribute to VRU overflow, but this is a very rare

occurrence. VRU overflow calls make up about 0.5% of the total call volume.

Callers that interact with the VRU choose from several menu options such as

"Balance Inquiry," "Filing a Dispute" and "Status of Application." Transferring to

a representative and repeating the menu are also options. Forty-four percent of the

callers that interact with the VRU eventually transfer to an agent.

There is a single FCFS agent queue of unlimited capacity that feeds operators at

both sites. When a call begins service (is connected to an agent), the agent creates

a database record of the conversation through a tracking system called First Assist.

First Assist also allows agents to retrieve and alter information about cardmembers'

accounts. The information is stored in a large database operated by First Data

Resources (FDR), a company located in Omaha, Nebraska. Most calls require that

information be transferred to and from FDR.

The administrators of the system keep constant vigil over its performance. Sta-

tistical information is gathered every half hour and compiled every day. It includes

the total number of calls received, the average time required to service a call and the

number of calls transferred from the VRU to the agent queue. The performance of

the system is measured by the service level (SL), the average speed of answer (ASA)

and the average handle time (AHT). The service level is the percentage of calls that

wait in the agent queue for less than 20 seconds. The average speed of answer is

the average amount of time a call waits in the agent queue. The average handle

time measures the average amount of time a caller spends talking to an agent. The

latter two performance measures can also be applied to the VRU, but unless this is

explicitly stated, they refer to the agent queue.

21



Table 3.1: Average call volumes to First USA for each day of the week

3.2 Characteristic Behavior

3.2.1 General Statistics

Table 3.1 shows average call volumes by day of the week. These values were computed

from the measured call volumes of approximately five weeks. Mondays are the busiest

days, while Saturday and Sunday contact rates are very low. Many calls result from

cardmembers receiving their account statements in the mail. Those receiving state-

ments on Friday and Saturday often wait until the next business day (Monday) to

call. Analysts forecast the number of calls per day based on past history and recent

relevant events (such as statement mailings). Historical forecast errors for the number

of calls per day range from 13% under actual rates to 20% above actual rates.

3.2.2 Agent Interval Statistics

Figure A-1 shows the typical trajectory of call arrival rates to the agent queue through-

out the day for each day of the week. The number of calls reaches its peak between

10:00am and 6:00pm and drops to under 1.5 calls/minute between 2:00am and 6:00am.

Figure A-2 compares average arrival rate trajectories for Wednesday, Saturday and

Sunday of a given week.

Interval statistics are also given for average service rates over the course of a day.

As can be seen in Figure A-1 the service rate is considerably less volatile than the

22

Day of Week Average # Calls
Monday 31077
Tuesday 24993

Wednesday 23075
Thursday 22681

Friday 21377
Saturday 11688
Sunday 6869



arrival rate. The arrival rate for a typical Wednesday may range from one call every

four minutes to as many as 32 calls per minute, while the service rate for the same

day may range from one call every two minutes to one call every four minutes.

3.2.3 VRU Interval Statistics

The call arrival rates to the VRU are approximately twice the rates to the agents,

The service process for the VRU is even more stable than the agent service process,

averaging to slightly under 1 call/minute (VRU AHT ~ 63 seconds).

3.2.4 Performance

Service Level. At First USA the service level is defined to be the percentage of

calls that wait in the agent queue for less than 20 seconds. One of the main goals

is to consistently perform at 90% service level, meaning approximately 10% of calls

that arrive to the gent queue wait 20 seconds or more. Figure A-3 shows service level

graphs on an interval basis for several randomly chosen days. The service level is

very inconsistent, often dipping below the target. Comparison with the call arrival

forecast performance (Figure A-4) for the same days shows that this inconsistency

in performance does not always coincide with ineffective forecasting, which suggests

that more efficient staffing would be helpful. One of the goals of this thesis is to offer

a method of staffing that will provide a more consistent level of service.

Average Speed of Answer. Another established measure of performance is the

average speed of answer, which is the mean wait time in the agent queue. First USA

compiles aggregate data on the average speed of answer daily. The average ASA

computed over a period of two weeks is 7.34 seconds. There is no established target

performance level with regard to ASA.
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Probability of Delay. While First USA does not actively use probability of delay

(equivalent to percentage of calls delayed in empirical terms) to measure the perfor-

mance of their system, it is mentioned here because it is a measure of quality from the

caller's perspective, much as is the service level. Also, calculations for probability of

delay are simpler than those for service level, which make it a more desirable measure

of performance from the researcher's point of view.

