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Abstract
In this thesis, we address the problem of obtaining a "near optimal" solution to the
uncapacitated network design problem. In the uncapacitated network design problem,
each arc of a network has a fixed design cost for construction and a variable routing
cost for routing each unit of flow. For each pair i,j of nodes, there is a demand of
one unit of flow from i to j, and flow may only be sent on constructed arcs.

We develop a genetic algorithm for solving the uncapacitated network design prob-
lem. It starts with a population of individuals and the population evolves by iter-
ations. Each iteration of this genetic algorithm has steps called parental selection,
crossover and immigration. We also define termination criteria for determining when
the population has converged.

The implementation of our genetic algorithm is tested for different problem sizes
and several instances in each problem size. The computational results are compared
to that of the dual ascent method with drop-add heuristic for the same problem
instances. Extensive graphical analysis is performed on the results. We observe that
our genetic algorithm is an efficient solution technique to solve uncapacitated network
design problems, but is dominated by the dual ascent method with drop-add heuristic.
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Chapter 1

Introduction and Literature

Review

1.1 Introduction

The Uncapacitated network design problem has been studied in depth in the past

several decades (see Billheimer and Gray [6], Magnanti and Wong [24], Balakrishnan,

Magnanti and Wong [3]). Many real-world problems involve network design of some

sort. The construction of telephone lines, road networks and airline routes, capital

investment decisions, road repair and cleaning strategies, transit design are some

examples of network design applications. More applications are discussed in Section

2.3.

Consider a network G with a node set N, arc set A and a commodity set K.

Each arc of A has a construction cost and an usage cost. The construction cost is a

one-time cost incurred for construction of the arc while usage cost is a variable cost

incurred for each unit of flow along that arc. No flow may be sent in an arc unless it is

10



1.1 Introduction

constructed. There is one unit of demand from each node i to each node j, and each

requirement may be viewed as a different commodity. The network design problem is

to satisfy the commodity demands at a minimum cost. In the uncapacitated network

design problem, there is no upper bound on the flow in an arc, once it is constructed.

In trying to route a transit system through an array of stations, a designer must

resolve the conflict between construction economy and traveler convenience (see Bill-

heimer and Gray [6]). Consider the problem of linking residential stations and busi-

ness stations of a city. A design solely based on traveler convenience would provide

direct routings linking each origin and destination. If the minimization of construc-

tion costs were the sole criterion used in designing the required system, a minimum

spanning tree would result as the solution model. Although this would minimize the

total construction cost, certain origins and destinations will be poorly served. The

problem addressed, here, is a network design problem of striking an acceptable bal-

ance between construction economy and traveler convenience. The stations model

nodes and the transit lines model arcs. The passenger travel demands will represent

commodity demands. The construction cost will represent the fixed design cost and

a measure of traveler convenience will represent the routing cost. The designer would

want to minimize the total cost.

These problems, in their mathematical programming models, are mixed integer

programming problems (i.e., they have both integer and continuous decision vari-

ables). The integer variables concern construction decisions, whether or not an arc

is to be constructed. The continuous variables concern flow decisions (after an arc is

constructed how much flow is to pass through this arc?). This model can, therefore,

consider trade-offs between flow costs and design costs for satisfying the demands.

These problems belong to the class of hard problems called NP-hard problems (John-

son, Lenstra and Rinnooy Kan [20]). Considerable progress has been made in finding

exact and approximate algorithms for these problems based on optimization ideas

(Magnanti and Wong [24]). As the problems are NP-hard, there are no efficient exact

11



1.2 Problem Definition 12

solution techniques guaranteed to work for large problems.

The absence of efficient exact solution techniques for such combinatorially hard

problems has given rise to increased application of random search techniques (Tailard

[31], Anderson and Ferris [1]) as alternate solution methods. In this thesis, we develop,

for the first time in the literature, an implementation of a search technique called

genetic algorithms for the uncapacitated network design problem.

Our implementation starts with an initial population that has individuals (so-

lutions) from the search space of feasible solutions. This population changes from

iteration to iteration. Each iteration includes processes called "parental selection",

"crossover" and "immigration". While creating the initial population and during

subsequent iterations, the genetic algorithm attempts to find successively "fitter"

populations while maintaining an appropriate amount of population diversity. The

fitness of an individual is given by its objective function value.

The iterations do the following. Two individuals are selected from the population

to crossover and form a child. The newly created child is introduced in the population

if it meets pre-set criteria related to its feasibility and its objective function value.

Immigration introduces new individuals into the population. The average fitness of

the population improves over iterations and also the fitness of the worst-individual of

the population improves over iterations. After a number of iterations, the algorithm

typically reaches a solution that is near-optimal.

1.2 Problem Definition

Our model of the uncapacitated network design problem (UNDP) has the following

features. It is defined on a network with node set N and an arc set A. Each arc (i, j)

of A is uncapacitated and undirected and has a fixed design cost Fij and a variable

routing cost c for each unit of flow sent for commodity k. The construction of more

arcs will improve the total routing cost but will increase the total design cost. The

1.2 Problem Definition 12



1.2 Problem Definition 13

construction of fewer arcs will improve the total design cost but will increase the total

routing cost. The objective is to minimize the sum of routing and design costs.

The model allows multiple commodities. Let K be the set of commodities and for

each k E K, assume (by scaling, if necessary - see Balakrishnan, Magnanti and Wong

[3]) one unit of commodity k must be shipped from its origin O(k) to its destination

D(k). We refer to the set of constructed arcs for a solution of this model as a design

or configuration.

The model has two types of decision variables, Yij and Xj; Yij is a binary integer

design variable taking a value 1 if arc (i, j) is in the design (i.e., it is constructed)

and a value 0 if arc (i, j) is not in the design. xj denotes the flow of commodity k

on the arc (i, j).

The model is given by the following mathematical program:

MinimizeZ Z (cj +cxk) + Fijyij (1.1)
kEK (i,j)EA (i,j)EA

subject to

-1 if i = O(k) for all i E N and k E K

E (i)-Z (x/) = 1 if i = D(k) (1.2)
jEN IeN

0 otherwise

Xk <_ yij and

xi < Yij for all (i,j) A and k E K (1.3)

xj,, Xi > O for all (i,j) E A and k E K (1.4)

Yij = 0 or 1 for all (i,j) E A (1.5)

The constraints of our model are of 4 types. They are flow demand constraints

(1.2) that require a unit flow for each commodity, arc usage constraints (1.3) requiring

design (or construction) of an arc before it can be used for flow, nonnegativity con-

1.2 Problem Definition 13



1.2 Problem Definition

straints (1.4) requiring continuous variables to take nonnegative values, and binary

integer constraints (1.5) determining usage status of arcs.

The formulation has AI integer variables, 21AlIKI continuous variables, IN IKI

flow demand constraints, 21AIIK] arc usage constraints, 21AIlKI nonnegativity con-

straints and IAI binary integer constraints.

To appreciate how the formulation increases with the size of the network, consider

a 15-node complete network with complete commodities. By complete network and

complete commodities, we mean that this network has an arc between each pair of

distinct nodes and a commodity for each pair of distinct nodes of the network . Thus

the 15-node network has 105 arcs and 210 commodities. We observe that there are

105 integer variables, 44,100 continuous variables, 3,150 flow demand constraints,

44,100 arc usage constraints, 44,100 nonnegativity constraints and 105 binary integer

constraints.

The fixed design cost is Fij associated with each arc (i, j) and the variable routing

cost is ckj associated with each arc (i, j) and commodity k. The objective is to obtain

a design and a corresponding flow that will satisfy commodity demands and will

minimize the total cost.

Many network flow and network design problems are special cases of this problem.

When the design cost is 0 for each arc, then the UNDP reduces to a set of shortest

path problems-one shortest path problem for each commodity. When the commodity

set is complete and the routing cost is 0 for each arc, then the UNDP reduces to

a minimum spanning tree problem (Magnanti and Wong [24]). The transportation

problems and traveling salesman problem (see Magnanti and Wong [24]) are special

cases of this model.

14
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1.3 Literature Review

Researchers have developed both exact and approximate solution methods for solving

UNDP. Enumerative algorithms like branch and bound, non-enumerative methods

like Benders Decomposition, heuristic methods, dual-ascent methods in combination

with drop-add heuristics have been tried. Enumerative algorithms reach the optimal

solution but in the worst case they may enumerate all feasible solutions. Most non-

enumerative methods maintain a lower bound and upper bound for the objective

function while searching for a solution, and stop the search when the algorithm is

within a pre-specified distance from optimality. The above methods are explained in

greater detail in Section 2.2.

Branch and bound algorithms have been proposed by several researchers (Boyce

et al. [7], Boyce and Soberanes [8], Dionne and Florian [12], Hoang [15], Leblanc [18],

Los and Lardinios [19], Rothengatter [27], and Scott [29]) for network design.

Boyce et.al have suggested an enumerative algorithm for budget design problems

(a variation of UNDP) and they noted a bounding mechanism for this algorithm.

Hoang has proposed an improvement on the bounding procedure of Boyce et al.

Dionne and Florian have noted several ways to improve this algorithm. Los and

Lardinios have adapted the Dionne and Florian lower bound for the UNDP.

The branch and bound method is found to be effective for small and mid-size

problems. As the problem size grows, the computational time is found to grow expo-

nentially.

Benders [5] decomposition, an algorithm for mixed integer programming problems,

has been successfully applied to network design problems (see Magnanti and Wong

[24]). Florian et al. [13] have used the algorithm to schedule the movement of railway

engines; Richardson [26] has applied this algorithm to the design of airline routes;

Magnanti et al. [22] have used the algorithm for fixed charge network design; Geof-

frion and Graves [14] applied this procedure to industrial distribution system network

design; and Hoang [16] has used an extended version of the algorithm to solve a class

.3 Literature Review 15



1.4 Overview of Thesis 16~~~~~~~~~~~~~~~~~~~~~

of nonlinear discrete network design models. Methods have been proposed to accel-

erate the algorithm by using improved cuts called "pareto-optimal" cuts (Magnanti

and Wong [23], Magnanti et al. [22]).

The route selection algorithm (drop-add heuristic) has been suggested by Bill-

heimer and Gray [6] for solving network design problems. This algorithm converges

to a local optimum. When combined with methods like dual ascent (Balakrishnan,

Magnanti and Wong [3]), the drop-add heuristic gives a nearly optimal solution.

Balakrishnan, Magnanti and Wong [3] have applied the dual-ascent procedure

with the drop-add heuristic for the UNDP on random test problems with up to 45

nodes, 500 arcs and 1980 commodities and also on some models arising in freight

transport. The solutions were typically found to be from 1 to 4% of optimality.

1.4 Overview of Thesis

In this thesis, we develop a genetic algorithm to solve uncapacitated network design

problems. Our approach applies several modifications to the traditional genetic al-

gorithms methods. Some of these modifications involve introducing problem specific

information to the genetic algorithm.

Chapter two of this thesis considers the UNDP model introduced in Chapter 1 with

brief comments on possible modifications in the problem formulation. The solution

methods presented in Chapter one to solve uncapacitated network design problem are

explained in detail here. The scope and limitations of each method are noted. This

chapter also presents some applications of network design problems.

Chapter three gives a brief introduction to notation and terminology in genetic

algorithms. Then, it presents a detailed account of our approach in using a ge-

netic algorithm for UNDP. The special steps and variations from traditional methods

present in our approach are noted and analyzed. This chapter explains in detail the

computational implementation methods of genetic algorithm and dual-ascent (with

1.4 Overview of Thesis 16



1.4 Overview of Thesis 17

drop-add heuristic) for UNDP. Several problem instances from different problem sizes

are solved using both methods, and the computational results are presented and inter-

preted. This chapter also gives a detailed graphical analysis of the results observed.

Chapter four concludes with suggestions for future research in using genetic algo-

rithms for UNDP. Here, we address possible improvements in the traditional genetic

algorithms implementation and our implementation that would use information from

the problem more effectively. We also present our observations on the scope of ap-

plying genetic algorithms to network design problems.

The appendix contains the C++ code for our genetic algorithm implementation

for UNDP.



Chapter 2

Uncapacitated Network Design

In this chapter, we consider the UNDP introduced in Chapter one and discuss about

the possible alternate formulation methods. Then, we give a presentation of the

existing solution methods used to solve UNDP. The solution methods are explained

in detail, and their scope and limitations are briefly discussed. Then, we present

applications of network design problems in areas including the transportation, urban

planning and telecommunication.

2.1 Alternate Formulations

We consider again the UNDP described in Section 1.2. This UNDP can be formu-

lated in alternate ways as follows. The arc usage constraints can be aggregated for

each commodity and can be written as one for each arc, thus reducing the 2AHlKI

constraints to 21AI constraints as follows:

(xkj +- xki) < 2 K yij for all (i,j) E A. (2.1)
k

18



2.1 Alternate Formulations 19

The arc usage constraints of both formulations ensure usage of an arc for flow only

after it is constructed. But, the second formulation has fewer constraints and hence

is more compact.

Another formulation method is to aggregate commodities. Instead of having one

commodity for each pair of origin-destination nodes, Balakrishnan, Magnanti and

Wong [3] suggest a method to aggregate commodities corresponding to each origin (or

destination) and to represent them as one commodity. According to this formulation,

Xk will denote the total flow on arc (i, j) that originates (terminates) at node k. This

formulation corresponds to aggregation over all destination nodes of the commodities

with origin k. The arc usage constraints will then become

4• _ Y jIij Niy for all (i, j) E A and for all k E N (2.2)
Xi INIyij

The flow demand constraints are also altered. For each commodity I (of the

original formulation) with 0(l) = k, there is a requirement of 1 unit at node D(1) for

commodity k (of this formulation).

