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Abstract

Energy dissipation in modern microprocessors is rapidly becoming a primary design con-
cern. Microprocessors containing a few million transistors and dissipating tens of watts are
commonplace, limiting their usefulness in portable applications and making heat removal in
dense structures difficult. An expanding market for portable devices and increasing device
density will continue to encourage low energy design.

Computing engines can be designed that do not require energy dissipation, but only if the
computation is logically reversible, a radical departure from both traditional logic design
and traditional low energy design techniques. This thesis presents Pendulum, a logically
reversible computer architecture that may operate without dissipating energy.

The novel aspect of the Pendulum reversible processor is that all computation is reversible.
The processor saves enough information to invert every operation. Programs may be exe-
cuted in reverse. At any point in the computation the processor direction may be reversed
and any intermediate results will be "uncomputed."

Thesis Supervisor: Thomas F. Knight, Jr.
Title: Principal Research Scientist, MIT AI Lab
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Chapter 1

Introduction

Energy dissipation in modern microprocessors is rapidly becoming a primary design con-

cern. Microprocessors containing a few million transistors and dissipating tens of watts are

commonplace, limiting their usefulness in portable applications and making heat removal in

dense structures difficult. An expanding market for portable devices and increasing device

density will continue to encourage low energy design.

Computing engines can be designed that do not require energy dissipation [Ben73, Lan82],

but only if the computation is logically reversible. This approach is a radical departure

from both traditional logic design and traditional low energy design techniques. This thesis

presents Pendulum, a logically reversible computer architecture that may operate without

dissipating energy.

For the computation to be physically reversible, and therefore not dissipate any energy, the

computing engine must be logically reversible and implemented in a physically reversible

technology [Ben82]. Any system that transitions from a state A to a state B is physically

reversible if the state B uniquely determines state A, implying that the transition was

logically reversible, and the energy is available to make the reverse transition, implying

that the transition was made in a physically reversible technology.
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Logical reversibility imposes architectural constraints not met by conventional processors.

A conventional computing engine performs irreversible computations. These computations

destroy information, and the second law of thermodynamics requires a minimum energy

dissipation when a bit of information is discarded [Lan86]. The novel aspect of the Pendu-

lum reversible processor is that all computation is reversible. The processor saves enough

information to invert every operation. Programs may be executed in reverse. At any point

in the computation the processor direction may be reversed and any intermediate results

will be "uncomputed."

Previous work concerning reversible computer architecture has been either impractical or

incomplete. Ressler's work [Res79, Res81] is significant in that it is the earliest work which

is directly relevant to architecting fully reversible computers, but it is flawed in its exclusive

use of the Fredkin [FT82] gate and its neglect of key control flow issues. Hall's work [Hal94],

while correct in many high level issues, is incomplete, suggesting no mapping between

instruction set architecture (ISA) and register transfer level (RTL) implementation. Indeed,

Hall bases his reversible instruction set on the PDP-10, an ISA that presents a difficult

mapping to an RTL datapath even for the original irreversible version.

This thesis discusses a complete instruction set and RTL datapath design for a reversible

processor architecture. The ISA is based on a modern RISC processor, the MIPS R2000,

and the datapath design is suitable for implementation in a VLSI technology [You94]. High

level hardware description language simulations have demonstrated the functionality of the

design and its ability to execute an instruction stream forward and backward.

Chapter 2 briefly describes background and previous work relating to reversible computing.

Chapter 3 deals with the general issues and engineering tradeoffs that arise in the design

of a reversible architecture and RTL implementation. Chapter 4 then describes the specific

decisions and rationale of the Pendulum processor design. Future work is presented in

Chapter 5 and Chapter 6 concludes.
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Chapter 2

Background and Previous Work

Early computer researchers were interested in the physical limits of computing operations.

This chapter considers research into the physical limits of energy dissipation during com-

putation, how this research led to consideration of reversible computing systems, and what

work has been done towards building a practical reversible computing engine.

This chapter examines reversible computing from the bottom up: first physics and ther-

modynamics, then reversible circuit and other implementation technologies, and finally,

reversible computer architecture.

2.1 Physics

Maxwell's demon and Szilard's analysis [Szi29] of the demon first suggested the connec-

tion between a single degree of freedom (one bit) and a minimum quantity of entropy. In

the 1950s, this connection had been popularly interpreted to mean that computation must

dissipate a corresponding minimum amount of energy during every elemental act of com-

putation. Landauer [Lan61] later recognized that energy dissipation is only unavoidable

when information is destroyed. Bennett [Ben73] and Fredkin [FT78] first realized that a
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reversible computation', in which no information is destroyed, may dissipate arbitrarily

small amounts of energy.

Maxwell's Demon The limit of energy dissipation during computation is fundamentally

based in the apparent thermodynamic paradox of Maxwell's demon. Maxwell described the

system in [Max75]:

For we have seen that the molecules in a vessel full of air at uniform temperature

are moving with velocities by no means uniform, though the mean velocity of

any great number of them, arbitrarily selected, is almost exactly uniform. Now

let us suppose that such a vessel is divided into two portions, A and B, by

a division in which there is a small hole, and that a being, who can see the

individual molecules, opens and closes this hole, so as to allow only the swifter

molecules to pass from A to B, and only the slower ones to pass from B to A.

He will thus, without expenditure of work, raise the temperature of B and lower

that of A, in contradiction to the second law of thermodynamics.

The demon has been depicted in various ways. Some show the demon inside the chamber

with the gas, some have him outside. Any analysis must be sure to include the thermody-

namic effects within the demon himself in the energy and entropy accounting. Some images

give the demon a light source to aid in measurement of the particle's speed, indicating the

tack taken by some authors to explain the paradox of attributing the entropy increase to

dissipation during measurement.

Szilard, nearly 55 years after Maxwell first postulated the demon, attempted to resolve

the paradox by arguing that the process of measurement required dissipation, although he

did notice an entropy generation of k In 2 when the demon was reset. But it was not until

much later [Lan6l] that researchers firmly placed the source of dissipation in the erasure

of information. When the demon measures a particle, he must set a bit indicating the

speed of the particle. The hole between the portions of the vessel is controlled by the

1Landauer at first believed that logical irreversibility was required for useful computation, and therefore
that reversible computation was impossible, but Bennett convincingly proved otherwise.
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state of this bit. Once a particle has been directed to the correct portion, the demon must

reset the bit in preparation for the next measurement value. This resetting is the logically

irreversible event which saves the second law. Measurement may be performed reversibly;

information destruction, rather than information acquisition, has a thermodynamic cost.

In any irreversible process, entropy must increase. The required entropy increase during

irreversible bit erasure is a function of the process by which it is done, the time taken for

erasure, and the temperature of the system, but the increase must be at least zero. However,

the required energy dissipation must be at least kTln 2.

Irreversible Bit Erasure As an example, consider a box, shown in Figure 2-1, with a

stretchable partition that divides the box into two halves. In step A, a gas is on one side

or the other of the partition. Its entropy is k In 2 because it can be in two possible states.

Then, a piston is slowly pushed from one side into the box and the gas and partition are

compressed isothermally (the gas is in contact with a heat reservoir) onto one side, shown

in step B. The process is still reversible: any work done by the piston on the the gas and

the partition may be recovered by recovering the heat from the reservoir and letting the gas

and partition relax back to their original position. In step C the bit has been irreversibly

erased. The partition has been removed and reinserted next to the piston, ensuring that the

gas is on the right side of the partition. The entropy of the box part of the system decreases

to S = k ln 1 = 0 since the system only has one possible state. To balance this decrease

in entropy, the partition must dissipate at least kTln 2 of energy when it is removed, since

AE = TAS. Of course, the total entropy of the system has not decreased; it has increased

by some amount dependent on the losses due to the details of the process.

In step D the piston has been removed and the particle can only be in one state. The

net entropy of the system has increased only by some process dependent amount, but the

process requires an energy dissipation of at least kT ln 2.

14
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2.2 Implementation Technology

For a computing system to be physically reversible, it must both avoid logically irreversible

operations and be implemented in a physically reversible technology. This section discusses

these physically reversible technologies; Section 2.3 deals with architectures which avoid

logical irreversibilities.

2.2.1 Mechanical Reversible Logic

Once bit erasure was identified as a source of unavoidable energy dissipation, researchers

investigated a number of theoretical and practical schemes to implement a reversible com-

puting technology. The first to be proposed were a series of hypothetical mechanical con-

structions. Fredkin [FT82] proposed the billiard ball model which uses collisions of hard

spheres and mirrors to perform reversible computations. Figure 2-2 shows a crossover gate

and Feynman's two input, three output universal logic gate. Both gates are reversible and

non-dissipative when isolated from imperfections. Fredkin demonstrated that such collisions

are capable of simulating any logic function, but they required perfect spheres and isolation

from friction, thermal noise, and other imperfections.

