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Abstract

Methodologies and apparatus setups which allow the performance analysis of SuperSPARC
systems is the subject of this thesis. To achieve precise and comprehensive analysis, a
set of thirty-five system performance parameters were defined via the utilization of the
SuperSPARC PIPE signals. A hardware buffer and software environment were implemented
to monitor systems unobtrusively. The defined methodologies and apparatus setups are
modular and portable which allow the analysis of any arbitrary SuperSPARC system with
any user workload. This thesis project provides an extremely efficient and effective setting
for performance analysis.
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Chapter 1

Introduction

1.1 The SuperSPARC Microprocessor

The Texas Instruments SuperSPARC TM Microprocessor is a single-pipelined, three-way,

dynamic superscalar microprocessor. It is composed of 3.1 million transistors implemented

in 0.8p, triple-layer-metal salacided BiCMOS technology. The die is 15.98 x 15.98 mm2,

with 166 active pins and 127 powerground pins [11] [12]. The SuperSPARC processor is a

highly integrated implementation of the SPARC RISC architecture, and is fully compatible

with the SPARC Architecture, version 8, from SPARC International.

The processor contains a 32-bit integer pipeline unit (IU), an IEEE-compatible double-

precision floating point unit (FU), a SPARC reference memory management unit (MMU), a

20K-Byte instruction cache (Icache), a 16K-Byte data cache (Dcache), and a bus interface

unit (BU). The bus interface supports the SPARC standard MBUS [6]. A block diagram

of the SuperSPARC processor is shown in Figure 1-1, while its module configurations are

illustrated in Figure 1-2.

This microprocessor features internal parallelism for high performance. This parallelism

accelerates all system applications while allowing clock rates to remain manageable. The

processor's superscalar execution feature allows up to three instructions to be issued in a

single clock cycle, and the 8-stage pipelined instruction process further reduces the execution

time by increasing computation throughput. The SuperSPARC is configured with embedded

cache structures and external cache support, which reduce or eliminate the need for time

8
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Figure 1-1: SuperSPARC Block Diagram.
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CHAPTER 1. INTRODUCTION

consuming external memory references. The SuperSPARC instruction and data caches are

fully coherent and physically addressed, thus eliminating flushing overhead. To further

boost throughput in floating point applications, the SuperSPARC floating point operations

are decoupled from the integer pipeline, and the floating point unit allows one floating point

instruction and one floating point load or store to operate in the same cycle [6] [7].

The SuperSPARC enjoys a strong commercial software base. It is installed and operated

in a wide variety of system workplaces, including large-scale multiprocessor systems, single-

user workstations, and a variety of control applications. SuperSPARC provides an ideal

platform for current and future research.

1.2 System Performance Analysis

Since their emergence and rapid success, SuperSPARCs have been installed in a wide variety

of systems which differ in size, technology, and cost. Due to this divergence in configura-

tions, system performance of SuperSPARCs with identical workloads could vary enormously

across a wide spectrum of performance parameters. It is thus desirable to define a coher-

ent and comprehensive set of performance parameters allowing comparison across various

SuperSPARC systems.

Once the SuperSPARC processor is installed and operational in a system workplace, it

runs various application workloads. Vendors may wish to apply performance analysis in

characterizing the operational bottlenecks for the system. The realized bottleneck param-

eters may then allow designers to reconfigure the system or alter resource allocations to

optimize performance to particular workloads and requirements [9]. It is also useful to have

the results of the analysis tabulated, stored, and later used to overcome similar constraints

and bottlenecks in future product designs.

The goal of developing an efficient and precise methodology in characterizing system

performance of the SuperSPARC processor has motivated this thesis project. The devel-

oped methodology should be sufficient to permit performance analysis of any SuperSPARC

system with the same procedures and measurement apparatus. Monitoring should be done

in an unobtrusive manner, since customer workload may be confidential or proprietary.

10



CHAPTER 1. INTRODUCTION

Furthermore, the developed methodology should be extensible enough to accommodate the

demand for future analysis needs.

1.3 Thesis Overview

This thesis has defined a consistent and coherent set of thirty-five performance parameters

for SuperSPARC systems. These parameters are realized by logically combining ten pins on

the SuperSPARC microprocessor, called the PIPE pins. The ten PIPE signals are routed

from the SuperSPARC internal data path to the external IC contact pins. They provide

active information on the processor state without interfering with the execution of user

workload. Chapter 2 provides a detailed description of the ten PIPE signals, as well as

methods for generating the thirty-five system performance parameters.

A monitoring device must be implemented to capture the thirty-five performance pa-

rameters during the execution of a system workload. For the purpose of fast, real-time

capturing, a hardware monitor was built. The monitoring device is constructed by con-

necting a logic analyzer to the ten PIPE pins on the SuperSPARC microprocessor daughter

board. The SuperSPARC daughter board is interfaced to a system mother board, which

together form the system workplace. A host machine is then connected to the system

workplace for program execution, control, and debugging. The entire system is built from

subsystems with specified interfaces. Such mechanisms enhance modularity and allow an

arbitrary SuperSPARC system to be monitored as long as the interface specifications are

met. In this project, the system workplace is composed of a SuperSPARC stand-alone

processor daughter board interfacing to a Nimbus NIM6000M mother board. Thus, all

measured and reported data in this project are based on this specific hardware system.

Chapter 3 describes the monitoring system and details the hardware specifications.

Chapter 4 presents the project's system workload and the logic analyzer programs. A

set of four variable-length programs defines the system workload in this project. "test" is a

tiny program used solely for the verification of the declared methodology and implemented

apparatus setup. "matrix6" and "matrix200" are matrix multiplication programs operating

on different size matrices. "dhry" is the standard Dhrystone benchmark program. The

11
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Logic Analyzer

Host Machine

F -:

'ARC daughter board

System Mother Board

Figure 1-3: Thesis Project System Diagram.

generation of the user workload and all software environment specifications are described in

detail. In addition, a set of twelve trigger programs are constructed for the logic analyzer

to capture all variable data used to compute system performance parameters.

Chapter 5 derives the set of thirty-five system performance parameters from the raw

data. 'These parameters are compared across the different system workloads. The results

are analyzed and the validity of the implemented methodology is discussed. Figure -:3

illustrates the system diagram for this thesis project.
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Chapter 2

SuperSPARC External Monitors

in Performance Analysis

This chapter defines the set of thirty-five performance parameters for the analysis of Super-

SPARC systems. These parameters are generated from the SuperSPARC external monitors,

known as the PIPE pins. In order to fully explain the usage of these monitors in perfor-

mance analysis, the fundamentals of the SuperSPARC pipeline will first be introduced.

Following the pipeline overview, this chapter will present a description of the ten PIPE

signals. The definition and the derivation of the thirty-five performance parameters will

then be discussed. Finally, a summary of the statistical variables will be presented.

2.1 SuperSPARC Pipeline

This section provides a brief introduction to the operation of the SuperSPARC pipeline.

The reader should refer to the Texas Instruments "SuperSPARC User's Guide" for a more

detailed description.

Each instruction in the SuperSPARC processor goes through a number of phases in its

execution. These phases include fetching, decoding, computing, and result storage. The

SuperSPARC's pipeline architecture allows these phases to be overlapped [10] [3]. Thus, a

new instruction can be issued at the beginning of each clock cycle rather than waiting for

the previous instruction execution to complete all its phases. Multiple executions can be in

13
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Figure 2-1: SuperSPARC Pipeline Diagram.

progress simultaneously, leading to higher processor throughput.

The SuperSPARC processor's integer pipeline consists of eight stages: two instruction

fetching stages, three instruction decoding stages, two execution stages, and one write back

stage [6]. Each of the these stages operates in half a clock cycle. Thus the integer pipeline

executes in four clock cycles.

The SuperSPARC floating point pipeline, however, consists of five stages: two decode

stages, two execution stages, and one write back stage [6]. The decode and write back

stages of the floating point pipeline operate in half a clock cycle, while the floating point

execution stages operate in one clock cycle. The SuperSPARC floating point pipeline is

loosely coupled with the integer pipeline, with a latency of at most three cycles. Figure

2-1 shows the plurality of the integer pipeline stages as well as the floating point pipeline

stages.

2.2 SuperSPARC PIPE Pins

The SuperSPARC is configured with large embedded caches. It is possible to execute

code continuously from its internal caches with no need for memory references to external

devices, making it very difficult to monitor the processor's cycle-by-cycle activities via the

indications on the external bus [4] [8].

To monitor the first order behavior of the SuperSPARC processor, ten additional signals

have been routed from the integer and floating point datapaths to the external IC contact

pins to provide cycle-by-cycle observation for key internal states. These ten external signals

are called the PIPE pins (PIPE[9:0]), as they provide information about the pipelined

central processor unit (CPU) of the SuperSPARC processor [9]. Information is provided on

the following events:
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* The number of instructions that complete execution.

* When a branch operation occurs.

* When a branch operation is taken.

* When a memory operation occurs.

* When a floating point operation occurs.

* When the pipeline is held by either the floating point unit or the memory unit.

* When interrupts or exceptions occur.

The following table summarizes these ten PIPE signals and their assertion conditions

at each clock cycle.
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PIPE[9] Asserted when any valid data memory reference in-
struction occurred in the execution stage of the pre-
vious clock cycle.

PIPE[8] Asserted when any valid floating point operation oc-
curred in the execution stage of the previous clock
cycle.

PIPE[7] Asserted when any valid control transfer instruction
occurred in the execution stage of the previous clock
cycle.

PIPE[6] Asserted when no instructions were available when
the instruction group currently at the writeback stage
was decoded.

PIPE[5] Asserted when the processor pipeline is stalled by the
Data Cache (e.g. data cache miss).

PIPE[4] Asserted when the processor pipeline is stalled by the
Floating Point Unit (e.g. floating point memory ref-
erence interlock).

PIPE[3] Asserted when the branch in execution stage of the
previous cycle was taken.

PIPE[2:1] Indicates the number of instructions in the execution
stage of the current cycle: 00=None, 01=1, 10=2,
11=3.

PIPE[O] Asserted when an interrupt or an instruction excep-
tion has been incurred.

2.3 PIPE Pins in System Performance Analysis

System performance characteristics can be measured by monitoring the behavior of the

PIPE pins. The monitoring takes effect at the execution stage of the pipelined phases,

starting at the first instruction in an arbitrary system workload. Tracing stops after the

last instruction of the program. This section explores the set of thirty-five performance

analyses which can be derived from monitoring these ten external data lines.
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2.3.1 Program Execution Time

Program execution time does not involve the PIPE signals. It can be determined by cap-

turing the total number of elapsed clock cycles during the execution of the workload and

then multiplying the program cycles by the clock period:

ProgramExecutionTime = numProgramCycles * ClockPeriod (2.1)

2.3.2 Data Cache Statistics

An external memory reference operation is initiated when the referenced data do not reside

in the embedded data cache; i.e., on a data cache miss. Such a memory reference operation

stalls the SuperSPARC processor pipeline for a number of cycles until the load operation is

complete. Frequent occurrences of data cache misses will degrade system performance [8].

Statistics on the data cache are evolved around the behavior of the PIPE[5] signal.

Assertion of PIPE[5] indicates that the processor pipeline is being held by the data cache.

By monitoring PIPE[5] and the system clock pin, data cache statistics can be generated.

Capturing the cycles when PIPE[5] is asserted gives rise to the number of pipeline stall

cycles that are caused by data cache misses. Dividing the number of data cache miss cycles

by the number of program cycles gives the data cache miss cycle rate.

numData$MissCycles = numPIPE[5] (2.2)

numData$MissCyclesData$MissCycleRate = (2.3)
numProgramCycles

When a data cache miss occurs, the pipeline is stalled (PIPE[5] is asserted) for many

cycles until the referenced data are successfully loaded from the secondary cache or the

main memory. At the end of each miss event, PIPE[5] is deasserted. Thus, a data cache

miss event is identified by the deassertion of PIPE[5] followed immediately by the assertion

of PIPE[5] in the next clock cycle. Counting the number of occurrences of this pattern gives

the total number of data cache miss events during the program's execution. The data cache
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miss rate can then be determined by dividing the number of miss events by the number of

memory operations. Memory operation count, numMEMop, is described in section 2.3.5:

numData$MissEvents = numPIPE[5]f ollowedbyPIPE[5] (2.4)

numData$Miss E vents
Data$MissRate = (2.5)

numMEMop

The duration of an arbitrary data cache miss event is indicated by the number of PIPE[5]

assertion cycles when the miss event occurs. The average miss event duration throughout

the program's execution can be determined by dividing the total number of data cache miss

cycles by the total number of data cache miss events in a program execution.

numData$MissCycles
Data$MissDuration = numDataMissCycles (2.6)

numData$MissEven ts

2.3.3 Floating Point Unit Statistics

The SuperSPARC floating point unit may stall the processor pipeline during either a floating

point operation or during a floating point memory reference event [5]. The stalling is caused

largely by limitations of hardware resources and inefficient software code scheduling. By

examining PIPE[4], the behavior of the SuperSPARC floating point unit can be studied.

When the SuperSPARC processor pipeline is stalled by the floating point unit, PIPE[4]

is asserted. Thus, the total number of floating point interlock cycles during the program's

execution can be determined by capturing all the PIPE[4] assertion cycles. Floating point

interlock cycle rate is computed by dividing the floating point interlock cycles by the total

program cycles. A floating point interlock event, like a data cache miss event, is identified

by the deassertion of PIPE[4] followed immediately by the assertion of PIPE[4] in the sub-

sequent clock cycle. The average floating point interlock duration can then be determined

by dividing the floating point interlock cycles by the floating point interlock events:

numFPinterlockCycles = numPIPE[4] (2.7)
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numFPinterlockCyclesFPinterlockCycleRate = num nterlokCycles (2.8)
numProgramCycles

numFPinterlockEvents = numPIPE[4]followedbyPIPE[4] (2.9)

numFPinterockCyclesFPinterlockDuration = numFPinterlockCycles (2.10)
numFPinterlockEvents

2.3.4 Stall-Free Cycles

When the SuperSPARC processor pipeline is stalled, instruction streams cease advancing

through the pipeline stages. All operations are paused as though the pipeline is frozen. This

can either be caused by an external memory reference due to a data cache miss or by the

floating point unit interlock. Since both causes may be simultaneously active, a stall-free

cycle is a cycle when both causes are not active (i.e. when both PIPE[5] and PIPE[4] are

deasserted). A special signal, CYCLEO, is defined to indicate a stall-free cycle. Thus, the

number of stall-free cycles during a program's execution is the number of CYCLEO.

CYCLEO = PIPE[5] * PIPE[4]

numStallFreeCycles = numCYCLEO (2.11)

Stall-free cycles allow all the pipeline operations to proceed, and all the superscalar

processes to progress. The following sections examine the SuperSPARC processor behavior

during stall-free cycles.

2.3.5 Instruction Cache Statistics

The SuperSPARC instruction prefetcher continuously fetches instructions to the instruction

queue (IQ) [6]. The IQ supplies instruction groups for pipelined execution. The IQ is filled

from the instruction cache on an instruction cache hit, and from the main memory on an

instruction cache miss. When a cache miss occurs, pipeline bubbles (empty instruction
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groups) are fetched from the IQ into the processor pipeline. The pipeline proceeds with

the filled bubbles until instructions are available from the IQ. The instruction cache miss

phenomenon can be examined by monitoring PIPE[6] and CYCLEO.

PIPE[6] assertion denotes that no instruction resides in the pipeline during the decoding

stage. Therefore, a cycle when both PIPE[6] and CYCLEO (stall-free cycle) are asserted

indicates that the processor pipeline is starved with bubble (pipeline still proceeds). Such

starvation is a direct result of an instruction cache miss. An instruction cache miss event

is realized by the deassertion of PIPE[6] followed immediately by the assertion of PIPE[6]

in the next clock cycle when CYCLEO is asserted in both cycles. The average duration of

an instruction cache miss event can be obtained by dividing the number of miss cycles by

the number of miss events. The instruction cache miss rate can be measured by dividing

the number of instruction miss events by the total number of executed instructions in the

program. The method to obtain the total number of executed instructions, numProgramln-

structions, is described in the next subsection.

numI$MissCycles = num(PIPE[6] * CYCLEO) (2.12)

numl$MissCycles
I$MissCycleRate = numlMissCycles (2.13)numStallFreeCycles

numl$MissEvents = num(CYCLEO * PIPE[6]followedbyCYCLEO * PIPE[6]) (2.14)

numl$MissEvents
I$MissRate = n (2.15)numProgramInstructions

numl$MissCycles
I$MissDuration = Miss(2.16)

numI$MissEvent

When instruction miss events occur, bubbles are inserted, and no instruction is avail-

able in the processor pipeline. Thus, instruction cache misses may be a major cause for

having zero-instruction groups in the processor pipeline, and can degrade the superscalar

performance of the processor.
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2.3.6 Instruction Grouping Statistics

User programs may be expressed in some high level languages, and are compiled into ma-

chine code to be executed on the system machine. Dynamic instruction counts of user

programs (typically standard benchmark programs) can be used to reflect the machine's

instruction-set efficiency, to compare compiler differences, or to compare library routine

differences [1] [2]. By monitoring SuperSPARC PIPE[2:1], one can determine the total

number of executed instructions in a user program. The superscalar feature of the Super-

SPARC processor can be studied, and the dominant causes of pipeline bubbles can also be

investigated.