In order to get an idea of the target performance as measured by the probability

of delay, I approximated the trajectory of the planned probability of delay Pdelay

for several randomly chosen days (see Figure A-5). These values were calculated

using forecasted arrival rates, forecasted service rates, and "required agents", the

number of servers as determined by First USA (Their method of calculation will be

discussed in Section 3.4.). For each interval, the forecasted numbers were applied to

the M/M/s equations (Equations (2.4) and (2.6)). For each day shown, tPdelay reaches

an approximate peak of 0.25 between 4:00am and 6:00am and almost immediately

decreases to a minimum of 0.08 or 0.09. The curve is jagged throughout the rest of

the day, but the daily averages are consistently between 0.14 and 0.17. The overall

average planned probability of delay for the dates analyzed was 0.154.

3.3 Narrowing the Focus

Since calculating the required number of agents is the primary focus of this work,

I will limit the model to the diagram depicted in Figure 3-2, which consists solely

of the agent queue and the agents at both sites. Arrivals to this queue consist of

DTR and VRU overflow calls from both sites as well as calls transferred from the

VRUs. This modified arrival process can no longer be accurately modelled as having

a Poisson distribution. However, I assume it to be Poisson for simplicity and in the

absence of detailed information. Likewise, the service time distribution for agents will

be assumed exponential.
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3.4 Current Methodology

This section briefly discusses the methodology currently in use to determine staffing

levels at First USA. The administrators of the system use a software package called

Cybernetics, to which they input the forecast number of calls that the agents will

receive each day. Cybernetics determines how the call volume will be distributed over

the course of the day based on previous similar days. For example, the distribution of

calls for a Monday would be based on the distribution from the last three Mondays,

unless one of the four is a holiday.

The administrators were unable to explain the process Cybernetics uses to fore-

cast average handle time. Likewise, they were not familiar with the mathematical

models used to determine the appropriate server staffing level as a function of time.

Figure A-6 compares Cybernetics' required agent calculations with the results of sim-

ple intuitive calculations using the forecast arrival and service rates in the following

equation:

s(t)= A(t) (3.1)
/A(t)

The above equation is what might be employed if the arrival and service processes

were stationary and deterministic because only under these circumstances would a

utilization rate (p = A ) of 1 result in a stable system [7]. The ratio of servers

calculated by Cybernetics to servers calculated according to Equation (3.1) ranges

from 1.2 at peak arrival rates to 2.7 during the least busy times.

Table A.1 compares Cybernetics' required agents with staffing levels calculated

using Equations (2.4) through 2.6 using a target delay probability of 0.154 for a

randomly selected Monday. The values shown are very similar to the values derived

by Cybernetics, however there is no reason to believe, from this and similar tables,

that Cybernetics approximates First USA's system as a stationary M/M/s queue. The

method compared to Cybernetics here is called a pointwise stationary approximation

and will be discussed in detail in Chapter 4.
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Chapter 4

The JMMW Method

The purpose of this chapter is to outline the server staffing solution provided in the

paper by Jennings, Mandelbaum, Massey and Whitt [3], specifically as relates to First

USA's problem. Section 4.1 will present the solution itself, followed by a discussion

of its application to First USA's system in Section 4.2. Finally, the results of using

the method to calculate the appropriate number of servers as a function of time will

be presented in Section 4.3.

4.1 Methodology

The purpose of this model is to determine the appropriate number of servers as a

function of time in a nonstationary Gt/Gt/st queueing system. It requires as input

the mean and variance of the arrival process (A(t) and a2(t), respectively) and of the

service process ((t) and a2(t), respectively), as well as a target performance measure

such as probability of delay. The goal is to provide a near constant quality of service

over time. It assumes all servers are fed by a single infinite-capacity queue, and that

the service time pdf is the same for all servers. It also assumes that the number of

servers cannot be changed in real-time, in response to actual loads.

Jennings, Mandebaum, Massey and Whitt begin by discussing two simple methods
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of analyzing such a system: the pointwise stationary approximation (PSA) and the

simple stationary approximation (SSA). They then develop a method based on the

infinite server approximation, designed for systems in which PSA and SSA may not

adequately estimate the performance measures.

