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ABSTRACT

The overwhelming majority of commercial drugs have been discovered by random
screening methods. The chance of finding active compounds in a biological screen is
improved by having a large and diverse pool of molecules from which to choose. This
simple notion has led to the development of combinatorial chemistry. Instead of using a
serial approach to synthesis, chemists make compounds in a parallel fashion, thereby
enabling rapid synthesis of large chemical libraries. Time is saved by avoiding purification
of intermediates, and thus combinatorial chemistry places a great emphasis on performing
reactions that proceed in high yields.

Carbohydrates are an underutilized but potentially ideal class of building blocks for
combinatorial chemistry because they package substantial complexity into compact
molecular structures. The glycosaminoglycan heparin is an example of a natural
carbohydrate library in which seemingly small variations in a repeating skeletal core give
rise to a broad range of biological activities. We sought to produce heparin mimetics by a
semi-synthetic route. Heparinase cleavage was used to produce fragments that could be
modified and subsequently linked with a Michael addition. The complexity of the natural
system led us to synthesize a monosaccharide Michael acceptor as a model system. We
studied the Michael addition of various thiolates to the model compound. Unfortunately,
nucleophilic attack proceeded primarily from the re (top) face, giving adducts with different
stereochemistries than those found in heparin. Furthermore, thioglycosides were incapable
of Michael addition. We attempted to synthesize combinatorial libraries using the Michael
addition with glycoconjugates, but yields were low.

We wanted to utilize carbohydrate building blocks, but needed a highly efficient reaction to
couple them. We functionalized monosaccharides with an amine and a carboxylic acid,
thereby producing glycosamino acids. These monomeric units were linked with amide
bonds to produce glycotides. We have synthesized several classes of glycosamino acids
(protected as azido esters), and have synthesized defined oligomers, small libraries of linear
glycotides, and template-directed libraries.

Thesis Supervisor: Peter T. Lansbury
Title: Associate Professor of Chemistry
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Chapter 1

Overview of Combinatorial Chemistry

The pharmaceutical industry is currently undergoing dramatic transformations as a

result of a confluence of economic, political, legal, and technological pressures. Among

the most profound of these changes is a fairly new approach to drug development known

as combinatorial chemistry. The goal of combinatorial chemistry is to rapidly produce large

and diverse chemical libraries as sources of lead compounds and viable pharmaceuticals.

Traditional approaches to drug discovery have relied upon identification of lead

compounds from random screening, followed by serial optimization of the leads14 . Lead

compounds are obtained by screening synthetic chemical libraries and natural products

isolated from animal sources, plant extracts, and microbial fermentations. The leads are

then laboriously refined into drug candidates through a process of systematic optimization.

Sequential modifications of the lead compounds are individually synthesized and tested for

activity, with beneficial changes retained and detrimental ones discarded. Of course,

changes are not necessarily additive, and this factor further retards the evolutionary process

of medicinal chemical optimization. Undeniably, the traditional approach to drug

development has been successful, but increasing competition for shrinking profits has

dictated an industry-wide search for a faster and more cost-effective approach.

One such approach is structure-based rational drug design.* Conceptually, rational

drug design is very simple. If one can define the three-dimensional structure of a target

molecule of known biological importance, then it should be possible to "design"

compounds which can interact with the target in a very specific manner, thereby producing

a high-potency drug with minimal side effects. In practice, rational drug design is plagued

by several logistical problems5-8 , the most important of which is obtaining a highly precise

* Since it has been used widely for many years, mechanism-based drug design can be classified as a subset
of the traditional approach to drug development.

8



physical structure of the biologically active conformation of the target. It is critical to obtain

the three-dimensional structure of the bioactive conformation in solution, which is likely to

differ from the solid-state crystal structure or the thermodynamically favored solution

structures. Furthermore, the uncertainties of the methods used to obtain three-dimensional

structures of biomolecules, i.e., x-ray crystallography and two-dimensional NMR, are on

the same order as the size of atoms7,8. Obviously, greater precision in the structures of the

biological target would facilitate drug design.

There have been some published successes involving rational drug design5 8 9.

Furthermore, many of the barriers to success are largely technical in origin, and thus it is

likely that rational drug design will become increasingly effective in the future.

Nevertheless, progress has been disappointingly slow, and in spite of its enormous

potential, rational drug design has not emerged as a general, cost-effective alternative to

traditional drug discovery approaches.

Undoubtedly, the slow progress of rational drug design has contributed to the

enormous appeal of combinatorial chemistry. If development of a drug candidate depends

on finding a compound with a particular biological interaction, and if it is impossible to

accurately predict whether a given compound will possess the desired interaction, then the

chance of finding a potential therapeutic is improved by having a large and diverse pool of

molecules from which to choose. Pharmaceutical companies have access to vast and fairly

diverse sets of discrete chemical entities, and chemists certainly could synthesize "libraries"

of novel compounds using traditional methods. Thus, combinatorial chemistry is

distinguished by the emphasis on making libraries of compounds rapidly. Stripped to its

essence, combinatorial chemistry is a labor-saving device.

The operational objective of combinatorial chemistry is to make many compounds

in the amount of time previously required to make a single compound. This is achieved by

performing chemical synthesis in parallel rather than in series. Unfortunately, organic

chemistry is not routinely amenable to parallel synthesis. The rate-determining process in
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most organic syntheses is the purification of intermediates and a final product. In other

words, the majority of a chemist's time is spent not in starting reactions, but rather in

finishing (work-up and purification) them. In order for parallel synthesis to meet its goal

of drastically reducing the time per chemist per compound, the rate-limiting step in the

synthetic process must be circumvented, and therefore invasive purification techniques

(chromatography, recrystallization, etc.) are avoided.* As a consequence, approaches to

combinatorial chemistry place a great emphasis on reactions that proceed in high yields,

with reactants and byproducts that are either benign or easily removed. Although solid

phase chemistry is not a required component of combinatorial chemistry, it is highly

compatible. Solid phase synthesis allows the use of an excess of reagents to drive a

reaction to completion, after which the reagents, byproducts, and solvent are removed by

filtration. Therefore, it should not be surprising that the initial approaches to combinatorial

chemistry involved making libraries of oligopeptidesl 0 -12 and oligonucleotides3 ,'14 , since

solid phase synthesis of these biopolymers1'51 7 has been very well-refined.

There appears to be a widely held impression that the purpose of combinatorial

chemistry is to produce new leads in drug discovery. From the perspective of a

pharmaceutical company, the goal is obviously to shorten the drug development cycle.

There are probably very few biological assays that would not realize many "hits" when

screened by the myriad of chemicals to which a pharmaceutical company has access. In

order for combinatorial chemistry to provide some improvements, the combinatorial

libraries must avoid redundancy and serve as a source of novel lead compounds with

superior properties. Perhaps the stated purpose might be better phrased: "to produce

superior new leads in drug discovery". This would entail the discovery of more lead

structures, possessing higher affinities, significant conformational restraints, greater

potential for optimization, easier synthesis, better pharmacokinetic properties, etc. Given

* The alternative, parallel synthesis with invasive purification, is simply the standard operating procedure
for organic chemists, provided the number of parallel syntheses (n) is small. When n becomes large
(approximately 5, depending on the organizational skills of the chemist), efficiency rapidly declines.
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these potential benefits, the search for superior new leads is sufficient to justify an

investment in combinatorial chemistry. Nevertheless, this stated purpose is artificially

limiting and presents a somewhat myopic view of the potential of combinatorial chemistry.

The methodical process of refining and optimizing lead compounds normally

requires significantly more time than that spent in identifying leads3 ,5. Consequently, if the

goal is to substantially reduce the portion of the drug development cycle devoted to drug

discovery, one must find a way to facilitate the optimization process. Therein lies the true

potential of combinatorial chemistry. The ultimate goal of combinatorial chemistry is not

only to provide a source for new and perhaps superior lead compounds, but also to provide

a suitable framework for iterative rounds of combinatorial optimization.

Approaches to Combinatorial Library Synthesis

It is easy to understand how combinatorial chemistry can be used to generate vast

chemical libraries. The size of a library is an exponential function of the number of

synthetic steps and different chemical reagents available for each step (see Table 1-1).

Assuming one wishes to employ a building block approach to combinatorial synthesis,

with the number of building blocks represented by x and the number of couplings

represented by y, then the total number of compounds N = xY. There are 20 common

amino acids, and thus there are 8,000 (203) possible tripeptides, 160,000 (204)

tetrapeptides, etc. Increases in the library size can be obtained by either increasing the

number of building blocks or increasing the number of coupling steps. Nature has chosen

the latter strategy, and the enormous diversity that can be achieved by repeated ligations of

a relatively small number of building blocks is exemplified by the genetic code. The former

strategy is more appealing to a pharmaceutical company, since it reduces the number of

synthetic steps and keeps the molecular weights of the compounds sufficiently low

(generally < 700)2 to maintain desirable levels of oral bioavailability.
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Table 1-1. Library size is a function of the number of building blocks and coupling steps.

There are two fundamental challenges in combinatorial chemistry. The first is to

generate diverse chemical libraries, and the second is to characterize the components of the

libraries which possess desirable properties. These challenges are not treated

independently. In the absence of a mechanism to access the molecular structures of active

compounds culled from screening, it is of little value to make large chemical libraries.

There are several approaches to library synthesis that facilitate identification and

characterization of compounds with desirable properties.

Spatially Addressable Systems. Members of a library can be synthesized in

spatially segregated arrays, such that at any location in space, only a single compound (or a

planned mixture derived from a discrete sequence of reactions) of known composition is

present. Synthesis is performed in an array format, with multiple sites for simultaneous

12

Building Blocks Oligomer Size Library Size

(number) (D.P.) (# of compounds)

2 16

4 4 256

10 1,048,576

2 400

20 4 160,000

6 2,560,000

2 2,500

50 3 125,000

4 6,250,000



synthesis, and frequently utilizes solid supports. For example, the resin can be contained

in a reservoir well ("resin in a well") 18 , on polypropylene rods arrayed in 96-well

microtitre plates ("resin on a pin") I I, or in enclosed gas dispersion tubes ("resin in a

pin")19 capable of synthesizing 40 "diversomers" simultaneously. These methods have the

advantage of producing defined compounds that are amenable to standard screening

methods, but at present they can not be used to synthesize enormous libraries. Fodor and

coworkers20 have developed a very elegant approach to making large, spatially addressable

libraries of peptides and oligocarbamates using photolabile protecting groups (see Figure 1-

1). The spatial resolution afforded by photolithography permits miniaturization of the

process, providing 40,000 discrete synthesis sites on a 1 cm2 chip. The two major

disadvantages of this light-directed technique are that it involves specialized, expensive

technology, and biological testing must be performed on the resin-compound complex

rather than in solution. This constraint on screening is problematic for two reasons. First,

it necessitates changes in the standard screening formats used by the pharmaceutical

industry, and second, there is potential interference from the solid support, primarily in

denying access to certain conformations.

Split Synthesis Method A library of compounds can be synthesized in

combinatorial fashion on solid supports, with repeated cycles of separation followed by

mixing of the solid particles12 ,21. For example, functionalized resin beads can be separated

into a number of groups, and each group is treated with a different chemical reagent. The

various sets are then pooled and treated with a common chemical (such as a deprotection

step), after which the separation/mix cycle is repeated. Every bead in the final library will
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Figure 1-1. Synthesis of spatially addressable libraries using photolabile protecting groups2 0 .

have a product or products resulting from a single, discrete reaction sequence (see Figure

1-2). The compounds are then screened for a particular biological activity, and the

chemical structure of the compound attached to the bead is determined by analytical

techniques. Obviously, this approach works well for biopolymers amenable to microscale

sequencing techniques, but is much less efficient when the characterization process is not

straightforward. However, recent2 2 and foreseeable advances in mass spectrometric

techniques could make the split synthesis method an increasingly viable approach for

construction of small molecule libraries, since the principal disadvantage of this method is

the difficulty of characterizing an active compound.
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Multivalent Synthesis Method A chemical library can be created by pooling

different reagent choices during synthesis, thereby producing a mixture of compounds.

Synthesis of this type of library requires less time than the previous two libraries (there is

no spatial separation; hence there is only one reaction mixture to set up), but

characterization of the desired compounds is more difficult. Frequently, an active

compound is identified by a deconvolution process in which a series of libraries of

decreasing complexity are synthesized23. The major advantage of the multivalent synthesis

method is that it facilitates rapid synthesis of a large library, but this is more than offset by

several disadvantages. In theory, time is saved during synthesis by only having one

reaction to set up, but in practice, multiple libraries are synthesized simultaneously to

facilitate deconvolution (see Figure 1-3). Consequently, the time required for initial library

synthesis using the multivalent synthesis approach is similar to that required with the split

synthesis approach. Repeated cycles of library synthesis and screening are necessary and

extremely cumbersome features of the multivalent synthesis approach. Additionally, it is

difficult to control the composition of the libraries, since the distribution of products in any

reaction step is a function of the different rate constants for the various reagents employed.

Potential problems involving operational scale and interference effects in library screening

are introduced because there is no way to physically divide the mixture into smaller groups

of compounds, and thus screening is performed simultaneously on the entire library. Most

importantly, the deconvolution process is fundamentally flawed. The compound that

eventually is selected is the most active component of the final, petite, "sub-library", but

may be significantly different than the most active compound of the original, diverse

library.
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Figure 1-3. Mimotope deconvolution method2 3 .

Encoded Library Method. Combinatorial libraries can be synthesized such that

every bead contains a unique chemical tag that permits ready identification of the attached

compound(s), or, more precisely, the sequence of reactions to which the bead was

exposed. Several tagging methods have been devised, including "cosynthesis" methods

using oligonucleotide24 (identification through PCR amplification) or peptide tags25

(identification via sequencing, with the obvious disadvantage that greater quantities are

required), and a binary encoding method26 ,27 (see Figure 1-4) which uses a set of

chemically inert tags (identification via electron capture capillary gas chromatography

analysis). Like the spatially addressable methods, the major advantage of these encoding

methods is the ability to immediately and definitively characterize active compounds. The

principal disadvantages include the additional time required for attachment and cleavage of

the linker, synthetic limitations resulting from the need to develop compatible coupling and

deprotection chemistry (mandated by the simultaneous syntheses of two classes of

compounds, the library component and the tag, per bead), and potential interference from

the tag in the screening process.

17
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Of the various encoding methods, the one that appears to be the most promising is

the binary code methodology developed by Still and coworkers26 ,27. The tags are not

sequentially connected; hence, cosynthesis of a second oligomeric chain is not required.

The chemical tags are inert to many typical reagents used in organic synthesis, and thus are

amenable to a more diversified library than is possible with less stable oligonucleotide tags.

The cosynthesis methods are particularly restricted by the difficulty of developing an

orthogonal protecting group strategy for the library component and the code.

Libraries will continue to be made using each of the four approaches detailed above,

but it is likely that the multivalent synthesis approach will fall into disfavor. The various

approaches to combinatorial chemistry are subject to a natural trade-off between ease of

synthesis and ease of compound identification. The split synthesis and multivalent

approaches offer facile synthesis, while the spatially addressable and encoding approaches

provide straightforward characterization of an active compound. At present, the intrinsic

flaws of the deconvolution process render the multivalent synthesis approach less appealing

than the other three approaches. Moreover, technical advances in the combinatorial

chemistry field will significantly enhance the other approaches, but will have less impact on

the multivalent synthesis method. Improvements in analytical chemistry will reduce the

difficulty of characterizing an unknown active compound, thereby moderating the principal

disadvantage of the split synthesis method. Engineering advances will facilitate

miniaturization of the spatially addressable methods. Chemists will not have to rely on 96-

well plates, or homemade 40-site supports, but instead are likely to have access to

automated synthesis on plates with 1,000 or more discrete reaction sites. Developments in

novel tagging technology should render the encoding approach less time-consuming, and

amenable to a greater diversity of chemical reactions.
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Classes of Combinatorial Libraries

Biopolymer libraries. The first attempts at making large combinatorial libraries

involved synthesis of oligopeptides'l - 12 and oligonucleotides13 14 . These biopolymers

were natural choices for several reasons. Combinatorial chemistry places a premium on

reactions that proceed in high yields (more precisely, with high efficiencies; a lack of side

products is more important than high recovery of material), since purification is not

performed after each step. Removal of the reagents after each step is critical, and is easily

accomplished using solid supports. Additionally, synthesis of a library of oligomers is

greatly facilitated by having immediate access to suitably protected monomers. Thus,

combinatorial chemists sought a readily available collection of monomers that could be

coupled in high yield using solid phase techniques. Obviously, peptide' 5 and nucleic acid

synthesisl6,17 fit these criteria.

Peptide libraries have been synthesized1 ,4, 0 using molecular biological

techniques 28 29 as well as each of the approaches to combinatorial synthesis described

previously. Biological screening of various peptide libraries has provided many active

compounds, some of which may be useful as lead structures. However, peptides are

inherently limited as drug candidates because of their low bioavailability, susceptibility to

proteases, and lack of rigidity2,19,30 ,31. In order to produce a suitable drug from a peptide

lead, extensive modifications are normally required. As described previously, the ultimate

goal of combinatorial chemistry is not only to serve as a source for new and perhaps

superior lead compounds, but also to provide a suitable framework for iterative rounds of

combinatorial optimization. Unfortunately, peptide leads are not amenable to combinatorial

optimization.

The search for superior alternatives to biopolymer libraries has led to combinatorial

approaches to so-called "small molecule" libraries and biopolymer mimetics. Recently,

several combinatorial libraries of various biopolymer mimetics (see Figure 1-5) have been

synthesized, including carbamates 32 (see Scheme 1-1), ureas33, peptoids 34,35,
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peptidosulfonamides3 6 , phosphorothioate nucleosides3 7, vinylogous polypeptides3 8 ,

peptide nucleic acids 39, and peptidyl phosphonates (a dipeptide unit in a peptide chain is

replaced with a phosphonate dipeptidomimetic)40. These biopolymer mimetics share many

of the advantages of peptide libraries, while also possessing enhanced metabolic

stabilities3 23 6 4 1. Assembling a collection of monomeric units usually is not difficult, and

H~~~ ~~~~~ 0 Ri
H 0 R 1

i N .0- N i
H 0

Carbamate

H 0 R1

R H H O

Urea

H 0 R1

4 N N
R 2 H 0

Vinylogous Polypeptide

F-O
1

R; 0

toNa

P4

m ~

eptoid

Phosphorothioate Nucleoside

I °
H

Peptidosulfonamide

Figure 1-5. Biopolymer mimetic libraries.
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coupling of monomers to give oligomers proceeds with high efficiency on the solid phase.

A potential disadvantage of many biopolymer mimetics is a lack of rigidity, particularly

relative to small molecules with built-in conformational constraints. Detractors 19 of these

libraries will also point out that biopolymer mimetics contain a repetitive backbone, which

is inconsistent with the concept of diversity.

Scheme 1-1. Synthesis of oligocarbamate libraries3 2

iii

1. Monomer Synthesis

R

HO NH-Fmoc

0

BH3, THF O

O H- NH-Fmoc

MONOMER R

Cy°,,A NH-Fmoc

2. Oligomer Synthesis

Monomer, HOBT,
DIEA, NMP RR piperidine

Coupling H NH Deprotection

0 Fmoc

R
Resiner N H O LN 

0

repeat (coupling, deprotection)n R 0
then acetylate, cleave from resin R'HN HJ 1

_ ~n+ 1

The term "small molecule" is really a euphemism for "drug-like", and the successful

synthesis of a viable small molecule library is universally applauded, since almost by

definition the library's components lack obvious weaknesses as potential drug candidates.

Small molecule building blocks are brought together to form non-polymeric, three-

dimensional arrays. The common disadvantage of small molecule libraries is the increased
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level of synthetic difficulty relative to natural biopolymers and biopolymer mimetics. Small

molecule library synthesis requires several fundamentally different but compatible reactions

performed without purification of intermediates. The reliance on reactions that are

amenable to solid phase synthesis has promoted growth in the field of solid phase synthetic

methodology. There have been several recent examples of successful adaptations of

various reactions (Heck4 2, Stille43, Suzuki coupling 44 , nitrile oxide cycloaddition 45) to

solid supports. Perhaps the most important small molecule library synthesized to date is

Ellman's benzodiazepine library46, a variation of which has been synthesized by Hobbs

DeWitt et al. (see Scheme 1-2)'9. Their diversomer approach, using a spatially addressable

"resin in a pin" approach, was also used to synthesize a library of 40 discrete hydantoins

(see scheme 1-3). Kurth and coworkers 4 7 have recently assembled a nine compound

library of P-mercapto ketones using a split synthesis approach.

Scheme 1-2. Synthesis of a benzodiazepine libraryl9
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Scheme 1-3. Synthesis of a hydantoin library19

A variation on the small molecule library theme involves the use of molecular

scaffolds as templates for library synthesis. Hirschmann, Nicolau, and coworkers4 8 ,49

have used a glucose scaffold to synthesize a focused library of somatostatin non-peptide

mimetics, the most active of which is shown in Figure 1-6a. A tetracarboxylate scaffold in

conjunction with a variety of amines (primarily amino acids) was used by Rebek and

coworkers30 50 to produce large chemical libraries using a multivalent synthesis method

(see Figure 1-6b). A cylopentane template capable of producing spatially addressable

libraries has been developed by Patek and coworkers (see Figure 1-6c)51.

Future Directions

In the immediate future, researchers in combinatorial chemistry are likely to

concentrate on the synthesis of libraries of biopolymer mimetics and, in particular, small

molecules. Progress in the synthesis of small molecule libraries will be augmented by

concurrent advances in solid phase methodology. Obviously, combinatorial efforts will

target known pharmacophores, but will also seek novel compound classes that are poorly

represented in the chemical databases of pharmaceutical companies.
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H

Figure 1-6. Template-directed library synthesis. (a) Hirschmann et al. 48 (b) Carell et al. 30 (c) Patek et

al.5 1

The drug discovery cycle is composed of several components, roughly divided into

chemistry (discovery and refinement of a drug candidate, process chemistry), biology

(pharmacokinetics, cell penetration, metabolism, toxicology, etc.), and regulatory

processes (clinical trials, FDA approval, etc.). Combinatorial efforts will undoubtedly

shorten the "chemistry" part of the cycle by reducing the time required to identify and

subsequently refine lead compounds. It will be interesting to see if combinatorial
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approaches can be successfully applied to the "biology" portion of the drug development

cycle. Ideally, a combinatorial library would be synthesized, screened for biochemical

efficacy, and subjected to rapid assays of biochemical properties such as cell penetration

and metabolic stability.

The combinatorial chemistry described in this dissertation involves the production

of chemical libraries of importance to the pharmaceutical industry. Undoubtedly,

combinatorial approaches have and will be useful in other fields, and their exclusion from

this document is entirely reflective of the focus of this thesis.
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Chapter 2

Introduction to Heparin

Proteoglycans are a diverse class of biopolymers that contain long carbohydrate chains

extending from a protein core. The acidic polysaccharide chains are known as

glycosaminoglycans. Common glycosaminoglycans include hyaluronic acid, chondroitin

sulfate, dermatan sulfate, heparan sulfate, heparin, and keratan sulfate (see Figure 2-1).

These polymeric carbohydrates are isolated from animal tissues (most are isolated from

connective tissue, with the exception of heparin) and have physical as well as chemical roles

in the extracellular matrix' 2.

COO- CH2 0Hi0--'.. HO Ok
HO

OH NHAc

hyaluronic acid

Dermatan sulfate

Keratan sulfate

F coo OHCOO- CH20SO3'

OH NHAc

Chondroitin 6-sulfate

Chondroitin 4-sulfate

Heparan sulfate

Figure 2-1. Common glycosaminoglycans.
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Heparin is composed of a repeating co-polymer of glucosamine and uronic acid

(primarily L-iduronic acid). Structurally, it is distinguished by a high degree of acidity and

heterogeneity. Heparin is biosynthesized as a proteoglycan, with nascent polysaccharide

chains consisting of D-glucuronic acid and N-acetyl glucosamine3. A series of enzymes

catalyzes N-deacetylation, followed by N-sulfation, C-5 epimerization of D-glucuronic acid,

and O-sulfation. Four different positions in each disaccharide unit can be sulfated, the most

common of which is N-sulfation while the least common is glucosaminyl-3-O-sulfation. The

stereochemistry at C-5 of the uronic acid moiety can be either the D-gluco or L-ido epimers.

Thus, there are five potential sources of heterogeneity per disaccharide unit (see Figure 2-2).

In theory, this amounts to 32 (25) possible disaccharides, although many of these have not

been observed because the enzymes responsible for heparin's structure proceed in a sequential

fashion 3. Nevertheless, with at least 10 possible disaccharides 4 and a median heparin chain

length of approximately 50 sugars (25 disaccharide units), extensive heterogeneity can exist

both within and between chains.

i

Figure 2-2. Five sources of heterogeneity per heparin disaccharide.

This heterogeneity is manifested in a wide variety of biological interactions (see

Table 2-1)2. Heparin interacts with many different proteins, and plays a role in regulating
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several cellular processes with potentially huge pharmaceutical markets. The most well-

known biological activity of heparin is its role as an anticoagulant. Heparin activates

several serine protease inhibitors involved in the blood coagulation cascade. One of these

proteins, antithrombin m (AT III), undergoes a conformational change upon binding to

heparin, resulting in a 1000-fold increase in its binding affinity for thrombin and factor

Xa5 .

Heparin-Binding Proteins

1. Protease inhibitors (antithrombin III)

2. Plasma lipoproteins (apolipoprotein B-100)

3. Growth factors (basic fibroblast growth factor)

4. Lipolytic enzymes (lipoprotein lipase)

5. Extracellular matrix proteins (fibronectin)

6. Viral coat proteins (gp120 of HIV-1)

Regulation of Cellular Processes

1. Smooth muscle cell proliferation

2. Protein expression

3. Nerve cell development

4. Tumor growth

5. Angiogenesis

Table 2-1 Protein interactions and physiological roles of heparin.

Given heparin's polyanionic structure and its capacity to bind to many different

proteins, it might seem unlikely that heparin is involved in specific interactions. The issue

of specificity is an important one, because in order for heparin fragments or modified

heparinoids to obtain regulatory approval as pharmaceutical entities, it is critical to avoid

overlap of biological activities. There is significant electrostatic attraction between heparin

and highly basic peptide sequences, undoubtedly leading to some non-specific interactions.

However, many protein-heparin interactions are specific4. Generally, the foremost

difficulty lies not in establishing the existence of a specific interaction, but rather in

elucidating the structure of the particular heparin fragment that is involved.

One extensively researched example is the interaction of heparin and AT Ill. The

minimum heparin fragment 6 that binds with high affinity to the protein is a pentasaccharide
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sequence (see Figure 2-3) containing a rare glucosaminyl-3-O-sulfate7 . The exquisite

specificity of this interaction has been revealed by a series of studies using synthetic

oligosaccharide fragments 8. Removal of the 3-O-sulfate group virtually eliminates

biological activity.

NHS03'

Figure 2-3. Pentasaccharide with high affinity for AT III7 .

Heparin Libraries

In summary, heparin comprises a class of highly related compounds with a wide

variety of biological activities. Slight structural perturbations in the heparin chains can

cause large differences in biological activity. From the perspective of a pharmaceutical

company, heparin possesses many characteristics of an ideal combinatorial library. It

contains a repeating building block unit that is variably functionalized in different spatial

orientations. The result is a group of oligomeric products with high affinities for important

biological targets. In order to create an ideal heparin-based therapeutic, an oligosaccharide

is required that is responsible for a unique biological interaction, but has little or no effect

on the myriad of other biological activities associated with the full polysaccharide chains.
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There are two major obstacles blocking the path to heparin-based drugs, one of

which is fundamental in basis and the other experimental. There is no solution to the

intrinsic problem that a homogeneous oligosaccharide can have multiple biological sites of

action. From the perspective of a drug manufacturer, the best-case scenario is to identify a

small oligosaccharide that interacts with a specific target, since smaller heparin fragments

will be less likely to have superfluous biological activities characteristic of the full-length

chains.

The second obstacle is the experimental difficulty of accessing the biochemical

information stored in the heparin library4. Analytic chemistry on these complex polyanions

is extremely challenging, although recent technical advances 9 have greatly facilitated

biophysical and biochemical studies. Nevertheless, it remains very difficult to extract

information from the natural, heterogeneous library (and was even more difficult four years

ago when we confronted this problem).

Building a library. An alternative approach entails a controlled reconstruction of the

library such that the components are known and readily characterized, thereby vastly

reducing the difficulty of information retrieval. In the most likely scenario, reconstruction

is merely chemical synthesis. Obviously, this approach becomes efficient when the

difficulty of information retrieval in the natural library exceeds the difficulty of

reconstructed library synthesis. This situation is analogous to choosing between a

multivalent approach to library synthesis and a spatially addressable or encoded library

approach. The probability that the reconstruction approach is preferred is proportional to

the number of different "applications" (i.e., the number of times one wishes to access the

informational content of the library), since the largest time investment is initial library

synthesis. The total time T to perform any number A different applications, with an

average time I for information retrieval and S for initial library synthesis, and In > Ir, can

be be expressed as follows for the natural and reconstructed libraries:
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(natural library)

(reconstructed library)

T= Aln

T= S + AIr

Figure 2-4. (Case a) Synthesis of a reconstructed library becomes increasingly efficient as one seeks

more applications. (Case b) The initial time investment for reconstructed library synthesis never pays off.

(Case c) The reduced difficulty of information retrieval merits reconstructed library synthesis even if the

number of applications is small.

These equations are represented schematically in Figure 2-4, graph A. Clearly, it becomes

increasingly advantageous to use the reconstructed library approach as the number of
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potential applications rises. Of course, the experimental reality may be more accurately

depicted by graphs B or C from Figure 2-4, in which one or the other approaches is always

preferred.

We believed that the potential advantages of a reconstructed heparin library merited

a significant investment in library synthesis. It was our intention to produce a library of

defined heparin oligosaccharides or unnatural "heparinoids" similar to the native structure.

Methods to produce defined heparin oligosaccharides include total chemical

synthesis7,' 1' l, as well as fragmentation of heparin followed by purification of fragments.

Neither method is ideally suited to constructing libraries of defined oligomers. Heparin is

inexpensive, and can be cleaved chemically4 1 21 3 or enzymatically1 4 -1 8 , making a

fragmentation/purification approach appealing. Unfortunately, this approach is

compromised by the difficulty of producing and purifying desired compounds that

constitute rare sequences of saccharides. It is extremely difficult to purify minor

oligosaccharides from complex mixtures obtained by partial cleavage of full-length chains.

In addition, depolymerization reactions induce modifications in the terminal saccharide

residue, and may cleave through desired sequences 4 . The versatility and conclusiveness of

the synthetic approach are undermined by the difficulty of chemical synthesis. The high-

affinity pentasaccharide fragment that binds to AT III (see Figure 2-3) was synthesized in

75 steps in 19847. Changes in the target structure (making unnatural heparinoids) to

facilitate synthesis1 9 ,20, in addition to ten years of refinements by several research labs8 ,

have made the synthesis more manageable; however, the goal of an economically viable,

synthetic anticoagulant has not been reached. We sought to exploit the advantages and

minimize the disadvantages of each method by devising a semi-synthetic route to the

production of potential heparinoid therapeutics. This approach could reduce the number of

transformations relative to total synthesis, while maintaining our capacity to selectively

modify the molecule.
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An Approach to Sulfur-Linked Heparinoids

Heparin and other glycosaminoglycans can be enzymatically cleaved by certain

polysaccharide lyases to produce a 4,5-unsaturated 4-deoxy glycosyluronic acid at the non-

reducing terminus (see Scheme 2-1)14-18. By converting the carboxylic acid into an ester,

a potential Michael acceptor is formed, although the electron demand of the resulting a,[-

unsaturated ester is moderated by the presence of the ring oxygen. We intended to use

sulfur nucleophiles, ideally 1-thioglycosides, to carry out the Michael addition and produce

thiosugar analogues of heparin.

Scheme 2-1. Heparinase digestion of heparin

CO0O

OH C

OR1

R1 = SO3 - or H

R2 = SO3- or Ac

CH2 0R 1

0

OR 1

NHR2

I Heparinase

m

OH

n = 0, 1, 2, etc.

A sulfur linker was chosen for three reasons. First, we anticipated the lack of

reactivity of the Michael acceptor, and thus it was advantageous to use a superior

nucleophile. Second, we intended to produce compounds that would mimic the biological
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activities of natural heparin oligosaccharides, and thus it was important to ensure that all

changes were structurally conservative. Third, many thioglycosides possess increased

resistance to enzymatic and acidic degradation21, either of which would be valuable

commodities in a library of potential drug compounds.

We planned to produce a library of defined "thioheparinoids" by cleaving heparin

with heparinase, purifying various fragments, chemically modifying the fragments, and

then linking them with a Michael addition. Oligosaccharide fragments from heparinase

digestion were purified by anion exchange chromatography, followed by desalting on a gel

filtration column2 2. A typical WAX-HPLC trace of heparinase-treated heparin is shown in

Figure 2-5. The fragments were detected by UV absorbance of the a,3-unsaturated ester at

232 nm. The major compound is the trisulfated disaccharide 1 shown in Figure 2-6. Other

fragments that can be purified to homogeneity include three tetrasaccharides and a

hexasaccharide 22 .

Figure 2-5. Weak anion exchange HPLC trace of heparin digested with heparinase.
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COO- CH20S0 3

H OH OH

OS0 3' NHS03'

H

H

)H

OSO3- NHSO3 OH NHAc

COO- CH2 0S0 3-

> OH 0 OH

OH NHSO3 -

Figure 2-6. Major isolable fractions of heparin digested with heparinase.

From a retrosynthetic perspective, there are two feasible approaches to semi-

synthetic thioheparinoids (see Scheme 2-2). Path A is the more direct approach, involving

initial functionalization of one fragment as a 1-thiosugar and the other fragment as an a,p-

unsaturated ester, followed by fragment condensation using a Michael reaction. Path B
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requires initial Michael addition of a small sulfur nucleophile, followed by deprotection to

afford the free thiol, and subsequent glycosidation with an activated glycosyl donor.