Even though the disaggregate (original) formulation contains more constraints, it

is preferable to the aggregate formulations in the following sense. The linear program-

ming relaxation of the disaggregate formulation is tighter than that of the aggregate

formulation and hence gives sharper lower bounds for the optimal objective value of

the mixed integer programming formulation. Many authors have noted the algorith-

mic advantages of using tight linear programming relaxations (see Cornuejols, Fisher

and Nemhauser [9], Davis and Ray [10], Beale and Tomlin [4], Geoffrion and Graves

[14], Mairs et al. [21], Magnanti and Wong [23], Rardin and Choe [25], and Williams

[32]).

2.1 Alternate Formulations 19
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2.2 Existing Solution Methods

2.2.1 Branch and bound method

The branch and bound method has been suggested as a solution method for network

design problems by several researchers (Boyce et al. [7], Boyce and Soberanes [8],

Dionne and Florian [12], Hoang [15], Leblanc [18], Los and Lardinios [19], Rothen-

gatter [27], and Scott [29]). The branch and bound method may be summarized as

follows: The method maintains the branch and bound enumeration tree consisting of

partial solutions. The possible solutions of the network design problem are the leaves

of this tree. By using a bounding mechanism, the method branches on this tree in

search of a leaf that is an optimal solution for the problem.

Boyce et al. [7] suggested this approach for budget design problems. Budget

design problems are network design problems where there is an upper bound on the

number of arcs constructed but there is no fixed cost for each arc. Here, both integer

and continuous variables appear in the constraints, but only the continuous variables

appear in the objective function. In this case, if we know the optimal design y, the

optimal objective function value G(y) is the optimal routing cost of this design.

Each node P in the branch and bound enumeration tree represents a partial

solution. It has associated disjoint sets F and F0 of A such that arcs in F1 are

required to be constructed (yj=l) and arcs in Fo are required not to be constructed

(yj=O). The remaining arcs F2=A-F1-Fo are arcs whose construction status is not

yet determined. Node P's decided arcs combined with different construction status

for the arcs in F2 will form the subtree rooted at P. The leaves of this enumeration

tree are possible solutions for the problem.

Boyce et al. noted that for any solution y that belongs to the subtree rooted at

P, a lower bound for the objective value is given by

G(y) > G(yP)

2.2 Existing Solution Methods 20
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2.2 Existing Solution Methods 21

where yP denotes the "completion" of P ("completion" of a node P is the config-

uration in which all its undecided arcs are constructed) with yij = 1 for every arc

(i, j) E F2. This is due to the fact that with the additional arcs in yP the routing

cost can be at most the same as that of y.

Hoang has proposed an improvement on the bounding procedure of Boyce et al.

as follow:

G(y) > G(yP ) + E Vyjij(yP) (2.4)
(i,j)EF2

where yZj = 1 - Yij. The deletion of arcs from yP will result in an increase in the

shortest route cost and hence increase in the objective function value. The quantity

Iij(yP) denotes the increment to the shortest route cost from node i to node j when

we delete (i, j) from the network defined by yP. The expression (2.4) means that if

the arc (i,j) is deleted (set Yij = 0 and y-j = 1) from the network defined by yP, then

the cost of shipping the unit of demand between the nodes i and j must increase by

at least Iij(yP) in the solution y. It might increase by more as other arcs might be

deleted as well.

(2.4) gives a lower bound G(y) > G(yP ) + Z(i,j)F2 j yjij(yP) that applies to every

node below P in the branch and bound enumeration tree. Using this lower bound as

a fathoming mechanism and branching from node P on a fractionally valued variable,

Hoang ultimately reaches a tree solution which is an optimal solution for the problem.

Dionne and Florian [12] suggested improvements for this algorithm such as using

specialized and faster algorithms to compute shortest path distances when one arc

has been deleted from the network. They also suggested branching on the fractional

variable Yij, (i, j) E F2 with the highest incremental improvement per unit of budget.

Los and Lardinios [19] have generalized the Dionne and Florian lower bound for

2.2 Existing Solution Methods 21



2.2 Existing Solution Methods

the uncapacitated network design problem. They use the inequality

G(y) > G(y) + E yZjIij(yP) + Fijyij (2.5)
(i,j)EF2 (i,j)EA

For a given solution y, (2.4) will provide a lower bound to the total routing cost and

the term Z(i,j)eA Fijyij represents the total fixed charge costs. The sum of the two

expressions will thus be a lower bound to the objective value at y.

Los and Lardinios found that this method was effective only for small to medium-

sized problems with computation times growing exponentially in the problem size.

For example, an 8-node and 23-arc problem required 5.4 seconds on a CDC computer

while a 12-node and 40-arc problem required 207 seconds.

2.2.2 Benders decomposition

The Benders decomposition, an algorithm for mixed integer programming problems,

has been applied to a variety of network design problems. Florian et al. [13] have used

the algorithm to schedule the movement of railway engines. Richardson [26] applied

it to the design of airline routes. Magnanti et al. [22] applied this algorithm for fixed

charge network design. Hoang [16] used an extended version of the algorithm, called

generalized Benders decomposition, to solve a class of nonlinear discrete network

design models.

When applied to a network design problem, Benders decomposition proceeds it-

eratively by choosing a tentative network configuration (i.e., setting values for the

integer variables yij), solving for the optimal routing on this network and using the

solution to the routing problem to further constrain the network configuration.

The optimal dual variables for the linear programming routing problem can be

used to estimate the maximum possible savings on introduction of an unused arc.

Using this, we can get a lower bound (LB) expression for the optimal routing cost

R. For any network configuration, Yij = 1 if the arc (i, j) is in the configuration and

22
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Yi3 = 0 if (i, j) is not present in the configuration. Thus, the total design cost equals

Z(i,j)eA Fijyzj. Therefore, this expression, added to the previous routing cost lower

bound expression (LB) gives a lower bound on the minimum cost v of any design of

this problem.

Constraints like the above constraint are called Benders cuts. They are derived

from the dual optimal solution for the optimal routing calcuation for any tentative

network configuration. The Benders algorithm computes the new configuration at

each step by minimizing the total network cost v subject to the Benders cuts gener-

ated by every previous configuration. This minimization, called the Benders master

problem (Magnanti and Wong [24]), is a mixed integer program in the integer vari-

ables yij and the single continuous variable v. Since every Benders cut gives a valid

inequality involving the optimal solution value v, the optimal value v* of the Benders

master problem is a lower bound on the optimal value v to the original problem.

The objective function value corresponding to this network configuration will serve

as an upper bound to v. These two bounds provide an assessment of the degree of

suboptimality and may be used in heuristics that permit an early termination of the

algorithm.

When there are more than one dual optimal solution for the linear programming

routing problem, some solution may produce improved cuts (better lower bounds)

than other solutions. Such an improved cut called "pareto-optimal" cut may be used

to accelerate the Benders decomposition. This improvement is generally possible

because of degeneracy in the shortest path linear program. When there is degeneracy

in this problem, its dual usually has multiple optimal solution. Magnanti and Wong

[23] and Magnanti et al. [22] show how to generate improved (pareto-optimal) cuts

for arbitrary mixed integer programming problems by solving a linear program to

choose from among alternate optimal dual solutions.

The computational experience on a variety of uncapacitated undirected fixed

charge design problems were very promising. The Benders decomposition with pre-
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processing and pareto optimal, or other improved cuts, found and verified an optimal

solution for 19 out of 24 test problems with up to 30 nodes, 130 arcs with 40 arcs

fixed open (construction required), and 58 commodities (see Magnanti and Wong 1984

[24]). For all but one of these test problems the algorithm finds feasible solutions that

are guaranteed to be within 1.71% of optimality [24].

2.2.3 Route selection algorithm

The route selection algorithm (Billheimer and Gray [6]) applies routines called link

elimination and link insertion iteratively to feasible solutions and converges to a local

optimum. This algorithm has 3 main components called the assignment routine, the

link elimination routine and the link insertion routine. The route selection algorithm

is also called drop-add heuristic.

The algorithm starts with a solution where all potential network arcs are con-

structed. The assignment routine computes the shortest path between all nodes,

assigns flow to the shortest path and computes an initial objective value. The algo-

rithm then goes to the link elimination routine.

The link elimination routine first computes the second shortest path between all

node pairs joined by a single link (i, j) in the present configuration U. An improve-

ment parameter Aij = xij(U)[dij(U) - ij(U)] + Fij, is computed for each node pair

combination joined by a single link by assuming that the traffic assigned to the link

will be detoured to the second shortest path if (i, j) is eliminated. Here, xij(U) rep-

resents the total flow on link (i, j) for the configuration U, dij(U) and dj (U) denote

respectively the costs of the shortest and second-shortest paths between i and j in

configuration U. Thus, Aij computes the savings observed in the objective value by

eliminating the link (i, j) from U.

After calculating the improvement parameter for all links in U, the link whose

elimination brings the greatest improvement in the objective function is removed

from U. The improvement parameters are recalculated for the links involved in the
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new configuration and the elimination process is repeated. When no additional elimi-

nations appear attractive (i.e., Aij < 0 for all (i, j) in the configuration), the resulting

configuration is subjected to the shortest-route assignment routine, and new values

are calculated for detour routes and improvement parameters. If there are still no

attractive eliminations, the algorithm goes to the link insertion routine.

The link insertion routine considers previously eliminated links for readmission

based on an insertion criteria. An improvement parameter 6 mn is computed that

compares the fixed cost of the candidate insertion arc (m, n) with the variable im-

provement in the network performance by readmitting the arc.

Here, 6mn = ij max[0, dij(U) - dim(U) -Cm - dnj(U)] - Finn where the ij are

the commodity origin-destination pairs (they have unit demands). So, the expression

dij(U)- dim(U) - cmn - dnj(U) represents the improvement in variable routing cost

between nodes i and j realized by inserting the (m, n) in network U. mn, thus, gives

the improvement in the objective function by introducing arc (m, n).

Once candidates for insertion have been identified, the link whose insertion will

give the highest positive improvement is inserted and a new configuration is formed.

The algorithm, then, reperforms the assignment and link elimination routines, ulti-

mately returning to the link insertion routine. The algorithm stops when successive

applications of the link elimination and link insertion routines produce no improve-

ment in the objective value.

The computation time appears to increase with the square of the number of nodes

INI when the number of potential links can be expressed as a low multiple of IN[

(Billheimer and Gray [6]).

2.2.4 Dual-ascent method

Balakrishnan, Magnanti and Wong [3] have developed a family of dual-ascent algo-

rithms for the uncapacitated network design problem. As the problem is NP-hard,

the algorithm focuses on methods for generating good lower bounds and heuristic
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solutions rather than solving the problem optimally.

The dual-ascent algorithm considers the dual of the linear programming relaxation

of the network design problem which is the following:

Problem DP

Maximize ZD = D(k) (2.6)
kEK

subject to

V4 -_V! < Ck+Wk1
vjkvk < cij + wij for all k E K and all {i,j} E A (2.7)
vO -V. < C< + WI

E w + E wjki < Fij for all (i, j) E A (2.8)
keK kEK

Wi, WJi > 0 for all k E K and all (i,j) E A (2.9)

In this formulation vk is a dual variable corresponding to the flow demand equa-

tions (1.2) for commodity k at node i, wk and ki for k K and {i,j} C A correspond

to the arc usage constraints (1.3).

For any given vector w--={w, wjki that satisfies constraints (2.8) of DP, the best

v values are obtained by maximizing (2.6) subject to (2.7). This subproblem decom-

poses by commodity; The subproblem SPk(w) corresponding to commodity k has the

following structure.

Problem SPk(w)

Maximize vkD(k) (2.10)
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subject to

i - i for all k E K and all (i, j) E A where (2.11)

kj = kCk + w and ki = c k 

for all (i,j) E A and k E K.

SPk(w) is the dual of a shortest path problem from origin O(k) to destination D(k)

using the modified arc lengths ckj = + wk and = + wki. For a given set of

w-values, setting vk equal to the length of the shortest path from origin O(k) to node

i, using and Cki as arc length, gives one optimal solution of SPk(w). In particular,

the optimal value of the subproblem SPk(w) is vk (k), the length of the shortest path

from origin O(k) to destination D(k). Therefore, we can increase the dual objective

function value by increasing the length of the shortest O-D (origin-destination) path

for one or more commodities through appropriate increases in w-values (and, hence

in c-values).

The dual-ascent strategy is to iteratively increase one or more w-values so that

a. all constraints of Problem DP remain feasible.

b. the shortest O-D path length VD(k) increases for at least one commodity at each

stage.

To satisfy condition a, Balakrishnan, Magnanti and Wong [3] consider increasing

wO and wki values corresponding only to those arcs (i, j) for which constraint (2.10)

has slack.

Balakrishnan, Magnanti and Wong adopt a procedure called the labeling method to

implement this strategy. For a single commodity k E K, this method simultaneously

increases several w-values.

For any commodity k E K, this method considers a partition (N1 (k), N2(k)) of the

node set N so that O(k) E N1l(k) and D(k) E N2(k). The aim is to identify arcs (i, j)

whose wk values must be increased in order to increase the shortest O-D distance
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V)(k). The method defines a set A(k) as the set of arcs (i, j) incident from N1(k)

to N2 (k). A(k) is called the cutset for commodity k induced by the node partition

(N1 (k), N2(k)). Increasing the values for each of the arcs in A(k) will increase the

shortest path distance for commodity k.