4.1.1 Pointwise Stationary Approximation

PSA approximates the performance measures of a queueing system at time t by

their steady state distributions given the instantaneous parameters at that time. For

example, using PSA one would estimate the probability of delay of an Mt/Mt/s

queueing system at time r to be the steady state probability of delay in a stationary

M/M/s queue with arrival rate (T) and service rate k(r); from Equations (2.4)

through (2.6) we have:

(sp(T))s s!(l-p(-r))

Pdelay -- 1+ ES-l(sp(T))k1 + (Sp()) s !(1-p( (4.1)
I k=1 S(-p(7-))

where P(r)= S(T)

PSA's quick reaction to fluctuating arrival rates makes it desirable when the arrival

rate changes slowly (or does not change at all) with respect to the mean service

time, so that at each point in time the system is close to steady state. When this

is not the case, PSA may underestimate the congestion of the system because the

system does not rest long enough to approach steady state. Therefore, approximations

based on steady state values may be inaccurate. Jennings, Mandelbaum, Massey and

Whitt [3] offer an example of such a system, where the arrival process is Poisson and

service times are exponentially distributed. Figure 4-1 shows the arrival rate function

A(t) = 30 + 20sin(5t) calls/min and the server staffing function that results from

applying Equation (4.1). Compared to the constant service rate ((t) = 1 for all t),

the arrival rate goes from 10 to 50 jobs per minute in less than 38 seconds. Using a

target delay probability of 0.13, the calculated number of servers oscillates between
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15 and 60 in the same amount of time. The resulting actual probability of delay

is unacceptable because it has a mean of 0.46 and oscillates nearly over the whole

interval between 0 and 1.

4.1.2 Simple Stationary Approximation

SSA also uses the corresponding stationary model to approximate performance mea-

sures. In this case, however, the parameters of the approximation are derived from

their long term average values in the system. Consider the previous example. SSA

would also approximate this Mt/M/st system using Equations (2.4) through (2.6),

this time using A = T fAT A(t)dt = 30 and p = 1. Here T represents the period of the

arrival rate function; if it were not periodic one would choose some suitably large T

so as to calculate the average value of A(t) over the length of time with which we are

concerned. The resulting s(t) would be a constant of 38 for the target delay prob-

ability of 0.13. This results in an actual delay probability as shown at the bottom

of Figure 4-2. The oversimplification of SSA causes Pdelay to fluctuate from 0.05 to

0.28, because it ignores the effects of changing offered load. This oversimplification

is desirable when the arrival rate oscillates rapidly (with a period considerably less

than the mean service time), but otherwise is not adequate.

The PSA method is effective for systems where the arrival rate does not change

significantly with respect to the service rate. The SSA method is useful for sys-

tems where the arrival rate fluctuates very rapidly with respect to the service rate.

However, neither method seems appropriate when the system's arrival rate changes

significantly but not extremely rapidly with respect to the service rate. Jennings,

Mandelbaum, Massey and Whitt propose a third method of analysis to be utilized in

such cases.
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Figure 4-2: SSA applied to an Mt/M/st queue with A(t) = 30 + 20 sin(5t), (t) = 1
and target Pdelay = 0.13 (example from Jennings, Mandelbaum, Massey and Whitt)
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4.1.3 Infinite Server Approximation-The JMMW Method

Throughout this paper, I will refer to the method proposed by Jennings, Mandelbaum,

Massey and Whitt [3] as the JMMW method. It is based on an infinite server normal

approximation, in which the authors suggest approximating a Gt/Gt/st queue by the

corresponding Gt/Gt/oo queue. The number of servers is then chosen so that

P(Q(t) > s(t)) < E (4.2)

and

P(Q(t) > s(t) - 1) > e (4.3)

for some target probability E, where Q(t) is the number of busy servers at time t in

the Gt/Gt/oo queue. In systems where the probability of delay is very small (e.g.

Pdelay < 0.01), is a good approximation for the actual probability of delay in the

Gt/Gt/st queue. For systems with larger probability of delay the effects of queuing

are nonnegligible. Thus a better approximation for Pdelay would be:

oo

Pdelay = e + E P(Q(t) = k) (4.4)
k=s(t)+l

Mathematical analysis has established that the distribution of Q(t) is approxi-

mately normal with mean and variance that I will denote by m(t) and v(t), respec-

tively (see [7]). Therefore, W t) is approximately normally distributed with zero

mean and unit variance, from which we obtain the following formula for the required

number of operators:

s(t) = [m(t) + /Vf ] (4.5)

where [x] denotes the smallest integer greater than x, and , satisfies

P(A/(0, 1) > ) = e. (4.6)
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Table 4.1: Example values of E and fi in an M/M/s system for various Pdelay S

In a stationary M/M/s model with s as specified in Equation (4.5), the asymptotic

probability of delay as the arrival rate increases is given in [3] as follows:

(4.7)
1

- 1 + x/2;;r(1 - )eiPl,

The dependence on A and is hidden in the relationship between X3 and . Example

values for and f3i for various delay probabilities are given in Table 4.1.