Scheme 2-2. Retrosynthetic approaches to thioheparinoids

OMe
R = SO3- or H

OR

COO- CH2OR

H

X

OR NHR

+

COOMe CH20R

SH IOR NHROMeS OR NHR

NHR OR

Path B Path A

NHR

COO- CH20R

OH OH SH

OR NHR

+

OH

OR NHR

Both approaches were pursued extensively, but we encountered many obstacles. It

is difficult to dissolve heparin fragments in solvents amenable to conventional organic

synthesis. Once accomplished, the lability of the sulfate groups, particularly the N-sulfate,

becomes a major logistical problem. We discovered that pyridine could cause O-

desulfation, which is particularly troublesome since formation of the pyridinium salt is a

standard method to solubilize heparin in certain organic solvents2 3 .
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Scheme 2-3. Hyaluronic acid digestion by chondroitinase ABC

The complications of solubility and desulfation prompted the use of enzymatically-

digested hyaluronic acid (see Scheme 2-3) as a model compound. Hyaluronic acid is a

natural glycosaminoglycan which lacks sulfation. This property facilitates chemical

modifications of the disaccharides by improving solubility (also eliminating concerns about

sulfate lability) and also simplifies purification because only one major disaccharide2 4-2 6,

2, is produced upon enzymatic digestion with chondroitinase ABC2 7. The a,B-

unsaturated acid 2 was acetylated and esterified to produce the Michael acceptor 4 in

accordance with Scheme 2-2, but we were unable to find conditions that permitted Michael

addition of any nucleophile. At this point, we searched for a further simplified model

system with which we could study the feasibility and stereochemical outcome of addition.
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Scheme 2-4. Semi-synthesis of the Michael acceptor 4
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Chapter 3

Synthesis of a Model Michael Acceptor

We used the model compound 5, easily synthesized in four steps from galacturonic

acid (Scheme 3-1)1, to study the feasibility and stereochemical outcome of the Michael

addition. Changes in the reactants and experimental conditions were used to obtain

mechanistic information.

Scheme 3-1

OH OAc
COOMe I COOMe

HCI,MeOH 0 Ac2 0, NaOAc 0

HO PE AcO
OH OH OAc

OMe OMe

DBU, pyridine LiOMe, MeOH

)Me

OAc 5 OH

Michael Addition of Thiolates

4-Thiosugars were prepared by the Michael addition of various thiols to the a,[l-

unsaturated uronate ester 5. In principle, the Michael addition is reversible, but most

reactions were performed under conditions of kinetic control. Four stereoisomers can be

produced by the Michael addition of sulfur nucleophiles to 5 (see Scheme 3-2): D-galacto

(a), D-gluco (b), L-altro (c), and L-ido (d). The major product was, with one exception,

the D-galacto adduct a. For example, the combined isomers of 10 were produced in 87%

yield by treating 5 with 1.7 equivalents of the lithium thiolate salt of cyclohexyl mercaptan

(generated in situ by the action of lithium methoxide on cyclohexyl mercaptan) and 8.1
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equivalents cyclohexyl mercaptan in methanol at room temperature. The reaction was

stereoselective, giving predominantly 10a, and went to completion in 72 hours.

Saponification of 5 produced the a,5-unsaturated acid 6, which did not undergo

Michael addition with nucleophiles such as benzyl mercaptan or ethanethiol. The reactivity

of 5 was substantially reduced upon benzylation of the free hydroxyls, while acetylation

rendered the sugar unreactive. There are several possible explanations for this reduced

activity, and we have not ascertained which of them is correct.

Scheme 3-2. Michael addition of thiolate nucleophiles to 5

M+O- OMe

Nucleophilic H RS-
Attack

OH (bottom)
RS OMe

8 OH

Protonation
(bottom (top)

OMe M

)Me

5 OH r OH

(bottm) o)

COOMe
RS O

HO

D-gluco ) OMe
syn addition

RSO 
COOMe OMe

L-ido (d)
anti

RS
ICOOMe

HO
OH I

D-galacto (a) OMe
anti

OH
MeOOC 1-|- - OMe

L-altro (c) OH
syn

7 R=CH 2 (C6H4 )OCH3
8 R=CH 2(C6H 5 )
9 R=CH2CH 3
10 R=(C 6H1 2 )
11 R=(C 6H 4)CH 3
12 R=C(CH 3)3
13 R=CH 2CH 20H

Standard reaction conditions. In order to compare the reaction rate and distribution

of products under various conditions, a standard procedure was followed. A solution of

the unsaturated ester 5 was added to a solution or suspension of 1.2 equivalents lithium

thiolate and 2.0 equivalents of the sulfur nucleophile (generated in situ by the action of 1.2
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equivalents lithium methoxide on 3.2 equivalents of the thiol). The reaction was stirred at

room temperature for 24 hours and neutralized with cation exchange resin. The solvent

was evaporated and the residue taken up in CDC13 and analyzed by 1H NMR. It should be

noted that these standard procedures were not optimized reaction conditions. Instead, they

were selected because deviations in any direction could be observed, and small changes in

concentration (potentially caused by impurities or side reactions) did not give rise to large

experimental effects. We examined the effects of varying the nucleophile, base, solvent,

temperature, and ratio of reactants.

Nature of the nucleophile. Primary and secondary alkyl thiols readily underwent

addition to 5 to give products a-d (see Table 3-1), but tertiary thiols either did not react or

reacted very slowly. Benzylic and phenolic thiols added to 5 to give products such as 7,

8, and 11. There was little difference, in terms of reaction rate or product distribution,

between ethanethiol, cyclohexyl mercaptan, methoxybenzyl mercaptan, and benzyl

mercaptan. Other thiols underwent reaction at slower rates. Sulfur nucleophiles that did

not add to 5 can be grouped into two classes: sterically hindered thiols (such as trityl

mercaptan) and weakly basic sulfur nucleophiles (see Figure 3-1). This latter class

includes compounds such as thiohemiacetals, thioacids, and thioureas.

From a retrosynthetic standpoint, every compound on the right side of Figure 3-1,

i.e, those nucleophiles that did not add to 5, would have been preferred to any of the

compounds that successfully underwent addition. The failure of 1-thioglycosides to add to

5 was very disappointing because that was our preferred synthetic approach (see Scheme

2-2). Nucleophiles such as thioacetic acid or thiourea would have been ideal candidates for

the alternative retrosynthetic strategy, since deprotection of the Michael adducts to give the

4-thiosugar would be facile. The lack of success with these and other easily deprotected

nucleophiles forced us to use methoxybenzyl mercaptan as the masked hydrogen sulfide

donor (discussed in Chapter 4).
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Line Prod. Solvent Equivalents Temp. % Cony, Product Distributiona

thiol thiolate MeO- (°C) 24 hrs.b a b c d

1 8 MeOH 2.0 1.2 0 22 63 80 3 12 5
2 8 MeOH 2.0 1.2 0 4 26 85 2 9 4
3C 8 MeOH 2.0 1.2 0 44 57 79 7 10 4

4 8 MeOH 0 3.2 0.8 22 50 81 5 11 3
5 8 MeOH 2.9 0.3 0 22 16 90 *d 10 *
6 8 THIF 2.0 1.2 0 22 91 89 * 11 *
7 8 CH3CN 2.0 1.2 0 22 60 82 * 16 *
8 8 CH2C12 2.0 1.2 0 22 48 82 * 18 *
9 8 Acetone 2.0 1.2 0 22 <5 not determined
10 8 DMF 2.0 1.2 0 22 <5 not determined
11 8 DMSO 2.0 1.2 0 22 <5 not determined

12 7 MeOH 2.0 1.2 0 22 63 82 2 10 6
13 7 THF 2.0 1.2 0 22 79 63 6 27 4

14 7 MeOH 2.0 1.2 0 44 65 75 7 14 4

15 9 MeOH 2.0 1.2 0 22 59 81 3 11 5
16 9 MeOH 0 3.2 0.8 22 37 78 7 12 3
17 9 THF 2.0 1.2 0 22 25 68 * 32 *
18 9 MeOH 0 1.0 4.0 22 14 86 * 14 *
19 1 0 MeOH 2.0 1.2 0 22 56 82 3 9 6
20 1 0 THF 2.0 1.2 0 22 11 62 * 38 *
21 1 0 MeOH 2.0 1.2 0 44 72 81 7 10 2

22 1 1 MeOH 2.0 1.2 0 22 0 not determined

'23 1 1 THF 2.0 1.2 0 22 33 83 2 10 5

'24 1 2 MeOH 2.0 1.2 0 22 6 83 * 17 *
25 1 2 THF 2.0 1.2 0 22 <1 not determined
26 1 3 MeOH 2.0 1.2 0 22 55 52 5 43 *
27 1 3 MeOH 2.0 1.2 0 4 16 47 6 47 *
'28 1 3 THF 0 1.7 0.2 22 32 20 24 56 *
29 1 3 THF 2.0 1.2 0 22 50 16 16 68 *
30 1 3 THF 2.0 1.2 0 4 49 21 12 67 *

Table 3-1. Accumulation and Distribution of Products under Various Reaction Conditions. a The

distribution of addition products was determined by 1 H NMR. b The percentage conversion to

products reflects the sum of addition products a + b + c + d as a percentage of the initial

concentration of starting material 5. This was determined by computing (a + b + c + d) / (a + b + c

+ d + 5). Lines 3, 4, 14, 16, 18, 21, and 26-30 represent reactions that were not performed under

conditions of kinetic control. d An asterisk indicates that less than 2% of the specified product was

observed.
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Sulfur Nucleophiles That
Undergo Michael Addition

Sulfur Nucleophiles
That Do Not Add

HS- CH2CH 3

HS- CH2CH 2 OH

HS- (CH2 )1 CH3

HSV , NHAc

COOMe

HS\

thioacetyls

thioureas

ethyl xanthate

R SH

H2 N NHR

S

+K-S O/\

HS + (very slow)

benzyl HSH2C OMe

trityl mercaptan (Ph)3C-SH

I-thioglycosido

R1 0

R2 R 1

phenyl HS CH3
R 1 = H or Ac
R2 =NorO

Figure 3-1. Nuclephiles that were more useful synthetically did not undergo addition to 5.

The failure of all relatively acidic sulfur nucleophiles (the least basic nucleophile that

successfully added was 4-thiocresol) to undergo Michael addition to 5 prompted us to

consider if the failure to accumulate products was the result of a kinetic banier to product

formation or a thermodynamic equilibration process in which the starting materials were

favored. In principle, this issue could be resolved by synthesizing the hypothetical

products of the addition reaction and subjecting them to the standard reaction conditions

(see Figure 3-2). If elimination was not observed, then the failure to accumulate products

in the conventional Michael reaction had to be the result of a kinetic barrier to formation
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(Figure 3-2, case A) rather than an unfavorable thermodynamic equilibrium (Figure 3-2,

case B). Although 1-thio-1-D-glucose did not undergo Michael addition to 5, the

hypothetical product of this addition, 18a, was produced by deacetylation of the

CH 20 R
R O

No apparent addition COOOR

CH20H 17a R=Ac RO
H O O 18a R=H R

H S- OMe

OH

thermodynamic equilibration
ivors reactants

Kinetic barrier to
product formation

Reaction Coordinate

Figure 3-2. Michael addition of thioglycosides to 5 fails because of a kinetic barrier to product

formation. Energy diagrams are based on reasonable mechanistic assumptions.
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disaccharide 17a (the synthesis of which is described in Chapter 4). The thiosugar 18a

was exposed to 1.2 equivalents of the lithium salt of 1-thio-3-D-glucose in methanol

(generated by the action of 1.2 equivalents LiOMe on 2.2 equivalents of 1-thio-3-D-glucose

tetraacetate), and elimination was not observed. Hence, the theoretical product was stable

to the standard reaction conditions, proving that the absence of products in the attempted

Michael addition of l-thio- -D-glucose to 5 can be attributed to a kinetic barrier to product

formation.

The Stereochemistry of Addition Depends on Two Independent Processes

Stereoselectivity of the initial nucleophilic attack. Initial nucleophilic attack from the

re (top) face of 5 leads to the D-galacto adduct a and the L-altro adduct c, depending on the

stereochemistry of protonation of the postulated intermediate r (see Scheme 3-2). Initial

attack from the si (bottom) face leads to the minor products b (D-gluco) and d (L-ido) after

protonation of the intermediate s. The distributions of products in Table 3-1 indicate that in

every case, nucleophilic attack from the top face was preferred { (a + c) >> (b + d)),

ranging from 90 to 99% of the total addition products under conditions of kinetic control.

Since our long-range goal was the synthesis of thioheparinoids, the preference for top-face

attack was disappointing. Heparin contains only D-glucuronic and L-iduronic acids, which

are obtained in the model system when initial nucleophilic attack proceeds from the bottom

face.

The pseudo-axial direction of nucleophilic attack is well-precedented 2-8 and can be

explained in two different ways. The first explanation is based on the formation of a

reduced-energy intermediate (see Figure 3-3), since A(1,3 ) strain is larger than diaxial

strain in cylohexane rings5-7. The second explanation is based upon extensive orbital

overlap between the conjugated ester and the developing sigma bond in the formation of the

transition state8,9. Essentially, the two theories represent convergent approaches to a

reduced-energy transition state, one from the starting materials and one from the

50



Attack of RS from 5 Attack of RS from

Figure 3-3. Nucleophilic attack from the top face of 5 forms the low energy intermediate r, which can

be undergo protonation from either direction to give the D-galacto (syn addition) or L-altro (anti addition)

isomers.

intermediate. It is unlikely that steric hindrance plays a major role in determining the

stereoselectivity of nucleophilic attack. The Michael acceptor 5 assumes a half-chair

conformation l0 that allows nucleophilic approach from either face of the sugar.

Stereoselectivity ofprotonation. Subsequent protonation of r from the opposite

(bottom) face was preferred (unless BME was the nucleophile, which will be discussed

separately), constituting a net anti addition and producing the D-galacto adduct a.

Protonation from the top face was sterically hindered by the C-4 axial thioether. In

methanol, the ratio of anti: syn protonation (a/c) for the various thiols studied ranged from

5 to 9. Based on these ratios, we can estimate an energy difference in the transition states

leading to anti and syn protonation of about 1.0 - 1.3 kcal/mol. The stereoselectivity of the
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protonation step was much smaller for the kinetically disfavored intermediate s, which

lacks a large, adjacent, axially-oriented substituent to direct protonation. Protonation from

the top face of s was slightly preferred on average, affording the L-ido isomer d (anti

addition).

Effects of the thiolate counterion. In the absence of thiolate, no reaction occurred.

Lithium methoxide was used as the standard base to generate the thiolate salt. No effect on

reaction rate or product distribution was observed when the counterion was changed from

Li+ to Na+ (sodium methoxide as base). Furthermore, no effect was observed when either

a full equivalent or catalytic 12-Crown-4 was added to the reaction solution in THF. The

rate of reaction slowed dramatically when TEA or DBU was used as base.

Effects of the reaction solvent. With benzyl mercaptan as the nucleophile, the

reaction rate decreased in the order THF > MeOH = CH3CN > CH2C12 >> benzene (see

lines 1, 6-8 of Table 1). Product formation did not occur to an appreciable extent in polar,

aprotic solvents such as acetone, DMSO, and DMF (lines 9-11). The addition of p-

thiocresol to 5 did not proceed in methanol, but went to 33% completion in THF over 24

hours (lines 22, 23). This solvent preference was reversed when alkyl thiols were used as

the nucleophile. Ethanethiol (lines 15, 17) and cyclohexyl mercaptan (lines 19, 20) reacted

significantly faster in MeOH than THF, and tert-butyl mercaptan (lines 24, 25) added very

slowly to 5 in MeOH but was unreactive in THF. One factor that may account for this

trend is the low solubility in THF of the alkyl thiolates relative to aromatic thiolates.

The stereoselectivity of the reaction was also affected by the choice of solvent.

With the exception of benzyl mercaptan, all other thiol nucleophiles produced a higher

percentage of the L,-altro products c in THF than in MeOH.
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Reaction optimization. Methanol was found to be the optimum solvent for

maximizing yield, and room temperature was determined to be superior to elevated or

reduced temperatures. Performing the reaction at 44°C increased the rate of side reactions,

while performing the reaction at 4°C significantly slowed the rate of product formation.

The relative concentrations of thiol and thiolate had a profound effect upon the reaction. A

full equivalent of thiolate was not required; however, catalytic reactions proceeded slowly

because the rate of addition was dependent on the concentrate of thiolate. After 24 hours,

the base-catalyzed (0.3 eq.) addition of benzyl mercaptan (line 5) was only 16% completed,

compared with 63% using the standard conditions. After 96 hours, the base-catalyzed

reaction had proceeded to 50% completion. In general, the rate of product formation

increased with the ratio of thiolate to Michael acceptor.

Reversibility of the Michael Addition

By altering the standard reaction conditions such that an excess of methoxide

(relative to the mercaptan) was added to the reaction mixture, the extent of product

formation decreased and the proportion of the D-gluco isomer was increased (lines 4, 16,

28). Further increases in the ratio of methoxide to thiolate substantially decreased the

extent of product formation. Reduced product accumulation can be attributed to the

reversibility of the Michael addition of thiolates to 5 in the presence of methoxide. It is

likely that the forward reaction rate was dependent of the concentration of thiolate, while

the back reaction rate was dependent on the concentration of methoxide.

In a lithium methoxide/methanol solution at room temperature, the D-galacto adduct

8a slowly converted to a mixture of 8a, the a,-unsaturated ester 5, and the L-altro adduct

&c. If equilibration was allowed to proceed for a sufficient length of time, the D-gluco

adduct 8b was observed. The same trend was observed when any of the D-galacto adducts

a or L-altro adducts c were treated with methoxide. When the ethanethiol addition product

9c was treated with one equivalent cyclohexyl mercaptan and an excess of lithium
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methoxide, a mixture of 9a, 9b, 9c, 10a, 10b, 10c, and 5 developed over time (see

Scheme 3-3).

Unlike compound classes a and c, D-gluco isomers such as 10b did not undergo

elimination to 5 in the presence of methoxide. The activation energy for this transformation

is exceptionally large because of the low ground-state energy of the D-gluco adduct 10b

(all substituents are equatorial except the favored axial methyl glycoside) and the high

energy of the transition state leading to the thermodynamically disfavored intermediate s.

Hence, conversion to the D-gluco adduct was effectively irreversible at room temperature in

methoxide/methanol solution.

Scheme 3-3. The Michael addition is reversible in the presence of methoxide.

OH cyclohexyl mercaptan,
MeOO Me excess LiOMe, MeOH

F %t OH9c

9a
9b

+ 9c
10a

)Me 10b

10c

In theory, the reversibility of the reaction permits accumulation of the

thermodynamic product b as the major product. In practice, we were unable to obtain

conditions of thermodynamic control because the relatively harsh experimental conditions

that were necessary for reversibility also fomented side reactions that eventually removed

the reactants and products from the equilibrium cycle.

Effect of temperature. Under standard reaction conditions, the strongest base

present was thiolate, which did not catalyze the reverse (elimination) reaction at room

temperature. When 8a or 8c was treated with 2.0 equivalents benzyl mercaptan and 1.2

equivalents of its lithium thiolate salt (standard reaction conditions produced by the action

of lithium methoxide on benzyl mercaptan), no equilibration occurred; the 4-thiosugar was
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stable. However, at elevated temperatures, equilibration was observed. A 440C solution of

8a in methanol with one equivalent benzyl mercaptan and one equivalent of its lithium

thiolate salt was converted into a mixture of 8a, 8b, 8c, and 5. The Michael addition was

performed at 44°C with several thiolate nucleophiles (lines 3, 14, 21), and the effects on

product accumulations were inconsistent. This seemingly paradoxical behavior is easily

explained. At room temperature, the Michael addition was virtually irreversible under

standard reaction conditions, and thus the observed level of product accumulation coincided

with the rate of the forward reaction. At 44°C, the elimination reaction was catalyzed by

weaker bases such as thiolates. Therefore, the Michael addition was reversible at elevated

temperatures, and the accumulation of products was no longer directly proportional to the

forward reaction rate. There was a notable effect on product distributions when reactions

were performed at 44°C. The percentage of the thermodynamic product b increased,

primarily at the expense of the L-altro and L-ido products c and d.

Use of B-Mercaptoethanol (BME) as the Thiol Nucleophile

Reversal of stereoselectivity in the protonation step. BME was the only thiol of

those studied in which the major product of Michael addition was the syn adduct c rather

than the anti adduct a. The addition of BME to 5 under standard conditions in methanol

gave a ratio of 13c/13a of approximately 1:1 (line 26), while the ratio in THF was greater

than 4:1 (line 29). In accord with other thiolate nucleophiles, initial attack of BME was

predominantly from the top face of 5, producing the postulated intermediate 13r (see

Figure 3-4). However, protonation of 13r occurred primarily from the top face (syn

addition) in THF to give the L-altro product 13c. This reversal in selectivity could be the

result of intramolecular protonation of the 4 C1 intermediate 13r. This hypothesis is

supported by the enhanced selectivity for 13c when THF was used as the solvent rather

than methanol, since the latter could act as a proton donor and compete with intramolecular

protonation.
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4C 1 Chair (lower energy)

OMe

-'

13r

%. f

II

H H

II

, , .-

M

I,. S

0OH

H

Intramolecular protonation
gives syn addition

Intramolecular protonation could
give either syn or anti addition

Figure 3-4. A reversal in the stereoselectivity of protonation was observed when BME was used as the

Michael nucleophile, presumably because of intramolecular protonation of the 4 C1 chair conformer of 13r.

Although 13c assumes a 1C4 chair conformation in its final state, it is very

unlikely that this was the dominant conformer in the intermediate state. Intramolecular

protonation of the 1C4 conformation of intermediate 13r could give either syn or anti

addition products with little selectivity, and thus would not adequately explain the reversal

in the stereoselectivity of protonation that occurred when BME was used as the nucleophile

(see Figure 3-4).
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Reversibility at room temperature. BME differed from other thiolate nucleophiles

with respect to the temperature dependence of the Michael addition because reactions with

BME were not under kinetic control. While Michael additions with other thiols gave

decreased yields, and greater selectivity for the favored (anti addition) product at low

temperature, the addition of BME in THF at 40C (line 30) did not significantly affect the

extent of product accumulation, and actually reduced the selectivity for the favored (syn

addition) product. This unusual temperature dependence is attributable to the relative ease

with which 13a and 13c underwent elimination. Unlike other adducts such as 8 and 9,

the BME adducts 13a and 13c interconverted and produced the unsaturated ester 5 in the

presence of BME and its thiolate salt, in both THF and methanol, at 4°C and room

temperature. Under standard reaction conditions, therefore, the reaction with BME was

reversible: the lithium thiolate salt of BME catalyzed the elimination reaction converting

13a and 13c to 5. Other thiolate bases also catalyzed this transformation. Thus, a

solution of the BME adducts 13a and 13c in methanol, when added to a solution of

ethanethiol and its thiolate salt, was slowly converted to a mixture of the original reactants,

the ethanethiol adducts 9a and 9c, and the elimination product 5. The facility of the

reverse reaction can be attributed to the superiority of BME as a leaving group relative to

other thiols. The departing BME molecular anion is stabilized by formation of an

intramolecular hydrogen bondl1. Therefore, a higher percentage of the thermodynamic

product b could be expected when the Michael addition was performed with BME because

the reaction was reversible under standard conditions. This anticipated shift towards the D-

gluco adduct 13b was observed experimentally (line 29).

Structural Assignments

The isomeric configurations and physical conformations of the various Michael

addition products were determined by 1H NMR spectroscopy (see Table 3-2). Rough

estimations of approximate interaction energy values12 suggested that the two D-isomeric
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Chemical Shift (8)

1H 2H 3H 4H 5H

4.88
4.91
4.90
4.89
4.98
4.89
4.93
5.08
4.76
5.09
5.02
4.75

4.71
4.72
4.75
4.74
4.80
4.77
4.88
4.86

4.84
4.85
4.87
4.88

3.69
3.66
3.58
3.55
3.68
3.54
3.75
5.19
3.67
4.98
5.23
3.73

3.78
3.78
3.85
3.82
3.83
3.86
4.97
5.06

3.62
3.62
3.69
3.68

3.99
4.00
4.03
4.00
4.11
4.00
4.09
5.48
3.91
5.57
5.42
4.08

3.96
3.97
4.10
4.06
4.11
4.18
5.61
5.55

3.60
3.62
3.64
3.59

3.43
3.46
3.46
3.52
3.88
3.51
3.63
3.77
3.62
4.62
3.97
3.84

3.43
3.45
3.44
3.50
3.81
3.55
4.68
3.96

2.80
2.82
2.80
2.85

4.64
4.65
4.72
4.72
4.72
4.75
4.70
4.78
4.81
4.87
4.79
4.80

4.20
4.21
4.26
4.24
4.36
4.36
4.35
4.49

4.21
4.21
4.19
4.17

4.80 3.61 4.32 3.16 4.57

Coupling Constant (Hz)

J1-2 J2-3 J3-4 J4-5

3.8
3.8
4.0
3.9
3.8
3.9
4.1
3.7
4.1
3.7
3.9
3.8

1.9
1.6
1.6
1.7
1.9
2.3
2.9
2.9

3.1
3.3
3.2
3.7

3.6

9.8
9.9
9.9
9.9
9.9

10.3
9.6

10.6

10.2

10.6

10.5

10.0

5.1
4.9
4.8
4.9
4.9
5.7
8.2
8.2

9.1
9.6

4.6
4.6
4.7
4.7
4.6
4.8
4.7
4.3
4.7
4.4
4.2
4.6

3.1
3.0
3.1
3.1
3.5
3.4
4.1
4.2

10.6
10.2

2.1
2.3
2.2
2.3
2.1
2.2
2.1
2.1
2.1
2.2
2.3
2.2

9.0
9.2
9.5
9.4
8.9
8.0
5.2
4.9

11.2
10.4

9.0 10.2 11.1
8.3 10.2 10.6

8.0 9.8 4.9

Table 3-2. Chemical shifts and coupling constants of the glycopyranosyluronate protons in CDC13.

a Compound was peracetylated. b D20 was used as the solvent. c CD30 D was used as the solvent.

forms (a and b) would exist almost exclusively in 4 C1 chair conformations, while the two

L-isomers, the L-altro product c in particular, could conceivably adopt the 1C4 chair as the

preferred conformation.

Addition products from various thiol nucleophiles were purified and subsequently

categorized by comparing 1H NMR spectra. Identification of the D-galacto (a) and D-gluco
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7a
8a
9a
10a
1la
12a
13a
14aa
15ab
16aa
17aa

18a

7c
8c
9c
1Oc
11c
13c
16ca
17ca

7b
8b
9b
10b

lid
l



(b) adducts was fairly straightforward. The observed coupling constants were consistent

with 4C 1 chair conformations. Coupling constants of the third class of addition

compounds, the L-altro adducts c, were consistent with a 1C4 chair conformation. The

final class of compounds possessed the L-ido configuration. In general, this was the

hardest group of products to isolate, and only one adduct, lid, was characterized.

Coupling constants of lid in CDCl3 indicated that a 4 C1 chair was the principal

conformation. NOE data supported the assigned conformations for each class of isomers

(see Figure 3-5). The following NOE's were observed for the indicated ring protons from

representative products of each isomeric series: a (3-5); b (2-4, 3-5); c (1-5); and d (2-4).

COOMe COOMe
SR H H H

H H RS H
HO HO

H OMe H OMe
a b

H

le

C d COOMec

Figure 3-5. NOEs were observed for the protons indicated in bold type. Note the L-altro compound c is

in the 1 C4 conformation.

No major conformational changes in any of the Michael addition products were observed

upon solvation in more polar solvents such as methanol and water.

One conformational change that was observed occurred upon acetylation of the L-

altro adducts. Analysis of coupling constants indicated that the non-acetylated L-altro

sugars (7c - 11c, 13c) assumed 1C4 chair conformations almost exclusively, whereas the
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peracetylated thiosugars 16c or 17c (see Chapter 4) appeared to adopt both the 1C4 and

4C1 chair conformations in CDC13.
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Chapter 4

Synthesis of Thiodisaccharides Using the Michael Addition

We wanted to investigate the various potential applications of the Michael addition

of thiols to a,4-unsaturated pyranuronate esters. The overwhelming preference for

nucleophilic addition from the top face of 5 rendered the Michael addition approach

unsuitable for the synthesis of thioheparin analogs. Nevertheless, it represented an

alternative method to synthesize S-linked sugars containing 4-S-D-galactopyranosyl or 4-S-

L-idopyranosyl moities. We examined this possibility by synthesizing thiodisaccharides

17a and 17c. Unfortunately, the inability of 1-thioglycosides to act as Michael

nucleophiles mitigated the potential appeal of this approach.

Scheme 4-1. Synthesis of thiodisaccharides using a masked hydrogen sulfide equivalent
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Since 1-thioglycosides did not act as Michael nucleophiles in this system, synthesis

of sulfur-linked oligosaccharides relied on the use of a masked hydrogen sulfide equivalent

as the Michael nucleophile (see Scheme 4-1). The resultant 4-thiosugar was then

glycosylated using standard techniques'. A combined 84% yield of the purified adducts

7a-d was obtained by treating 5 with lithium methoxide and a large excess of

methoxybenzyl mercaptan. The D-galacto adduct 7a was deprotected upon treatment2 with

mercuric acetate in TFA, affording 15a in 91% yield. The 4-thioglycoside was

deprotonated with one equivalent NaH or NaOMe, then coupled to acetobromoglucose in

DMPU. In situ acetylation produced the thiodisaccharide 17a in yields of 10-15%. The

same procedure was used to convert 7c into 15c, followed by glycosylation to provide

17c in 24% yield (see Scheme 4-2).

Scheme 4-2

CH 2 (C6 H4)OMe

S

O
HO

R2 OH
OMe

7a R1 = COOMe, R2 = H
7c R1 = H, R2 = COOMe

Hg(OAc)2, TFA

SR 3

R30
R 2 3OR3

OM

15a R 1 = COOMe, R2 =
15c R 1 = H, R2 = COOI
16a R1 = COOMe, R 2 =
16c R = H, R2 = COOI

CH2 0Ac
AcO

1. acetobromoglucose, AcO S
DMPU R

OAc 0
2. Ac20, pyridine AcOAcO
e R2 OAcl

~~. ~_ OMe
= H, R3 = H
Me, R 3 = H
= H, R3 = Ac
\Me, R3 = Ac

17a R1 = COOMe, R2 = H
17c R1 = H, R2 = COOMe
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Systematic optimization of the glycosylation chemistry has not been performed.

However, an initial experiment indicated that improved yields could be obtained using

thioester methanolysis to provide the thiolate salt. A similar observation was made by Reed

and Goodman in their synthesis of thiolactose (4-S-j3-D-galactopyranosyl-4-thio-D-

glucopyranose)3 . The thiosugar 15a was acetylated to give 16a, which was treated with

1.05 equivalents sodium methoxide to hydrolyze the thioester and form the sodium thiolate

salt. Glycosidation with acetobromoglucose in DMPU, followed by acetylation, afforded

17a in 27% yield.

Synthesis of an unnatural glycosamino acid. A second application of the Michael

addition is the synthesis of unnatural glycoconjugates of peptides and lipids. Michael

addition to 5 was used to make an unnatural linkage between a monosaccharide and an

amino acid (Scheme 4-3). The lithium thiolate salt of methyl [(2-acetamido)-4-thio]butyrate

(N-acetyl homocysteine methyl ester) was added to 5 to produce the glycoconjugate 19a in

52% yield.

Scheme 4-3

O% /NHAc

I H 19a OMe

Synthetic utility of the reaction. Intitially, we hoped to use this Michael reaction to

produce heparin analogs. Unfortunately, we discovered two obstacles, detailed in the

previous chapter, which rendered this approach virtually untenable. First, nucleophilic
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attack on 5 occurred primarily from the top face, giving rise to L-altro and D-galacto

isomers, whereas the uronic acid residues in heparin are comprised of L-ido and D-gluco

isomers. Second, 1-thioglycosides did not act as nucleophiles in this reaction. This failure

necessitated an addition/deprotection/glycosidation cycle in order to make sulfur-linked

oligosaccharides. While such an approach was feasible, as evidenced by the synthesis of

17a, it was not ideal. Deprotection was facile; however, coupling yields to glycosyl

donors have not been optimized. In the absence of highly successful optimization of the

glycosidation chemistry, this method is not an efficient route to de novo synthesis of S-

linked oligosaccharides. The standard synthetic methodology (see Scheme 4-4)l14,

involving a nucleophilic substitution reaction between a 1-thioglycoside and an activated

leaving group, is generally preferable.

Scheme 4-4. Conventional route to thiodisaccharide synthesis4
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Although we possessed a great deal of information about this Michael addition, we

lacked a desirable application. Provided with a means of stereochemical control (using a

nucleophile with a hydrogen bond donor) and two on/off switches (ester saponification or

blocking of the 2- and 3-hydroxyl groups), we believed this reaction could have some

utility in combinatorial library synthesis. As described in Chapter 2, our original intent was

to synthesize a library of thio-heparinoids. At this point, we broadened our focus to

include libraries that were not heparin mimetics. One possibility involved a controlled

polymerization of 20 (see Scheme 4-5), thereby producing a oligomeric library resembling

pectin. Unfortunately, 20 can not be polymerized using a Michael addition because the

nucleophilic moiety is a 1-thioglycoside. As described in Chapter 3, thioglycosides are not

sufficiently activated nucleophiles to undergo Michael addition to an xa,3-unsaturated

pyranuronate ester.

Scheme 4-5

OH

rCg'3

HOT
OH

SH ----------

COOMe

OH

COOMe

OH I
OMe

n

An Alternative Approach to Library Formation Using the Michael Addition

A change in strategy was required. We sought a glycosidic linker that could

successfully undergo Michael addition to the a,-unsaturated pyranuronate ester, while

simultaneously providing a spacer between pyranuronates, thereby producing a

glycosaminoglycan mimetic (see Scheme 4-6). The linker must contain a primary or

secondary thiol with uncompromised nucleophilicity (no additional heteroatoms attached to
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the sulfur-bearing carbon). Ideally, the linker would resemble a thiosugar, with two

heteroatoms separated by four carbons. Several potential linkers are shown in Figure 4-1.

Scheme 4-6

We wanted to demonstrate the feasibility and potential utility of this system by

assembling a library using linkers based on dithiothreitol (see Figure 4-1) and its isomers.

