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by
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the degree of Master of Science

Abstract

This thesis is the first controlled case study that compares shared-memory and message-
passing implementations of an application that solves the triangle puzzle and runs on
actual hardware: only the communication interfaces used by the implementations vary; all
other system components remained fixed. The implementations run on the MIT Alewife
machine, a cache-coherent, distributed-shared-memory multiprocessor that efficiently
supports both the shared-memory and message-passing programming models. The goal of
the triangle puzzle is to count the number of solutions to a simple puzzle in which a set of
pegs, arranged in a triangle, is reduced to one peg by jumping over and removing a peg
with another, as in checkers. The shared-memory implementations explore distributing
data structures across processors' memory banks, load distribution, and prefetching. A
single message-passing implementation uses only message passing for interprocessor
communication. By comparing these shared-memory and message-passing implementa-
tions, we draw two main conclusions. First, when using distributed shared memory, per-
forming cache coherence actions and decoupling synchronization and data transfer can
make a shared-memory implementation less efficient than the message-passing implemen-
tation. For our application, we observe a maximum of 52% performance improvement of
the message-passing implementation over the best shared-memory one that uses both syn-
chronization and data transfer. Second, shared memory offers low-overhead data access
and can perform better than message passing for applications that exhibit low contention.
For our application, we observe a maximum of 14% improvement of a shared-memory
implementation over the message-passing one. Thus, sometimes message passing is bet-
ter than shared memory. Sometimes the reverse is true. To enable all parallel shared-
memory and message-passing applications to perform well, we advocate parallel
machines that efficiently support both communication styles.

Thesis Supervisor: M. Frans Kaashoek
Title: Assistant Professor of Computer Science and Engineering

Thesis Co-Supervisor: Kirk Johnson
Title: Doctoral candidate
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Chapter 1

Introduction

Advocates of shared-memory multiprocessors have long debated with supporters of

message-passing multicomputers. The shared-memory camp argues that shared-memory

machines are easy to program; the message-passing camp argues that the cost of hardware

to support shared memory is high and limits scalability and performance. This thesis is

the first controlled case study of shared-memory and message-passing implementations of

an application that solves the triangle puzzle and runs on actual hardware: only the com-

munication interfaces used by the implementations vary; all other system components

(e.g., compiler, processor, cache, interconnection network) remain fixed. We show when

and why the message-passing version outperforms a shared-memory version and vice

versa. Additional overhead due to cache coherence actions and decoupling synchroniza-

tion and data transfer can make a shared-memory implementation perform worse than the

message-passing implementation (our message-passing implementation performs up to

52% better than the best shared-memory implementation that uses both synchronization

and data transfer). A shared-memory version can outperform the message-passing imple-

mentation (by up to 14% for our application) under low contention because shared mem-

ory offers low-overhead data access.

Our implementations run on the MIT Alewife multiprocessor [2]. The message-pass-

ing implementation was ported from a message-passing implementation that runs on

Thinking Machines' CM-5 family of multicomputers [25]. The original CM-5 implemen-

tation written by Kirk Johnson won first place in an Internet newsgroup contest [14], the

goal of which was to solve the triangle puzzle in the shortest time.

Alewife efficiently supports both message-passing and cache-coherent shared-memory

programming models in hardware. In fact, Alewife is the only existing machine of its

class, and is thus a unique platform on which to compare shared-memory and message-

passing implementations. Previous research comparing shared-memory and message-

passing implementations of the same application has resorted to either using the same

machine to run different simulators [8] or using different machines to run different simula-

tors [19]. The Stanford FLASH multiprocessor [17] also efficiently supports these two

programming models, but has yet to be built.

We chose the triangle puzzle because it is simple enough to understand and solve, yet

exhibits many of the characteristics of complex tree-search problems. For example,

13
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Figure 1.1. Initial placement of pegs in the triangle puzzle.

exploiting the symmetry of the playing board is used both in our implementations and in

game-search problems, such as chess. In addition, solving this problem involves many

parallel programming issues, such as load distribution, data management, and synchroni-

zation. Finally, our application isfine-grained and irregular. By "fine-grained," we mean

that the time spent computing between shared-memory accesses or communication events

is short. Although our study is performed using a single fine-grained application, we

expect that our conclusions will hold for other fine-grained applications. Our application

is irregular because its data structures evolve dynamically as the application executes.

The triangle puzzle consists of a triangular board with fifteen holes, each of which may

contain a peg. At the start of the puzzle, every hole except the middle hole of the third row

contains a peg (see Figure 1.1). A move consists of removing a peg by jumping over it

with another peg as in checkers. A solution to the puzzle is a sequence of moves that

leaves only one peg on the board. Counting the number of distinct solutions to the triangle

puzzle is the goal of the triangle puzzle search problem [15]. Because we must find all

solutions, solving this search problem involves an exhaustive search. This search problem

can be extended for puzzles with boards that have more than five holes on each side. We

refer to the number of holes per side as the problem size.

We solved problem sizes 5, 6, and 7 on a 32-node Alewife machine. Problem size 5

has 1,550 solutions. Problem size 6 has 29,235,690,234 solutions. Problem size 7 has

zero solutions. Gittinger, Chikayama, and Kumon [13] show that there are zero solutions

for problem sizes 3N+1 (N > 2). Solving problem size 8 is expected to require several

gigabytes of memory [14]; to the best of our knowledge, no one has solved it yet.

The rest of this thesis is organized as follows. Chapter 2 provides background on the

architectural, programming, and performance issues when using shared-memory and mes-

sage-passing machines. Chapter 3 describes how we solve the triangle puzzle using paral-

lel tree search. Chapter 4 describes and compares the performance of our shared-memory

and message-passing implementations, describes an implementation that uses both shared

memory and message passing, and closes by presenting the speedups of the message-pass-

14



ing implementation and the best shared-memory implementation. Chapter 5 presents

related work. Finally, Chapter 6 concludes.
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Chapter 2

Background

This chapter presents background material on the architectural, programming, and per-

formance issues of shared-memory and message-passing machines.

2.1 Architectural Issues

Shared memory and message passing are two interprocessor communication mecha-

nisms. Multiple processors can share memory (i.e., use a single address space) in two

ways. First, all processors can access a single memory bank by sending messages across a

network, as shown in Figure 2.1. This organization is not scalable because the single

shared-memory bank becomes a bottleneck when the number of processors becomes

large. Second, all processors can access multiple memory banks in a "dance hall" fashion,

as shown in Figure 2.2. Machines with this "dance hall" organization solve the bottleneck

problem, but can be improved by tightly coupling each processor with a memory bank, as

shown in Figure 2.3. Machines with this tightly coupled processor-memory organization

are called distributed-shared-memory machines, and are better than those with the "dance

hall" organization because the wires between processors and memory banks are shorter.

Thus, distributed-shared-memory machines cost less, and a given processor takes less

time to access its tightly coupled memory bank.

( Network

Figure 2.1. Shared-memory machine with one memory bank.
P = processor, M = memory bank.
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P = processor, M = memory bank.
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Figure 2.3. Machine with processors tightly coupled with memory banks.

P = processor, M = memory bank.

Caching also helps reduce memory access time. If the tightly coupled processor-mem-

ory organization is used to implement shared memory, and each processor has a cache,

then every memory reference to address A must perform the following check: if the data

with address A is currently cached, then load it from the cache. Otherwise, if A is a local

address, then load the data from the current processor's memory bank. If none of these

conditions are true, then load the data from remote memory and perform cache coherence

actions. To minimize the time taken by this procedure of checks, it is implemented with

18



specialized hardware. By using this hardware support, shared-memory accesses can be

performed using a single instruction [16].

To illustrate cache coherence actions, we describe actions that a directory-based cache

coherence protocol executes when a processor references remote data that is not present in

its cache. In a directory-based cache coherence protocol, a section of memory, called the

directory, stores the locations and state of cached copies of each data block. To invalidate

cached copies, the memory system sends messages to each cache that has a copy of the

data. In order to perform a remote read, a processor must send a request to the remote pro-

cessor, which then responds with the requested data. In addition, the data must be placed

in the requesting processor's cache, and the directory of cached copies in the remote pro-

cessor must be updated. In order to perform a remote write, a processor sends a request to

the remote processor, which then must invalidate all cached copies of the data.

Some message-passing machines organize processors, memory banks, and the net-

work as shown in Figure 2.3. However, instead of having a single address space for all

processors, each processor has its own address space for its local memory bank. To access

a remote processor's memory bank, a processor must explicitly request data by sending a

message to the remote processor, which then responds with a message containing the

requested data. (Of course, a shared-memory programming model (i.e., a single address

space) can be implemented using this message-passing architecture; messages are used to

keep data values consistent across all processors [5, 6].) Thus, the check described in the

previous paragraph is not performed by hardware in message-passing machines. This is

the main difference between shared-memory and message-passing machines. If this check

is to be performed, it must be implemented entirely in software using multiple instruc-

tions.