To make this model more effective, an adjustment is made to Equation (4.5):

s(t) = [m(t) + .5 + ,q l (4.8)

The additional 0.5 is to account for the discreteness of the final server staffing function,

i.e. to add a "buffer" server. This insures that systems for which the infinite server

approximation might suggest 3.011 servers (for example) do not get treated the same

as systems for which the calculated number of servers is 3.99].
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s - server queue oo - server queue Normal tail percentiles
P(s servers busy) = Pdelay P(s servers busy) = e A/

0.001 0.001 3.115
0.005 0.005 2.614
0.010 0.009 2.375
0.050 0.041 1.740
0.100 0.078 1.420
0.250 0.175 0.936
0.500 0.306 0.506
0.750 0.413 0.221
0.900 0.467 0.083
1.000 0.500 0.000



Approximating m(t)

In order to make use of Equation (4.8), the mean m(t) and variance v(t) of the number

of busy servers must be determined. If we assume an Mt/Mt/st system, the discussion

can be limited to m(t) because as Jennings, Mandelbaum, Massey and Whitt point

out, v(t) t m(t) in such a system.

The steady state mean number of busy servers in a Gt/Gt/oo queue is:

m(t) = (1 - Gu(t - u))A(u)du (4.9)

where G,(t) is the cumulative distribution of the service time of an arrival at time u

([6]). There are several approximations and assumptions we can employ to simplify

the expression for m(t). For example, if G,(t) is independent of u (i.e. the service

process is stationary) Equation (4.9) reduces to

m(t) = Ef A(u)du] = E[A(t - S,)]E[S] (4.10)

where S is the service time and Se is a service time stationary excess random variable:

P(Se < t) = f P(S > u)du (4.11)
E[S]

A logical approximation for systems where the service time changes slowly with

respect to arrival rate is shown in Equation (4.12):

m(t) = E[A(t - S(t))]E[S(t)] (4.12)

where the excess service time Se may be time-dependent. The above approximations

are based on the idea that the average number of busy servers at time t will be ap-

proximately the product of the expected instantaneous service time and the expected

arrival rate at a time t' prior to t. The time difference t - t' is such that the average

job arriving at time t - t' will still be in the system at time t. This results in what
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Jennings, Mandelbaum, Massey and Whitt refer to as "smoothing" of m(t), so that

it is dependent upon the arrival and service rates during the time immediately prior

to t.

Jennings, Mandelbaum, Massey and Whitt recognize that these approximations

are not useful for efficient computation, as they must be recomputed at each interval.

They note that assuming some special structure for the arrival rate function may

simplify computations. For example if the service time distribution is exponential,

the rate of change of the number of busy servers is the difference between the arrival

rate and the total rate at which customers are being served;

m'(t) = (t) - m(t)/l(t). (4.13)

In addition, the quadratic approximations in [1] are cited:

m(t) A(t - E[Se(t)]) * E[S(t)] + 0.5A"(t) * Var[Se(t)] * E[S(t)]. (4.14)

The reasoning behind this approximation is similar to that of Equation (4.12). How-

ever, it is simpler to calculate because there are no complicated functions of random

variables. Equation (4.14) introduces a time lag E[Se(t)] and a space shift (the A"

term). It can be further simplified to the pointwise stationary approximation (PSA2):

m(t) z A(t) * E[S(t)] (4.15)

This is the simplest form of Equation (4.10), in which each part of the integrand is

evaluated separately.

This approximation is not to be confused with the pointwise stationary approxi-

mation discussed in Section 4.1.1. Equation (4.15) provides an estimate of the mean

number of busy servers in the Gt/Gt/oo queue based on its instantaneous G/G/oo

counterpart. The Gt/Gt/oo queue is then used as an infinite server approximation to

the Gt/Gt/st queue. Thus, using the Mt/Mt/st queue as an example, the number of
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servers is calculated according to the following:

s(t) = (t) + 0. 5 + A -l, (4.16)

where given a target delay probability, /f is defined according to Equations (4.6)

and (4.7). By contrast, the use of PSA in Section 4.1.1 approximates the Gt/Gt/st

queue by its GIG/s counterpart, treating it as if it were in steady state at each

time interval. Using this for the Mt/Mt/st queue, one would choose the appropriate

number of servers so that Equation (4.1), with Pdelay set to a target delay probability,

is satisfied. Figure 4-3 shows a graphical comparison between the two methods.
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4.2 Application

In this section I will describe the application of the JMMW method to First USA's

system. The specific assumptions and approximations will be stated, as well as the

reasoning behind them.