The superscalar design of the SuperSPARC allows the processor to issue up to three

instructions per clock cycle to the processor pipeline. However, the actual number of in-

structions executed in each pipeline stage is determined dynamically by examining the next

few available instructions. PIPE[2:1] indicates the number of instructions in the execution

stage of the current clock cycle: 00=0, 01=1, 10=2, 11=3. By monitoring these two pins

during stall-free cycles (when CYCLEO is asserted), statistics on the size of the executed

instruction groups can be gathered:

numOInstrGroup = num(PIPE[2] * PIPE[1] * CYCLEO) (2.17)

numlInstrGroup = num(PIPE[2] * PIPE[1] * CYCLEO) (2.18)

num2InstrGroup = num(PIPE[2] * PIPE[1] * CYCLEO) (2.19)

num3InstrGroup = num(PIPE[2] * PIPE[1] * CYCLEO) (2.20)

Since each stall-free cycle must contain an instruction group with either zero, one, two,

or three instructions, the following equation can be used to verify the instruction group

statistics:
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numCYCLEO = numOInstrGroup + numlInstrGroup

+num2InstrGroup + num3nstrGroup

The occurrences of the four instruction groups can be combined to calculate the total

number of instructions executed in a user program:

numProgramInstructions = (numlInstrGroup * 1) + (num2lnstrGroup * 2) +

(num3InstrGroup * 3) (2.21)

Knowing the number of executed instructions as well as the number of elapsed clock

cycles, the average instructions per cycle (IPC) and the average cycles per instruction (CPI)

can be calculated:

IPC = numProgramInstructions
numProgramCycles

(2.22)

CPI = numProgramCycles (2.23)
numProgramlnstructions

The fractions of each executed instruction group can be conveniently calculated by

dividing the number of executed instruction groups by the total number of stall-free cycles:

OlnstrGroupFraction =

lInstrGroupFraction =

2InstrGroupFraction =

numOInstrGroup
numCYCLEO

numllnstrGroup
numCYCLEO

num2lnstrGroup
numCYCLEO

num3InstrGroup
numCYCLEO

(2.24)

(2.25)

(2.26)

3InstrGroupFraction = (2.27)
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2.3.7 Instruction Type Statistics

Due to hardware resources and restrictions, all SuperSPARC instructions are classified

into one of four types: arithmetic logic operations, memory operations, branch operations,

and floating point operations [6]. It is often desirable to analyze the composition of the

instruction types in an executed program.

The assertion of PIPE[9] indicates when there is a valid memory operation in the exe-

cution stage of the processor pipeline. Thus, counting the occurrences of PIPE[9] assertion

during all stall-free cycles provides the number of memory operations in the user program:

numMEMop = num(PIPE[9] * CYCLEO) (2.28)

The assertion of PIPE[8] specifies a valid floating point operation in the execution stage.

The number of floating point operations in a given user program can therefore be obtained

by counting PIPE[8] assertions during stall-free cycles.

numFPop = num(PIPE[8] * CYCLEO) (2.29)

Similarly, PIPE[7] assertion defines a valid branch operation:

numBRop = num(PIPE[7] * CYCLEO) (2.30)

Since the total number of executed instructions is known, the number of arithmetic logic

operations can be obtained by subtracting the number of other operations from the total

number of executed instructions.

numALUop = numProgramInstructions - numMEMop -

numFPop - numBRop (2.31)

PIPE[3] assertion indicates that the branch instruction in the previous cycle is taken.

Thus, by counting the number of PIPE[3] assertions during stall-free cycles, the number of

taken branch instructions can be determined.
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numTakenBRop = numPIPE[3] * CYCLEO (2.32)

The number of untaken branch instructions can then be calculated by subtracting the

number of taken branch instructions from the number of branch instructions.

numUntakenBRop = numBRop - numTakenBRop (2.33)

The fraction of taken and untaken branch instructions can then be easily derived:

fractionTakenBRop =

fractionUntakenBRop =

numTakenBRop
numBRop

numUntakenBRop
numBRop

2.4 Summary of Statistical Variables

This section summarizes all the statistical variables which are gathered by monitoring Su-

perSPARC PIPE pins. These variables are used to derive the thirty-five performance pa-

rameters specified in this chapter. A total of sixteen statistic variables are defined. The

following table provides descriptions for each variable.

(2.34)

(2.35)
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numProgramCycles
numData$MissCycles

numData$MissEvents
numFPinterlockCycles

numFPinterlockEvents
numCYCLEO
numl$MissCycles

numI$MissEvents
numOInstrGroup
numlInstrGroup
num2InstrGroup
num3InstrGroup
numMEMop
numFPop
numBRop
numTakenB Rop

The total number of clock cycles during program execution.
The total number of cycles when the processor pipeline is
being held by the data cache.
The total number of data cache miss events.
The total number of cycles when the processor pipeline is
being held by the floating point unit.
The total
The total
The total
miss.
The total
The total
The total
The total
The total
The total
The total
The total
The total

number of floating point interlock events.
number of stall-free cycles.
number of cycles where there is an instruction cache

number
number
number
number
number
number
number
number
number

of instruction cache miss events.
of zero instruction groups.
of one instruction groups.
of two instruction groups.
of three instruction groups.
of memory reference operations.
of floating point operations.
of branch operations.
of taken branch operations.

Table 2.1: Statistical Variables

Variable Description



Chapter 3

System Hardware Construction

and Specification

System performance can be measured in various ways. In general, there are three types of

mechanisms that monitor a sequence of executed instructions: software monitors, hardware

monitors, and firmware monitors [4]. In this project, a hardware monitor was chosen as the

dynamic measurement mechanism.

The implemented hardware monitor is extremely fast and accurate. It has the ability

to perform real-time tracing. Cycle-by-cycle monitoring of the key internal system state is

made possible and the captured analysis data are readily available. In addition, the hard-

ware monitor is independent of the system machine. The monitoring is done unobtrusively,

and system performance is not degraded by the monitoring.

This chapter describes the configuration and specification of the implemented hardware

buffer, and presents the methodology used to capture the desired statistics data.

3.1 Hardware Apparatus Configuration

The hardware buffer implemented in this project consists of four distinct subsystems: a host

machine, a system mother board, a microprocessor daughter board, and a logic analyzer.

The system monitor is composed of the logic analyzer and its interface to the PIPE pins on

the microprocessor daughter board. The system workplace is defined by the system mother

26
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Figure 3-1: Hardware Buffer Block Diagram.

board, the microprocessor daughter board, and the interface between the two boards. The

host machine interfaces to the system mother board for the control of program execution

and disassembling. The system block diagram for this hardware buffer is illustrated in

Figure 3-1.

The following subsections review the design decisions relating to each of the four subsys-

tems. Note that in constructing a hardware buffer, users may replace any of the subsystems

with a design of their own, as long as the interface specifications are met and the function-

ality of the subsystem is implemented.

3.1.1 Host Machine

A Sun SPARCStation 10 is used as the host machine. This host machine acts as an in-

terpretive mechanism to the system machine (the system mother board plus the processor

daughter board). It is connected to the system mother board via a standard serial cable.

Its functionalities include downloading the executable program to the system machine, con-

trolling program execution, providing terminal emulation through the serial cable to the

system machine.
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lector

Figure 3-2: SuperSPARC Microprocessor Daughter Board

3.1.2 System Mother Board

The NIMBus NIM6000M is used as the system mother board in this project. It features 96

Mbytes of DRAM on board, a DRAM controller, a serial port for connection with the host

machine, and it has the standard form factor of a SUN SPARCStation 2 mother board.

Its interface connection allows the horizontal placement of the microprocessor daughter

board vertically above the system mother board. The interfacing to the daughter board is

realized via a 100-pin MBus interface connector meeting the SPARC International Industry

Standard MBus Interface Specifications. This system mother board also features a hardware

reset button to allow quick and easy system reset when the host machine is being shared

by other resources. During program execution, the system is clocked at 33MHz.

3.1.3 Microprocessor Daughter Board

The SuperSPARC microprocessor daughter board is implemented based on the TMX390Z50-

40M module. This TMX390Z50-40M module features the stand-alone SuperSPARC chipset

configuration with control circuitry. This module consists of a SuperSPARC microprocessor

revision #2.8 mounted on a 3.25 x 5.75 inch printed circuit board. This daughter board

consists of two interface connections for interfacing with the system mother board as well as

the logic analyzer. Figure 3-2 illustrates the microprocessor daughter board. See appendix

D for the schematic of the TMX390Z50-40M module.

Along the 3.25 inch edge of the module is a microstrip connector which allows the

interface to the mother board of the system machine. This connector is a one-hundred

pin connector referred to as the SPARC International Industry Standard MBus connector.

MBus is a synchronous bus architecture used in SPARC systems and is specifically designed

for high speed transfer between a SPARC processor and memory.
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Figure 3-3: SuperSPARC Microprocessor Daughter Board PIPE Pin Interface

The interface to the logic analyzer consists of the ten PIPE signals on the processor as

well as forty MBUS signals. A 1 x 3 inch pin connector plate is mounted on top of this

microprocessor daughter board for PIPE pin interfacing. This pin connector plate consists

of two rows of header pins - ten PIPE IC pins (PIPE[9:0], illustrated in Figure 3-3) and

ground pins which form the eleven probing channels shown below. These eleven channels

are monitored by the logic analyzer via high-bandwidth channel probes.

In addition to the PIPE pins, thirty-six MBus address/data signals as well as four other

MBus control signals are connected to the logic analyzer via the channel probes. This

connection is realized by mounting a header pin connector on top of the MBUS microstrip

connector. These connections probe the MBus activities and detect the logic analyzer

trigger conditions. (See section 3.2)

3.1.4 Logic Analyzer

The logic analyzer constitutes the monitor of the hardware buffer. It is responsible for pin

tracing, data storage, real-time monitoring of system behavior, and providing cycle-by-cycle

observation of the processor's key internal states. The logic analyzer selected for this project

is a Tektronix DAS9200 with 92A96SD acquisition module.

This Tektronix DAS9200 logic analyzer system can handle a wide range of performance

analysis. It features a flexible programming environment for system configurations, setups,

triggering, and program disassembling. The 92A96SD acquisition module provides 512K

bits of memory per channel, with a total of 96 channels. In addition to the memory depth,

the module also contains two full speed 32-bit counters to track various events. These

two counters are heavily used in gathering data for performance characterization of the

SuperSPARC system.
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The high-bandwidth channel probes on the logic analyzer are connected to the header

pins on the processor daughter board for interfacing. Users should refer to appendix A for

the logic analyzer configuration files.

3.2 Hardware Monitor Interface Specification

To monitor the first order behavior of the SuperSPARC processor, the following pins are

probed by the hardware monitor via the connections between the logic analyzer channel

probes and the processor daughter board header pins:

· PIPE[9:0]

* MCLKO (connected to the VCLK on SuperSPARC)

* MAD[35:0]

* MAS*, MRDY*, MBB*

PIPE[9:0] are the external monitors on the SuperSPARC, while MCLKO, MAD[35:0],

MAS*, MRDY*, and MBB* are signals on the MBus.

The behavior of the ten PIPE signals is used to study the performance of the system

machine. These pins are being clocked by the system machine clock, which is the MCLKO

signal on the MBus (or the VCLK on the SuperSPARC).

In addition to the ten PIPE signals and the system clock signal, the thirty-six MBus

address lines and three MBus control signals are also being traced to provide information on

the MBus activity. The information on the MBus activity is critical when the behavior of

the PIPE signals is in doubt. The SPARC Reference MMU Architecture implements 36-bit

physical addresses to provide a 64-gigabyte physical address space. Thus, the low order

thirty-six bits of the sixty-four bit MBus address/data lines (MAD[35:0]) are monitored to

manifest the physical addresses of memory reference operations. The MBus busy signal,

MBB*, indicates when the MBus is in use. The MBus address strobe signal, MAS*, indicates

when the signal on the MBus is an address instead of data. MRDY*, the MBus data ready

signal, is asserted when the signal on the MBus is data.
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3.3 Monitoring Methodology

Chapter 2 described the set of thirty-five performance parameters for the analysis of Super-

SPARC systems. These performance parameters are derived from sixteen statistic variables.

These statistic variables can be captured by monitoring the SuperSPARC PIPE pin patterns

in the hardware buffer described in this chapter.

The basic idea in monitoring is to realize that each statistic variable to be captured is

recognized as the number of occurrences of certain PIPE pin assertion/deassertion patterns.

Each occurrence of a PIPE pin pattern is defined as an event. Thus, the hardware buffer

needs to capture the occurrences of all sixteen different events during a program's execution.

The major concern in such a capturing scheme is data storage. The current system

workplace operates at 33 MHz. Thus, with the 512K bits of memory per channel on the

logic analyzer, it stores data for only a tiny fraction of a second. Most typical benchmark

programs, however, run for a least a few minutes.

To compensate for the shortage of storage memory and to avoid adding extra hardware

to the monitoring buffer, a different approach is investigated. The thirty-two bit counter

on the logic analyzer is used to count the number of occurrences of each event. This is

accomplished by specifying a condition for each event to trigger the counter. Counter

overflow is incorporated into the final count. Thus, by doing sixteen counts in a program's

execution, all statistical variables can be captured without the need to store the PIPE pin

patterns for every clock cycle.

A total of fourteen trigger programs are created to specify the sixteen trigger conditions.

These programs are described in the next chapter. To capture a particular statistic variable,

the corresponding trigger program is run on the logic analyzer during a program's execution.

This step is repeated to gather all sixteen variables. The following table summarizes the

trigger conditions and the trigger actions for each of the sixteen statistical variables.
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Table 3.1: Methodologies for gathering statistical data

Statistic Variables Trigger Action Trigger Condition
numProgramCycles counter value + 1 MCLKO
numData$MissCycles counter value + 1 PIPE[5]
numData$MissEvents counter value + 1 PIPE[5] followed by PIPE[5]
numFPinterlockCycles counter value + 1 PIPE[4]
numFPinterlockEvents counter value + 1 PIPE[4] followed by PIPE[4]
numCYCLEO counter value + 1 PIPE[5] * PIPE[4]
numl$MissCycles counter value + 1 PIPE[6] * CYCLEO
numl$MissEvents counter value + 1 PIPE[6] followed by PIPE[6] * CYCLEO
numOInstrGroup counter value + 1 PIPE[2] * PIPE[1] * CYCLEO
numlInstrGroup counter value + 1 PIPE[2] * PIPE[1] * CYCLEO
num2InstrGroup counter value + 1 PIPE[2] * PIPE[1] * CYCLEO
num3InstrGroup counter value + 1 PIPE[2] * PIPE[1] * CYCLEO
numMEMop counter value + 1 PIPE[9] * CYCLEO
numFPop counter value + 1 PIPE[8] * CYCLEO
numBRop counter value + 1 PIPE[7] * CYCLEO
numTakenBRop counter value + 1 PIPE[3] * CYCLEO



Chapter 4

Software Environment

Specifications

This chapter describes the software environment required for the course of system perfor-

inance monitoring. Section 4.1 presents the steps for generating a user program, and de-

scribes the procedures for program execution on the system machine. Section 4.2 describes

the four programs used to gather performance analysis data. Section 4.3 describes the logic

analyzer trigger programs. The presented specification is tailored for the operations on the

system machine described in Chapter 3.

4.1 Program Generation and Execution

4.1.1 System Workload and Its Execution

In this project, a workload program is initially written in C and then translated into SPARC

assembly code by a SPARC compiler. The assembly language program is augmented with

features to trigger the logic analyzer and to ensure a proper operating environment for

the SuperSPARC processor. The modified assembly source file is then assembled into an

executable object file by using an assembler. Makefiles are created to maintain the object

files and to generate executable programs. Appendix C contains the Makefiles, original C

source code, and the edited SPARC Assembly source files.
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The following shows an example C program, together with its modified assembly code.

The process of modifying the assembly file is discussed in the next subsection.