However, only a subset of the arcs in the cutset will belong to the shortest paths

and it will suffice to increase those w values alone. This method has mechanisms

to identify these arcs (called tight arcs). The other arcs of the cutset may be called

non-tight arcs.

Then, it computes the slack sij for each tight arc (i, j) and the minimum of all

sij is 61. It also computes the maximum quantity 62 of increase in w-values that will

make one or more of the non-tight arcs tight. Then, increasing w by 6=min{6 1,62}

for all tight arcs increases all shortest path lengths v to nodes 1 of N2 (k) by 6, and

improves the lower bound (Balakrishnan, Magnanti and Wong [3]). They refer to this

updating procedure as the simultaneous w-increasing step.

For this 6, the slacks and the shortest path lengths are updated. Here, there is at

least one arc whose slack goes to 0.

The procedure initializes all w-values to zero and initially, Nl (k) = N\ D(k),

N2(k) = {D(k)} for all k E K. At each iteration, the algorithm sequentially con-

siders the commodities k for which O(k) N2 (k). For every such commodity, the

implementation performs the simultaneous w-increasing step once. If, as a result, the

slack for some tight arc (i, j) becomes 0, then node i is transferred from N (k) to

N2 (k). This augmenting of N2 (k) is called labeling and nodes of N2 (k) are called la-

beled nodes. The algorithm stops when the origin O(k) is labeled for all commodities

k E K.

When the dual-ascent procedure terminates, the design consisting of only zero-

slack arcs is feasible (Balakrishnan, Magnanti and Wong [3]). For this design, solving

a shortest path problem for each commodity k E K gives the arc flows. Using this

as an initial feasible solution, Balakrishnan, Magnanti and Wong apply drop-add
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heuristic (as in route selection algorithm) to get an improved solution. They also

use dual-based problem reduction methods to improve the solution. The resulting

solution will give an upper bound for the objective value.

To summarize, their algorithm applies dual-ascent labeling method iteratively to

get good dual solutions and lower bounds. A heuristic based in these dual solutions

gives feasible solutions that serve as starting points for improvement heuristic and

problem reduction methods. The resulting solutions are nearly optimal in practice,

as the dual ascent lower bounds provide a measure of the distance from optimality.

Their computational results for classes of test problems with up to 500 integer and

1.98 million continuous variables and constraints show that the dual-ascent procedure

and an associated drop-add heuristic generate solutions, that, in most cases, are

guaranteed to be within 1 to 4% of optimality. The CPU time is not more than 150

seconds on an IBM 3083 computer (Balakrishnan, Magnanti and Wong [3]).

2.3 Applications of network design problems

We can see network design problems in diverse application contexts including pack-

age deliveries, communication networks, waste disposal, mail routing, transportation

planning, urban traffic planning and transit design (see Billheimer and Gray [61).

While delivering packages and commodities from one city to another city, nodes

model the cities. Arcs model the possible truck (freight) routes. Fixed and variable

costs are respectively the cost incurred in running a truck (or other vehicle) and the

handling cost per unit of freight. Commodity demands are experienced between cities.

The goal is to determine a minimum cost usage of trucks (vehicles) that satisfies the

delivery demands.

In the communication networks, nodes model the message centers. Arcs model the

connecting lines. The lines have a fixed construction cost and a variable maintenance

cost. The commodity demands are message transmission demands. The goal, again,
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is to find a collection of lines to be constructed that would result in the minimum

total cost.

In waste disposal, the waste collection and discharge points are represented as

nodes. The flowing pipelines are represented as arcs. The pipelines have construction

costs and maintenance costs. The commodity demands are between collection and

discharge points. We want to design and operate the disposal process at minimum

cost.

The mail routing is done between post offices which are represented as nodes.

The travel routes are represented as arcs. The fixed cost corresponds to establishing

and running travel mechanisms. The variable cost relates to handling costs. The

commodity demands are the mail routing needs between different post offices. The

problem is to satisfy the demands at minimum total cost.

In air-route or road construction between cities, cities are represented as nodes.

Arcs model the possible airways or roads. The fixed cost is the construction cost,

and the variable cost is maintenance cost. The commodity demands are the travel

demands. The goal is to construct and operate the road system (or air-route system)

at minimum total cost.

In urban planning, locations in the city are represented as nodes. The travel routes

(roads) are represented as arcs. These arcs have construction and maintenance cost.

The traffic demands are observed between locations. We want to satisfy the demands

at a minimum cost.

In designing transit routes, the stations will be represented as nodes. The arcs will

model lines between stations. The demands will be travel demands between stations.

The goal is to design transit routes so as to minimize the costs.
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Chapter 3

Genetic Algorithms for

Uncapacitated Network Design

Problems

This chapter starts with a brief introduction to the notation involved in a heuristic

search strategy called genetic algorithms. This is followed by a detailed description of

a genetic algorithm that we developed to solve UNDP. This description is supported

by required background on the corresponding and related methods used in the genetic

algorithms literature. This chapter also presents implementation details of the genetic

algorithm and the dual ascent method with drop-add heuristic for solving the UNDP.

We perform computational testing of our implementation for different problem sizes

of UNDP and compare our results with the corresponding results using dual ascent

with drop-add heuristic. We analyze the performance in different dimensions and

support our analysis with related graphs and charts.
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3.1 Basic terminology

3.1 Basic terminology

Genetic algorithms (Holland [17]) are solution techniques for optimization problems

that imitate biological evolution. When a genetic algorithm is used to solve an opti-

mization problem, each feasible solution is referred to as an individual. This feasible

solution is represented as a string (also called a chromosome), a genetic representation

of the individual. The components of the string (representing different characteristics

of the individual) are called genes. The possible values, a gene can take, are referred

to as its alleles.

The pool of all possible solutions (individuals) is called a search space. Some

representation strategy is adopted to encode the individuals into chromosomes.

Each individual has an associated fitness which is typically the objective value of

the individual or some variation of it. A genetic algorithm undergoes the following

processes in its attempt to find solutions with improved fitness.

A subset of the search space called a population is considered. An initial population

with substantial diversity is selected from the search space. A random selection

of individuals is one way to generate an initial population. The individuals of a

population undergo iterative transformations. Each iteration may consist of processes

(such as selection, crossover, mutation) to "exploit the good genetic material" from

the population and to "explore the search space" for new genetic material. The

heuristic search terminates when the population has converged (that is, some measure

of the diversity of the population goes below a specific threshold or a maximum

number of iterations is reached).

3.2 A genetic algorithm for UNDP

We represent each feasible solution (individual) of UNDP by a string of IAI genes, one

for each arc of the network. An allele is 0 for a gene indicates that the corresponding

arc is not present in the solution. Similarly, the allele is 1 if the corresponding arc is
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present in the associated solution.

The fitness of a solution is its objective value. Here, our problem is a minimization

problem and hence an optimum solution has minimum fitness among all feasible

solutions. The direction of improvement is therefore the minimizing direction.

We start with an initial population whose size is usually determined by experi-

mentation. For our test problems, with NI varying from 10 to 35, we selected after

experimentation, a population size of 200. When the initial population size is higher,

the population represents a bigger segment of the search space and hence possibly will

lead to better solutions. On the other hand, more members in the initial population

would mean more time spent in fitness computations and other processes and hence

will worsen the total computational time.

In creating the individuals of the population, we combine elements of "random-

ness" and "greed" in our method. For creating an individual for UNDP, our approach

follows one of the following 3 steps.

* With a 10% probability, the algorithm chooses a minimum cost spanning tree

of the network as the individual.

* With a 10% probability the algorithm chooses INI- 1 least cost arcs and adds

additional arcs to make the design connected.

* With an 80% probability, the algorithm forms a tree (breadth-first spanning

tree of the original network not using any cost information) rooted at a node

chosen at random and adds additional arcs (number of arcs to be added found

by random choice). While adding the arcs, the implementation chooses low

design cost arcs with higher probability. Specifically, the arcs are ranked from

1 to AI according to their design cost (least design cost arc ranked 1), and the

probability of choosing an arc ranked AI - i + 1 (i=1 to IAI) is i times the

probability of choosing the arc ranked Al.

The approach computes the fitness of an individual after using Dijkstra's algorithm
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to compute the shortest route distances (as restricted to arcs that are in the design).

In most genetic algorithms, the population is transformed iteratively until sat-

isfying a stopping criteria. It undergoes processes such as selection, crossover and

mutation at each iteration. In our approach, we substitute "immigration" for muta-

tion.

The selection (see Back and Hoffmeister [2]) of an individual is generally the

process by which fitter members of the population are given higher representation

than the less fit ones. The selection criteria may be based on the individual's fitness

proportion (to the total fitness) or the rank of its fitness (in the population). The

selection is categorized into different types based on the process used for selection.

Some processes used in the literature for selection are as follows:

* Probabilistic processes where individuals have a certain probability to get se-

lected vs. Deterministic processes where a fixed number (on the basis of fitness)

of copies of each individual get selected;

* Dynamic methods where probabilities of selection varies between generations

vs. Static methods where probabilities are the same for each generation;

* Generational methods where the whole population undergoes selection vs. Steady

State methods where only a portion of the population undergoes selection;

* Universal methods where selection takes place in one step (say one spin of

roulette wheel) vs. Independent methods where selection takes place in multiple

steps (say several spins of roulette wheel);

* Replaceable methods where if an individual is selected once, it is still considered

for selection vs. Nonreplaceable methods where if an individual is selected, it is

not considered for selection in that process anymore;

* Preservative methods where each individual has a nonzero probability of getting

selected vs. Extinctive methods where some individuals have zero probability
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of getting selected;

* Elitist strategies where the best individual is retained vs. Pure strategies where

each individual has a probability less than one of getting selected;

Our method of selection called parental selection works as follows: The population

is ranked according to the fitness of the member individuals. We call the half having

better fitness (lower objective value) the better half and we call the other half the

worse half. The parental selection method selects two individuals from the population

and calls them the better parent and worse parent according to their relative fitness

values. The selection of parents is done as follows: With a probability pi (we use

p1=0.75), the method selects at random one parent from each half. With probability

1 - pi it selects at random both parents from the better half.

The selected parents then undergo crossover. For each pair of parents, the crossover

is a recombination of genetic material within the parents to produce possibly better

individuals. The proportion of population selected as parents each time is generally

given by the crossover ratio. The individuals produced in this process are called

children. The diversity and the fitness of the output population is to some extent

governed by the method of crossover used. Some methods used for crossover are as

follows.

* In one point crossover, a particular gene in the chromosome is chosen to be the

crossover point. All alleles to the right of this gene are interchanged between

the combining individuals, producing two children.

* In multipoint crossover (De Jong [11]), there are more than one combination or

crossover points, also producing two children.

* In segmented crossover, the number of segments to undergo crossover each time

is not fixed.
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* In uniform parametrized crossover, with a probability p an allele is in child I

and with probability (1 - p) it is in child II.

* In adaptive crossover, crossover points evolve as the generations go on.

Our crossover method uses some ideas from uniform parametrized crossover (Spears

and De Jong [30]). In our method, the parents chosen in the parental selection un-

dergo crossover and each crossover produces only one child. When a gene has the

same allele in both the parents, then the corresponding gene in the child gets the

same allele. When the alleles corresponding to a gene in the two parents are different

then with a probability P2 (in our implementation P2 =0.75), the corresponding gene

of the child takes the allele from the better parent and with probability 1 -P2 it takes

from the worse parent.

The newly created child is then tested for feasibility (i.e., whether the constructed

arcs form a connected spanning subgraph). For a feasible child, its fitness is computed.

When the fitness of the child is better than that of the worst member of the present

population, the child replaces the worst member.

Over the iterations, each individual P is assigned a value denoted LastGood-

Child(P). LastGoodChild(P) is initially set to 0 and is reset to 0 whenever P is a

worse parent and a child of P is fitter than both of its parents. LastGoodChild(P)

is incremented by 1 whenever P is a worse parent and its child is not fitter than

the better parent. If LastGoodChild(P)=3, then P is deleted from the population

and replaced by an immigrant (a new individual). This process is used to retain the

individuals that may not have a good fitness but may have elements of "goodness"

that can be transmitted to the progeny. On the other hand, it removes individuals of

lesser fitness that also do not contribute good elements.

Immigration is the method by which we introduce new individuals into the popula-

tion. In immigration, we create a new individual and compute its fitness. The fitness

of the new individual is compared with that of the worst member of the population.

If the new individual has a better fitness, it replaces the worst member.
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By using crossover and immigration, the population evolves. The change in the

population may be due to the introduction of a child or immigrant or the removal of

a worse parent or the removal of worst individual in the population.

The successive populations are ranked according to the fitness of their individual

members and they undergo the same processes (parental selection, crossover and

immigration) until a population satisfies our stopping rule. Our stopping rule is

based on the following two criteria:

* We set a maximum number of iterations (10000 for our implementations).

* We also set a minimum value for the standard deviation of the fitnesses of the

population (average fitness of the present population/1000).

If the minimum standard deviation is obtained, we say that the final population

has converged. When the maximum number of iterations is reached, we say that the

algorithm was "forced to stop".

3.3 Computational Implementation

We implemented the genetic algorithm in C++ on a SPARC station 10. We used

data types and algorithms from LEDA (Library of Efficient Data types and Algo-

rithms) in several places in our implementation and found this library very useful.

We implemented the FORTRAN code for dual ascent and heuristic procedure on the

same machine. The size of our test problems ranged from 10 nodes, 25 arcs and 90

commodities to 35 nodes, 175 arcs and 1190 commodities. We tested 250 problem

instances in all. We solved the same problem instances using genetic algorithm and

using dual ascent and drop-add heuristic.