I model the system at hand as an Mt/Mt/st queue, where all servers are fed

from the same queue. I do not expect the PSA and SSA methods of analysis to be

effective in this problem because in a typical day, the arrival rate may change from

0.60 calls/minute ( 1 call every 2 minutes) to 36 calls/minute within 6 hours, while

the service rate may change from 6.6 calls/minute to 7.2 calls/minute within the same

time frame. The relative change in arrival rate seems too small to be supported by

PSA and too large to be supported by SSA. Since my model for First USA includes

a Poisson arrival process and exponentially distributed service times, I will assume

v(t) = m(t). For simplicity I also start with the PSA2 approximation for m(t). Thus,

the combined formula for s(t) according to my application of the JMMW method is

as described in Equation (4.16), where ti is calculated from Equations (4.6) and (4.7)

given a target delay probability. These key equations are reproduced below:

s(t) = )(t) + 0.5 + A t) (4.17)

P(A/(O, 1) > ,h) = E (4.18)

1
Pdelay 1 + s (1 - ) (4.19)

1 + V2-3T,(1 - e)e 2

For First USA, the target probability of delay would likely range from 0.05 to

0.25, generating values of 0/ from 1.740 to 0.936.

37



4.3 Results

Appendix B shows the results of applying the above formulas to the forecast data

of two randomly chosen days at First USA. I used a target Pdelay of 0.154; this is

the average planned Pdelay over several days surrounding the example dates according

to the Cybernetics solutions. The results are very close to the server staffing levels

computed by Cybernetics, and nearly identical to the results of using the pointwise

stationary approximation (see Tables B.2 and A.1). These traits were consistent

throughout all the days for which server staffing levels were calculated.

The similarity with Cybernetics' results is of interest because the planned Pdelay

(calculated from Cybernetics' solutions and forecasted arrival and service rates) over

the course of a day ranges from 0.05 to 0.25, while the target Pdelay for the JMMW

method was a constant 0.154. This demonstrates that the server staffing solution is

insensitive to small changes in target Pdelay, because the number of operators staffed

must take on discrete integer values. The effect of this quantization is more noticeable

where the system (number of servers employed) is smaller.

The similarity between results using this application of the JMMW method and

those using PSA suggest that a pointwise stationary approximation of an infinite-

server approximation of the Mt/Mt/st queue does not perform much differently from

a pointwise approximation of the queue by its MIMIs counterpart. For general

interarrival and service time distributions the results may not be so similar; this is a

topic for possible future research.
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Chapter 5

The SPA Method

The Stationary Process Approximation (SPA) method developed by Massey and

Whitt in [5] is a method of analyzing nonstationary Erlang loss models to measure

various aspects such as blocking probability and congestion. In this chapter I will

present the method and explain how it can be used to solve First USA's problem.

The solution itself will be described in Section 5.1. Section 5.2 will discuss the as-

sumptions and approximations necessary for its application to First USA's problem,

and the results of such application will be presented in Section 5.3.

5.1 Methodology

The goal of the SPA method is to properly characterize a loss system so as to ef-

fectively approximate its average performance measures over discrete intervals of

time. Specifically, Massey and Whitt consider the average blocking probability in

the Mt/G/stI/O queue. Recall that this queue has a nonstationary Poisson arrival

process, a general stationary service time distribution, st servers and no extra wait-

ing room. The findings offered in [5] can be extended to systems with general arrival

rates and nonzero capacity queues.

A natural approach to approximating the Mt/G/st/O system would be to analyze
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it over each time interval as if it were stationary. For example, over the interval (0, T],

one would estimate the blocking probability by calculating it for a stationary M/G/S

model with arrival rate A and number of servers s equal to their time-averaged values

over the given interval:

-- 1 A(u)du (5.1)

-= T T s(U)du (5.2)

While simple and straightforward, this method ignores the variability caused by

time-dependence, thus underestimating the blocking probability. Massey and Whitt

suggest using a G/G/s/O model instead of the stationary M/G/s/O model mentioned

above. The service process and the number of servers would remain the same, but

extra stochastic variablility would be introduced into the arrival process. The extra

variability is based on time fluctuations in the arrival rate and is characterized by the

heavy traffic peakedness (z). The peakedness of a system is a means of measuring the

system's congestion. It is formally defined as the ratio of the variance to the mean

of the steady state number of customers in the associated infinite server model. In

[5], Whitt and Massey give the the limiting behavior of the peakedness as the arrival

rate grows with respect to the service rate as follows.

z = 1 + p(c2 - 1) [1- G(t)]2dt (5.3)

The heavy traffic peakedness (z) is a function of the service rate (), the cumulative

distribution function (cdf) of the service time (G(t)), and the squared coefficient of

variation c of the arrival process:

C2= limVarA(t)Iftesrvcaie = lim tethingrln a(5.4)
t-+ooE

2 [A(t)]

If the service times are exponentially distributed, then the integral in Equa-
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Figure 5-1: Periodic extension of the arrival rate function over the interval (0, T]

tion (5.3) reduces to , and the heavy traffic peakedness is:

z = 1 + 2 (5.5)
2

If the interarrival times were also exponentially distributed, c (and therefore z) would

reduce to unity.