C code:

#include<stdio.h>
float random();

main()
{

int count = 0;
float number = 1.5;

while(

float random(the_number)
float the_number;

SPARC assembly code (edited version):

#include <machine/asm_linkage.h>
#include <machine/mmu.h>
LLO:
.seg "data"
_romp: .word 0
.seg "text"
.proc 04
.global __entry
__entry:

set Ox2000, %o2
mov %02, %sp
set _romp, %ol
st %oO, %oi]

lda [%g010x04, %g4
set Ox00000700, %g3
or %g4, %g3, %g4
sta %g4, %gO]Ox04 ! Write to MCNTL
set Ox4000, %oO ! Set Page Map
set Ox4ee, %ol
call _SetPageMap, 2
nop

ldda [%gO] Ox4c, %g2
or %g3, -1, %g3
stda %g2,[%gO]Ox4c ! Write to action register

__triggerO:
set Ox00003000, %gl
stda %gO, [%gl] Ox20

_main:
!#PROLOGUE# 0

__triggeri:
set Ox00003100, gl
stda %gO, %gl] Ox20

__exit:
sethi %hi(_romp),%oO
ld [%oO+%lo(_romp)],%oO
ld [%oO+Ox74],%gl
call %gl,O
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nop
LE31:ret
restore

LF31 = -64
LP31 = 64
LST31 = 64
LT31 = 64
.seg "data"

* Set the page map entry for the virtual address in the first arg (%oO)
* to the entry specified in the second arg (%ol)
* Called as SetPageMap(vaddr, pme)
* ASIMOD Ox4
* ASIMEM Ox20
*/

ENTRY(SetPageMap)
andn %oO, x3, %0o2

set RMMU_CTP_REG, %05
lda [%oS]ASIMOD, %0oO
set OxffffcOO0, %05
sll %o3, Ox4, %o3
set RMMU_CTXREG, %05
lda E%oSASIMOD, %o4
set OxfffffcO0, %o5
and %o4, %05, %o05
sll %05, 2, %o05
or %05, %o3, %o3

srl %oO, Ox8, %oO
srl %0o4, Oxa, %0o4
or %04, %oO, %oO
and %oO, Ox3f, %oO
sll %00o, Oxc, %00oO
or %oO, %03, %o3
lda [%o3]ASI_MEM, %oO
andn %oO, Oxl, %05
sll %05, Ox4, %0o3
set Oxff000000, %00oO
and %o2, %oO, %oO
srl %oO, 0x16, %oO
add %oO, %o3, %o3

lda [%o3]ASI_MEM, %oO
andn %00oO, Oxl, %05
sll %o05, Ox4, %o3
set OxOOfcOOO0 , %00oO
and %o2, %oO, %oO
srl %oO, OxlO, %oO0
add %oO, %o3, %o3

lda [%o3]ASIMEM, %oO
andn %oO, Oxl, %05
sll %05, Ox4, %0o3
set OxOO03fOO0, %oO
and %o2, %oO, %oO
srl %oO, OxOa, %oO
add %oO, %o3, %o3

sta %ol, [%o3]ASIMEM
mov %o7, %g6
call _OnMBus, 0
nop
cmp %oO, 0
bnz leave
nop
call _InvalidateEcachel
mov %o3, %oO

leave:

! align on word

and
! get context table pointer
%oO, %o05, %o3

! get context register

! get region pointer

! mask for level 1 offset in vaddr

! get 12 pointer offset in 11 table
! get segment pointer

! mask for level 2 offset in vaddr

get 13 pointer offset in 12 table

get page table pointer

! mask for 13 offset in vaddr

! get pte addr in 13 table
store entry to physical address
save return address

Line, 1

! the program
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retl
mov %g6, %o7

leave:
! the program

retl
mov %g6, %0o7

* Will return 0 in %o0 if the processor is connected to VBus or
* not zero if the processor is directly on MBus
*/

ENTRY (OnMBus)
set RMMUCTLREG, %o5
lda [%oS5ASI_MOD, %o4 ! get mmu control reg
retl
and %o4, CPU_VIK_MB, %o0

/*
* Will invalidate the Ecache line for the address in %o0
* Assumes MBus module 0. Will not check ANYTHING, just invalidates

ENTRY (InvalidateEcacheLine)
set OxfffOOOO0 , %05
andn %oO, %o05, %o4
set Oxff800000, %o05
or %05, %04, %o3
andn %o3, Ox7, %o3
ldda [%o3]ASI_MXCC, %o4
set 0x2222, %o2
andn %o5, %o2, %o5
retl
stda %o4, [%o3]ASI_MXCC

When the executable program is ready, it will be run on the system machine as a

standalone program. The SPARC Open Boot PROM 2.0 is used on the system machine.

Its functionalities include program execution control, system machine interaction, program

disassembling and debugging. The Open boot PROM commands are controlled with the

Open Boot 2.0 Fourth Monitor. The following lists the commands used in the Open Boot

PROM environment during the process of a program execution. Letters following a "!" are

comments. All necessary operating environments must be properly setup and stable by the

time of the execution.

On the host machine:

hostmachine% cd _directory_containingthe_executable_program
hostmachine% tip _systemmachinename
Type b (boot), c (continue), or n (new command mode)
> n ! to get the ok prompt
ok dlbin ! to download the executable program
(enter: C)
> sendbin _executable_program
ok go
program terminate ! this signals a successively executed program
! i.e. without system error

In the case of any programming or environment error, the program will not terminate
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properly. Users should refer to the "SPARC Open PROM Toolkit Reference Summary" for

the list of commands used in program debugging.

4.1.2 Modifying the Assembly Source File

When programs are written in SPARC assembly language or in some higher level language,

they need to be modified to ensure proper operation when executing on the system machine.

All the modifications are made to the SPARC assembly files. Readers should refer to

"SPARC Assembly Language Reference Manual" for more information on SPARC assembly

syntax.

To execute a program in the Open Boot PROM, the stack pointer is set. The specified

value stored in register %oO is loaded into the declared Open Boot variable, romp, before

the program execution. The following four lines of assembly code are inserted before the

actual source code:

set Ox2000, %o2
mov %o2, %sp
set _romp, %oi
st %oO, [%ol]

The Open Boot PROM variable, romp, is declared under the data segment:

.seg "data"
_romp: .word 0

When the program terminates, the utility function stored at an offset 0x74 from the

content of romp is called for the executing program to exit properly. To perform these

tasks, the following code needs to be inserted after the source code:

__exit:
sethi %hi(_romp),%oO
ld [%oO+%lo(_romp) ,%oO
ld E%oO+Ox74],%gl
call %gi,O
nop

When the user program is written in C and compiled down to assembly code, the above

lines will replace the following stack setup code generated by the SPARC compiler:

! for stack setup:
' sethi %hi(LF27),%gl
! add %gl,%lo(LF27),%gl
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save %sp,%gi,%sp
! for stack restore:

ret
restore

To accurately measure performance characterization, the SuperSPARC processor is re-

quired to be operating in the desired functional mode [6]. Most importantly, the instruction

cache, the data cache, and the store buffer need to be enabled. This is done by setting ap-

propriate values of the SuperSPARC MMU control register (MCNTL). In addition, the

SuperSPARC multiple-instruction-per-cycle mode also needs to be enabled by setting the

MIX field in the SuperSPARC breakpoint action register. All environment code to perform

setups is inserted before the source code as follows:

lda [%gO0]x04, %g4
set Ox0000700, %g3
or %g4, %g3, %g4

sta %g4, [%g1O]0x04 ! Write to MCNTL

ldda E%gO] Ox4c, %g2
or %g3, -1, %g3
stda %g2,[%gO]Ox4c ! Write to action register

Finally, since the Open Boot PROM sets all page maps to read only mode, page maps

need to be set to read and write mode before the program execution. This is done by

inserting an entry code segment after the actual source code as shown in the example

assembly file in the previous section. A call to the set page map entry is placed before the

source code:

set 0x4000, oO ! Set Page Map

set Ox4ee, %ol
call _SetPageMap, 2
nop

4.1.3 Triggering the Logic Analyzer

It is apparent that the above code editing increases the size of the program. A good

triggering mechanism is required for the logic analyzer so that it only performs pin tracing

during the actual source code execution.

The logic analyzer starts pin tracing and event counting once it sees a specified phys-

ical address on the MBUS address lines, MAD[35:0]. For each instruction or data access,

the SuperSPARC instruction unit appends to the 32-bit memory addres an 8-bit address
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space identifier, or ASI. To make such an address appear on the MBUS, a double store

alternate instruction is issued to store a garbage value into the specified ASI MMU physical

pass-through address. This implementation uses the physical address 0x00000300020 for

signaling the start of the program, and the physical address 0x00000310020 for signaling

the end of the program. The following _triggerO function is used to mark the start of the

program, and is placed after the environment setup code and immediately before the source

code:

__triggerO:
set 0x00003000, %gl

stda %gO, [%gl] Ox20

The _triggerl function indicates the end of the program. It is placed immediately after

the end of the source code and before the __exit function:

__trigger1:
set 0x00003100, %gl
stda %gO, [%gl] 0x20

4.2 Execution Program Set

Four executable programs are generated for performance analysis [4]. They represent a

good mix of general purpose computing. The first program is a very short program used

mainly for verifying the hardware and software implementation, as well as the triggering

methodology. The second workload in this project is a short matrix program, and the third

is a moderate length matrix program. The last program is a standard benchmark program.

All programs are included in Appendix C.

test - the original source code is written in C. This is a very small-scale program

which contains simple arithmetic operations on an integer variable and a floating point

variable. This program is also characterized by repeated loops and function calls. The

provided features are sufficient to thoroughly test the system buffer's hardware and software

configuration, as well as the algorithms used for gathering statistics.

matrix6 - the source code of this program is written in C. This a floating point intensive

program which runs operations on a 6 by 6 matrix. This program contains multiple function

calls and structured loops.
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matrix200 - this program has the same structure as "matrix6", yet it runs operations

on a 200 by 200 matrix. This program is large enough to preclude fitting all executing

workset in the embedded caches.

dhry - this is the integer intensive Dhrystone benchmark program. The C version of the

Dhrystone program is compiled down to SPARC assembly, which is modified and translated

into an executable. 100,000 measurement loops are used. "multiply.o" and "string.o" from

the standard UNIX C library are included in the executable program.

All four programs are compiled down to assembly files, modified, then translated into

executable code. Analysis results and statistical distributions are presented in the next

chapter.

4.3 Logic Analyzer Programming

For the purpose of the analysis, fourteen trigger programs are created for the sixteen sta-

tistical variables presented in Chapter 3. These trigger programs are written in a C-like

language which contain clauses and statements. The syntax is used to describe state ma-

chine structures that control triggering and data sampling actions. The following table lists

these trigger programs and their functionalities. All logic analyzer trigger programs are

included in Appendix B.

O_instr_gp - this program allows counter # 1 to capture each occurrence of a zeroinstruction

group, or bubble, at the rising edge of each clock cycle. Counter #2 is used to capture the

total number of stall-free cycles during program execution.

l_instr_gp - this program allows counter #1 to capture each occurrence of a oneinstruction

group at the rising edge of each clock cycle. Counter #2 is used to capture the total number

of stall-free cycles during program execution.

2_instr_gp - this program allows counter #1 to capture each occurrence of a twoinstruction

group at the rising edge of each clock cycle. Counter #2 is used to capture the total number

of stall-free cycles during program execution.

3_instrgp - this program allows counter #1 to capture each occurrence of a threeinstruction

group at the rising edge of each clock cycle. Counter #2 is used to capture the total number
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of stall-free cycles during program execution.

BRop_exec - this program allows counter #1 to capture each occurrence of a branch

operation at the rising edge of each clock cycle. Counter #2 is used to capture the total

number of stall-free cycles during program execution.

FPopexec - this program allows counter #1 to capture each occurrence of a floating

point operation at the rising edge of each clock cycle. Counter #2 is used to capture the

total number of stall-free cycles during program execution.

MEMopexec - this program allows counter #1 to capture each occurrence of a mem-

ory reference operation at the rising edge of each clock cycle. Counter #2 is used to capture

the total number of stall-free cycles during program execution.

BRop_takn - counter #1 is used to capture the number of occurrences of each branch

operations which is taken. Counter #2 is used to capture the total number of branch

operations during program execution.

D$_misscycle - this program allows counter #1 to count the number of cycles when

the processor pipeline is stalled by the data cache. It also allows counter #2 to count the

total number of cycles elapsed during program execution.

D$_miss_event - this program allows counter #1 to count the number of data cache

miss events. It also allows counter #2 to count the total number of cycles elapsed during

program execution.

FPintrlk_cyc - this program allows counter #1 to count the number of cycles when

the processor pipeline is stalled by the floating point unit. It also allows counter #2 to

count the total number of cycles elapsed during program execution.

FPintrlk_evnt - this program allows counter #1 to count the number of floating

point interlock events. It also allows counter #2 to count the total number of cycles elapsed

during program execution.

I$_miss_cycle - this program allows counter #1 to count the number of cycles when

there is an instruction cache miss. It also allows counter #2 to count the number of stall-free

cycles during program execution.

I$_missevent - this program allows counter #1 to count the number of instruction

cache miss events. It also allows counter #2 to count the number of stall-free cycles during
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program execution.



Chapter 5

Data Analysis

In this chapter, the statistics gathered from the hardware monitoring of the program set

are presented. The first section examines the generated raw data and uses the results

from "test" to verify the defined methodology and apparatus setup. The second section

then analyzes the derived performance parameters and discusses the validity of using the

SuperSPARC PIPE pins in performance analysis. Users should keep in mind that the data

presented in this chapter are strictly tailored only to the system configuration described in

Chapter 3 and Chapter 4.

5.1 Raw Data and Methodology Verification

Four executable programs are created for performance characterization. "test" is a very

small program used merely to verify the validity of the implemented buffer. The other

three programs are used to gather actual performance parameters - "matrix6" is a small

scale program, "matrix200" is like "matrix6" but with a bigger dataset, and "dhry" is a

large benchmark program. To gather statistic variables, the set of fourteen logic analyzer

trigger programs were run for each of the four executed programs. Tables 5-1 to 5-4 list

these trigger programs and their corresponding counter values. Notice that as the program

size increases, the least significant digit of the counter values may be inconsistent. However,

since this variation constitutes less than 0.001% of the accuracy, it is ignored.

From the raw data above, the desired performance parameters can be derived using
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Table 5.1: Logic Analyzer Result - test

the equations described in Chapter 2. The parameters for each executable program are

summarized in appendix E.

The data for "test" can be used to verify the validity of the hardware monitoring strate-

gies. First of all, all stall free cycles must contain zero, one, two, or three instructions. The

collected data on instruction grouping satisfy the following equation:

numCYCLEO = numOInstrGroups + numllInstrGroup

+num2InstrGroup + num3InstrGroup

95 = 50 + 30 + 11+ 4

The disassembled format of "test", "test.dis", further helps in verifying other statistics.

The number of arithmetic logic operations, memory operations, branch operations, and

floating point operations is verified by counting the executed instructions in "test.dis".

These numbers all match the derived parameters. Floating point interlock statistics are

also verified by identifying the two floating point code interlock events in the source code:

Logic Analyzer Program Counter 2 Counter 1
Oinstrgp 95 50
1instrgp 95 30
2instrgp 95 11

3instrgp 95 4
BRop exec 95 10
FPopexec 95 5

MEMop exec 95 25

BRoptakn 10 7

D$ miss cyc 252 154
D$_missevnt 252 5

FPintrlkcyc 252 5
FPintrlk evnt 252 2
I$ miss cyc 95 49
I$missevnt 95 9
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Table 5.2: Logic Analyzer Result - matrix6

4070 _main+38
!-- Pipeline stalls
4074 _main+3c
40d4 _calsum+lc
!-- Pipeline stalls
40d8 calsum+20

ldf [%i6 - 8, %fO
until ldf finishes with %fO
fstod %fO , %f2

faddd %fO , %fO , %f2
until faddd finishes with %fO

fmovs %f2 , %fO

By comparing the C version, "test.c" and the disassembled version, "test.dis", the num-

ber of branch instructions and the number of taken branches can be counted, and statistics

can be verified. The commented lines below indicate where the seven taken branch opera-

tions and three untaken branch operations take place:

while(count < 3)
count++;

sum = cal_sum(sum);

4054 _main+lc bge 4070 _main+38
3! untaken BRop when count = 0, 1, 2

! 1 taken BRop when count = 3
4058 _main+20 sethi 0, %gO
405c _main+24 ld [%i6 - 4], %ol
4060 _main+28 add %ol, , %ol
4064 _main+2c st %ol, [%i6 - 4]
4068 _main+30 ba 404c _main+14

3 taken BRop for branch always

4088 _main+50
! taken branch

Logic Analyzer Program Counter 2 Counter 1
Oinstr gp 1039 286
linstrgp 1039 319
2instr gp 1039 358
3instrgp 1039 76
BRop exec 1039 81
FPopexec 1039 180

MEMopexec 1039 420
BRop-taken 81 55

D$misscyc 1599 240
D$ miss evnt 1599 10
FPintrlk cyc 1599 322
FP intrlk evnt 1599 47
I$_nisscyc 1039 202
I$_miss-evnt 1039 32
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Table 5.3: Logic Analyzer Result - matrix200

40eO _calsum+28
i taken branch

40e8 _calsum+30

ba 40e8

jmp ,/.i7,

_calsum+30

8, %gO

In contrast to the statistics above, data cache misses and instruction cache misses cannot

be easily verified. They will be examined in the next section.

5.2 Statistic Analysis

Since "test" is a very small program used to verify hardware monitor strategies and is not

representable of actual user code, the captured data are not included in this section for sta-

tistical analysis. This section examines the statistics derived from "matrix6", "matrix200",

and "dhry".

5.2.1 Data Cache Miss

The data cache miss statistics for the three programs indicated a data cache miss rate range

of 2.38% to 49% - 2.38% for "matrix6", 13% for "matrix200", and 49% for "dhry". This

pattern reflects the fact that as the size of the program's dataset increases, the miss rate

Logic Analyzer Program Counter 2 Counter 1
Oinstrgp 928,235 80,580
1 instrgp 928,230 324,051
2instr gp 928,245 483,205
3instr-gp 928,236 40,399
BRopexec 928,230 81,409
FPopexec 928,236 161,200
MEMopexec 928,230 605,015
BRoptaken 81,409 40,809
D$misscyc 1,904,282 693,568
D$_missevnt 1,904,275 79,677
FPintrlkcyc 1,904,284 282,784
FPintrlk-evnt 1,904,280 40,399
I$ misscyc 928,230 175
I$nmiss_evnt 928,236 38
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Table 5.4: Logic Analyzer Result - dhry

increases. This phenomenon is expected since as the dataset becomes large, most data will

not reside in the on-chip cache, and a significant number of data references to the next

higher level memory (in this case, the main memory) is required. The data cache miss

cycle rate also goes up as the size of the program increases - from 0.15 to 0.36 to 0.82 for

"matrix6", "matrix200", and "dhry", respectively. This pattern matches the pattern of the

data cache miss rate.

When users gather data cache statistics for a system configuration, care must be taken

while determining the data cache miss rate. Several secondary reasons exist which may

also cause a data memory reference. Examples of such reasons are: when the store buffer

is full, when there is a synchronous store instruction, and when there is an atomic read-

modify-write instruction. All these activities cause data memory reference, causing PIPE[5]

to assert. Thus the derived data cache miss rate (based on the assertion of PIPE[5]) may

be higher than the actual data cache miss rate.

The average duration of data cache miss events shows a range of 8.7 cycles/event for

"matrix200" to 24 cycles/event for "matrix6". This inconsistency is mainly due to two

reasons: the lumped effect with instruction cache misses, and the effect of the SuperSPARC

data cache block replacement strategy.