2.2 Programming Issues

Because shared-memory machines offer programmers a single address space whereas

message-passing machines offer multiple address spaces, shared-memory machines are

conceptually easier to program. For a shared-memory machine with multiple distributed

shared-memory banks, the shared-memory programming model makes programming eas-

ier because it frees the programmer from having to manage multiple memory banks and it

hides message passing from the programmer. If a programmer uses message passing, the

19



programmer is in charge of orchestrating all communication events through explicit sends

and receives. This task can be difficult when communication is complex.

For shared-memory machines, synchronization (e.g., locks and barriers) is usually

provided by various functions in a library. Data transfer is accomplished by memory loads

and stores. On the other hand, when using message passing, synchronization and data

transfer can be coupled. When one processor transfers data to another processor by send-

ing the data in a message, the receiving processor can process the message by atomically

executing a block of code, as in active messages [26]. Because this processing is per-

formed atomically, this code can be thought of as a critical section; it is if a lock were

acquired, the code is executed, and the lock were released.

In the following section, we discuss the performance implications of this coupling of

synchronization and data transfer in message passing versus their being decoupled in

shared memory. We assume that all synchronization and data transfers are achieved by

using simple library calls.

2.3 Performance Issues

There are certain scenarios in which shared memory can perform worse than message

passing [16]. First, if the grain size of shared data is larger than a cache line, shared mem-

ory may perform worse because a data transfer requires multiple coherence actions, which

demand more network bandwidth and increase the latency of the data transfer. It would be

more efficient to send the data using a single message. Even if prefetching were used,

shared memory can still perform worse, partly because issuing load instructions to per-

form prefetching incurs overhead, and the prefetched data consumes network bandwidth.

Still, the main reason shared memory, even with prefetching, performs worse than mes-

sage passing when the grain size of shared data is larger than a cache line is that the over-

head of cache coherence actions increases the demand on network bandwidth and

increases the latency of data transfer. In addition, if data is immediately consumed after it

is obtained and not re-used, the time used performing cache coherence actions is not well

spent; the main idea behind caching is to reduce latency by exploiting the fact that if data

is accessed once, it is likely to be referenced again.

Second, shared memory can perform worse when communication patterns are known

and regular. The main reason is that shared-memory accesses requires two messages: one

message from the requesting processor to the shared-memory bank, and one from the

20



memory bank back to the requesting processor. On the other hand, message passing is

inherently one-way: a message is sent from one point to another. In addition, in many

cache coherence protocols, for a processor to acquire a cache line that is dirty in another

processor's cache, the data must be transferred through a home or intermediate node

instead of being communicated directly to the requester. For example, in a protocol that

keeps the status of a cached data block with a home node, the home node must update the

status of the data block.

Lastly, shared memory can perform worse than message passing in combining syn-

chronization and data transfer, assuming that sending a message requires very little over-

head. As described in the previous section, message-passing machines can bundle

synchronization with data transfer by using mechanisms such as active messages, whereas

shared-memory machines decouple the two operations. By sending a one-way, point-to-

point message, a message-passing machine can effectively acquire a lock, transfer data,

and release the lock. On the other hand, in shared memory, this procedure requires the fol-

lowing steps. One round trip is required to obtain the lock: a processor sends a request

message to the memory bank where the lock is located, the lock is obtained, and a

response message is sent back to the requester. Then, data transfer takes place. Finally,

one round trip, analogous to acquiring the lock, is required to release the lock. Because

message passing bundles synchronization and data transfer in a one-way, point-to-point

message, it can perform better than shared memory, which requires multiple round-trip

messages to achieve the same functionality.

In summary, shared memory can perform worse than message passing under three

conditions: (1) when the grain size of shared data is larger than a cache line, (2) when

communication patterns are known and regular, and (3) when combining synchronization

and data transfer. When grain size of shared data is small and communication patterns are

irregular, shared memory can perform better than message passing.
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Chapter 3

Solving the Triangle Puzzle

This chapter describes using tree search to solve the triangle puzzle, using a transposi-

tion table to eliminate redundant work during tree search, exploiting symmetry to optimize

the search process, and using parallel breadth-first search.

3.1 Structure of the Solution

The generic solution to the triangle puzzle constructs a search tree. Each node in the

search tree represents some placement of pegs into holes that can be derived from the ini-

tial placement of pegs through a sequence of moves. Any such placement is called aposi-

tion. We represent a position as a bit vector, with each bit corresponding to whether a peg

is present in a particular hole. An edge from node A to node B indicates that the position

represented by B can be obtained by making a single move from the position represented

by node A. We call the position represented by node B an extension of the position repre-

sented by node A. Thus, the root of the search tree represents the initial position, and

leaves of the tree represent positions from which no more moves can be made. For an ini-

tial position with P pegs, a sequence of P-1 moves is required to arrive at a solution to the

triangle puzzle, since each move removes exactly one peg. Therefore, a path from the root

to any leaf at a depth of P-1 in the search tree is a solution. We call such leaves valid

leaves. All other leaves at depths less than P-1 are invalid leaves.

Positions are stored in a transposition table so that extensions of positions that have

already been explored are not explored again. When an extension of a position is found in

the transposition table, the subtree generated from this extension does not need to be

explored again, and we can instead join the extension and the position in the transposition

table (this is also known as folding or fusing positions) [1, 23]. In the triangle puzzle,

because the number of joined positions is large, the size of the search tree is greatly

reduced by using a transposition table. For problem sizes 5, 6, and 7, 66%, 83%, and 90%

of all positions explored are joined, respectively. Because joining occurs, what we refer to

as the search tree is actually a directed acyclic graph (dag).

The transposition table is implemented using a hash table. Similar to an element of an

array, a slot of the transposition table holds a set of positions that map to that slot under a

23
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Figure 3.1. Axes of symmetry of the triangle puzzle board.

hash function. If two positions map to the same slot, the positions are chained together in

the slot.

To further reduce the number of positions explored, our implementations also exploit

the symmetry of the triangle puzzle board. Since the board is an equilateral triangle, there

are three axes of symmetry, as shown in Figure 3.1. Thus, up to six positions can be repre-

sented in each node of the search dag by performing the appropriate reflections. If only

one reflection about one axis of symmetry is performed, each node in the search dag repre-

sents two positions (not necessarily distinct). A node can be uniquely identified by choos-

ing one of the positions as the canonical position. (We interchangeably refer to a node and

a canonical position as a position.) Since a position in our triangle puzzle implementa-

tions is represented as a bit vector, we arbitrarily choose the position that lexicographically

precedes the other as the canonical position. For problem sizes 5, 6, and 7, if each node

represents two positions, the number of positions explored is nearly halved, as shown in

Table 3.1.

If each node in the search dag represents six positions, all six positions can be obtained

by making a sequence of five reflections about two axes of symmetry, by alternating

between the axes on each reflection in the sequence. For problem sizes 5 and 6, if each

node represents six positions, the number of positions explored is reduced by nearly a fac-

tor of two (exactly the same factor as when each node represents two positions), as shown

in Table 3.1. However, doing the same for problem size 7 cuts the number of positions

explored by a factor of almost six [4].

Clearly, there is a time-space trade-off when exploiting symmetry: if the search proce-

dure exploits symmetry, extra computation is required to perform the reflections, but the

search procedure saves space and computation by reducing the size of the search dag and

avoiding computing positions already explored, respectively.
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Table 3.1. Relationship between symmetry and number of positions explored.

In addition to using a transposition table and exploiting symmetry, other algorithmic

optimizations may be performed during tree search. These include compression [1], evict-

ing positions from the transposition table when a threshold is reached [4, 18], pre-loading

the transposition table [1], pruning heuristics besides exploiting symmetry [10, 21], and

move ordering [ 18]. We did not explore the first two optimizations, and we do not employ

the remaining ones. We cannot pre-load the transposition table because information

obtained at one point in the search gives no information about later stages of the search.

Finally, because the triangle puzzle search problem requires finding all solutions and

hence requires an exhaustive search, we do not use any pruning heuristics other than

exploiting symmetry, and we do not perform move ordering. Move ordering helps when

different moves have different effects on the outcome (e.g., a score) of a puzzle or game.

In the triangle puzzle, all sequences of moves are equal in value.