The service rate, service time cdf and squared coefficient of variation are needed

to determine the heavy traffic peakedness. It is assumed that the first two are known;

the latter can be found as follows. Modify the arrival process by forcing the arrival

rate function to repeat itself periodically over intervals of length T. This is depicted in

Figure 5-1. (I am assuming that the interval that we are working with is from time 0

to time T.) Create a stationary point process N(t) where each increment corresponds

to an event in the altered arrival process. The index of dispersion for counts is the

ratio of the variance and the expected value of N(t):

VarN(t) = E[N(t)2 - (t) 2 (5.6)

The second moment of N(t) can be written as:

E[N(t)2] = T [At(s) + At(s) 2]ds (5.7)
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where for all (O < s < T- t),

s+t
At(s) = (u)du (5.8)

and for all (T - t < s < T),

T s-T+t
At(s) = A()d + A(u)du. (5.9)

Massey and Whitt suggest approximating the squared coefficient of variation by

I(E[S]), since the mean service time indicates the time scale of interest. If the arrival

rate is assumed to be linear over the interval under consideration, Equations (5.6)

through (5.9) eventually result in At(s) as follows:

At(s) (a + rs)t V(0 < s T) (5.10)

and after much calculation,

c2 1 r2T 2E(S)
ca I[E(S)] 6 1 rT) (5.11)

It remains to incorporate the extra variability into the blocking probability calcu-

lations. The Hayward approximation suggests using the Erlang blocking formula for

M/M/s/O systems, replacing the values of § and { with - and , respectively. The

Erlang Blocking formula is as follows:

Pblocking = () (8) (5.12)

5.2 Application

In this section I will discuss the assumptions and approximations necessary to apply

the SPA method to First USA's system. First, the approximation must be extended
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to include delay models. As discussed in Chapter 2, the probability of delay in a

G/G/s system can be approximated by an infinite server normal approximation [7]:

Pdelay 4 1 - -[ P] (5.13)

Recall that p = s. I use Equation (5.13) to numerically determine the number

of servers as a function of time for a given target Pdelay. The value of A for any given

interval will be the average arrival rate over that interval, and p will be the average

service time over that interval. The natural interval length to use is 30 minutes,

since most of First USA's statistical data is available in half-hour intervals. This is

consistent with the provisions of the work by Massey and Whitt [5], which requires

the size of the interval to be between six and twenty times the average service length.

At First USA, the average service time is approximately three minutes, so the ratio

of interval length to average service time is approximately ten.

I also assume for this method that the arrival rate is piecewise linear, instead of

piecewise constant, as is assumed at First USA. The reasoning behind this is that

perhaps an arrival rate function which is everywhere connected can more accurately

model the real system. The SPA method easily accomodates piecewise linear arrival

rate functions, as seen in Section 5.1. In order to derive a piecewise linear function

from the discrete arrival rates measured at at First USA, I assumed the arrival rate

function is everywhere connected and that it is constant during the interval where

the average arrival rate is at a minumum (this would be approximately 4:00am each

day). I then extrapolated backwards from that time to the beginning of the day

and forward to the end of the day, using the average arrival rates as midpoints to

determine a linear function for each interval. To illustrate, Figure 5-2 shows the

average forecast arrival rates and the resulting extrapolated arrival rate function for

a sample day. The function used was not as "smooth" as I had expected, however it

was not volatile enough to significantly affect the heavy traffic peakedness, as results

will show.
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Figure 5-2: Extrapolated arrival rate function for use with the SPA method.

5.3 Results

Equation (5.13) can be used to numerically determine the optimal number of servers

as a function of time, given a target Pdelay. Refer to Appendix C for server calculations

for two randomly chosen days, using 0.154 as a target delay probability. These staffing

levels are generally 1 to 2 servers less than those levels calculated using the JMMW

method. At first glance, this seems to be a rather surprising fact since both JMMW

calculations and SPA calculations are carried out on an interval basis using an infininte

server normal approximation. In fact, SPA is designed to assume additional variability

in the arrival process, which means more servers would be needed to attain the same

delay probability. There are several reasons why this does not hold true here.