Logic Analyzer Program Counter 2 Counter 1
Oinstrgp 1,293,000,944 154,000,898
1instrgp 1,293,000,950 719,000,076
2instrgp 1,293,000,946 336,999,970
3instrgp 1,293,000,945 83,000,000
BRopexec 1,293,000,945 229,000,001
FPopexec 1,293,000,945 0
MEMopexec 1,293,000,945 740,000,005
BRoptaken 229,000,001 152,999,999
D$misscyc 7,124,729,181 5,831,728,245
D$missevnt 7,124,729,181 363,000,010
FPintrlkcyc 7,124,729,181 0
FPintrlk evnt 7,124,729,181 0
I$misscyc 1,293,000,940 40,000,896
I$ miss evnt 1,293,000,946 20,000,139
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Instruction cache prefetch nominally occurs independently of processor pipeline stalls.

Both data and instruction cache misses require a memory reference via the external bus. In

the above scenario, "matrix6" completes faster due to a smaller dataset. Thus, instruction

cache miss constitutes a larger portion of the total misses and therefore contends for a larger

portion of the bus cycles. Some of these instruction reference bus cycles occur while the

processor pipelined is stalled. They are thus miscounted as data reference cycles, leading

to a higher data cache miss event duration.

When a miss event occurs, the pipeline stalls and the SuperSPARC issues a 32-byte

coherent read on the MBUS. This is a long process and may take many cycles to complete.

However, once the first 8-byte datum is available, the pipeline proceeds again, and then

stalls to wait for the next 8-byte datum. Thus, this single miss event might appear as

multiple miss events, leading to a lower data cache miss duration. This effect is particularly

apparent when the data cache miss rate is high (i.e. "matrix200").

Taking into account all the lumped effects requires some care; the individual effects can-

not be easily singled out with moderate effort. Users could, however, monitor the additional

64-bit MBUS address/data lines as well as the MBUS control signals on a cycle by cycle

basis to manifest the effect of the overlaped instruction miss cycles and the stalled cycles.

5.2.2 Floating Point Code Interlock

The statistics for floating point code interlock are more as expected. It shows a floating

point interlock event number of zero for "dhry" (which has no floating point instructions), 47

events for "matrix6", and 40,399 events for "matrix200". The number of interlock events

for the two matrix programs can easily be verified by counting the number of floating

point code interlocks inside and outside of the program loops. The average duration of

a floating point operation is between 6.85 cycles/event for "matrix6" to 7.00 cycles/event

for "matrix200". The consistency of these statistics verifies the validity of the described

methodology in generating floating point interlock parameters.
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5.2.3 Instruction Cache Miss

As the size of the program increases, more memory references are expected; thus, the number

of instruction cache miss events should increase [8]. The instruction cache miss statistics

reflect this phenomenon with 32 miss events for "matrix6", 38 miss events for "matrix200",

and 20,000,139 events for "dhry". Note that although the number of executed operations

in "matrix200" exceeds those in "matrix6" by a large amount, the number of instruction

miss events should not differ greatly, since the program sizes are almost identical.

The instruction cache miss rate equals the number of instruction miss events divided by

the total number of instructions. The derived instruction cache miss rates support the above

assumption. "matrix6" has an instruction cache miss rate of 2.53%, "matrix200" has a miss

rate of 2.69e-3%, and "dhry" has a miss rate of 1.22%. Note that the instruction cache miss

rate is particularly high for "matrix6" due to the initial program compulsory miss. Such

compulsory miss effect is smoothed out when the number of executed instructions increases.

The statistics on the number of instruction cache miss cycles, and thus, the average

durations of instruction miss events are inconsistent due to reasons similar to those presented

for the data cache miss phenomenon. Instruction cache miss duration ranges from 2.00

cycles/event for "dhry" to 5.44 cycles/event for "matrix6". An instruction cache miss can

be hidden while the processor pipeline is stalled. When the processor pipeline advances,

the instruction fetch may have either completely or partially completed. In general, this

circumstance increases the cycle count for the data cache miss and decreases the cycle count

for the instruction cache miss. This effect is apparent on programs with a high portion of

instruction cache misses (i.e. "matrix6").

5.2.4 Instruction Groups

The statistics on the following parameters can be derived accurately by using the Super-

SPARC PIPE signals:

* numlOnstrGroup

* numllnstrGroup

* num2InstrGroup
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* num3lnstrGroup

* OlnstrGroupFraction

* lnstrGroupFraction

* 2InstrGroupFraction

* 3InstrGroupFraction

* numProgramInstructions

* numMEMop

* numFPop

* numBRop

* numALUop

* numTakenBRop

* numUntakenBRop

* fractionTakenBRop

* fractionUntakenBRop

These parameters can be verified by estimating the instruction count of the executed

program in its assembly format. The parameters on the instruction grouping can also be

verified using the following equation:

numCYCLEO = numOnstrGroup + numllnstrGroup

+num2InstrGroup + num3InstrGroup (5.1)

(5.2)

The statistics collected on the variables can be very useful for both static and dynamic

analysis of user system behavior.
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5.2.5 IPC and CPI

System performance is sometimes expressed in terms of instructions per cycle (IPC) or

cycles per instruction (CPI). Both IPC and CPI are generated accurately for the executable

programs.

We expect that as the size of a program increases, the data cache miss rate and/or the

instruction cache miss rate will increase, and thus degrade system performance. The de-

rived statistics confirm this assumption. The IPC value ranges from 0.79 instructions/cycle

for "matrix6", to 0.74 instructions/cycle for "matrix200", to 0.23 instructions/cycle for

"dhry". The CPI values, which are the reciprocal of the IPC values, range from 1.27 cy-

cles/instruction for "matrix6", 1.35 cycles/instruction for "matrix200", to 4.34 cycles/instruction

for "dhry".

It is important to note that since all parameters generated here are based on the Super-

SPARC stand-alone configuration, the parameters generated with a multicache configura-

tion will show improved performance.
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Conclusion

This thesis has documented the design and implementation of a hardware buffer and soft-

ware environment which allow the performance analysis of SuperSPARC systems. The

defined methodologies and apparatus setups were thoroughly tested, and the validity was

determined.

An unconventional, yet extremely efficient and comprehensive method of performance

analysis was discovered. The utilization of the SuperSPARC PIPE pins has led to a set

of thirty-five system performance parameters. These parameters can be generated using

the implemented hardware monitor buffer. This hardware buffer is modular and portable,

permitting system performance analysis to be done on different system workplaces and/or

different system workloads without making changes to the defined methodology and the

apparatus setups. This setup provides an extremely efficient and effective setting for per-

formance analysis.

In this thesis project, the system workplace was constructed using the SuperSPARC mi-

croprocessor standalone configuration interfacing to the Nimbus NIM6000M system mother

board. All performance parameter data collected are thus particular to this system work-

place only. The system workload for this project consisted of a set of four variable-length

programs.

The derived data were analyzed to verify the validity of using the SuperSPARC PIPE

pins in system performance analysis. The result shows that all but a few performance

parameters can be generated accurately with the defined methodology. Some sophisticated
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processor interactions, however, have prevented the capturing of accurate data cache and

instruction cache statistics.

The scope of this thesis project leaves room for future research in this area. Users may

wish to further investigate the causes of the deficiency in data cache and instruction cache

statistics. The difficulties presented in this thesis prompt users to implement additional

hardware and/or software to generate accurate data cache statistics. Users may also wish

to expand the set of thirty-five parameters to capture more analysis statistics (e.g. the

frequency and latency between context switches). Since the setup allows the monitoring of

processor state on a cycle-by-cycle basis, users may apply this setup for system debugging,

reconfiguration and improvement. The derived statistical data may also be useful in the

field of compiler optimization and future design improvements.
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Logic Analyzer Configuration File
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APPENDIX A. LOGIC ANALYZER CONFIGURATION FILE

3 Sep 1993 15:29 DAS 9200 92A96SD-1 Setup
Page 1

CHANNEL

General Purpose Support

Group Name Input Probe Channels
Radix MSB LSB

AddressO Hex Section Al Ch 76543210
Section AO Ch 76543210

Addressl Hex Section A3 Ch 76543210
Section A2 Ch 76543210

Address2 Hex Section DO Ch 3210

Data Bin Section D3 Ch 10
Section D2 Ch 76543210

PIPEMisc Off Section CO Ch 0

MBUSMisc Bin Section C1 Ch 210

Figure A-1: Logic Analyzer Channel Setup File
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APPENDIX A. LOGIC ANALYZER CONFIGURATION FILE

3 Sep 1993 15:30 DAS 9200 92A96SD-1 Setup
Page 1

CLOCK

Module 92A96 Clock:

Sample Clock:
External_Clocks

- Clock_0

General Purpose Support
External

External_Qualifiers
ANDAND((

Figure A-2: Logic Analyzer Clock Setup File
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APPENDIX A. LOGIC ANALYZER CONFIGURATION FILE

3 Sep 1993 15:29 DAS 9200 92A96SD-1 Setup
Page 1

CONFIG

General Purpose Support

Module Name: 92A96SD-1
Module Type: 92A96 - 96 channels at 100 Mhz

Software Support: General Purpose

Acquisition Memory: 131072 Cycles

Latch Mode: Off

Module Input Signals: Module Output Signals:

None Defined Sync Out (Local)

Software Support
General Purpose: 96 channels/card sync and async to 10.0 ns.
High Speed Timing: 48 channels/card async to 5.0 ns and

24 channels/card async at 2.5 ns.

Figure A-3: Logic Analyzer Configuration File
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APPENDIX A. LOGIC ANALYZER CONFIGURATION FILE

1 Sep 1993 23:03 DAS 9200 92A96SD-1 Setup
Page 1

92A96 SETUP PRINT

Saved Printer Settings

Send Output To: File
Output Format:
Characters per Line:
Lines per Page:
Spaces to Indent:

Output Specification

Comment in Heading:
Print Overlays:

PostScript
80

60
0

File Name: MEMop

No

Figure A-4: Logic Analyzer Printer Environment File
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Logic Analyzer Trigger Programs
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Oinstrgp:

3 Sep 1993 14:58

TRIGGER

Trigger Pos: T--------
Store: All Cycles
Prompt Visibility: On

State Ck_begin
If Word

Then Trigger
Go To State

End of State Ck_begin
State O_instrgroup

If

Then
Or If

Then
Or If

Then
End of State
State End

Word

Incr Counter
Word

Incr Counter
Word

Go To State

O_instr_group
_prog

#1 =
AddressO
Addressl
Address2
Data
MBUSMisc

and store

DAS 9200 92A96SD-1 Setup
Page 1

General Purpose Support

3000
0000
0
XXXXXXXXX
XX1

O_instr_group

#4 =
AddressO
Addressl
Address2
Data
MBUSMisc

#1
#2
AddressO
Addressl
Address2
Data
MBUSMisc

#2
#3 =
AddressO
Addressl
Address2
Data
MBUSMisc
Endprog

XXXX
XXXX
X
XXXXOOXXXX
XXX

XXXX

XXXXOOXOOX
xxxx

3100
0000
0
XXXXXXXXXX
XX1

If Anything
Then Do Nothing

End of State Endprog
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l_instrgp:

3 Sep 1993 15:12

TRIGGER

Trigger Pos: T--------
Store: All Cycles
Prompt Visibility: On

State Ckbegin
If Word

Then Go To State
Trigger

End of State Ck_begin
State 1_instrgroup

If Word

Then
Or If

Then
Or If

Incr Counter
Word

Incr Counter
Word

Then Go To State

End of State l_instr_group
State Endprog

If Anything
Then Do Nothing

End of State End_prog

DAS 9200 92A96SD-1 Setup
Page 1

General Purpose Support

#1 =
AddressO 3000
Addressl 0000
Address2 0
Data XXXXXXXXXX
MBUSMisc XX1
l_instrgroup
and store

#4 =
AddressO
Addressl
Address2
Data
MBUSMisc

#1
#2
AddressO
Addressl
Address2
Data
MBUSMisc

#2
#3
AddressO
Addressl
Address2
Data
MBUSMisc
End_prog

XXXX
XXXX

XXXXOOXXXX
XXX

XXXX

XXXXXXXOOXO X
XXX

3100
0000
0
XXXXXXXXXX
XX1
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2instrgp:

3 Sep 1993 15:12

TRIGGER

Trigger Pos: T--------
Store: All Cycles
Prompt Visibility: On

State Ckbegin
If Word

Then Go To State
Trigger

End of State Ckbegin
State 2_instr_group

If Word

Then
Or If

Then
Or If

Incr Counter
Word

Incr Counter
Word

Then Go To State

End of State 2_instr_group
State Endprog

If Anything
Then Do Nothing

End of State Endprog

DAS 9200 92A96SD-1 Setup
Page 1

General Purpose Support

#1ressO 3000
AddressO 3000
Address2 0000
Address2 0
Data XXXXXXXXXX
MBUSMisc XXi
2_instr_group
and store

#4
AddressO
Addressl
Address2
Data
MBUSMisc

#1
#2 =
AddressO
Addressl
Address2
Data
MBUSMisc

#2
#3
AddressO
Addressl
Address2
Data
MBUSMisc
Endprog

XXXX
XXXX
x
XXXXOOXXXX
XXX

XXXX
XXXX
x
XXXXOOX1OX
XXX

3100
0000
0

XX1
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3_instrgp:

3 Sep 1993 15:13

TRIGGER

DAS 9200 92A96SD-1 Setup
Page 

General Purpose Support
Trigger Pos: T--------
Store: All Cycles
Prompt Visibility: On

State Ckbegin
If Word

Then Go To State
Trigger

End of State Ckbegin
State 3_instrgroup

If Word

Then Incr Counter
Or If Word

Then Incr Counter
Or If Word

Then Go To State
End of State 3instrgroup
State End_prog

If Anything
Then Do Nothing

End of State Endprog

#1
AddressO 3000
Addressl 0000
Address2 0
Data XXXXXXXXXX
MBUSMisc XXI
3_instr_group

and store

#4
AddressO
Addressl
Address2
Data
MBUSMisc

#1
#2 =
AddressO
Addressi
Address2
Data
MBUSMisc

#2
#3 =
AddressO
Addressi
Address2
Data
MBUSMisc

End_prog

XXXX
XXXX

XXX

XXXXX

XXXXOOXiX

3100
0000

0
XXXXXXXXXX
XXI
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BRopexec:

3 Sep 1993 15:14 DAS 9200 92A96SD-1 Setup
Page 1

TRIGGER
General Purpose Support

Trigger Pos: T--------
Store: All Cycles
Prompt Visibility: On

State Ck_begin
If Word

Then

End of
State

If

Then
Or I

Then
Or I

Then
End of
State

l Go To State
Trigger

State Ckbegin
BRopexecO

Word

l Go To State
[f Word

l Incr Counter
If Word

Incr Counter
State BRopexecO

#1ress 3000
Addressl 3000
Address2 0000
Address2 0
Data XXXXXXXXXX
MBUSMisc XXi
BRopexecO
and store

#3 =
AddressO 3100
Addressl 0000
Address2 0
Data XXXXXXXXXX
MBUSMisc XXI
Endprog
#2
AddressO XXXX
Addressl XXXX
Address2 X
Data XXXXOOXXXX
MBUSMisc XXX

#1
#4 =
AddressO
Addressl
Address2
Data
MBUSMisc

#2

XXXX
XXXX
X
XX1XOOXXXX
XXX

Endprog
If Anything
Then Do Nothing

End of State Endprog
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BRop-taken:

3 Sep 1993 15:14 DAS 9200 92A96SD-1 Setup
Page i

TRIGGER

Trigger Pos: T--------
Store: All Cycles
Prompt Visibility: On

State Ckbegin
If Word

Then Go To State
Trigger

End of State Ckbegin
State branchtakenO

If Word

Then
Or If

Then
Or If

Go To State
Word

Incr Counter
Word

Then Incr Counter
End of State branchtakenO
State endprog

If Anything
Then Do Nothing

End of State end_prog

General Purpose Support

#1AddressO 3000
AddressO 3000
Addressl 0000
Address2 0
Data XXXXXXXXXX
MBUSMisc XX
branch_takenO
and store

#5
AddressO
Addressi
Address2
Data
MBUSMisc
end_prog
#2
AddressO
Addressl
Address2
Data
MBUSMisc

#1
#3
AddressO
Addressl
Address2
Data
MBUSMisc

#2

3100
0000
0
XXXXXXXXXX
XX1

XXXX
XXXX

XXlXOOXXXX
XXX

XXXX
XXXX

XXX
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Dmisscyc:

3 Sep 1993 15:15 DAS 9200 92A96SD-1 Setup
Page i

TRIGGER
General Purpose Support

Trigger Pos: T--------
Store: All Cycles
Prompt Visibility: On

State Ck_begin
If Word #1 =

Then Go To State
Trigger

End of State Ckbegin
State Data$_miss_cy

If
Then
Or If

Anything
Incr Counter
Word

Then Go To State
Or If Word

Then Incr Counter
End of State Data$_miss_cy
State End_prog

If Anything
Then Do Nothing

End of State Endprog

AddressO 3000
Addressl 0000
Address2 0
Data XXXXXXXXXX
MBUSMisc XXi
Data$_misscy
and store

#1
#3
AddressO
Addressl
Address2
Data
MBUSMisc
Endprog
#2
AddressO
Addressl
Address2
Data
MBUSMisc

#2

3100
0000
0
XXXXXXXXXX
XXi

XXXX
XXXX

XXXXIXXXXX
XXX
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D_ missenvt:

3 Sep 1993 15:16 DAS 9200 92A96SD-1 Setup
Page 1

TRIGGER
General Purpose Support

Trigger Pos: T--------
Store: All Cycles
Prompt Visibility: On

State Ck_begin
If Word

Then Go To State
Trigger

End of State Ck_begin
State D$_miss_evntO

If Anything
Then Incr Counter
Or If Word

Then Go To State
Or If Word

Then Go To State
End of State D$_miss_evntO
State D$_miss_evntl

If Anything
Then Incr Counter
Or If Word

Then
Or If

Go To State
Word

Then Incr Counter
Go To State

End of State D$_missevntl
State Endprog

If Anything
Then Do Nothing

End of State End_prog

AddressO 3000
Address1 0000
Address2 0
Data XXXXXXXXXX
MBUSMisc XX1
D$_miss_evntO
and store

#1
#3 =
AddressO 3100
Addressl 0000
Address2 0
Data XXXXXXXXXX
MBUSMisc XX1
Endprog
#2 =
AddressO XXXX
Address1 XXXX
Address2 X
Data XXXXOXXXXX
MBUSMisc XXX
D$_missevntl

#1
#3 =
AddressO 3100
Addressl 0000
Address2 0
Data XXXXXXXXXX
MBUSMisc XXi
Endprog
#4
AddressO XXXX
Addressl XXXX
Address2 X
Data XXXX1XXXXX
MBUSMisc XXX

#2
D$_missevntO
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FPintrlkcy:

3 Sep 1993 15:16 DAS 9200 92A96SD-1 Setup
Page i

TRIGGER
General Purpose Support

Trigger Pos: T--------
Store: All Cycles
Prompt Visibility: On

State Ck_begin
Word

Then Go To State
Trigger

End of State Ck_begin
State FP_intrlk_cyc

If Anything
Then Incr Counter
Or If Word

Then
Or If

Then
End of State
State End.