In this idealized environment, the presence of a ball represents (by convention) a one, the

absence of a ball, a zero. The balls move in straight lines with a constant velocity and

experience perfectly elastic collisions with other balls and the mirrors. All the balls are given

an initial velocity with equal components in the X and Y directions and start at integral

coordinates on a Cartesian plane. As the system evolves, all balls will move onto integral

coordinates simultaneously. Combinations of these gates can perform any logic function,

including memory and feedback, and are reversible.

Various other computing structures have been proposed. Brownian computers allow the

trajectory of component particles to follow a random walk through the device, the speed

of computation (and dissipation) being proportional to the gradient of an applied force.

Genetic material such as DNA and RNA are cited [Ben73, Ben82] as "nature's closest ap-
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Figure 2-2: Billiard Ball Model Gates

proach to a Brownian computer" with a dissipation of between 20 and 100 kT per operation

(at the cost of computation speed and random access). Bennett also describes a "baroque"

reversible clockwork Turing machine which does not require the ballistic model's isolation

from noise.

2.2.2 Circuits

Recently, researchers have discovered a number of energy recovering integrated circuit tech-

niques that exploit reversibility to reduce power consumption in logic circuits. The emer-

gence of practical reversible implementation techniques provided much of the motivation

for this thesis.

Split-level Charge Recovery Logic The most highly developed energy recovering re-

versible logic family is probably the Split-level Charge Recovery Logic (SCRL) of Younis and

Knight [YK93, YK94]. Figure 2-3, taken from [You94], shows an SCRL inverter. Instead

of constant voltage rails, SCRL uses a series of clock signals which gradually swing from

a midpoint voltage to either a high or low voltage. Charge that is stored on the gates of

CMOS gates is recovered and the energy stored in the electric field of the circuit capacitance

17
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Figure 2-3: Split-level Charge Recovery Logic Inverter

is transfered into the magnetic field of an external inductor.

The energy dissipated per operation in SCRL falls linearly as the computation delay in-

creases, as opposed to conventional CMOS circuits which have a relatively constant energy

dissipation per operation. Energy dissipation in SCRL circuits falls to zero as delay increases

to infinity.

The ability of SCRL circuits to recover charge requires that computations be performed

reversibly. Individual devices are restricted from turning on if a potential exists across

them, and voltage transitions are made to happen in a controlled manner by swinging the

supply rails slowly. It is clear from Figure 2-3 that if the input value is steady at a high

or low voltage value, when the power supply rails, I1 and /1, swing from the voltage

midpoint to the high and low voltage values respectively, the internal node will follow the

correct rail to the proper logic level. The value of the input is computed from the output

through another inverter to non-dissipatively clear the input value by bringing the rails

back to the midpoint value. Younis fabricated an 8 x 8 reversible multiplier array using

SCRL gates in a 2 micron technology. He measured an energy savings of over 99% of the

power used in conventional CMOS implementations of the same circuits when run at speeds

below 1 Megahertz.

18
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SCRL is a promising technology for implementing a reversible computer, but a number of

issues, especially the design of an appropriate ramping power supply, still must be addressed.

Further details concerning SCRL appear in [You94].

Other Energy Recovering Circuits In [FT78], Fredkin and Toffoli describe a circuit

implementation of a Fredkin gate. This design requires multiple large inductors per gate,

and the authors admit that the concept is not appropriate for VLSI applications. They

do, however, suggest that Josephson junction-based systems may provide a better platform.

Likharev [Lik82] also proposed a superconducting Josephson junction-based computing en-

gine which performed energy recovery.

Koller and Athas [KA92], using techniques similar to SCRL, have developed a method of

driving highly capacitive wiring and gate loads while recovering the energy. Their work on

power supply design is similar to the power supply work needed for SCRL.

Hall's [Hal92] "retractile cascade" circuits use a series of clocks and inherently pipelined

primitives which are very similar in spirit to SCRL gates.

2.3 Architecture

This section addresses the previous work in developing computing paradigms that avoid

logically irreversible operations.

Ressler [Res81] appears to have been the first to investigate the requirements of a reversible

computer. Using only Fredkin gates, but suggesting no implementation strategy, he designed

a simple accumulator-based machine. He discussed control flow issues and the concept of

a garbage stack to retain extra operands from irreversible operations, but his design bears

little resemblance to a modern processor model. The datapath in Ressler's work does not

have explicit forward and reverse components but relies on the instruction set and reversible

Fredkin gates to assure reversibility. It is difficult to interpret the datapath design decisions

that distinguish his processor from a standard accumulator-based processor. Regardless,

19



his design is remarkable in that he was able to design an entire processor using on the order

of 5000 reversible Fredkin gates.

More recently, Hall [Hal94], building on his work with retractile cascades [Hal92], discussed

a reversible processor architecture and algorithms based on the PDP-10 instruction set.

The decision to use a CISC instruction set allows shorter code, but for this thesis, a more

straightforward RISC style makes the datapath and controller design simpler. Hall does

not suggest even a block diagram level design for a processor. While he claims that inter-

mediate results produced during some operations, such as effective address calculation, can

be reversibly undone more easily in a CISC machine, he does not consider that a suitably

restricted instruction set could effectively eliminate these intermediate results while using

a simpler datapath. The programmer concerned with the flow of information in the pro-

cessor is often better served by simple instructions with no intermediate results computed

during the course of the instruction. Also, additional pipelining work and performance

enhancements are possible using a RISC foundation.

Baker [Bak92] covers a wide range of topics related to reversible computing from the ther-

modynamics of bit erasure to garbage collection and programming subtleties. He suggests

several novel physics-based architectural ideas for simulating physical systems, such as the

high cost of copy operations in physical systems (mechanical metaphor) as opposed to the

inexpensive copy of the traditional (writing metaphor) view of computing. He discusses im-

plications for object oriented programming, in which each object is identifiable, as opposed

to a large number of identical copies.

2.4 Pendulum

This thesis builds primarily on previous architecture work, especially that of Ressler and

Hall. It assumes throughout that bit erasure must be avoided and all computation must be

logically reversible.
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Chapter 3

Reversible Architecture Design

This chapter presents a moderately detailed discussion of the issues and engineering trade-

offs which arise in the design of a reversible architecture and register transfer level imple-

mentation. The context is that of modifying a conventional RISC processor architecture

for logically reversible operation and circuit implementation in some physically reversible

CMOS technology. Chapter 4 then details the particular architectural decisions and speci-

fications of the Pendulum Reversible Processor.

A reversible processor is motivated by the result from thermodynamics that information

destruction causes an unavoidable energy dissipation. A reversible computer may not de-

stroy information. A conventional processor destroys information in three areas: memory

access, datapath operations on stored values, and control flow operations.

3.1 Memory Access

Traditional load/store memory accesses assume that copying and overwriting information

are free operations. Information in a reversible machine may not be destroyed, so mem-

ory access is not allowed to erase a previously stored value. During memory access in a

21



load/store architecture, loading a value from the memory to the register file overwrites the

previously stored value of the register, and storing a register file value to memory likewise

overwrites the previously stored value of the memory location. By combining load and store

into a single symmetric and reversible operation, exchange, the information is merely moved

from one place to another rather than erased. Exchange must be used to access all archi-

tecturally visible memory elements in a reversible processor. The memory hierarchy must

be adapted to avoid copying information. Cache and file coherency problems do not exist

because only one copy of each data word exists. Exchange operations more closely resemble

physical storage systems [Bak92] such as filing cabinets, in which accessed information is

only available to one process (or person) at a time. No process may share data unless an

explicit copying operation is performed.

3.2 Execution Unit

3.2.1 Register File Access

The register file must not destroy information, so access must occur as an exchange. Unlike

memory access, the exchange operation is split into two separate stages because the values

being read are needed early in the execution of the instruction, and the result values to be

written are not available until the end of execution. Each of the stages is an exchange oper-

ation itself, but the value of interest is being exchanged with an arbitrary known constant.

For processor design purposes, this known constant may conveniently be defined as zero.

If a register is to be written but not read during a particular instruction, the exchange must

be split over multiple instructions. The register must contain zero before a value may be

written to it, so the register is first "cleared" by exchanging the register value with a memory

location which is clear, i.e. guaranteed to contain zero. The result then is exchanged with

the known constant just as in the case above. A data memory which is entirely clear at the

start of program execution provides the supply of clear locations for this type of register

access.

22



Figure 3-1 diagrams both stages of a register file exchange.

Figure 3-1: Register File Read and Write

3.2.2 Reversible and Irreversible Operations

Certain datapath functions of two operands, such as xoR, have well defined inverses which

allow one operand to be reconstructed unambiguously from the result and the second

operand. We call these functions reversible because they may be undone: the inputs may be

reconstructed from the outputs. Other functions exhibit data-dependent reversibility. For

example, summing two numbers is reversible unless the sum produces an overflow. Multipli-

cation is also reversible unless an overflow or underflow is produced; multiplying a number

by zero is reversible if the result and the non-zero operand are saved. And a few operations

of interest in traditional programming languages and architectures, such as logical AND, are

irreversible in the sense that the result and one operand are never sufficient to determine

the second operand.