After synthesis of the uronic ester/linker conjugate (pseudodisaccharide), stepwise

polymerization could be performed (see Scheme 4-7) using a coupling/deprotection scheme

in which monomeric units are attached sequentially to the end of a growing chain. The

monomers must be incapable of self-condensation; modifications after each coupling are

needed to permit chain elongation. In peptide synthesis, this is accomplished by

deprotection of the amino terminus. In our system, the easiest route to stepwise

polymerization entailed coupling of a saponified pseudodisaccharide, followed by a

"deprotection" step in which the a,o-unsaturated acid was esterified.
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CH20H

S-i Ideal mimic, but will not polymerize

HO OH

COOMe

jOH
OH

Linker is too short

Butanedithiol

Dithiothreitol

Cyclohexane-
dithiol

Dithioinositol

COOMe

OH

COOMe HO OH

0
SOH SH

OH

COOMe

S QSH

Good spacing as sugar mimetic,
but is not rigid and is insufficiently
functionalized (lacks hydroxyls)

Good spacing, properly
functionalized, but not rigid

Good spacing, rigidity, but
insufficiently functionalized

OH

SH Good spacing, rigidity, functionality;
linker not readily available

OH HO OH

Figure 4-1. Potential linkers, along with their advantages and disadvantages.
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Scheme 4-7. Schematic approach to stepwise polymerization of pseudodisaccharides
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OH

(Coupling)

COOMe HO OH

(Deprotection) 

OH

COO' HO OH COOMe

S SO
OH OH

COO' HO OH

COOMe 

OH

Me

OH

(Coupling)

COOMe
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There are several positions in each pseudodisaccharide which permit introduction of

structural diversity (see Figure 4-2). First, the pyranuronate can be derived from mannose

instead of galactose, thereby changing the stereochemistry at C-2 of the sugar. Second,

glycosidation with the linking agent can furnish either the a or 3 isomer. Third, the

stereochemistry of the linker can be changed. Instead of using dithiothreitol (DTT),

stereoisomers such as dithioerythritol could be chosen. Obviously, the linkers are not

limited to isomers of DTT. Finally, the stereoselectivity of the Michael addition can be

altered. This permits an additional element of diversity to be introduced in the coupling

step. As described in Chapter 3, the Michael addition produces four isomers, with a
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preference for the D-galacto isomer. However, DTT is analogous to BME in that a

potential intramolecular hydrogen bond donor is available, and thus it is possible to shift

the stereoselectivity to favor the L-altro isomer. If the hydroxyl is blocked with a protecting

group, the conventional stereoselectivity is observed.

Figure 4-2. Structural diversity can be introduced at several locations in each pseudodisaccharide.

In summary, there are three sites per pseudodisaccharide at which heterogeneity can

be introduced, in addition to the multiple stereochemical outcomes of the coupling reaction.

Thus, there are four sources of diversity in each pseudodisaccharide linkage. If there were

only two choices per site, then the number of different outcomes would be 24 = 16.

However, some sites permit more than two options, particularly the choice of linker.

Consequently, this seemingly simple system can give rise to a large number of compounds

without the need to perform many couplings.

There are two feasible retrosynthetic approaches to the pseudodisaccharide target

21 (see Scheme 4-8). In accordance with literature procedures, the glycosyl bromide 225
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was synthesized in three steps from galacturonic acid, and was easily converted to the

thioglycoside 23 upon treatment with potassium thiolacetate and subsequent methanolysis.

Our long-term goal was a stepwise polymerization of 21, but initially we wanted to

examine the feasibility of the Michael addition of a pseudodisaccharide to a pyranuronate

ester. In order to facilitate this process, we simplified the reactants, using 5 as the Michael

acceptor and replacing the unsaturated uronate moiety in the pseudodisaccharide

nucleophile with a simple glucose core.

Scheme 4-8. Retrosynthetic approaches to the pseudodisaccharide target 21

In accordance with Scheme 4-9, 24 (67%) and 25 (26%) were prepared in two

steps as Michael donors. Surprisingly, Michael addition of either 24 or 25 to 5 proceeded

very slowly and in low yields (10% or less), irrespective of the permutations in reaction

conditions that were examined (solvent, stoichiometry, base, heat). Unlike reactions with

smaller nucleophiles described in Chapter 3, which in some cases went nearly to

completion in a day at room temperature, Michael addition of 24 to 5 afforded less than
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10% of the desired product, 26, in 24 hours (10% purified yield after 96 hours). Although

disulfide formation was the major product, it was not the limiting factor. The potential

combinatorial applications of the Michael addition were limited by the slow reaction rate,

and we were unable to find conditions that hastened the rate and improved yields.

Scheme 49a

aReagents: (a) 1,4-dibromo-2,3-butanediol, NaH, THF; (b) AcSH; (c) 1,4-dibromo-2-butene,

NaH, THF; (d) LiOMe, MeOH, 5; (e) Ac20, pyridine.

Combinatorial chemistry places a great emphasis on reactions that proceed in high

yields, since purification after each coupling is not possible (see Table 4-1). Assume an

average reaction goes in 60% yield, and one wishes to perform five couplings, with no

intermediate purification. The resulting purity of the desired compound would be less than

10%. The requisite purity of the components in a combinatorial library is dependent on the

biological screen, so there is not a defined minimum standard, but 10% is certainly
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insufficient. Experimentally, the propagation of impurities may not be geometric, and

therefore it is very important to maintain reaction efficiencies in excess of 90%, preferably

well in excess of 95%.

Average Yield (%)

40

40

60

60

90

90

99

99

Number of Couplings

2

5

2

5

2

5

2

5

Product Purity (%)

16

1

36

8

81

59

98

95

Table 4-1. Product purity as a function of the number of coupling and average yield.

Michael addition of pseudodisaccharide conjugates proceeded in only 10% yield,

and consequently had limited utility in combinatorial synthesis. One possible solution is to

enhance the electrophilicity of the Michael acceptor by removing the pyranose ring oxygen.

This is an appealing approach, but the synthetic investment required to make the

appropriate carbasugars would be substantial 6. Before making that investment, we tried to

identify the characteristics of an "ideal" combinatorial library, with the implicit recognition

that synthesis of an ideal library might not utilize the Michael addition chemistry.

Characteristics of a Highly Desirable Combinatorial Library

The ideal combinatorial library blankets all three-dimensional space with all

functional groups. Obviously, this library will never be developed, but a highly desirable

combinatorial library must be both spacially and functionally diverse. Assuming that the
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library is synthesized by ligation of building block units, the building blocks should be

fairly rigid, since most pharmaceutical entities have significant conformational restraints.

The components of the library should be produced in relatively pure form. Coupling

reactions should be highly efficient, proceeding in yields greater than 95%. Although solid

phase synthesis is not required, it is the best method to obtain the requisite yields. Finally,

the components of the library should be potential drug entities, not just lead compounds.

Each member of the library should potentially possess the pharmacokinetic characteristics

of a viable pharmaceutical, although this does not mean that a drug candidate must be culled

from the initial combinatorial library. Ideally, the library components would be amenable

to iterative combinatorial optimization.

One can envision many different combinatorial libraries or building blocks that

appear to match the characteristics described above. Carbohydrates are one potentially

desirable set of building blocks. They contain a much higher level of diversity per unit

mass than other polymers. While the diversity of peptides is governed completely by the

linear sequence of amino acids, monosaccharides can be be combined in linear or branched

arrays. Furthermore, several distinct positions in each monosaccharide unit can be used to

form the linkage, which can have either of two possible (a or f5) stereochemistries.

Whereas two identical amino acids or nucleotides can be joined together to produce only

one compound, two identical hexapyranose monosaccharides can be linked to produce 11

different disaccharides7. Carbohydrates are spatially diverse molecules, with hydroxyl

groups arrayed in many different planes in space. Furthermore, the three-dimensional

orientation of any given hydroxyl can be altered by starting with a different

monosaccharide. Carbohydrates are highly functionalized molecules. Any hydroxyl group

in a sugar can be isolated, thereby facilitating selective functional group manipulations.

Carbohydrates are structurally rigid, cyclic molecules. In particular, hexapyranoses are

usually constrained to one of two possible chair conformations8 . In addition,

carbohydrates are abundant and inexpensive raw materials. Finally, in the form of heparin,
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there is precedent for a natural carbohydrate library in which seemingly small structural

perturbations in a repeating skeletal core give rise to a broad range of biological activities.

Carbohydrates possess many positive aspects as building blocks, but synthetic

ligation of the monomeric units is problematic. Carbohydrate synthesis is notoriously

difficult, and is plagued by low yields and a lack of generality9,10. In spite of tremendous

recent advances using chemicalll -14 and enzymatic techniques 5-' 7, solid phase

carbohydrate synthesis has not become routine. Yields, while adequatel'3' 4' 6, are not in

the same range as solid phase peptide or nucleic acid synthesis. Furthermore, the number

of building blocks and available linkage stereochemistries remains limited. Although it is

possible to synthesize carbohydrate libraries, the low yields and diminished diversity

(relative to theoretical carbohydrate synthesis) render it a discouraging prospect.

Even if the synthetic difficulties could be overcome, an oligosaccharide library still

might not be highly desirable. The bioavailability of oligosaccharides is suspect7.

Circulating glycosidases can cleave glycosidic linkages. Even if they survive the

chemoenzymatic assault, carbohydrate molecules may not be able to penetrate cell barriers.

These are legitimate concerns, although in fairness, it should be mentioned that

carbohydrate drugs are more likely to have extracellular targets7,18- 20. Furthermore,

functional group modifications, in particular hydroxyl protection, could increase the

permeability to cell membranes by making the molecules more lipophilic 7.

A superior approach to carbohydrate-based libraries may involve the synthesis of

unnatural linkages between carbohydrate units21. Our attempt to ligate

pseudodisaccharides with a Michael addition falls under this classification. The

pseudodisaccharides represented a potentially desirable set of building blocks, but the

coupling reaction was inadequate. We hoped to develop a system with equally desirable

building blocks, but superior coupling efficiencies.
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Chapter 5

Introduction to Glycotides

The quest for a better carbohydrate-based combinatorial library led to the concept of

glycotides, which are composed of glycosamino acids linked with amide bonds (see

Scheme 5-1). Glycosamino acids are monosaccharides that have been functionalized with a

carboxylic acid and an amine. We wanted to combine the advantages of carbohydrate-

based building blocks with the high coupling efficiencies of peptide synthesis. Ideally, a

large number of monomers would be synthesized and then combined in extensive

permutations to give combinatorial libraries with substantial structural and chemical

diversity. Compound libraries could be screened for a wide variety of biological activities,

and active components would be refined using iterative combinatorial optimization.

Scheme 5-1.

Research aimed at producing pharmaceutically important combinatorial libraries of

glycotides can be divided into three parts: monomer synthesis, oligomer synthesis, and

compound testing. Initially, we focused on monomer synthesis. The long-term success of

the project depends on the variety and quality of glycosamino acid synthesis. Given limited
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Figure 5-1. Glycosazido ester and acid precursors to glycosamino acid monomers.
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time, our intention was to synthesize several different glycosamino acids to demonstrate the

enormous potential diversity of the monomeric units. The next step was to synthesize

defined oligomers and oligomer libraries, which will be described in Chapter 6. We have

not reached the biological testing stage.

Monomer Synthesis: An Overview

We have synthesized the glycosamino acids shown in Figure 5-1. They have been

given two-letter code names to facilitate nomenclature. The synthetic routes to most of

these glycosamino acids have proceeded through an intermediate containing an azide and an

ester as latent sources of the amine and acid. Unless the monomer was used subsequently

to produce glycotide polymers, synthesis did not proceed beyond the glycosazido ester.

Synthesis was halted at this stage for three reasons. First, glycosazido esters are very

stable, and serve as convenient intermediates for storage. Second, they provide flexibility

in choosing a method of oligomer synthesis. Third, we felt that in normal cases, synthesis

of the azido ester denoted a defacto synthesis of the glycosamino acid, since azide and

ester deprotection are facile. For the purposes of this thesis, the term glycosamnino acid is

used to refer not only to modified monosaccharides containing both an amine and an acid,

but also as a generic term referring to monosaccharides possessing amines and acids in

protected forms. Hence, the term glycosamino acid encompasses several different but

closely related compounds, and azido esters, like azido acids, N-Boc protected acids, or

amino esters, are subsets of glycosamino acids.

Glycosamino acids can be separated into nine classes based on the locations of the

carboxyl (C) and amino (N) functionalities on the monosaccharide core. The positions of

the amine and carboxyl groups can be classified according to the carbon from which they

originated: the anomeric carbon (C1 in a hexose or pentose sugar), the carbon to which the

primary hydroxyl is bound (C5 in a pentose, C6 in a hexose), or any other carbon (C2,

C3, C4, and C5 in a hexose), represented by a, p, and x, respectively. This affords a 3 x 3
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matrix of nine possibilities. We have synthesized glycosamino acids from four (Ca-Np,

Ca-Nx, Cp-Nx, and Cx-Np) of the nine possible classes. Syntheses of glycosamino acids

from each of the other classes have been reported in the literature (for representative

examples, see Figure 5-2) for use in natural product synthesis" 2, polymer chemistry3 4 ,

and as enzyme inhibitors 5 and peptidomimetics 6. There are also naturally occurring

glycosamino acids, the most important of which are the sialic acids.

a. b. c

OBn MeOOC NHBoc

BnO 0 AcO 0BnO Ac
Br O Onc

NHBoc OAc OAc

COOMe

d. e.

HO
F NHZ

COO-
NH3

+

Figure 5-2. Glycosamino acids of natural and synthetic origins (noted by primary author). (a) Gurjar et

al.5 (b) Casiraghi et al. 1 (c) Dondoni et al.2 (d) Graf von Roedern and Kessler6 (e) Tokura et al.4 (f)

Muramic acid

The number of monomers that can be synthesized is virtually unlimited. Changes

in the protecting groups, stereochemistry, and spacing can generate immense structural

diversity in any single class of monomers. Exploring several classes of monomers further

increases the potential diversity of the system.

There are a number of feasible approaches to glycosamino acid synthesis. One can

envision several different methods to introduce the carboxyl and amino functionalities,

including (carboxyl) oxidative cleavage of an alkene, oxidation of a primary hydroxyl,
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reduction of a nitrile, Wittig reactions, etc., and (amino) reduction of an azide, imine,

oxime, nitrile, or nitro group. In practice, we used several techniques to introduce

carboxyl groups, while only one method, displacement with an azide nucleophile followed

by reduction, was used to generate the amine.

In order to simplify our libraries and facilitate characterization, we desired

monomers that were stereochemically pure. It could be argued that rapid generation of

chemical diversity would be obtained by starting with isomeric mixtures of monomers. For

instance, spatially addressable libraries could be synthesized using anomeric mixtures at

each discrete site. Additional compounds would be generated, although the difficulty of

characterization would be increased. From the perspective of a pharmaceutical company,

this tradeoff probably would be acceptable. Our primary purpose, however, was not to

develop drugs, but instead to demonstrate the potential merit of glycotides in combinatorial

chemistry. In other words, we wanted to communicate a "proof of concept", which was

accomplished more easily using stereochemically pure components. Any synthesis that

produced inseparable mixtures (generally at the anomeric carbon) was either terminated or

continued with the hope of resolving the individual components in a later step.

We placed a higher priority on developing synthetic routes to new glycosamino

acids than optimizing syntheses of existing monomers. Consequently, the yields and

synthetic steps reported in this chapter are not optimized. Instead, they represent the results

of a single experiment or the best performance from a small number of trials. Only one

series of synthetic routes (glycosamino acids MC, MD, ME, and MF) has been

systematically optimized. Unlike traditional natural product synthesis, in which exhaustive

attempts are made to synthesize a defined target, no glycosamino acid synthesis was vital;

modification or abrogation of a target were necessary alternatives when an adequate

synthesis could not be completed in a timely fashion.
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Synthesis of Glycosamino Acids from Hexose Sugars

Synthesis of GA (27). The glycosamino acid GA was prepared in seven steps as

described in Scheme 5-2. Benzylation of 1,6-anhydro-[-D-glucose 40 provided 41 in

70% yield. The allyl C-glycoside 42 was produced in 38% yield by treating 41 with allyl

TMS and TMSOTf 7 in acetonitrile, a slight modification of the method reported by Kishi

and coworkers8. The reaction was highly stereoselective, affording a ratio of a to P
anomers greater than 10:1. The C-glycosidation served a dual purpose by opening the

acetal to reveal the unprotected 6-hydroxyl. Mesylation of the primary alcohol, followed

by treatment with sodium azide, produced 43 (83%). The final steps involved oxidative

cleavage of the allyl glycoside with potassium permanganate under phase transfer

conditions9 , followed by in situ esterification with methyl iodide to give the azido ester 27

in 50% yield.

Scheme 5-2a

0

'OE7 a b BnO
Bn

OH OH OBn OBn

40 41

Na
N3

e f BnOc, d BnO0 e,f OBrBnO. 
OBn

43

OMe

0

aReagents: (a) BnBr, DMF; (b) allyl TMS, TMSOTf, CH3CN; (c) MsCI, TEA, CH2C12; (d)

NaN3, DMF; (e) KMnO4, Aliquat 336, H20, AcOH, CH2C12; (f) CH3I, NaHCO3, DMF.

Synthesis of LA (28). The glycosamino acid LA, derived from galactose, was

synthesized in accordance with the route described in Scheme 5-3a. A Mitsunobu
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reaction10 using diphenylphosphoryl azide1 ,12 as the nucleophile converted the

diacetonide 44 into 4513 in 66% yield. Hydrolysis of the acetonides, followed by

acetylation, provided 46 as a mixture of anomers (60%). Treatment with allyl TMS and

BF3-etherate afforded the allyl C-glycoside 47 as a 4:1 mixture of anomers (oc/) that

could not be resolved by chromatographic methods (35%). Oxidative cleavage of the

alkene using the RuC13/NaIO4 protocol of Sharpless and coworkersl4, followed by

esterification with methyl iodide, provided the azido ester 48 in 53% yield. Again, the

anomers could not be resolved. Zemplen methanolysis of the acetyl groups, followed by

formation of the 3,4-acetonide, provided the a anomer 28 in 59% yield. The small scale

of the reaction precluded recovery of the anomer.

Scheme 53aa

0 N 3

a- IW ~ 0b, c
0 O ' AcC

s~~4 /_ °45 p<U 46

IM_

h
d0

, f
AcC

U

aReagents: (a) DEAD, (Ph)2P(O)N3, PH3P, THF; (b) AcOH, H20; (c) Ac20, pyridine; (d) allyl

TMS, BF3-etherate, CH3CN; (e) RuC13, NalO4, CC14, CH3CN, H20; (f) CH3I, NaHCO3, DMF; (g)

LiOMe, MeOH; (h) (Me)2C(OMe)2, PPTSA.

A superior approach to the synthesis of LA is described in Scheme 5-3b. The

synthesis of intermediate 47 proceeded in 29% cumulative yield using this approach,
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compared to 13% using the route described above (although optimization of the reactions in

Scheme 5-3a, particularly the conversion of 46 to 47, could increase the yield

significantly). Upon treatment with allyl TMS and TMSOTf in acetonitrile, peracetylated

galactose 49 was converted to the C-glycoside 5015 in 82% yield, giving an 8:1 (orl[)

mixture of anomers (TMSOTf in acetonitrile provided a cleaner reaction than BF3-etherate

in acetonitrile or nitromethane). Ester saponification, followed by recrystallization,

provided 51 in 79% yield. Treatment of 51 with TBDPSC116 in pyridine, followed by

acetylation, afforded 52 in 87% yield. Removal of the silyl ether protecting group was

accomplished with HF/pyridine, giving 53 in 93% yield. The primary alcohol was

converted to the triflatel 7, which was treated directly with sodium azide to afford the azido

alkene 47 in 55% yield.

Scheme 5-3ba

aReagents: (a) allyl TMS, TMSOTf, CH3CN; (b) LiOMe, MeOH; (c) TBDPSCI, pyridine; (d)

Ac20, pyridine; (e) HF-pyridine; (f) Tf20, pyridine, CH2C12; (g) NaN3, DMF.

Synthesis of MA (29) and MB (30). Synthesis of the glycosamino acids MA and

MB (see Scheme 5-4) was similar to the second route used to produce LA (Scheme 5-3b).
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Peracetylated mannose 54 was converted to the C-glycoside 55 upon treatment with allyl

TMS and TMSOTf in acetonitrile. A 4:1 (o/13) mixture of anomers was obtained in only

39% yield. Methanolysis, followed by selective protection of the primary alcohol with

TBDPSC1 and subsequent peracetylation, afforded 56 (52%). The silyl ether was cleaved

in HF/pyridine to give 57 in 84% yield. Mesylation of the liberated hydroxyl group,

followed by treatment with sodium azide, provided the azido alkene 58 in 63% yield.

Oxidative cleavage of the alkene using ruthenium tetraoxide catalysis, followed by in situ

esterification with methyl iodide, afforded the azido ester 59 in 83% yield. Through this

stage of the synthesis, the anomers could not be readily separated and purified. Zemplen

Scheme 54a

aReagents: (a) allyl TMS, TMSOTf, CH3CN; (b) LiOMe, MeOH; (c) TBDPSC1, pyridine; (d)

Ac2O, pyridine; (e) HF-pyridine; (f) MsCI, TEA, CH2C12; (g) NaN3, DMF; (h) RuC13, NaIO4, CC14,

CH3CN, H20; (i) CH3I, NaHCO3, DMF; (j) LiOMe, MeOH; (k) (Me)2C(OMe)2, PPTSA.
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methanolysis of the acetyls, followed by formation of the 2,3-acetonide, provided the a

anomer 29 and the f3 anomer 30 in a cumulative yield of 85%. The anomers were readily

separable on silica gel.

Synthesis of ME (31), MF (32), MC (33), and MD (34). These four

glycosamino acids are actually two very similar sets of anomeric pairs, differing only by

mesylation of the C-5 hydroxyl group. Our synthetic approach was not originally intended

to produce such closely related products. We anticipated facile elimination of the mesylates

33 and 34 to afford allyl azido esters complimentary to the glycosamino acids ME and MF

(see Scheme 5-5, path A). Instead, the hindered mesylates 33 and 34 (Scheme 5-5, path

B) were extremely resistant to elimination. Given our goal of producing a diverse

population of monomers, we felt that a monomer that contained a relatively exotic

functional group such as a mesylate, if stable, was a desirable entity. Hence, the azido

ester mesylates were accorded recognition as distinct glycosamino acids.

The first two synthetic manipulations were common to both sets of glycosamino

acids. Diisopropylidene 60 was treated with methyl(triphenylphosphoranylidene)acetate in

refluxing acetonitrile. A Wittig reaction on the hemiacetal, followed by an internal Michael

addition, provided the C-glycoside 6118 as a mixture of anomers (approximately 1:1) in

90% yield. The anomers were barely separable on TLC. Chromatographic purification

would have been arduous and, more importantly, would have decreased the efficiency of

synthesis (described later in Chapter 5). We proceeded to the next step, hoping to separate

the anomers at a later stage in the synthesis. Selective hydrolysis of the 5,6-acetonide with

aqueous acetic acid at room temperature produced the diol 62 in 85% yield.
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Scheme 55a

0
'OH

60

a 'CH 2COOMe

61

HO
c, d

lI

MsOa, 

e, d
62 - H

330
33 "I,

MsO,.

+
-2COOMe

34

aReagents: (a) (Ph)3P=CHCOOMe, CH3CN; (b) AcOH, H20; (c) MsCI, pyridine; (d) NaN3,

DMF; (e) excess MsCI, TEA, CH2C12.

Mesylation of the diol 62 served as the branching point in the synthesis. Selective

mesylation of the primary alcohol with 1.1 equivalents of mesyl chloride in pyridine

(76%), followed by azide displacement (84%), provided the azido esters 31 and 32, which
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were separable on silica gel. It is important to remove dimesylate impurities before

treatment with sodium azide: the azido mesylate esters (33 and 34) were difficult to

separate from the azido hydroxy esters (31 and 32). The dimesylate of 62 was obtained

by treating the diol with excess mesyl chloride and triethylamine in dichloromethane. The

intermediate was isolated and used directly without further purification. Treatment with

sodium azide in DMF provided the azido mesylate esters 33 and 34 (separable on silica

gel) in 66% yield from 62.

Synthesis of Glycosamino Acids from Pentose Sugars

Synthesis of RA (35). Synthesis of the glycosamino acid RA proceeded in six

steps as described in Scheme 5-6. Peracetylated ribose 63 was converted to the C-

glycoside 64 upon treatment with allyl TMS and TMSOTf in acetonitrile. A 3:1 ([/a) ratio

of anomers, separable by flash chromatography, was obtained in 87% yield. Deacetylation

of the -anomer, followed by selective tosylation of the primary alcohol, afforded 65 in

53% yield. Displacement of the tosylate with sodium azide and catalytic

tetrabutylammonium iodide in DMF at 1250C proceeded very slowly. In order to expedite

the glycosamino acid synthesis, this reaction was terminated before reaching completion.

Direct acetylation of the mixture of azide and unreacted tosylate gave the desired azide 66

(29%), as well as the tosylate 67. The yield based on recovery of acetylated starting

material was 68%. The carboxylate functionality was introduced by ruthenium tetraoxide

catalyzed oxidation of 66, providing the glycosazido acid 35 in 93% yield. Unlike other

glycosazido acids produced by oxidative cleavage of an allyl C-glycoside, 35 was easily

purified to homogeneity, and did not require esterification.
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Scheme 56a

TsO 0TsO 0>
b, c

65 _
OH OH

aReagents: (a) allyl TMS, TMSOTf, CH3CN; (b) LiOMe, MeOH; (c) TsCI, pyridine; (d) NaN3,

DMF; (e) Ac20, TEA, CH2C12; (f) RuC13, NaIO4, CC14, CH3CN, H20.

Synthesis of RB (36)

Synthesis of the Cp-Nx glycosamino acid RB, described in Scheme 5-7, proceeded

in very high yield (67% overall) until the final step (10%). Selective silylation of the

primary alcohol of the 1,2-acetonide 68 was accomplished by treatment with TBDPSC1 in

pyridine, affording 69 in 98% yield. The secondary alcohol was converted to the triflate

with triflic anhydride and pyridine in dichloromethane, and the triflate was directly

displaced with sodium azide. Cleavage of the silyl ether with TBAF in THF provided the

azido alcohol 70 in 69% yield from 69.

Scheme 5-7a

68 69 70 36

aReagents: (a) TBDPSCI, pyridine; (b) Tf20, pyridine, CH2C12; (c) NaN3 , DMF; (d) TBAF,

TIIF; (e) KMnO4, Aliquat 336, H20, AcOH, CH2C12; (f) CH3I, NaHCO3, DMF.
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Oxidation of the primary alcohol 70 to the carboxylic acid was problematic.

Treatment of 70 with potassium permanganate under phase transfer conditions, followed

by esterification with methyl iodide, afforded the azido ester 36 in only 10% yield.

Nevertheless, this method was superior to other one-step (RuC13/NaIO4, PDC'19 20 ) or

two-step (TPAP2 ',22, then sodium chlorite2 3) oxidations that were attempted. Obviously,

many other reagents could be tried in order to produce a satisfactory yield in this final step.

Synthesis of YB (37). Synthesis of the Ca-Nx glycosamino acid YB proceeded in

seven steps as described in Scheme 5-8. An anomeric mixture of C-glycosides 72 was

obtained in 88% yield upon treatment of peracetylated xylose 71 with allyl TMS and

TMSOTf in acetonitrile. A 3:1 (a/) ratio of anomers was obtained. The anomers were

separable by flash chromatography, and the a anomer 72a was treated with lithium

methoxide in methanol to remove the acetyl groups. Treatment with dimethoxypropane

Scheme 58a

AcO AcO 0 0 0'
a bc 

I -I

AcO OAc ACU OAc OH

71 72 73

f,gd, e

-%

74 37

aReagents: (a) allyl TMS, TMSOTf, CH3CN; (b) LiOMe, MeOH; (c) (Me)2C(OMe)2, PPTSA;

(d) Tf20, pyridine, CH2C12; (e) NaN3, DMF; (f) KMnO4, Aliquat 336, H20, AcOH, CH2C12; (g) CH3I,

NaHCO3, DMF.
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provided the 3,5-acetonide 73 in 73% yield, leaving the 2-hydroxyl unprotected. The

secondary alcohol was converted to the triflate, which was treated with sodium azide to

give 74 in 54% yield. The allyl glycoside 74 was oxidatively cleaved with potassium

permanganate under phase transfer conditions. Esterification with methyl iodide provided

the azido ester 37 in 41% yield.

Synthesis of XF (38) and XG (39). Synthesis of the Cx-Np glycosamino acids

XF and XG proceeded in five steps as described in Scheme 5-10. All intermediates were

common until the final step. Many nucleophiles could be used in the final step to produce

analogous compounds. Selection tosylation of the primary alcohol of 68, followed by

Scheme 5-9a

a, b
N3

c
------ 0

HOI

75

V-

N3 0

76

N 3 0 e

R1 /
R2

77a R 1 = COOMe, R2 = H
77b R 1 = H, R2 = COOMe

N3 0

0 )-

38 COOMe

N3 0

J39 COOMe

aReagents: (a) TsCI, pyridine; (b) NaN3, DMF; (c) (COC1)2, DMSO, DIEA; (d)

(MeO)2P(O)CH2COOMe, KOtBu, DMF; (e) BnSH, LiOMe, MeOH; (f) cyclohexyl mercaptan, LiOMe,

MeOH.
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displacement with sodium azide, provided 75 in 53% yield. Swern oxidation24 afforded

the ketone 76 in 57% yield. The ketone was treated with trimethyl phosphonoacetate and

potassium tert-butoxide in DMF to provide a mixture of regioisomeric ca,5-unsaturated

esters 77a and 77b via a Wittig-Horner reaction (61%)25.

The a,o3-unsaturated esters provided a suitable framework for the rapid synthesis of

a collection of monomers, although only two were characterized. Michael addition of

benzyl mercaption to 77b was very fast, affording 38 in quantitative yield. The reaction

appeared to proceed with absolute stereoselectivity: nucleophilic attack was observed only

from the top face of the sugar. Stereochemical confirmation of the predicted structure was

obtained by detection of an NOE at H-2 upon irradiation of the benzylic protons. In

analogous fashion, cyclohexyl mercaptan was added to 77b, producing the glycosazido

ester 39 in 91% yield. Addition of cyclohexyl mercaptan to 77a gave the same product.

Michael additions of various nucleophiles could produce a collection of related compounds,

all with significant conformational restraints imposed by the crowded ring system. Ideally,

a collection of closely related monomers would be developed for iterative combinatorial

optimization of a lead compound identified by combinatorial library screening.

Efficiency of Monomer Synthesis

It was not our intention to report an inflated number of monomers based on trivial

synthetic manipulations in a final step. As an analogy, we would not wish to claim

synthesis of 25 threonine-like monomers based on different esters or ethers that can easily

be formed from the side-chain alcohol. However, synthetic pathways are highly valued if

they can provide substantial diversity with minimal experimental effort. It is very efficient

to have a synthetic route utilizing common intermediates and a late branching point. In

other words, it is better to introduce variability at the end, rather than the beginning, of a

synthesis.
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This concept is illustrated in Figure 5-3, providing an analogy to combinatorial

chemistry and the advantages of parallel synthesis. Assume eight monomers are wanted,

and each synthesis takes five steps. A serial approach to synthesis (method A), with eight

independent syntheses and no common intermediates, requires 40 synthetic operations.

Method B, in which the first three steps provide branching points (i.e., each reactant gives

two products), after which time serial synthesis ensues, uses 30 operations. Only 16

operations are needed using method C, which is identical to method B with the exception

that branching commences in the third step. Method D, in which eight different reagents

are used in the final step, requires 12 operations. One can describe the combinatorial

efficiency of monomer synthesis as a function of the number and relative timeframe (what

stage in the synthesis) of common intermediates. Based on combinatorial efficiency

considerations, certain glycosamino acid synthetic routes, such as the sets (XF, XG) and

(MC, MD, ME, MF), were much superior to others.

Conversion of Monomers into Suitable Forms for Solid Phase Synthesis

The high efficiency of peptide synthesis was one of the major reasons that we

became interested in pursuing glycotide synthesis. In order to take advantage of the high

yields and long history of methodological improvements in solid phase peptide synthesis,

we needed to convert the glycosazido ester monomers into N-Boc or N-Fmoc protected

glycosamino acids.

We used the intermediate 75 to study various approaches to azide deprotection and

conversion to suitably protected forms. Both catalytic hydrogenation and phosphine-

mediated reduction provided the free amine 75N in high yields (see Scheme 5-10).
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Figure 5-3. Common intermediates and late branching points provide more efficient synthetic routes.

Trimethyl phosphine2 6 was determined to be the fastest and most reliable of the phosphine

reagents for azide reduction. Triphenyl phosphine permits selective deprotection of
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primary azides in the presence of secondary azides27 , and thus could be used for the

deprotection of branched, diamino monomers. Conversion of 75N into the Boc derivative

78 was accomplished by treatment with (Boc)20, while the Fmoc derivative 79 was

produced in 76% yield upon treatment with Fmoc-O-succinimide28 ,29 . The yield of the

Boc derivative 78 was improved to 95% using a one pot procedure for hydrogenation and

carbamate formation30 . A one step synthesis of 78 using trimethyl phosphine was also

developed. The reaction was followed by TLC, and appeared to be as clean if not cleaner

than the hydrogenation procedure, but the yield (80%) was lower. We tried to develop a

one pot synthesis of the Fmoc derivative 79, but were unable to come up with an adequate

procedure.

Scheme 5-10a

aReagents: (a) H2, Pd/C; (b) P(Me)3, THF, H20; (c) (Boc)20, TEA; (d) Fmoc-OSu, TEA, THF;

(e) H2, Pd/C, (Boc)20; (f) P(Me)3, (Boc)20, THF, H20.
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As we applied these procedures to glycosazido esters, we encountered a problem

with acetyl migration. Specifically, upon azide reduction (either by hydrogenation or

trimethylphosphine), monomers with proximate O-acetyl groups experienced O--N

migration. We confirmed this problem and hoped to devise a solution by acetylating 75 to

give 80 as a model compound. All attempts to transform 80 into the Boc derivative 81

met with failure, as acetyl migration provided 82 as the major product (see Scheme 5-11).

Scheme 5-11. Acetyl migration prevented conversion to the desired product 81

N3' 0. A0N 3

-75HO _

75

AcHN 
reduction .

\ /'0
HO WI

. w 
82

I, desired transformation

t
Boc-HN

A

We anticipated facile conversion of the ester moieties into carboxylic acids. For

Boc synthesis, we planned to initially transform glycosazido esters into N-Boc esters,

followed by saponification. The glycosazido esters 31-34 were selected for use in solid

phase synthesis because of the high yields and efficiencies of their syntheses. The azido

esters were converted to the N-Boc esters 83-86 (Scheme 5-12) by catalytic hydrogenation

in the presence of (Boc)20. Saponification, followed by neutralization and subsequent

lyopholization, provided the N-Boc acids 83C-86C as white powders. For Fmoc

synthesis, we planned to select from two plausible routes. Initial transformation to the N-

Fmoc ester, followed by treatment with bis(tributyltin) oxide31 , would give the Fmoc acid.
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Alternatively, the desired product could be obtained by saponification of the azido ester,

followed by treatment with Fmoc-C1.

Scheme 5-12.