3.2 Parallel Breadth-First Search versus Parallel Depth-First Search

Parallel breadth-first search (PBFS) executes faster and uses less memory than parallel

depth-first search (PDFS) when used to solve the triangle puzzle. Intuitively, PBFS is

more appropriate for the triangle puzzle than PDFS because PBFS inherently performs an

exhaustive search to find all solutions. On the other hand, if we had a search problem

whose objective was to find any solution, PDFS would probably be more suitable. The

25

Symmetry Number of Reduction Factor
Problem Size (number of Positions Explored Compared to 1

positions per node) Position Per Node

1 4,847 1.000

5 2 2,463 1.968

6 2,463 1.968

1 1,373,269 1.000

6 2 688,349 1.995

6 688,349 1.995

1 304,262,129 1.000

7 2 152,182,277 1.999

6 53,158,132 5.724



performance difference is a result of how the total number of solutions is determined. We

keep a solution counter with each node that stores the number of paths from the root that

can reach this node. PBFS sets the counter in the root of the search dag to "1," then each

node at the next level sums the values of the counters of its parents. The sum of the values

of the counters of valid leaves is the number of solutions to the triangle puzzle.

In contrast, in PDFS, since different processors can be working concurrently on differ-

ent levels in the dag, PDFS cannot count solutions in the same top-down manner as in

PBFS. The search procedure has two options: it can either "push" counter values down

complete subdags in a manner similar to counting solutions in PBFS, or it can count solu-

tions in a bottom-up fashion after the entire dag is formed. With the first option, the search

procedure can traverse portions of the dag multiple times. For example, suppose one pro-

cessor is exploring a subtree. Now suppose that another processor generates an extension

that is represented by the root of this subtree. Then the search procedure must "push" the

counter value of this extension down the entire subtree in order to update the number of

paths that can reach all nodes in the subtree. This process is very costly because of the

high number of joins, as noted in Chapter 3.1.

To count solutions in a bottom-up fashion in PDFS, the search procedure sets the

counters of valid leaves to "1," and the counters of invalid leaves to "0." Starting at the

bottom of the search dag and working upwards, nodes at each level of the dag then sum

the values of their children's counters. The value of the counter at the root of the dag is the

number of solutions. Because PDFS that counts solutions in a top-down fashion can

traverse portions of the dag multiple times, whereas PDFS that counts solutions in a bot-

tom-up fashion traverses the dag only twice, the latter performs better. Henceforth,

"PDFS" refers to the latter version.

PBFS executes faster than PDFS because PBFS traverses the search dag once, whereas

PDFS traverses it twice: once to construct the dag, and a second time to count solutions.

In addition, detecting when the dag is completely formed in PDFS incurs additional over-

head.

PBFS also requires less memory than PDFS. Since PBFS counts solutions in a top-

down fashion, it needs to remember at most only those positions in two successive levels

of the dag1 . On the other hand, because PDFS counts solutions in a bottom-up fashion, it

needs to remember all positions in the dag. Thus, PBFS will require less memory than

PDFS to store positions in the transposition table, and it will require progressively less

1. This is a loose upper bound because once all extensions have been generated from a given posi-
tion, the position can be discarded.
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Table 3.2. Position statistics.

memory than PDFS as the problem size increases. This point is illustrated in Table 3.2,

which shows the total number of positions explored and the largest number of positions at

two successive levels for problem sizes 5, 6, and 7, when symmetry is exploited.

We developed an implementation of PDFS that counts solutions in a bottom-up fash-

ion and runs on Thinking Machines' CM-5 family of multicomputers. The performance

of this PDFS implementation for problem size 5 and 64 processors (.046 seconds, aver-

aged over ten runs) is a factor of five worse than that of the CM-5 PBFS implementation

(.009 seconds, averaged over ten runs), thus supporting the argument that PBFS is better

than PDFS for the triangle puzzle. We expect that this is also true for larger problem sizes

because the size of the search dag significantly increases as problem size increases.

Therefore, we only implemented PBFS on Alewife.

3.3 Implementation of PBFS

PBFS uses four data structures: a transposition table, a current queue of positions to

extend at the current level in the search dag, a next queue of positions to extend at the next

level, and a pool of positions (see Figure 3.2). We refer to the current and next queues col-

lectively as work queues. The pool of positions is a chunk of memory used to store posi-

tions; to keep the counters associated with positions consistent, the transposition table and

the work queues use pointers to refer to positions in this pool.

PBFS manipulates these data structures in a number of rounds equal to the number of

levels in a complete search dag. Before the first round begins, the initial position is placed

in the current queue. Each round then proceeds as follows. Processors repeatedly remove

positions from the current queue and generate all possible extensions of each position. If

an extension is not already in the transposition table, it is placed in both the transposition

table and the next queue, with the solution counter set to the value of the counter of the
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Largest Number of
Problem Total Number of Positions at Two

Size Positions Explored Successive Levels
of the Search Dag

5 2,463 356

6 688,349 44,219

7 53,158,132 1,815,907



Figure 3.2. Four data structures used in PBFS. Solid arrows indicate the path travelled
by extensions. Dashed arrows indicate that the current queue, next queue, and the
transposition table use pointers to refer to positions in the pool of positions.

position from which this extension was generated. If an extension is already in the trans-

position table, it is joined with the position in the table by increasing the solution counter

of the position in the table by the value of the counter of the extension, and the extension is

not placed in the next queue. After all positions in the current queue have been extended,

the round ends. Positions in the next queue are placed in the current queue, and the trans-

position table is cleared. Then the next round starts. After the last round is completed, the

sum of the values of the solution counters associated with positions in the current queue is

the number of solutions.
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Chapter 4

Implementations and Performance Results

This chapter presents hardware details of Alewife, describes our shared-memory and

message-passing implementations, and compares their performance. The shared-memory

implementations explore distributing the transposition table and privatizing the work

queues, distributing load, and prefetching. After comparing the shared-memory imple-

mentations with a message-passing one, we show that a hybrid shared-memory and mes-

sage-passing implementation is not suitable for this application. We close by comparing

the speedups of the message-passing implementation and the best shared-memory imple-

mentation.

Most of the results we present are for problem size 6. The reason we show results

mostly for problem size 6 is that this problem size is large enough to produce significant

changes in execution time as we vary the number of processors, yet not so large that it

takes an excessive amount of time to solve. For example, the best parallel implementation

(our message-passing implementation) takes about 200 times longer to solve problem

size 7 than to solve problem size 6 on 32 processors. In addition, at least 32 processors are

needed to solve problem size 7 because of memory requirements. Thus, for problem

size 7, it would be impossible to draw conclusions about how execution time changes as

the number of processors varies since the present maximum machine size is 32 processors.

The execution time of each implementation is averaged over ten trials. The standard

deviation for all experiments is less than .03 seconds (worst case), and is usually much

less (.0028 seconds average for all problem size 6 experiments and .000076 seconds aver-

age for problem size 5). The execution time of each trial is measured by using a cycle

counter. Because setup times vary among different implementations, we do not include

setup time in our measurements, unless otherwise noted. To supplement the graphical pre-

sentation of the performance of each implementation, Appendix A numerically presents

the execution times and standard deviations of all implementations. Appendix A also

shows the number of positions explored and the number of joined positions per round for

problem sizes 5, 6, and 7.

As a final note, the total memory space required by the transposition table, summed

over all processors, is held constant for all shared-memory and message-passing imple-

mentations for a given problem size. (i.e., the number of slots and the maximum number

of positions a slot holds are constant for a given problem size.) In addition, the pool of
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Alewife machine
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SCSI Disk array

Figure 4.1. The Alewife architecture.

positions is equally partitioned among all processors for all shared-memory and message-

passing implementations.

4.1 Alewife Hardware Details

The results presented in the following sections were obtained on a 32-node Alewife

machine at the MIT Laboratory for Computer Science. Alewife is a distributed shared-

memory, cache-coherent multiprocessor. Each processor is tightly coupled with a memory

bank. Each node contains its own memory bank, part of which is used as a portion of the

single shared address space. Each node consists of a Sparcle processor [3] clocked at

20MHz, a 64KB direct-mapped cache with 16-byte cache lines, a communications and

memory management unit (CMMU), a floating-point coprocessor, an Elko-series mesh

routing chip (EMRC) from Caltech, and 8MB of memory [2]. The EMRCs implement a

direct network [24] with a two-dimensional mesh topology using wormhole routing [11].

A mesh-connected SCSI disk array provides I/O. Figure 4.1 shows the Alewife architec-

ture. The CMMU implements shared-memory and message-passing communication

interfaces, which will be described next.
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4.1.1 Shared-Memory Interface

Shared memory is accessed by loads and stores. Caches store recently accessed shared

data. These caches are kept coherent by a directory-based protocol called LimitLESS [7].