All operations performed by a reversible processor must be invertible; executing "irre-

versible" operations implies that additional information must be retained in order to undo

the operation. The difficulty arises from the fact that a finite memory will quickly become

filled if storing the results of an operation require more space than the operands used.
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The processor can be structured so that manipulation of the extra information required by

irreversible operations is directed by either the programmer or the processor itself. The

processor may require that the programmer track the extra information and store it in

memory, or the processor may store the extra information in a separate structure, a "garbage

stack," (GS) automatically. If the processor uses a garbage stack, the processor controller

must' determine when conditionally reversible operations require that extra information

must be stored. The controller must also store information which identifies the conditionally

reversible instruction as having executed irreversibly. On the other hand, if the garbage

information is under programmer control, the programmer may be able to perform some

"garbage-collection" to re-clear memory locations. For example, if a register value has been

copied, and at the end of some computation the copy is no longer needed, the original value

may be subtracted from the copy and the result, zero, stored in the copy's location. Since

a location which is known to be zero is defined (arbitrarily) as clear, the location has been

reclaimed.

3.2.3 Operand Specifier Format

It is important for register operations to use only as many storage locations for output

values as for input values. It is possible to structure the instruction set to minimize the

number of datapath operations that require additional memory. This section examines

general functions, denoted by *, of two inputs and one output, to determine their garbage

creation behavior. These register operations represent the options for a general purpose

register machine.

For a general operation *, four possible combinations using two sources and one destination

exist. Table 3.1 details these operations and the number of word-sized storage spaces re-

quired before and after execution so that the operation is invertible when * is both reversible

and irreversible.

Operations I and II require an additional storage space if * is irreversible. Operations III

and IV always require one more storage space after execution than before.
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Table 3.1: Operand Specifier Formats and Storage Requirements

Therefore, operations I and II create no garbage when performing reversible operations.

Operations III and IV require that at least one extra storage location be used. For A--A*B

operations where * is irreversible, the original value of A must be retained somehow. This

suggests that the extra flexibility of the A.-B*C operations, with the same storage re-

quirements, might be used to execute irreversible operations rather than A<-A*B, unless

practical considerations such as datapath regularity and simplicity dictate otherwise.

3.3 Control Flow

Control flow operations pose a particularly tricky problem because they differ significantly

from conventional processor operation. Jumps and branches must be invertible when run-

ning in reverse, so some program trace information must be retained. In contrast to data-

path operations whose reversibility or irreversibility are independent of other instructions,

the reversibility of control flow operations depends on the program structure. For example,

a piece of code which may only be reached through a single unconditional jump to that

location need only to store the return address of the unconditional jump. It is reversible.

If multiple jumps target the same piece of code, information about which jump was taken

must be stored in addition to the return address of each jump. It is irreversible, requiring

that extra information be stored. Conditional branches suffer the same difficulty. The test

and destination for a backward branch may not be the same as for its forward counterpart.

The essential problem is that control flow operations in the context of a conventional pro-

cessor allow program execution paths to coalesce in a manner which may be irreversible. In

the simplest case, two or more unconditional branches to the same location results in ambi-
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I A - A*A 1 1 2
II A < A*B 2 2 3
III A +- B*B 1 2 2
IV A +- B *C 2 3 3



guity about which path to follow in reverse. A more complex issue arises if some number of

conditional branch statements all have as their destination a particular instruction address.

They may have identical conditions for branching, and there is no way to compute which

branch was taken (if any) to bring the program into its current state.

Consider the following instructions

top: beq a,b,end

add b,a

beq a,b,end

sub a,c

beq a,b,end

add b,c

# if a = b, branch to end

#b =b + a

# if a = b, branch to end

#a = a - c

# if a = b, branch to end

#b =b + c

end:

Figure 3-2 diagrams this particular branch scenario. Unless information about which branch

was taken is stored, the processor cannot execute the branch in reverse. A conditional branch

evaluates some value(s) and changes control flow based on those values, called the branch

conditional(s).

A=Bo A= B? A=B?

Forward Operation

9 9 9

Zf /
A = B?

Reverse Operation

Figure 3-2: Control Flow Confluence Example

The processor should store the PC (or as much information as is required for reversibility)

only when the return address cannot be calculated. The information necessary to reverse

certain control flow operations may be stored in the instruction stream at compile time.

This requires extra instructions and complexity beyond a standard RISC ISA. Instructions

which alter control flow in one direction must have a counterpart which alters control flow in
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the other direction. This does not require that time reversal symmetry be broken, however.

If only reversible control flow instructions are allowed, the different instructions will be

exactly symmetrical.

The amount of actual information in those PC values is fairly small. If only one branch

instruction targets a particular location, only one bit need be saved to undo the branch,

namely if the branch was taken or not. If this bit may be generated by evaluating the

branch conditional in reverse, no garbage need be stored. An instruction which branches

if a register is negative, for instance, must be paired with a backwards branch which is

guaranteed to be evaluating the same register value. For a complicated branch structure

this reverse evaluation may be difficult, and if the intervening code changes the register

being evaluated, as in the example of section 4.2.4, the original value of the conditional

needs to be copied, creating garbage.

While the program is running forward, control flow (and datapath) storage requirements

monotonically increase without bound in an architecture which allows irreversible opera-

tions. The storage requirements monotonically decrease while running in reverse. This

unbounded increase while running forward is undesirable. A number of optimizations are

possible which encourage the use of reversible control flow operations, such as putting return

addresses in the instruction stream at compile time for jumps which only go to one loca-

tion. Requiring that all control flow instructions be reversible allows control flow storage

requirements to remain fixed, but unlike restricting datapath operations to be exclusively

reversible, restricting control flow may place too much of a burden on programmersl.

3.4 Conclusion

Each instruction may be thought of as performing a data manipulating function and a con-

trol flow manipulating operation. Datapath instructions in a traditional RISC processor

'Comments referring to programmers apply to the entity which generates the assembly language code,
be it a high level language optimizing compiler or a human hand-coding a routine.
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may have an irreversible data manipulation effect but perform an implicit control opera-

tion, increment, which is reversible. Likewise, control instructions may have an irreversible

control manipulation effect but perform an implicit data operation, read and restore, which

is reversible.

A reversible architecture which only supports reversible operations in memory access, dat-

apath operations, and control flow, does not need to retain any extra information. Since

conventional processors support irreversible datapath operations and control flow, any re-

versible processor that is designed to resemble a conventional architecture must retain ex-

tra information. A reversible processor must retain two types of extra information that

a traditional processor erases: operands used in irreversible operations and program flow

information resulting from jumps and branches.

Just as the second law of thermodynamics acts as time's arrow in any irreversible process,

any irreversible operation in a computing engine will break time reversal symmetry in

the processor. Processor direction is distinctly identifiable, and "forward" and "reverse"

execution may be discussed without ambiguity.
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Chapter 4

Pendulum Processor

This chapter discusses the engineering decisions and rationale of the actual Pendulum pro-

cessor design while keeping in mind the general reversible computing concepts outlined in

the previous chapter. Information must not be destroyed. All memory accesses must be per-

formed as an exchange, all data operations must retain enough information to be invertible,

and enough program trace information must be retained to invert control flow operations.

This design is deliberately as simple as possible, while trying to resemble the MIPS R2000

and to be technology independent. Any integrated circuit technology, reversible or not, is

suitable for implementation.

The primary concern is to retain all information required so that the instruction stream

may be executed in either direction. Any program may be returned to its original state by

running the processor backwards.

4.1 Overview

The starting point for the Pendulum reversible processor design is a 32-bit RISC archi-

tecture, specifically that of the MIPS R2000. The simplicity of the MIPS design allows a
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greater emphasis to be put on the unique features of a reversible processor. It also lets the

mapping between the instruction set architecture (ISA) and the register transfer level func-

tional architecture be simple and straightforward. The literature [PH90, PH93] contains

substantial research on similar RISC architectures. Also, a RISC architecture provides a

suitable starting point for implementation of a reversible pipeline for enhanced performance.

Figure 4-1 shows a functional unit level schematic of the Pendulum datapath. Control

signals are not shown. Appendix B is a complete schematic generated by the CAD tool

used in the design.

The current design executes instructions in five cycles; each cycle resembles an appropriate

pipeline stage although the architecture is not yet pipelined. Two are dedicated to instruc-

tion fetch and decode, while the three remaining stages perform register access, operation

execution or memory access, and register write back. Register access is performed in a

separate stage (rather than during instruction decode, as in the MIPS R2000) so that only

the registers needed during the instruction are read. When the processor changes direction,

the register file read and write stages exchange functionality and the operation execute

stage performs the inverse of the operation specified. Each stage performs the inverse of

the function it performed running forward.

Processor direction is controlled by an external signal. The signal is synchronized with

instruction execution so that the currently executing instruction completes execution before

the processor direction is changed.