The test problems are defined over random undirected networks with complete

demand patterns (a commodity for each node pair). Our network generation method

is described later in this section. The nodes of the network are points plotted in
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a two dimensional grid. We can have one of two types of node coordinates which

we call uniform node coordinates and normal node coordinates. The arc costs are

proportional to Euclidean distances between end nodes of the arcs.

We selected 6 problem types whose sizes are listed in Table 3.1. We consider the

routing cost of an arc as the Euclidean distance between the end nodes. The fixed

cost is some user specified multiple of routing cost. We refer to this multiple as the

cost ratio. Our implementations solve test problems for cost ratios of 1, 5, 10, 20 &

50.

For uniform node coordinates, our network generator first selects the required

number of nodes n (specified by the user) with node coordinates as random integer

pairs chosen from a 100X100 grid. For normal node coordinates, it selects LN/5J

(which is the closest integer smaller than INI/5) node coordinates that are random

integer pairs from a 80X80 grid. Other node coordinates are chosen so that they

are normally distributed (see Rubinstein [28]) with mean as one of the selected node

coordinates.

The generator, first, forms a random cycle using a randomly selected ordered set

of nodes. Then, for a user specified degree d, the generator adds arcs to the network

so that the approximate degree of each node is the user specified degree. The total

number of arcs m in the network is approximately nd/2. The arcs are added such

that the arcs connect closer node pairs when possible. Then, the Euclidean distance

between the end node pairs and the cost ratio are used to compute the routing

and design cost for each arc. The generator also generates commodity origins and

destinations where the total number of commodities is also user specified. After

forming a random cycle, the addition of arcs is done as follows (degrees updated as

and when arcs are added):

1. Form a priority queue of all node pairs (with their relative distances).

2. Choose the node pair (ij) with the smallest distance.

If the degree of both i and j is less than d and they are not already connected
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by an arc, then add arc (i, j) to the network and delete (ij) from the priority

queue

Else delete (ij) from the priority queue.

3. Continue (2) until the node-pair priority queue is empty or the required number

of arcs are already added.

4. When the node-pair priority queue is empty and more arcs are required for the

network, then find a node with degree less than d. Form a priority queue of

nodes of the network (with their distance from 1). Choose the node closest to 1

(say k);

if (, k) is not already in the network, add this arc to the network and delete k

from the node priority queue

else delete k from the node priority queue.

5. Continue (4) until degree of becomes d or the node priority queue becomes

empty or the required number of arcs are added to the network.

6. Perform (4) and (5) for all nodes whose degree is less than d.

3.3.1 Genetic algorithms implementation

The algorithm starts by generating an initial population. Number of individuals in

the population is user specified. The individuals are formed in one of the following

three ways:

1. With 10% probability, the individual is a minimum spanning tree of the original

network.

2. With 10% probability n- 1 least design cost arcs are chosen from the original

network for adding in the individual, then enough arcs are added to ensure

connectivity in the individual.
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Connectivity correction is done as follows:

A node i is chosen at random.

A breadth-first search is performed from i using arcs of the individual. Nodes

that constitute the search tree are referred to as connected nodes, other nodes

are called unconnected nodes.

For each unconnected node k, find the closest connected node 1.

Add arc (k, 1) in the individual.

3. For the remaining 80% cases the following procedure is adopted:

A node is chosen at random and a spanning tree is formed with the arcs of

the original network (not using cost information) using the breadth first search

technique.The spanning tree arcs are then added to the individual.

Then, with a 20% probability a random integer num - ind - arcs is generated

between 0 and m -n + 1.

In the remaining 80% cases, num - ind - arcs is a random integer between 0

and 2n + 1.

Then, each of the num - ind - arcs arcs are chosen from the original network as

follows: The arcs (of the original network) are ranked from 1 to AlI according

to their design cost (least design cost arc ranked 1). A random number choose

is generated between 1 and IAI(IAI + 1)/2. Whenever i(i - 1)/2 < choose <

i(i + 1)/2 for (i=1 to IAI), then the arc ranked IAI - i + 1 is chosen for the

individual (provided it is not already in the individual) .

The reason for developing this method for generating the initial population and

immigration is that (1) and (2) contribute more to the fitness of the solutions, while

(3) contributes more to the diversity of the population. Our initial experimentations

started with more focus on randomness and the whole population was generated using

(3). The results obtained had values whose gap percentage (=100(GA solution-DA

lower bound)/DA lower bound) was higher (than this method) by a factor of 5 to

10 for problems with cost ratio 1. As the cost ratio was increased to 2, the gap
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percentage increased by about 50% over the cost ratio 1 gap%.

The fitness computation for an individual is started by solving shortest path dis-

tances for each commodity (only using arcs in the individual). The shortest path

distances thus computed are added to the aggregated design costs of all arcs in the

individual. The aggregation of design costs and the shortest distances gives the fitness

of the individual.

The population then undergoes iterations of processes called parental selection,

crossover and immigration. The methods were explained in detail in section 3.2. The

population is updated for rank and fitness after each iteration.

Every 25 iterations, the implementation provides quantities such as best fitness

value, average fitness value of the whole population, average fitness of the best ten in

the population, average fitness of the best half of the population, standard deviation

of the fitness values and the computational time spent for the previous 25 iterations.

We tested different stopping rules using standard deviation during our test runs

such as fixing a constant lower bound, a function of population size as the lower

bound, and a function of average fitness of the population as a lower bound. We

found the average fitness criteria appropriate in experience. The quantity given by

averagefitness/1000 is set as a lower bound on the standard deviation of the fitness

values. If the lower bound is achieved, the genetic algorithm terminates.

After running some test problems, we selected a maximum of 10000 iterations as

an upper bound for the number of iterations of the algorithm.

On termination of the algorithm, the implementation gives the following additional

quantities:

1. the percentage of feasible children, the percentage of worse parent replacements

and the percentage of immigrations effected.

The sum of the above three quantities gives an expression for the additional

fitness computations performed after the fitness computation for the initial pop-

ulation.
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2. the total computational time spent excluding network generation.

3. the number of shortest path computations and the fitness computations per-

formed during the whole run.

4. the design of the best individual of the final population and the number of arcs

present in this individual.

3.3.2 Dual-ascent implementation

For the dual ascent (with drop-add heuristic) implementation, we use the FORTRAN

code written by Balakrishnan, Magnanti and Wong [3]. They used this code on a IBM

3083 computer. With the help of Izumi Sakuta, we made the alterations for using this

code on our Sparc station 10. The program prompts the user to specify a parameter

NMAX that influences the number of dual ascent cycles that are performed. By a

dual ascent cycle they [3] mean a complete execution of the dual-ascent routine (until

all commodity origins are labeled), heuristic procedure, and problem reduction test.

As the average number of cycles needed ranged from 2 to 4 according to Balakrishnan,

Magnanti and Wong [3], we decided to fix the value for NMAX to 5.

The outputs from the dual-ascent implementation includes the following informa-

tion:

1. a lower bound for the optimal solution (this is generated by cycles of dual-

ascent).

2. an upper bound for the optimal solution (this is produced by improving the

dual-ascent feasible solutions using the drop-add heuristic).

3. the computational time required for each step and the total computational time.
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Table 3.1: Test Problems

Problem No. of No. of No. of
Type nodes arcs commodities

1 10 25 90

2 15 60 210
3 20 100 380
4 25 125 600
5 30 150 870
6 35 175 1190

3.4 Computational Results

The problem parameter setting, we tested, were of 6 types. The network dimensions

of the different problem types are listed in Table 3.1.

The test outputs are summarized in the Tables (3.2 to 3.11). The outputs are

presented separately for uniform and normal node coordinates and for different cost

ratios. Tables 3.2 to 3.6 consider networks with uniform node coordinates and they

are sequentially presented for cost ratios 1, 5, 10, 20 and 50. Tables 3.7 to 3.11

consider networks with normal node coordinates and they are sequentially presented

for cost ratios 1, 5, 10, 20 and 50.

For an instance I, let ZGA(I) denote the value of the genetic algorithm's solution.

Let ZDA(I) denote the value of the dual ascent lower bound and let ZDC(I) denote

the value of the dual ascent cycle solution (applying drop-add heuristic and problem

reduction method to the dual ascent feasible solution).

Each table has the following quantities:

1. Problem Type (see Table 3.1).

2. GA ave. gap (=100(ZGA-ZDA/ZDA)) is the % gap of genetic algorithm solution

from the dual-ascent lower bound.

3. DA ave. gap (=100(ZDC-ZDA/ZDA)) is the % gap of dual-ascent upper bound
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from the dual-ascent lower bound.

4. GA ave. comp. time is the average computational time spent for solving the

problems using our genetic algorithm implementation.

5. DA ave. comp. time is the average computational time spent for solving the

problems using dual ascent with drop-add heuristic.

6. Ave. No. GA iterations is the average number of iterations it took for GA until

termination.

7. Ave. DA asc. cycles is the average number of ascent cycles it took for dual-

ascent to reach the corresponding upper bounds and lower bounds.

The averages are computed over 3 to 5 (in most cases 5) problem instances in

each case. The different quantities measure the performance of the methods in two

dimensions. The quality of the solutions is measured by the gap%. The gap% mea-

sures the difference from the lower bound. The computational time (CPU time spent

for the corresponding method) measures the speed of the solution methods.

The performance is analyzed using Figures 3-1 to 3-32. Figures 3-1 to 3-12 analyze

the percentage gaps observed. Figures 3-13 to 3-24 analyze the computational time

spent. Figures 3-25 to 3-30 plot the computational times as a function of shortest

path computations performed. Figures 3-31 and 3-32 study the diversity of the initial

population.

In the remainder of this section, we use GA and genetic algorithms interchange-

ably. Similarly, we use DA and dual ascent with drop-add heuristics interchangeably.

Summary of Results

Uniform Node Coordinates

Tables 3-2 to 3-6 give respectively for cost ratios 1,5,10,20 and 50, the results obtained

for uniform node coordinate problems in problem types 1 to 6. The average gap for
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Table 3.2: Uniform Node Coordinates-Cost Ratio 1

Problem Ave. gap Ave.CPU time i Ave. No. Ave. DA
Type GA DA GA DA GA iterations ascent cycles

1 .578 .054 45.448 .248 1425 2.2
2 .338 .031 114.44 1.51 2020 3
3 1.146 .025 244.02 6.124 2585 4
4 1.814 .053 272.68 15.592 2055 4.4
5 1.542 .05 429.56 28.868 2295 4.6
6 1.5233 .017 529.17 66.51 2108.33 5

Table 3.3: Uniform Node Coordinates-Cost Ratio 5

Problem Ave. gap Ave.CPU time Ave. No. T Ave. DA
Type GA DA GA DA GA iterations ascent cycles

1 0.8112 0.477 30.054 0.474 955 3.4
2 1.212 0.583 119.26 3.926 2170 5.6
3 2.03 1.056 222.07 11.624 2420 4.8
4 1.786 0.746 391.55 22.56 3055 4.6
5 3.638 0.468 573.16 50.644 3180 5
6 3.4667 0.433 823.22 69.79 3391.67 4.33

GA ranges from .5 to 9 percentage and the average computational time ranges from

14 to 825 seconds. For DA, the average gap percentage ranges from .7 to 3.9 and the

average computational time ranges from .20 to 211 seconds.

Normal Node Coordinates

Tables 3-7 to 3-11 give respectively for cost ratios 1,5,10,20 and 50, the results ob-

tained for normal node coordinate problems in problem types 1 to 6. The average gap

for GA ranges from .3 to 5 percentage and the average computational time ranges

from 13 to 813 seconds. For DA, the average gap percentage ranges from 0 to 1.5 and

the average computational time ranges from .20 to 215 seconds.
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Table 3.4: Uniform Node Coordinates-Cost Ratio 10

Problem Ave. gap Ave.CPU time Ave. No. Ave. DA
Type GA DA GA DA GA iterations ascent cycles

1 1.368 0.73 18.356 0.402 575 2.6
2 3.886 1.744 77.318 4.18 1420 4.6
3 3.19 1.503 199.34 9.7833 2250 3.67
4 4.5333 2.793 144.35 17.617 1675 4.33
5 2.714 1.41 641.25 64.722 3640 4.6
6 3.9533 1.447 913.24 133.41 3858.33 5

Table 3.5: Uniform Node Coordinates-Cost Ratio 20

Problem Ave. gap Ave.CPU time Ave. No. Ave. DA
Type GA DA GA DA GA iterations ascent cycles

1 2.55 0.29 14.42 0.55 450 3
2 4.5975 2.175 68.633 3.7125 1262.5 3.5
3 4.1067 2.793 144.35 17.617 1675 4.33
4 4.8567 2.357 235.02 40.107 1858.33 5
5 3.798 2.344 404.17 76.538 2340 4.6
6 3.3 1.81 642.2 210.52 2766.67 5

Table 3.6: Uniform Node Coordinates-Cost Ratio 50

Problem Ave. gap Ave.CPU time Ave. No. Ave. DA
Type GA DA GA DA GA iterations ascent cycles

1 2.3382 1.316 18.356 0.412 585 2
2 4.416 2.97 34.336 4.578 635 3.4
3 9.07 3.5 119.58 20.25 1375 4
4 6.3133 3.843 125.79 51.35 1041.67 5
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Table 3.7: Normal Node Coordinates-Cost Ratio 1

Problem Ave. gap Ave.CPU time Ave. No. Ave. DA
Type GA DA GA DA GA iterations ascent cycles