Directory-based protocols were described in Chapter 2.1. LimitLESS implements the

directory in both hardware and software. Each processor keeps six hardware pointers to

cached data blocks: one pointer consists of a single bit to indicate whether a word is

cached at the local processor and five 32-bit pointers refer to remote processors' caches.

When more pointers are required, a processor is interrupted for software emulation of a

larger directory. We refer to this emulation as "time spent executing LimitLESS soft-

ware." Because there are six hardware pointers, no time is spent executing LimitLESS

software with six and fewer processors. Of the 8MB of memory per node, 4MB are used

as a piece of global shared memory, 2MB are used for cache coherence directories, 1MB

is user-accessible private memory, and 1MB is used by the operating system. A clean read

miss to a processor's local shared memory bank is satisfied in about 13 cycles, while a

clean read miss to a neighboring processor's memory bank takes about 38 cycles. Cached

32-bit shared-memory loads and stores require two and three cycles, respectively.

4.1.2 Message-Passing Interface

Besides providing a shared-memory interface, Alewife provides a message-passing

interface, which allows programmers to bypass shared-memory hardware and access the

communication network directly. This organization is illustrated in Figure 4.2. When a

processor sends a message to another processor, the receiving processor is interrupted and

then processes the message. This message-passing model provides the functionality of

active messages [26]. The end-to-end latency of an active message, in which delivery

interrupts the receiving processor, is just over 100 cycles. Since the version of the Alewife

software system used in this case study does not offer polling (later versions are expected

to), polling was not used. For further details on how message passing is implemented, the

reader is referred to the papers by Agarwal et al. [2] and Kranz et al. [16].
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Figure 4.2. Alewife's shared-memory and message-passing interfaces.

4.2 Shared-Memory Implementations

We developed several shared-memory implementations of PBFS, all of which use

Mellor-Crummey-Scott queue locks [20]. Our baseline shared-memory implementation

(SM) takes the simplest approach by putting the transposition table and the work queues in

the shared-memory bank of one processor. To extend a position in the current queue, a

processor acquires a lock on the current queue, extracts a position, releases the lock, and

computes the position's extension. Similarly, to add an extension onto the next queue, a

processor acquires a lock on the next queue, adds the extension, then releases the lock.

Because the SM implementation centralizes data structures, it performs poorly as the num-

ber of processors increases for problem size 6, as shown in Figure 4.3. At 16 and 32 pro-

cessors, the execution times are about the same.

To attempt to improve the performance of the SM implementation, variations distrib-

ute the transposition table across processors' shared-memory banks and privatize the work

queues (giving each processor its own set of work queues), distribute load, and prefetch

positions. Unless otherwise noted, in all shared-memory implementations, there is one

lock per slot of the transposition table, and each processor owns an equal portion of a

shared pool of positions. Mutually exclusive access to a particular position is provided by

the locks on the transposition table and the work queues. The presence of locks on the
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Figure 4.3. Performance of the SM implementation, problem size 6.

four main data structures described in Chapter 3.3 and the placement of these data struc-

tures will be described on a case-by-case basis.

4.2.1 Distributed Transposition Table and Privatized Work Queues

The DTABQ ("D" for distributed, "TAB" for transposition table, and "Q" for work

queues) implementation attempts to improve the performance of the SM implementation

by distributing the transposition table across processors' memory banks and by giving

each processor private work queues that are stored in private memory that is local to that

processor. Distributing the transposition table means that the slots are interleaved across

processors' shared-memory banks, as shown in Figure 4.4. Privatizing the work queues

means that each processor has its own current queue in private memory and next queue in

its shared-memory bank. There are no locks on the current queues, but the locks on the

next queues remain. To distribute work, when a processor generates an extension of a

position, it first determines if the extension exists in the transposition table. If it does not,

the processor computes a destination processor by hashing the bit representation of the

extension. Then, by using a shared-memory data transfer, the processor places the exten-

sion in the destination processor's next queue. Figure 4.5 shows that the DTABQ imple-

mentation performs better than the SM implementation for problem size 6 and for all

numbers of processors. The largest improvement, 46%, occurs at 32 processors.
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4.2.2 Improved DTABQ Implementation

Because the DTABQ implementation shares the transposition table, checking whether

an extension resides in the transposition table can involve accesses to remote memory

banks. To make accesses to the transposition table local and to reduce the amount of syn-

chronization, the DTABQ implementation can be improved by modifying it in the follow-

ing manner. Each processor only accesses its own partition of the transposition table. In

addition, each processor owns a number of next queues equal to the number of processors.

Instead of checking whether an extension exists in the transposition table before placing

each extension in a next queue as in the DTABQ implementation, each processor uncondi-

tionally places each extension in a next queue in a destination processor's set of next

queues. The particular next queue in the set is determined by the number of the processor

that generates the extension. Since only one processor writes to any particular next queue,

no locks are required on these next queues. Call this phase in which extensions are gener-

ated and placed in processors' sets of next queues the computation phase. After all exten-

sions have been generated, each processor then determines if extensions in its set of next

queues are in its partition of the transposition table. If an extension is already in the parti-

tion, it is joined with the position in the partition. Call this phase the checking phase.

Because extensions are unconditionally placed in other processors' sets of next queues,

accesses to the transposition table during the checking phase are local2 . In fact, because

each processor executes the checking phase on its own set of positions in its next queues

and on its own partition of the transposition table, no locks are required on the slots of the

table. Call this improved implementation the Improved DTABQ implementation.

Figure 4.6 shows that the Improved DTABQ implementation performs better than the

DTABQ implementation for eight and more processors, but worse for fewer processors.

The reason is that the Improved DTABQ implementation unconditionally places exten-

sions in next queues. Thus, it performs more enqueue operations to the next queues than

the DTABQ implementation does. For problem size 6, the DTABQ implementation per-

forms 113,893 enqueue operations to next queues, whereas the Improved DTABQ imple-

mentation performs 688,349 such operations. As the number of processors increases,

however, the parallelism of these enqueue operations also increases so that with eight and

more processors, the Improved DTABQ implementation performs better. In addition,

2. Each slot consists of a counter of positions in the slot and a set of pointers to positions. Thus,
accesses to this counter and the pointers are local, not accesses to the bit representations of posi-
tions.
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Figure 4.6. Comparison of DTABQ and Improved DTABQ implementations, problem size 6.
There is not enough memory in one processor to execute the Improved DTABQ implementation.

Table 4.1. Time spent executing LimitLESS software
Improved DTABQ implementations, problem size 6.

for DTABQ and

because of remote accesses to the transposition table, the DTABQ implementation spends

more time executing LimitLESS software, as shown in Table 4.1.
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8 0.75 9%

DTABQ 16 0.70 13%
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Percent of Percent of
. .execution time execution timeexecution aet idle,

Number of spent idle, spent idle,
Processors averaged over averaged over allpav eraged over alls

processorsprocessors(mpoe
(DTABQ) (Improved(DTABQ) DTABQ)

2 0.4% 0.7%

4 1.3% 3.1%

8 1.9% 4.2%

16 3.5% 6.1%

32 7.0% 9.7%

Table 4.2. The percentages of total execution time a
processor on the average spends idle for the DTABQ and
Improved DTABQ implementations. The percentage
increases as the number of processors increases because,
with a random distribution of the same number of
positions among an increasing number of processors,
positions are distributed less evenly.

4.2.3 Load Distribution

The DTABQ and Improved DTABQ implementations use a hash function to randomly

distribute positions among processors. This random load distribution policy distributes

work fairly evenly. As shown in Table 4.2, the percentage of total execution time a pro-

cessor on the average spends idle is small. Thus, employing more sophisticated schedul-

ing techniques, such as self-scheduling [22], is not warranted.

4.2.4 Prefetching

In our experiments with prefetching, the execution time of the Improved DTABQ

implementation can be improved at most 3.8% for problem size 6. We experimented with

prefetching data in three places. First, when generating extensions from positions in the

current queue, processors prefetch one position (its bit representation), its associated solu-

tion counter, and a pointer to the next position in the queue. Second, when scanning a slot

of the transposition table to check if an extension already exists, processors prefetch one

position and its solution counter. Lastly, when dequeuing positions from the next queues,

processors prefetch one position, its associated solution counter, and a pointer to the next

position in the queue. Because of the dynamic, fine-grained nature of the Improved
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Table 4.3. The percentage improvement of prefetching positions
from the next queues over no prefetching in the Improved DTABQ
implementation, problem size 6.