4.2 Pendulum Instructions

This section presents the justification for the datapath structures based on the supported

Pendulum instructions. The instruction set is nearly identical to that of a conventional

processor with the notable exceptions of "come-from" and "exchange."

Pendulum memory accesses are handled with the single exchange instruction. Pendulum
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Figure 4-1: The Pendulum Datapath.
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supports a full set of arithmetic and logical operations, shifts and rotates, both on reg-

ister values and instruction immediates. Control flow is achieved through a number of

unconditional and conditional jumps and branches, including linking jumps and jump-to-

register-value.

Unlike many conventional processors, Pendulum supports rotate instructions as well as

standard shift instructions. Shift is a garbage creating instruction because information is

lost when bits are shifted off the end of a word. A rotate instruction transfers the bits to

the other end of the word, retaining the information. If a small number is shifted left a

small amount, the right (least significant) bits are filled with zeros. This is identical to a

rotate operation. Likewise, a number may be shifted to the right if the low order bits are

zero and the number being shifted is either non-negative or logically shifted (zero filled in

the high order bits), by performing a rotate. Knowing the range of values of a number is

required to replace shift with rotate, of course, but in the common case of left-shifting a

small number, rotate may be used to reduce garbage.

Whenever possible, programs should be structured to make use of the non-garbage creating

instructions and avoid the few irreversible operations: shifts, set-on-less-than, AND, OR,

and NOR.

4.2.1 Memory Access

Memory accesses are based on a load/store system, but both a load and a store happen

during each access, forming an exchange. Exchange swaps the value in a register for the

value in the data memory at an address specified by another register. To operate reversibly,

memory elements conform to the read/read - 1 and write/write- 1 paradigm.

The Read/Read-l Write/Write- 1 Paradigm

Figure 4-2 shows the Pendulum register file and its connections. Copying information from

one location to another involves losing the information which was stored at the destination.
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Reading and writing information is therefore done as a swap. As mentioned in section 3.2,

reading from a memory location clears it, and only memory locations which are clearl may

be written to. This suggests that the inverse of reading a value is writing a value, and the

inverse of writing a value is reading a value.

Figure 4-2: Register File Connections

Looking specifically at the register file, the processor must be able to read two and write

two registers while operating in either direction, implying that the register file must have

four bidirectional ports. In either direction, two are read ports and two are write ports.

So when the processor is computing forward, operation proceeds as with an irreversible

processor. Data is read from the ports on the right and written to the ports on the left.

Then, when computation reverses, data is read (Write - ') from the ports on the left and

written (Read - l) to the ports on the right. The terminology is used because in reverse, the

processor is actually undoing the reading and writing it performed in forward execution.

'If a register must be cleared to receive a value being copied during program execution, the register must
be exchanged with a memory location which is known to be clear.
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The inverse notation more precisely describes the logical operations being performed.

This of course adds additional complexity to the register file design, requiring four bidirec-

tional ports, but it imparts a sense of symmetry to the design and provides a reasonably

clear way of thinking about memory directionality.

Address Calculation

An exchange instruction specifies two register addresses. During an exchange instruc-

tion the ALUs are inactive, and the two registers specified in the instruction are the

source/destination for the swap and the memory location to be swapped. The register

file B ports are read, the data address comes from B2 rather than A2, and Al is written as

B1 is swapped out. Some conventional processors calculate memory addresses by adding an

offset to a base register during the memory access instruction. In Pendulum, however, any

offset to be added to the address register must be specified in a separate addi instruction.

This allows instruction execution to invert itself gracefully. If addresses were calculated dur-

ing one stage and memory accessed in the next, inverse operation becomes less symmetric.

The address calculation stage must still calculate an address, but the memory access stage

must invert the direction of reading and writing. This mixture of inverted and non-inverted

functions complicates datapath control.

4.2.2 Special Instructions

Special instructions are register to register instructions which compute arithmetic, logical,

and shift-type operations. They include all instructions other than control flow, immediates,

and exchange.

Register instructions of the form A-A*RA and A-A*B require no extra storage when exe-

cuting reversible operations. When executing irreversible operations, A-B*C and A-A*B

have the same storage requirements. Supporting only A--A*B allows the instructions to be

regular, the instruction encoding to be simple, and the datapath to reflect this regularity

34



and simplicity.

The operands needed to reverse the computation must be retained. The irreversible oper-

ations require that the original value stored in the source/destination register be saved on

the garbage stack. The reversible operations only require that the result and the second

operand be stored back in the register file.

Using this instruction format dictates that the register file should have two ports in each

direction. Control proceeds by first reading2 both registers, performing the operation, and

writing back the result and the second operand. In reverse, the result and second operand

are read, the first operand is computed (or passed through the reverse ALU from the garbage

stack to the register file) and both operands are written back to the register file. So the

processor must have a multi-ported register file, two ALUs, a garbage stack, and appropriate

busses connecting them.

4.2.3 Immediate Instructions

Immediate instructions face similar constraints as the special instructions. To minimize

garbage creation and encourage regularity in the datapath, immediate instructions have

the same format as special instructions but replace the second operand specifier with a

21-bit immediate value. Therefore, immediate-type instructions perform operations of the

form A+-A*Immediate.

All special instructions may be mapped to a corresponding immediate instruction by multi-

plexing the sign extended instruction immediate value to the ALU inputs rather than a sec-

ond register value. The register address specified in the instruction is the source/destination

register; the 21 bit wide immediate value replaces the value of the source register.

Just as with special instructions, the original value of A may need to be pushed onto the

garbage stack. Immediate instructions do not create any garbage unless * is irreversible.

2 Recall that reading clears the register location rather than making a copy of the value.
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Running forward the register value and immediate are driven onto the forward ALU inputs,

the result is computed, the original value of A is saved on the garbage stack if * is one of the

irreversible operations, and the result is written to the register file. In reverse, the result

is read from the register file and driven, along with the immediate value, onto the reverse

ALU input. The original register value is computed or passed through from the garbage

stack.

4.2.4 Control Flow Instructions

Sequentially executing code is the default control operation. Instructions which execute

non-sequentially must be traced in some manner. The most direct way to achieve this is

to push the program counter (PC) onto a stack whenever the PC changes non-sequentially.

Pendulum treats all control flow operations as subroutine calls which must save a return

address, and a single instruction, come-from, takes care of undoing control flow.

Come-from (CF) is actually shorthand for "Push or pop the PC garbage stack." CF executes

a "push PC" during forward execution and a "pop PC" during reverse execution. This

has the potential disadvantage of requiring a great deal of memory in a medium length

program, since the number of executed instructions, and PC values needing to be stored,

can be arbitrarily large if the dynamic execution code size is large compared to the static

program size. However, future designs may store information in the instruction stream to

undo control flow instructions if return addresses are known at compile time or may be

computed at run time, rather than storing PC values.

Control flow instructions must target an instruction immediately following a come-from.

This allows sequentially executing code to fall into a code segment which can also be jumped

or branched into. If a branch was taken, the value popped when running in reverse will

be the address of the branch; if not taken, the popped value will be the address of the

come-from itself. Come-from instructions should only be encountered in forward execution

when code is fallen into, and it should be possible to store just that single bit of information,

although the current implementation stores the full PC.
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The PC incrementer/decrementer lies between the PC stack and the PC itself, so when PC

values are popped off the stack during reverse execution of a CF instruction, the value that

is loaded into the PC is actually the value that was popped off minus one. This means that

the jump or branch instruction which caused its address to be stored is not encountered

when the instruction stream is undone. This is the symmetric case for forward execution

when the jump or branch lands on the instruction at the address of the CF plus one.

Jump register (JR) and jump-and-link-register (JALR) must be used with great care be-

cause they give the programmer the ability to break program reversibility. The address

corresponding to the value in the jump register could be anywhere. For reversibility, jumps

must land on an instruction immediately following a come-from, and this condition is not

guaranteed in a JR or JALR. Jump register's primary purpose is as a "return from sub-

routine" instruction when it is paired with a jump-and-link (JAL). But if a JR or JALR

is used on its own, the programmer must be careful that the only possible destinations are

instructions immediately following "come-from" instructions. The link register for the PC

in a JAL or JALR must be clear before the JAL or JALR executes.

It is also interesting to note that jumps and branches have no function when encountered

while running in reverse, and may therefore be treated as NOPs. If a conditional branch

is reached when running backward it implicitly means that the branch was not taken and

control proceeded sequentially; in other words, the branch was a NOP when it was run

forward. And if a come-from is encountered in reverse operation, it implies either that the

branch was taken, and the come-from is its symmetric partner, or that the CF was seen

while running forward and falling into a code segment.

For example, the following pseudo-code

if (a > O) a = a-10 else a = a-5;

compiles to

top: bgtz a,mid # branch greater than zero; if a > 0

subi a,S # a = a - 5
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jad: j end # jump end

cf # come-from only encountered when running in reverse

mid: subi a,10 # a = a - 10

cf # come from, paired with end:

end:

Forward execution proceeds as follows: First, the comparison is made. If the branch is not

taken, five is subtracted from a and control jumps (pushing the jump address j ad onto the

PC stack) to end and execution continues normally. If the branch is taken, top is pushed

onto the PC stack, the PC is loaded with mid, ten is subtracted from a, mid+l is pushed onto

the stack by the cf since control is falling into a section of code that is also a jump/branch

destination, and execution continues from end.