R1 lQO, R101..
H2, Pd/C, (Boc)2 0

o 0 o 0

31 R 1 = H, R2 = CH 2COOMe, R3 = H
32 R1 = H, R2 = H, R3 = CH2COOMe
33 R 1 = Ms, R2 = CH 2COOMe, R3 = H
34 R 1 = Ms, R2 = H, R3 = CH 2COOMe

83 R 1 = H, R2 = CH2COOMe, R3 = H
84 R 1 = H, R2 = H, R3 = CH2 COOMe
85 R1 = Ms, R2 = CH2COOMe, R3 = H
86 R 1 = Ms, R 2 = H, R3 = CH 2COOMe

R 1 Oi,.-

NaOH, MeOH, H20

83C R 1 = H, R 2 = CH2 COO-, R3 = H

84C R1 = H, R2 = H, R3 = CH2COO

85C R1 = Ms, R2 = CH 2COO-, R3 = H

86C R1 = Ms, R2 = H, R3 = CH 2CO0-
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Chapter 6

Synthesis of Glyvcotide Libraries: An Overview

We did not undertake this project with a particular biological target in mind. With

thousands of feasible glycosamino acid targets and only one chemist, it was clear that we

could continue with monomer synthesis indefinitely. Although monomer synthesis was

essential to the project's success, library synthesis was the ultimate objective. By

completing a series of glycosamino acid syntheses, we had shown that the number and

variety of monomers that could be synthesized was limited only by available time. At this

juncture, we proceeded towards the long-term goal of combinatorial library synthesis.

There are many variables to consider when designing a combinatorial library.

Unfortunately, the different variables are not independent. One must choose appropriate

monomers and reagents, promoting diversity while maintaining high yields and synthetic

compatibility. The number of steps and choices per step are important factors. Obviously,

a higher number of steps increases diversity, but also decreases yields and can produce

compounds that are too large to possess oral bioavailability. The method of library

synthesis must be selected from several options (spatially addressable, multivalent

synthesis, split synthesis, or encoding approaches), and the choice depends on the type of

molecules, size of the library, and difficulty of the chemistry. In planning the synthesis of

glycotide libraries, we addressed many of these issues.

We wanted to keep molecular weights < 7001 in order to produce compounds with

acceptable bioavailabilities. This entailed synthesis of glycotide dimers or, at most,

trimers. Consequently, no more than two couplings would be needed. We expected to

synthesize relatively small libraries. For example, a library of trimers, with ten possible

monomers at each step, would contain 103 compounds. Obviously, as more monomers

become available, larger libraries can be synthesized. Nevertheless, the limited number of

couplings reduces the feasibility of large library synthesis.
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Glycotide synthesis is amenable to each of the approaches to combinatorial

chemistry that have been discussed. As described in Chapter 1, the multivalent and split

synthesis approaches provide facile synthesis, while the spatially addressable and encoding

approaches offer simplified characterization of active compounds. Methods that do not

provide facile characterization are poorly suited to glycotide libraries. Compounds in a

glycotide library can be very similar, often differing by only a single stereocenter.

Consequently, analytical structural determination of active compounds is extremely

difficult.

It was our intention to use both solution and solid phase approaches to glycotide

synthesis. Solid phase synthesis offers several advantages in combinatorial chemistry2 .

Principally, it foments high yields and facilitates removal of reactants and byproducts.

Solid phase synthesis simplifies spatial segregation of library components. Spatially

addressable libraries can also be synthesized in solution (for example, in 96-well plate

format), but only relatively small libraries can be made3 . The split synthesis approach

(separation, reaction, recombination of beads) can only be utilized with solid phase

chemistry.

JF5igure 6-1. Advantages and disadvantages associated with solid phase synthesis.
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Conventional Advantages of Solid Phase Synthesis

- No purification is required; reactants are filtered away.

- An excess of reagents can be used to drive the reaction to completion.

- All reactions are done in one pot, reducing material loss

- Increased solvation of the growing chain is observed when a solid support
is used.

Disadvantages of Solid Phase Synthesis

- Impurities are carried over in the synthesis, making it very important to
drive reactions to completion.

- Two additional reactions are required in order to attach and cleave the
compound from the resin.
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The traditional disadvantage of solid phase synthesis relative to solution synthesis is

the fact that impurites are carried over, since purification of intermediates is not possible.

However, this disadvantage is negated in combinatorial chemistry because intermediates are

usually not purified, even if reactions are performed without solid supports. Thus, it is

extremely important to reduce impurities by driving reactions to completion.

There are other disadvantages associated with solid phase synthesis. Obviously,

the chemistry must be compatible with solid supports. In coupling to and cleavage from a

resin, two additional reactions are required per compound. An extra element of protection

is necessary since the resin linkage must be stable to repeated coupling and deprotection

steps during compound synthesis. Finally, a mild method of resin cleavage is desired,

particularly in the absence of a final purification step.

Although our ultimate goal was the parallel synthesis of large glycotide libraries,

initially we wanted to demonstrate the ability to synthesize defined oligomers, followed by

the synthesis of small, well-characterized libraries.

Glycotide Synthesis in Solution

Generalprocedurefor glycotide synthesis. We synthesized several oligomers using

solution phase chemistry (see Scheme 6-1). Amine deprotections, in the form of azide

reductions, proceeded rapidly and in high yield. Hydrogenation was found to be more

convenient than phosphine reduction for this step. The resulting free amines were not

purified, but instead used directly for coupling. The carboxylic acid moiety was obtained

by saponification of a glycosazido ester, followed by neutralization with cation exchange

resin. The azido acid and amino ester were coupled using 1-(3-dimethylaminopropyl)-3-

ethylcarbodiimide hydrochloride (EDCI) and TEA in dichloromethane. EDCI, which

produces a water-soluble urea as a coupling byproduct, gave higher yields than other

coupling reagents (DIC, PYBOP). The resulting oligomers could be extended in either
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Scheme 6-1

N3- Sugary COOMe

Y I saponification

N3 9 COCH
N3 Sugary COOH

YC

N3 Sugarx COOMe

X hydrogenation
H2N- Sugarx COOMe

XN -

coupling

N3 COOMe N Sugar - COOMe

Z YX
saponification yx I hydrogenation

N3-Suga COOH r -COOMe

ZC YXN

coupling

Sugary Sugary COMe

ZYX

direction without difficulty because the product of coupling has an azide at one terminus

and an ester at the other. Generally, synthesis proceeded in the C->N direction, and

excesses of the carboxylic acid and coupling reagent were used in order to increase yields.

Disappearance of starting materials was monitored by TLC (staining with ninhydrin and

sulfuric acid/ethanol). Concentration of solvents, followed by extraction with
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dichloromethane/water, furnished the desired product in the organic layer. Crude flash

chromatography separated the oligomeric azido ester from starting materials, which had

substantially reduced mobilities on silica gel.

Two conventions have been followed in order to simplify nomenclature. Any

glycosazido ester (monomer or oligomer) represented by any number X was accorded the

representation XC upon ester saponification, or XN upon azide reduction.

The glycotide trimers N3-MC-MC-MD-OMe (88) and N3-RA-MC-MD-OMe (89)

were synthesized in accordance with Scheme 6-2. The [-glycoside MC (33) was

saponified to produce 33C, while the a-glycoside MD (34) was hydrogenated to furnish

the free amine 34N. Coupling of the amine and acid components (no molar excess)

proceeded in 28% yield to provide the diglycotide 87. Hydrogenation of 87 produced

87N (crude, 87% yield), which was coupled to 33C to furnish the triglycotide 88 in 45%

yield. Coupling of 87N and the glycosazido acid 35 produced the triglycotide 89 in 44%

yield.

We synthesized the diglycotide N3-MC-YB-OMe (90) in order to examine the

reactivity of more hindered amines (see Scheme 6-3). The glycosazido ester 37 was

hydrogenated to provide the secondary amine 37N, which was coupled to 33C. Although

coupling of the secondary amine 37N took somewhat longer to complete than coupling of

primary amines, the yield was not adversely affected, as 90 was provided in 67% yield.

Scheme 6-3
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Scheme 6-2

N3

1. H 2, Pd/C

2. 33C, EDCI, CH 2C

87

34

NH

1. H2 , Pd/C

2. 33C, EDCI, CH2CI 2

or,

0 0

;K" 88

N 3

OAc OAc

1. H2 , Pd/C

2. 35, EDCI, CH 2Cl 2

89

Conventional amino acids can be introduced into a growing chain, while

monofunctionalized carbohydrates having either an amine or carboxylic acid can serve as

anchor residues. For example, synthesis of the "trimer" 92 incorporated phenylalanine as

a monomeric unit, while also using the azido sugar 75 as the "C-terminus" (see Scheme 6-
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4). Treatment of 75 with trimethylphosphine in THF/water provided the free amine 75N,

which was coupled to N-Fmoc-phenylalanine to afford 91 in 35% yield. The Fmoc group

was removed with 10% diethylamine in DMF4. Concentration of solvents, followed by

coupling to 35 in DMF, provided the trimer 92 in 75% yield.

Scheme 6-4

An eight compound library of trimers was assembled using a multivalent approach

to solution phase library synthesis (see Scheme 6-5). Compounds were synthesized in

accordance with the syntheses of specific oligomers discussed previously, except

glycosamino acids were mixed at each stage of the synthesis, thereby affording 23 = 8

possible compounds. The desired products were sufficiently similar to be copurified as a

group via extraction and filtration through silica gel. We have not confirmed that all eight

compounds were actually synthesized. The compounds emerged as a single broad peak on

HPLC. Molecular weight degeneracy limited the eight compounds to only two (M + H)+

peaks.
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Scheme 6-5. Synthesis of an eight-compound library of glycotide trimers

N 3 -MC-COOMe (33)

N3 -MD-COOMe (34)

Trimer library

NH2 -MC-COOMe (33N)
NH2 -MD-COOMe (34N)

N3 -MC-COOH (33C)
N3 -MD-COOH (34C)

N3 -MC-MC-MC-COOMe
N3 -MC-MD-MC-COOMe
N3 -MC-MC-MD-COOMe
N3 -MC-MD-MD-COOMe
N3 -RA-MC-MC-COOMe
N3 -RA-MD-MC-COOMe
N3 -RA-MC-MD-COOMe
N3 -RA-MD-MD-COOMe

N3-MC-MC-COOMe
N3-MD-MC-COOMe
N3-MC-MD-COOMe
N3 -MD-MD-COOMe

NH2 -MC-MC-COOMe
NH2 -MD-MC-COOMe
NH2 -MC-MD-COOMe
NH2 -MD-MD-COOMe

N3-MC-COOH (33C)
N 3-RA-COOH (35)

The analytical problems that were confronted with this small library portend to the

enormous difficulties that would have to be overcome if we synthesized a large library of

glycotides using the multivalent approach. The inability to remove starting materials (i.e.,

excess glycosamino acids) without invasive purification techniques precludes spatially

addressable synthesis of glycotides in solution. The split synthesis approach is not

amenable to solution synthesis, and therefore the only choices are the multivalent and

encoding approaches. The multivalent approach foments analytical difficulties, and thus an

encoding method appears to be the best way to make glycotide libraries in solution.

Unfortunately, development of a tagging scheme requires a large initial investment of

resources, and the best encoding methods 5'7 reported in the literature to date have been

used in conjunction with solid supports.

Synthesis of template-directed libraries. We also synthesized template-directed

libraries using the multivalent approach depicted in Figure 6-2. A set of four glycosazido
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esters (31 - 34) was hydrogenated, then mixed with the template (1,3,5-benzene-

tricarbonyl trichloride) and TEA in dichloromethane. The symmetry of the template

reduced the number of possible compounds to 20, instead of the 43 = 64 compounds that

could be produced using an asymmetrical three-site template with four glycosamino acid

options. The HPLC trace in Figure 6-2 shows four clusters of peaks. The four

glycosamino acids that were mixed with the template consisted of two sets of anomeric

pairs. Consequently, the HPLC trace would have revealed only four peaks if the anomers

had been indistinguishable. This was not the case, although we were unable to resolve all

20 peaks. Due to the mass degeneracy of the anomeric pairs, the 20 compounds possessed

only four molecular weights, all of which were observed in the mass spectrum.

We designed a template library without mass degeneracy in order to assess whether

vve had synthesized every possible compound in a library (see Figure 6-3). Three

glycosazido esters, 29 (MA), 33 (MC), and 38 (XF), were pooled, hydrogenated, and

reacted with the template. In theory, ten different products could be obtained, nine of

which were clearly observed in the mass spectrum. The only compound that was not

observed in significant quantities was the trimer T-XF-XF-XF. As a result of material

shortages, however, equimolar amounts of the individual glycosazido esters were not used.

Instead, XF constituted only 20% of the total monomer content (rather than 33% in an

equimolar distribution). Assuming equal rates of reaction (unlikely), the timer T-XF-XF-

XF would have comprised less than 1% (1/53) of the total products. The trace shown in

Figure 6-3 reveals that the individual components were well-resolved on RP-HPLC,

although we also detected some small, extraneous peaks resulting from impurities.
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Figure 6-2. Synthesis and HPLC trace of a 20 compound, template-directed library.
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Figure 6-3. Ten compound template-directed library without mass degeneracy.

The template was reacted with an excess of a single monomer, 31N (ME), in order

to assess the intrinsic level of impurities accumulating from the template library procedure

(see Figure 6-4). The HPLC trace shows the major peak corresponding to the desired

compound 93, as well as two smaller peaks resulting from impurities in the starting

materials or side products in the hydrogenation and coupling reactions.
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Figure 6-4. Our template-directed approach gave rise to some impurities

Solid Phase Synthesis of Glycotides

We anticipated using both Fmoc and Boc methodology for solid phase synthesis of

glycotides. We wanted to use orthogonal deprotection methods, because exposure to harsh

reagents would be minimized. Fmoc synthesis provides orthogonality, since Fmoc groups

are removed with base (piperidine) and cleavage from the resin is accomplished with mild

acid (TFA in dichloromethane)8. Normally, Boc synthesis does not allow an orthogonal

deprotection scheme because Boc groups are removed with mild acid (TFA in

dichloromethane), while strong acid is needed for cleavage from the resin (depending on

the resin, anhydrous HF or triflic acid). However, the Kaiser oxime resin9 q l permits an
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orthogonal deprotection scheme, since nucleophiles (hydrazine, N-hydroxy piperidine'2 ,

amino acid esters, etc.) are used for resin cleavage. Other schemes that provide

orthogonality can utilize linking agents 13 1 4 or light deprotection, either for cleavage from

the resin 15 (brominated Wang resin, available from Novabiochem) or removal of amine

protecting groupsl6

Initially, we decided to pursue solid phase synthesis using Boc chemistry on the

oxime resin. We believed that conversion of glycosazido esters into N-Boc acids would be

slightly easier than conversion to N-Fmoc acids. Our experience17'1 8 with peptide

synthesis on the oxime resin, and lack of experience with the photocleavable brominated

Wang resin, made the oxime resin a natural first choice. At this point in time, we have not

optimized the solid phase synthesis of glycotides. Initial attachment to the resin and

monomer coupling have proceeded smoothly (assayed by qualitative Kaiser tests), but the

cleavage reaction has been problematic. The difficulties may be a function of the particular

glycosamino acids that have been used (MC, MD, ME, and MF), or the oxime resin might

not be very compatible with glycotide synthesis. Glycotide synthesis should be attempted

using other resins that permit orthogonal deprotection schemes in conjunction with Boc

chemistry, as well as linking agents and resins compatible with Fmoc chemistry.

3iophysical Studies

We have not done any quantitative conformational analysis of glycosamino acids

and glycotides. Nevertheless, it is clear that the conformational mobility of monomers and

oligomers is often limited. It appears that the exo-glycosidic conformation of the

glycosazido ester monomers is fairly unusual relative to most C-glycosidesl9 20 .

Glycotides are chemically stable unless harsh conditions exist, but their stability to

enzymes is a potential concern which at present we have not addressed. Glycotides do not

possess natural glycosidic linkages. Moreover, most monomers are C-glycosides, so it is

unlikely that glycotides would be cleaved by glycosidases. Glycotides are replete with
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amide bonds, however, and while they are not natural substrates for proteases, there is a

possibility of proteolytic cleavage.

Conclusions

Although solution phase methods have been used successfully to synthesize

oligomers and small libraries, solid phase approaches to glycotide synthesis should be

developed in order to obtain libraries that are both practical and accessible. Small oligomer

synthesis is readily achieved in solution, but synthesis of larger compounds and libraries

will be more practically accomplished using solid supports. Depending on available

quantities of monomers, solution phase multivalent approaches could be used to assemble

glycotide libraries of virtually unlimited size, but the accessibility of these libraries would

be limited. The requirement for purification eliminates the possibility of using spatially

addressable methods for solution phase library synthesis. Tagging methods could be

applied to glycotide synthesis in solution, but would be synthetically challenging and time-

consuming. Solid phase synthesis is more amenable to encoding technologies, split

synthesis, and spatially addressable approaches to combinatorial libraries of glycotides.

Before we are able to efficiently synthesize large, accessible, and structurally

complex glycotide libraries, a substantial amount of work remains to be done, including

optimization of solid phase chemistry, additional synthesis of new and varied monomers,

and large scale monomer synthesis. A realistic estimate is that optimization of solid phase

chemistry would be completed in two years, coinciding with the synthesis of 30 distinct

monomers in multigram scale. This would allow the facile synthesis of (30)3 = 27,000

glycotide trimers in milligram quantities. The time required for library construction would

be dependent on the approach used, but would differ little from peptide library synthesis.

In assessing the potential of these libraries, one should consider the possibility that this

time could be better spent developing alternative libraries that incorporate readily available

building blocks.
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It is not necessary to create structurally novel libraries in order to develop new drug

candidates. The synthesis of thousands or millions of compounds closely resembling

certain known drugs will undoubtedly provide a source of pharmaceutically important new

molecules. Given the abundance of industrial participants in combinatorial chemistry,

significant duplication of libraries that are easily synthesized is inevitable. A library

possessing unusual structural properties could produce novel drug candidates, while also

serving as a source of new information and providing temporary relief from competitors.

In order to gain access to structurally novel libraries, risks must be taken. One approach is

to develop novel solid phase methodology. Our approach is to adapt interesting molecules

to existing technology. Either approach requires a significant time investment before

library synthesis is possible.

Without a doubt, synthesis of glycotide libraries will take longer than most libraries

currently in development. Relatively speaking, this difference might be very large, perhaps

even 500%, but in absolute terms, the difference is only two chemist-years. The reward is

a compound library substantially different from any in existence.

Glycotide library synthesis would provide a convenient mechanism to access the

tremendous structural diversity of carbohydrates without the difficulties associated with the

synthesis of natural carbohydrates. Compounds could be synthesized in relatively pure

form, and should have good in vivo stabilities. Glycotides do not require functional group

deprotection at the end of synthesis. The ability of glycotides to penetrate cell barriers is

unknown, but the presence of functional groups masking the alcohols should have a

beneficial effect 21. It bears repeating that many potential therapeutic targets for glycotides

would be extracellular. If glycotides are found to possess desirable biological activities and

pharmacokinetic properties, they would become very valuable lead compounds because of

their capacity for iterative combinatorial optimization. The tremendous potential of

glycotides merits the significant investment required to overcome the synthetic obstacles.
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Having reached that conclusion that glycotide synthesis is worth pursuing, two

alternatives should be introduced (see Figure 6-5). Orthogonally protected diamino sugars

(glycosadines) can be synthesized, and linked via ureas to produce glycurides. Like amide

bond formation, urea synthesis22 proceeds in high yields and is amenable to solid phase

chemistry. There are several advantages of glycuride synthesis relative to glycotides. Urea

linkages should eliminate concerns about proteolytic cleavage2 2. Synthesis of glycosadine

rnonomers is generally more straightforward than synthesis of glycosamino acids.

Orthogonal amine protection is easily achieved, even if both latent amines are introduced

simultaneously as azides23 . Finally, synthesis of glycosadines effectively doubles the

number of monomers, since there are two choices for the site of chain elongation.

N-PG2
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0
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Figure 6-5. Unnatural carbohydrate oligomers formed via urea and carbamate bond formation.
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Amino hydroxy sugars (glycosaminols) could be synthesized and subsequently

polymerized by carbamate formation24 to produce glycamate libraries. Synthesis of

glycosaminol monomers would be much easier than synthesis of glycosadines or

glycosamino acids, and thus a large number of building blocks could be rapidly assembled.
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General Procedures. All air-sensitive reactions were performed under an

atmosphere of argon. Unless otherwise noted, materials were obtained from commercial

sources and used without further purification. Tetrahydrofuran was distilled from sodium

benzophenone ketyl. Dichloromethane, 1,3-dimethyl-3,4,5,6-tetrahydro-2(1H)-

pyrimidinone (DMPU), triethylamine, and pyridine were distilled from calcium hydride.

Other solvents were HPLC grade or commercially distilled. DOWEX 50X8-200 was used

as a cation exchange resin. Analytical thin-layer chromatography was performed on EM

Science (E. Merck) silica gel 60 F-254 and Analtech silica gel GF (250 microns). TLC

staining of sugars was normally accomplished by spraying with a naphthoresorcinol stain

(0.2 g naphthoresorcinol, 100 mL ethanol, 4 mL concentrated sulfuric acid). Improved

detection of sugar amines or sugar amides was achieved by increasing the concentration of

sulfuric acid to 5% and removing the naphthoresorcinol. Errors in Rf values are + 0.1.

Chromatographic purifications were performed with EM Science 230-400 mesh silica gel

or Baker silica gel (40 mm avg. particle diameter), unless otherwise noted. Reversed phase

HPLC was performed on C18 columns (300 A) and weak anion exchange HPLC was

performed on DEAE 8HR (Waters) columns. Unless specified as WAX-HPLC, the term

HPLC refers to RP-HPLC. 1H and 1 3C spectra were acquired using a Varian XL-300 or

Varian UN-300 spectrometer. Chemical shifts are reported in 8 values relative to

tetramethylsilane ( = 0) for proton spectra and relative to internal CDC13 (77.0) for carbon

spectra. 1H NMR are tabulated in the following order: multiplicity (s, singlet; d, doublet;

dd, doublet of doublets; t, triplet; q, quartet; m, multiplet), number of protons, and

coupling constants in Hertz. Infrared spectra were recorded on a Perkin Elmer 1600 Series

FlIR. All mass spectra were obtained in the FAB mode. Unless otherwise noted, yields

are reported as the combined totals of the recovered addition products. Extractions with

sodium bicarbonate were performed with a concentrated solution of NaHCO3, and

extractions with KHSO4 were performed with a 1 M solution.
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Experimentals for Chapter 2

cOO- CH20R1 COO.

0 - 0 Heparinase
OH O -] OH

L OR1 NHR2 I m OR,

R1 = SO3 or H n = 0, 1,2, etc.

R2 = S0 3 ' or Ac

Heparin Digestion with heparinase. Heparin was added at a concentration of 25

mg/ml to buffer (pH 7.0, 100 mM MOPS, 5 mM calcium acetate). For each 1 ml of

buffer, 5 ul of cold heparinase (0.04 ug/ul water) solution was added. The reaction vessel

was incubated at 37°C for 24 hours, by which time digestion was > 95% complete

(monitored by UV absorbance at 232 nm).

Purification of heparin fragments. Fractions were separated on a weak anion

exchange HPLC (DEAE 8HR, Waters) column (Conditions at time t: NaCl concentration

(M) = 0.35 + (0.0125)t; pH = 3.5 - 0.005x). The major disaccharide product 1 eluted at

approximately t = 20 minutes. Fractions were desalted on a gel filtration column

(Sephadex G-10).
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CH2 0H

Chondroitinase ABC
Hyaluronic Acid

MNIAe

2

Hyaluronic Acid Digestion with Chondroitinase ABC. Chondroitinase ABC (10

units) was added to a gel-like suspension of hyaluronic acid (0.7g) in sodium acetate buffer

(100 mL, 0.05M NaOAc, pH 6.75). The suspension was allowed to stand for one month

at 37C, eventually becoming a solution. The major product, which can be purified by

WAX-HPLC or partially purified by size exclusion chromatography, was the disaccharide

2.

124

I



CH,OH COOEt CHoOAc_ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ v.. .. W .. _

1. Ac2 0, pyridine
2. PYBOP, TEA, MeOH

I-IA,r

OAc

cO -

NIIHAr

2
4

The crude product of hyaluronic acid digested by Chondroitinase ABC (consisting

primarily of the sodium salt of 2) was passed through a cation exchange column, after

which the free acid was lyopholized to a white powder. Pyridine (7 mL), acetic anhydride

(6 mL), and DMAP (5 mg) were added to the powder (500 mg). The resulting solution

was stirred at room temperature for 48 hours, then added to water (20 mL). The aqueous

solution was extracted with dichloromethane (5 x 20 mL), and the combined organic

extracts were concentrated to a small volume. A portion was purified by RP-HPLC (100/0

water:acetonitrile -- 60)/40 over 40 minutes) to produce 3, while the rest was subjected to

repeated, unsuccessful recrystallization attempts. Dichloromethane (1.5 mL) was added to

a mixture of the peracetylated disaccharide 3 (55 mg, 0.09 mmol), PYBOP (50 mg, 0.09

mmol), and TEA (25 uL, 0.18 mmol). After stirring 20 minutes, ethanol (7 uL, 0.17

mmol) was added. After 40 hours, dichloromethane (2 mL) was added, and the solution

was extracted with water (3 x 3 mL). The organic extracts were concentrated and purified

by RP-HPLC (same conditions as above). The major product was the [-anomer 4 (20.0

mg, 0.03 mmol), which was isolated in 35% yield.

Physical data for 4

1H NMR (300 MHz, CDC13) 8 6.22 (d, 1H), 6.03 (d, 1H), 5.65 (d, 1H), 5.56 (d, 1H),

5.06-5.13 (overlapped m, 2H), 4.88-4.93 (m, 1H), 4.61-4.67 (m, 1H), 4.32 (q, 2H),

3.87-4.17 (overlapped m, 4H), 2.17 (s, 3H), 2.10 (s, 3H), 2.04 (s, 9H), 1.97 (s, 3H),

1.36 (t, 3H); FABMS: 619 (M + H) + .
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Experimentals for Chapter 3

General Reaction Procedure for Michael Addition. To a solution or suspension of

base (0.19 mmol) [LiOMe, NaOMe, BuLi, DBU, TEA] and mercaptan (0.48 mmol) in 1

mL solvent was added a solution of the xa,-unsaturated ester 5 (30.6 mg, 0.15 mmol) in 1

mL solvent. The reaction was stirred for 24 hours at the specified temperature, then

neutralized with cation exchange resin. In case of a suspension, sufficient methanol was

added concurrent with the cation exchange resin to yield a solution, which was filtered

through cation exchange resin. The filtrate (with the exception of reactions done in

perdeuterated DMF or DMSO, which were immediately analyzed by 1H NMR after 24

hours) was concentrated and the resulting oil was dried in vacuo.

Reactions performed at elevated temperature were kept at 440C with an equilibrated

oil bath. Low temperature reactions were performed by cooling the two sets of reactants

independently in an ice bath, combining them under argon, and transferring the reaction

flask to a 4°C refrigerator, where the contents were stirred for 24 hours before the standard

workup. Room temperature reactions are reported as 22°C.

Quantitation of Reaction Products. The reactions were worked up after 24 hours as

described. Products were not isolated in these standard reactions. The residual oil was

dissolved in CDC13 and analyzed by 1H NMR spectroscopy. The relative ratios of the

starting material and addition products were determined by integrating well-resolved peaks

which matched separately purified standards. In some cases, quantitation of the molar

percentage of the minor products (b and d) could not be done by comparison with peaks of

known standards; instead, analogous peaks from corresponding addition products with

other mercaptans were used as a reference (i.e., 9d was never isolated and purified.

Estimation of the percentage of 9d was obtained by integrating peaks which were assigned

126



to 9d using the analogous spectral peaks from 11d as references). The presence of

saponified starting material and products was sometimes observed, but usually comprised

much less than 5% of the total material. Larger percentages of side reactions were

observed in reactions at elevated temperatures, increasing the difficulty of quantitation.

Errors in the numbers arose from uncertainty in the peak integration areas (small) and

variations between runs (somewhat larger). Differences in the product accumulations

which were less than 5% can be deemed insignificant. This error was mostly composed of

run-to-run variations. The error in the numbers reflecting product distributions was much

smaller, about 1%. This was normally small relative to the D-galacto product a, but large

relative to the L-isomers b and d. Comparisons should be made with this factor in mind.

Finally, as a result of decreases in the S/N ratio, errors in the product distributions

increased significantly when the corresponding product accumulations were less than 20%.

127



NaOH, H2 0

)Me )Me

a OH

The a,3-unsaturated ester 5 (342 mg, 1.67 mmol) was saponified by solvation in

water (10 mL) with an excess of sodium hydroxide (2 mL of 1 M solution). The solution

was neutralized with cation exchange resin, filtered, and concentrated to give the a,P-

unsaturated acid 6 (320 mg, 1.68 mmol) as a colorless oil in quantitative yield.

Physical data for 6

1H NMR (300 MHz, D20) 6 5.97 (d, 1H, J = 3.3), 4.92 (d, 1H, J = 2.6), 4.18 (dd, 1H,

J = 7.7, 3.3), 3.69 (dd, 1H, J = 7.7, 2.6), 3.39 (s, 3H).
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MeOBnSH,

MeOBnS', MeOH M e O S

Me IMe

5 OH OH

A solution of 5 (46.9 mg, 0.23 mmol) in 2 mL methanol was added to a mixture of

lithium methoxide (14.0 mg, 0.37 mmol) and methoxybenzyl mercaptan (204 mgs, 1.31

mmol) The reaction was stirred for 24 hours at room temperature under argon, then

neutralized by the addition of cation exchange resin. The solution was filtered and

concentrated. The resultant oil was purified by flash chromatography (dichloromethane/

acetone = 4:1) to give pure fractions of 7a (53.9 mg, 66% yield) and 7c (6.9 mg, 8%

yield) as pale yellow oils, as well as a fraction containing a mixture of the four possible

isomers (8.2 mg), which was further purified by flash chromatography to give pure 7b as

an oil (2.4 mg, 3% yield) and a yield of the combined products of 84% (69.0 mg, 0.19

mmol).

Physical data for 7a

Rf= 0.5 (dichloromethane/acetone = 3:1); IR (film) 3455 (br), 2932, 2836, 1760, 1610,

1512, 1437, 1245 cm'l; 1H NMR (300 MHz, CDC13) 8 7.19 (d, 2H, J = 8.8), 6.82 (d,

2H, J = 8.8), 4.88 (d, 1H, J = 3.8), 4.64 (d, 1H, J = 2.1), 3.95-4.01 (m, 1H), 3.77 (s,

3H), 3.74 (d, 1H, J= 13.1), 3.69 (s, 3H), 3.69 (d, 1H, J= 13.1), 3.60-3.68 (m, 1H),

3.43 (dd, 1H, J = 4.6, 2.1), 3.41 (s, 3H); 13 C NMR (75 MHz) 6 168.3, 158.3, 129.9,

129.4, 113.4, 99.7, 70.0, 69.7, 55.6, 54.8, 51.8, 49.9, 49.3, 36.9; HRMS. Calcd. for

C16H2307S (M + H)+: 359.1164; found: 359.1154.
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Physical data for 7b

Rf= 0.55 (dichloromethane/acetone = 3:1); IR (film) 3444 (br), 2930, 2846, 1748, 1610,

1513, 1440, 1247, 1175 cm- 1; 1H NMR (300 MHz, CDC13) 8 7.23 (d, 2H, J = 8.8),

6.85 (d, 2H, J = 8.8), 4.84 (d, 1H, J = 3.1), 4.21 (d, 1H, J = 11.2), 3.81 (s, 3H), 3.79

(s, 3H), 3.75 (d, 2H, J = 2.1), 3.62 (m, 1H), 3.60 (m, 1H), 3.45 (s, 3H), 2.80 (dd, 1H,

J = 11.2, 10.6); 1 3 C NMR (75 MHz) (8) 169.2, 159.0, 130.1, 129.6, 114.1, 100.0,

73.0, 71.5, 55.9, 55.2, 52.6, 48.6, 46.9, 35.4; HRMS. Calcd. for C16H2207SNa (M +

Na)+: 381.0984; found: 381.0976.

Physical data for 7c

Rf= 0.7 (dichloromethane/acetone = 3:1); IR (film) 3474 (br), 2934, 1743, 1610, 1512,

1440, 1245, 1174, 1146 cm-l; 1 H NMR (300 MHz, CDC13) 8 7.20 (d, 2H, J = 8.8),

6.83 (d, 2H, J = 8.8), 4.71 (d, 1H, J = 1.9), 4.20 (d, 1H, J = 9.0), 3.94-3.98 (m, 1H),

3.78 (s, 3H), 3.75-3.80 (m, 1H), 3.73 (s, 3H), 3.73 (s, 2H), 3.49 (s, 3H), 3.43 (dd, 1H,

J= 9.0, 3.1); 13 C NMR (75 MHz, CDC13) 8 169.2, 159.0, 130.0, 129.2, 114.1, 99.5,

74.1, 69.4, 68.9, 57.1, 55.3, 52.3, 45.7, 35.9; HRMS. Calcd. for C16H2207SNa (M +

Na)+: 381.0984; found: 381.0998.
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BnSH, BnS', MeOH
BnS,

)Me )Me

a OH

A solution of 5 (142 mg, 0.70 mmol) in 7 mL methanol was added to a mixture of

lithium methoxide (33.0 mg, 0.86 mmol) and benzyl mercaptan (317 mg, 2.55 mmol).

The reaction was stirred for 72 hours at room temperature under argon, at which point TLC

indicated the near-absence of starting material but showed faint traces of saponified

reactants. The solution was neutralized and concentrated as described for 7. The resultant

oil was purified by flash chromatography (dichloromethane/acetone = 4: 1) to give fractions

of 8a as a pale yellow oil and 8b and 8c as colorless oils (153 mg, 0.47 mmol) in 67%

combined yield.

Physical data for 8a

Rf= 0.5 (dichloromethane/acetone = 3:1); IR (film) 3456 (br), 2950, 2841, 1760, 1602,

1495, 1454, 1438, 1360, 1217, 1140, 1086, 1058, 1010 cm-1l; H NMR (300 MHz,

CDC13) 6 7.30 (m, 5H), 4.91 (d, 1H, J = 3.8), 4.65 (d, 1H, J = 2.3), 4.00 (dd, 1H, J =

9.9, 4.6), 3.85 (d, 1H, J = 13.2), 3.74 (d, 1H, J = 13.2), 3.68 (s, 3H), 3.66 (dd, 1H, J =

9.9, 3.8), 3.46 (dd, 1H, J = 4.6, 2.3), 3.44 (s, 3H). HRMS: Calcd. for C15H2106S (M

+ H)+: 329.1059; found: 329.1048.