First, as pertains to this application, the additional variability introduced into the

arrival process is negligible. This fact can be seen most clearly in the calculated values

for z, the heavy traffic peakedness. For most intervals, 1.01 < z < 1.05. This shows
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numerical proof that little variability is gained by assuming A(t) to be linear instead of

constant over each interval even though the contrived arrival rate function was more

volatile than expected. The result can be attributed to the relative shortness of the

intervals within the possible range of lengths, i.e. The arrival rate changes sufficiently

slowly that assuming it to be piecewise constant over each of these intervals is not

unreasonable.

Another reason why the SPA method generated lower staffing levels is the fact that

the JMMW method is not based entirely on the infinite server normal approximation.

Equation (4.8) includes an extra 0.5 as a "buffer" server. In addition, the SPA method

does not assume as much congestion in the system because the original derivation

assumes the service process to be stationary. This assumption is not necessary for the

JMMW method, which would therefore generate higher staffing levels to accomodate

such congestion.
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Chapter 6

Conclusion

The purpose of this work was to compare two different methods of analyzing a real-

word telephone service system, namely that of First USA Bank. It was necessary

to determine if and how each method could be used to solve the operator staffing

problem as it relates to First USA.

It was assumed that First USA's agent queue could be approximated using a

nonstationary delay model with Poisson arrivals, exponential service times, and a

queue of infinite capacity. For the SPA model we also assumed the service time

distribution was stationary and that the arrival rate was piecewise linear. For the

JMMW method the arrival rate was considered to be piecewise constant instead.

performance level.

Calculations showed that my application of the JMMW method results in staffing

levels very similar to those calculated by Cybernetics, and almost identical to those

calculated using the pointwise stationary approximation. The SPA method results

in slightly lower staffing levels. The similarity between the results of these methods

suggests that for a nonstationary Mt/MtIst queue any of these aproximations will

perform equally well. The proven inconsistency of Cybernetics' performance, however,

suggests that there is indeed room for improvement. It may be more accurate to model

First USA's agent queue as a Gt/Mt/st system, or as a Gt/Gt/st system. As discussed
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earlier, literature does not yet provide any exact solutions for these systems. One

possibility may be to apply the JMMW method without assuming equality between

the mean m(t) and variance v(t) of the average number of busy servers. One could

also choose a different approximation for m(t). As stated earlier, this is a possible

subject for further research.
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Appendix

Analysis of First USA's System
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Figure A-1: Average trajectories of call arrival and service rates for the agent queue
(calls/min)
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Figure A-3: Trajectory of the Service Level for several randomly selected days (target
= 90%)
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Figure A-4: Call arrival forecast performance, measured by the ratio of forecast to
actual arrival rate (target = 1)
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Figure A-5: Trajectory of "planned" probability of delay according to computations
by Cybernetics.
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Cybernetias X/M/
INTVL Req AQent APDx'n

0 19 19

30 16 16

100 14 14

130 11 11

200 9 9

230 7 7

300 6 6

330 5 5

400 5 5

430 4 4

500 4 4

530 4 4

600 6 6

630 9 9

700 15 15
730 22 22

800 45 46

830 69 71

900 112 114
930 141 141

1000 162 161
1030 J 176 174
1100 181 178
1130 184 182
1200 192 189

1230 198 195
1300 195 192
1330 198 195
1400 201 197
1430 204 200
1500 198 194
1530 198 195
1600 204 200
1630 210 206
1700 195 191
1730 181 178
1800 168 166
1830 148 148
1900 121 122
1930 111 112
2000 108 109
2030 101 103
2100 89 91

2130 80 82

2200 68 70

2230 55 56

2300 46 47

2330 38 39

Table A.1: Comparison of Cybernetics required agents with number of servers calcu-
lated as if the system were MIMIs. (Monday, 6/13)
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Appendix B

Results Using the JMMW

Method

This appendix contains results of the application of the JMMW method to the data

from two randomly chosen days at First USA. It is referred to in Chapter 4.
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Cynerbetics JMW

INTVL Req Agents Req Agents

0 13 13

30 15 15

100 12 12

130 10 10

200 9 9

230 7 7
300 5 5

330 5 5

400 5 4
430 i 4 4

500 4 4

530 4 4

600 5 4

630 5 5

700 6 6

730 8 8

800 11 11

830 16 16

900 21 21

930 26 26

1000 30 31

1030 32 32

1100 35 36

1130 35 35
1200 35 36

1230 39 F 40

1300 38 38

1330 34 35

1400 35 i 36

1430 35 36

1500 34 34
1530 33 33

1600 33 33

1630 32 33

1700 31 31
1730 31 31
1800 30 30
1830 28 29
1900 29 29

1930 29 29

2000 34 35

2030. 33 34

2100 33 34
2130 33 34
2200 32 32
2230 29 30

2300 t 26 27

2330 13 1 13

Table B.1: Server staffing levels calculated
6/12/94

using the JMMW Method for Sunday,
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iCybernetics! JMMW