1 0.518 0 43.03 0.218 1345 2
2 0.77 0.009 117.06 1.74 2070 3.4
3 0.97 0.069 234.98 8.186 2515 4.2
4 1.738 0.036 270.3 16.292 2020 4.8
5 1.522 0.054 378.59 33.76 2030 4.8
6 1.5667 0.009 454.21 64.607 1800 5

Table 3.8: Normal Node Coordinates-Cost Ratio 5

Problem Ave. gap Ave.CPU time Ave. No. Ave. DA
Type GA DA GA DA GA iterations ascent cycles

1 0.319 0.269 32.232 0.386 1030 2.8
2 1.524 0.602 77.856 4.104 1455 4.8
3 1.352 0.414 172.93 12.01 1955 4.4
4 2.16 0.724 379.62 22.488 2975 4.6
5 2.2775 0.38 479.18 55.398 2700 5
6 1.9767 0.173 716.14 82.613 3025 5

Table 3.9: Normal Node Coordinates-Cost Ratio 10

Problem Ave. gap Ave.CPU time Ave. No. Ave. DA
Type GA DA GA DA GA iterations ascent cycles

1 0.926 0.28 24.228 0.506 775 3
2 1.862 1.198 73.808 3.976 1390 4
3 1.72 0.87 182.41 16.283 2066.67 4.67
4 2.89 1.02 264.88 35.907 2141.67 4.67
5 2.3433 0.7 412.13 76.797 2400 5
6 3.6933 0.827 812.61 167.91 3541.67 5
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Table 3.10: Normal Node Coordinates-Cost Ratio 20

Problem Ave. gap Ave.CPU time Ave. No. Ave. DA
Type GA DA GA DA GA iterations ascent cycles

1 0.94 0.11 14.162 0.476 440 2.6
2 3.135 0.933 53.17 4.6075 987.5 4.75
3 4.6467 1.427 121.28 21.997 1425 5
4 2.9433 1.15 182.78 35.187 1450 3.67
5 2.9567 0.997 373.71 49.153 2191.67 3.33
6 3.82 1.49 573.7 214.88 2583.33 5.33

Table 3.11: Normal Node Coordinates-Cost Ratio 50

Problem Ave. gap Ave.CPU time Ave. No. Ave. DA
Type GA DA GA DA GA iterations ascent cycles

1 1.092 0.222 13.672 0.54 425 2.6
2 2.734 1.45 33.206 5.448 610 3.6
3 4.59 1.38 46.375 16.5 487.5 4
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3.4.1 Average gap percentage

Observations

Figures 3-1 to 3-5 and 3-8 to 3-12 analyze the average gap% observed for both GA and

DA for different cost ratios in uniform and normal node coordinate problems respec-

tively. For uniform node coordinate problems, figures 3-6 and 3-7 plot respectively

for GA and DA, the gap% observed in 5 different ratios (5 curves) for the problem

sizes considered.

A rise in gap% is observed for most cases in both methods as the problem size

increases. We can find some problem types performing better than smaller sized

problems. In most of these problems, we see that both GA and DA do well.

For very low and very high cost-ratios, DA seems to perform much better than GA.

But, for intermediate ratios (5,10 and 20) GA presents a comparable performance.

Smaller gaps are observed for normal node coordinate problems in both methods.

Uniform Node Coordinates

Figure 3-1 plots the average gap% observed for both GA and DA for cost-ratio 1

problems in the 6 problem types. The DA average gap% is very close to 0 in all cases.

The GA also performs well with the average gap% lying below 2 for all problems.

Figure 3-2 plots the average gap% observed for both GA and DA for cost-ratio 5

problems in the 6 problem types. The DA average gap% is less than 1 in almost all

cases. The GA performs with the average gap% less than 4 for all problem types.

Figure 3-3 plots the average gap% observed for both GA and DA for cost-ratio

10 problems in the 6 problem types. The DA average gap% is less than 3 and GA

performs with the average gap% below 4 for most problem types.

Figure 3-4 plots the average gap% observed for both GA and DA for cost-ratio

20 problems in the 6 problem types. The DA average gap% is less than 3 and GA

performs with the average gap% below 5 for all problem types.
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Figure 3-2: percentage gaps for Uniform, Ratio 5 problems

Figure 3-3: percentage gaps for Uniform, Ratio 10 problems
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Figure 3-5 plots the average gap% observed for both GA and DA for cost-ratio 50

problems in the first 4 problem types. The DA average gap% is less than 3 and GA

performs with the average gap% less than 9 for the different problem types.

Normal Node Coordinates

Figure 3-8 plots the average gap% observed for both GA and DA for cost-ratio 1

problems in the 6 problem types. The DA average gap% is very close to 0 in all cases

and GA performs with the average gap% lying below 2 for all problems.

Figure 3-9 plots the average gap% observed for both GA and DA for cost-ratio 5

problems in the 6 problem types. The DA average gap% is less than 1 in all cases.

GA performs with the average gap% below 2.5 for all problem types.

Figure 3-10 plots the average gap% observed for both GA and DA for cost-ratio

10 problems in the 6 problem types. The DA average gap% is less than 2 and GA
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Figure 3-7: DA percentage gaps for uniform node problem
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Figure 3-8: percentage gaps for Normal, Ratio 1 problems
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Figure 3-10: percentage gaps for Normal, Ratio 10 problems

performs with the average gap% less than 4 for most problem types.

Figure 3-11 plots the average gap % observed for both GA and DA for cost-ratio

20 problems in the 6 problem types. The DA average gap % is less than 2 and GA

performs with the average gap% below 5 for all problem types.

Figure 3-12 plots the average gap% observed for both GA and DA for cost-ratio

50 problems in the first 3 problem types. The DA average gap% is less than 2 and

GA performs with the average gap% below 5 for most problem types.

3.4.2 Computational time

Observations

Figures 3-13 to 3-17 and 3-18 to 3-22 analyze the average computational time spent

for both GA and DA for different cost ratios in uniform and normal node coordinate

problems respectively.

A steady rise in time is observed for both uniform and normal node coordinate
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Figure 3-14: computational time for Uniform, Ratio 5 problems

problems as the problem size increases. The computational time spent for solving

normal node coordinate problems is comparitively lesser than that on uniform node

coordinates. Ratio 1 and 5 problems seem to be particularly easier for DA.

Uniform Node Coordinates

Figure 3-13 plots the computational time spent for both GA and DA for cost-ratio 1

problems in the 6 problem types. The DA average computational time is less than

100 seconds whereas the GA average computation time lies below 600 seconds for all

problems.
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Figure 3-15: computational time for Uniform, Ratio 10 problems

Figure 3-14 plots the computational time spent for both GA and DA for cost-ratio

5 problems in the 6 problem types. The DA average computational time is less than

100 seconds whereas the GA average computation time lies below 900 seconds for all

problems.

Figure 3-15 plots the computational time spent for both GA and DA for cost-ratio

10 problems in the 6 problem types. The DA average computational time is less than

200 seconds whereas the GA average computation time lies below 900 seconds in all

problem types.

Figure 3-16 plots the computational time spent for both GA and DA for cost-ratio

20 problems in the 6 problem types. The DA average computational time is less than

300 seconds whereas the GA average computation time lies below 700 seconds for all

problems.

Figure 3-17 plots the computational time spent for both GA and DA for cost-ratio

Ratio1 O-Uniform

I uuu

900
800

,,, 700

X O600

a X 500
o 400

Z 300

m0 200

100
X 0

o L. 0 o L 0 LO
_ NV n M M

No. of nodes

GAaverage

comp.

time

DA

average

comp.

time

. . .



3.4 Computational Results 60

Figure 3-16: computational time for Uniform, Ratio 20 problems
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Figure 3-17: computational time for Uniform, Ratio 50 problems
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Figure 3-18: computational time for Normal, Ratio 1 problems

50 problems in the first 4 problem types. The DA average computational time is less

than 60 seconds while the GA average computation time lies below 140 seconds for

all problem types.

Normal Node Coordinates

Figure 3-18 plots the computational time spent for both GA and DA for cost-ratio 1

problems in the 6 problem types. The DA average computational time is less than 100

seconds in all cases while the GA average computation time lies below 450 seconds

for all problem types.

Figure 3-19 plots the computational time spent for both GA and DA for cost-ratio

5 problems in the 6 problem types. The DA average computational time is less than

100 seconds whereas the GA average computation time lies below 800 seconds for all

problems.
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Figure 3-20: computational time for Normal, Ratio 10 problems
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Figure 3-21: computational time for Normal, Ratio 20 problems

Figure 3-20 plots the computational time spent for both GA and DA for cost-ratio

10 problems in the 6 problem types. The DA average computational time is less than

200 seconds whereas the GA average computation time lies below 900 seconds for all

problems.

Figure 3-21 plots the computational time spent for both GA and DA for cost-ratio

20 problems in the 6 problem types. The DA average computational time is less than

300 seconds whereas the GA average computation time is less than 600 seconds for

all problem types.

Figure 3-22 plots the computational time spent for both GA and DA for cost-ratio

50 problems in the first 4 problem types. The DA average computational time is less

than 20 seconds whereas the GA average computation time lies below 50 seconds for

all problems.
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Figure 3-22: computational time for Normal, Ratio 50 problems
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3.4.3 Ratio of computational times (GA/DA)

Figures 3-23 and 3-24 plot respetively for uniform and normal node coordinate prob-

lems, the ratio of computational time (GA/DA) observed for differnt cost ratios (5

curves).

Observations

For both uniform and normal node coordinate problems, there is a decline in the

ratio curve as the problem size increases. This observation would mean that the

proportional time taken by GA (compared to DA) to solve larger problems is observed

to be comparatively lesser for both uniform and normal node coordinate problems

(i.e., GA computational time gets relatively better with increasing problem size.)
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Figure 3-24:
problems
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3.4.4 Relation of Computational times to shortest path com-

putations

The data points plotted (in Figures 3-25 to 3-30, respectively for problem types 1 to

6) are the average computational times observed for each cost-ratio (not particularly

in that order) with the corresponding shortest path computations.

Observations

Figures 3-25 to 3-30 support a close linear relation between the computation time

spent and the shortest path computations performed. We performed similar analysis

for normal node coordinate problems and observed similar results.

We also performed an analysis of variation of computation time to the total num-

ber of individuals created in the problem for both uniform and normal node coordinate

problems. We observed similar linear (almost) relationship in these cases.

This provides a way to approximately estimate the computational time for a prob-

lem when one of the quantities, number of individuals created or shortest path com-

0

69

40000



3.4 Computational Results 70

Figure 3-26: shortest path computations-computational time for problem type 2

putations performed, can be estimated.

Figure 3-25 plots for problem type 1 and uniform node coordinates, the variation

of computational time with respect to the number of shortest path computations

performed. A linear regression of the data points gives an R 2 value of .999.

Figure 3-26 plots for problem type 2 and uniform node coordinates, the variation

of computational time with respect to the number of shortest path computations

performed. A linear regression of the data points gives an R2 value of .95.

Figure 3-27 plots for problem type 3 and uniform node coordinates, the variation

of computational time with respect to the number of shortest path computations

performed. A linear regression performed for the data points gives an R2 value of

.996.

Figure 3-28 plots for problem type 4 and uniform node coordinates, the variation

of computational time with respect to the number of shortest path computations

performed. A linear regression performed for the data points gives an R2 value of
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Figure 3-27: shortest path computations-computational time for problem type 3

.992.

Figure 3-29 plots for problem type 5 and uniform node coordinates, the variation

of computational time with respect to the number of shortest path computations

performed. A linear regression performed for the data points gives an R2 value of

.992.

Figure 3-30 plots for problem type 6 and uniform node coordinates, the variation

of computational time with respect to the number of shortest path computations

performed. A linear regression performed for the data points gives an R2 value of

.993.

Spread of the population

In a genetic algorithm, diversity of the initial population is needed to ensure proper

exploration of the search space. Our implementation measures the standard deviation
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Figure 3-29: shortest path computations-computational
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Figure 3-30: shortest path computations-computational time for problem type 6

of the population fitness of the initial population as a measure of diversity. We

compare, in the following 2 histograms, this ratio of standard deviation to the average

fitness of the initial population to get a measure of the population's diversity.

Observations

The histograms support that the standard deviation of the initial population fitness

varies between 10 to 25% of the average fitness. This gives a measure of the spread

of the initial population.

Cost ratio 1

Figure 3-31 is a histogram using 12 data points. The data points are the ratio of the

standard deviation to the average fitness of the initial population of 12 cost-ratio 1

problems selected at random.

The data points, here, belong to 3 disjoint sets namely
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Histogram
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Figure 3-31: Cost ratio 1, ratio of standard deviation to average fitness-12 data points
selected at random

1. above .123704 (lowest observation) and below .180969

2. above .180969 and below .238234

3. above .238234 and within .295499376 (highest observation)

In (3), both lower bound and the upper bound are included in the set. In (1) and

(2), the lower bound is included but the upper bound is not included in the set.

Cost ratio 50

Figure 3-32 draws a histogram using 12 data points. The data points are the ratio of

the standard deviation to the average fitness of the initial population of 12 cost-ratio

50 problems selected at random.

The data points, here, belong to 3 disjoint sets namely

1. above .143383 (lowest observation) and below .179647

2. above .179647 and below .215911

3. above .215911 and within .252175009 (highest observation)
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Figure 3-32: Cost ratio 50, ratio of standard deviation to average fitness-12 data
points selected at random

In (3), both lower bound and the upper bound are included in the set. In (1) and

(2), the lower bound is included but the upper bound is not included in the set.

3.5 Conclusions

In this work, we addressed the problem of finding a "near optimal solution" to the

Uncapacitated Network Design Problem (UNDP). Several design problems arising in

the areas of telecommunication, transportation and urban planning can be modeled

as an UNDP. This problem has been proved to be NP-hard even for very restrictive

cases.