Physical data for 8b

Rf= 0.55 (dichloromethane/acetone = 3:1); 1H NMR (300 MHz, CDC13) 8 7.33 (m,

5H), 4.85 (d, 1H, J = 3.3), 4.21 (d, 1H, J = 10.4), 3.81 (s, 3H), 3.81 (s, 2H), 3.60-3.65

(m, 2H), 3.47 (s, 3H), 2.82 (dd, 1H, J = 10.4, 10.2). FABMS: 329 (M + H) + .
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Physical data for 8c

Rf= 0.7 (dichloromethane/acetone = 3:1); 1H NMR (300 MHz, CDC13) 6 7.30 (m, 5H),

4.72 (d, 1H, J = 1.6), 4.21 (d, 1H, J = 9.2), 3.95-3.98 (m, 1H), 3.76-3.80 (m, 1H),

3.78 (s, 2H), 3.73 (s, 3H), 3.50 (s, 3H), 3.45 (dd, 1H, J = 9.2, 3.0); FABMS: 332 (M +

3D)+ .
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O OMe

EtSH, EtS', MeOH 
.m M EtSOH

IMe /OMe
I

5 OH g OH

A solution of 5 (46.0 mg, 0.225 mmol) in 0.5 mL methanol was added to a

solution of lithium methoxide (15.0 mg, 0.39 mmol) and ethanethiol (139 mgs, 2.25

mmol) in 1 mL methanol. After 30 hours, the solution was neutralized and concentrated as

described for 7. The residual oil was purified by flash chromatography

(dichloromethane/acetone = 4: 1) to give pure fractions of 9a, 9b, and 9c as colorless oils

(48.1 mg, 0.180 mmol) in 80% combined yield.

Physical data for 9a

Rf= 0.4 (dichloromethane/acetone = 3:1); IR (film) 3432 (br), 2931, 1757, 1438, 1355,

1189 cm-1 ; 1H NMR (300 MHz, CDC13) 6 4.90 (d, 1H, J = 4.0), 4.72 (d, 1H, J = 2.2),

3.99-4.05 (m, 1H) 3.84 (s, 3H), 3.54-3.60 (m, 1H), 3.47 (s, 3H), 3.46 (dd, 1H, J = 4.7,

2.2), 2.63 (q, 2H, J = 7.4), 1.25 (t, 3H, J = 7.4); HRMS: Calcd. for C10H1906S (M +

H)+: 267.0902; found: 267.0908.

Physical data for 9b

Rf= 0.45 (dichloromethane/acetone = 3:1); 1H NMR (300 MHz, CDC13) 6 4.87 (d, 1H, J

= 3.2), 4.19 (d, 1H, J = 11.1), 3.82 (s, 3H), 3.61-3.70 (m, 2H), 3.46 (s, 3H), 2.80 (dd,

1H, J = 11.1, 10.2), 2.57-2.68 (m, 2H), 1.25 (t, 3H, J = 7.4); FABMS: 267 (M + H)+ .
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Physical data for 9c

Rf= 0.65 (dichloromethane/acetone = 3:1); 1H NMR (300 MHz, CDC13) 8 4.75 (d, 1H,

J = 1.6), 4.26 (d, 1H, J = 9.5), 4.08-4.12 (m, 1H), 3.82-3.87 (m, 1H), 3.82 (s, 3H),

3.53 (s, 3H), 3.44 (dd, 1H, J = 9.5, 3.1), 2.60 (q, 2H, J = 7.4), 1.27 (t, 3H, J = 7.4)

FABMS: 267 (M + H)+.
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ChxSH, ChxS', MeOH
)Me S

Me )Me

5 OH 10 OH

A solution of 5 (44.0 mg, 0.22 mmol) in 0.5 mL methanol was added to a solution

of lithium methoxide (14.3 mg, 0.38 mmol) and cyclohexyl mercaptan (251 mgs, 2.16

mmol) in 1 mL methanol. The reaction was stirred for 3 days at room temperature under

argon, then neutralized and concentrated as described for 7. Flash chromatography

(dichloromethane/acetone = 4:1) was used to purify 10a, 10b, and 10c as colorless oils

(60.3 mg, 0.19 mmol) in 87% combined yield.

Physical data for 10a

Rf= 0.5 (dichloromethane/acetone = 3:1); IR (film) 3390 (br), 2929, 2851, 1759, 1447,

1221, 1186 cml 1 ; 1H NMR (300 MHz, CDC13) 4.89 (d, 1H, J = 3.9), 4.72 (d, 1H, J

= 2.3), 3.97-4.03 (m, 1H), 3.84 (s, 3H), 3.52-3.58 (m, 1H), 3.52 (dd, 1H, J = 4.7,

2.3), 3.44 (s, 3H), 1.0-2.8 (m, 1 1H, cyclohexyl protons); HRMS: Calcd. for

C14H2506S (M + H)+: 321.1372; found: 321.1371.

Physical data for 10b

Rf= 0.6 (dichloromethane/acetone = 3:1); 1H NMR (300 MHz, CDC13) 6 4.88 (d, 1H, J

= 3.7), 4.17 (d, 1H, J = 10.6), 3.81 (s, 3H), 3.52-3.71 (m, 1H), 3.46 (s, 3H), 2.85 (dd,

1H, J = 10.6, 10.2), 1.0-2.8 (m, 11H); FABMS: 321 (M + H) + .
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Physical data for 10c

Rf= 0.75 (dichloromethane/acetone = 3:1); 1H NMR (300 MHz, CDC13) 6 4.74 (d, 1H, J

= 1.7), 4.24 (d, 1H, J = 9.4), 4.03-4.08 (m, 1H), 3.80-3.85 (m, 1H), 3.81 (s, 3H), 3.52

(s, 3H), 3.50 (dd, 1H, J = 9.4, 3.1), 1.0-2.8 (m, 11H); FABMS: 321(M + H)+ .
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Me

p-thiocresol, LiOMe, THF

IMe WMe

5 OH OH

A solution of 5 (100 mg, 0.49 mmol) in 3 mL THF was added to a suspension of

lithium methoxide (34.0 mg, 0.89 mmol) and para-thiocresol (243 mg, 1.96 mmol) in 1

mL THF. The reaction was stirred for 3 days at room temperature under argon (at which

time a substantial amount of starting material was still present), then neutralized with cation

exchange resin, rinsed with methanol, and concentrated under reduced pressure and high

vacuum. Flash chromatography (dichloromethane/acetone = 5:1) was used to purify Ila,

11c, and lld (11d virtually coeluted with llb under various conditions and was

characterized as a 10/1 ratio of 1ld:llb) as colorless oils (52.6 mg, 0.16 mmol) in 32%

combined yield.

Physical data for la

Rf= 0.5 (dichloromethane/acetone = 3:1); IR (film) 3419 (br), 2927, 1760, 1494, 1440

cm-1; 1H NMR (30() MHz, CDC13) 7.38 (d, 2H, J = 7.8), 7.11 (d, 2H, J = 7.8), 4.98

(d, 1H, J = 3.8), 4.72 (d, 1H, J = 2.1), 4.08-4.13 (m, 1H), 3.88 (dd, 1H, J = 4.6, 2.1),

3.65-3.71 (m, 1H), 3.61 (s, 3H), 3.49 (s, 3H), 2.32 (s, 3H); HRMS: Calcd. for

C15H2106S (M + H)+: 329.1059; found: 329.1047.
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Physical data for 1 lc

Rf= 0.75 (dichloromethane/acetone = 3:1); 1H NMR (300 MHz, CDC13) 8 7.37 (d, 2H, J

= 7.9), 7.14 (d, 2H, J = 7.9), 4.80 (d, 1H, J = 1.9), 4.36 (d, 1H, J = 9.0), 4.08-4.14 (m,

1H), 3.82-3.85 (m, 1H), 3.81 (dd, 1H, J = 8.9, 3.5), 3.76 (s, 3H), 3.54 (s, 3H), 2.33

(s, 3H); FABMS: 329 (M + H) + .

Physical data for lld

Rf= 0.55 (dichloromethane/acetone = 3:1); 1H NMR (300 MHz, CDC13) 8 7.42 (d, 2H, J

= 8.1), 7.12 (d, 2H, J = 8.1), 4.80 (d, 1H, J = 3.6), 4.57 (d, 1H, J = 4.9), 4.32 (dd, 1H,

J = 9.8, 8.0), 3.79 (s, 3H), 3.58-3.64 (m, 1H), 3.48 (s, 3H), 3.16 (dd, IH, J = 9.8,

4.9); 2.32 (s, 3H); FABMS: 332 (M + 3D)+ .
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t-BuSH, t-BuS', MeOH- · S
Me e

40 OH

This product was prepared in accordance with the general reaction procedure in

methanol. Only a small percentage (6% in 24 hours under standard conditions) of 5 was

converted into products. Flash chromatography (ethyl acetate/hexane = 10:1) was used to

purify 12a as a colorless oil:

Physical data for 12a

Rf= 0.5 (dichloromethane/acetone = 3:1); 1H NMR (300 MHz, CDC13) 6 4.89 (d, 1H, J

= 3.9), 4.75 (d, 1H, J = 2.2), 3.97-4.03 (m, 1H), 3.80 (s, 3H), 3.52-3.58 (m, 1H), 3.51

(dd, 1H, J = 4.8, 2.2), 3.45 (s, 3H), 1.31 (s, 9H) ; HRMS: Calcd. for C12H2306S (M +

H)+: 295.1215; found: 295.1220.
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BME, LiOMe, THF HO S

)Me Me

4~ OH

A solution of 5 (81.0 mg, 0.40 mmol) in 3 mL THF was added to a suspension of

lithium methoxide (22.7 mg, 0.60 mmol) and 2-mercaptoethanol (222 mg, 2.85 mmol) in 3

mL THF. The reaction was stirred for 3 days at room temperature (at which time starting

material was still present), then neutralized with cation exchange resin, rinsed with

methanol, and concentrated in vacuo. Flash chromatography (dichloromethane/acetone =

2:1) was used to purify 13c as a colorless oil (38.4 mg, 0.14 mmol) in 34% yield. The D-

galacto isomer 13a was not purified to homogeneity from the reaction mixture, and instead

was fully characterized in its peracetylated form (see 14a).

Physical data for 13c

Rf= 0.15 (dichloromethane/acetone = 3:1); 1H NMR (300 MHz, CDC13) 8 4.77 (d, 1H,

J = 2.3), 4.36 (d, 1H, J = 8.0), 4.18 (dd, 1H, J = 5.7, 3.4), 3.86 (dd, 1H, J = 5.7, 2.3),

3.83 (s, 3H), 3.79-3.89 (m, 2H), 3.55 (dd, 1H, J = 8.0, 3.4), 3.53 (s, 3H), 2.73-2.89

(m, 2H); HRMS. Calcd. for C10H1907S (M + H)+: 283.0851; found: 283.0852.
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1. BME, LiOMe, MeOH
2. Ac2 0, pyridine AcO S

)Me WMe

5 OH 14 OAc

A solution of 5 (79 mg, 0.39 mmol) in methanol (2 mL) was added to a solution of

2-mercaptoethanol (195 mg, 2.5 mmol) and LiOMe (38 mg, 1 mmol) in methanol (2 mL).

The reaction was stirred for 120 hours at room temperature, then neutralized and

concentrated as described for 7. Pyridine (1 mL) and acetic anhydride (0.6 mL) were

added to the residual oil. After 24 hours, cold water (15 mL) was added to the solution.

After stirring for 15 minutes, the aqueous solution was extracted with CH2C12 (3 x 10

mL). The combined organic layers were extracted with water and saturated sodium

bicarbonate solution before drying over sodium sulfate. After filtration and concentration

under reduced pressure, the residual oil was purified by flash chromatography

(hexane/ethyl acetate = 6:5) to give 14a as a colorless oil (41.7 mg, 0.10 mmol) in 25%

yield.

Physical data for 14a

Rf= 0.4 (hexane/ethyl acetate = 1:1); IR (film) 2954, 1741, 1439, 1372, 1230, 1137,

1026 cm - 1; 1H NMR (300 MHz, CDC13) 5.48 (dd, 1H, J = 10.6, 4.3), 5.19 (dd, 1H, J

= 10.6, 3.7), 5.08 (d, 1H, J = 3.7), 4.78 (d, 1H, J = 2.1), 4.12 (m, 2H), 3.84 (s, 3H),

3.77 (dd, 1H, J = 4.3, 2.1), 3.61 (s, 3H), 2.71-2.81 (m, 2H), 2.12 (s, 3H), 2.09 (s,

3H), 2.06 (s, 3H); 13 C NMR (75 MHz, CDC13) 5 170.6, 170.0, 169.9, 168.1, 97.6,

70.0, 69.3, 68.9, 63.7, 56.1, 52.4, 49.7, 31.8, 20.7 (multiplet); HRMS. Calcd. for

C16H24010SNa (M + Na)+: 431.0988; found: 431.0983.
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Experimentals for Chapter 4

CH2 (C6H 4)OMe
I

S
COOMe 1. Hg(OAc) 2 , TFA

0 2. EtSH, H2 0

HO H
OH00

7a OMe 15a OMe

A 0° C solution of mercuric acetate (138 mg, 0.43 mmol) in 3.5 mL TFA was added

to a mixture of 7a (150 mg, 0.42 mmol) and anisole (110 gL) at 0°C. After 15 minutes at

0°C, TFA was removed under a steady stream of argon. To the residual oil was added 25

mL water, followed by a large molar excess of ethanethiol (800 mg, 14.3 mmol). A white

precipitate was immediately observed, and the suspension was stilted for 30 minutes at

room temperature, then filtered and concentrated several times from water and then

methanol. The residual oil was dried in vacuo to give 15a as a colorless oil (90.8 mg,

0.38 mmol) in 91% yield.

Physical data for 15a

1H NMR (300 MHz, D20) 8 4.81 (d, 1H, J = 2.1), 4.76 (d, 1H, J = 4.1), 3.91 (dd, 1H,

J = 10.2, 4.7), 3.68 (s, 3H), 3.67 (dd, 1H, J = 10.2, 4.1), 3.62 (dd, 1H, J = 4.7, 2.1),

3.28 (s, 3H).
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CH 2 (C6 H4 )OMe

S 1. Hg(OAc) 2 , TFA SAc
COOMe 2. EtSH, H2 0 COOMe

O 3. Ac20, pyridine .

HO Ac
OH OAc

7a OMe 16a OMe

A solution of 64 mg (0.18 mmol) 7a in TFA was deprotected as described

previously to give 15a as an oil, to which was added 2 ml of a 5:4 pyridine/acetic

anhydride solution. After 24 hours at room temperature, the reaction contents were added

to cold water and extracted with CH2C12 (3 x 10 mL). The combined organic extracts

were washed with water and saturated sodium bicarbonate solution before drying over

magnesium sulfate. The solution was filtered and concentrated in vacuo, then purified by

flash chromatography (hexane/ethyl acetate = 2:1) to give 16a as a colorless oil (53.8 mg,

0.15 mmol) in 83% yield.

Physical data for 16a

Rf= 0.5 (hexane/ethyl acetate = 3:2); IR (film) 2955, 1747, 1702, 1438, 1373, 1220,

1138 cm - 1; 1H NMR (300 MHz, CDC13) 8 5.57 (dd, 1H, J= 10.6, 4.4), 5.09 (d, 1H, J

= 3.7), 4.98 (dd, 1H, J = 10.6, 3.7), 4.87 (d, 1H, J = 2.2), 4.62 (dd, 1H, J = 4.4, 2.2),

3.75 (s, 3H), 3.43 (s, 3H), 2.36 (s, 3H), 2.09 (s, 3H), 1.96 (s, 3H); FABMS: 365 (M +

H) + .

Physical data for 16c

This product was purified as the non-glycosylated (but subsequently acetylated) starting

material in reactions which produced the disaccharide 17c: Rf= 0.6 (hexane/ethyl acetate

= 3:2); IR (film) 2950, 2356, 1746, 1701, 1438, 1370, 1218 cm-l; 1H NMR (300 MHz,

CDC13) 8 5.61 (dd, 1H, J = 8.2, 4.1), 4.97 (dd, 1H, J = 8.2, 2.9), 4.88 (d, 1H, J = 2.9
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Hz), 4.68 (dd, 1H, J = 5.2, 4.1), 4.35 (d, 1H, J = 5.2), 3.80 (s, 3H), 3.45 (s, 3H), 2.36

(s, 3H), 2.13 (s, 3H), 2.05 (s, 3H); FABMS: 365 (M + H) + .
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CH20Ac
SAc 1. NaOMe, MeOH AcO -,\

COOMe 2. acetobromoglucose, A cOo S

DMPU __OAc 

AcO 3. Ac20, pyridine 17a AcO
OAc

16a OMe OAc
OMe

A solution of NaOMe (13.3 mg, 0.25 mmol) in methanol (2 mL) was added to a

solution of 16a (87.6 mg, 0.24 mmol) in methanol (2 mL). The solvent was evaporated

overnight under a stream of argon. A solution of acetobromoglucose (402 mg, 0.98 mmol,

commercial product recrystallized from ethanol) in DMPU (4 mL) was added to the residual

oil. After 24 hours, a 5:4 pyridine/acetic anhydride solution (1.8 mL) was added to the

reaction flask. After an additional 24 hours, the reaction contents were added to 15 ml cold

water and extracted with ether (3 x 10 mL). The combined organic ether extracts were

washed with water and saturated sodium bicarbonate solution before drying over

magnesium sulfate. The solution was filtered, concentrated in vacuo, and purified by flash

chromatography (hexane/ethyl acetate = 5:4) to give 17a as a colorless oil (42.4 mg, 0.06

mmol) in 27% yield.

Physical data for 17a

Rf= 0.3 (hexane/ethyl acetate = 1:1); IR (film) 2953, 1748, 1437, 1371, 1221 cm-l; 1H

NMR (300 MHz, CDC13) 8 5.42 (dd, 1H, J = 10.5, 4.2), 5.23 (dd, 1H, J = 10.5, 3.9),

5.15 (dd, 1H, J = 9.3, 9.3), 5.04 (dd, 1H, J = 9.3, 9.3), 5.02 (d, 1H, J = 3.9), 4.88 (dd,

1H, J = 10.1, 9.3), 4.79 (d, 1H, J = 2.3), 4.48 (d, 1H, J = 10.1), 4.26 (dd, 1H, J =

12.5, 4.7), 4.10 (dd, 1H, J = 12.5, 2.3), 3.97 (dd, 1H, J = 4.2, 2.3), 3.77 (s, 3H), 3.55-

3.61 (m, 1H), 3.41 (s, 3H), 2.13 (s, 3H), 2.09 (s, 3H), 2.08 (s, 3H), 2.08 (s, 3H), 2.01

(s, 3H), 1.99 (s, 3H); 13 C NMR (75 MHz, CDC13) 8 170.3, 169.9, 169.8, 169.6, 168.9,

168.0, 167.1, 97.5, 83.9, 75.9, 73.6, 70.6, 69.6, 69.3, 68.3, 68.1, 61.8, 56.0, 52.2,
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,47.8, 20.5 (m); HRMS. Calcd. for C26H36017SNa (M + Na)+: 675.1571; found:

675.1582.
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OH
MeOOC me '"'O"'O

SMeQO OM 1. Hg(OAc) 2, TFA AcO C
2. NaOMe, MeOH AcOI

OH OAc 
3. Acetobromoglucose,

DMPU
7c 4. Ac20, pyridine 17c mo OAc

MeO O OMe
OMe

A solution of 7c (44 mg, 0.123 mmol) in TFA was deprotected and worked up

according to the procedure for 15a. One equivalent NaOMe (6.6 mg, 0.123 mol) in

methanol (1.5 mL) was added to the residual oil. The solution was evaporated overnight

under a stream of argon. A solution of acetobromoglucose (53 mg, 0.129 mmol, 1.05 eq.)

in 1.9 ml DMPU was added to the residual thiolate. The light pink solution was stirred for

24 hours at room temperature, turning yellow in the process. In situ acetylation and

organic workup were performed according to the procedure used to make 17a.

Purification by flash chromatography (hexane/ethyl acetate/methylene chloride/acetone =

8:4:4:1) provided 17c as a colorless oil (19.1 mg, 0.03 mmol) in 24% yield.

Physical data for 17c

Rf= 0.3 (hexane/ethyl acetate = 1:1); IR (film) 2956, 2366, 1748, 1437, 1372, 1220

cm- 1; 1H NMR (300 MHz, CDC13) 8 5.55 (dd, 1H, J = 8.2, 4.2), 5.19 (dd, 1H, J = 9.3,

9.3), 5.06 (dd, 1H, J = 8.2, 2.9), 5.05 (dd, 1H, J = 9.3, 9.3), 4.93 (dd, 1H, J = 10.1,

9.3), 4.86 (d, 1H, J = 2.9), 4.63 (d, 1H, J = 10.1), 4.49 (d, 1H, J = 4.9), 4.21 (dd, 1H,

J = 12.5, 5.2), 4.11 (dd, 1H, J = 12.5, 2.2), 3.96 (dd, 1H, J = 4.9, 4.2), 3.81 (s, 3H),

3.64-3.71 (m, 1H), 3.42 (s, 3H), 2.11 (s, 3H), 2.10 (s, 3H), 2.09 (s, 3H), 2.06 (s, 3H),

2.02 (s, 3H), 2.00 (s, 3H); 13 C NMR (75 MHz, CDC13) 20.5(m), 45.0, 52.4, 57.6,

62.0, 67.6, 68.2, 68.3, 70.6, 73.7, 75.1, 76.1, 84.4, 99.3, 167.8, 169.1, 169.2, 169.3,

169.7, 170.0, 170.5; HRMS. Calcd. for C26H36017SNa (M + Na)+: 675.1571; found:

675.1566.
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CH2 0Ac
AcO-> oc \

O Ace LiOMe, MeOF

17a Ac
OA

OMe OMe

A solution of LiOMe (0.3 mg, 0.008 mmol) in methanol (1 mL) was added to a

solution of 17a (7.0 mg, 0.010 mmol) in methanol (1 mL). The reaction was stirred for

45 minutes at room temperature, then neutralized by the addition of cation exchange resin.

The solution was filtered and concentrated under reduced pressure to yield pure 18a (the

elimination product 5 constituted less than 1% of the final product) as a colorless oil.

Physical data for 18a

1H NMR (300 MHz, CD30D) 6 4.80 (d, 1H, J = 2.2), 4.75 (d, 1H, J = 3.8), 4.52 (d,

1H, J = 9.8), 4.08 (dd, 1H, J = 10.0, 4.6), 3.80-3.84 (m, 2H), 3.80 (s, 3H), 3.73 (dd,

1H, J = 10.0, 3.8), 3.61-3.67 (m, 1H), 3.39 (s, 3H), 3.24-3.41 (m, 3H), 3.14 (dd, 1H,

J = 9.8, 8.5); FABMS: 401 (M + H) + .
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0 NHAc
\ S

0 NHAc
Me 

, LiOMe, MeOH SS)M--e HI COOMe

Me H
oH, 

OH 19 OMe

A solution of lithium methoxide (23.9 mg, 0.63 mmol) in 4 mL methanol was

added to powdered D,L-N-acetylhomocysteine thiolactone (480 mg, 3.02 mmol). After

stirring 15 minutes at room temperature, a solution of 5 (86.6 mg, 0.43 mmol) in 3 mL

methanol was added to the flask. After 72 hours, the solution was filtered through cation

exchange resin. The filtrate was concentrated to an oil and purified by flash chromatograpy

(dichloromethane/acetone = 4:3) to give 19a (88.2 mg, 0.22 mmol) as an enantiomeric

mixture in 52% yield.

Physical data for 19a

Rf= 0.4 (dichloromethane/acetone = 1:1); IR (film) 3327 (br), 2921, 2355, 1739, 1654,

1542, 1436 cm'l 1H NMR { 1H NMR of the two enantiomers are virtually identical,

matching up within 0.01 ppm on all protons with the exception of the a proton of the

diasteromeric amino acids. }) (300 MHz, CDC13) 8 6.35 (d, 1H, J = 8.0), 4.92 (d, 1H, J =

4.1), 4.78-4.86 (m, 0.5H), 4.71 (d, 1H, J = 2.5), 4.66-4.70 (m, 0.5 H), 4.02-4.10 (m,

1H), 3.84 (s, 3H), 3.76 (s, 3H), 3.60-3.69 (m, 1H), 3.45 (s, 3H), 3.41-3.46 (m, 1H),

2.59-2.75 (m, 2H), 1.91-2.22 (m, 2H), 2.05 (s, 3H), 2.04 (s, 3H); HRMS: Calcd. for

C15H26N09S (M + H)+: 396.1328; found: 396.1338.
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OAc OAc

1. NaH, dibromobutene SAc
Ac o .2. AcSH, KSAc AcO 

AcO SH '-AcO O S

OAc 24 OAc

A 0°C solution of 1-thio-j-D-glucose tetraacetate (119 mg, 0.32 mmol) in THF (8

mL) was added to a mixture of sodium hydride (24 mg, 1.0 mmol) and 1,4-dibromobutene

(trans/cis = 10:1). The starting sugar was consumed within five minutes, and thiolacetic

acid (200 uL) and potassium thiolacetate (250 mg) were added to the flask. After stirring

24 hours, the reaction was partitioned between ether (10 mL) and water (15 mL). The

aqueous layer was extracted with ether (2 x 10 mL), and the combined organic extracts

were washed with brine (1 x 20 mL), then dried over sodium sulfate, filtered, and

concentrated to an oil. Purification by flash chromatography (hexane/EtOAc = 3:1)

afforded 24 (105.5 mg, 0.21 mmol) as a colorless oil in 67% yield.

Physical data for 24

Rf= 0.2 (hexane/EtOAc = 3:1); IR (film) 1754, 1691, 1368, 1225, 1039 cm-l; 1H NMR

(300 MHz, CDC13) 6 5.52-5.71 (m, 2H), 5.22 (dd, 1H, J = 8.9, 8.9), 5.01-5.11 (m,

2H), 4.45 (d, 1H, J = 10.2), 4.23 (dd, 1H, J = 12.5, 5.2), 4.14 (dd, 1H, J = 12.5, 5.6),

3.63-3.69 (m, 1H), 3.53-3.55 (m, 2H), 3.39 (dd, 1H, J = 13.2, 5.6), 3.18 (dd, 1H, J =

13.2, 5.6), 2.37 (s, 3H), 2.09 (s, 3H), 2.05 (s, 3H), 2.03 (s, 3H), 2.01 (s, 3H);

FABMS: 493 (M + H)+ .
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OAc HO OH

1. NaH, Sr AcO

AcO _SH S 2. AcSH. KSAc Ac

AcO OAc

,S=/~~-- SAc
OAc 25 OAc

A solution of (+) 1,4-dibromo-2,3-butanediol (2.02 g, 8 mmol) in THF (6 mL) was

added to a suspension of 1-thio-I3-D-glucose tetraacetate (701 mg, 1.92 mmol) and sodium

hydride (176 mg, 7.8 mmol) in THF (15 mL) at 0°C. The starting sugar was consumed

within ten minutes, and thiolacetic acid (1.5 mL, 20 mmol) and DIEA (1.7 mL, 10 mmol)

were added. After stirring 24 hours, the reaction was partitioned between ether (100 mL)

and water (100 mL). The aqueous layer was extracted with ether (2 x 75 mL), and the

combined organic extracts were concentrated and washed with water (1 x 100 mL) and

brine (1 x 75 mL), then dried over sodium sulfate, filtered, and concentrated to a syrup.

Purification by flash chromatography (hexane/EtOAc = 1.8:1) afforded 25 (309 mg, 0.51

mmol) as a mixture of enantiomers in 26% yield.

Physical data for 25

Rf= 0.5 (hexane/EtOAc = 1:1); IR (film) 2944, 1747, 1698, 1372, 1218, 1041 cm-l; 1H

NMR (300 MHz, CDC13) § 4.96-5.32 (m, 5H), 4.56 (dd, 1H, J = 10.0, 5.5), 4.09-4.30

(m, 2H), 3.73-3.79 (m, 1H), 3.29 (dd, 0.5H), 3.24 (dd, 0.5H), 2.93-3.04 (m, 1.5H),

2.87 (dd, 0.5 H), 2.76 (dd, 0.5H), 2.64 (dd, 0.5H), 2.37 (s, 3H), 2.13 (s, 1.5H), 2.13

(s, 1.5H), 2.10 (s, 6H), 2.06 (s, 1.5 H), 2.06 (s, 1.5H), 2.05 (s, 1.5H), 2.05 (s, 1.5H),

2.03 (s, 3H), 2.01 (s, 3H), 2.00 (s, 3H); FABMS: 611 (M + H)+ .
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OAc

1. LiOMe, MeOH, 5 COOMe
2. Ac2 0, pyridine AcO -O 

24 AcO S AcO

OAc 26 OAcMe

A solution of lithium methoxide (3.6 mg, 0.09 mmol) in methanol (0.4 mL) was

added to a mixture of the pseudodisaccharide 24 (127 mg, 0.26 mmol) and the a,p-

unsaturated ester 5 (24.0 mg, 0.12 mmol) in methanol (0.5 mL). After 96 hours, cation

exhange resin was added. The resin was filtered off and the filtrate was concentrated. The

residual oil was treated with pyridine (0.7 mL) and acetic anhydride (0.5 mL). After 24

hours, water (5 mL) was added, and the aqueous solution was extracted with

dichloromethane (3 x 5 mL). The combined organic extracts were concentrated to an oil,

taken up in dichloromethane (10 mL), and washed with saturated sodium bicarbonate (1 x

10 mL), KHSO4 (1 x 10 mL), and brine (1 x 10 mL). The organic extracts were dried

over sodium sulfate, filtered, and concentrated to an oil. Purification by flash

chromatography (hexane/EtOAc = 1.3:1) afforded 26 (9.1 mg, 0.012 mmol) as a colorless

oil in 10% yield. The major product of the reaction was a disulfide formed between two

mrolecules of the pseudodisaccharide 24.

Physical data for 26

Rf= 0.3 (hexane/EtOAc = 1:1); IR (film) 1748, 1371, 1224, 1037 cm- 1 ; 1H NMR (300

MHz, CDC13) 6 5.43-5.49 (m, 3H), 5.02-5.30 (m, 5H), 4.82 ( d, 1H, J = 2.2), 4.56 (d,

1H, J = 10.1), 4.24 (dd, 1H, J = 12.5, 4.6), 4.16 (dd, 1H, J = 12.5, 2.5), 3.85 (s, 3H),

3.76-3.80 (m, 1H), 3.67 (dd, 1H, J = 4.9, 2.5), 3.42 (s, 3H), 3.37 (dd, 1H, J = 14.0,

7.5), 3.22 (dd, 1H, J = 14.0, 4.9), 3.14 (d, 2H, J = 5.7), 2.12 (s, 3H), 2.10 (s, 3H),

2.08 (s, 3H), 2.08 (s, 3H), 2.03 (s, 3H), 2.() (s, 3H); FABMS: 739 (M + H) + .
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Experimentals for Chapter 5

BnBr, DMF

OH OH OBn OBn
40 41

A solution of 1,6-5-D-anhydroglucose 40 (1.00 g, 6.17 mmol) in DMF (20 mL)

was added to a 0 °C suspension of NaH (1.1 g, 27.5 mmol, 60% dispersion in mineral oil,

washed with hexanes) in DMF (10 mL) and stirred for 15 minutes before being treated with

benzyl bromide (7 mL, 58 mmol). The ice bath was removed and the reaction was allowed

to proceed at room temperature for 16 hours. Methanol (20 mL) was added and 15 minutes

later, the reaction was partitioned between EtOAc (50 mL) and water (30 mL). The

aqueous layer was extracted with EtOAc (1 x 50 mL), and the combined organic extracts

were washed successively with water (2 x 50 mL), sodium bicarbonate (2 x 50 mL),

KHSO4 (1 x 50 mL), and brine (1 x 50 mL). The organic solution was dried over

magnesium sulfate, filtered, and concentrated to an oil that was purified by flash

chromatography (hexane/EtOAc = 3:1) and then recrystallized from ethanol to afford 41

(1.88 g, 4.35 mmol) as white crystals in 70% yield.

Physical data for 41

Rf= 0.6 (hexane/ethyl acetate = 2:1); IR (film) 2918, 1454, 1073, 1028 cm-l; 1H NMR

(300 MHz, CDC13) 7.21-7.35 (m, 15H), 5.46 (d, 1H, J < 1), 4.51-4.64 (m, 5H), 4.45

(d, 1H, J = 12.1), 4.40 (d, 1H, J = 12.1), 3.91 (dd, 1H, J = 7.2, 1.0), 3.68 (dd, 1H, J =

7.2, 5.9), 3.58-3.60 (m, 1H), 3.34-3.35 (m, 2H); FABMS: 433 (M + H)+.
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Allyl TMS, TMSOTf Br

Acetonitrile

OBn OBn
41 4Z

A solution of 41 (1.088 g, 2.52 mmol) and allyl TMS (1.25 mL, 7.86 mmol) in

acetonitrile (11 mL) at 0°C was treated with TMSOTf (500 uL, 2.60 mmol). The ice bath

was removed and the reaction was stirred 16 hours, then added to 50 mL cold saturated

sodium bicarbonate solution. The aqueous solution was extracted with CH2C12 (3 x 25

mL). The combined organic extracts were washed with brine (1 x 50 mL), dried over

magnesium sulfate, filtered, and concentrated. Purification by flash chromatography

(hexane/ethyl acetate 3.8:1) afforded the a-C-glycoside 42 (459 mg, 0.97 mmol) as a

white solid in 38% yield. A second product, presumably the anomer, was isolated but

not purified to homogeneity.

Physical data for 42

Rf= 0.3 (hexane/ethyl acetate = 3:1); IR (film) 3250, 2899, 1453, 1096, 1067, 1038

cm-1; 1H NMR (300 MHz, CDC13) 7.28-7.37 (m, 15H), 5.70-5.83 (m, 1H), 5.07-5.14

(m, 2H), 4.61-4.96 (m, 6H), 4.01-4.09 (m, 1H), 3.48-3.84 (m, 6H), 2.46-2.51 (m, 2H),

1.77 (t, 1H, J = 6.4); FABMS: 475 (M + H)+ .
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BnO
Bn

1. MsCI, TEA, CH2C12 BnO
Br

2. NaN3, DMF

Methanesulfonyl chloride (100 uL, 1.29 mmol) was added to a 0°C solution of the

alcohol 42 (388 mg, 0.82 mmol) and TEA (230 uL, 1.66 mmol) in CH2C12 (5 mL). The

ice bath was removed and stirring was continued for 18 hours before methanol (50 uL) was

added. The solution was concentrated to a solid, dissolved in EtOAc (20 mL), and washed

successively with water (1 x 20 mL), sodium bicarbonate (2 x 20 mL), and brine (1 x 20

mL). The organic solution was dried over sodium sulfate, filtered, and concentrated to an

oil, which was used directly without further purification. The mesylate was dissolved in

DMF (8 mL) and added to sodium azide (300 mg, 4.6 mmol). The reaction was heated to

90C and proceeded for 20 hours before being cooled to room temperature and added to

water (15 mL), causing formation of a white precipitate. The aqueous suspension was

extracted with ether (3 x 15 mL), and the combined organic extracts were washed with

brine (1 x 25 mL), dried over sodium sulfate, filtered, and concentrated. Purification by

flash chromatography (hexane/ethyl acetate = 10: 1) afforded the azide 43 (340 mg, 0.68

mmol) as a white solid in 83% yield.