INTVL Req Agents Req Agents

0 19 19

30 16 i 16

100 14 14

130 11 11

200 9 9

230 7 7

300 6 6

330 5 I 5

400 5 1 5

430 4 4

500 4 4
530 4 4

600 6 6

630 9 1 9

700 15 15

730 22 i 22

800 I 45 46

830 69 71

900 112 114

930 141 141

1000 162 161

1030 176 174
1100 181 178

1130 184 182
1200 j 192 189

1230 198 195
1300 195 192

1330 198 195

1400 201 197
1430 204 200
1500 198 194
1530 198 195

1600 204 200
1630 210 206
1700 195 191

1730 181 178
1800 168 167
1830 148 148

1900 121 122

1930 111 112

2000 108 109
2030 I01 103

2100 89 91

2130 80 82

2200 68 70

2230 55 56
2300 J 46 47

2330 38 39

Table B.2: Server staffing
6/13/94

levels calculated using the JMMW Method for Monday,
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Appendix C

Results Using the SPA Method

This appendix contains results of the application of the SPA method to the data from

three randomly chosen days at First USA. It is referred to in Chapters 5 and 6.
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Cynerbetics SPA

INTVL IReq Agents Reg Agents
0 13 12

30 15 14

100 12 11

130 10 9

200 9 8

230 7 6

300 5 5

330 5 4

400 5 4

430 4 4

500 4 3

530 4 3

600 5 4

630 1 5 4

700 6 5

730 8 ! 8
800 11 10

830 16 15

900 ! 21 20

930 _ 26 25

1000 30 29

1030 32 j 31

1100 35 34

1130 35 34

1200 35 35

1230 39 38

1300 38 37

1330 34 1 33

1400 35 35

1430 35 34

1500 34 33

1530 33 32

1600 33 32

1630 32 32

1700 31 30

1730 31 30

1800 30 29

1830 28 27

1900 29 28

1930 29 28

2000 34 35

2030 33 34

2100 33 34

2130 33 34

2200 32 32

2230 j 29 30

2300 26 26

2330 13 17

Table C.1: Server staffing levels calculated using the SPA Method for Sunday, 6/12/94
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Cybernetics SPA

INTVL Req Agents Req Agents

0 19 18

30 16 15

100 14 13

130 11 10

200 9 8

230 7 6

300 6 5

330 5 4

400 5 4

430 4 3

500 4 3

530 4 4

600 6 5

630 9 8

700 15 14

730 22 21

800 45 48

830 69 69

900 112 119

930 141 139

1000 162 162

1030 176 1 72
1100 181 179

1130 184 182

1200 192 190

1230 198 195

1300 195 192

1330 198 196
1400 201 199

1430 204 202
1500 198 196

1530 198 195

1600 i 204 199

1630 210 ' 204
1700 195 188
1730 181 177

1800 168 164

1830 i 148 147

1900 i 121 119

1930 i 111 110

2000 i 108 107

2030 101 101

2100 89 90

2130 ! 80 80

2200 68 70

2230 j 55 55

2300 46 46

2330 38 37

Table C.2: Server staffing
6/13/94

levels calculated using the SPA Method for Monday,

61



Bibliography

[1] S. Eick, W. Massey, and W. Whitt. The physics of the mt/g/oo queue. Operations

Research, 41, 1993.

[2] W.K. Grassmann. Finding the right number of servers in real-world queuing

systems. Interfaces, 18(2):94-104, 1988.

[3] 0. Jennings, A. Mandelbaum, W. Massey, and W. Whitt. Server staffing to meet

nonstationary demand. Technical report, AT&T Bell Laboratories, 1994.

[4] Leonard Kleinrock. Queuing Systems, volume 1. John Wiley and Sons, Inc., New

York, 1975.

[5] W. Massey and W. Whitt. Stationary process approximations for the nonstation-

ary erlang loss model. Technical report, AT&T Bell Laboratories, 1992.

[6] W. Massey and W. Whitt. Networks of infinite-server queues with nonstationary

poisson input. Queueing Systems, 13, 1993.

[7] W. Whitt. Understanding the efficiency of multi-server service systems. Manage-

ment Science, 38, 1992.

62