Go To State
Word

Incr Counter
FP_intrlk_cyc
_prog

If Anything
Then Do Nothing

End of State End_prog

#1Address 3000
AddressO 3000
Addressl 0000
Address2 0
Data XXXXXXXXXX
MBUSMisc XX1
FP_intrlkcyc
and store

#1
#3
AddressO 3100
Addressl 0000
Address2 0
Data XXXXXXXXXX
MBUSMisc XXI
Endprog
#2ressO XXXX
AddressO XXXX
Address2 XXXX
Address2 X
Data XXXXX1XXXX
MBUSMisc XXX

#2
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FPintrlkev:

3 Sep 1993 15:17

TRIGGER

Trigger Pos: T--------
Store: All Cycles
Prompt Visibility: On

State Ckbegin
If Word

Then Go To State
Trigger

End of State Ckbegin
State FP_intrlkevO

If Anything
Then Incr Counter
Or If Word

Then
Or If

Go To State
Word

Then Go To State
End of State FP_intrlkevO
State FP_intrlk_evl

If Anything
Then Incr Counter
Or If Word

Then
Or If

Go To State
Word

Then Incr Counter
Go To State

End of State FPintrlkevl
State Endprog

If
Then

Anything
Do Nothing

End of State End_prog

DAS 9200 92A96SD-i Setup
Page 1

General Purpose Support

Address 3000
Addressi 3000
Address2 0000
Address2 0
Data XXXXXXXXXX
MBUSMisc XXi
FPintrlkevO
and store

#1
#3
AddressO 3100
Addressl 0000
Address2 0
Data XXXXXXXXXX
MBUSMisc XXi
End_prog
#2
AddressO XXXX
Addressl XXXX
Address2 X
Data XXXXXOXXXX
MBUSMisc XXX

FP_intrlk_evl

#1
#3
AddressO 3100
Addressl 0000
Address2 0
Data XXXXXXXXXX
MBUSMisc XX1
Endprog
#4 =
AddressO XXXX
Addressl XXXX
Address2 X
Data XXXXX1XXXX
MBUSMisc XXX

#2
FPintrlkevO
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FPopexec:

3 Sep 1993 15:17 DAS 9200 92A96SD-1 Setup
Page 1

TRIGGER
General Purpose Support

Trigger Pos: T--------
Store: All Cycles
Prompt Visibility: On

State Ck_begin
If Word

Then

End of

State
If

Then
Or I

Then
Or I

Then
End of
State

If
Then

Go To State
Trigger

State Ckbegin
FPopexecO

Word

Go To State

f Word

Incr Counter
[f Word

Incr Counter
State FPopexecO
Endprog

Anything
Do Nothing

End of State Endprog

#1 =
AddressO
Addressl
Address2
Data
MBUSMisc
FPopexecO
and store

#3 =
AddressO
Addressl
Address2
Data
MBUSMisc
Endprog
#2
AddressO
Addressl
Address2
Data
MBUSMisc
#1
#4 =
AddressO
Addressl
Address2
Data
MBUSMisc

#2
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3000
0000
0
XXXXXXXXXX
XXI

3100
0000
0
XXXXXXXXXX
XXi

xxxx
XXXXXXXX
X
XXXXOOXXXX
XXX

XXXX
XXXX
X
XIXXOOXXXX
XXX
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Imisscyc:

3 Sep 1993 15:18 DAS 9200 92A96SD-1 Setup
Page 1

TRIGGER
General Purpose Support

Trigger Pos: T--------
Store: All Cycles
Prompt Visibility: On

State Ck_begin
If

Then

Word

Go To State
Trigger

End of State Ckbegin
State I$_miss_cycO

If Word

Then
Or If

Then
Or If

Go To State

Word

Incr Counter
Word

Then Incr Counter
End of State I$_misscycO
State

If
Then

endprog
Anything
Do Nothing

End of State end_prog

#1
AddressO 3000
Addressl 0000
Address2 0
Data XXXXXXXXXX
MBUSMisc XXi
I$_misscycO
and store

#4
AddressO
Addressl
Address2
Data
MBUSMisc
end_prog
#2 =
AddressO
Addressl
Address2
Data
MBUSMisc

#1
#3 =
AddressO
Address1
Address2
Data
MBUSMisc

#2

3100
0000
0
XXXXXXXXXX

'xxxx
XXxxXXXXXXXX
XXXXOOXXXX
XXX

XXXX
XXXX
x
XXX1ooXXXX
XXX
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Lmissevnt:

3 Sep 1993 15:18

TRIGGER

Trigger Pos: T--------
Store: All Cycles
Prompt Visibility: On

State Ck_begin
If Word

Then Go To State
Trigger

End of State Ckbegin
State I$_miss_evntO

If Word

Then
Or If

Then
Or If

Go To
Word

State

Incr Counter
Word

Then Go To State
End of State I$_miss_evntO
State I$_miss_envtl

If Word

Then
Or If

Then
Or If

Go To State
Word

Incr Counter
Word

Then Incr Counter
Go To State

End of State I$_miss_envtl
State endprog

If Anything
Then Do Nothing

End of State endprog

DAS 9200 92A96SD-1 Setup
Page 1

General Purpose Support

A#ddresO 3000
Address 30000
Address2 0
Data XXXXXXXXXX
MBUSMisc XXI
I$_miss_evntO

and store

#4
AddressO 3100
Addressl 0000
Address2 0
Data XXXXXXXXXX
MBUSMisc XXi
endprog
#5
AddressO XXXX
Addressl XXXX
Address2 X
Data XXXXOOXXXX
MBUSMisc XXX

#1
#2
AddressO XXXX
Addressl XXXX
Address2 X
Data XXXOXXXXXX
MBUSMisc XXX
I$_miss_envtl

#4
AddressO 3100
Addressl 0000
Address2 0
Data XXXXXXXXXX
MBUSMisc XXi
end_prog
#AddressO XXXX
Addressl XXXX
Address2 XXXX
Address2 X
Data XXXXOOXXXX
MBUSMisc XXX

#1
#3
AddressO XXXX
Addressl XXXX
Address2 X
Data XXX100XXXX
MBUSMisc XXX

#2
I$_miss.evntO
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MEMopexec:

3 Sep 1993 15:19 DAS 9200 92A96SD-1 Setup
Page 1

TRIGGER
General Purpose Support

Trigger Pos: T--------
Store: All Cycles
Prompt Visibility: On

State Ckbegin
If Word

Then Go To State
Trigger

End of State Ck_begin
State MEMop_execO

If Word

Then
Or If

Then
Or If

Then
End of St
State

If
Then

End of St

Go To
Word

State

Incr Counter
Word

Incr Counter
;ate MEMop_execO
Endprog

Anything
Do Nothing

;ate End_prog

#1Address =
AddressO 3000
Addressl 0000
Address2 0
Data XXXXXXXXXX
MBUSMisc XX1
MEMopexecO
and store

#4 =
AddressO 3100
Addressl 0000
Address2 0
Data XXXXXXXXXX
MBUSMisc XXl
Endprog
#2
AddressO XXXX
Addressl XXXX
Address2 X
Data XXXXOOXXXX
MBUSMisc XXX

#1
#3
AddressO XXXX
Addressl XXXX
Address2 X
Data iXXXOOXXXX
MBUSMisc XXX

#2
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"test" code:

Makefile:

TESTFLAGS = -DssiO
ASFLAGS = -P -I../include -I../include2 $(TESTFLAGS)
CC = cc -sun4
OBJECTS = $(SSOURCES:.s=.o) $(CSOURCES:.c=.o)
.C.o:
cc -c -R -01 -I../include -I../include2 $(TESTFLAGS) $< -o $6
all: test
SMALLOBJECTS = test.o
test: $(SMALLOBJECTS)
/bin/ld -N -T 4000 -e --entry -o test $(SMALLOBJECTS) ../lib/libsmall.a
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C Version:

#include<stdio.h>
float cal_sum();

main()

int count = 0;
float sum = 1.5;

while(count < 3)
count++;

sum = cal_sum(sum);
}
float cal_sum(the_sum)

float the_sum;

return (the_sum * 2);
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SPARC Assembly Version (editted):

#include <machine/asm_linkage.h>
#include <machine/mmu.h>
LLO:
.seg "data"
_romp: .word 0
.seg "text"
.proc 04
.global __entry
__entry:

set Ox2000, %o2
mov %o2, %sp
set _romp, %ol
st %oO, %ol]

! set OxiOOOOOO0 , %gl
' sta %gO, [%g010]x36 ! I$ Flash Clear
! sta %gO, [%gi]Ox36

' sta %gO, [%gO]Ox37 ! D$ Flash Clear
' sta %gO, [Ygl]0x37
lda [%g010]x04, %g4
set Ox00000700, %g3
or %g4, %g3, %/,g4
sta %g4, [%gO]Ox04 ! Write to MCNTL
' set Ox4000, %oO ! Set Page Map
! set Ox4ee, %ol
! call _SetPageMap, 2
! nop

lda
set 0x4200, %gl

[%gO]0x04, g4

lda [%gl]Ox06, %g5
ldda [%gO] Ox4c, %g2
or %g3, -1, %g3
stda %g2,[%gO]Ox4c

__triggerO:
set Ox00003000, %gl
stda %gO, [%gl] Ox20

_main:
!#PROLOGUE# 0
! sethi %hi(LF27),%gl
! add %gl,%lo(LF27),%gl
! save %sp,%gl,%sp

mov %sp, %fp
!#PROLOGUE# 1
st gO, [%fp+-Ox4]
sethi %hi(L2000000),%oO
ld [%oO+%lo(L2000000)],%fO
st %fO,[%fp+-Ox8]
L29:
ld [%fp+-0x4],%oO
cmp %oO,Ox3
bge L30
nop
ld [%fp+-Ox4],%ol
add %ol,Oxl,%ol
st %ol,[%fp+-0x4]
b L29
nop
L30:
ld [%fp+-Ox8,%fO
fstod %fO,%f2
st %f2,[%sp+LP27]
ld [%sp+LP27],oO

! Write to action register
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st %f3,[%sp+LP27]
ld [%sp+LP27] ,%o
call _cal_sum,2
nop
fdtos %fO,%f3
st %f3,[%fp+-Ox8]
LE27:
! ret
! restore
__triggerl:

set 0:

stda %,
__exit:

sethi %]
ld [:
ld [~

x00003100, %gl
gO, [%gl] Ox20

hi(_romp),%oO
:o0+%lo(_romp)],%oO
%oO+Ox74],%gl

call %gi,O
nop
LF27 = -112

LP27 = 96
LST27 = 104
LT27 = i04
.seg "data"
.align 4
L2000000: .word Ox3fcOOOO0
.seg "data"
.seg "text"
.proc 07
.global _cal_sum
calsum:
!#PROLOGUE# 0
sethi %hi(LF3i),%gi
add %gl,%lo(LF31),%gl
save %sp,%gl,%sp
!#PROLOGUE# 1
st %iO,[%fp+Ox44]
st %il,[%fp+Ox48]
ld2 [%fp+Ox44],%fO
faddd %fO,%fO,%f2
fmovs %f2,%fO
fmovs %f3,%fl
b LE31
nop
LE31:
ret
restore

LF31 = -64
LP31 = 64
LST31 = 64
LT3 = 64
.seg "data"

/*
* Set the page map entry for the virtual address in the first arg (oO)
* to the entry specified in the second arg (%oi)
* Called as SetPageMap(v_addr, pme)
* ASIMOD Ox4
* ASI_MEM Ox20
*/

ENTRY(SetPageMap)
andn %oO, Ox3, %o2
set RMMUCTPREG, %o05
lda [%o5]ASIMOD, %0oO
set Oxffffc000, %05
and %oO, %05, %o3
sll %o3, Ox4, %o3
set RMMU_CTX_REG, %o5
lda [%o5]ASIMOD, %o4
set OxfffffcOO, %o5

! align on word

! get context table pointer

! get context register

78
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%0o4, %05, %o05
%o5, 2, %o5
%o5, %o3, %o3

%oO, Ox8, %oO
%o4, Oxa, %o4
%04, %oO, %oO
%oO, Ox3f, %o00
%o0, Oxc, %00
%oO, %o3, %o3
[%o3]ASI_MEM, %o00
%o0, Oxi, %05
%05, Ox4, %o3
Oxff000000, %00
%o2, %oO, %oO
%oO, Ox16, %oO
%oO, %o3, %o3

[%o3]ASI_MEM, %o00
%oO, Oxi, %05
%05, Ox4, %o3
OxOOfcOOO0, %00
%0o2, %oO, %oO
'/oO, OxiO, %00
'1oO, %o3, %o3

[%o3]ASI_MEM, %oO
'0oO, Oxi, %05
%o05, Ox4, %o3
OxOOO3f000, %oO
%02, %oO, %oO
00o, OxOa, %oO
00oO, %o3, %o3

%ol, [%o3]ASI_MEM

%o7, %g6
.OnMBus, 0

'%0o, 0
:Leave

,InvalidateEcacheLine,
%o3, %oO

! get region pointer

mask for level 1 offset in vaddr

get 12 pointer offset in 11i table

! get segment pointer

mask for level 2 offset in vaddr

! get 13 pointer offset in 12 table

! get page table pointer

mask for 13 offset in vaddr

get pte addr in 13 table

! store entry to physical address
! save return address

1

! the program

%g6, %07

* Will return 0 in %oO if the processor is connected to VBus or
* not zero if the processor is directly on MBus
*/

ENTRY (OnMBus)
set RMMU_CTL_REG, %o5
ida [%o5]ASI_MOD, %o4 ! get mmu control reg

%o4, CPU_VIK_MB, %oO

* Will invalidate the Ecache line for the address in %00
* Assumes MBus module 0. Will not check ANYTHING, just invalidates

ENTRY
set
andn
set
or
andn
ldda
set

(InvalidateEcacheLine)
Oxfff00000, %05
%oO, %o5, %0o4
Oxff800000, %05
%o05, %o4, %o3
%o3, Ox7, %o3
[%o3]ASI_MXCC, %o4
0x2222, %o2

and
sll
or
srl
srl
or
and
sll
or
lda
andn
sll
set
and
srl
add
lda
andn
sll
set
and
srl
add

lda
andn
sll
set
and
srl
add

sta

mov
call
nop
cmp
bnz
nop
call
mov

leave:

retl
mov

retl
and

79
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andn %o5, %o2, %o5
retl
stda %o4, [%o3JASI_MXCC
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"matrix6" and "matrix200" code:
Makefile:

TESTFLAGS = -DsslO
ASFLAGS = -P -I../include -I../include2 $(TESTFLAGS)
CC = cc -sun4
OBJECTS = $(SSOURCES:.s=.o) $(CSOURCES:.c=.o)
.C.O:
cc -c -R -01 -I../include -I../include2 $(TESTFLAGS) $< -o $6
all: matrix
SMALLOBJECTS = matrix.o
matrix: $(SMALLOBJECTS)
/bin/ld -N -T 4000 -e __entry -o matrix $(SMALLOBJECTS) ../lib/libsmall.a
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C Version:

/* This is a sample Matrix Multiplication program */
#include<stdio.h>
#define NCOL 6 /* Number of columns and rows for this particular matrix */
#define NROW 6
/* function prototypes */
void initrow();
void init_col();
void cal_sum();
void printresult();
float sum[NROW][NCOL], row[NROW], column[NCOL];

main()
{

int i;
/* sum is the 2-d array holding the result of multiplying the two 1-d */
/* arrays: row[NROW] and column[NCOL] */

init_row(&row[O]); /* initialize the row[] matrix */
init_col(&column[O]); /* initialize the column[] matrix */
cal_sum(&sum[O] [0], &row[O], &column[O]); /* calculate the result of row[] x column[] */

}

/* initialize the row[] matrix */
void init_row(therow)

float *therow;
{

int i;
float a;
for(i = O, a = 0 ; i < NROW ; i++, a++)

{
*(therow + i) = (a / 2);

}

/* initialize the column[] matrix */
void init_col(the_col)

float *the_col;
{

int i;
for(i = 0 ; i < NCOL ; i++)