Physical data for 43

Rf= 0.4 (hexane/ethyl acetate = 10:1); IR (film) 2919, 2099, 1454, 1285, 1092 cm-1; 1H

NMR (300 MHz, CDC13) 7.21-7.31 (m, 15H), 5.69-5.82 (m, 1H), 5.04-5.11 (m, 2H),

4.51-4.92 (m, 6H), 4.03-4.11 (m, 1H), 3.53-3.89 (m, 3H), 3.34-3.43 (m, 2H), 3.25

(dd, 1H, J = 13.7, 5.4), 2.41-2.46 (m, 2H); FABMS: 500 (M + H) + .
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NA
. KMnO4, Aliquat 336

H20, AcOH, CH2CI2

!. CH3 I, NaHCO3

BnO
Br

N3

O

Water (1.2 mL) and acetic acid (250 uL) were added to a solution of the C-allyl

glycoside 43 (116.3 mg, 0.23 mmol) in CH2C12 (1.2 mL). Aliquat 336 (15 mg) was

added as a phase transfer catalyst and the reaction vessel was cooled to 0°C before addition

of KMnO4 (134 mg, 0.85 mmol) in two portions. The ice bath was removed and the

reaction proceeded 20 hours at room temperature, at which point all starting material had

been consumed. Sodium sulfite (150 mg) was added to quench the reaction, which was

partitioned between CH2C12 (3 mL) and water (2.5 mL). The aqueous layer was extracted

with CH2Cl2 (3 mL), and the combined organic extracts were washed with brine (1 x 5

mL), dried over sodium sulfate, filtered, and concentrated to an oil that was dissolved in

DMF (1 mL). Sodium bicarbonate (20 mg) was added to this solution, followed by methyl

iodide (20 uL). After 40 hours, water (1 mL) was added and the reaction was partitioned

between water (8 mL) and ether (8 mL). The aqueous layer was extracted with ether (2 x 5

mL), and the combined organic extracts were washed with brine (1 x 10 mL), dried over

sodium sulfate, filtered, and concentrated to an oil. Purification by flash chromatography

(hexane/EtOAc = 10: 1) gave the glycosazido ester 27 (62.3 mg, 0.12 mmol) as an oil in

50% yield.

Physical data for 27

Rf= 0.7 (hexane/ethyl acetate = 3:1); IR (film) 3030, 2908, 2100, 1738, 1283, 1091

cm 1; 1H NMR (300 MHz, CDC13) 7.23-7.36 (m, 15H), 4.88 (d, 1H, J = 10.9), 4.87

(d, 1H, J = 11.0), 4.78 (d, 1H, J = 10.9), 4.62-4.69 (m, 3H), 4.57 (d, 1H, J = 11.0),
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3.69-3.80 (m, 3H), 3.65 (s, 3H), 3.38-3.47 (m, 2H), 3.30 (dd, 1H, J = 13.0, 5.4), 2.78

(dd, H, J = 15.0, 5.4), 2.68 (dd, 1H, J = 15.0, 9.4); 1 3C NMR (75 MHz, CDC13) 

171.3, 138.3, 137.8, 137.7, 127.7-128.5 (m), 81.7, 79.1, 78.4, 75.3, 75.1, 73.2, 72.0,

71.4, 51.8, 51.5, 32.5; HRMS. Calcd. for C30H33N306 (M + H)+: 532.2448; found:

532.2446.

167



-I
0

Ft

@ A - - -

So =-~~~

0

168

- UJ

- Lu

__

1-1

-,

I

- r"



O N3

DEAD, (Ph) 2P(O)N 3, Ph3P 0

THF

45 /O

A solution of diethyl azodicarboxylate (1.10 mL, 7.0 mmol) and triphenyl-

phosphine (1.84 g, 7.0 mmol) in THF (30 mL) at 0°C was treated with 1,2;3,4-

diisopropylidene-a-D-galactopyranose 44 (1.82 g). After stirring 15 minutes, diphenyl

phosphorylazide (1.50 mL, 7.0 mmol) was added. After 48 hours, the reaction was

concentrated to a small volume, diluted with EtOAc (50 mL), and extracted with water (2

x 50 mL), KHSO4 (2 x 50 mL), and brine (1 x 50 mL). The organic solution was dried

over magnesium sulfate, filtered, and concentrated. Purification by flash chromatography

(hexane/EtOAc = 10:1, then 5:1) afforded 45 (1.317 g, 4.62 mmol) as an oil in 66%

yield, slightly contaminated by (presumably) triphenylphosphine oxide. Physical data for

45 matched literature values 1.
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1. AcOH, H2 0
AcC

2. Ac2 0, pyridine

46

Acetic acid (1 mL) and water (0.25 mL) were added to a 10 mL flask containing the

diacetonide 45 (95.5 mg, 0.34 mmol). The solution was stirred at 600 C for 18 hours, then

concentrated to an oil and codistilled twice with toluene. The flask was cooled to 0° C and

pyridine (1 mL) and Ac20 (0.5 mL) were added to the residual oil. After stirring 26 hours

at room temperature, the reaction contents were added to a saturated sodium bicarbonate

solution (10 mL) at 0°C. The aqueous solution was extracted with dichloromethane (3 x 5

mL), and the combined organic layers were washed with water (1 x 5 mL), sodium

bicarbonate (1 x 5 mL), KHSO4 (1 x 5 mL), and brine (1 x 5 mL). After drying over

sodium sulfate and filtering off the drying agent, the organic solution was concentrated to

an oil. Purification by flash chromatography (hexane/EtOAc = 3.5:1) afforded the

tetraacetate 46 (74.8 mg, 2.00 mmol) as a mixture of anomers in 60% yield.

Physical data for 46

Rf= 0.5 (hexane/ethyl acetate = 2:1); IR (film) 2106, 1750, 1371, 1219, 1069 cm- 1; 1H

NMR (300 MHz, CDC13) 8 5.72 (d, 0.5H), 5.48 (d, 0.5H), 5.41 (dd, 0.5H), 5.32-5.38

(m, 1.5H), 5.06 (dd, 0.5H), 4.21-4.25.(m, 0.5H), 3.93-3.97 (m, 0.5H), 3.42-3.56 (m,

1.5H), 3.21 (dd, 1H), 2.18 (s, 1.5H), 2.17 (s, 1.5H), 2.16 (s, 1.5H), 2.13 (s, 1.5H),

2.05 (s, 1.5H), 2.03 (s, 1.5H), 2.02 (s, 1.5H), 2.01 (s, 1.5H).
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Allyl TMS, BF 3-etherate

acetonitrileAcC

46

A solution of the tetraacetate 46 (140 mg, 0.375 mmol) and allyl TMS (0.33 mL,

2.08 mmol) in acetonitrile (3 mL) at 0°C was treated with BF3-etherate (0.40 mL, 3.24

mmol). The ice bath was removed and the reaction was stirred 24 hours. The reaction was

not completed at that time, but TLC indicated the emergence of a side product. The reaction

contents were added to 10 mL cold saturated sodium bicarbonate solution and extracted

with dichloromethane (3 x 10 mL). The combined organic extracts were dried over sodium

sulfate, filtered, and concentrated to an oil. Purification by flash chromatography

(hexane/EtOAc = 4:1) afforded the C-glycoside 47 (47.1 mg, 0.132 mmol) as a mixture of

anomers in 35% yield.

Physical data for 47

Rf= 0.4 (hexane/ethyl acetate = 3:1); IR (film) 2110, 1747, 1370, 1228, 1035 cm- 1; 1H

NMR (predominant a anomer from alternative route to 47) (300 MHz, CDC13) 8 5.72-

5.87 (m, 1H), 5.38 (dd, 1H), 5.06-5.32 (m, 4H), 4.29-4.36 (m, 1H), 3.97-4.02 (m,

1H), 3.51 (dd, 1H), 3.11 (dd, 1H), 2.46-2.57 (m, 1H), 2.27-2.36 (m, 1H), 2.14 (s, 3H),

2.07 (s, 3H), 2.02 (s, 3H); FABMS: 356 (M + H)+.

171



-C

c

'°tC-t

0

® J

C

C }-

C To

-cn

hN:

_ D

_O
_ 

172

z

I---



Lk

AcC

1. RuCI 3, NaO 4 ,
CC14/CH3CN/ H20

2. CH 31, NaHCO 3, DMF

A 1:1 solution (1 mL) of acetonitrile/carbon tetrachloride was added to a mixture of

the C-allyl glycoside 47 (45.0 mg, 0.127 mmol) and sodium periodate (118 mg, 0.55

mmol). Water (0.75 mL) was added to the suspension, followed by catalytic ruthenium

chloride trihydrate (3 mg). The reaction immediately turned brown, and gradually

developed a green tint. After one hour, isopropanol (5 mL) was added to the flask, and the

contents were filtered through Celite, rinsing with EtOAc. The filtrate was concentrated to

an oil. Purification by flash chromatography (CH2C12/acetone = 4:1, then added 1% acetic

acid) afforded the free acid (30.6 mg, 0.082 mmol) as an anomeric mixture. 1H NMR

showed a slight impurity in addition to the anomeric mixture. The acid was subsequently

esterified by dissolution in DMF (1 mL) and treatment with sodium bicarbonate (11 mg,

0.133 mmol) and methyl iodide (47.3 mg, 0.333 mmol). After 18 hours, water (1 mL)

was added to the flask, and the reaction contents were partitioned between water (3 mL)

and EtOAc (3 mL). The aqueous layer was extracted with EtOAc (2 x 3 mL), and the

combined organic extracts were washed with water (2 x 5 mL), dried over sodium sulfate,

filtered, and concentrated to provide 48 as an oil (26.1 mg, 0.067 mmol) that was not

purified further (53% yield from 47). TLC indicated that the a and f3 anomers virtually

coeluted, with the a anomer having a slightly higher Rf value.

Physical data for 48

Rf= 0.4 (hexane/ethyl acetate = 1.5:1); IR (film) 2103, 1746, 1372, 1221, 1058 cm'l; 1H

NMR (300 MHz, CDCl3) 6 (mixture of anomers, major changes from 47: loss of
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downfield multiplet 5.72-5.87 (vinylic proton), gain of 2 singlets from methyl esters at

3.73 (a), 3.71 ()); FABMS: 388 (M + H)+.
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1. LiOMe, MeOH

2. DMP, PPTSAAcC

OMe
,VW

Lithium methoxide (1 mg, 26 umol) was added to a solution of 48 (7.4 mg, 19

umol) in methanol (1 mL). After 30 minutes, cation exhange resin was added. The resin

was removed by filtration, and the filtrate was concentrated. The residual oil was dissolved

in dimethoxypropane (1 mL) and treated with catalytic PPTSA (1 mg). The reaction was

heated on an oil bath to 45C. After two hours, the solution was concentrated to an oil that

was purified by flash chromatography (hexane/ethyl acetate = 2.5:1) to give the Xa-

glycoside 28 (3.4 mg, 11 umol) as an oil in 59% yield. The small scale of the reaction

precluded recovery of the minor anomer.

Physical data for 28

Rf= 0.2 (hexane/ethyl acetate = 2.5:1); IR (film) 3462, 2920, 2102, 1732, 1210, 1062

cm- 1; 1H NMR (300 MHz, CDC13) 8 4.35-4.42 (m, 2H), 4.24 (dd, H, J = 7.9, 1.3),

4.17-4.20 (m, 1H), 3.93 (dd, 1H, J = 6.7, 3.2), 3.73 (s, 3H), 3.51 (dd, H, J = 12.8,

7.9), 3.42 (d, 1H, J = 3.9), 3.21 (dd, 1H, J = 12.8, 4.4), 2.83 (dd, 1H, J = 15.0, 7.4),

2.69 (dd, 1H, J = 15.0, 5.8), 1.50 (s, 3H), 1.34 (s, 3H); 13 C NMR (75 MHz, CDC13) 8

172.5, 109.9, 74.2, 72.4, 69.7, 68.6, 68.2, 52.2, 51.8, 36.6, 26.5, 24.4; HRMS.

Calcd. for C12H19N306 (M + H)+: 302.1352; found: 302.1353.
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Allyl TMS, TMSOTf, CH3CN

AcC AcC

OAc
49

A solution of peracetylated galactose 49 (2.07 g, 5.30 mmol) and allyl TMS (4.14

mL, 26 mmol) in acetonitrile (24 mL) at 0°C was treated with TMSOTf (1.2 mL, 6.2

mmol). The ice bath was removed and the reaction was stirred 24 hours, then added to 100

mL cold saturated sodium bicarbonate solution. The aqueous solution was extracted with

CH2C12 (3 x 60 mL). The combined organic extracts were washed with brine (2 x 100

mL), dried over magnesium sulfate, filtered, and concentrated. Purification by flash

chromatography (hexane/ethyl acetate 3:1) afforded 50 (1.612 g, 4.33 mmol) as a mixture

of anomers (c/ = 8) in 82% yield.

Physical data for 50

Rf= 0.4 (hexane/ethyl acetate = 2.5:1); IR (film) 2919, 1745, 1370, 1223, 1046 cm-l; 1H

NMR (300 MHz, CDC13) 8 {mixture of anomers, major changes from 49: loss of one

acetyl group, gain of downfield multiplet 5.80-5.97 (vinylic proton), four acetyl singlets

from a anomer are at 2.13, 2.07, 2.05, and 2.04); FABMS: 373 (M + H) + .
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LiOMe. MeOH
HOAcC

Lithium methoxide (50 mg, 1.3 mmol) was added to a solution of the tetraacetate

50 (1.60 g, 4.30 mmol) in methanol (40 mL). After 30 minutes, cation exchange resin

was added to neutralized the solution. The cation exchange resin was removed by filtration

and the filtrate was concentrated to a syrup. Trituration with ether removed a trace impurity

as well as some of the desired product. The syrup was concentrated in vacuo and

crystallized, affording 51 (694 mg, 3.40 mmol) as white crystals in 79% yield.

Physical data for 51

IR (film) 3356, 2922, 1643, 1076 cm'l; 1H NMR (300 MHz, CDC13) (mixture of

anomers, major changes from 50: loss of four acetyl groups}; FABMS: 205 (M + H)+.
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'PS(

1. TBDPSCI, pyridine

2. Ac2 0, pyridine AcOHO

A solution of the tetrahydroxy sugar 51 (290.1 mg, 1.42 mmol) in pyridine (5 mL)

at 0° C was treated with tert-butyldiphenylsilyl chloride (560 uL, 2.1 mmol). After 14

hours, the reaction was quenched with methanol (40 uL). The reaction flask was cooled to

0 °C and Ac20 (1.5 mL) was added. After 24 hours, water (20 mL) was added and the

aqueous solution was extracted with CH2C12 (2 x 20 mL). The combined organic extracts

were washed with water (1 x 30 mL), KHS04 (1 x 30 mL), sodium bicarbonate (1 x 30

mL), and brine (1 x 30 mL). The organic extracts were dried over sodium sulfate, filtered,

and concentrated to an oil. Purification by flash chromatography (hexane/ethyl acetate 5: 1)

afforded 52 (704 mg, 1.24 mmol) as an anomeric mixture in 87% yield.

Physical data for 52

Rf= 0.5 (hexane/ethyl acetate = 3.3:1); IR (film) 1750, 1368, 1223, 1108 cm-1; FABMS:

569 (M + H)+ .
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HF, pyridine

AcC AcC

A solution of the silyl ether 52 (596 mg, 1.05 mmol) in THF (7 mL) at 0°C was

treated with HF/pyridine complex (2.0 mL). The ice bath was removed and the reaction

proceeded for 14 hours at room temperature, at which time it was again cooled to 0°C and

sodium bicarbonate (25 mL) was slowly added, forming a white precipitate. The aqueous

suspension was extracted with ethyl acetate (3 x 15 mL). The combined organic extracts

were dried over sodium sulfate, filtered, and concentrated to an oil. Purification by flash

chromatography (hexane/ethyl acetate = 2:1) afforded the alcohol 53 (324 mg, 0.98 mmol)

as white crystals in 93% yield.

Physical data for 53

Rf= 0.5 (hexane/ethyl acetate = 1:1); IR (film) 3458, 2923, 1743, 1372, 1229, 1044

cm '1 ; H NMR (300 MHz, CDC13) {mixture of anomers, major changes from 52: loss of

aromatic protons and singlet corresponding to the tert-butyl group}.
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AcC
1. Tf20, pyridine

AcO
2. NaN 3, DMF

A solution of triflic anhydride (40 uL, 0.24 mmol) in CH2C12 (0.5 mL) was added

to a -10°C solution of pyridine (20 uL, 0.27 mmol) in CH2C12 (0.2 mL). A white

precipitate formed immediately. A solution of the alcohol 53 (38 mg, 0.12 mmol) in

CH2C12 (0.4 mL) was added to the pyridine/(Tf)20 solution. The ice bath was removed

and the reaction proceeded at room temperature for three hours, then was added to cold

water (3 mL). The layers were separated and the aqueous layer was extracted with

CH2C12 (2 x 3 mL). The combined organic layers were washed with brine (1 x 5 mL),

dried over sodium sulfate, filtered, and concentrated to an oil. The triflate was used

directly without further purification. A solution of the triflate in DMF (2 mL) was treated

with NaN3 (100 mg, 1.5 mmol). The suspension was stirred 4 hours at room temperature,

at which time TLC indicated the presence of the desired product and a side product,

presumably resulting from elimination. Water (7 mL) was added to the reaction, and the

aqueous solution was extracted with ether (2 x 5 mL). The combined ether extracts were

washed (1 x 10 mL) with brine, dried over sodium sulfate, filtered, and concentrated to an

oil. Purification by flash chromatography (hexane/ethyl acetate = 4:1) provided the azide

47 (22.4 mg, 0.063 mmol) as an oil in 55% yield. Physical data for 47 was provided

previously for the synthesis of 47 from 46.
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OAc
OAc

AcO- 0 Allyl TMS, TMSOTf AcO

AcO O OAc Acetonitrile Ac

54

A solution of peracetylated mannose 54 (4.08 g, 10.5 mmol) and allyl TMS (4.93

mL, 31 mmol) in acetonitrile (40 mL) at 0°C was treated with TMSOTf (2.24 mL, 11.6

mmol). The ice bath was removed and the reaction was stirred 48 hours, then added to 150

mL cold saturated sodium bicarbonate solution. The aqueous solution was extracted with

CHC13 (2 x 75 mL). The combined organic extracts were washed with brine (1 x 100

mL), dried over sodium sulfate, filtered, and concentrated. Purification by flash

chromatography (hexane/ethyl acetate = 4:1) afforded 55 (1.51 g, 4.1 mmol) as a mixture

of anomers (c3 = 4) in 39% yield.

Physical data for 55

Rf = 0.35 (hexane/ethyl acetate = 3:1); IR (film) 1745, 1370, 1227, 1050 cm-l; 1H NMR

(a anomer) (300 MHz, CDC13) 8 5.70-5.83 (m, 1H), 5.08-5.34 (m, 5H), 4.33 (dd, 1H),

4.03-4.15 (m, 2H), 3.88-3.93 (m, 1H), 2.38-2.60 (m, 2H), 2.12 (s, 3H), 2.09 (s, 3H),

2.08 (s, 3H), 2.04 (s, 3H); FABMS: 373 (M + H) + .
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AcO
Ac

1. LiOMe, MeOH OTBDPS
2. TBDPSCI, pyridine OAc
3. Ac2 0, pyridine AcO

AcO

56

A solution of lithium methoxide (20 mg) in methanol (10 mL) was added to

tetraacetate 55 (654 mg, 1.76 mmol). After stirring 30 minutes, cation exchange resin was

added to neutralize the solution. The resin was removed by filtration and the filtrate

concentrated to an oil, which was dissolved in anhydrous pyridine (10 mL), cooled to 0°C,

and treated with tert-butyldiphenylsilyl chloride (1.3 mL, 5.0 mmol). After 16 hours, the

reaction was quenched with methanol (150 uL). The reaction flask was cooled to 0 °C and

acetic anhydride (2 mL) was added. After 20 hours, water (30 mL) was added and the

aqueous solution was extracted with CH2C12 (2 x 30 mL). The combined organic extracts

were washed with water (1 x 50 mL), KHSO4 (1 x 50 mL), sodium bicarbonate (2 x 50

mL), and brine (1 x 50 mL), then dried over sodium sulfate, filtered, and concentrated to

an oil. Purification by flash chromatography (hexane/ethyl acetate = 4.5:1) afforded 56

(521 mg, 0.91 mmol) as an anomeric mixture in 52% yield.

Physical data for 56

Rf= 0.5 (hexane/ethyl acetate = 3:1); IR (film) 2932, 2857, 1748, 1371, 1248, 1224,

1112 cm' 1; 1H NMR (a anomer) (300 MHz, CDC13) 6 7.64-7.76 (m, 4H), 7.35-7.45 (m,

6H), 5.76-5.89 (m, 1H), 5.07-5.32 (m, 5H), 3.97-4.02 (m, 1H), 3.69-3.81 (m, 3H),

2.47-2.58 (m, 1H), 2.35-2.43 (m, 1H), 2.09 (s, 3H), 1.98 (s, 3H), 1.93 (s, 3H), 1.08

(s, 9H); FABMS: 569 (M + H)+ .
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OTBDPS
OAc

AcO .O HF, pyridine AcO
AcO Ac

56

A solution of the silyl ether 56 (486 mg, 0.85 mmol) in THF (6 mL) at 0° C was

treated with HF/pyridine complex (1.6 mL). The ice bath was removed and the reaction

proceeded for 16 hours at room temperature, at which time it was again cooled to 0° C and

sodium bicarbonate (25 mL) was slowly added. The aqueous solution was extracted with

CH2C12 (3 x 15 mL). The combined organic extracts were washed with brine (1 x 40

mL), then dried over sodium sulfate, filtered, and concentrated to an oil. Purification by

flash chromatography (hexane/ethyl acetate = 1.8:1) afforded the alcohol 57 (238 mg, 0.72

mmol) as a mixture of anomers in 84% yield.

Physical data for 57

Rf= 0.4 (hexane/ethyl acetate = 1.1:1); IR (film) 3487 (br), 2943, 1745, 1372, 1227,

1048 cm'l; H NMR (a anomer) (300 MHz, CDCl3) 8 5.81-5.94 (m, H), 5.10-5.32 (m,

5H), 4.02-4.08 (m, 1H), 3.63-3.70 (m, 3H), 2.54-2.65 (m, 1H), 2.39-2.48 (m, 1H),

2.26 (dd, 1H, J = 6.9, 6.4), 2.14 (s, 3H), 2.08 (s, 3H), 2.02 (s, 3H); FABMS: 331 (M +

H)+ .
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1. MsCI, TEA, CH2CI 2 AcO

2. NaN 3 , DMF Ac

AcO
Ac

Methanesulfonyl chloride (85 uL, 1.1 mmol) was added to a 0° C solution of the

alcohol 57 (234 mg, 0.71 mmol) and TEA (200 uL, 1.5 mmol) in CH2C12 (5 mL). The

ice bath was removed and the reaction proceeded for 18 hours at room temperature before

water (10 mL) was added, followed by saturated sodium bicarbonate solution (2 mL). The

aqueous solution was extracted with CH2C12 (3 x 7 mL), and the combined organic

extracts were washed with brine (1 x 10 mL), dried over sodium sulfate, filtered, and

concentrated to an oil, which was used directly without further purification. The mesylate

was dissolved in DMF (6 mL) and added to sodium azide (310 mg, 4.8 mmol). The

reaction was heated to 800 C and proceeded for 48 hours before being cooled to room

temperature and added to water (12 mL). The aqueous suspension was extracted with ether

(3 x 10 mL), and the combined organic extracts were washed with brine (1 x 20 mL), dried

over sodium sulfate, filtered, and concentrated. Purification by flash chromatography

(hexane/ethyl acetate = 3.8:1) afforded the azide 58 (158 mg, 0.44 mmol) as an anomeric

mixture in 63% yield.

phvsical data for 58

Rf= 0.4 (hexane/ethyl acetate = 3:1); IR (film) 2101, 1746, 1370, 1247, 1223, 1045

cm- 1; 1H NMR (a anomer) (300 MHz, CDC13) 6 5.72-5.88 (m, 1H), 5.08-5.30 (m, 5H),

4.01-4.07 (m, 1H), 3.81-3.88 (m, 1H), 3.41 (dd, 1H, J = 12.7, 7.0), 3.24 (dd, 1H, J =

12.7, 3.0), 2.53-2.63 (m, 1H), 2.39-2.48 (m, 1H), 2.15 (s, 3H), 2.06 (s, 3H), 2.02 (s,

3H); FABMS: 356 (M + H) + .
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N3 1. RuCI3, NalO4 N
OAc CC14/CH3CN/ H20 -

AcO co 2. CH3 1, NaHCO3, DMF HO' '

3. LiOMe, MeOH R1

58 4. DMP, PPTSA
~58 W R2

29 R1 = H, R2 = CH 2COOMe

30 R 1 = CH2COOMe, R2 = H

A 1:1 solution (1 mL) of acetonitrile/carbon tetrachloride was added to a mixture of

the C-allyl glycoside 58 (153.5 mg, 0.43 mmol) and sodium periodate (540 mg, 2.50

mmol). Water (0.75 mL) was added to the suspension, followed by catalytic ruthenium

chloride trihydrate (7 mg). The reaction immediately turned brown, and soon thereafter

developed a green color. After 40 minutes, isopropanol (1 mL) was added to the flask, and

the contents were filtered through Celite, rinsing with EtOAc. The filtrate was concentrated

to an oil, dissolved in EtOAc, and dried over sodium sulfate. The drying agent was

removed by filtration, and the filtrate was concentrated to an oil. The oil was dissolved in

DMF (2 mL) and treated with sodium bicarbonate (120 mg) and methyl iodide (90 uL).

After 20 hours, water (2 mL) was added to the flask, and the reaction contents were

partitioned between water (additional 4 mL) and EtOAc (5 mL). The aqueous layer was

extracted with EtOAc (2 x 5 mL), and the combined organic extracts were washed with

sodium bicarbonate (1 x 10 mL) and brine (1 x 8 mL), dried over sodium sulfate, filtered,

and concentrated. Purification by flash chromatography (hexane/ethyl acetate = 3:1)

afforded the glycosazido ester 59 (138 mg, 0.36 mmol) as an anomeric mixture in 83%

yield. The anomers were resolved by a deacetylation and subsequent acetonide formation.

Lithium methoxide (7 mg, 0.18 mmol) was added to a solution of 59 (125 mg, 0.32

mmol) in methanol (4 mL). After 30 minutes, cation exhange resin was added. The resin

was removed by filtration, and the filtrate was concentrated. The residual oil was dissolved

in dimethoxypropane (3 mL) and treated with catalytic PPTSA (3 mg). The reaction was

heated on an oil bath to 450C and proceeded for 1 hour. The solution was concentrated to
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an oil that was purified by flash chromatography (hexane/ethyl acetate = 3:1) to give the a-

glycoside 29 (62.1 mg, 0.21 mmol), the -glycoside 30 (6.6 mg, 0.02 mmol), and a

fraction containing a mixture of the two anomers (13.5 mg, 0.04 mmol) as oils in 85%

yield (70% from 58).

Physical data for 29

Rf= 0.5 (hexane/ethyl acetate = 1:1); IR (film) 3456 (br), 2989, 2936, 2101, 1783, 1276,

1082, 1053, 865 cm'l; 1H NMR (300 MHz, CDC13) 4.10-4.22 (m, 3H), 3.84-3.91 (m,

1H), 3.72 (s, 3H), 3.64-3.71 (m, 1H), 3.53 (dd, 1H, J = 13.2, 6.0), 3.42 (dd, 1H, J =

13.2, 3.0), 2.71 (dd, 1H, J = 15.4, 4.0), 2.55 (dd, 1H, J = 15.4, 8.9), 2.32 (d, 1H, J=

3.9), 1.50 (s, 3H), 1.36 (s, 3H); 1 3 C NMR (75 MHz, CDC13) 8 170.7, 110.2, 78.4,

75.6, 74.2, 70.0, 69.8, 52.0, 51.6, 38.1, 27.3, 25.1; HRMS. Calcd. for C12H19N306

(M+H)+: 302.1352; found: 302.1347.

Physical data for 30

Rf= 0.45 (hexane/ethyl acetate = 1:1); IR (film) 3444, 2934, 2100, 1738, 1376, 1220,

1072 cm'l; H NMR (300 MHz, CDC13)8 4.19-4.26 (m, 2H), 4.02 (dd, 1H, J= 7.0,

5.5), 3.71 (s, 3H), 3.54-3.61 (m, 1H), 3.43-3.45 (m, 2H), 3.36 (dd, 1H, J = 12.2, 7.0),

2.83 (dd, 1H, J = 16.3, 7.6), 2.71 (dd, 1H, J = 16.3, 5.5), 2.33 (d, 1H, J = 3.6), 1.52

(s, 3H), 1.35 (s, 3H); 13 C NMR (75 MHz, CDC13) 8 171.2, 110.0, 79.8, 77.5, 75.0,

72.6, 71.1, 51.9, 51.4, 36.2, 28.2, 26.3; HRMS. Calcd. for C12H19N306 (M + H)+:

302.1352; found: 302.1356.
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·OH (Ph)3 P=CHCOOMe, CH 3CN

61 O
61 

Acetonitrile (60 mL) was added to a mixture of 60 (1.252 g, 4.81 mmol) and

methyl(triphenylphosphoranylidene)acetate (3.31g, 9.90 mmol) and the resulting solution

was heated to reflux under argon. After refluxing 14 hours, the solution was concentrated

to a small volume, then taken up in 40 mL EtOAc and washed with water (1 x 30 mL) and

brine (1 x 30 mL). The organic layer was dried over magnesium sulfate, filtered, and

concentrated. The resultant syrup was purified by flash chromatography (hexane/ethyl

acetate = 4:1) to give 61 as a mixture of anomers (1.37 g, 4.32 mmol) in 90% yield.

Physical data for 61 matched literature values2.
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HOi

CH2 COOMe AcOH, H20 CH2 COOMe

Water (280 uL) was added to a solution of the diacetonide 61 (176 mg, 0.556

mmol) in glacial acetic acid (2 mL). Stirring was commenced and proceeded for 16 hours

at room temperature, at which time TLC (hexane/EtOAc 1:1) indicated the absence of 61.

The solution was concentrated under reduced pressure to a syrup, which solidified upon

standing. The white solid was dissolved in CH2C12 and filtered through a plug of silica

gel (CH2Cl2/acetone = 8:1, then 1.5:1). The solvent was removed in vacuo to give 62

(131 mg, 0.474 mmol) as a mixture of anomers in 85% yield.

Physical data for 62

Rf= 0.2 (dichloromethane/acetone = 3:1); IR (film) 3441, 2986, 2939, 2878, 1738, 1209,

1088 cm-1; 1H NMR (300 MHz, CDC13) 4.88 (dd, 0.5H, J = 6.1, 4.0), 4.84 (dd,

0.5H, J = 6.2, 3.7), 4.76 (dd, 0.5H, J = 6.2, 3.7), 4.63 (dd, 0.5H, J = 6.2, 1.0), 4.49

(dd, 0.5H, J = 7.5, 7.2), 3.76-4.01 (m, 3H), 3.70 (s, 3H), 3.66-3.72 (m, 1H), 3.53 (dd,

0.5H, J = 7.2, 3.8), 3.13-3.17 (m, 1H), 2.63-2.85 (m, 2H), 2.45-2.57 (m, 1H); 13 C

NMR (75 MHz, CDC13) 171.4, 170.7, 113.0, 112.5, 84.6, 84.6, 81.2, 81.2, 80.8,

80.5, 79.8, 77.5, 70.2, 69.9, 64.4, 64.3, 51.9, 51.7, 36.2, 33.2, 26.1, 25.8, 24.8, 24.7;

FABMS: 277 (M + H) +.
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I

HO HO"i
1. MsCI, pyridine

CH 2 COOMe 2. NaN 3, DMF

62 62 <

31 R 1 = CH 2COOMe, R2 = H
32 R 1 = H, R2 = CH 2COOMe

A 0° C solution of the diol 62 (1.29 g, 4.67 mmol) in pyridine (14 mL) was treated

with methanesulfonyl chloride (390 uL, 5.04 mmol) . After warming to room temperature

and stirring for 18 hours, DMAP (5 mg) was added to the reaction flask. Stirring was

continued for an additional four hours, at which point only a trace of starting material

remained and a small amount of the dimesylate impurity had formed. Methanol (3 mL) was

added to destroy excess methanesulfonyl chloride. The resulting solution was concentrated

under reduced pressure to afford an oil, which was partitioned between CH2C12 and water.

The aqueous layer was extracted with CH2C12 (2 x 15 mL), and the combined organic

layers were washed successively with 1M HCl (1 x 25 mL), saturated sodium bicarbonate

(1 x 20 mL), and brine (1 x 25 mL). The organic layer was dried over NaSO4, filtered,

and concentrated to an oil. Purification by flash chromatography (hexane/EtOAc = 1.3:1)

provided the monomesylate (1.25 g, 3.54 mmol) as an oil in 76% yield. It is important to

remove the dimesylate impurities before proceeding to the next step. Sodium azide (750

mg, 11.6 mmol) was added to a solution of the monomesylate product (779 mg, 2.20

mmol) in DMF (15 mL). The resulting suspension was stirred for eight hours in an oil

bath heated to 700C. The suspension was cooled to room temperature and water (30 mL)

was added, producing a homogeneous solution. This solution was extracted with ether (2

x 30 mL), and the pooled organic extracts were washed with brine (1 x 30 mL) and dried

over sodium sulfate, filtered, and concentrated. Purification by flash chromatography

(ether/petroleum ether = 1.3:1) provided the glycosazido esters 31 and 32 (555.9 mg,
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1.84 mmol) as a mixture of anomers in 84% yield. Purification on fine silica gel (EM

Science, Silica Gel 60) was required to completely resolve the anomers.

Physical data for 31

Rf= 0.5 (hexane/ethyl acetate = 1:1); IR (film) 3481 (br), 2987, 2934, 2097, 1734, 1438

cm-l; 1H NMR (300 MHz, CDC13) 8 4.83 (dd, 1H, J = 6.1, 3.7), 4.77 (dd, 1H, J= 6.1,

3.3), 4.05-4.13 (m, 1H), 3.93-3.99 (m, 1H), 3.70 (s, 3H), 3.55 (dd, 1H, J = 12.8, 3.3),

3.50 (dd, J = 8.2, 3.7), 3.42 (dd, 1H, J =12.8, 6.5), 2.68-2.85 (m, 2H), 2.63-2.68 (m,

1H), 1.48 (s, 3H), 1.34 (s, 3H); 13C NMR (75 MHz, CDC13) 8 171.2, 112.8, 81.0,

80.9, 80.9, 77.6, 69.4, 54.4, 51.8, 33.3, 25.8, 24.7; HRMS. Calcd. for C12H19N306

(M + H)+: 302.1352; found: 302.1349.