We propose a search method called genetic algorithms to solve this problem. As

a traditional genetic algorithm doesn't include problem specific information in the

solution techniques, we develop a genetic algorithm that includes such information

and network properties in many of its steps. For instance, we include steps such

as filling a small portion of the initial population with minimum spanning trees,

using network algorithms for fitness computation and for checking feasibility of the

solutions.

We experimented with alternate methods for each step in order to choose the best
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working method. We performed computational testing on 250 problem instances of

different sizes (upto 35 node, 175 arcs and 1190 commodities). We tested our method

for 5 different design cost-routing cost ratios. The results of our method are compared

to that of dual-ascent method with drop-add heuristic.

Based on our test results, we performed graphical analysis of the solution gaps

observed and the computational time spent. We also analyzed the variation of the

ratio of computational time as the problem size increases.

The percentage gaps (of the solution values) from the dual-ascent lower bound

observed is comparable to the results obtained using dual-ascent method with drop-

add heuristic. The proportional computational time (compared to dual-ascent with

drop-add heuristic) spent by the genetic algorithm is observed to decrease as the

problem size increases. This suggests that GAs may be useful for solving larger sized

problems.
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Chapter 4

Conclusions and suggestions for

future research

Improvements

The effectiveness of genetic algorithms for uncapacitated network design problems

can be increased by applying improvement methods to the final solution.

One way of improving the solution is by applying the drop-add heuristic to the

final solution. This will help decrease the gap of the solution.

Applying alternate strategies for different steps of the algorithm may sometimes

lead to considerable improvement (our attempts in altering the population generation

methods brought about considerable improvement, see section 3.2).

Including more network specific and problem specific information in the genetic

algorithm will improve the effectiveness of the approach.
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Other problems

A major avenue for future research is applying genetic algorithms to other related

problems. Genetic algorithms can be applied to uncapacitated network design prob-

lems with multiple choices and precedence relations. Another class of problems that

could be attempted with genetic algorithms is capacitated network design problems.
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APPENDIX A

C++ Code

/* This is a genetic algorithm for the uncapacitated network design problem*/

#include <LEDA/graph_alg.h>

#include <LEDA/prio.h>

# include <LEDA/graph.h>

# include <LEDA/ugraph.h>

# include <ctype.h>

# include <LEDA/array.h>

# include <LEDA/plane.h>

# include <LEDA/node_pq.h>

# include <LEDA/point_set.h>

# include <LEDA/vector.h>

# include <LEDA/graph_edit.h>

# include <LEDA/queue.h>

# include <LEDA/node_partition.h>

# include <math.h>

# include <stdio.h>

# include <stdlib.h>

# include<fstream.h>

# include<time.h>

//associates n nodes with graph G.

void create_graph(UGRAPH<point,int>& G,

int n)

{int i;

for (i=O; i<n; i++)
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C++ code

G.new_node(; }

//determines uniform node coordinates for each node of G.

void uniform_node_coordinates(UGRAPH<point,int>& G,

node_array<int>& x_coord,

node_array<int>& ycoord)

{ node v;

forall_nodes(v,G)

{ x_coord[v]=random( 1,100);

y_coord[v]=random(1,100);

G[v]=point(x_coord[v],y_coord[v]);

}

//initializes the random number generator.

double RandomNumber(bool* First)

{if(*First)

{ srandom((int)time(NULL));

*First= !(*First);

I

return((double)random())/((double) Ox7FFFFFFF);

}

//creates an integer normally distributed with mean m and standard deviation s.

int Normal(int m,

int s,

bool* First)

{double z,zu,zv;

zu=sqrt(-2.0*log(RandomNumber(First)));

zv=2*M_PI*RandomNumber(First);

z=(zu)*sin(zv);

int normal=int(z*s+m);

return(normal); I
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/*generates some uniform node coordinates and other node coordinates normally

distributed around one of the uniform node coordinate.*/

void Normal_node_coordinates(UGRAPH<point,int>& G,

node_array<int>& x_coord,

node_array<int>& y_coord)

{int n=G.number of nodes();

int unifn=abs(n/5);

int normn=n-unifn;

array<int> x(l,n);

array<int> y(l,n);

int i,j,ml,m2;

bool First=true;

for (i=O;i<=unifn- 1;i++)

{x[i*5+1]=random(10,90);

y[i*5+1]=random(10,90); }

for(i=0;i<=unifn-2;i++)

{ml=x[i*5+1];

m2=y[i*5+1];

for (j=2;j<=5;j++)

{ x[i*5+j]=Normal(ml ,5,&First);

y[i*5+j]=Normal(m2,5,&First);

}

int hold=(unifn- 1)*5+1;

int count=n-hold;

ml=x[hold];

m2=y[hold];

for (i=1;i<=count;i++)

{ x[hold+i]=Normal(ml ,5,&First);

y[hold+i]=Normal(m2,5,&First); }
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C++ code

node u=G.first_node(;

for (i= ;i<=n;i++)

{ xcoord[u]=x[i];

y_coord[u]=y i];

u=G.succ_node(u);

}

node v;

forall_nodes(v,G)

G[v]=point(x_coord[v],y_coord[v]);

//forms a cycle in the graph G.

void form_cycle(UGRAPH<point,int>& G,

node_array<int>& x_coord,

node_array<int>& y_coord,

node_array<int>& deg,

node_matrix<int>& yes_edge)

{edge e;

node u,v;

v=G.first_node();

int counter= 1;

do

{

u= G.succ_node(v);

e=G.new_edge(v,u,counter);

counter++;

yes_edge(v,u)=1;

yes_edge(u,v)= 1;

V=U;

I

while (v != G.last_node());
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v=G.last_node();

u=G.first_nodeO;

e=G.new_edge(v,u,counter);

yes_edge(v,u)= 1;

yes_edge(u,v)= 1;

forall_nodes(v,G)

{yes_edge(v,v)= 1;

deg[v]=2; 

/*given node v, this forms a priority queue costl of nodes of the graph with respect to their

distance from v.*/

void form_node_pq(UGRAPH<point,int>& G,

node_array<int>& x_coord,

node_array<int>& y_coord,

node_pq<double>& costl,

node v)

{const double INF=10000.00;

double dist;

node u;

int euc;

cost 1.clear();

forall_nodes(u,G)

{if (u != v)

{ euc=(x_coord[u]-x_coord[v])*(x_coord[u]-xcoord[v])+(y_coord[u]-

y_coord[v])*(y_coord[u]-y_coord[v]);

dist=sqrt((double) euc);

cost 1 .insert(u,dist);
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I

cost 1.insert(v, INF);

/*forms the graph with specified nodes and arcs.*/

void make_graph(UGRAPH<point,int>& G,

node_array<int>& x_coord,

node_array<int>& y_coord,

node_array<int>& deg,

node_matrix<int>& yes_edge,

int d,

int* num_edges,

int n)

{priority_queue<point,int> distance;

int i,j;

node u,v;

point p;

edge e;

node_matrix<int> dist(G,O);

u=G.first_node();

array<node> find_node(l,n);

for (i=1 ;i<=n;i++)

{ findnode[i]=u;

u=G.succ_node(u); }

/*dist(u,v) has the distance between nodes u and v*/

forall_nodes(u,G)

forall_nodes(v,G)

{ int euc=(x_coord[u]-x_coord[v])*(x_coord[u]-xcoord[v])+(y_coord[u]-

y_coord[v])*(y_coord[u]-y_coord[v]);

88



C++ code

int distl=(int)sqrt((double) euc);

dist(u,v)=distl;

}

/*adds to the graph, arcs between closer node pairs maintaining the average degree close to

d*/

/*distance is a priority queue of node pairs with respect to the distance between them. the

following lines add arcs between closer node pairs whose present degree is less than d*/

int num_edge=G.number of edges();

distance.clear();

for (i=l; i<=n; i++)

for (j=l,; j<=n; j++)

{u=find_node[i];

v=find_nodeUj];

p=point(i,j);

//if ((deg[u]<d) && (deg[v]<d))

distance.insert(p,dist(u,v));

}

while ((num_edge<n*d/2) && (!distance.empty()))

{

do{

p=distance. del_min();

int x=(int)p.xcoord();

int y=(int)p.ycoord();

u=find_node[x];

v=find_node[y];

I

while ((yes_edge(u,v)== ) && (!distance.empty()));

if ((!distance.empty()) && (deg[u]!=d) && (deg[v] !=d))

{ G.new_edge(u,v);

deg[u]++;

deg[v]++;
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yes_edge(u,v)= 1;

yes_edge(v,u)= 1;

num_edge=num_edge+ 1;

}

/*when no more arcs can be added by finding the closest node pairs that are not yet

connected and the required arc number is not reached, then finds a node v whose degree is

less than d and forms priority queue cost 1 for v. Connects v to the closest node that is yet

unconnected to it until its degree is d. Continues this for each node until reaching the

required arc number.*/

nodepq<double> cost 1 (G);

forall_nodes(v,G)

if ((deg[v]<d) && (num_edge<n*d/2))

{ form_node_pq(G,x_coord,y_coord,cost 1,v);

int need=d-deg[v];

int count=O;

do

{ u=costl .del_min();

if(yesedge(u,v) != 1)

{ G.new_edge(v,u);

yes_edge(u,v)=1;

yes_edge(v,u)=l;

num_edge=num_edge+ 1;

count++;

deg[v]++;

deg[u]++;

}

}while ((count<need) && (!costl.empty()) && (num_edge<n*d/2));

}

cout<<"number of edges="<<num_edge<<endl;

int counter= 1;
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forall_edges(e,G)

{ G[e]=counter;

counter++; }

*num_edges=G.numberofedges();

}

/*computes design cost and routing cost for each arc of the graph.*/

void compute_edge_costs(UGRAPH<point,int>& G,

node_array<int>& x_coord,

node_array<int>& y_coord,

edge_array<int>& design_cost,

edge_array<int>& routing_cost,

int* ratio)

{int hold,euc;

edge e;

node ul,vl;
forall_edges(e,G)

{ul=G.source(e);

vl=G.target(e);

euc=(x_coord[u 1]-x_coord[v 1 ])*(x_coord[u 1]-x_coord[v 1 ])+(y_coord[u 1]-

y_coord[v 1])*(y_coord[u 1]-y_coord[v 1]);//Euclidean distance

hold=(int)sqrt((double)euc);

routing_cost[e]=hold;

design_cost[e]=(*ratio) hold;

}

/*creates specified number of commodities*/

void create_commodities(UGRAPH<point,int>& G,

array<node>& origin,

array<node>& destination,

node_matrix<int>& yes_commodity,

int num_comm,

int n)

91



C++ code

{

node u,v;

int ij,infl,inf2;

array<node> number_node(l,n);

u=G.first_node();

for (i= 1 ;i<=n;i++)

{ number_node[i]=u;

u=G.succ_node(u); }

forall_nodes(v,G)

yes_commodity(v,v)= 1;

int commodity= 1;

for (i=l;i<=n;i++)

for (j=l;j<=n;j++)

{ u=number_node[i];

v=number_node[j];

if((commodity<=num_comm) && (yes_commodity(u,v) !=1))

{ origin[commodity]=number_node[i];

destination[commodity]=numbernode[j];

commodity++;

yes_commodity(u,v)= 1;

/*sends the generated graph as an input for the dual-ascent program*/

fort_output(UGRAPH<point,int>& G,

array<node>& origin,

array<node>& destination,

edge_array<int>& design_cost,

edge_array<int>& routing_cost,
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int n,

int num_edges,

int num_comm,

int problem_number)

{node u,v;

edge e;

int i,j;

float route,design;

FILE *fp;

char input[7];

printf("Enter the fortran input file name:");

scanf("%s",input);

fp=fopen(input, "w");

fprintf(fp,"%3d %3d %3d\n",n,num_edges,problem_number);

node_array<int> node_number(G);

u=G.first_node();

for (i= 1 ;i<=n;i++)

{node_number[u]=i;

u=G.succ_node(u); 

forall_edges(e,G)

{u=G.source(e);

i=node_number[u];

v=G.target(e);

j=nodenumber[v];
route=(float)routing_cost[e];

design=(float)design_cost[e];

fprintf(fp,"%3d %3d\n",i,j);

fprintf(fp,"%9.5f %9.5f\n",route,design);

}

int counter,k,l;

for (counter=1 ;counter<=num_comm;counter++)

{k=node_number[origin[counter]];
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l=node_number[destination[counter]];

fprintf(fp,"%3d %3d %3d\n",counter,k,1);

}

fclose(fp);

}

/*forms a priority queue of the edges of the graph with respect to their design costs*/

void form_pq(UGRAPH<point,int>& G,

priority_queue<edge,int>& d_costl,

edge_array<int>& design_cost,

array<edge>& rank,

int num_edges)

{edge e,e1;

int i;

d_costl.clear();

forall_edges(e,G)

d_cost 1 .insert(e,design_cost[e]);

pq_item it;

//rank edges based on design_cost, least cost-higher rank.

for (i=O; i<num_edges; i++)//for loop

{

it=d_costl .find_min();

e l=d_cost 1.key(it);

rank[num_edges-i]=e 1;

d_cost 1 .del_item(it); }//for loop

/*chooses an edge for the creating individual such that the probability of choosing a lower

design cost edge is higher*/

void choose_edge(int num_ind_arcs,

int num_edges,
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int sum,

int* choose)