Assuming the PC is beyond end and Pendulum is running in reverse, execution reverses as

follows: The cf above end pops a PC value off the stack. This value will be either mid+l or

jad. If it is mid+l, the PC is loaded with mid, ten will be added to a, the next cf will pop

off another PC value, this time top, and the PC is loaded with top-I. Program reversal

will continue above top.

If the first PC value popped off was jad, the PC is loaded with jad-I, five will be added

to a, the bgtz is a NOP, and execution continues normally above top.
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Chapter 5

Future Work

Reversible computer architecture has received scant previous consideration. The theoretical

discussions of reversible computation in the literature [Ben88, Lan86] leave much work to

be done before a reversible computing engine may be built. This section discusses some

of the architectural issues which have yet to be resolved. Questions of implementation

details, such as SCRL circuit realizations of functional blocks, clearly present substantial

opportunities for future work, but are beyond the scope of this thesis.

5.1 Input/Output Behavior

Input and output operations generally occur as copy operations and must therefore occur

dissipatively, assuming that a copy overwrites previously stored information. Irreversible

I/O events should therefore be made infrequent compared to reversible computation events,

but whenever possible, the environment should be configured to support reversible opera-

tions.
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Input Program and data information are often transmitted to the processor's memory

through a copy from some non-volatile memory. A program stored on a magnetic or optical

device is copied many times and to many locations (assuming some sharing of resources

through parallel computing or broad network access) and must be done so dissipatively,

since we assume the processor must overwrite the previously stored program and data to

load the new information. The energy dissipation cost of the copy must be amortized

over the time that the processor is executing the program. A method of maximizing the

information content of each bit, perhaps through compressing data before loading into

a processor, will reduce dissipation associated with input. Whenever possible, exchange

should be used to input data.

Output If output is performed as a standard memory access, an exchange, the output

device must have some way of returning the information to the processor when the direction

is changed. The actual act of producing output is, however, often a copy. Any irretrievable

information which is output must dissipate energy.

Output to a network or a mass storage device is also usually a copy operation. If it oc-

curs irreversibly and dissipatively, the only way to decrease the energy dissipated for some

quantity of information to be output (once the output technology has been optimized) is to

maximize the information content of every bit. Again, as many I/O operations as possible

should be performed as an exchange to avoid dissipation.

5.2 Pipelining

Future implementations will almost certainly include some form of pipelining to enhance

performance. Hazard detection is traditionally the most complex issue of pipelining, and

reversible pipelining involves not only the issues of hazard detection of results, both in

the forward and reverse directions, but since reading from the register file is destructive,

operands must be forwarded as well. It is not obvious how this should happen.
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The current Pendulum execution stages are, in order, instruction fetch (IF), instruction

decode (ID), register read (REG), execute and memory access (EXM), and register write

back (WB). During reverse operation, WB performs a write-l1, reading the result and

one operand from the register file, EXM performs the inverse operation of the forward

instruction, and REG performs a read - 1, writing back the original operands. In reverse

these instruction stages invert their operation and execution reverses as IF, ID, WB, EXM,

REG. These instruction execution stages may be converted into pipeline stages with the

addition of pipeline registers and forwarding support.

An enhancement which slightly complicates reversible pipelining is forming addresses for

the exchange operation by adding an offset, specified in the instruction, to the value in a

base register. The memory access is pushed into its own execution stage, MEM, and the

address calculation is performed in EX (which was EXM). This is a performance enhance-

ment intended to speed series of memory accesses which exhibit spatial locality. Using the

current exchange instruction, the memory address must be calculated in one instruction

and exchanged in the next, so a series of memory accesses, such as indexing into an array,

each require two instructions. Using the enhancement, each access would only require one

instruction once the base address had been calculated.

If addresses are to be calculated as an offset from a register, the forward stages required

are IF, ID, REG, EX, MEM, WB. Reverse execution must be IF, ID, WB, EX, MEM,

REG. Bussing structures and pipeline registers are likely to be complex. Forwarding in

both directions through six pipeline stages also presents a formidable challenge.

To execute such an instruction in reverse requires that the address be computed by the

reverse ALU, so the outputs of both the forward and reverse ALUs must be connected to

the memory address lines, and the controller must direct the reverse ALU to perform an

add operation rather than an add -1 .

All pipeline stages must undo their actions; reads become writes and vice versa, memory

accesses are undone, and inverse operations are performed on register values. The pipeline

does not necessarily execute the stages in reverse order; it executes the inverse of each stage
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in the same order as in forward execution. The inverse of WB is REG, but the inverse of

EX is EX. Instructions are undone one after the other in reverse order, but the process of

undoing an instruction consists of performing the inverse of each of the steps of instruction

execution. Clearly, the instruction must be fetched and decoded when running in reverse.

Then the effects of the instruction are undone by performing the inverse function of the

remaining stages.

5.3 Instruction Set Expansion

This section addresses enhancements to the instruction set (additional instructions and

added functionality for the currently supported instructions) which are likely to provide

greater programming power and flexibility in future designs. Modifications to the instruction

set which are intended to reduce garbage creation are covered in section 5.4.

The current instruction set supports very few instructions, and indeed the instruction set

is deliberately very similar to the MIPS R2000. The primary distinction between standard

RISC processors and Pendulum is the restriction on register specifiers, enforced to ensure

that memory locations are read (and cleared) before they are written. A truly general

machine should support instructions of the form A.-B*C where A, B, and C need not be

three different registers. These types of general operations are apt to create garbage, and

only the experience to be gained from profiling the behavior of different programs can direct

garbage reduction efforts. Supporting general operations such as this may be equivalent to

giving the programmer more rope with which to hang himself, and may therefore be a

"misfeature."

No binary function of two inputs and two outputs is both reversible and universal. An ex-

pansion to A<--B*C instructions opens the possibility of two input, three output operations

such as the Feynman gate, which takes B and C as inputs and returns B · C, B C, and B,

and is both reversible and universal. When executing the Feynman gate function, only one

of the operands is restored, which may be undesirable, and register A must be clear before
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the operation is executed, but two logical operations are performed at once. Reversing the

Feynman gate function requires that all three registers be read, increasing bus complex-

ity, but supporting this function maintains the logical completeness of the instruction set

without requiring that any irreversible instructions be supported.

5.4 Garbage Reduction

A significant goal of instruction set expansion, beyond increasing the computational power

and flexibility of the architecture, is the reduction of garbage. If clever programming tech-

niques can be used to reduce the amount of garbage created by reusing results, it may

be the correct design decision to provide programmer access to all information and elimi-

nate the garbage stacks entirely. This may be possible by enforcing stricter requirements

on control flow operations so that return addresses may be calculated rather than stored

and retrieved, and by eliminating the irreversible instructions from the instruction set. In-

struction set completeness must be maintained, however, through the inclusion of universal,

reversible operations such as the Feynman gate function.

Conditionally reversible instructions may still require a garbage stack. If an overflow occurs

during an arithmetic instruction, for example, the processor must save this information.

Putting that information under programmer control may be undesirable or difficult, so the

garbage stack structure may need to be retained.

Garbage is currently created through three processes: executing irreversible operations,

changing the program counter non-sequentially, and computing intermediate results. The

first two types are saved on the garbage stacks while the third type, programmer defined

garbage, is just a reclassification of data memory values.
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5.4.1 Datapath Garbage

The way to reduce, indeed eliminate, the amount of datapath garbage created during ALU

operations is simply to disallow irreversible operations. Reversible rotate instructions may

replace irreversible shifts for a number of cases. If logical AND, OR and NOR instructions

can be eliminated by supporting reversible versions, and if the set-on-less-than instructions

can be replaced by conditional branches, the datapath need not create any explicit garbage.

Since the Feynman gate function and certain other boolean functions of two inputs and

three outputs are both reversible and universal, the irreversible instructions need not be

supported, (after suitable datapath modifications to support mappings of two inputs to

three outputs) and datapath created garbage may be eliminated. The tradeoff is that

programming styles must be adapted to these instruction changes.

5.4.2 Control Flow Garbage

The reduction of control flow garbage in the standard programming idioms is crucial for

the future of reversible computing. Otherwise reversible computers are an engine for cre-

ating garbage with computation as a side effect. Instructions designed to reduce control

flow related garbage, especially through unrolling loops and calling and returning from

subroutines, will almost certainly be added in future processors. A set of "backward-jump-

register" and "backward-jump-and-link" instructions, if properly implemented, can make

certain types of subroutine calls garbageless since the information required to return from

the subroutine is known at compile time and can be stored in the instruction stream.