*(the_col + i) = (i * 2 - 5);
}

/* calculate the result of row) x column[] and stores it in sum[] */
void cal_sum(thesum, therow, thecol)

float *thesum, *the_row, *thecol;

float temp;
int i, j;

for(j = 0 ; j < NROW ; j++)

{
for(i = 0 ; i < NCOL ; i++)

temp = (*(the_row + j)) * (*(the_col + i));
*(thesum + j * NCOL + i) = temp;

/******************************************************************************
* cc matrix.c -o matrix
* NROW = NCOL = 6
* hagar% matrix
I-1
0.000000
0.500000
1.000000
1.500000
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2.000000
2.500000
I-I

[ -5.000000 -3.000000 -1.000000 1.000000 3.000000 5.000000 
-0.000000 -0.000000 -0.000000 0.000000 0.000000 0.000000
-2.500000 -1.500000 -0.500000 0.500000 1.500000 2.500000
-5.000000 -3.000000 -1.000000 1.000000 3.000000 5.000000
-7.500000 -4.500000 -1.500000 1.500000 4.500000 7.500000
-10.000000 -6.000000 -2.000000 2.000000 6.000000 10.000000
-12.500000 -7.500000 -2.500000 2.500000 7.500000 12.500000
$***********************************************************
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SPARC Assembly Version:

#include <machine/asm_linkage.h>
#include <machine/mmu.h>
LLO:
.seg "data"
.common _i,0x4,"data"
.common _sum, 0x27100,"data"
.common _row, 0x320,"data"
.common _column,0x320, "data"
_romp: .word 0
.seg "text"
.proc 04
.global _main

.global __entry
__entry:

set
mov
set
st
lda
set
or
sta

lda
set
lda

ldda
or
stda

__triggerO:
set
stda

Ox2000, %o2
%o2, %sp
_romp, %ol
%oO, [%ol]

[%gO]x04, %g4
Ox00000700, %g3

%g4, %g3, %g4
%g4, [%gO]0x04

[%gO]Ox04, %g4
0x4200, %gl

[%gl]Ox06, %gS

[%g] Ox4c, %g2

%g3, -1, %g3
yg2, %gO]0x4c

! Write to MCNTL

! Write to action register

Ox00003000, %gl
%gO, [%gl] Ox20

_main:
!#PROLOGUE# 0
! sethi %hi(LF34),%gl
! add %gl,%lo(LF34),%gl
! save %sp,%gl,%sp

mov %sp, %fp
!#PROLOGUE# 1
set _row,%oO
call _init_row,l
nop
set _column,%oO
call _init_col,J
nop
set _sum,%oO
set _row,%ol
set _column,%o2
call _cal_sum,3
nop
LE34:

ret
restore

__triggeri:
set
stda

__exit:
sethi
ld
ld
call
nop
LF34 = -'

LP34 = 96
LST34 = 96

0x00003100, %gl
%gO, [%gl] Ox20

%hi(_romp),%oO
[%oO+%lo(_romp)],%oO
[%.oO+0x74],%g
.%gi,0

96

84
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LT34 = 96
.seg "data"
.seg "text"
.proc 020
.global _init._row
_initrow:
!#PROLOGUE# 0
sethi %hi(LF36),%gi
add %gl,%lo(LF36),%gl
save %sp,%gl,%sp
!#PROLOGUE# 1
st %iO,[%fp+Ox44]
st %gO,[%fp+-Ox4]
sethi %hi(L2000000),%oO
ld [%o0+%lo(L2000000)],%fO
st %fO,[%fp+-Ox8]
L40:
ld [%fp+-0x4],%oi
cmp %o1,0xc8
bge L39
nop
sethi %hi(L2000001),%oO
ldd [%oO+%lo(L2000001)],%fO
ld [%fp+-Ox8],%f2
fstod %f2,%f4
fdivd %f4,%fO,%f6
fdtos %f6,%f7
ld [%fp+-Ox4],%ol
sll %o1,0x2,%o2
ld [%fp+Ox44],%o3
st %f7,[%o3+%o2]
L38:
ld [%fp+-Ox4],%o4
add %o4,0x1,%o4
st %o4,[%fp+-0x4]
sethi %hi(L2000002),%o5
ld [%o5+%lo(L:2000002)],%f8
ld [%fp+-Ox8] ,%f9
fadds %f9,%f8,%f9
st %f9,[%fp+-Ox8]
b L40
nop
L39:
LE36:
ret
restore

LF36 = -72
LP36 = 64
LST36 = 64
LT36 = 64
.: seg "data"
.align 4
L:2000000: .word OxO
.align 8
L2000001: .word Ox40000000,OxO
.align 4
L2000002: .word Ox3f800000
.seg "data"
.seg "text"
.proc 020
.global _init.col
_init col:
!#PROLOGUE# 0
sethi %hi(LF4i) ,%gi
acid %gl,%lo(LF41),%gl
save %sp, %gi,sp
!#PROLOGUE# 1
st %iO, [%fp+0x441
st %gO, [%fp+-Clx4]
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L45:
ld [%fp+-0x4],%o0

cmp %oO,Oxc8
bge L44
nop
ld [%fp+-Ox4],%o0
sll %o0,0x1,%ol
sub %ol,Ox5,%o2
st %o2,[%sp+LP41]
ld [%sp+LP41] ,%fO

fitos %fO,%fl
ld [%fp+-Ox4],%o3
sll %o3,0x2,%o4
ld [%fp+Ox44],%o5
st %fl,[%o5+%o4]
L43:
ld [%fp+-Ox4],%o7

add %o7,Oxl,%o7
st %o7,[%fp+-Ox4]
b L45
nop
L44:
LE41:
ret
restore

LF41 = -80
LP41 = 64
LST41 = 72
LT41 = 72
.seg "data"
.seg "text"
.proc 020
.global _cal_sum
cal_sum:
!#PROLOGUE# 0
sethi %hi(LF46),%gi
add %gl,%lo(LF46),%gi
save %sp,%gl,%sp
!#PROLOGUE# 1
st %iO,[%fp+Ox44]
st %il,[%fp+Ox48]
st %i2,[%fp+0x4c]
st %gO,[%fp+-Oxc]
L50:
ld [%fp+-Oxc],%o0
cmp %oO,Oxc8
bge L49
nop
st %gO,[%fp+-Ox8]
L53:
ld [%fp+-Ox8],%oO

cmp %oO,Oxc8
bge L52
nop
ld [%fp+-Ox8],%o0
sll %o0,0x2,%ol
ld [%fp+Ox4c],%o2
ld [%o2+%ol] ,%fO
fstod %fO,%f2
ld [%fp+-Oxc],%o3
sl %o3,0x2,%o4
ld [%fp+Ox48],%o5
ld [%o5+%o41,%f4
fstod %f4,%f6
fmuld %f6,%f2,%f8
fdtos %f8,%f9
st %f9,[%fp+-Ox4]
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ld [%fp+-Oxc],%o7
sll %o7,5,%o7
mov %o7,%10
sll %10,3,%10
add %o7,%10,%o7
sil %10,1,%10
add %o7,%10,%o7
ld [%fp+Ox44],%11
add %11,%o7,%12
ld E%fp+-Ox8] ,%13
sll %13,0x2,%14
ld [%fp+-Ox4],%15
st %15, [%12+%:14]
L51:
id [%fp+-Ox8] ,16
add %16,0xl,%16
st %16,[%fp+-lx8]
b L53
nop
L52:
L48:
ld [%fp+-Oxc],%17
add %17,Oxl,%L7
st %17,[%fp+-Oxc]
b L50nop
L49:
LE46:ret
restore

LF46 = -80
LP46 = 64
LST46 = 64
LT46 = 64
.seg "data"

87
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"dhry" code:

Makefile:

TESTFLAGS = -DsslO
ASFLAGS = -P -I../include -I../include2 $(TESTFLAGS)
CC = cc -sun4
OBJECTS = $(SSOURCES:.s=.o) $(CSOURCES:.c=.o)
.C.O:
cc -c -R -01 -I../include -I../include2 $(TESTFLAGS) $< -o $6
all: dhry
SMALLOBJECTS = dhryl.o dhry_2.o multiply.o string.o
dhry: $(SMALLOBJECTS)
/bin/ld -N -T 4000 -e __entry -o dhry $(SMALLOBJECTS) ../lib/libsmall.a
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C Version:

*******************************************************

* Version:

* File:

* Date:

"DHRYSTONE" Benchmark Program

C, Version 2.1

dhryl.c (part 2 of 3)

May 25, 1988

* Author: Reinhold P. Weicker

****************************************************************************
*/

#include "dhry.h"
/* #include "/projects/numesh/sparc/include/fifo.h" */
/* Global Variables: */
Rec_Pointer PtrGlob,

Next_Ptr_Glob;
int Int_Glob;
Boolean BoolGlob;
char Ch_l_Glob,

Ch_2_Glob;
int Arrl_Glob [50];
int Arr_2_Glob [50] [50];
#ifdef MALLOC
extern char *malloc ();
#endif
Enumeration Func_1 ();

/* forward declaration necessary since Enumeration may not simply be int */
#ifndef REG

Boolean Reg = false;
#define REG

/* REG becomes defined as empty */
/* i.e. no register variables */

#else
Boolean Reg = true;

#endif
/* variables for time measurement: */
#ifdef TIMES
struct tms timeinfo;
/* don't define times() at all... int is default, and sometimes broken

(as on sun os 4's, where it's clockt */
/* extern int times ();

/* see library function "times" */
#define TooSmallTime (2*HZ)

/* Measurements should last at least about 2 seconds */
#endif
#ifdef TIME
extern long time();

/* see library function "time" */
#define TooSmall_Time 2

/* Measurements should last at least 2 seconds */
#endif
#ifdef MSCCLOCK
extern clock_t clock();
#define Too_Small_Time (2*HZ)
#endif
long Begin_Time,

float

/* end of varial
One_Fift

REG OneFift
One_Fift

REG char

End_Time,
UserTime;
Microseconds,
DhrystonesPer_Second;
bles for time measurement */
;y Int_l_Loc;
;y Int_2_Loc;
;y Int_3_Loc;

ChIndex;

89
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Enumeration EnumLoc;
Str_30 Str_l_Loc;
Str_30 Str_2_Loc;

REG int Run_Index;
REG int NumberOfRuns;

main ()
/*****/
/* main program, corresponds to procedures */
/* Main and Proc_O in the Ada version

/* Initializations */
#ifdef MALLOC

Next_Ptr_Glob = (Rec_Pointer) malloc (sizeof (Rec_Type));
PtrGlob = (Rec_Pointer) malloc (sizeof (Rec_Type));

#else
static Rec_Type _NextGlob, _Glob;
NextPtrGlob = &_NextGlob;
PtrGlob = &Glob;

#endif
Ptr_Glob->Ptr_Comp = Next_Ptr_Glob;
PtrGlob->Discr = Ident_1;
PtrGlob->variant.varl.Enum_Comp = Ident_3;
Ptr_Glob->variant.varl.IntComp = 40;
strcpy (PtrGlob->variant.var_l.StrComp,

"DHRYSTONE PROGRAM, SOME STRING");
strcpy (StrlLoc, "DHRYSTONE PROGRAM, 1'ST STRING");
Arr_2_Glob [8][7] = 10;

/* Was missing in published program. Without this statement, */
/* Arr_2_Glob [8] [7 would have an undefined value. */
/* Warning: With 16-Bit processors and Number_Of_Runs > 32000, */
/* overflow may occur for this array element. */

/*
printf ("\n");
printf ("Dhrystone Benchmark, Version 2.1 (Language: C)\n");
printf ("\n");
if (Reg)

printf ("Program compiled with 'register' attribute\n");
printf ("\n");

}
else

printf ("Program compiled without 'register' attribute\n");
printf ("\n");

#ifndef NUMRUNS
#define NUMRUNS 1000000
#endif
#ifdef NUMRUNS

Number_Of_Runs = NUMRUNS;
#else

printf ("Please give the number of runs through the benchmark: ");
{
int n;
scanf ("%d", &n);
Number_Of_Runs = n;

}
printf ("\n");

#endif
/* printf ("Execution starts, %d runs through Dhrystone\n", Number_OfRuns);*/
/* write_fifo(NumberOfRuns); */

/***************/
/* Start timer */
/***************/

#ifdef TIMES
times (&time_info);
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Begin_Time = (long) time_info.tms_utime;
#endif
#ifdef TIME

BeginTime = time ( (long *) 0);
#endif
#ifdef MSCCLOCK

Begin_Time = clock();
#endif

for (Run_Index = 1; Run_Index <= Number_Of_Runs; ++Run_Index)

Proc_5();
Proc_4();

/* Ch_i_Glob == 'A', Ch_2_Glob == 'B', Bool_Glob == true */
Int_i_Loc = 2;
Int_2_Loc = 3;
strcpy (Str_2_Loc, "DHRYSTONE PROGRAM, 2'ND STRING");
Enum_Loc Ident_2;
BoolGlob = ! Func_2 (Str_i_Loc, Str_2_Loc);
/* BoolGlob == 1 */

while (Int_1_Loc < Int_2_Loc) /* loop body executed once */
{
Int_3_Loc = 5 * Int_i_Loc - Int_2_Loc;

/* Int_3_Loc == 7 */
Proc_7 (Int_i_Loc, Int_2_Loc, &Int_3_Loc);

/* Int_3_Loc == 7 */
Int_i_Loc += 1;

} /* while */
/* Int_i_Loc == 3, Int_2_Loc == 3, Int_3_Loc == 7 */

Proc_8 (Arr_i_Glob, Arr_2_Glob, Int_i_Loc, Int_3_Loc);
/* Int_Glob == 5 */

Proc_i (Ptr_Glob);
for (Ch_IrLdex = 'A'; Ch_Index <= Ch_2_Glob; ++Ch_Index)

/* loop body executed twice */

if (Enum_Loc == Func_i (Ch_Index, 'C'))
/* then, not executed */

Proc_6 (Ident_i, &Enum_Loc);
strcpy (Str_2_Loc, "DHRYSTONE PROGRAM, 3'RD STRING");
Int_2_.Loc = Run_Index;
Int_Glob = Run_Index;
}

/* Int_i_Loc == 3, Int_2_Loc == 3, Int_3_Loc == 7 */
Int_2_Loc = Int_2_Loc * Int_l_Loc;
Int_i_Loc = Int_2_Loc / Int_3_Loc;
Int_2_Loc = 7 * (Int_2_Loc - Int_3_Loc) - Int_i_Loc;

/* Int_ 1_Loc == 1, Int_2_Loc == 13, Int_3_Loc 7 */
Proc_2 (&Int_i_Loc);

/* Int_i1_Loc == 5 */
} /* loop "for Run_Index" */
/************** /
/* Stop timer */
/ ** ************/

:ifdef TIMES
times (&timeinfo);
End_Time = (long) timeinfo.tms_utime;

#endif
#ifdef TIME
End_Time = time ( (long *) 0);

#endif
#ifdef MSCCLOCK

End_Time = clock();
#endif
,/*

printf ("Execution ends\n");
printf ("\n");
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("Final values of the

("\n");
("IntGlob:
(" should be:
("Bool_Glob:

(" should be:
("ChlGlob:
(" should be:
("Ch_2_Glob:
(" should be:
("ArrlGlob[8]:
(" should be:
("Arr_2_Glob[8] [7]:
(" should be:
("Ptr_Glob->\n");
(" Ptr_Comp:
(" should be:
(" Discr:
(" should be:
(" Enum_Comp:
(" should be:
(" Int_Comp:
(" should be:
(" Str_Comp:
(" should be:
("Next_Ptr_Glob->\n");
(" Ptr_Comp:
(" should be:
(" Discr:

should be:
(" EnumComp:

should be:
(" Int_Comp:

should be:
(" Str_Comp:

should be:
("Int_l_Loc:
(" should be:
("Int_2_Loc:
(" should be:
("Int_3_Loc:
(" should be:
("EnumLoc:
(" should be:
("StrlLoc:
(" should be:
("Str_2_Loc:
(" should be:
("\n");

variables used in the benchmark:\n");

%d\n", IntGlob);
%d\n", 5);
%d\n", BoolGlob);
%d\n", 1);
%c\n", Ch_l_Glob);
%c\n", 'A');
%c\n", Ch_2_Glob);
%c\n", 'B');
%d\n", Arr_l_Glob[8]);

%d\n", 7);
%d\n", Arr_2_Glob[8] [7]);
Number_Of_Runs + lO\n");

%d\n", (int) Ptr_Glob->Ptr_Comp);
(implementation-dependent)\n");
%d\n", Ptr_Glob->Discr);
%d\n", 0);
%d\n", Ptr_Glob->variant.var_l.Enum_Comp);
%d\n", 2);
%d\n", PtrGlob->variant.var_l.Int_Comp);
%d\n", 17);
%s\n", PtrGlob->variant.var_l.Str_Comp);
DHRYSTONE PROGRAM, SOME STRING\n");

%d\n", (int) Next_Ptr_Glob->Ptr_Comp);
(implementation-dependent), same as above\n");
%d\n", Next_Ptr_Glob->Discr);
%d\n", 0);
%d\n", NextPtr_Glob->variant.varl.EnumComp);
%d\n", 1);
%d\n", Next_Ptr_Glob->variant.var_l.IntComp);
%d\n", 18);
%s\n",
NextPtrGlob->variant.var_l.StrComp);
DHRYSTONE PROGRAM, SOME STRING\n");
%d\n", IntliLoc);
%d\n", 5);
%d\n", Int_2_Loc);
%d\n", 13);
%d\n", Int_3_Loc);
%d\n", 7);
%d\n", Enum_Loc);