{int two,s, diffl,diff2;

two=2*random( 1,sum);

s=(int)sqrt((double)two);

diffl=two-s*s;

if (diffl>O)//if loop 2.1

{diff2=two-(s+ l)*(s+ 1);

if (diffl>abs(diff2))
*choose=s+ 1;

else *choose=s; }//if loop 2.1

else I/else loop 2.1

{ diff2=two-(s- 1 )*(s- 1);

if (diff2>abs(diffl))

*choose=s;

else *choose=s-l;

} //else loop 2.1

void feasibility_correct(UGRAPH<point,int>& L,

edge_array<int>& design,

node v)

{

queue<node> Q;

node_array<int> dist(L);

node w,ul,u2;

edge e,el;

forall_nodes(w,L) dist[w]=-1;

dist[v]=0;

Q.append(v);
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while (!Q.empty())

{v=Q.pop();

foralladj_edges(e,v)

if (L[e]==l)

{ul=L.source(e);

u2=L.target(e);

if (ul==v)

w=u2;

else

w=u 1;

if(dist[w]<O)

{ Q.append(w);

dist[w]=dist[v]+ 1;

L[e]=l;

}

}

forall_nodes(w,L)

if (dist[w]<O)

{int min=200000;

forall_adj_edges(e,w)

{if (design[e]<min)

{el=e;

min=design[e];

L[el]=l;

dist[w]=O;

}
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/*for a randomly chosen node v, forms a tree (for the creating individual) with edges of the

original graph*/

void rand_tree(UGRAPH<point,int>& L,

node v)

I

queue<node> Q;

node_array<int> dist(L);

node w,ul,u2;

edge e;

forall_nodes(w,L) dist[w]=-1;

dist[v]=O;

Q.append(v);

while (!Q.empty())

{v=Q.pop();

foralLadj_edges(e,v)

{ul=L.source(e);

u2=L.target(e);

if (ul==v)
w=u2;

else

w=ul;
if(dist[w]<0)

{ Q.append(w);

dist[w]=dist[v]+l;

L[e]=l;

97



C++ code

void min_spanning_tree(UGRAPH<point,int>& L,

edge_array<int>& design)

{node v,w;

edge e;

edge_array<int> counter(L);

int count=l;

forall_edges(e,L)

{counter[e]=count;

count++; }

node_partition Q(L);

L.sort_edges(design);

forall_edges(e,L)

{v=L.source(e);

w=L.target(e);

if (!(Q.same_block(v,w)))

{ Q.union_blocks(v,w);

L[e]=l;

L.sort_edges(counter);

}

/*makes an individual(a design of the original network).*/

void make_individual(UGRAPH<point,int>& G,

UGRAPH<point,int>& L,

edgearray<int>& design_cost,

array<edge>& rank,

int n,

int num_edges,

int d)

{edge e,el,e2;
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int i,count;

node u;

L.clear();

L=G;

edge_array<int> design(L);

array<int> fixed_cost(1 ,num_edges);

count=1;

forall_edges(e,G)

{ fixed_cost[count]=design_cost[e];

count++; }

count=1;

forall_edges(e,L)

{ design [e]=fixedcost[count];

count++; }

u=L.first_nodeO();

array<node> find_node(l,n);

I/findnode[i] finds the ith node of individual...

for (i= ;i<=n;i++)

{ findnode[i]=u;

u=L.succ_node(u); }

array<edge> find_edge(l,num_edges);

//find_edge[j] finds the jth edge of individual...

int number= 1;

forall_edges(e,L)

{ find_edge[number]=e;

number++; }
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edge e3;

forall_edges(e3,L)

L[e3]=0;

I/chooses a node u at random and forms tree with this u as root node.

int p=random(1,100);

if (p<=20)

{ if (p<= 10)

min_spanning_tree(L,design);

else

{ for (i= 1 ;i<=n- 1 ;i++)

{int infl;

e=rank[num_edges-i];

infl =G.inf(e);

e2=find_edge[inf 1];

L[e2]=1;

u=L.choose_node();

feasibility_correct(L,design,u);

else

{ u=L.choose_node();

randtree(L,u);
//determine # edges in this design...

int num_ind_arcs;

int k=random( 1,100);

if (k<=20)

num_ind_arcs=random(O,(num_edges-n+1));
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else if ((k>20)&&(k<=100))

num_ind_arcs=random(O,n+ 1);

int choose=O;

/*chooses with higher probability edges with lower design cost for the individual*/

int sum=num_edges*(num_edges+l)/2;

for (i=O;i<num_ind_arcs;i++)

{chooseedge(num_ind_arcs,num_edges,sum,&choose);

int infl,inf2;

//add chosen edge to design...

e=rank[choose];

infl=G.inf(e);

e2=find_edge[infl ];

L[e2]=1;

}

void dijkstra(UGRAPH<point,int>& G,

node s,

edge_array<int>& cost,

node_matrix<int>& sh_dist,

array<int>& ind,

int* node_selections,

int* distance_updates)

{/* computes single source shortest paths from node s for

a non-negative network (G,cost), computes for all nodes v:

a) dist[v] = cost of shortest path from s to v

b) pred[v] = predecessor edge of v in shortest paths tree
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*l

priority_queue<node,int> PQ;

node_array<pq_item> I(G);

node_array<int> dist(G);

nodearray<edge> pred(G);

edge_array<int> indicator(G);

node v;

edge e;

int counter=1;

foralledges(e,G)
{ indicator[e]=ind[counter];

counter++;

}

forall_nodes(v,G)

{ pred[v] = nil;

dist[v] = MAXINT;

}

dist[s] = 0;

I[s] = PQ.insert(s,O);

while (! PQ.empty())

{ node u = PQ.del_min();

(*node_selections)++;

int du = dist[u];

forall_adj_edges(e,u)

if (indicator[e]==1)

v = target(e);

if (v==u)

v=source(e);

int c = du + cost[e];
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if (c < dist[v])

{ if (dist[v] == MAXINT)

I[v] = PQ.insert(v,c);

else

PQ.decrease_inf(I[v],c);

dist[v] = c;

(*distance_updates)++;

pred[v]=e;

forall_nodes(v,G)

sh_dist(s,v)=dist[v];

}

void compute_fitness(UGRAPH<point,int>& G,

UGRAPH<point,int>& L,

int* pfitness,

node_matrix<int>& sh_dist,

array<int>& ind,

edge_array<int>& routing_cost,

edge_array<int>& design_cost,

array<node>& origin,

array<node>& destination,

int num_comm,

int* node_selections,

int* distance_updates,

int* shortest_path)

{/*computes the fitness of an individual L*/

edge e;

node u,v;
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int i;

int counter= 1;

forall_nodes(u,G)

forall_nodes(v,G)

sh_dist(u,v)=0;

forall_edges(e,L)

{ ind[counter]=L.inf(e);

counter++;

}

*pfitness=0;

list<node> listl;

node_array<int> yes_list(G);

/*forms a list of all nodes that are origin nodes, then computes shortest paths

from the origin nodes to other nodes of the network using dijkstra's algorithm*/

for (i=1 ;i<=num_comm;i++)

if (yes_list[origin[i]]==0)

{listl .append(origin[i]);

yes_list[origin[i]]= 1; }

while (!listl.empty())

{node sl = listl.pop();

(*shortest_path)++;

dijkstra(G,s l,routing_cost,sh_dist,ind,node selections,distanceupdates);

}

/*computes the fitness of this individual by adding the shortest paths between

each origin-destination node pairs and the design costs of the arcs of this individual*/
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for (i= 1 ;i<=num_comm;i++)

{*pfitness +=shdist(origin[i],destination[i]);

int count=l;

forall_edges(e,G)

{if (ind[count]==l)

*pfitness +=design_cost[e];

count++; }

/*ranks individuals on the basis of their fitness*/

void rank_individuals(priority_queue<int,int>& P,

array<int>& fitness,

array<int>& rankl,

array<int>& rank2,

int N)

int i,dummy,dummy ;

P.clear();

for (i= 1 ;i<=N;i++)

P.insert(i,fitness[i]);

pqitem it;

for (i=l; i<=N; i++)//for loop

{

it=P.find_min();

dummy=P.key(it);

dummy l=P.inf(it);

rank 1 [i]=dummy;
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rank2[i]=dummy 1;

P.delitem(it); //for loop

I

/*selects two individuals from the present population as parents for next cross-over*/

void select_parents(UGRAPH<point,int>* L,

UGRAPH<point,int>& best,

UGRAPH<point,int>& worst,

int* 1,

int* m,

array<int>& rankl,

int N)

{

/*best half of the population is the half with lower fitness and the worst ahlf is the half with

higher fitness. With probability .75, chooses one parent from the best half of the

population and other parent from the worst half of the population; with probability .25

chooses both parents from the best half of the population; the better fitness parent is the

best parent and the worse fitness parent is the worst parent*/

int numberl=random( 1,N/2);

int number2=random(l,N/2);

int p=random(l,100);

if (p<=75)

{ *l=rankl[numberl];

*m=rankl [number2+N/2];

best=L[*l];

worst=L[*m]; }

else {

int i=Min(numberl,number2);

int j=Max(numberl ,number2);

*l=rankl [i];

*m=rankl U];

best=L[*l];

worst=L[*m];
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/* creates array that will store ranks of the individual based on individual number

order(rankind), fitness of the individuals based on individual number order(fitind),

individual numbers based on rank of individuals order(indrank), and fitness based on rank

of individuals order(fitind). This is to facilitate

finding the rank of an individual given its individual number etc.*/

void create_arrays( array<int>& rankind,

array<int>& fitind,

array<int>& indrank,

array<int>& fitrank,

int N)

{int i,j,k,fit;

array<int> dummy 1(1 ,N);

array<int> dummy2(1,N);

for (i=1;i<=N;i++)

{ dummy 1 [i]=fitrank[i];

dummy2 [i]=indrank[i];

}

for (i= ;i<=N;i++)

{j=dummy2[i];

rankind[j]=i; I

for (i=l;i<=N;i++)

{fit=dummyl [i];

k=dummy2[i];

fitind[k]=fit;

}
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/*the selected parents cross-over and form a child*/

void create_child(UGRAPH<point,int>& best,

UGRAPH<point,int>& worst,

UGRAPH<point,int>& child,

int num_edges)

array<int> ind_best(l,num_edges);

array<int> ind_worst(l,num_edges);

array<int> ind_child(l,num_edges);

edge e;

int count=1;

int i;

forall_edges(e,best)

{ ind_best[count]=best.inf(e);

count++;}

count=l;

forall_edges(e,worst)

{ ind_worst[count]=worst.inf(e);

count++; }

/*while alleles corresponding to a gene is the same in both parents, child

takes that allele. while alleles corresponding to a gene is different in the two

parents, child takes the allele from the best parent with 75% probability and the allele from

the worst parent with 25% probability*/

for (i=l; i<=num_edges; i++)

{if (ind_best[i]==ind_worst[i])

ind_child[i]=ind_best[i];

else

{int p=75;
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int choose=random(l ,100);

if (choose<=p)

ind_child[i]=ind_best[i];

else ind_child[i]=ind_worst[i];

count=l;

forall_edges(e,child)

{ child[e]=ind_child[count];

count++; 

I

/*after the child is formed its feasibility is checked.*/

void feasibility_check(UGRAPH<point,int>& L,

node v,

int* feas)

queue<node> Q;

node_array<int> dist(L);

node w,ul,u2;

edge e;

forall_nodes(w,L) dist[w]=-1;

dist[v]=O;

Q.append(v);

while (!Q.empty())

{v=Q.popO;

forall_adj_edges(e,v)

if (L[e]==l)

{ul=L.source(e);

u2=L.target(e);
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if (ul==v)
w=u2;

else

w=ul;
if(dist[w]<0)

{ Q.append(w);

dist[w]=dist[v]+l;

L[e]=l;

I

I

forall_nodes(w,L)

if (dist[w]<O)

*feas=O;

/* selects parents, performs crossover to create children, performs immigration*/

void select_cross_immigrate(UGRAPH<point,int>* L,

UGRAPH<point,int>& G,

node_matrix<int>& sh_dist,

array<int>& fitness,

array<int>& ind,

array<int>& exist_check,

array<int>& fitness_from_rank,

array<int>& ind_from_rank,

array<edge>& rank,

edge_array<int>& routing_cost,

edge_array<int>& design_cost,

array<node>& origin,

array<node>& destination,

int num_comm,

int num_edges,

int N,
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int n,

int d,

int* node_selections,

int* distance_updates,

int* shortest_path,

int* fit_computes,

int* crossflag,
int* feas_child,

int* intro_child,

int* replace_parent,

int* num_immigrate)

{ priority_queue<int,int> P;

//array<int> ind_from_rank(l,N);

if (*cross_flag=l)

{rank_individuals(P,fitness,ind_fromrank,fitness_from_rank,N);

*cross_flag=O; I

array<int> rank_from_ind(l,N);

array<int> fitness_from_ind(l,N);

int j;

create_arrays(rank_fromind,fitnessfrom_ind,indfrom_ rankfitness_from_rank,N);

UGRAPH<point,int> best;

UGRAPH<point,int> worst;

UGRAPH<point,int> child;

int bestparent,worst_parent;

child=G;

/*selects parents for crossover*/

select_parents(L,best,worst,&bestparent,&worstparent,ind_from_rank,N);
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/*performs crossover and creates a child*/

create_child(best,worst,child,num_edges);

node u;

int feas=1;

/*tests the feasibility of the formed child*/

u=child.choose_node();

feasibility_check(child,u,&feas);

UGRAPH<point,int> form;

int fitform;

if (feas== 1)

{//feas

int fitchild;

(*feas_child)++;

(*fit_computes)++;