If dynamic code size is much larger than static code size, the space penalty paid in static

program size for including extra instructions is small, and the primary cost is a time penalty

of executing more instructions. This time/space tradeoff may be worthwhile if garbage

creation is a more significant problem than execution time. The goal is to add instructions

which take advantage of information already in the instruction stream and register values

to reduce the number of PC values which need to be kept during execution of a potentially
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large number of jumps and branches.

5.4.3 Programmer Defined Garbage

This is the most significant area in need of consideration. Effort has been made in this

architecture to keep the explicit garbage stacks small, but the programmer must manage

a large amount of information. In the case of summing some large set of numbers, all the

numbers must be retained. Under some conditions this may be desirable; if the records are

to be retained anyway, such as in banking transactions, no additional imposition is placed

on the system. If the program requires only that the result be retained, the summands

represent programmer defined garbage. The issue of what to do with the potentially large

amount of garbage is unsolved. It may be the case that reversible computing is only a viable

solution to problems which require that intermediate results be retained. Or, at some point

in the future, technology advancements may make energy dissipation much more costly

than memory, at which point reversible computing becomes very attractive. Or it may

be that programmers are clever enough to reclaim enough of the memory locations that

programmer defined garbage is rarely created. Exploration of these issues is a substantial

research topic.

Another approach to all three garbage creation problems is to execute the program forward

until the desired result is achieved, then dissipatively copy the result in some manner, then

execute in reverse, clearing its state. A new program could then be loaded which may use

the result of the previous program. This assumes that each program has some terminating

condition and a clearly defined result. But if program loads are performed as an exchange,

this technique cleans up its own garbage and dissipates only during output of a result. The

penalty is a factor of two time penalty.
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5.4.4 Bit Erasure

The current implementation keeps garbage information explicitly distinct from the program

execution information, such as register file and data memory values. This extra information

may be compressed or manipulated or made physically distinct from the bulk of the com-

puting engine, or moved to a different location for erasure. Dissipating energy by destroying

bits in a remote location is not useful for reducing energy consumption of a processor, but

it is important if heat removal is a limiting factor in the packing density of computing

elements. A processor operating at finite speed must dissipate some amount of heat due to

resistive losses, and increasing processor speed increases this resistive dissipation. If resis-

tive losses are small compared to the energy cost of bit erasure, moving bit erasure to some

other location allows the computing device to run cooler, or faster for a fixed temperature.

A thermostatically controlled clock set to the optimum operating temperature will keep the

processor computing as fast as it can, while bits may be erased in some physically removed

structure specially designed for heat removal and not actively involved in computing.
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Chapter 6

Conclusions

This thesis has shown the detailed architectural and register transfer level implementation

design for a reversible processor. The challenge of retaining enough information to invert an

instruction stream and designing the assembly language to resemble a standard processor

has been met.

Extensive and ongoing simulations of the architecture have been successful in demonstrating

functionality. The processor direction signal may be changed at any point during program

execution and instructions will be undone. The signal may be changed again and the

processor will execute the instruction forward.
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Appendix A

The Pendulum Assembly

Language

Assembly language programming on the Pendulum processor greatly resembles a standard

RISC architecture [KH92]. The Pendulum instruction set is decidedly "RISC-y". Instruc-

tions are not very powerful but are deliberately simple so that the programmer can keep

track of the information flow. The programmer is insulated from many aspects of the re-

versible operation going on inside the processor. The programmer must be aware of two

main constraints. First, memory accesses are always an exchange. To copy a value of a

register, ensure that one register is clear (by exchanging it with an empty memory loca-

tion if necessary) and add the other register to it in copy-copy+original where copy is

initially clear1. And second, all jumps and branches must target an instruction which is

immediately preceded by a "come-from."

Pendulum supports a full set of jumps and conditional branches including linking instruc-

tions. In the current implementation, instructions are not pipelined. Instruction execution

takes five clock cycles, each cycle performing operations which map onto what could become

1 "Clear" may be different from "zero." A cleared location is in a known, unambiguous state. A location
may contain zero as a product of computation and not be cleared.
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pipeline stages, but to avoid the added complexity in both datapath design and instruction

scheduling, instructions execute one at a time. The datapath is simplified by not having

pipeline registers and because forwarding hardware is unnecessary. And in the interest of

simpler programming, single instruction execution allows the elimination of delay slots and

data hazards.

Special-type instructions, so named because a single, special opcode passes instruction dif-

ferentiation to the func field, include all register to register operations, including logical,

arithmetic, shift, and rotate. They take one or two register addresses and a shift amount,

if necessary. For two-register instructions, such as ADD, the two registers must be different.

This is very different from other architectures, but the inconvenience for the programmer

should be small.

The following pages contain the syntax and description for forward execution of all Pendu-

lum Assembly Language instructions. No exceptions are generated during any instructions.

All jump and branch instructions push the address of the current instruction (the jump

or branch) onto the program counter garbage stack if the branch is taken. Conditional

branches which are not taken produce no garbage. Other irreversible instructions which

produce datapath garbage are noted below.

The format and notation of the instruction set details is taken from [KH92], the MIPS

R2000 architecture reference manual.

A.1 Instruction Set Encoding

Since one of the earliest design decisions was to base Pendulum on a 32 bit RISC machine,

the instruction word encoding strongly resembles the MIPS R2000 instruction word encod-

ing. But, since certain types of register operations are disallowed, only two registers need

to be specified: a source/destination and a source. This means the instruction word has

five "extra" bits available. Rather than shorten the instruction bus width, the word size

remains 32 bits long so that the architecture does not starve for address bits too quickly.
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Symbol Meaning
,-_ Assignment

]] - Bit string concatenation
xy Replication of bit value x into a y-bit string. Note that x is

always a single-bit value
xy..z Selection of bits y through z of bit string x. Little endian bit

notation is always used. If y is less than z, this expression is
an empty (zero length) bit string.

+ Two's complement addition
- Two's complement subtraction

Two's complement less than comparison
neg Two's complement negation
and Bitwise logic AND
or Bitwise logic OR
xor Bitwise logic XOR
nor Bitwise logic NOR
GPR[x] General Register x
GS Datapath Garbage Stack
PC Program Counter
PCGS Program Counter Garbage Stack
MEM[x ] Memory Location x

Table A.1: Instruction Operation Notations

The opcode field is limited to six bits so that the immediate field can be large, but the

special instruction func field, which specifies ALU and shift/rotate 2 operations, may be

spread out to eleven bits and only require a slight encoding. The ALU and shifter unit

support ten arithmetic and ten shift/rotate instructions, so the eleventh bit of the func

field determines which type of special instruction is being evaluated, and the remaining ten

bits are "one-hot" encoded so that the ALU need do little decoding. The instruction set is

limited to 64 types of instructions with the func bits specifying the operation for special

instructions.

Pendulum uses four types of instruction encodings, listed in Table A.2.

Special instruction types and the exchange instruction use an R-type encoding. The in-

struction word specifies a source/destination register, a source register, a shift or rotate

amount, and type type of special operation to be performed. The func and sh/rot field

2 The cost of having rotate as well as shift is essentially just a mux tacked on to a basic funnel shifter. A
good compiler should be able to take advantage of the non-garbage-creating rotate.
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to be zero for exchange operations.

R-type

J-type

B-type

I-type

op red rs sh/rot func 
6 bits 5 bits 5 bits 5 bits 11 bits

j/cf target 
6 bits 26 bits

I j/b op ra rb I offset
6 bits 5 bits 5 bits 16 bits

op rsd immediate 
6 bits 5 bits 21 bits

Table A.2: Instruction Formats

The unconditional jump and come-from instruction J-type encoding specifies an opcode and

a target. The target field in the come-from instruction is specified as all zero.

Jump instructions other than j and all conditional branches use B-type instruction encoding

and specify two registers and an offset.

Immediate instructions, I-type, specify one register and a 21 bit signed or unsigned, de-

pending on opcode, immediate value.

Instruction mnemonic: ADD

Instruction name: Add

SPECIAL rsd rs

000000

6 bits 5 bits 5 bil

0

00000

ts 5 bits

ADD

000 0000 0001

11 bits

Format: ADD rsd, rs

Description:

The contents of register rsd and register rs are added to form a 32-bit result. The result is

placed in register rsd.

Operation:
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GPR[rsd] - GPR[rsd] + GPR[rs]

Instruction

Instruction

Mnemonic: ADDI

Name: Add Immediate

ADDI rsd immediate

011000

6 bits 5 bits 21 bits

Format: ADDI rsd, immediate

Description:

The 21-bit immediate is sign extended and added to the contents of register rsd to form a

32-bit result. The result is placed in register rsd.

Operation:

GPR[rsd] - GPR[rsd] + (immediatels)1 6 11 immediatel5.. 0

Instruction

Instruction

Mnemonic: AND

Name: And

SPECIAL rsd rs 0 AND

000000 00000 000 0001 0000

6 bits 5 bits 5 bits 5 bits 11 bits

Format: AND rsd, rs

Description:

The contents of register rsd and register rs are combined in a bit-wise logical AND operation.