%d\n", 1);
%s\n", Str_l_Loc);
DHRYSTONE PROGRAM, 1'ST STRING\n");
%s\n", Str_2_Loc);
DHRYSTONE PROGRAM, 2'ND STRING\n");

/* write_fifo(-1); */
UserTime = End_Time - Begin_Time;

#if defined(TIME) II defined(TIMES) I defined(MSC_TIME)
if (User_Time < Too_Small_Time)

printf ("Measured time too small to obtain meaningful results\n");
printf ("Please increase number of runs\n");
printf ("\n");

}
else
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{
#ifdef TIME

Microseconds = (float) User_Time * Mic_secsPer_Second
/ (float) NumberOfRuns;

Dhrystones_Per_Second = (float) Number_Of_Runs / (float) UserTime;
#else

Microseconds = (float) User_Time * Mic_secs_Per_Second
/ ((float) HZ * ((float) Number_Of_Runs));

Dhrystones_Per_Second = ((float) HZ * (float) NumberOfRuns)
/ (float) User-Time;

#endif
printf ("Microseconds for one run through Dhrystone: ");
printf ("%6.lf \n", Microseconds);
printf ("Dhrystones per Second: ");
printf ("%6.lf \n", DhrystonesPer_Second);
printf ("\n");

}
#endif
/* return(O); */
}
Procl (PtrValPar)

REG Rec_Pointer PtrValPar;
/* executed once */

{
REG RecPointer Next_Record = PtrVal_Par->Ptr_Comp;

/* == Ptr_Glob_Next */
/* Local variable, initialized with Ptr_ValPar->Ptr_Comp, */
/* corresponds to "rename" in Ada, "with" in Pascal
structassign (*Ptr_ValPar->Ptr_Comp, *PtrGlob);
Ptr_Val_Par->variant.var_l.Int_Comp = 5;
NextRecord->variant.vari.IntComp

= Ptr_Val_Par->variant.varl.IntComp;
NextRecord->Ptr_Comp = PtrValPar->Ptr_Comp;
Proc_3 (&NextRecord->Ptr_Comp);

/* PtrValPar->Ptr_Comp->PtrComp
== PtrGlob->Ptr_Comp */

if (NextRecord->Discr == Ident_l)
/* then, executed */

{
NextRecord->variant.varl.Int_Comp = 6;
Proc_6 (Ptr_Val_Par->variant.var_l.EnumComp,

&NextRecord->variant.var_l.EnumComp);
NextRecord->Ptr_Comp = PtrGlob->Ptr_Comp;
Proc_7 (NextRecord->variant.var_l.Int_Comp, 10,

&NextRecord->variant.vari.Int_Comp);
}
else /* not executed */

structassign (*Ptr_Val_Par, *PtrVal_Par->Ptr_Comp);
} /* Procl */
Proc_2 (IntPar_Ref)
/******************/

/* executed once */
/* *Int_Par_Ref == 1, becomes 4 */

One_Fifty *Int_Par_Ref;
{
OneFifty IntLoc;
Enumeration Enum_Loc;
IntLoc = *Int_Par_Ref + 10;
do /* executed once */

if (Ch_l_Glob == 'A')
/* then, executed */

{
Int_Loc -= 1;
*Int_Par_Ref = IntLoc - Int_Glob;
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EnumLoc = Ident_i;
} /* if */

while (Enum_Loc != Ident_1); /* true */
} /* Proc_2 */
Proc_3 (PtrRefPar)
/******************/

/* executed once */
/* Ptr_Ref_Par becomes Ptr_Glob */

Rec_Pointer *Ptr_Ref_Par;
{

if (Ptr_Glob != Null)
/* then, executed */
*Ptr_Ref_Par = Ptr_Glob->PtrComp;

Proc_7 (10, Int_Glob, &Ptr_Glob->variant.var_. Int_Comp);
} /* Proc_3 */
Proc_4 () /* without parameters */
/*******/

/* executed once */
{

Boolean BoolLoc;
Bool_Loc = ChiGlob == 'A';
BoolGlob = Bool_Loc I BoolGlob;
Ch_2_Glob = 'B';

} /* Proc_4 */
Proc_5 () /* without parameters */
/*******/

/* executed once */

ChlGlob = 'A';
Bool_Glob = false;

} /* Proc_5 */
/* Procedure for the assignment of structures,
/* if the C compiler doesn't support this feature */

#ifdef NOSTRUCTASSIGN
memcpy (d, s, 1)
register char *d;
register char *s;
register int 1;

while (1--) *d++ = *s++;
}
#endif

/*

* "DHRYSTONE" Benchmark Program

* Version: C, Version 2.1

* File: dhry_2.c (part 3 of 3)

* Date: May 25, 1988

* Author: Reinhold P. Weicker

*/
#include "dhry.h"
#ifndef REG
#define REG

/* REG becomes defined as empty */
/* i.e. no register variables */

#endif
extern int Int_Glob;
extern char Ch_i_Glob;

Proc_6 (EnumValPar, Enum_Ref_Par)

/* executed once */
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/* Enum_ValPar == Ident_3, EnumRef_Par becomes Ident_2 */
Enumeration Enum_Val_Par;
Enumeration *Enum_Ref_Par;

*Enum_Ref_Par = Enum_Val_Par;
if (! Func_3 (Enum_ValPar))

/* then, not executed */
*EnumRef_Par = Ident_4;

switch (Enum_Val_Par)

case Ident_i:
*Enum_RefPar = Identi;
break;

case Ident_2:
if (Int_Glob > 100)
/* then */

*Enum_Ref_Par = Ident_i;
else *EnumRef_Par = Ident_4;
break;

case Ident_3: /* executed */
*Enum_Ref_Par = Ident_2;
break;

case Ident_4: break;
case Ident_5:

*Enum_Ref_Par = Ident_3;
break;

} /* switch */
} /* Proc_6 */
Proc_7 (Int_l_Par_Val, Int_2_ParVal, Int_ParRef)

/* executed three times
/* first call: Int_iPar_Val == 2, Int_2_Par_Val == 3, */

Int_ParRef becomes 7 */
/* second call: Int_i_Par_Val == 10, Int_2_Par_Val == 5, */

Int_Par_Ref becomes 17 */
/* third call: IntiParVal == 6, Int_2_Par_Val == 10, */

Int_Par_Ref becomes 18 */
OneFifty Int_il_Par_Val;
OneFifty Int_2_ParVal;
One_Fifty *Int_ParRef;

One_Fifty IntLoc;
IntLoc = Int_i_ParVal + 2;
*Int_Par_Ref = Int_2_ParVal + IntLoc;

} /* Proc_7 */
Proc_8 (Arr_l_Par_Ref, Arr_2_Par_Ref, Int_l_Par_Val, Int_2_Par_Val)

/* executed once */
/* Int_Par_Val_i == 3 */
/* IntPar_Val_2 == 7 */

Arr_i_Dim Arr_l_Par_Ref;
Arr_2_Dim Arr_2_Par_Ref;
int Int_i_Par_Val;
int Int_2_Par_Val;

REG OneFifty Int_Index;
REG OneFifty Int_Loc;
Int_Loc = Int__Par_Val + 5;
Arr_i_ParRef [Int_Loc] = Int_2_ParVal;
ArrlParRef [Int_Loc+l] = Arr_l_ParRef [IntLoc];
ArrlPar_Ref [Int_Loc+30] = Int_Loc;
for (Int_Index = IntLoc; Int_Index <= Int_Loc+l; ++IntIndex)

Arr_2_Par_Ref [Int_Loc] [Int_Index] = IntLoc;
Arr_2_ParRef [Int_Loc] [Int_Loc-1] += 1;
Arr_2_ParRef [Int_Loc+20] [Int_Loc] = Arr_iParRef [Int_Loc];
Int_Glob = 5;

} /* Proc_8 */
Enumeration Funcl (ChlParVal, Ch_2_Par_Val)
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/**************************************************
/* executed three times */
/* first call: Ch_i_Par_Val == 'H', Ch_2_Par_Val == 'R' *
/* second call: ChiPar_Val == 'A', Ch_2Par_Val == 'C' */
/* third call: Ch_i_Par_Val == 'B', Ch_2_Par_Val == 'C' */

Capital_Letter Ch_1_Par_Val;
Capital_Letter Ch_2_Par_Val;

Capital{Letter ChiLoc;
Capital_Letter Ch_2_Loc;
Ch_l_Loc = Ch_i_Par_Val;
Ch_2_Loc = Ch_l_Loc;
if (Ch_2_Loc != Ch_2_Par_Val)
/* then, executed */
return (Ident_1);

else /* not executed */

Ch_i_Glob = Ch_i_Loc;
return (Ident_2);

}
} /* Func_i */
Boolean Func_2 (Str_i_Par_Ref, Str_2_Par_Ref)

/* executed once */
/* Str_l_Par_Ref == "DHRYSTONE PROGRAM, 1'ST STRING" */
/* Str_2_Par_Ref == "DHRYSTONE PROGRAM, 2'ND STRING" */

Str_30 Str_l_Par_Ref;
Str_30 Str_2_Par_Ref;
{
REG One_Thirty Int_Loc;

Capital_Letter Ch_Loc;
Int_Loc = 2;
while (Int_Loc <= 2) /* loop body executed once */

if (Func_1 (Str_l_Par_Ref[Int_Loc],
Str_2_Par_Ref[Int_Loc+1]) == Ident_i)

/* then, executed */
{

Ch_Loc = 'A';
Int_Loc += 1;

} /* if, while */
if (Ch_Loc >= 'W' && Ch_Loc < 'Z')
/* then, not executed */
Int_Loc = 7;

if (Ch_Loc == 'R')
/* then, not executed */
return (true);

else /* executed */
{

if (strcmp (Str__lPar_Ref, Str_2_Par_Ref) > 0)
/* then, not executed */

{
Int_Loc += 7;
Int_Glob = Int_Loc;
return (true);

}
else /* executed */

return (false);
} /* if Ch_Loc */

} /* Func_2 */
Boolean Func_3 (Enum_Par_Val)
/*****************************

/* executed once */
/* Enum_Par_Val == Ident_3 */

Enumeration Enum_Par_Val;

Enumeration Enum_Loc;
Enum_Loc = Enum_Par_Val;
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if (Enum_Loc == Ident_3)
/* then, executed */
return (true);

else /* not executed */
return (false);

} /* Func_3 */
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SPARC Assembly Version (editted):

#include <machine/asm_linkage.h>
#include <machine/mmu.h>
LLO:
.seg "data"
_romp: .word 0
.common _Ptr_Glob,Ox4,"data"
.common _Next_Ptr_Glob,Ox4,"data"
.common _Int_Glob,Ox4, "data"
.common _Bool_Glob,Ox4, "data"
.common _Ch_1_Glob,Oxl,"data"
.common _Ch_2_Glob,Oxl,"data"
.common _Arr_l_Glob, Oxc8,"data"
.common _Arr_2_Glob,0x2710,"data"
.align 4
.global _Reg
_Reg:
.word OxO
.common _Begin_Time,Ox4, "data"
.common _End_Time,Ox4,"data"
.common _User_Time,Ox4,"data"
.common _Microseconds,Ox4, "data"
.common _Dhrystones_Per_Second,Ox4,"data"
.common _Int__Loc,Ox4, "data"
.common _Int_2_Loc,Ox4, "data"
.common _Int_3_Loc,Ox4, "data"
.common _Ch_Index,Oxl, "data"
.common _Enum_Loc,Ox4,"data"
.common _Str_1_Loc,Oxlf,"data"
.common _Str_2_Loc,Oxlf,"data"
.common _Run_Index,Ox4,"data"
.common _Number_Of_Runs,Ox4,"data"
.seg "text"
.proc 04
.global _main

.global __entry
__entry:

set Ox20000, %o2
mov %o2, %sp
set _romp, %ol
st %oO, [%ol]
ida [%gO]Ox04, %g4
set Ox00000700, %g3
or %g4, %g3, %g4
sta %g4, [%g1O]0x04 ! Write to MCNTL

Ida [%gO]Ox04, g4
set 0x4200, %gl
lda [%gl]Ox06, %g5

ldda [%gO] Ox4c, %g2
or %g3, -1, %g3
stda %g2,[%gO]Ox4c ! Write to action register

main:
T#PROLOGUE# 0
i sethi %hi(LF50),%gl
' add %gl,%lo(LF50),%gl
i save %sp,%gl,%sp

mov %sp, %fp
!#PROLOGUE# 1
.seg "bss"
.align 4
L52: .skip 48
.seg "text"
.seg "bss"
.align 4
L53: .skip 48
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.seg "text"
set L52,%oO
sethi %hi(_Next_Ptr_Glob),%ol
st %oO,[%o+%lo(_Next_Ptr_Glob)]
set L53,%o2
sethi %hi(_PtrGlob),%o3
st %o2,[%o3+%lo(_Ptr_Glob)]
sethi %hi(_Ptr_Glob),%o4
d [.%o4+%lo(_Ptr_Glob)],%o4
sethi %hi(_Next_Ptr_Glob),%o5
id %o5+%lo(_Next_Ptr_Glob)] ,%o
st %o5,[%o4]
sethi %hi(_Ptr_Glob),%o7
d [.%o7+%lo(_PtrGlob)] ,.o7

st %gO,[%o7+0x4]
sethi %hi(_Ptr_Glob) ,%lO
Id [%lO+%lo(_Ptr_Glob)],%10
mov Ox2,%ll
st %l11,[%lO+Ox8]
sethi %hi(_Ptr_Glob),%12
id [%12+%lo(_Ptr_Glob)],%12
mov 0x28,%13
st %13, [Y.12+Oxc]
.seg "datal"
L55:
.ascii "DHRYSTONE PROGRAM, SOME STRING\O"
.seg "text"
sethi %hi(_Pt:r_Glob),%oO
Id [%oO+%lo(_:Ptr_Glob)] ,YoO
add %oO,OxlO,%oO
set L55,%ol
call _strcpy,2
nop
.seg "datai"
L56:
.ascii "DHRYSTONE PROGRAM, 'ST STRING\O"
.seg "text"

set _Str_i_Loc,,%oO
set L56,%ol
call _strcpy,:2
nop
mov Oxa,%14
sethi %hi(_Ar:r_2_Glob+Ox65c),%15
st %14, [%15+%:Lo(_Arr_2_Glob+Ox65c)]
_triggerO:

set Ox00003000, %gl

stda %gO, [%gl] Ox20

set Oxf4240,%:16
sethi %hi(_Number_Of_Runs),%17
st %16,[%17+%:Lo(_Number_Of_Runs)]
mov Oxl,%iO
sethi %hi(_Run_Index),%il
st %iO,[%il+%lo(_Run_Index)]
sethi %hi(_Run_Index),%i2
ld [%i2+%lo(_RunIndex)] ,%i2
sethi %hi(_Number_Of_Runs),%i3
ld [%i3+%lo(_Number_Of_Runs)] ,i3
cmp %i2,%i3
bg L58
nop
L59:
call _Proc_5,0
nop
call _Proc_4,0
nop
mov Ox2,%oO
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sethi %hi(_IntiLoc),%ol
st %oO,[%o1+%lo(_IntlLoc)]
mov 0x3,%o2
sethi %hi(_Int_2_Loc),%o3
st %o2,[%o3+%lo(_Int_2_Loc)]
.seg "datal"
L62:
.ascii "DHRYSTONE PROGRAM, 2'ND STRING\O"
.seg "text"
set _Str_2_Loc,%oO
set L62,%ol
call _strcpy,2
nop
mov Oxl,%o4
sethi %hi(_Enum_Loc),%o5
st %o4,[%o5+%lo(_EnumLoc)1
set _Str_1_Loc,%oO
set _Str_2_Loc,%ol
call _Func_2,2
nop
tst %o0
bne L2000000
nop
mov 1,%o7
b L2000001
nop
L2000000:
mov 0,%o7
L2000001:
sethi %hi(_Bool_Glob),%10
st %o7,[%10+%lo(_Bool_Glob)]
sethi %hi(_Int_l_Loc),%ll
ld [%l11+%lo(_Int_l_Loc)] ,%l1
sethi %hi(_Int_2_Loc),%12
ld [%12+%lo(_Int_2_Loc)],%12
cmp %11,%12
bge L65
nop
L66:
sethi %hi(_Int_l_Loc),%oO
ld [%oO+%lo(_Int_l_Loc)],%oO
mov %o0,%ol
sll %ol,2,%ol
add %o0,%o1,%oO0
sethi %hi(_Int_2_Loc),%o2
ld [%o2+%lo(_Int_2_Loc)1,%o2
sub %oO,%o2,%o3
sethi %hi(_Int_3_Loc),%o4
st %o3,[%o4+%lo(_Int_3_Loc)]
sethi %hi(_Int_l_Loc),%oO
ld [%oO+%lo(_Int_l_Loc)],%oO
sethi %hi(_Int_2_Loc),%ol
ld [%ol+%lo(_Int_2_Loc)],%ol
set _Int_3_Loc,%o2
call _Proc_7,3
nop
sethi %hi(_Int_l_Loc),%o5
ld [%o5+%lo(_Int_l_Loc)],%o5
add %o5,0xl,%o5
sethi %hi(_Int_l_Loc),%o7
st %o5,[%o7+%lo(_Int_l_Loc)1
L64:
sethi %hi(_Intli_Loc),%10
ld [%10+%1o(_IntlLoc)1,%10
sethi %hi(_Int_2_Loc),%l1
ld ['.l+%lo(_Int_2_Loc)],%li
cmp %10,%1
bl L66
nop
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.L65:
set _Arr_ _Glob,%oO
set _Arr_2_G:Lob, %o
sethi %hi(_Int_i_Loc),%o2
Id [%o2+%10o (_Int__Loc)] ,%o2
sethi %hi(_Int_3_Loc),%o3
:Ld [%o3+%lo(_Int_3_Loc)] ,%o3
call _Proc_8,,4
lop