DTABQ implementation, we observed that prefetching positions from the current queue

and from slots in the transposition table generally performs worse than without prefetch-

ing. We believe that positions prefetched from the current queue and transposition table

are either evicted from direct-mapped caches before they are used or are already present in

the cache. However, prefetching positions from the next queues does improve perfor-

mance. We believe the reason is that out of the three places in which prefetching is per-

formed, only when positions are prefetched from the next queue do processors access

mostly uncached shared data. Recall that another processor most likely placed a given

position in the next queue and the processor accessing the position has not accessed it

before. On the other hand, a position in the current queue was accessed by the processor

during the checking phase. A position in a slot of the transposition table also can be

accessed multiple times during the checking phase, and thus can be cached. Thus, we

believe that the conditions just mentioned under which prefetching is ineffective usually

do not occur when prefetching positions from the next queues.

Table 4.3 shows the percentage improvement of prefetching positions from the next

queues over no prefetching. As the number of processors increases, the percentage

improvement increases because the benefit of prefetching magnifies as parallelism

increases. From now on, the Improved DTABQ implementation with prefetching refers to

the one that prefetches positions from the next queues.
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Percentage Improvement ofNumber of Processors
Prefetching over No Prefetching

2 1.7%

4 2.2%

8 2.7%

16 3.2%

32 3.8%



4.3 Message-Passing Implementation

In the message-passing implementation of PBFS, each processor keeps in private

memory its own set of the four main data structures. Thus, the transposition table is not

shared; each processor accesses its own private partition of the transposition table. Each

round in PBFS proceeds as described in Chapter 3.3, except that processors send each

extension and the associated solution counter to another processor using one active mes-

sage with a data payload of 16 bytes. As in the DTABQ implementation, the destination

processor is determined by hashing the bit representation of the generated extension.

Upon receiving a message, a processor handles the extension in the message in the fashion

described in Chapter 3.3. First, if the extension is not in the transposition table, it and its

associated solution counter are placed in both the transposition table and the next queue.

If the extension is already in the transposition table, it is joined with the existing position,

whose solution counter is increased by the value of the extension's solution counter. A

round ends by passing two barriers. First, a barrier is passed when all extensions have

been generated. Second, another barrier is passed when all extensions have been received

and processed.

4.4 Comparisons of Shared-Memory and Message-Passing Implementa-
tions

Comparing the shared-memory implementations with the message-passing implemen-

tation yields the two conclusions of this case study. First, when using distributed shared

memory, performing cache coherence actions and decoupling synchronization and data

transfer can make a shared-memory implementation less efficient than the message-pass-

ing implementation. Second, shared memory offers low-overhead data access and can

perform better than message passing for applications that exhibit low contention.

4.4.1 When Message Passing Can Perform Better Than Shared Memory

Recall from Chapter 2 that performing cache coherence actions and decoupling of syn-

chronization and communication can make a shared-memory implementation less efficient

than the message-passing one. To illustrate this conclusion, we compare the DTABQ and

message-passing implementations. They implement PBFS similarly, and the DTABQ
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Figure 4.7. Comparison of DTABQ and message-passing implementations, problem size 6.
The percentages show how much better the message-passing implementation is than the
DTABQ implementation.

implementation is the best shared-memory implementation that uses explicit synchroniza-

tion. Although the Improved DTABQ implementation does not perform locking opera-

tions on any of the four main data structures, has local accesses to the transposition table,

and is thus better than the DTABQ implementation for eight and more processors (see

Figure 4.6), we defer comparing the Improved DTABQ and message-passing implementa-

tions to Chapter 4.4.3.

Figure 4.7 shows that the DTABQ implementation performs worse than the message-

passing implementation for problem size 6 and for four and more processors. The mes-

sage-passing implementation performs up to 52% better than the DTABQ implementation.

With one and two processors, the DTABQ implementation performs better. For example,

with one processor, the message-passing implementation executes 6.51 seconds longer

than the DTABQ implementation. The message-passing implementation for one and two

processors performs worse for three reasons. First, the message-passing implementation

incurs the end-to-end latency of user-level active messages, whereas the DTABQ imple-

mentation does not. Based on the performance statistics given in Chapter 4.1, each active

message requires about 100 more cycles than a cached shared-memory access. For one

processor, since each position requires one active message, the message-passing imple-

mentation spends approximately (100 cycles/position)(688,349 positions)(l second/

20,000,000 cycles), or about 3.44 seconds more than the DTABQ implementation in per-

forming data transfer for problem size 6. The other 3.07 seconds of the 6.51 second differ-
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ence between execution times is spent evaluating the values of data sent per message and

copying the data from a message to local variables upon receiving the message. This phe-

nomenon does not significantly affect the difference in execution times as the number of

processors increases because the effect of this phenomenon decreases as parallelism of

sending messages and shared-memory accesses increases. Second, since there are fewer

remote access possibilities for one and two processors than for four or more processors,

we observe that the average cache hit ratio in the DTABQ implementation is higher for

one and two processors (96.0% and 95.2% for one and two processors, respectively, and

94.0%-94.6% for more processors), thus making the overhead of cache coherence actions

lower. Since the difference between cache hit ratios is small, this second reason why the

DTABQ performs better than the message-passing implementation does not contribute

significantly to the difference in execution times.

4.4.2 When Shared Memory Can Perform Better Than Message Passing

By comparing the DTABQ and message-passing implementations, we saw that mes-

sage passing can perform better than shared memory. By comparing the SM and message-

passing implementations, we will observe that shared memory can perform better than

message passing.

Two key insights are the sources of why the SM implementation can perform better

than the message-passing implementation. The first key insight is that a given position in

problem size 5 has on the average fewer possible moves than a given position in problem

size 6 because there are fewer holes and fewer initial pegs in the puzzle board. Table 4.4

illustrates this point by showing the maximum and average number of moves from any

given position during each round. Recall that all our implementations except the

Improved DTABQ implementation determine whether an extension resides in the transpo-

sition table immediately after the extension is generated. If an extension is not in the

transposition table, it is added to the table and to the next queue. Because a given position

in problem size 6 has on the average more possible moves than a given position in prob-

lem size 5, the rate of adding extensions to the next queue will be higher in problem size 6

than in problem size 5 for the SM implementation.

The second key insight is that problem size 6 has a higher average of joined positions

per round than problem size 5. In problem size 6, 65.4% of all positions generated per

round are joined positions. In contrast, 46.2% of all positions generated per round are

joined positions in problem size 5. (Table A.3 and Table A.4 show the average percent-
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Table 4.4. Maximum and average number of moves from any given position in a round in
problem sizes 5 and 6.

ages per round.) As the transposition table fills up with positions, more positions are

joined, and the rate at which positions are added to the next queue slows down. Because

problem size 6 has a higher percentage of joined positions per round than problem size 5

and because in the SM implementation a processor fetches a new position from the current

queue if no more extensions can be generated from a given position, the rate of fetching

positions from the current queue is higher in problem size 6 than in problem size 5.

To illustrate that the rates at which positions are fetched from the current queue and

added to the next queue are greater for problem size 6 than problem size 5, we compare
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Problem Problem
size Problem size 6 Problem

Round maximum size 5 average size 6 averageRound maximum maximum
numerofnumber of number of

moves moves
moves moves

1 3 3.0 4 4.0

2 5 4.3 9 6.3

3 7 4.5 13 7.2

4 7 4.5 15 7.5

5 8 4.6 15 8.0

6 8 4.0 15 8.2

7 6 3.3 16 8.1

8 6 2.6 16 7.9

9 4 1.9 16 7.5

10 3 1.1 14 6.9

11 2 0.5 13 6.2

12 1 0.2 12 5.3

13 0 0 12 4.3

14 11 3.3

15 10 2.4

16 10 1.6

17 4 0.7

18 2 0.4

19 0 0



SM SM
problem size 6 problem size 6

Number of average request rate for average request rate for
Processors current queue divided next queue divided by

by problem size 5 problem size 5 request
request rate rate

2 1.92 1.74

4 1.87 1.67

8 2.18 1.99

16 2.55 2.10

32 2.77 2.32

Table 4.5. Ratio of average request rates for work queues for problem
size 6 to that for problem size 5 in the SM implementation during the
round with the highest number of generated extensions. Since there is
no contention when there is only one processor, the ratios are not shown
for this machine size.

the request rates of processors to be serviced by the work queues during the round with the

highest number of generated extensions (round 8 for problem size 5 and round 11 for

problem size 6) in the SM implementation. When a processor is serviced, it performs a

series of operations, which we will refer to as one queue operation. A current queue oper-

ation consists of obtaining a lock, obtaining a position from the current queue, and releas-

ing the lock. A next queue operation consists of obtaining a lock, adding a position to the

next queue, and releasing the lock. Table 4.5 shows that average request rate for problem

size 6 is 1.67 to 2.77 times the rate for problem size 5, and the ratio of rates generally

increases as the number of processors increases. Since a higher request rate implies

greater contention, contention for the work queues is definitely higher in problem size 6

than in problem size 5. (Table A.6 and Table A.7 show the actual request rates and the

standard deviations of the experiments; ten trials were executed.) We expect higher rates

for generally all rounds because both the percentage of joined positions per round and the

maximum and average number of possible moves from a given position are higher in

problem size 6 than problem size 5.