The result is placed in register rsd. The original value of register rsd is stored on the garbage
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stack.

Operation:

GS -- GPR[rsd]

GPR[rsd] +- GPR[rsd] and GPR[rs]

Instruction

Instruction

Mnemonic: ANDI

Name: And Immediate

ANDI rsd immediate

011100

6 bits 5 bits 21 bits

Format: ANDI rsd, immediate

Description:

The 21-bit immediate is sign extended and combined with the contents of register rsd in a

bit-wise logical AND operation. The result is placed in register rsd. The original value of

register rsd is stored on the garbage stack.

Operation:

GS - GPR[rsd]

GPR[rsd] -- GPR[rsd] and (immediatel 5)161 immediately..0

Instruction

Instruction

Mnemonic: BEQ

Name: Branch On

BEQ ra rb offset

001001

6 bits 5 bits 5 bits 16 bits

Format: BEQ ra, rb, offset
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Description:

The 16-bit offset is sign extended and added to the address of the instruction following

the current instruction to form a target address. The contents of register ra and rb are

compared. If the two registers are equal, the program branches to the target address.

Operation:

if GPR[ra] = GPR[rb] then

PC - PC + 1 + (offset15)1 611 offset

endif

Instruction Mnemonic: BGEZ

Instruction Name: Branch on Greater Than or Equal to Zero

BGEZ

000110

0 rb offset

00000

6 bits 5 bits 5 bits 16 bits

Format: BGEZ rb, offset

Description:

The 16-bit offset is sign extended and added to the address of the instruction following the

current instruction to form a target address. If the contents of register rb have the sign bit

cleared, the program branches to the target address.

Operation:

if GPR[rb] 31 = 0 then

PC -- PC + 1 + (offsetls)l6 ll offset

endif
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Instruction Mnemonic: BGEZAL

Instruction Name: Branch On Greater Than or Equal to Zero and Link

BGEZAL link rb offset

001000

6 bits 5 bits 5 bits 16 bits

Format: BGEZAL link, rb, offset

Description:

The 16-bit offset is sign extended and added to the address of the instruction following the

current instruction to form a target address. If the contents of register rb have the sign

bit cleared, the program branches to the target address, and the address of the instruction

following the current instruction is placed in register link.

Operation:

if GPR[rb]31 = 0 then

PC - PC + 1 + (offsetl5)1611 offset

GPR[link] - PC + 1

endif

Instruction

Instruction

Mnemonic: BGTZ

Name: Branch On Greater Than Zero

BGTZ 0 rb offset

001100 00000

6 bits 5 bits 5 bits 16 bits

Format: BGTZ rb, offset

Description:
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The 16-bit offset is sign extended and added to the address of the instruction following the

current instruction to form a target address. If the contents of register rb have the sign bit

cleared and are not equal to zero, the program branches to the target address.

Operation:

if (GPR[rb]31 = 0) and (GPR[ra] $ 032) then

PC - PC + 1 + (offsets)1 6 11 offset

endif

Instruction

Instruction

Mnemonic: BLEZ

Name: Branch On Less Than or Equal to Zero

BLEZ 0 rb offset

001011 00000

6 bits 5 bits 5 bits 16 bits

Format: BLEZ rb, offset

Description:

The 16-bit offset is sign extended and added to the address of the instruction following the

current instruction to form a target address. If the contents of register rb have the sign bit

set or are equal to zero, the program branches to the target address.

Operation:

if (GPR[rb]31 = 1) or (GPR[rb] = 032) then

PC +- PC + 1 + (offsetl5)1 6 11 offset

endif
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Instruction

Instruction

Mnemonic: BLTZ

Name: Branch On Less Than Zero

BLTZ 0 rb offset

000101 00000

6 bits 5 bits 5 bits 16 bits

Format: BLTZ rb, offset

Description:

The 16-bit offset is sign extended and added to the address of the instruction following the

current instruction to form a target address. If the contents of register rb have the sign bit

set the program branches to the target address.

Operation:

if GPR[rb]3 1 = 1 then

PC +- PC + 1 + (offsets5)1 611 offset

endif

Instruction

Instruction

Mnemonic: BLTZAL

Name: Branch On Less Than Zero and Link

BLTZAL link rb offset

000111

6 bits 5 bits 5 bits 16 bits

Format: BLTZAL link, rb, offset

Description:

The 16-bit offset is sign extended and added

current instruction to form a target address.

to the address of the instruction following the

If the contents of register rb have the sign bit
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set the program branches to the target address, and the address of the instruction following

the current instruction is placed in register link.

Operation:

if GPR[rb] 31 = 1 then

PC +- PC + 1 + (offsetl5)1 6 11 offset

GPRlink] - PC + 1

endif

Instruction

Instruction

Mnemonic: BNE

Name: Branch On Not Equal

BNE ra rb offset

001010

6 bits 5 bits 5 bits 16 bits

Format: BNE ra, rb, offset

Description:

The 16-bit offset is sign extended and added to the address of the instruction following

the current instruction to form a target address. The contents of register ra and rb are

compared. If the two registers are not equal, the program branches to the target address.

Operation:

if GPR[ra] $ GPR[rb] then

PC - PC + 1 + (offsetl5)1 611 offset

endif
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Instruction Mnemonic: CF

Instruction Name: Come-from

CF 0

001101 00 0000 0000 0000 0000 0000 0000

6 bits 26 bits

Format: CF

Description:

The address of the current instruction is saved on the PC garbage stack.

Operation:

PCGS - PC

Instruction Mnemonic: EXCHANGE

Instruction Name: Exchange

EXCHANGE exch addr 0

101000 0000 0000 0000 0000

6 bits 5 bits 5 bits 16 bits

Format: EXCHANGE exch, addr

Description:

The contents of register exch are placed at the data memory location specified by the

contents of register addr. The contents of the data memory location specified by the contents

of register addr are placed in register exch.

Operation:

GPR[exch] - MEM[addr]

MEM[addr] - GPR[exch]
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Instruction Mnemonic: J

Instruction Name: Jump

JUMP target

000001

6 bits 26 bits

Format: J target

Description:

The 26-bit target is combined with the high order six bits of the address of the current

instruction. The program unconditionally jumps to this calculated address.

Operation:

PC -- PC31..2611 target

Instruction Mnemonic: JAL

Instruction Name: Jump and Link

JAL link 0 offset

000011 00000

6 bits 5 bits 5 bits 16 bits

Format: JAL link, offset

Description:

The 16-bit offset is sign extended and added to the address of the instruction following the

current instruction to form a target address. The program unconditionally jumps to this

calculated address, and the address of the instruction following the current instruction is

placed in register link.

Operation:

GPR[link] -- PC + 1
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PC -- PC + 1 + (offsetls)1611 offset

Instruction

Instruction

Mnemonic: JALR

Name: Jump and Link Register

JALR link jreg 0

000100 0000 0000 0000 0000

6 bits 5 bits 5 bits 16 bits

Format: JAL link, jreg

Description:

The program unconditionally jumps to the address contained in general register jreg, and

the address of the instruction following the current instruction is placed in register link.

The contents of register jreg must specify the address of an instruction which immediately

follows a CF.

Operation:

GPR[link] -- PC + 1

PC -- GPR[jreg]

Instruction

Instruction

Mnemonic: JR

Name: Jump Register

JR 0 jreg 0

000010 00000 0000 0000 0000 0000

6 bits 5 bits 5 bits 16 bits

Format: JR jreg

Description:
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The program unconditionally jumps to the address contained in general register jreg. The

contents of register jreg must specify the address of an instruction which immediately follows

a CF.

Operation:

PC - GPR[jreg]

Instruction mnemonic:

Instruction name: Nor

NOR

SPECIAL rsd rs O NOR

000000 00000 000 1000 0000

6 bits 5 bits 5 bits 5 bits 11 bits

Format: NOR rsd, rs

Description:

The contents of register rsd and register rs are combined in a bit-wise logical NOR operation.

The result is placed in register rsd. The original value of register rsd is stored on the garbage

stack.

Operation:

GS -- GPR[rsd]

GPR[rsd] - GPR[rsd] nor GPR[rs]

Instruction mnemonic: NEG

Instruction name: Two's complement negation

SPECIAL rsd rs 0 NEG

000000 00000 001 0000 0000

6 bits 5 bits 5 bits 5 bits 11 bits
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Format: NEG rsd

Description:

The contents of register rsd are inverted in a two's complement negation. The result is

placed in register rsd.

Operation:

GPR[rsd] - 0 - GPR[rsd]

Instruction mnemonic: OR

Instruction name: Or

SPECIAL rsd rs 0 OR

000000 00000 000 0010 0000

6 bits 5 bits 5 bits 5 bits 11 bits

Format: OR rsd, rs

Description:

The contents of register rsd and register rs are combined in a bit-wise logical OR operation.

The result is placed in register rsd. The original value of register rsd is stored on the garbage

stack.