Physical data for 32

Rf= 0.48 (hexane/ethyl acetate = 1:1); IR (film) 3474 (br), 2990, 2940, 2103, 1737,

1438, 1382, 1085 cm- 1; 1H NMR (300 MHz, CDC13) 8 4.89 (dd, 1H, J = 6.0, 4.1),

4.67 (dd, 1H, J = 6.0, 1.0), 4.47-4.52 (m, 1H), 4.03-4.12 (m, 1H), 3.83 (dd, 1H, J=

8.3, 4.1), 3.71 (s, 3H), 3.54 (dd, 1H, J = 12.9, 2.7), 3.42 (dd, J = 12.9, 6.3), 2.75-2.80

(m, 1H), 2.44-2.58 (m, 2H), 1.51 (s, 3H), 1.32 (s, 3H); 13 C NMR (75 MHz, CDC13) 8

170.5, 113.2, 84.7, 81.0, 80.5, 79.9, 69.7, 54.1, 51.9, 36.2, 26.1, 24.7; HRMS.

Calcd. for C12H19N306 (M + H)+: 302.1352; found: 302.1349.
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1. MsCI, TEA, CH 2C
CH 2 COOMe 2. NaN3 , DMF

33 R 1 = CH 2COOMe, R2 = H
34 R1 = H, R2 = CH 2COOMe

Methanesulfonyl chloride (400 uL, 5.17 mmol) was added to a 0° C solution of 62

(374 mg, 1.35 mmol) and TEA (1.4 mL, 10.1 mmol) in CH2C12 (10 mL). The resulting

suspension was stirred 48 hours at room temperature, at which point methanol (1 mL) was

added to destroy excess methanesulfonyl chloride. The solution was concentrated to an oil,

which was dissolved in EtOAc (20 mL) and washed with saturated NaHCO3 (2 x 15 mL)

and brine (1 x 15 mL). The organic layer was dried over NaSO4, filtered, and

concentrated after addition of DMF (1 mL, to prevent bumping). The residual oil was

taken up in DMF (8 mL) and treated with sodium azide (560 mg, 8.6 mmol). The resulting

suspension was stirred for 14 hours in an oil bath heated to 70°C. The suspension was

cooled to room temperature and dissolved in water (25 mL). This solution was extracted

with ether (2 x 25 mL), and the pooled organic extracts were washed with brine (1 x 30

mL) and subsequently dried over sodium sulfate, filtered, and concentrated to an oil.

Purification by flash chromatography (hexane/EtOAc = 3.1:1) gave the glycosazido esters

33 and 34 as an anomeric mixture in 66% yield (338 mg, 0.890 mmol). The anomers

were resolved by repeated purifications on fine silica gel (EM Science, Silica Gel 60).

Physical data for 33

Rf= 0.7 (hexane/ethyl acetate = 1:1); IR (film) 2988, 2940, 2109, 1736, 1438, 1361,

1178 cm-1; 1H NMR (300 MHz, CDC13) 6 4.92-4.95 (m, 1H), 4.75-4.83 (m, 2H),

3.96-4.01 (m, 1H), 3.89 (dd, 1H, J = 13.4, 2.7), 3.82 (dd, 1H, J = 6.1, 3.5), 3.71 (s,
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3H), 3.58 (dd, 1H, J = 13.4, 4.3), 3.13 (s, 3H), 2.68 - 2.84 (m, 2H), 1.48 (s, 3H), 1.32

(s, 3H); 13 C NMR (75 MHz, CDC13) 170.9, 112.9, 80.9, 80.0, 78.7, 77.9, 77.4,

52.3, 51.8, 38.4, 33.2, 25.8, 24.8; HRMS. Calcd. for C13H21N308S (M + H)+:

380.1128; found: 380.1130.

Physical data for 34

Rf= 0.65 (hexane/EtOAc = 1:1); IR (film) 2988, 2941, 2110, 1738, 1439, 1360, 1178

cm-1; 1 H NMR (300 MHz, CDC13) 6 4.91-4.96 (m, 1H), 4.82 (dd, 1H, J = 6.0, 3.7),

4.71 (dd, 1H, J = 6.0, 0.9) 4.49-4.53 (m, 1H), 4.14 (dd, 1H, J =7.6, 3.7), 3.89 (dd,

1H, J = 13.6, 2.6), 3.71 (s, 3H), 3.60 (dd, 1H, J =13.6, 4.3), 3.13 (s, 3H), 2.47-2.61

(m, 2H), 1.51 (s, 3H), 1.33 (s, 3H); 13 C NMR (75 MHz, CDC13) 8 170.4, 113.3, 84.8,

81.0, 80.2, 77.9, 77.7, 52.2, 52.0, 38.4, 36.0, 26.2, 24.9; HRMS. Calcd. for

C13H21N308S (M + H)+: 380.1128; found: 380.1130.
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AcO OoAc AcO 0
Allyl TMS, TMSOTf,

acetonitrile

OAc OAc OAc

63 64

A solution of peracetylated ribose 63 (2.65 g, 8.3 mmol) and allyltrimethylsilane

(4.0 mL, 24.1 mmol) in acetonitrile (25 mL) at 0°C was treated with TMSOTf (2.22 g, 10

mmol). The ice bath was removed and the solution was stirred six hours, then added to

cold sodium bicarbonate solution (150 mL). The aqueous solution was extracted with

CH2C12 (3 x 60 mL). The combined organic extracts were washed with brine (2 x 100

mL), dried over magnesium sulfate, filtered, and concentrated. Purification by flash

chromatography (hexane/ethyl acetate = 3: 1) afforded the a anomer 64a (512 mg, 1.70

mmol) as a colorless oil and the anomer 64b (1.663 g, 5.54 mmol) as a white solid that

was recrystallized from EtOAc. The reaction proceeded with a cumulative 87% yield and a

ratio of 3 to a anomers of approximately 3:1.

Physical data for 64b

Rf= 0.6 (hexane/ethyl acetate = 2:1); IR (film) 2978, 1741, 1368, 1260, 1228, 1115

cm-1; 1H NMR (300 MHz, CDC13) 5.70-5.84 (m, 1H), 5.06-5.24 (m, 5H), 4.14 (dd,

1H, J = 13.3, 1.9), 3.71 (dd, 1H, J=13.3, 1.6), 3.53-3.58 (m, 1H), 2.41-2.51 (m, 1H),

2.18-2.29 (m, 1H), 2.17 (s, 3H), 2.16 (s, 3H), 2.00 (s, 3H); FABMS: 301 (M + H) + .

Physical data for 64a

Rf= 0.8 (hexane/ethyl acetate = 2:1); IR (film) 1749, 1372, 1249, 1221, 1038 cm-1 ; 1H

NMR (300 MHz, CDC13) 8 5.77-5.91 (m, 1H), 5.63 (m, 1H), 5.12 (d, 1H, J < 1), 5.07

(dd, J = 6.0, < 1), 4.95-5.01 (m, 1H), 4.73 (dd, 1H, J = 9.9, 2.6), 3.86 (dd, 1H, J =
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11.2, 5.5), 3.70-3.76 (m, 1H), 3.63 (dd, 1H, J = 11.2, 11.2); 2.31-2.39 (m, 1H), 2.12-

2.22 (m, 1H), 2.16 (s, 3H), 2.02 (s, 3H), 2.01 (s, 3H); FABMS: 301 (M + H)+ .

201



AcO 0 1. LiOMe, MeOH TsO 0

2. TsCI, pyridine

-Ac 6Ac OAc Ac

64 65

A solution of lithium methoxide (50 mg) in methanol (5 mL) was added to a

solution of 64b (979 mg, 3.26 mmol) in methanol (10 mL). After stirring three hours, the

reaction was neutralized by the addition of cation exchange resin. Filtration, followed by

concentration, afforded the sugar triol as white crystals (556 mg, 3.19 mmol) in 98% yield.

A portion of the crystals (556 mg, 3.19 mmol) were dissolved in a solution of tosyl

chloride (651 mg, 3.41 mmol) in pyridine (10 mL). After stirring 48 hours at room

temperature, the reaction contents were added to water (20 mL), and the aqueous solution

was extracted wtih CH2C12 (3 x 10 mL). The combined organic extracts were washed

with sodium bicarbonate (1 x 20 mL), KHSO4 solution (1 x 20 mL), and brine (1 x 20

mL). The organic solution was concentrated and recrystallized (153 mg) from

dichloromethane. The filtrate was concentrated and purified by flash chromatography

(hexane/ethyl acetate = 2:1) to afford the tosylate 65 (415.3 mg, 1.27 mmol) as a syrup

which crystallized almost immediately. The combined crystals (568.3 mg, 1.73 mmol)

totaled a 53% yield.

Physical data for 65

Rf= 0.2 (hexane/ethyl acetate = 1.5:1); IR (film) 3474, 1359, 1190, 1176, 1096, 855

cm' 1; 1H NMR (300 MHz, CDC13) 7.84-7.88 (m, 2H), 7.37 (d, 2H, J = 8.0), 5.70-

5.84 (m, 1H), 5.07-5.17 (m, 2H), 4.52 (ddd, 1H, J = 3.4, 2.5, <1), 4.08 (dd, 1H, J =

12.6, 2.5), 3.91-3.95 (m, 1H), 3.83-3.87 (m, 1H), 3.51 (dd, 1H, J = 12.6, < 1), 3.31

(ddd, 1H, J = 7.5, 6.9, < 1), 3.12 (d, 1H, J = 6.9), 2.95 (d, 1H, J = 7.8), 2.46-2.57 (m,

1H), 2.46 (s, 3H), 2.32-2.41 (m, 1H); FABMS: 329 (M + H)+.
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2. Ac2 0, TEA, CH2 Cl2

OAc OAc OAc OAc

65 66

The tosylate 65 (415.3 mg, 1.27 mmol) was dissolved in DMF (10 mL). Sodium

azide (530 mg, 8.12 mmol) was added to the solution, along with a catalytic amount of

tetrabutylammonium iodide (10 mg). The reaction was heated to 110°C and stirred four

days, by which time conversion of the starting material to product appeared to be

approximately 50%. The suspension was cooled and added to 40 mL water, which was

extracted with ether (2 x 40 mL). The combined organic extracts were washed with brine

(1 x 50 mL), dried over magnesium sulfate, filtered, and concentrated. The residual oil

was directly acetylated in CH2C12 by treatment with acetic anhydride (1 mL), triethylamine

(0.5 mL), and catalytic DMAP (5 mg). After stirring 24 hours at room temperature,

sodium bicarbonate (15 mL) was added. The organic layer was washed with brine (1 x 20

mL), dried over sodium sulfate, filtered, and concentrated to an oil. Purification by flash

chromatography (hexane/ethyl acetate = 5:1) afforded 66 (105.5 mg, 0.37 mmol) as an oil

in 29% yield from the tosylate (68% based on unreacted starting material). The acetylated

tosylate was recovered and characterized as 67.

Physical data for 66

Rf= 0.6 (hexane/ethyl acetate = 3:1); IR (film) 2922, 2852, 2108, 1743, 1375, 1226,

1034 cm'l; 1H NMR (300 MHz, CDC13) 8 5.70-5.84 (m, 1H), 5.09-5.15 (m, 2H), 4.70-

4.74 (m, 2H), 3.98 (dd, 1H, J = 3.7, 3.3), 3.87-3.88 (m, 2H), 3.77-3.83 (m, 1H), 2.41-

2.51 (m, 1H), 2.19-2.28 (m, 1H), 2.14 (s, 3H), 2.12 (s, 3H); FABMS: 284 (M + H)+ .
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Physical data for 67

Rf= 0.25 (hexane/ethyl acetate = 3:1); IR (film) 1741, 1367, 1246, 1226, 1190 cm-1 ; 1H

NMR (300 MHz, CDC13) 6 7.79 (d, 2H, J = 8.1), 7.36 (d, 2H, J = 8.1), 5.69-5.81 (m,

1H), 5.19-5.21 (m, 1H), 5.05-5.13 (m, 3H), 4.62 (dd, 1H, J = 3.8, 3.8), 4.08 (dd, 1H,

J = 13.3, 2.7), 3.57 (dd, 1H, J = 13.3, 1.9), 3.44-3.48 (m, 1H), 2.46 (s, 3H), 2.36-2.46

(m, 1H), 2.12-2.22 (m, 1H), 2.12 (s, 3H), 2.09 (s, 3H); FABMS: 413 (M + H) + .
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,OH

NaIO 4, RuC13, o

CH3CN, CC14, H20 

OAc OAc OAc OAc

66 35

A 1:1 solution (1 mL) of acetonitrile/carbon tetrachloride was added to a mixture of

the C-allyl glycoside 66 (105.5 mg, 0.37 mmol) and sodium periodate (389 mg, 1.80

mmol). Water (0.75 mL) was added to the suspension, followed by catalytic ruthenium

chloride trihydrate (6 mg). The reaction immediately turned brown, and soon thereafter the

suspension developed a green color. After fifteen minutes, isopropanol (1 mL) was added

to the flask, and the contents were filtered through Celite, rinsing with EtOAc. The filtrate

was concentrated to an oil, and purified by flash chromatography (hexane/EtOAc = 1.1:1,

then hexane/EtOAc/AcOH = 50:50:1) to afford the glycosazido acid 35 (104.6 mg, 0.35

mmol) as an oil in 93% yield.

Physical data for 35

Rf= 0.2 (hexane/ethyl acetate/acetic acid = 50:50:1); IR (film) 3200 (br), 2940, 2112,

1747, 1732, 1714, 1378, 1242, 1092, 1043 cm'l; 1H NMR (300 MHz, CDC13) 8 4.81

(dd, 1H, J = 3.9, 2.0), 4.71-4.74 (m, 1H), 4.25-4.30 (m, 1H), 4.00 (dd, 1H, J = 3.9,

3.4), 3.90-3.92 (m, 2H), 2.73 (dd, 1H, J = 16.1, 8.5), 2.54 (dd, 1H, J = 16.1, 4.7),

2.14 (s, 3H), 2.13 (s, 3H); 13C NMR (75 MHz, CDC13) 175.2, 170.0, 169.9, 70.0,

68.6, 67.4, 65.2, 57.3, 35.4, 21.0, 20.7; HRMS. Calcd. for C1 H1507N3 (M + H)+:

302.0988; found: 302.0984.
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OH OTBDPS

H

TBDPSCI, pyridine

HO :\

69

Under an argon atmosphere, tert-butyldiphenylchlorosilane (1.23 mL, 4.74 mmol)

was added to a 0°C solution of 1,2-isopropylidene xylofuranose 68 (601 mg, 3.16 mmol)

in pyridine (7 mI,). The reaction vessel was warmed to room temperature and stirring

proceeded for 18 hours before methanol (100 uL) was added to destroy residual TBDPSC1.

'Water (20 mL) was added and the aqueous solution was extracted with CH2C12 (3 x 15

mL). The combined organic extracts were concentrated to a volume of 15 mL and washed

'with brine (1 x 1.5 mL), dried over sodium sulfate, and concentrated under reduced

pressure to an oil. Purification by flash chromatography (hexane/EtOAc = 7:1) gave the

silyl ether 69 (1.326 g, 3.09 mmol) as a colorless oil in 98% yield.

Physical data for 69

IRf= 0.75 (hexane/ethyl acetate = 2:1); IR (film) 3460 (br), 2932, 1428, 1374, 1216,

1.113, 1075, 1014 cm-1 ; 1H NMR (300 MHz, CDC13) 8 7.66-7.73 (m, 4H), 7.38-7.47

(m, 6H), 6.01 (d, 1H, J = 3.7), 4.55 (dd, 1H, J = 3.7, < 1), 4.37 (dd, 1H, J < 1), 4.10-

4.14 (m, 3H), 4.06 (d, 1H, J = 3.1), 1.47 (s, 3H), 1.33 (s, 3H), 1.05 (s, 9H); HRMS.

Calcd. for C24H32SiO5 (M + H)+: 429.2097; found: 429.2092.
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OTBDPS
1. (Tf) 20, pyridine, CH 2CI 2
2. NaN 3, DMF• ., 3. TBAF, THF

HO 

70

Pyridine (270 uL, 3.0 mmol) was added to a -100 C solution of the alcohol 69 (751

mg, 1.75 mmol) in CH2Cl2. After stirring the solution briefly, trifluoromethanesulfonic

anhydride (324 uL, 1.93 mmol) was added and the reaction was allowed to warm gradually

to room temperature. Monitoring of the reaction by TLC indicated that it had not gone to

completion after eight hours, at which time additional pyridine (100 uL) and (Tf)20 (50

uL) were added. Within an hour, all starting material was consumed and the reaction

contents were added to cold water (25 mL). The aqueous layer was extracted with CH2C12

(2 x 20 mL) and the combined organics were washed with brine (1 x 40 mL), dried over

sodium sulfate, and concentrated. Traces of pyridine and pyridinium salts were separated

from the desired triflate product by flash chromatography (hexane/EtOAc = 3:1) through a

short plug of silica gel, yielding the crude triflate, which was used directly in the next step.

The triflate was dissolved in DMF (18 mL), to which NaN3 (500 mg, 7.7 mmol) was

added. After stirring 18 hours at room temperature, all starting material was consumed,

leaving the desired azide product and a significant side-product, presumably resulting from

triflate elimination. Water (60 mL) was added to the reaction, and the aqueous solution

was extracted with ether (3 x 50 mL). The combined ether extracts were washed (1 x 100

mL) with brine, dried over magnesium sulfate, filtered, and concentrated in vacuo to give

the crude azide as an oil, which was used directly without further purification. The crude

azide was dissolved in THF (3 mL) and added to a solution of TBAF (3 mL of 1.0 M

solution in THF, 3 mmol) in THF (5 mL). After 18 hours, the solution was concentrated

to an oil. Water (50 mL) was added, and the aqueous solution was extracted with EtOAc
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(3 x 50 mL). The combined organic extracts were washed with water (1 x 100 mL) and

brine (1 x 100 mL) before drying over magnesium sulfate. Filtration, followed by

concentration in vacuo, produced an oil that was purified by flash chromatography

(hexane/EtOAc = 3:1) to give the alcohol 70 (260.2 mg, 1.21 mmol) in 69% yield from

69.

Physical data for 70

Rf= 0.5 (hexane/ethyl acetate = 1:1); 1H NMR (300 MHz, CDC13) 8 6.09 (d, 1H, J =

5.4), 5.29-5.32 (m, 1H), 5.19-5.20 (m, 1H), 4.17-4.20 (m, 3H), 1.77 (t, 1H, J = 6.5),

1.47 (s, 3H), 1.45 (s, 3H).
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1. KMnO 4, Aliquat 336
H20, AcOH, CH 2C12

2. CH 3 1, NaHCO 3

OMe

70 36

Water (0.7 mL) and acetic acid (125 uL) were added to a solution of the primary

alcohol 70 (29.8 mg, 0.138 umol) in CH2C12 (1.2 mL). Aliquat 336 (7 mg) was added as

a phase transfer catalyst and the reaction vessel was cooled to 0° C before addition of

KMnO4 (75 mg, 0.48 mmol). The ice bath was removed and the reaction proceeded 24

hours at room temperature, at which point all starting material had been consumed.

Sodium sulfite (75 mg) was added to quench the reaction, which was concentrated to an oil

and dissolved in DMF (1 mL). Sodium bicarbonate (10 mg) was added to this solution,

followed by methyl iodide (10 uL). After 40 hours, water (1 mL) was added and the

reaction was partitioned between water (5 mL) and ether (5 mL). The aqueous layer was

extracted with ether (2 x 5 mL), and the combined organic extracts were washed with brine

(1 x 10 mL), dried over sodium sulfate, filtered, and concentrated to an oil. Purification by

flash chromatography (hexane/EtOAc = 4:1) afforded the glycosazido ester 36 (3.2 mg,

13.2 umol) as an oil in 10% yield.

Physical data for 36

Rf= 0.6 (hexane/ethyl acetate = 2:1); IR (film) 2110, 1748, 1034 cm- 1; 1H NMR (300

MHz, CDC13) 8 5.92 (d, 1H, J = 3.4), 4.75 (dd, 1H, J = 4.4, 3.4), 4.57 (d, 1H, J =

9.6), 3.86 (s, 3H), 3.70 (dd, 1H, J = 9.6, 4.4), 1.58 (s, 3H), 1.37 (s, 3H); 13 C NMR

(75 MHz, CDC13) 6 169.6, 113.8, 104.7, 79.9, 75.9, 63.3, 52.9, 26.5, 26.4; HRMS.

Calcd. for C9H13N305 (M + H)+: 244.0933; found: 244.0934.
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AcO 0 OAc AcO

Allyl TMS, TMSOTf

- CH3CN

AcO nan

71 72

A solution of 1,2,3,4-tetra-O-acetyl-P-D-xylofuranose 71 (4.34 g, 13.6 mmol) and

allyltrimethylsilane (6.5 mL, 4.1 mmol) in acetonitrile (50 mL) at 0 ° C was treated with

TMSOTf (2.90 mL, 1.50 mmol). The ice bath was removed and the solution was stirred

24 hours, then added to cold sodium bicarbonate solution (150 mL). The aqueous solution

was extracted with CH2C12 (2 x 100 mL). The combined organic extracts were washed

with brine (1 x 125 mL) and dried over magnesium sulfate. The drying agent was removed

by filtration and the solution was concentrated to an oil. Purification by flash

chromatography (hexane/ethyl acetate = 5.5:1) afforded the a anomer 72a (1.36 g, 4.5

mmol), the X anomer 72b (253 mg, 0.8 mmol), and a fraction containing a mixture of the

two anomers (1.988 g, 6.6 mmol) which were separated by additional silica gel

chromatography. The C-glycosylation reaction proceeded in 88% cumulative yield with a

ratio of a to p anomers of approximately 3:1.

Physical data for 72a

Rf= 0.5 (hexane/ethyl acetate = 3:1); IR (film) 2947, 2862, 1754, 1371, 1246, 1223,

1100, 1033 cm-1 ; 1H NMR (300 MHz, CDC13) 8 5.75-5.88 (m, 1H), 4.83-5.20 (m, 5H),

4.11 (dd, 1H, J = 10.8, 5.5), 3.40-3.46 (m, 1H), 3.25 (dd, 1H, J = 10.8, 10.4), 2.18-

2.27 (m, 2H), 2.03 (s, 3H), 2.03 (s, 3H), 2.02 (s, 3H); HRMS. Calcd. for C14H2007

(M + H)+: 301.1287; found: 301.1292.
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Physical data for 72b

Rf= 0.4 (hexane/ethyl acetate = 3:1); IR (film) 1743, 1372, 1224, 1044 cm'l; H NMR

(300 MHz, CDC13) 8 5.73-5.82 (m, 1H), 5.03-5.15 (m, 3H), 4.76-4.78 (m, 1H), 4.69-

4.71 (m, 1H), 3.98-4.03 (m, 1H), 3.85 (dd, 1H, J = 13.0, 2.1), 3.75-3.80 (m, 1H),

2.39-2.48 (m, 1H), 2.18-2.27 (m, 1H), 2.15 (s, 3H), 2.13 (s, 3H), 2.12 (s, 3H); HRMS.

Calcd. for C14H2007 (M + H)+: 301.1287; found: 301.1289.
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AcO 0 OAcO 0> ~ 1. LiOMe, MeOH
I:- '2. (Me) 2C(OMe) 2, PPTSA

AcO OAc

72a 73

A solution of 72a (171 mg, 0.57 mmol) in methanol (2 mL) was added to a

solution of LiOMe (10 mg, 0.27 mmol) in methanol (1 mL). The solution was stirred 30

minutes at room temperature. Cation exchange resin was added to neutralize the solution,

which was filtered and concentrated. The residual oil was dissolved in dimethoxypropane

(3 mL), to which was added catalytic PPTSA (3 mg). After stining 24 hours at 500 C, the

solution was concentrated and then treated with a solution of LiOMe (10 mg) in methanol

(5 mL). After stirring five minutes, the solution was filtered through cation exchange resin

and concentrated to an oil. Purification by flash chromatography afforded the acetonide 73

(88.7 mg, 0.41 mmol) as an oil in 73% yield.

Physical data for 73

Rf= 0.5 (hexane/ethyl acetate = 1.1:1); IR (film) 3448 (br), 2985, 2877, 1230, 1085,

1046 cm-1; 1H NMR (30) MHz, CDC13) 5.80-5.94 (m, 1H), 5.08-5.18 (m, 2H), 3.92-

4.07 (m, 2H), 3.41-3.56 (m, 2H), 3.09-3.16 (m, 2H), 2.48-2.56 (m, 1H), 2.32 (d, 1H, J

= 3.9), 2.22-2.32 (m, 1H), 1.42 (s, 3H), 1.41 (s, 3H); HRMS. Calcd. for C11H1804

(M + H)+: 215.1283; found: 215.1285.
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0 > > ~1. (Tf)20, pyridine _ 
2. NaN 3, DMF

-H N3OH
73 74

Pyridine (74 uL, 0.91 mmol) was added to a solution of the alcohol 73 (88.7 mg,

0.41 mmol) in CH2C12 (2 mL). The solution was cooled to -300 C, then treated with

(Tf)20 (97.4 uL, 0.58 mmol). The reaction was allowed to proceed at 0° C for one hour.

Cold water (3 mL) was added, the layers were separated, and the aqueous layer was further

extracted with CH2C12 (1 x 3 mL). The combined organic extracts were washed with

water (1 x 4 mL), cold 3 M HC1 (1 x 4 mL), and brine (lx 4 mL), then dried over sodium

sulfate, filtered, and concentrated to a yellow oil. Without further purification, the crude

triflate was dissolved in DMF (3 mL) and treated with NaN3 (160 mg, 2.5 mmol). The

resulting suspension was stirred four hours at room temperature. Water (5 mL) was

added, and the aqueous solution was extracted with ether (2 x 5 mL). The ether extracts

were washed with brine (1 x 10 mL), dried over sodium sulfate, filtered, and concentrated

to a yellow oil. Purification by flash chromatography (hexane, then hexane/EtOAc = 8:1)

afforded the azide 74 (53.6 mg, 0.22 mmol) as a pale yellow oil in 54% yield which

crystallized upon standing.

Physical data for 74

Rf= 0.8 (hexane/ethyl acetate = 3:1); IR (film) 2986, 2906, 2103, 1229, 1159, 1103,

1087 cm- 1; 1H NMR (300 MHz, CDC13) 8 5.81-5.96 (m, 1H), 5.09-5.19 (m, 2H), 4.14-

4.16 (m, 1H), 3.98 (dd, 1H, J = 12.9, 1.6), 3.52-3.60 (m, 2H), 3.45-3.53 (m, 2H),

2.49-2.58 (m, 1H), 2.39-2.49 (m, 1H), 1.48 (s, 3H), 1.45 (s, 3H); FABMS. Calcd. for

CllH17N303 (M + H)+: 240.1348; found: 240.1346.
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O. 1. KMnO4, Aliquat 336, 0
-- I )) AcOH, H20, CH2CI2 Me

N0 2. CH 3 1, DMF, NaHCO 3 4
N3 N 3

74 37

Water (0.5 mL) and acetic acid (100 uL) were added to a solution of the C-allyl

glycoside 74 (18.0 mg, 75 umol) in CH2C12 (0.5 mL). Aliquat 336 (2 mg) was added as

a phase transfer catalyst and the reaction vessel was cooled to 0° C before addition of

KMnO4 (25 mg). The reaction proceeded 24 hours at room temperature. Sodium sulfite

(25 mg) was added to quench the reaction, which was then partitioned between CH2C12 (3

mL) and water (2.5 mL). The aqueous layer was extracted with CH2C12 (3 mL), and the

combined organic extracts were washed with brine (1 x 5 mL) and dried over sodium

sulfate. Filtration, followed by concentration, gave an oil that could not be purified to

homogeneity by flash chromatography, and instead was esterified directly. The oil was

dissolved in DMF (1 mL). Sodium bicarbonate (20 mg) was added to the solution,

followed by methyl iodide (20 uL). The reaction was stirred 24 hours at room temperature,

then concentrated to an oil. Water (2 mL) was added, and the aqueous solution was

extracted with ether (2 x 2.5 mL). The ether extracts were washed with brine (1 x 3 mL),

dried over sodium sulfate, filtered, and concentrated. Purification by flash chromatography

(hexane/EtOAc = 4:1) gave the glycosazido ester 37 (8.3 mg, 31 umol) in 41% yield.

Physical data for 37

Rf= 0.6 (hexane/ethyl acetate = 1:1); IR (film) 2986, 2901, 2105, 1740, 1229, 1102

cm-l; 1 H NMR (300 MHz, CDC13) 8 4.16-4.18 (m, 1H), 3.91-3.98 (m, 2H), 3.71 (s,

3H), 3.63-3.70 (m, 2H), 3.57 (dd, 1H, J = 12.8, 1.8), 2.77 (dd, 1H, J = 16.0, 2.8),

2.58 (dd, 1H, J = 16.0, 9.4), 1.49 (s, 3H), 1.45 (s, 3H); 1 3C NMR (75 MHz, CDC13) 8
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170.9, 110.8, 79.4, 76.8, 73.5, 68.2, 58.9, 51.9, 37.7, 26.6, 26.3; HRMS. Calcd. for

CllH17N305 (M + H)+: 272.1246; found: 272.1241.
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HO
1. TsCI, pyridine N y

2. NaN 3, DMF

75 0

Pyridine (50 mL) was added to a 0° C mixture of isopropylidene 68 (5.85 g, 30.8

mmol) and tosyl chloride (6.5 g, 34.0 mmol). The reaction was allowed to warm to room

temperature and stirred 16 hours. Methanol (3 mL) was added to destroy excess tosyl

chloride. After 15 minutes, the solution was concentrated to a syrup, then taken up in

EtOAc (50 mL) and washed successively with water (1 x 40 mL), sodium bicarbonate (1 x

40 mL), and brine (1 x 40 mL). The organic solution was dried over sodium sulfate,

filtered, and concentrated to a solid. Recrystallization from absolute ethanol provide the

tosylate (5.94 g, 17.3 mmol) in 56% yield. A portion of the crystals (578 mg, 1.68 mmol)

and NaN3 (513 mg, 7.9 mmol) were combined in a flask, to which was added DMF (12

mL). The suspension was stirred 72 hours in an oil bath heated to 700 C. After cooling to

room temperature, the contents of the reaction flask were added to water (25 mL) and

extracted with CH2C12 (3 x 15 mL). The combined organic layers were washed with brine

(1 x 30 mL) and concentrated to an oil. Purification by flash chromatography

(hexane/EtOAc = 2:1) gave the azide 75 (338 mg, 1.57 mmol) as white crystals

(cyclohexane was determined to be a suitable solvent for recrystallization) in 94% yield

(53% from 68).

Physical data for 75

Rf= 0.3 (hexane/ethyl acetate = 3:1); IR (film) 3404 (br), 2987, 2931, 2098, 1375, 1215,

1070, 1008 cm-1; 1H NMR (300 MHz, CDC13) 8 5.96 (d, 1H, J = 3.7), 4.52 (dd, 1H, J

= 3.7, < 1), 4.24 - 4.30 (m, 2H), 3.57 - 3.63 (m, 2H), 2.22 (d, 1H, J = 5.2), 1.51 (s,
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3H), 1.32 (s, 3H); FABMS. Calcd. for C8H13N304 (M + H)+: 216.0984; found:

216.0986.
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(COCl)2, DMSO, DIEA N3 o

"IO "Io
75 76

A solution of DMSO (185 uL, 2.6 mmol) in CH2C12 (lmL) was added dropwise to

a solution of oxalyl chloride (650 uL of 2.0 M solution in CH2C12, 1.3 mmol) in CH2C12

cooled to below -60°C. The reaction flask was stirred 15 minutes at this temperature before

a cooled solution of 75 (217 mg, 1.01 mmol) in CH2C12 (2mL) was added. Stirring

continued for 20 minutes with gradual warming to -400 C, at which point DIEA (1.05 mL, 6

mmol) was added. The ice bath was removed and the reaction proceeded for three hours.

Water (7 mL) was added, and the aqueous solution was extracted with CH2C12 (2 x 5

mL). The combined organics were washed with 1 M HCl (1 x 7 mL), saturated NaHCO3

(1 x 7 mL), and brine (1 x 7 mL), then dried over sodium sulfate, filtered, and concentrated

to an oil. Purification by flash chromatography (hexane/EtOAc = 4: 1) afforded the ketone

76 (122.8 mg, 0.58 mmol) as a colorless oil in 57% yield.

Physical data for 76

Rf = 0.25 (hexane/ethyl acetate = 2:1); IR (film) 3400 (small, br), 2992, 2110, 1775,

1377, 1220, 1158, 1081cm-1; 1H NMR of 72 showed a mixture of two products,

presumably the ketone and the hydrate. HRMS. Calcd. for C8H 11N304 (M + H)+:

214.0828; found: 214.0827.
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N3 N3 0
·,,, (MeO) 2 P(O)CH 2COOMe 

KOtBu, DMF R0 .,,0

76

77a R1 = COOMe, R 2 = H
77b R1 = H, R2 = COOMe

A solution of the ketone 76 (36.6 mg, 0.17 mmol) in DMF (1 mL) was added to a

0°C solution of trimethyl phosphonoacetate (100 uL, 0.62 mmol) and potassium tert-

butoxide (20.2 mg, 0.18 mmol) in DMF (0.5 mL). The reaction was warmed to room

temperature and stirred two hours. Water (3 mL) was added and the aqueous solution was

extracted with ether (2 x 3 mL). The combined organic extracts reaction were washed with

water (1 x 5 mL), KHSO4 (1 x 5 mL), and brine (1 x 5 mL). After drying over sodium

sulfate, the organic solution was filtered and concentrated. Purification by flash

chromatography (hexane/EtOAc = 5:1) afforded 77a (4.2 mg, 0.015 mmol) and 77b

(23.9 mg, 0.088 mmol) as a mixture of cis-trans isomers in 61% yield.