Lower contention for the work queues in problem size 5 causes less time spent acquir-

ing locks and lower demand on memory access. These factors contribute to why the SM

implementation performs better than both the DTABQ and message-passing implementa-

tions for problem size 5, as shown in Figure 4.8. Recall that the SM implementation has a
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Figure 4.8. Comparison of DTABQ, baseline SM, and message-passing implementations,
problem size 5. Percentages show how much better the SM implementation is than the
message-passing one.

lock on the current queue, whereas the DTABQ implementation does not have locks on

the multiple current queues. Thus, we should expect the SM implementation to perform

worse, but it does not. The reason is that since less time is spent acquiring locks, other

overheads are relatively more significant. Recall that the DTABQ implementation hashes

the bit representations of extensions in order to distribute work, whereas the SM imple-

mentation does not. Because this hashing overhead in the DTABQ implementation is

more significant relative to time spent acquiring a lock on the current queue in the SM

implementation, the DTABQ implementation performs worse. The difference in execu-

tion times is not attributed to time spent executing LimitLESS software because the differ-

ence between the times the two implementations spend executing LimitLESS software,

averaged over all processors, is insignificant relative to execution time.

The SM implementation performs better than the message-passing implementation for

all machine sizes for the following reason: data access requests are processed by the

underlying hardware in parallel with the executing thread on the processor that services

the requests, and this process significantly affects execution time when demand on mem-

ory access is low. In contrast, in the message-passing implementation, data access

requests interrupt the executing thread on the servicing processor, thus making processing

data access requests and running the executing thread sequential. Thus, we arrive at our

second conclusion: shared memory offers low-overhead data access and performs better

than message passing for applications that exhibit low contention.
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Figure 4.9. Comparison of DTABQ, baseline SM, and message-passing implementations,
problem size 6. Percentages show how much worse the SM implementation is than the
DTABQ and message-passing implementations.

For problem size 6, this conclusion no longer holds: because contention for the work

queues is higher, the demand on memory access is higher. Thus, although shared-memory

accesses are being processed in parallel with executing threads, the parallelism is reduced.

Figure 4.9 shows that the baseline SM implementation performs worse than the DTABQ

and message-passing implementations for problem size 6 for two and more processors.

For one processor, the SM implementation performs better than the message-passing

implementation because the message-passing implementation incurs the end-to-end

latency of user-level active messages and overheads mentioned in the previous section,

whereas the SM implementation does not. Again, the overheads in the message-passing

implementation do not significantly influence the difference in execution times as the

number of processors increases because parallelism of sending messages and shared-

memory accesses also increases. For one processor, the performance difference between

the SM and message-passing implementations is not as large as that for the DTABQ and

message-passing implementations because the SM implementation uses a lock on the cur-

rent queue, whereas the DTABQ implementation does not. The difference in execution

times of the SM and DTABQ implementations is not attributed to executing LimitLESS

software because for all numbers of processors, both implementations spend about the

same time, averaged over all processors, for problem size 6. The SM implementation per-

forms worse than the DTABQ implementation for one processor because more time is

spent locking the current queue in the SM implementation than hashing positions to dis-

tribute work in the DTABQ implementation. Recall that for problem size 5, the SM
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Figure 4.10. Comparison of message-passing and Improved DTABQ implementations,
problem size 6. There is not enough memory in one processor (*) to execute the Improved
DTABQ implementation. Percentages show how much worse the Improved DTABQ
implementation is than the message-passing implementation.

implementation performs better with one processor. The reason is that 34.4% of all

explored positions are hashed in the DTABQ implementation for problem size 5, whereas

only 16.5% of all explored positions are hashed in the DTABQ implementation for prob-

lem size 6. Thus, for one processor, problem size 5 spends more time hashing in the

DTABQ implementation than locking in the SM implementation, whereas problem size 6

spends more time locking in the SM implementation than hashing in the DTABQ imple-

mentation.

4.4.3 Improved DTABQ and Message-Passing Implementations

When compared with the message-passing implementation, the Improved DTABQ

implementation also supports the two conclusions of this thesis. Since it reduces the

amount of synchronization by not using any locks on the four main data structures, the

Improved DTABQ implementation reduces the negative effect of decoupling synchroniza-

tion and communication. In addition, since data accesses to a processor's set of next

queues execute in parallel with the thread that runs on that processor, the Improved

DTABQ implementation approaches the performance of the message-passing implemen-

tation within 16% in the best case and 24% in the worst case. Figure 4.10 compares the

Improved DTABQ and message-passing implementations.

46

999999999 W .... 1..ll lllrl

I



'JII - - ' 'rAo' I I ·.. ·
0rlVa,

0

E 15
I-

I 10

5

0

I , / MWI l IIIIJIEEEmlI IUUEI

W"A'WJ-d Hybrid Implementation
Message-passing impl.

,xL%%%% Improved DTABQ Impl.
with prefetching

27%

8 B36%

-lL 48%
i1 jS 015N i

_~~~~I _ A

- 8 16 32
Number of Processors

Figure 4.11. Comparison of DTABQ, hybrid, message-passing, and Improved DTABQ
implementations, problem size 6. Percentages show how much the hybrid implementation is
worse than the message-passing implementation. Because the hybrid implementation
requires two pools of positions, it needs at least eight processors to have enough memory to
execute.

4.5 Hybrid Implementation

For this application, a hybrid implementation (one that shares the transposition table

among processors and uses message passing to distribute extensions) will not perform bet-

ter than the pure message-passing implementation. Two characteristics of the message-

passing implementation support this hypothesis. First, extensions with the same canonical

position are sent to the same processor. Second, checking whether these extensions are in

this processor's piece of the transposition table always involves accesses to private mem-

ory. Because of this locality in the message-passing implementation, a hybrid implemen-

tation will perform worse.

We implemented a hybrid implementation that is the same as the DTABQ implementa-

tion, with three exceptions. First, extensions are sent as active messages. Second, gener-

ating extensions precedes a phase in which it is determined whether extensions reside in

the transposition table. Third, the pool of positions is managed differently. Each proces-

sor has one pool of positions in its private memory and one pool of positions in its portion

of shared memory. Because deadlock may result in the current Alewife implementation

when a message handler accesses shared memory, a processor places received extensions

in its next queue, which refers to positions in the processor's private pool of positions.
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Figure 4.12. Speedups of Improved DTABQ and message-passing implementations over
sequential implementation.

Because the transposition table is shared, if an extension in the next queue does not reside

in the table, it is copied to a shared position and placed in the table and current queue.

Figure 4.11 shows that the hybrid implementation for problem size 6 performs worse than

the message-passing implementation, but performs better than the DTABQ implementa-

tion. Figure 4.11 also shows that the hybrid implementation performs worse than the

Improved DTABQ implementation because the Improved DTABQ implementation has

local accesses to the transposition table and has no locks on any of the four main data

structures.

4.6 Speedups of the Improved DTABQ and Message-Passing Implemen-
tations

Figure 4.12 examines the speedups of the Improved DTABQ and message-passing

implementations over a sequential implementation of the breadth-first search algorithm on

one node of the Alewife machine. This sequential implementation executes in 0.137 sec-

onds for problem size 5, and executes in 34.694 seconds for problem size 6 (averaged over

ten trials). Because of the characteristics of the message-passing implementation men-

tioned in the previous section and because it does not incur the overhead of performing
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cache coherence actions, the message-passing implementation generally scales better than

the Improved DTABQ implementation. However, for eight and more processors and

problem size 5, the Improved DTABQ implementation scales better. This fact supports

our second conclusion that with a small problem size and hence lower contention, shared

memory performs better. In addition, both implementations scale better for problem size 6

than problem size 5. The reason is that a larger problem size is more suitable for parallel

solution because there is dramatically more work to perform (688,349 positions are

explored in problem size 6, whereas only 2,463 positions are explored in problem size 5).