/*computes the fitness of a child when it is feasible*/

computefitness(G,child &fit_child,shdistind,routing_cost,design_cost,origin,destinatio

n,num_comm,node_selections,distance_updates,shortest_path);

int fb,fw,check;

fb=fitness_fromind[best_parent];

fw=fitness_fromind[worstparent];

int i;

int last=ind_from_rank[N];

int last_one=ind_from_rank[N-1];

int lasttwo=ind_from_rank[N-2];

/*introduces a child if its fitness is better than the worst individual of the

present population */
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int remove=O;

check=O;

if (fit_child<=fitness[last])

{remove=last;

L[remove]=child;

fitness[remove]=fitchild;

exist_check[remove]=O;

(*intro_child)++;

check=l;

}

/*maintains an existence-check for the worst parent. If it produces bad children sequentially

for three times, then it is a candidate for elimination from the population*/

if(fit_child>fitness[best_parent])

exist_check[worst_parent]+= 1;

else exist_check[worst_parent]=O;

int checkl=0;

if ((exist_check[worst_parent]>=3) && (remove != worst_parent))

{ make_individual(G,form,design_cost,rank,n,numedges,d);

(*fit_computes)++;

(*replace_parent)++;

compute-fitness(G,form,&fit form,shdist,ind,routing_cost,designcost,origin,destinatio

n,num_comm,node_selections,distance_updates,shortest _path);

L[worst_parent]=form;

fitness[worst_parent]=fit_form;

existcheck[worst_parent]=O;

checkl=l; }

/*performs immigration; a new individual is formed, when its fitness is better

than the worst individual of the population it is introduced.*/

make_individual(G,form,design_cost,rank,n,num_edges,d);

(*fit_computes)++;
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computefitness(G,form,&it-form,sh-distind,routing-cost,design-cost,origin,destinatio
n,num_comm,node_selections,distance_updates,shortestpath);

if (fitform<fitness[last])

{ (*num_immigrate)++;

{if (check==O)

{if (worst_parent == last)

{L[lastone]=form;

fitness[lastone]=fitform;

}

else {L[last]=form;

fitness[last]=fit form;

exist_check[last]=O;

I

if (check== 1)

{ if(worstlparent ==last_one)

{L[last two]=form;

fitness [lasttwo]=fitjform;

exist_check[last_two]=O;

I

else { L[last_one]=form;

fitness[last_one]l=fit_form;

exist_check[last_one]=O;

I

I

I

}//feas

/*when the child is not feasible, immigration is performed using the following

few lines*/
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else

{make_individual(G,form,design_cost,rank,n,numedges,d);

(*num_immigrate)++;

(*fitcomputes)++;

computefitness(G,form,&fit-form,shdist,ind,routing_cost,designcostorigin,destinatio
n,num_comm,node_selections,distance_updates,shortestpath);

if (fitform<fitness_from_rank[N])
{int number=ind_from_rank[N];

L[number]=form;

fitness[number]=fitform;

exist_check[number]=O;

}

/*ranks the changed population*/

rank_individuals(P,fitness,indfrom_rank,fitness_fromrank,N);

run_iterations (UGRAPH<point,int>* L,

UGRAPH<point,int>& G,

node_matrix<int>& sh_dist,

array<int>& fitness,

array<int>& ind,

array<int>& exist_check,

array<edge>& rank,

edge_array<int>& routing_cost,

edge_array<int>& design_cost,

array<node>& origin,

array<node>& destination,

int num_comm,

int num_edges,

int N,

int n,

int d,
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int* node_selections,

int* distance_updates,

int* shortestpath,

int* fit_computes,

FILE* fp)

{float T;

int i,x,j,min_fitness;

int feas_child=O;

int intro_child=O;

int num_immigrate=O;

int replace_parent=O;

double average-fitness,square-fitness,stdfitness,sum-fitness,averageten,averagehalf;

array<int> fitness_from_rank(l,N);

array<int> ind_from_rank(l,N);

sum_fitness=O.O;

std_fitness=O.O;

int num_iteration=O;

int crossflag=1;
for(i= 1;i<=N;i++)

sum_fitness+=(double)fitness[i];

average_fitness=sum_fitness/(double)N;

for(i= 1 ;i<=N;i++)

std_fitness+=(fitness[i]-average_fitness)*(fitness[i]-averagefitness);

std_fitness=std_fitness/N;

std_fitness=sqrt(std_fitness);

for(x= 1 ;x<=N;x++)

fprintf(fp,"%3d\n",fitness[x]);
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/*An iteration is composed of selection, cross-over, and immigration; In intervals of 25

iterations, prints output*/

do

{

fprintf(fp,"average fitness=%f\n",average_fitness);

if (crossflag!=l)
{ fprintf(fp,"best fitness=%d\n",fitness_from_rank[ 1]);

average_ten=O;

average_half=0;

for(x= 1 ;x<= 10;x++)

average_ten+=fitness_from_rank[x];

average_ten=average_ten/l0;

int half=N/2;

for(x= 1 ;x<=half;x++)

average_half+=fitness_from_rank[x];

average_half=average_half/half;

fprintf(fp,"best 10 average fitness=%f\n",average_ten);

fprintf(fp,"best half average fitness=%f\n",average_half);

}

fprintf(fp,"standard deviation of fitness=%f\n",std_fitness);

fprintf(fp,"\n\n");

for(j=l;j<=25;j++)

{T = used_time();

select_cross_immigrate(L,G,shdist,fitness,ind,exist_check,fitness_from_rank,ind from_

rank,rank,routing_cost,design_cost,origin,destination,numcomm,numedges,N,n,d,nod

e_selections,distance_updates,shortest_path,fit-computes,&crossflag,&feaschild&intro

_child,&replace_parent,&num_immigrate); }

num_iteration+=25;

fprintf(fp,"number of iterations=%3d\n",num_iteration);

float T1=used_time(T);
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fprintf(fp,"time: %6.2f sec\n",T1);

sum_fitness=0.0;

std_fitness=0.0;

for(i= 1;i<=N;i++)

sum_fitness+=(double)fitness[i];

averagefitness=sum_fitness/(double)N;

for(i= 1 ;i<=N;i++)

std_fitness+=(fitness[i] -average_fitness) * (fitness[i] -averagefitness);

std_fitness=std_fitness/N;

std_fitness=sqrt(std_fitness);

}while ((std_fitness>=(average_fitness/1000))&&(num_iteration<= 10000));

for(x= 1 ;x<=N;x++)

fprintf(fp,"%3d\n",fitness[x]);

fprintf(fp,"average fitness=%f\n",average_fitness);

fprintf(fp,"best fitness=%d\n",fitness_from_rank[ 1 ]);

average_ten=O;

average_half=O;

for(x=l ;x<= 10;x++)

average_ten+=fitness_from_rank[x];

average_ten=average_ten/ 10;

int half=N/2;

for(x=1 ;x<=half;x++)

average_half+=fitness_from_rank[x];

average_half=average_half/half;

fprintf(fp,"best 10 average fitness=%f\n",average_ten);

fprintf(fp,"best half average fitness=%f\n",average_half);

fprintf(fp,"standard deviation of fitness=%f\n",std_fitness);
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fprintf(fp,"number of iterations=%d\n",num_iteration);

fprintf(fp,"percentage of feasible children

=%f\n",((float)(feas_child)* 100)/(float)(num_iteration));

fprintf(fp,"percentage of parent replacements

=%f\n",((float)(replace_parent)* 100)/(float)(num_iteration));

fprintf(fp,"percentage of introduced

children=%f\n",((float)(intro_child)* 100)/(float)(num_iteration));

fprintf(fp,"percentage of immigration

effected=%f\n",((float)(num_immigrate)* 100)/(float)(num_iteration));

fprintf(fp,"\n\n");

int final_design=ind_from_rank[ 1 ];

edge e;

fprintf(fp,"This is the final design\n");

int totedge=O;

foralledges(e,L[final_design])

{ fprintf(fp," %d",L[final_design] [e]);

tot_edge+=L[final_design] [e]; }

fprintf(fp,"\n\n");

fprintf(fp,"number of edges in the final design= %d\n", tot_edge);

newline;

I

main()

{

UGRAPH<point,int> G;

int i,j,k,n,d,num_comm,x,y,N,problem_number,ratio;

double x 1,x2,y 1l,y2;

int validity=6;

/*Interface for input data*/
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cout<<"Type number of nodes(between 5 and 200):";

cin>> n;

if ((n<5) II (n>200))

validity=0;

cout<<"Type degree(even integer greater than 4 and less than "<<n<<" ):";

cin>> d;

if ((d<4) II (d>=n))

validity=l;

cout<<"Type number of commodities(integer greater than 2 and less than or equal to

"<<n*(n-l)<<" ):";

cin>> num_comm;

if ((num_comm<2) II (num_comm>n*(n-l)))

validity=2;

cout<<"Type design-cost,routing-cost ratio(choose 2,10 or 15):";

cin>>ratio;

//if ((ratio!=2) && (ratio!=10) && (ratio!=15))

//validity=3;

cout<<"Type # individuals:(even number please, between 10 and 2000!)";

cin>>N;

if ((N<10) II (N>2000))

validity=4;

char node_indicator;
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cout<<"Do you want normally generated node_coordinates or uniform

node_coordinates?(Type n or u):";

cin>>node_indicator;

if ((node_indicator!='u') && (node_indicator!='n'))

validity=5;

cout<<"Type problem_number:";

cin>>problem_number;

enum{ nodeinvalid,degree-invalidcommodityinvalid,ratioinvalidindividualinvalid,no

de_indicator_invalid,allvalid};

switch (validity)

{case node_invalid:cerr<<"node # not valid"<<endl;

exit(O);

case degreeinvalid:cerr<<"degree # not valid"<<endl;

exit(O);

case commodity_invalid:cerr<<"commodity # not valid"<<endl;

exit(O);

case ratio_invalid:cerr<<"ratio not valid"<<endl;

exit(O);

case individual_invalid:cerr<<"individual # not valid"<<endl;

exit(O);

case node_indicator_invalid:cerr<<"node coordinate type not valid"<<endl;

exit(O);

case all_valid:break;

}

FILE *fp;

char output[7];

printf("Enter the output file name:");

scanf("%s",output);
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fp=fopen(output,"w");

fprintf(fp,"GENETIC ALGORITHM FOR PROBLEM %3d\n",problem_number);

fprintf(fp,"number of nodes=%3d\n",n);

//creates a graph which will have n nodes;

create_graph(G,n);

node_array<int> x_coord(G), y_coord(G);

node_array<int> deg(G);

node_matrix<int> yes_edge(G,0);

int num_edges;

init_random();

//creates node-coordinates.

if (node_indicator=='u')

uniform_node_coordinates(G,x_coord,y_coord);

else

Normal_node_coordinates(G,x_coord,y_coord);

//forms a cycle in the graph G.

form_cycle(G,x_coord,y_coord,deg,yes_edge);

if (d>2)

make_graph(G,x_coord,y_coord,deg,yes_edge,d,&numedges,n);

edge_array<int> designcost(G), routing_cost(G);

compute_edge_costs(G,x_coord,y_coord,designcost,routing_cost,&ratio);

fprintf(fp,"number of edges=%3d\n",num_edges);

fprintf(fp,"number of commodities=%3d\n",num_comm);

fprintf(fp,"number of individuals=%3d\n",N);

fprintf(fp,"type of node coordinates=%c\n",node_indicator);

fprintf(fp,"design-routing cost ratio=%3d\n",ratio);

fprintf(fp,"\n\n");
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newline;

array<node> origin(l,num_comm);

array<node> destination( 1 ,num_comm);

node_matrix<int> yes_commodity(G,O);

//create specified number of commodities.

create_commodities(G,origin,destination,yes_commodity,num_comm,n);

fort_output(G,origin,destination,design_cost,routing-cost,n,numedges,numcomm,prob

lem_number);

node u,v;

edge e,el,e2;

int num;

//priority queue of edges with design_cost...

float T;

T = used_time();

UGRAPH<point,int> L[N+1];

priority_queue<edge,int> d_costl;

array<edge> rank(l,num_edges);

//create a priority queue of edges with respect to their design costs.

form_pq(G,d_cost 1 ,design_cost,rank,num_edges);

//create individuals for the initial population.

for (num=l;num<=N;num++)//for loop num

make_individual(G,L[num],design_cost,rank,n,num_edges,d);

array<int> ind(l,num_edges);

array<int> fitness(l,N);

node_matrix<int> sh_dist(G);
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array<int> exist_check(l,N);

int node_selections=O;

int distance_updates=O;

int shortest_path=O;

int fit_computes=O;

//computes fitness for individuals of the initial population.

for (j=1;j<=N;j++)

Ifit_computes++;

compute_fitness(G,L[j],&fitnessj] ,sh_dist,ind,routing_cost,design_cost,origin,

destination,num_comm,&node_selections,&distance_updates,&shortestLpath); }

//runs iterations of selection, crossover and immigration and oresebts output.

run_iterations(L,G,shdist, fitness ,ind,existcheck,rank,routingc ost,designcost, origin,d
estination,numcomm,numedges,N,n,d,&node-selections,&distanceupdates,&shortest

_path,&fit_computes,fp);

fprintf(fp,"total computational time excluding network generation= %6.2f

sec\n",used_time(T));

fprintf(fp,"number of node selections=%3d\n",nodeselections);

fprintf(fp,"number of distance updates=%3d\n",distance_updates);

fprintf(fp,"number of shortest path computations=%3d\n",shortestpath);

fprintf(fp,"number of fitness computations=%3d\n",fit_computes);

fclose(fp);

1//end of main
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