Physical data for 77a

Rf= 0.75 (hexane/ethyl acetate = 2.5:1); IR (film) 2994, 2953, 2112, 1717, 1371, 1227,

1. 159 cm- 1 ; 1H NMR (300 MHz, CDC13) 8 6.20 (dd, 1H, J = 2.0, 2.0), 5.98 (d, 1H, J =

4.7), 5.63-5.66 (m, 1H), 5.11-5.14 (m, 1H), 3.75 (s, 3H), 3.73 (dd, 1H, J = 12.7, 3.0),

3.64 (dd, 1H, J = 12.7, 2.9), 1.43 (s, 3H), 1.39 (s, 3H); HRMS. Calcd. for

CllH15N305 (M + H)+: 270.1090; found: 270.1091. Upon irradiation at 6 5.13 (H2),

an NOE was observed at 8 6.20 (vinylic proton). Upon irradiation at 8 5.64 (H4), an NOE

was observed at 8 1.39 (isopropylidene CH3).
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Physical data for 77b

Rf= 0.5 (hexane/ethyl acetate = 2.5:1); IR (film) 2991, 2954, 2107, 1727, 1436, 1374,

1216, 1069, 1018 cm-l; H NMR (300 MHz, CDC13) 8 5.96 (d, 1H, J= 4.1), 5.87 (dd,

1H, J = 2.0, 1.5), 5.74-5.76 (m, 1H), 4.97-5.02 (m, 1H), 3.80 (s, 3H), 3.65 (dd, 1H, J

= 13.2, 3.7), 3.40 (dd, 1H, J = 13.2, 4.3), 1.50 (s, 3H), 1.44 (s, 3H); 1 3 C NMR (75

MHz, CDC13) 165.4, 155.6, 117.2, 113.5, 105.5, 79.2, 78.6, 53.2, 52.4, 27.8, 27.6;

HRMS. Calcd. for CllH15N305 (M + H)+: 270.1090; found: 270.1087. Upon

irradiation at 6 5.00 (H4), an NOE was observed at 8 5.87 (vinylic proton).
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BnSH, LiOMe, MeOH
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77b 38

Lithium methoxide (3.0 mg, 0.08 mmol) was added to a solution of benzyl

mercaptan (20 uL, mmol) and the a,,-unsaturated ester 77b (3.1 mg, 0.012 mmol) in

methanol (0.7 mL,). After stirring five minutes, cation exchange resin was added to

neutralize the solution, which was filtered and concentrated. Purification by flash

chromatography (hexane, then hexane/EtOAc = 2:1) afforded 38 (4.7 mg, 0.012 mmol) as

a colorless oil in quantitative yield.

Physical data for 38

Rf= 0.6 (hexane/EtOAc = 3:1); IR (film) 2976, 2965, 2359, 2099, 1738, 1201, 1025

cm-1; 1H NMR (300 MHz, CDC13) 8 7.26-7.33 (m, 5H), 5.85 (d, 1H, J = 3.3), 4.83 (d,

1H, J =3.3) 4.32 (dd, 1H, J = 6.8, 5.0), 3.92 (s, 2H), 3.73 (s, 3H), 3.59-3.62 (m, 2H),

2.98 (d, 1H, J = 15.6), 2.85 (d, 1H, J = 15.6), 1.52 (s, 3H), 1.32 (s, 3H); HRMS.

Calcd. for C18H23N305S (M + H)+: 394.1437; found: 394.1428.

Upon irradiation of the benzylic protons ( 3.92), an NOE was observed at the C-2

hydrogen ( 4.83).
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N3
Cyclohexyl mercaptan,

LiOMe, MeOH.~~~~~
uuOMe COOMe

77b 39

Cyclohexyl mercaptan (20 uL, 0.16 mmol) was added to a solution of lithium

methoxide (1.5 mg, 0.04 mmol) and the a,3-unsaturated ester 77b (5.6 mg, 0.021 mmol)

in methanol (0.7 mL). After stirring fifteen minutes, cation exchange resin was added to

neutralize the solution, which was filtered and concentrated. Purification by flash

chromatography (hexane/EtOAc = 6:1) afforded the Michael adduct 39 (7.3 mg, 0.019

mmol) as a colorless oil in 91% yield. Michael addition of cyclohexyl mercaptan to 77a

also gave 39 as the only product.

Physical data for 39

Rf= 0.7 (hexane/EtOAc = 2.5:1); IR (film) 2987, 2932, 2853, 2099, 1740, 1437, 1373,

1200, 1166, 1022 cm 1; 1H NMR (300 MHz, CDC13) 8 5.89 (d, 1H, J = 3.4), 4.82 (d,

1H, J = 3.4), 4.37 (dd, 1H, J = 6.9, 4.8), 3.72 (s, 3H), 3.54-3.57 (m, 2H), 2.79-2.93

(m, 3H), 1.89-1.99 (m, 2H), 1.71-1.76 (m, 2H), 1.19-1.59 (m, 6H), 1.51 (s, 3H), 1.35

(s, 3H); 1 3 C NMR (75 MHz, CDC13) 8 170.2, 112.4, 104.4, 86.1, 82.6, 58.3, 51.8,

51.0, 41.6, 37.8, 36.5, 36.1, 26.8, 26.7, 26.3, 26.3, 25.2; HRMS. Calcd. for

C17H27N305S (M + H)+: 386.1750; found: 386.1747. Upon irradiation at 8 4.37

(H4), NOE's were observed at 8 2.87 (protons alpha to ester) and 1.51 (isopropylidene

CH3). Upon irradiation at 6 4.82 (H2), an NOE was observed at 2.90 (methine proton of

cyclohexyl ring).
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H2, Pd/C, (Boc) 2 0, EtOAc

O.

75 1

Ethyl acetate (1 mL) was added to 10% palladium on activated carbon (10 mg), and

the suspension was stirred under a hydrogen atmosphere to saturate the catalyst. After ten

minutes, a solution of the azido sugar 75 (27.1 mg, 0.13 mmol) and (Boc)20 in ethyl

acetate (1 mL) was added to the reaction flask. After 24 hours, the reaction contents were

filtered through Celite and concentrated to an oil. Purification by flash chromatography

(hexane/EtOAc = 3:1) afforded 78 (34.4 mg, 0.12 mmol) as a white solid in 95% yield.

Physical data for 78

Rf= 0.5 (hexane/EtOAc = 2:1); IR (film) 3392, 2987, 1689, 1520, 1254, 1164, 1075,

1010 cm'l; 1H NMR (300 MHz, CDC13) 5.91 (d, 1H, J= 3.6), 5.84-5.90 (m, 1H),

4.75 (dd, 1H, J = 2.0, < 1), 4.59 (d, 1H, J = 3.6), 4.01-4.08 (m, 2H), 3.57-3.68 (m,

1H), 3.12-3.22 (m, 1H), 1.50 (s, 3H), 1.44 (s, 9H), 1.31 (s, 3H); FABMS: 290 (M +

H)+.
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N3 0 1. P(Me)3, THF, H2 0 Fmoc-
2. Fmoc-OSu, TEA, THF

/
HO 0

75

A solution of trimethyl phosphine in THF (250 uL of 1.0 M solution) was added to

a solution of the azido sugar 75 (45.4 mg, 0.21 mmol) in THF (1.2 mL) and water (0.4

mL). After two hours, the solution was concentrated to a small volume (mostly water) and

treated with a solution of N-(9-fluorenylmethoxycarbonyloxy)succinimide (Fmoc-OSu) (74

mg, 0.22 mmol) and TEA (30 uL, 0.22 mmol) in THF (1 mL). After one hour, the

solution was concentrated to a small volume, then diluted with water (5 mL) and extracted

with dichloromethane (2 x 5 mL). The organic extracts were washed with brine (1 x 5

mL), dried over sodium sulfate, filtered, and concentrated to a solid. Purification by flash

chromatography (hexane/EtOAc = 2.6: 1) afforded 79 (66.0 mg, 0.16 mmol) as a white

solid in 76% yield.

Physical data for 79

Rf= 0.7 (hexane/EtOAc = 1:1); IR (film) 3378, 2919, 1693, 1530, 1450, 1268, 1074,

1016 cm- 1; 1H NMR (300 MHz, CDC13) 6 7.77 (d, 2H, J = 7.2), 7.57 (d, 2H, J = 7.2),

7.42 (dd, 2H, J = 7.2, 6.8), 7.32 (dd, 2H, J = 7.2, 6.8), 5.90 (d, 1H, J = 2.9), 5.08-

5.12 (br t, 1H), 4.58 (dd, 1H, J = 2.9, < 1), 4.48 (d, 2H, J = 7.3), 4.28-4.30 (m, 1H),

4.19 (t, 1H, J = 7.3), 4.03-4.07 (m, 2H), 3.61-3.71 (m, 1H), 3.21-3.29 (m, 1H), 1.49

(s, 3H), 1.32 (s, 3H).
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N3_yo AcHN-o 0
1. Ac2 0, TEA, CH2CI 2 AcHN

HO- 2. H2, Pd/C or HO-

P(Me)3, THF, H2 00 075 \82

In order to determine the ease of acetyl migration, the azido sugar 75 was acetylated

with acetic anhydride and TEA in dichloromethane to give 80. Catalytic hydrogenation or

phosphine reduction (trimethyl phosphine; or triphenyl phosphine and a carboxylic acid in

an attempt to directly form the amide) of 80 provided 82, the product of acetyl migration,

rather than the free amine 81.

Physical data for 82

Rf= 0.1 (hexane/EtOAc = 1:1); IR (film) 3342, 2987, 2934, 1653, 1558, 1374, 1073

cm- 1; 1H NMR (300 MHz, CDC13) 8 6.07 (br t, 1H), 5.91 (d, 1H, J = 3.6), 4.91 (dd,

1H, J< 1), 4.59 (dd, 1H, J= 3.6, < 1), 4.03-4.07 (m, 2H), 3.78-3.87 (m, 1H), 3.17-

3.24 (m, 1H), 1.49 (s, 3H), 1.32 (s, 3H); FABMS: 232 (M + H) + .
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31 83

Hydrogen gas was bubbled through a suspension of 10% palladium on activated

carbon (50 mg) in EtOAc (5 mL). After 15 minutes, a solution of 31 (468.2 mg, 1.55

mmol) and (Boc)20 (450 uL, 1.95 mmol) in EtOAc (5 mL) was added to the flask and the

suspension was stirred 18 hours under a hydrogen atmosphere. The suspension was

filtered through Celite, and the filtrate was concentrated under reduced pressure to an oil.

Purification by flash chromatography (hexane/EtOAc = 1.7:1) gave 83 (481.2 mg, 1.28

mmol) as a colorless oil in 83% yield.

Physical data for 83

Rf= 0.3 (hexane/ethyl acetate = 1:1); IR (film) 3385 (br), 2978, 2935, 1738, 1714, 1514,

1368, 1167, 1090 cm-1 ; 1H NMR (300 MHz, CDC13) 84.95-5.02 (m, 1H), 4.84 (dd,

1H, J = 6.1, 3.7), 4.74 (dd, 1H, J =6.1, 3.6), 3.91-4.01 (m, 2H), 3.70 (s, 3H), 3.47-

3.58 (m, 2H), 3.41 (dd, 1H, J = 8.0, 3.7), 3.19-3.27 (m, 1H), 2.69-2.85 (m, 2H), 1.47

(s, 9H), 1.45 (s, 3H), 1.33 (s, 3H); 13 C NMR (75 MHz, CDC13) 8 171.4, 157.3, 112.6,

81.5, 81.2, 80.9, 79.8, 77.6, 70.1, 51.7, 44.6, 33.3, 28.4, 25.8, 24.7; HRMS. Calcd.

for C17H29NO8 (M + H)+: 376.1971; found: 376.1979.
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HO,,- O H
H2, Pd/C, (Boc) 20, EtOAc

<. \H/CH2COOMe
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32 84

Hydrogen gas was bubbled through a suspension of 10% palladium on activated

carbon (50 mg) in EtOAc (5 mL). After 15 minutes, a solution of 32 (247.3 mg, 0.82

mmol) and (Boc)20 (300 uL, 1.30 mmol) in EtOAc (5 mL) was added to the flask and the

suspension was stirred 14 hours under a hydrogen atmosphere. The suspension was

filtered through Celite, and the filtrate was concentrated under reduced pressure to an oil.

Purification by flash chromatography (hexane/EtOAc = 1.8:1) gave 84 (242.2 mg, 0.65

mmol) as white crystals in 79% yield.

Physical data for 84

Rf= 0.3 (hexane/ethyl acetate = 1:1); IR (film) 3394 (br), 2979, 2934, 1737, 1712, 1518,

1367, 1166, 1089 cm' 1; 1H NMR (300 MHz, CDC13) § 4.98-5.04 (m, 1H), 4.89 (dd,

1H, J = 5.7, 3.7;), 4.62 (dd, 1H, J=5.7, 1.4), 4.46-4.51 (m, 1H), 3.94-4.01 (m, 1H),

3.70-3.75 (m, 1H), 3.71 (s, 3H), 3.48-3.56 (m, 2H), 3.19-3.27 (m, 1H), 2.43-2.56 (m,

2H) 1.51 (s, 3H), 1.45 (s, 9H), 1.34 (s, 3H); 13 C NMR (75 MHz, CDC13) 170.5,

157.3, 112.9, 84.6, 81.1, 80.5, 80.4, 79.6, 70.1, 51.8, 44.4, 36.2, 28.3, 26.1, 24.7;

HRMS. Calcd. for C17H29NO8 (M + H)+: 376.1971; found: 376.1979.
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H2, Pd/C, (Boc) 20, EtOAc

33 85

Hydrogen gas was bubbled through a suspension of 10% palladium on activated

carbon (10 mg) in EtOAc. After 15 minutes, a solution of the azido sugar 33 (93.1 mg,

0.245 mmol) and (Boc)20 (75 uL, 0.35 mmol) in 1 mL EtOAc was added to the flask and

the suspension was stirred 18 hours under a hydrogen atmosphere. The suspension was

filtered through Celite, and the filtrate was concentrated under reduced pressure to an oil.

Purification by flash chromatography (hexane/EtOAc = 1.8:1) gave 85 (102.4 mg, 0.226

mmol) in 92% yield.

Physical data for 85

Rf= 0.4 (hexane/ethyl acetate = 1:1); IR (film) 3405 (br), 2980, 1715, 1515, 1356, 1175

cm-1; 1 H NMR (300 MHz, CDC13) 8 4.92-5.00 (m, 2H), 4.74-4.81 (m, 2H), 3.93-3.99

(m, 1H), 3.71 (s, 3H), 3.66-3.80 (m, 2H), 3.42-3.50 (m, 1H), 3.11 (s, 3H), 2.71-2.86

(m, 2H), 1.48 (s, 3H), 1.44 (s, 9H), 1.32 (s, 3H); 13C NMR (75 MHz, CDC13) 8 171.0,

155.8, 112.8, 80.7, 80.2, 79.9, 79.5, 77.8, 77.8, 51.8, 42.1, 38.4, 33.2, 28.3, 25.8,

24.8; HRMS. Calcd. for C18H31NO10S (M + H)+: 454.1747; found: 454.1740.
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H2, Pd/C, (Boc) 2 0, EtOAc

34 86

Hydrogen gas was bubbled through a suspension of 10% palladium on activated

carbon (10 mg) in EtOAc. After 15 minutes, a solution of 34 (69.2 mg, 0.18 mmol) and

(Boc)20 (50 uL, 0.24 mmol) in 1 mL EtOAc was added to the flask and the suspension

was stirred 14 hours under a hydrogen atmosphere. The suspension was filtered through

Celite, and the filtrate was concentrated under reduced pressure to an oil. Purification by

flash chromatography (hexane/EtOAc = 1.8:1) gave 86 (74.8 mg, 0.17 mmol) as a

colorless oil in 91% yield.

Physical data for 86

Rf= 0.4 (hexane/ethyl acetate = 1:1); IR (film) 3404, 2980, 2938, 1715, 1516, 1355,

1176 cm- 1 ; 1H NMR (300 MHz, CDC13) 4.90-5.01 (m, 2H), 4.79 (dd, 1H, J = 5.9,

3.8), 4.67 (dd, 1H, J = 5.9, < 1), 4.47-4.52 (m, 1H), 3.95-4.00 (m, 1H), 3.73-3.81 (m,

1H), 3.72 (s, 3H), 3.44-3.53 (m, 1H), 3.11 (s, 3H), 2.45-2.59 (m, 2H) 1.51 (s, 3H),

1.44 (s, 9H), 1.33 (s, 3H); 13C NMR (75 MHz, CDCl3) 170.4, 155.8, 113.2, 84.7,

80.8, 80.2, 79.4, 78.7, 78.2, 52.0, 41.9, 38.5, 35.9, 28.3, 26.2, 25.0; FABMS: 455 (M

+ H)+.
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Experimentals for Chanter 6

Nomenclature. In order to reduce confusion, two conventions have been followed.

Any azido ester (monomer or oligomer), represented by any number X, became XC when

the ester was saponified and XN when the azide was reduced. For example, catalytic

hydrogenation of the glycosazido ester 33 (MC) furnished the free amine 33N, while

saponification of 34 (MD) provided the carboxylic acid 34C. (Note: the glycosazido acid

35 is denoted by 35, rather than 35C, since ester deprotection was not required.)

Generalprocedure for hydrogenation of azides. Ethyl acetate (approximately 0.5

mL + 1 mL per 100 mg azide) was added to a flask containing 10% palladium on activated

carbon. The flask was evacuated and flushed with hydrogen several times. A solution of

the azide (2 - 10 mg azide per mg catalyst) was added to the flask, which was again flushed

several times with hydrogen and stirred 4 - 24 hours under a hydrogen atmosphere. The

suspension was then filtered through Celite, rinsed with ethyl acetate, and the filtrate was

concentrated in vacuo and used without further purification.

General procedure for ester saponification. A 0.5 M solution of sodium hydroxide

(250 uL per 100 mmol ester) was added to a solution of the glycosazido ester in methanol

(approximately 400 uL per 100 mmol ester). The reaction was followed by TLC, and upon

completion, cation exchange resin was added to neutralize the solution. After filtration, the

filtrate was concentrated and used without further purification.
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1. H2 , Pd/C

2. 33C, EDCI, CH 2C

OMe
87

0

OMe

34

The glycosazido ester 33 was hydrogenated according to the general procedure to

furnish the amine 33N, while the a-glycoside 34 was saponified according to the general

procedure to give 34C. A solution of the amine 33N ( 33.8 mg, 0.09 mmol) in

dichloromethane (0.5 mL) was added to a mixture of 34C (36.0 mg, 0.10 mmol), TEA

(41 uL, 0.30 mmol), and EDCI (24 mg, 0.12 mmol) in dichloromethane (1.0 mL). After

stirring for 24 hours, the solution was concentrated, taken up in chloroform (5 mL), and

extracted with water (1 x 5 mL) and brine (1 x 3 mL). After drying over sodium sulfate,

the drying agent was removed by filtration and the solution was concentrated to an oil.

Purification by flash chromatography (EtOAc/hexane = 1.8:1) afforded the diglycotide 87

(19.8 mg, 0.03 mmol) as a clear oil in 28% yield.

Physical data for 87

Rf= 0.75 (dichloromethane/acetone = 3:1); IR (film) 3389, 2937, 2109, 1735, 1674,

1538, 1354. 1176 cm-l; 1H NMR (300 MHz, CDC13) 6.42 (dd, 1H, J = 6.3, 5.9),

4.92-4.98 (m, 2H), 4.76-4.81 (, 3H), 4.66 (dd, 1H, J = 6.0, 1.0), 4.49 (dd, 1H, J = 7.4,

7.1), 3.87-4.07 (m, 4H), 3.81 (dd, 1H, J = 7.4, 3.0), 3.71 (s, 3H), 3.62 (dd, 1H, J =

13.8, 5.0), 3.39-3.48 (m, 1H), 3.12 (s, 3H), 3.12 (s, 3H), 2.67 (d, 2H, J = 6.7), 2.52

(d, 2H, J = 7.3), 1.51 (s, 3H), 1.48 (s, 3H), 1.33 (s, 3H), 1.32 (s, 3H); HRMS. Calcd.

for C25H40N4015S2 (M + H)+: 701.2010; found: 701.2004.
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0

1. H2 , Pd/C
87

2. 33C, EDCI, CH 2CI ". 0
OMe

I

The diglycotide 87 (19.1 mg, 27 umol) was hydrogenated according to the general

procedure to furnish the amino sugar 87N (16.0 mg, 24 umol) in 87% crude yield.

Without further purification, a solution of 87N (8.0 mg, 12 umol) in dichloromethane (0.5

mL) was added to a mixture of excess 33C (9.1 mg, 25 umol), TEA (10 uL, 70 umol),

and EDCI (4.6 mg, 24 umol) in dichloromethane (1 mL). After stirring for 24 hours, the

solution was concentrated, taken up in chloroform (3 mL), and extracted with water (1 x 3

mL) and brine (1 x 3 mL). The organic extracts were dried over sodium sulfate, then

filtered and concentrated to an oil. Purification by flash chromatography (dichloromethane/

acetone = 4: 1) afforded the triglycotide 88 (5.5 mg, 5.4 umol) as a clear oil in 45% yield.

Physical data for 88

Rf= 0.2 (dichloromethane/acetone = 3:1); IR (film) 3381 (br), 2932, 2108, 1673, 1540,

1353, 1176, 1077 cm-1; 1H NMR (300 MHz, CDC13) 8 6.80 (t, 1H, J= 6.0), 6.44 (t,

1H, J = 6.1), 4.92-5.05 (m, 3H), 4.66-4.80 (m, 6H), 4.48 (ddd, 1H, J = 7.3, 7.1, < 1),

3.82-4.11 (m, 8H), 3.71 (s, 3H), 3.49-3.65 (m, 2H), 3.34-3.43 (m, 1H), 3.13 (s, 3H),

3.12 (s, 3H), 3.11 (s, 3H), 2.46-2.77 (m, 6H), 1.50 (s, 3H), 1.48 (s, 3H), 1.48 (s, 3H),
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1.31 (s, 3H), 1.31 (s, 3H), 1.31 (s, 3H); HRMS. Calcd. for C37H59N5022S3 (M +

H)+: 1022.2892; found: 1022.2932.
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OAc OAc

1. H2 , Pd/C
87

2. 35, EDCI, CH2C12

OMe

A solution of 87N (8.0 mg, 12 umol) in dichloromethane (0.5 mL) was added to a

mixture of the glycosazido acid 35 (9.0 mg, 30 umol), TEA (10 mg, 100 umol), and EDCI

(4.5 mg, 23 umol) in dichloromethane (1 mL). After stirring for 24 hours, the solution

was concentrated, taken up in chloroform (3 mL), and extracted with water (1 x 3 mL) and

brine (1 x 3 mL). The organic extracts were dried over sodium sulfate, then filtered and

concentrated to an oil. Purification by flash chromatography (dichloromethane/acetone =

3.8:1) afforded the triglycotide 89 (5.0 mg, 5.2 umol) as a clear oil in 44% yield.

Physical data for 89

Rf= 0.2 (dichloromethane/acetone = 3:1); IR (film) 3378, 2934, 2109, 1738, 1682, 1651,

1538, 1353, 1227, 1175, 1078 cm-l; 1H NMR (300 MHz, CDC13) 8 6.81 (dd, 1H, J =

6.4, 5.6), 6.45 (dd, 1H, J = 6.1, 5.7), 4.93-5.04 (m, 3H), 4.67-4.79 (m, 6H), 4.49 (dd,

1H, J = 7.5, 6.6), 4.27-4.32 (m, 1H), 3.86-4.12 (m, 6H), 3.71 (s, 3H), 3.60-3.70 (m,

2H), 3.33-3.42 (m, 1H), 3.12 (s, 3H), 3.11 (s, 3H), 2.47-2.77 (m, 5H), 2.36 (dd, 1H, J

= 15.4, 4.0), 2.14 (s, 3H), 2.12 (s, 3H), 1.51 (s, 3H), 1.48 (s, 3H), 1.32 (s, 3H), 1.31

(s, 3H); HRMS. Calcd. for C36H55N5021S2 (M + H)+: 958.2909; found: 958.2914.

248



o "0
0

z

F-

-rzLL11
Z _I zn

_o

-1., 

_4_ I

J 0

JIv

r.
[.

r- 

m

I01 o

o

0)
CC

0

'0

K-

249

k-



N3 0

1. H, PdC MsO ' 0 -

2. 33C, EDCI, CH 2C2 

COOMe

COOMe
37 90

The glycosazido ester 37 (3.0 mg, 11 umol) was hydrogenated according to the

general procedure to furnish the secondary amine 37N. Without further purification, a

solution of 37N in dichloromethane (0.5 mL) was added to a mixture of excess 33C (6.0

mg, 16 umol), TEA (10 uL, 70 umol), and EDCI (3.9 mg, 21 umol) in dichloromethane

(0.5 mL). After stirring for 48 hours, the solution was concentrated, taken up in

chloroform (3 mL), and extracted with water (1 x 3 mL) and brine (1 x 3 mL). The organic

extracts were dried over sodium sulfate, then filtered and concentrated to an oil.

Purification by flash chromatography (EtOAc/hexane = 2.2: 1) afforded the diglycotide 90

(4.4 mg, 7.4 umol) as a clear oil in 67% yield from the glycosazido ester.

Physical data for 90

Rf= 0.75 (dichloromethane/acetone = 3:1); IR (film) 3388 (br), 2990, 2931, 2109, 1738,

1682, 1651, 1538, 1360, 1231, 1176, 1100 cm-l; 1H NMR (300 MHz, CDC13)8 6.11

(d, 1H, J = 7.8), 4.93-4.98 (m, 1H), 4.75-4.79 (m, 2H), 4.55-4.60 (m, 1H), 3.87-4.04

(m, 4H), 3.84 (dd, 1H, J = 7.6, 3.0), 3.72 (s, 3H), 3.54-3.68 (m, 3H), 3.29 (dd, 1H, J

= 9.4, 9.4), 3.13 (s, 3H), 2.78 (dd, 1H, J = 15.6, 2.8), 2.65 (d, 2H, J = 6.8), 2.54 (d,

2H, J = 15.6, 9.4), 1.51 (s, 3H), 1.43 (s, 3H), 1.43 (s, 3H), 1.33 (s, 3H); 13 C NMR

(75 MHz, CDCl3) 8 170.7, 169.8, 113.0, 110.4, 81.0, 80.0, 78.9, 78.7, 77.9, 77.2,

76.9, 74.1, 69.6, 52.2, 52.0, 48.6, 38.5, 37.9, 36.1, 26.6, 26.5, 25.9, 24.9; HRMS.

Calcd. for C23H36N4012S (M + H)+: 593.2129; found: 593.2113.
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1. P(Me)3, THF, H20

0 2. Fmoc-Phe, EDCI, TEA Fmoc--H I-"
HO 0

75
GI

'O

A-

A solution of trimethyl phosphine in THF (500 uL of 1.0 M solution) was added to

a solution of the azido sugar 75 (90.2 mg, 0.42 mmol) in THF (2 mL) and water (0.5

mL). After two hours, the solution was concentrated to a syrup and treated with a solution

of PYBOP (260 mg, 0.50 mmol), TEA (150 uL, 1.08 mmol), and FMOC-phenylalanine

(193 mg, 0.50 mmol) in DMF (2 mL). After stirring 20 minutes at room temperature, the

solution was concentrated to an oil, then partitioned between water (5 mL) and ether (5

mL). The ether layer was washed with brine (1 x 5 mL), dried over sodium sulfate,

filtered, and concentrated to an oil. Purification by flash chromatography (hexane/EtOAc =

1.8:1) afforded 91 (82.3 mg, 0.15 mmol) as a white solid in 35% yield.

Physical data for 91

IRf= 0.5 (hexane/EtOAc = 3:1); IR (film) 3318, 2934, 1708, 1658, 1530, 1451, 1250,

1076 cm- 1; 1H NMR (300 MHz, CDC13) 6 7.76 (d, 2H, J= 7.5), 7.12-7.53 (m, 11H),

6.38-6.43 (m, 1H), 5.85 (d, 1H, J = 3.5), 5.34-5.40 (m, 1H), 4.53 (d, H, J = 3.6),

4.33-4.47 (m, 4H), 4.16 (dd, 1H, J = 3.6, 3.6), 3.90-3.96 (m, 2H), 3.63-3.74 (m, 1H),

3.00-3.18 (m, 3H), 1.43 (s, 3H), 1.28 (s, 3H); 13 C NMR (75 MHz, CDC13) 6 167.8,

143.5, 141.3, 135.9, 129.1, 128.8, 128.6, 127.8, 127.3, 124.9, 120.0, 111.5, 104.7,

84.8, 79.4, 73.8, 67.0, 56.4, 47.1, 38.3, 37.3, 26.7, 26.0; FABMS: 559 (M + H) + .
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1. DEA, DMF N 3
91 ,

2. 35, EDCI, TEA

OAc OAc 9292

A 10% solution of diethylamine in DMF (1 mL) was added to 91 (44.0 mg, 78

umol) and the flask was stirred for 30 minutes. The solution was concentrated to a pale

yellow solid, which was treated with a solution of the glycosazido acid 35 (23.0 mg, 76

umol), EDCI (15.7 mg, 82 umol), DIEA (30 uL, 171 umol), and HOBT (10.7 mg, 79

umol) in DMF (].5 mL). After stirring six hours, the solution was concentrated to a small

volume, then partitioned between ether (5 mL) and water (5 mL). The ether layer was

washed with KHSO4 solution, water, and brine (all 1 x 5 mL). The combined organic

extracts were dried over sodium sulfate, filtered, and concentrated to an oil. Purification by

flash chromatography (EtOAc/hexane = 1.8:1) afforded 92 (35.9 mg, 58 umol) as a clear

syrup in 75% yield.

Physical data for 92

Rf= 0.4 (dichloromethane/acetone = 3:1); IR (film) 3296, 2110, 1747, 1644, 1538, 1375,

1243, 1077 cm-1; 1H NMR (300 MHz, CDC13) 7.28-7.34 (m, 3H), 7.16-7.19 (m, 2H),

6.41 (dd, 1H, J = 6.8, 5.8), 6.30 (d, 1H, J = 7.9), 5.87 (d, 1H, J = 3.0), 4.47-4.67 (m,

5H), 4.1 (dd, 1H, J = 8.5, 1.0), 3.69-4.00 (m, 6H), 2.88-3.17 (m, 3H), 2.48 (dd, 1H, J

·= 14.8, 7.0), 2.25 (dd, 1H, J = 14.8, 3.0), 2.13 (s, 3H), 2.11 (s, 3H), 1.47 (s,3H), 1.31

(s, 3H); HRMS. Calcd. for C28H37N5011 (M + H)+: 620.2568; found: 620.2567.
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Synthesis of an eight compound library of glycotide trimers (see Scheme 6-5).

Triethylamine (35 uL, 252 umol) and dichloromethane (1.5 mL) were added to a mixture of

EDCI (21 mg 109 umol), 33C (12.5 mg, 34 umol), 34C (12.0 mg, 33umol), 33N (10.1

mg, 29 umol), and 34N (9.8 mg, 28 umol). After 22 hours, the solution was concentrated

to an oil, then taken up in chloroform (1 x 3 mL), and washed with water (1 x 3 mL) and

brine (1 x 3 mL). The organic extracts were dried over sodium sulfate, filtered, and

concentrated to an oil. The four possible products were copurified by crude flash

chromatography (EtOAc/hexane = 2:1), affording a mixture (18.2 mg, 26 umol) in 46%

yield. The products (18.0 mg) were hydrogenated according to the general procedure and

mixed with a combined excess of the glycosazido acids 33C (11.2 mg, 32 umol) and 35

(8.0 mg, 26 mmol). Triethylamine (20 uL, 144 umol), EDCI (9.5 mg, 50 umol), and

dichloromethane (1.5 mL) were added sequentially to the flask. After 48 hours, the

reaction was worked up as described above. The products (14.3 mg, approximately 57%

yield) were copurified by flash chromatography (dichloromethane/acetone = 3.5:1) and

gave a single broad peak on HPLC.
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Synthesis of a 20 compound template-directed library (see Figure 6-2). A mixture

(29 mg, approximately 83 umol) of glycosazido esters 31, 32, 33, and 34 (in an

approximate ratio of 2:2:3:3) was hydrogenated in accordance with the general procedure.

The products of hydrogenation were dissolved in dichloromethane (1.5 mL) and added to a

mixture of triethylamine (25 uL, 180 umol) and 1,3,5-benzenetricarbonyl trichloride (5.4

mg, 20 umol). After 10 minutes, the solution was concentrated to an oil and taken up in

chloroform (1 mL). The chloroform solution was washed with KHSO4 (2 x 1 mL) and

brine (1 x 1 mL), dried over sodium sulfate, filtered, and concentrated to an oil.

Characterization of library

The HPLC trace shown in Figure 6-2 was obtained in acetonitrile/water/0. 1% TFA using

the following gradient: % of CH3CN at time t = 10 + 0.95(t - 5); FABMS: 983, 1061,

1139, 1217 (M + H)+.
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Synthesis of a 10 compound template-directed library (see Figure 6-3). A mixture

of glycosazido esters 29 (2.7 mg, 9.0 umol), 33 (4.2 mg, 11.1 umol), and 38 (2.0 mg,

5.1 umol) was hydrogenated in accordance with the general procedure. The products of

hydrogenation were dissolved in dichloromethane (1.5 mL) and added to a mixture of

triethylamine (10 uL, 72 umol) and 1,3,5-benzenetricarbonyl trichloride (0.5 mg, 2.6

umol). After 10 minutes, the solution was worked up as described previously for the 20

compound library.

Characterization of library

'The HPLC trace shown in Figure 6-3 was obtained in acetonitrile/water/0. 1% TFA using

the following gradient: % of CH 3CN at time t = 20 + 0.9(t - 5) through t = 50, % of

CH 3CN = 65 + 2.5t after t = 50; FABMS: 983, 1061, 1075, 1139, 1154, 1167, 1217,

1231, 1246 (M + H) + .
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The glycosazido ester 31 (28.1 mg, 0.093 mmol) was hydrogenated in accordance

with the general procedure to provide the amine 31N. A solution of 31N and

triethylamine (30 uL) in dichloromethane (1 mL) was added to 1,3,5-benzenetricarbonyl

trichloride (6.2 mg, 0.023 mmol). After 10 minutes, the solution was concentrated to an

oil and taken up in chloroform (1 mL). The chloroform solution was washed with KHSO4

(2 x 1 mL) and brine (1 x 1 mL), dried over sodium sulfate, filtered, and concentrated to an

oil.

Physical data for 93

HPLC retention time: 21.5 minutes CH3CN, H20, 0.1% TFA: % of CH3CN at time t =

2.5(t - 5); IR (film) 3384 (br), 2940, 1739, 1662, 1540, 1438, 1269, 1207, 1089 cm-l;

1H NMR (300 MHz, CDC13) 6 8.14 (s, 1H), 7.68 (br t, 1H, J = 5.9), 4.88 (dd, 1H, J =

5.6, 3.2), 4.76 (dd, 1H, J = 5.6, 4.2), 4.17-4.24 (m, 1H), 3.96-4.01 (m, 1H), 3.82-3.88

(m, 1H), 3.70 (s, 3H), 3.52-3.60 (m, 2H), 2.72-2.87 (m, 2H) 1.49 s, 3H), 1.32 (s, 3H);

HRMS. Calcd. for C45H63N3021 (M + H)+: 982.4032; found: 982.4035.
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