The average time per processor spent executing LimitLESS software does not affect the

scalability of the Improved DTABQ implementation. For both problem sizes and eight

and more processors, 2,000 or fewer cycles are spent executing LimitLESS software.
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Chapter 5

Related Work

Several papers compare shared-memory and message-passing versions of parallel

applications. Chandra et al. [8] compare shared-memory and message-passing implemen-

tations of four parallel applications. However, unlike our comparison, which uses an

actual machine to make measurements, they simulate a distributed, cache-coherent shared-

memory machine and a message-passing machine by using different simulators that run on

a CM-5. In addition, their message-passing machine simulator uses Thinking Machines'

CMMD message-passing library, which has questionable efficiency. Moreover, their sim-

ulators assume constant network latency and do not account for network contention. Mar-

tonosi and Gupta [19] compare shared-memory and message-passing implementations of

a standard cell router called LocusRoute. However, they use different simulators for their

shared-memory and message-passing machines, and run each simulator on a different

machine. Kranz et al. [16] evaluate shared-memory and message-passing microbench-

marks on Alewife, and one of their results supports our first main conclusion.

A noteworthy parallel solution by Hatcher and Quinn [15] solves the triangle puzzle

on different parallel machines that support either shared memory or message passing in

hardware. Their algorithm starts with parallel breadth-first search until each logical pro-

cessor (a physical processor consists of logical processors) has at least one position to

extend, then switches to parallel depth-first search in which each logical processor is

responsible for independently computing the number of solutions from the positions it

owns. Because of the large number of joins encountered when solving the triangle puzzle,

implementations that use this approach will duplicate work and thus can perform worse

than those that strictly perform parallel breadth-first search and utilize a shared transposi-

tion table. Our message-passing implementation in which independent depth-first search

begins after each physical processor has at least one position performs worse than the

PBFS-only, message-passing implementation on the same machine, a 64-node CM-5. For

example, for problem size 5 on 64 processors, performance degrades by a factor of three

(setup time included).

The triangle puzzle has been solved using sequential algorithms. Bischoff [4], who

won second place in the Internet contest mentioned in Chapter 1, uses algorithmic tech-

niques similar to ours in a sequential algorithm that runs on various machines. On a

486DX2-66, his algorithm that solves problem size 6 runs in 4.13 seconds, whereas our
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algorithm on the same architecture runs in 7.25 seconds, or 1.8 as slow. The reason Bis-

choff's sequential algorithm executes faster is that his algorithm stores all reflections of

positions in a table, whereas we dynamically compute them; there is a time-space trade-

off. We decided to dynamically compute reflections of positions because physical mem-

ory per node on Alewife is low (5MB maximum usable memory) and there is no virtual

memory yet.

The triangle puzzle is similar to other tree-search problems, such as the N-queens

problem [9, 12, 23, 27, 28], the Hi-Q puzzle [23], and chess [18]. Many of the search

techniques, such as exploiting symmetry to reduce the search space and using a transposi-

tion table, arise in solving these problems.
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Chapter 6

Conclusions

We presented parallel shared-memory and message-passing implementations that

solve the triangle puzzle. This thesis is the first controlled case study of message-passing

and shared-memory implementations of an application that runs on actual hardware: only

the communication interfaces used by the implementations vary; all other system compo-

nents remain fixed. From this case study, we draw two main conclusions. First, when

using distributed shared memory, performing cache coherence actions and decoupling

synchronization and data transfer can make a shared-memory implementation less effi-

cient than the message-passing implementation. Second, shared memory offers low-over-

head data access and can perform better than message passing for applications that exhibit

low contention.

To address the shared memory versus message passing debate, we comment on the

performance of our implementations and the ease of programming them. We learned from

this case study that under certain circumstances and for this particular application, a

shared-memory implementation sometimes performs better than the message-passing one.

Under other circumstances, the message-passing implementation performs better. Regard-

ing ease of programming, we found the shared-memory implementations easier to pro-

gram. One insidious bug (that was fixed) in our message-passing implementation was a

race condition that existed when executing code was interrupted by the code in a message

handler. Thus, we argue for machines that efficiently support both shared memory and

message passing so that all parallel applications can perform well.
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Appendix A

Supplemental Tables

Table A. 1 and Table A.2 show the execution times for shared-memory and message-

passing implementations for problem sizes 5 and 6, respectively. Only execution times

that were graphically presented in Chapter 4 are presented. Table A.3, Table A.4, and

Table A.5 show the number of positions explored and number of joined positions per

round for problem sizes 5, 6, and 7, respectively. Table A.6 and Table A.7 show request

rates and standard deviations of work queue operations for problem sizes 5 and 6, respec-

tively; the data from these tables was used to derive the data in Table 4.5.

Execution Standard
Implementation Time Deviation

(seconds) (seconds)

1 0.162 0.000001

2 0.096 0.000159

SM 4 0.057 0.000125

8 0.037 0.000106

16 0.029 0.000184

32 0.029 0.000313

1 0.165 0.000002

2 0.106 0.000023

DTABQ 4 0.069 0.000050

8 0.048 0.000065

16 0.037 0.000144

32 0.033 0.000105

Table A.1. Execution times for shared-memory and message-passing implementations, problem size 5.
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Table A.1. Execution times for shared-memory and message-passing implementations, problem size 5.

(This portion of Table A. 1 is continued from the previous page.)
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Execution Standard
Implementation Number of Time Deviation

(seconds) (seconds)

1 0.187 0.000002

Improved 2 0.113 0.000009

DTABQ 4 0.067 0.000013

with 8 0.044 0.000027

prefetching 16 0.031 0.000068

32 0.026 0.000070

1 0.188 0.000001

2 0.106 0.000014

Message 4 0.062 0.000038

Passing 8 0.043 0.000075

16 0.033 0.000159

32 0.030 0.000061



Execution Standard
Implementation Time Deviation

(seconds) (seconds)

1 44.370 0.000012

2 24.577 0.002670

SM 4 13.260 0.001937

8 8.679 0.008489

16 6.245 0.015937

32 6.165 0.027826

1 41.765 0.000013

2 23.046 0.003010

DTABQ 4 12.550 0.001806

8 8.166 0.004335

16 5.251 0.003485

32 3.349 0.009677

1 can't execute

2 28.626 0.000394

Improved 4 14.934 0.000358

DTABQ 8 7.703 0.000265

16 3.934 0.000135

32 2.062 0.000090

1 can't execute

Improved 2 28.150 0.000565

DTABQ 4 14.610 0.000302

with 8 7.497 0.000320

prefetching 16 3.807 0.000141

32 1.984 0.000140

1 can't execute

Hybrid 2 can't execute

4 can't execute

8 7.787 0.001534

Table A.2. Execution times for shared-memory and message-passing implementations, problem size 6.

57



Table A.2. Execution times for shared-memory and message-passing implementations, problem size 6.

(This portion of Table A.2 is continued from the previous page.)

Table A.3. Position statistics per round for problem size 5.
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Execution Standard
Implementation Time DeviationProcessors

(seconds) (seconds)

Hybrid 16 4.173 0.000870

32 2.371 0.001063

1 48.278 0.000013

2 24.191 0.000853

Message 4 12.107 0.000599

Passing 8 6.138 0.000478

16 3.071 0.000244

32 1.599 0.000230

Number of Number of Joined Percentage of Joined
Positions Explored Positions Positions

1 2 1 50.0%

2 3 0 0%

3 13 2 15.4%

4 49 18 36.7%

5 134 63 47.0%

6 319 187 58.6%

7 524 342 65.3%

8 595 416 69.9%

9 462 323 69.9%

10 265 168 63.4%

11 81 55 67.9%

12 14 8 57.1%

13 1 0 0%

Total (including initial 1614 (average per round)
position) 2463 46.2%



Number of Number of Joined Percentage of Joined
Positions Explored Positions Positions

1 2 1 50.0%

2 4 0 0%

3 25 2 8%

4 166 59 35.5%

5 805 399 50.0%

6 3255 1927 59.2%

7 10842 7250 66.9%

8 29037 21063 72.5%

9 62813 48320 76.9%

10 108651 87704 80.7%

11 144681 121409 83.9%

12 143275 123753 86.4%

13 102976 90417 87.8%

14 53927 47673 88.4%

15 20684 18236 88.2%

16 5893 5132 87.1%

17 1180 1012 85.8%

18 120 92 76.7%

19 12 7 58.3%

Total (including initial 574456 (average per round)
position) 688349 65.4%

Table A.4. Position statistics per round for problem size 6.
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Number of Number of Joined Percentage of Joined
Positions Explored Positions Positions