Operation:

GS - GPR[rsd]

GPR[rsd] - GPR[rsd] or GPR[rs]

Instruction Mnemonic: ORI

Instruction Name: Or Immediate

ORI rsd immediate

011101

6 bits 5 bits 21 bits
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Format: ORI rsd, immediate

Description:

The 21-bit immediate is sign extended and combined with the contents of register rsd in a

bit-wise logical OR operation. The result is placed in register rsd. The original value of

register rsd is stored on the garbage stack.

Operation:

GS - GPR[rsd]

GPR[rsd] - GPR[rsd] or (immediatel 5)61 immediatels.. 0

Instruction

Instruction

mnemonic: RL

name: Rotate Left

special rsd 0 amt RL

000000 00000 100 0100 0000

6 bits 5 bits 5 bits 5 bits 11 bits

Format: RL rsd, amt

Description:

The contents of register rsd are rotated left by amt bits. The result is placed in register rsd.

Operation:

GPR[rsd] -- GPR[rsd] 3l1amt..oll GPR[rs] 3 1.. (31-amt+l)

Instruction

Instruction

mnemonic: RLV

name: Rotate Left Variable

64



special rsd rs 0 RLV

000000 00000 101 0000 0000

6 bits 5 bits 5 bits 5 bits 11 bits

Format: RLV rsd, rs

Description:

The contents of register rsd are rotated left by the number of bits specified by the low order

five bits of the contents of register rs. The result is placed in register rsd.

Operation:

amt - GPR[rs]4..o

GPR[rsd] - GPR[rsd]31-amt..oll GPR[s]31..(3lamt+l)

Instruction

Instruction

mnemonic: RR

name: Rotate Right

special rsd 0 amt RR

000000 00000 100 1000 0000

6 bits 5 bits 5 bits 5 bits 11 bits

Format: RR rsd, amt

Description:

The contents of register rsd are rotated right by amt bits. The result is placed in register

rsd.

Operation:

GPR[rsd] - GPR[rsd]amtl..oll GPR[rs]3l..amt

Instruction mnemonic: RRV

Instruction name: Rotate Right Variable
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special rsd rs 0 RRV

000000 00000 110 0000 0000

6 bits 5 bits 5 bits 5 bits 11 bits

Format: RRV rsd, rs

Description:

The contents of register rsd are rotated right by the number of bits specified by the low

order five bits of the contents of register rs. The result is placed in register rsd.

Operation:

amt - GPR[rs] 4..o

GPR[rsd] - GPR[rsd]amtl..oll GPR[rs] 3l..amt

Instruction

Instruction

mnemonic: SLL

name: Shift Left Logical

special rsd 0 amt SLL

000000 00000 100 0000 0001

6 bits 5 bits 5 bits 5 bits 11 bits

Format: SLL rsd, amt

Description:

The contents of register rsd are shifted left by amt bits, inserting zeros into the low order

bits. The result is placed in register rsd. The original value of register rsd is stored on the

garbage stack.

Operation:

GS - GPR[rsd]

GPR[rsd] +- GPR[rsd]3 _amt..ol 0 "amt
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Instruction mnemonic: SLLV

Instruction name: Shift Left Logical Variable

special rsd rs 0 SLLV

000000 00000 100 0000 1000

6 bits 5 bits 5 bits 5 bits 11 bits

Format: SLLV rsd, rs

Description:

The contents of register rsd are shifted left by the number of bits specified by the low order

five bits of the contents of register rs, inserting zeros into the low order bits. The result is

placed in register rsd. The original value of register rsd is stored on the garbage stack.

Operation:

GS - GPR[rsd]

amt -- GPR[rs]4..o

GPR[rsd]l GPR[rsd]31-amt..0 Oamt

Instruction mnemonic: SLT

Instruction name: Set on Less Than

SPECIAL rsd rs 0 SLT

000000 00000 010 0000 0000

6 bits 5 bits 5 bits 5 bits 11 bits

Format: SLT rsd, rs

Description:

The contents of register rsd and rs are compared. Considering both quantities as signed

32-bit integers, if the contents of register rsd are less than the contents of register rs, the

result is set to one. Otherwise the result is set to zero. The result is placed in register rsd.

The original value of register rsd is stored on the garbage stack.
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Operation:

GS -- GPR[rsd]

if GPR[rsd] < GPR[rs] then

GPR[rsd] = 03111 1

else

GPR[rsd] = 032

endif

Instruction mnemonic: SLTI

Instruction name: Set on Less Than Immediate

SLTI rsd immediate

011010

6 bits 5 bits 21 bits

Format: SLTI rsd, immediate

Description:

The 21-bit immediate is sign extended and compared to the contents of register rsd. Con-

sidering both quantities as signed 32-bit integers, if the contents of register rsd are less

than the sign-extended immediate, the result is set to one. Otherwise the result is set to

zero. The result is placed in register rsd. The original value of register rsd is stored on the

garbage stack.

Operation:

GS -- GPR[rsd]

if GPR[rsd] < (immediatel 5)1 611 immediatel5.. 0 then

GPR[rsd] = 031ll 1

else
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GPR[rsd] = 032

endif

Instruction

Instruction

special

000000

6 bits

mnemonic: SRA

name: Shift Right Arithmetic

rsd 0 amt SRA

00000 100 0000 0100

5 bits 5 bits 5 bits 11 bits

Format: SRA rsd, amt

Description:

The contents of register rsd are shifted right by amt bits, sign extending the high order

bits. The result is placed in register rsd. The original value of register rsd is stored on the

garbage stack.

Operation:

GS - GPR[rsd]

GPR[rsd] - (GPR[rsd]3la)amtl GPR[rsd]3l..amt

Instruction

Instruction

special

000000

mnemonic: SRAV

name: Shift Right Arithmetic Variable

rsd rs 0 SRAV

00000 100 0010 0000

6 bits 5 bits 5 bits 5 bits 11 bits

Format: SRAV rsd, rs

Description:
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The contents of register rsd are shifted right by the number of bits specified by the low

order five bits of the contents of register rs, sign extending the high order bits. The result

is placed in register rsd. The original value of register rsd is stored on the garbage stack.

Operation:

GS - GPR[rsd]

amt - GPR[rs] 4..o

GPR[rsd] - (GPR[rsd]3l)amt ll GPR[rsd]3sl..amt

Instruction mnemonic: SRL

Instruction name: Shift Right Logical

special rsd 0 amt SRL

000000 00000 100 0000 0010

6 bits 5 bits 5 bits 5 bits 11 bits

Format: SRL rsd, amt

Description:

The contents of register rsd are shifted right by amt bits, inserting zeros into the high order

bits. The result is placed in register rsd. The original value of register rsd is stored on the

garbage stack.

Operation:

GS +- GPR[rsd]

GPR[rsd] 0 amtll GPR[rsd] 31..amt
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special rsd rs 0 SRLV

000000 00000 100 0001 0000

6 bits 5 bits 5 bits 5 bits 11 bits

Format: SRLV rsd, rs

Description:

The contents of register rsd are shifted right by the number of bits specified by the low

order five bits of the contents of register rs, inserting zeros into the high order bits. The

result is placed in register rsd. The original value of register rsd is stored on the garbage

stack.

Operation:

GS - GPR[rsd]

amt - GPR[rs]4..o

GPR[rsd] ,- 0oamtI GPR[rsd] 31..amt

Instruction mnemonic: SUB

Instruction name: Subtract

SPECIAL rsd rs 0 SUB

000000 00000 000 0000 0100

6 bits 5 bits 5 bits 5 bits 11 bits

Format: SUB rsd, rs

Description:

The contents of register rs are subtracted from the contents of register rsd to form a 32-bit

result. The result is placed in register rsd.

Operation:

GPR[rsd] - GPR[rsd] - GPR[rs]
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Instruction mnemonic: XOR

Instruction name: Exclusive Or

SPECIAL rsd rs 0 XOR

000000 00000 000 0100 0000

6 bits 5 bits 5 bits 5 bits 11 bits

Format: XOR rsd, rs

Description:

The contents of register rsd and register rs are combined in a bit-wise logical exclusive OR

operation. The result is placed in register rsd.

Operation:

GPR[rsd] -- GPR[rsd] xor GPR[rs]

Instruction

Instruction

Mnemonic: XORI

Name: Exclusive Or Immediate

XORI rsd immediate

011110

6 bits 5 bits 21 bits

Format: XORI rsd, immediate

Description:

The 21-bit immediate is sign extended and combined with the contents of register rsd in a

bit-wise logical exclusive OR operation. The result is placed in register rsd.

Operation:

GPR[rsd] <- GPR[rsd] xor (immediates 5)1 6 11 immediatel5..0
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Appendix B

Detailed Datapath Schematic

The following figure is a printout of the Pendulum datapath showing all control signals, data

busses, and functional units. It is taken from the CAD package used to design Pendulum.

Each block is described by a Verilog HDL module.
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Figure B-1: Detailed Datapath Schematic
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Figure B-2: Detailed Datapath Schematic
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