1 2 1 50.0%

2 6 3 50.0%

3 26 3 11.5%

4 234 107 45.7%

5 1362 725 53.2%

6 7320 4571 62.4%

7 32694 22460 68.7%

8 124336 92116 74.1%

9 395100 308524 78.1%

10 1057990 861074 81.4%

11 2372103 1994427 84.1%

12 4435444 3826796 86.3%

13 6881092 6058173 88.0%

14 8829772 7897726 89.4%

15 9336725 8452864 90.5%

16 8102692 7401676 91.3%

17 5755731 5289176 91.9%

18 3356026 3094497 92.2%

19 1602445 1479590 92.3%

20 618748 570793 92.2%

21 191239 175627 91.8%

22 47219 43046 91.2%

23 8620 7762 90.0%

24 1061 908 85.6%

25 144 120 83.3%

26 0 0 0%

Total (including initial 47582765 (average per round)
position) 53158132 73.7%

Table A.5. Position statistics per round for problem size 7.
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Standard Standard
Request rate deviation for Request rate deviation for

Number of for current request rate for for next queue request rate for
Processors queue current queue (operations/ next queue

(operations/
(cyle) (operations/ cycle) (operations/

cycle) cycle)

2 5066.86 48.86 5040.81 139.40

4 5707.26 146.01 5725.38 518.98

8 6684.33 358.28 6621.06 1119.82

16 9702.18 916.56 9382.08 2145.33

32 18249.81 3294.98 16756.77 5046.32

rable A.6. Request rates and standard deviations for work queue operations, problem size 5

Standard Standard
Request rate deviation for Request rate deviation forfor current

Number of queue request rate for for next queue request rate for
Processors (operations/ current queue (operations/ next queue

pcycle) (operations/ cycle) (operations/
cycle) cycle)

2 9724.42 161.89 8753.54 166.60

4 10647.27 163.51 9583.73 180.65

8 14597.15 1535.84 13157.04 1522.94

16 24781.83 16010.10 19662.13 4050.93

32 50469.07 38950.69 38912.12 3363.33

Table A.7. Request rates and standard deviations for work queue operations, problem
size 6. The standard deviations for 16 and 32 processors for the request rate for current
queue operations are high because the processor whose memory bank contains the work
queues has a request rate that is much higher than all other processors. The reason is that
all accesses to the work queues for this processor are local. For all other processors, the
request rates are equal to about the average shown.

61



62



Bibliography

[1] D. Applegate, G. Jacobson, and D. Sleator. "Computer Analysis of Sprouts." Carn-
egie Mellon University, School of Computer Science, TR 91-144, May 1991.

[2] A. Agarwal, R. Bianchini, D. Chaiken, K. Johnson, D. Kranz, J. Kubiatowicz, B.-H.
Lim, K. Mackenzie, and D. Yeung. "The MIT Alewife Machine: Architecture and
Performance." Submitted for publication, December 1994.

[3] A. Agarwal, J. Kubiatowicz, D. Kranz, B.-H. Lim, D. Yeung, G. D'Souza, and M.
Parkin. "Sparcle: An Evolutionary Processor Design for Large-Scale Multiproces-
sors." IEEE Micro, June 1993, pp. 48-61.

[4] M. Bischoff. "Approaches for Solving the Tri-Puzzle." November 1993. Available
via anonymous ftp from lucy. ifi. unibas. ch as tri-puzzle/michael/
doku. ps.

[5] M. Blumrich, K. Li, R. Alpert, C. Dubnicki, E. Felten, and J. Sandberg. "Virtual
Memory Mapped Network Interface for the SHRIMP Multicomputer." In Proceed-
ings of the Twenty-first Annual International Symposium on Computer Architecture,
Chicago, Illinois, April 1994. pp. 142-153.

[6] J. Carter, J. Bennett, W. Zwaenepoel. "Implementation and Performance of Munin."
In Proceedings of the Thirteenth ACM Symposium on Operating Systems Principles,
Pacific Grove, California, October 1991. pp. 152-164.

[7] D. Chaiken, J. Kubiatowicz, and A. Agarwal. "LimitLESS Directories: A Scalable
Cache Coherence Scheme." In Proceedings of the Fourth International Conference
on Architectural Support for Programming Languages and Operating Systems,
Santa Clara, California, April 1991, pp. 224-234.

[8] S. Chandra, J. Larus, and A. Rogers. "Where Is Time Spent in Message-Passing and
Shared-Memory Implementations?" In Proceedings of Architectural Support for
Programming Languages and Operating Systems VI, San Jose, California, October
1994, pp. 61-73.

[9] P.-C. Chen. Heuristic Sampling on Backtrack Trees. Ph.D. thesis. Stanford Univer-
sity. May 1989. (Also available as Stanford Technical Report CS 89-1258.)

[10] L. Crowl, M. Crovella, T. LeBlanc, M. Scott. "Beyond Data Parallelism: The
Advantages of Multiple Parallelizations in Combinatorial Search." University of
Rochester, Dept. of Computer Science, TR 451, April 1993.

[11] W. Dally. A VLSI Architecture for Concurrent Data Structures. Kluwer Academic
Publishers, 1987.

[12] R. Finkel and U. Manber. "DIB--A Distributed Implementation of Backtracking."
ACM Transactions on Programming Languages and Systems, April 1987, Vol. 9,
No. 2. pp. 235-256.

63



[13] J. Gittinger; T. Chikayama and K. Kumon. Proofs that there are no solutions for the
triangle puzzle for size 3N+1. Available via anonymous ftp from
lucy.ifi.unibas.ch in directories tri-puzzle/gitting and tri-
puzzle/jm. November 1993.

[14] S. Gutzwiller and G. Haechler. "Contest: How to Win a Swiss Toblerone Choco-
late!" August 1993, Usenet newsgroup comp. parallel.

[15] P. Hatcher and M. Quinn. Data-Parallel Programming on MIMD Computers. The
MIT Press: 1991.

[16] D. Kranz, K. Johnson, A. Agarwal, J. Kubiatowicz, and B.-H. Lim. "Integrating
Message-Passing and Shared-Memory: Early Experience." In Proceedings of the
Fourth ACM SIGPLAN Symposium on Principles and Practice of Parallel Program-
ming, San Diego, California, May 1993. pp. 54-63.

[17] J. Kuskin, D. Ofelt, M. Heinrich, J. Heinlein, R. Simoni, K. Gharachorloo, J. Chapin,
D. Nakahira, J. Baxter, M. Horowitz, A. Gupta, M. Rosenblum, and J. Hennessy.
"The Stanford FLASH Multiprocessor." In Proceedings of the Twenty-first Interna-
tional Symposium on Computer Architecture, Chicago, Illinois, April 1994. pp. 302-
313.

[18] B. Kuszmaul. Synchronized MIMD Computing. Ph.D. thesis. MIT Laboratory for
Computer Science. May 1994.

[19] M. Martonosi and A. Gupta. "Trade-offs in Message Passing and Shared Memory
Implementations of a Standard Cell Router." In Proceedings of the 1989 Interna-
tional Conference on Parallel Processing, Pennsylvania State University Park,
Pennsylvania, August 1989. pp. 111-88 to 111-96.

[20] J.M. Mellor-Crummey and M.L. Scott. "Algorithms for Scalable Synchronization
on Shared-Memory Multiprocessors." ACM Transactions on Computer Systems,
February 1991, Vol. 9, No. 1. pp. 21-65.

[21] J. Pearl. Heuristics: Intelligent Search Strategies for Computer Problem Solving.
Addison-Wesley, 1984.

[22] C. Polychronopoulos and D. Kuck. "Guided Self-Scheduling: A Practical Schedul-
ing Scheme for Parallel Supercomputers." IEEE Transactions on Computers,
December 1987. pp. 1425-1439.

[23] E. Reingold, J. Nievergelt, N. Deo. Combinatorial Algorithms: Theory and Prac-
tice. Prentice Hall, 1977.

[24] C. Seitz. "Concurrent VLSI Architectures." IEEE Transactions on Computers,
December 1984. pp. 1247-1265.

[25] Thinking Machines Corporation. Connection Machine CM-5 Technical Summary.
Nov. 1993.

64



[26] T. von Eicken, D. Culler, S. Goldstein, and K. Schauser. "Active Messages: A
Mechanism for Integrated Communication and Computation." In Proceedings of the
19th International Symposium on Computer Architecture, Gold Coast, Australia,
May 1992. pp. 256-266.

[27] C.K. Yuen and M.D. Feng. "Breadth-First Search in the Eight Queens Problem."
ACM SIGPLANNotices, Vol. 29, No. 9, Sep. 1994. pp. 51-55.

[28] Y Zhang. Parallel Algorithms for Combinatorial Search Problems. Ph.D. thesis.
UC Berkeley. November 1989. (Also available as UC Berkeley Computer Science
Technical Report 89/543.)

65



66