sethi %hi(_Ptr_Glob),%oO
:Ld [%oO+%lo(.Ptr_Glob)] ,%oO
call _Proc_i,i1
lop

mov 0x41,%12
sethi %hi(_Ch_Index),%13
stb %12, [%134%lo(_Ch_Index)]
sethi %hi(_Ch_Index),%14
idsb [%14+%1o (_Ch_Index)],%14
sethi %hi(_Ch_2_Glob),%15
ldsb [%15+%lo(_Ch_2_Glob)],%15
cmp %14,%15
bg L71
n.op
L72:
sethi %hi(_Ch_Index),%oO
ldsb [%oO+%lo(_Ch_Index)] ,%o
mov 0x43,%ol
call _Func_i,2
nop
sethi %hi(_Enum_Loc),%o1
ld [%ol+%lo(_Enum_Loc)],%o1
cmp %o1,%oO
b.ne L73
nop
mov O,%oO
set _Enum_Loc,%ol
call _Proc_6,2
nop
.seg "datal"
L75:
. ascii "DHRYSTONE PROGRAM, 3'RD STRING\O"
.:;seg "text"
set _Str_2_Loc,%o0
set L75,%oi
call _strcpy,2
nop
sethi %hi(_RunL_Index),%oO
lcld [%oO+%lo(_Run_Index)], %o0
sethi %hi(_Int_2_Loc),%o1
st %oO, [%ol+%lo(_Int_2_Loc)]
sethi %hi(_Run._Index),%o2
ld [%o2+%lo(_Run_Index)] ,%o2
sethi %hi(_Int_Glob),%o3
st %o2,[%o3+%lo(_Int_Glob)]
L73:
L70:
sethi %hi(_Ch_Index),%o4
ldsb [%o4+%10o(_Ch_Index) ,%o4
add %o4,Oxl,%0o4
sll %o4,24,Yo4
sra %0o4,24,%o4
sethi %hi(_Ch_Index),%o5
stb %o4, [%o5+%o(_Ch_Index)]
s;ethi %hi(_Ch_Index),%o7
:dsb [%o7+%lo(_Ch_Index)] ,%o7
sethi %hi(_Ch_2_GlGob),%10
:Ldsb [%10+%lo( Ch_2_Glob)] ,%10
cmp %o7,%10
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ble L72
nop
L71:
sethi %hi(_Int_2_Loc),%oO
ld [%oO+%lo(_Int_2_Loc)],%oO
sethi %hi(_Int_i_Loc),%ol
ld [%ol+%lo(_Int_1_Loc)],%o1
call .mul,2
nop
sethi %hi(_Int_2_Loc),%ll
st %oO,[%l1+%lo(_Int_2_Loc)]
sethi hi(_Int_2_Loc),%oO
ld [%oO+%lo(_Int_2_Loc)],%oO
sethi %hi(_Int_3_Loc),%ol
ld [%ol+%lo(_Int_3_Loc)],%o1
call .div,2
nop
sethi %hi(_Int_l_Loc),%12
st %oO,[%12+%lo(_Int_l_Loc)]
sethi %hi(_Int_2_Loc),%13
ld [%13+%lo(_Int_2_Loc)],%13
sethi %hi(_Int_3_Loc),%14
ld [%14+%o(_Int_3_Loc)],%14
sub %13,%14,%15
mov %15,%16
sll %16,3,%16
sub %16,%5l,%15
sethi %hi(_Int_l_Loc),/17
ld [%17+%lo(_Int_1_Loc)],%17
sub %15,%17,%iO
sethi %hi(_Int_2_Loc),%il
st %iO,[%il+%lo(_Int_2_Loc)]
set _Int_l_Loc,'oO
call _Proc_2,1
nop
L57:
sethi %hi(_Run_Index),%i2
ld [%i2+%lo(_Run_Index)],%i2
add %i2,0xl,%i2
sethi %hi(_Run_Index),%i3
st %i2,[%i3+%lo(_Run_Index)]
sethi %hi(_Run_Index),%i4
ld [%i4+%lo(_Run_Index)],%i4
sethi %hi(_Number_Of_Runs),%i5
ld [%i5+%lo(_NumberOf_Runs)],%i5
cmp %i4,%i5
ble L59
nop
__triggerl:

set Ox00003100, %gl

stda %gO, [%gl] Ox20
L58:
sethi %hi(_End_Time),%oO
ld [%oO+%lo(_End_Time)],%oO
sethi %hi(_Begin_Time),%ol
ld [%o1+%lo(_Begin_Time)],%ol
sub %oO,%ol,%o2
sethi %hi(_User_Time),%o3
st %o2,[%o3+%lo(_User_Time)]
LE50:

ret
restore

__exit:
sethi %hi(_romp),%oO
ld [%oO+%lo(_romp)],%oO
ld E%oO+Ox74],%gl
call %gl,O
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nop
LF50 = -96

LP50 = 96
LST50 = 96
LT50 = 96
.seg "data"
.seg "text"
.proc 04
.global _Proc_l
Proc_ 1i:
!#PROLOGUE# 0
sethi %hi(LF77),%gl
add %gl,%lo(LF77),%gl
save %sp,%gi,%sp
!#PROLOGUE# 1
st %iO,[%fp+Cx44]
ld [%fp+Ox44],%oO
]d [%oO],%ol
S;t %ol,[%fp+-Ox4]
ld [%fp+Ox44],%oO

ld [%oO],%ol
sethi %hi(_Ptr_Glob),%o2
ld [%o2+%lo(_PtrGlob)],%o2
mlov 48,%10
L2000002:
subcc %10,4,%10
ld [%o2+%10],%o4
bne L2000002
st %o4,[%ol+%10
ld [%fp+Ox44],%1i
mov Ox5,%12
st %12,[%11+Oxc]
ld [%fp+-0x4],%13
ld [%fp+Ox44],%14
ld [%14+Oxc ,15
st %15,[%13+0xc]
ld1 [%fp+-Ox4],%16
ld [%Yfp+Ox44] ,,%17
ld [%171,%iO
st %iO,[%16]
ld [%fp+-Ox4],%oO
call _Proc_3,i1
nop
ld [%fp+-Ox4],%il
ldc [%il+Ox4] ,.i2
tst %i2
bne L80
nop
ld [%fp+-0x4] ,oO
mov Ox6,%ol
st %ol,[%oO+Oxc]
ld [%fp+Ox44],%o2
Id [%o2+0x8],%oO
Id [%fp+-Ox4] ,'%o
add %ol,0x8,%oi
call _Proc_6,2
Iop
ld [%fp+-Ox4],/.o3
sethi %hi(_Ptr-Glob),%o4
]d [%o4+%lo(_PtrGlob)],%o4
].d [%o4],%o5
st %o5, [%o3]
Id [%fp+-0x4], %o7
ld [%o7+Oxc],%oO
ld [%fp+-Ox4],%o2
add %o2,Oxc,%o2
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mov Oxa,%ol
call _Proc_7,3
nop
b L81
nop
L80:
ld [%fp+0x44],%10

ld [%10],%11
ld [%fp+Ox44],%12
mov 48,%16
L2000003:
subcc %16,4,%16
ld [%11+%16],%14
bne L2000003
st %14,[%12+%16]
L81:
LE77:
ret
restore

LF77 = -104
LP77 = 96
LST77 = 96
LT77 = 96
.seg "data"
.seg "text"
.proc 04
.global _Proc_2
Proc_2:
!#PROLOGUE# 0
sethi %hi(LF82),%gl
add %gl,%lo(LF82),%gl
save %sp,%gl,%sp
!#PROLOGUE# 1
st %iO,[%fp+Ox44]
ld [%fp+Ox44],%oO
ld E%oO],%ol
add %ol,Oxa,%o2
st %o2,[%fp+-Ox4
L86:
sethi %hi(_Ch_l_Glob),%o3
ldsb [%o3+%lo(_Ch_lGlob)],%o3
cmp %o3,0x41
bne L87
nop
ld [%fp+-Ox4],%oO
sub %oO,Oxl,%oO
st %oO,[%fp+-Ox4]
ld [%fp+-Ox4],%ol
sethi %hi(_Int_Glob),%o2
ld [%o2+%lo(_Int_Glob)],%o2
sub %ol,%o2,%o3
ld [%fp+Ox44],%o4
st %o3,[%o4]
st %gO,[%fp+-Ox8]
L87:
L85:
ld [%fp+-Ox8],%o5
tst %05
bne L86
nop
L84:
LE82:ret
restore

LF82 = -72
LP82 = 64
LST82 = 64
LT82 = 64
.seg "data"
.seg "text"
.proc 04
.global _Proc_3
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_Proc_3S:
!#PROLOGUE# 0
sethi %hi(LF88),%gl
add %gl,%lo(LF88),%gl
save %sp,%gl,%sp
!#PROLOGUE# 1
st %iO,[%fp+Ox44]
sethi %hi(_Ptr_Glob),%oO
ld [%oO+%lo(_PtrGlob)],%oO
tst %oO0
be L90
nop
ld %fp+Ox44],%ol
sethi %hi(_PtrGlob),%o2
ld [%o2+%lo(_PtrGlob)],%o2
ld [%o2],%o3
st %o3,[%ol]
L90:
sethi %hi(_PtrGlob),%o2
ld %o2+%lo(_PtrGlob)],%o2
add %o2,0xc,%o2
sethi %hi(_IntGlob),%ol
ld [%ol+%lo(_IntGlob)],%ol
mov Oxa,%oO
call _Proc_7,3
nop
LE88:
ret
restore

LF88 = -96
LP88 = 96
LST88 = 96
LT88 = 96
.seg "data"
.seg "text"
.proc 04
.global _Proc_4
_Proc_4:
!#PROLOGUE# 0
sethi %hi(LF91),%gl
add %gl,%lo(LF91),%gl
save %sp,%gl,%sp
!#PROLOGUE# 1
sethi %hi(_ChlGlob),%oO
ldsb [%oO+%lo(_Ch_l_Glob)],%oO
cmp %oO,0x41
bne L2000004
nop
mov 1,%ol
b L2000005
nop
L2000004:
mov 0,%ol
L2000005:
st %ol,[%fp+-Ox4]
ld [%fp+-Ox4],%o2
sethi %hi(_BoolGlob),%o3
ld [%o3+%1o(_BoolGlob)],%o3
or %o3,%o2,%o3
sethi %hi(_BoolGlob),%o4
st %o3,[%o4+%lo(_Bool_Glob)]
mov 0x42,%o5
sethi %hi(_Ch_2_Glob),%o7
stb %o5,[%o7+%lo(_Ch_2_Glob)]
LE91:
ret
restore

LF91 = -72
LP91 = 64
LST91 = 64
LT91 = 64
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.seg "data"

.seg "text"

.proc 04

.global _Proc_5
_Proc 5:
!#PROLOGUE# 0
sethi %hi(LF93),%gl
add %gl,%lo(LF93),%gl
save %sp,%gl,%sp
!#PROLOGUE# 1
mov Ox41,%oO
sethi %hi(_Ch iGlob),%ol
stb %oO,[%ol+%lo(_ChlGlob)]
sethi %hi(_BoolGlob),%o2
st %gO,[%o2+%lo(_BoolGlob)]
LE93:
ret
restore

LF93 = -64
LP93 = 64
LST93 = 64
LT93 = 64
.seg "data"

LLO:
.seg "data"
.seg "text"
.proc 04
.global _Proc_6
_Proc 6:
!#PROLOGUE# 0
sethi %hi(LF28),%gl
add %gl,%lo(LF28),%gl
save %sp,%gl,%sp
!#PROLOGUE# 1
st %iO,[%fp+Ox44]
st %il,[%fp+Ox48]
ld [%fp+Ox48],%oO
ld [%fp+Ox44],%ol
st %ol,[%oO]
ld [%fp+0x441,%oO
call _Func_3,1
nop
tst %oO
bne L31
nop
ld [%fp+Ox48],%o2
mov Ox3,%o3
st %o3,[%o2]
L31:
b L33
nop
L34
ld [%fp+Ox481,%oO

st %gO,[%oO]
b L32
nop
L35:
sethi %hi(_Int_Glob),%ol
ld [%ol+%lo(_Int_Glob)1,%o1
cmp %ol,0x64
ble L36
nop
ld [%fp+Ox481,%o2
st %gO,[%o21
b L37
nop
L36:
ld [%fp+Ox48],%o3
mov Ox3,%o4
st %o4,[%o3]
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L37:
b L32
:nop
L38:
Id [%fp+0x48] ,%o5

mov Oxl,%o7
st %o7,[%o5]
b L32
nop
],39:
b L32
lop
L40:
Id [%fp+0x48],%10
mov 0x2,%1i
st %11,[%10]
b L32
lop
L33:
ld [%fp+0x44],%o0
cmp %oO,4
bgu L2000000
sll %o0,2,%o0
set L2000001,%ol
Id [%o0+%ol] ,%o0
jmp %oO
nop
L2000001:
.word L34
.word L35
.word L38
.word L39
.word L40
L2000000:
L32:
LE28:
ret
restore

LF28 = -96
LP28 = 96
LST28 = 96
LT28 = 96
.seg "data"
.seg "text"
.proc 04
.global _Proc_7
_Proc 7:
!#PROLOGUE# 0
sethi %hi(LF42),%gl
add %gl,%lo(LF42),%gl
save %sp,%gl,%sp
!#PROLOGUE# 1
st %iO,[%fp+0x44]
st %il, [%fp+x48]
st %i2,[%fp+Ox4c]
Id [%fp+0x44], oO
add %oO, 0x2, %o:L
st %oi,[%fp+-Ox4]
id [%fp+0x48] ,%o2
Id [%fp+-0x4] ,%o3
add %o2,%o3,%o4
Id [%fp+Ox4c],%o5
st %o4,[%o5]
LE42:retrestore

LF42 = -72
LP42 = 64
LST42 = 64
LT42 = 64
.seg "data"
.:;eg "text"
.]?roc 04
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.global _Proc_8
Proc_8:
!#PROLOGUE# 0
sethi %hi(LF45),%gl
add %gl,%lo(LF45),%gl
save %sp,%gl,%sp
!#PROLOGUE# 1
st %iO,[%fp+0x441
st %il,[%fp+Ox48]
st %i2,[%fp+Ox4c]

st %i3,[%fp+Ox5O]
ld [%fp+Ox4c],%oO
add %oO,Ox5,%ol
st %ol,[%fp+-Ox8]
ld [%fp+-Ox8 ,%o2
sll %o2,0x2,%o3
ld [%fp+Ox44],%o4
ld [%fp+Ox5O],%o5
st %o5,[%o4+%o3
ld [%fp+-Ox8],%o7
sll %o7,0x2,%10
ld [%fp+Ox44],%1i
add %11,%10,%12
ld [%fp+-Ox8],%13
sll %13,0x2,%14
ld [%fp+Ox44],%15
ld [%15+%14],%16
st %16,[%12+0x4]
ld [%fp+-Ox8],%17
sll %17,0x2,%iO
ld [%fp+Ox44],%il

add %il,%iO,%i2
ld [%fp+-Ox8],%i3

st %i3,[%i2+0x78]
ld [%fp+-Ox8],%i4
st %i4,[%fp+-Ox4
L49:
ld [%fp+-Ox8,%i5
add %i5,0xl,%oO
ld [%fp+-Ox4],%ol
cmp %ol,%oO
bg L48
nop
ld [%fp+-Ox8],%o2
sll %.o2,3,%o2
mov %o2,%o3
sll %o3,3,%o3
add %o2,%o3,%o2
sll %o3,1,%o3
add %o2,%o3,%o2
ld [%fp+Ox48],%o4
add %o4,%o2,%o5
ld %fp+-Ox4],%o7
sll %o7,0x2,%10
ld [%fp+-Ox8],%11
st %li,[%o5+%101
L47:
ld [%fp+-Ox4],%12
add %12,Oxl,%12
st %12,[%fp+-Ox4
b L49
nop
L48:
ld [%fp+-Ox8,%13
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sll %13,3,%13
mov %13,%14
sll /14,3,%14
add %13,%14,%13
sll %14,1,%14
add %13,%14,%13
ld %fp+Ox48],%15
add %15,%13,%16
ld %fp+-Ox8],%17
sll %17,0x2,%iO
sub %iO,Ox4,%il
ld %16+%il],%i2
add %i2,0xl,%i2
st %i2,[%16+%il]
ld [%fp+-Ox8],%i3
sll %i3,3,%i3
mov %i3,%i4
sll %i4,3,%i4
add %i3,%i4,%i3
sll %i4,1,%i4
add %i3,%i4,%i3
ld [%fp+Ox48],%iS
add %i5,%i3,%oO
add %oO,OxfaO,%ol
ld [%fp+-Ox8,%o2
sll %o2,0x2,%o3
ld %fp+-Ox8,%o4
sll %o4,0x2,%o5
ld [%fp+Ox44],%o7
ld [%o7+%o5],%10
st %10,[%ol+%o3]
mov OxS,%11
sethi %hi(_IntGlob),%12
st %li,[%12+%lo(_IntGlob)]
LE45:
ret
restore

LF45 = -72
LP45 = 64
LST45 = 64
LT45 = 64
.seg "data"
.seg "text"
.proc 012
.global _Func_l
_Func1i:
!#PROLOGUE# 0
sethi %hi(LF5i),%gi
add %gi,%lo(LF51),%gl
save %sp,%gl,%sp
!#PROLOGUE# 1
stb %iO,[%fp+Ox47]
stb %il,[%fp+Ox4b]
ldsb %fp+Ox47],%oO
stb %oO,[%fp+-Oxl]
ldsb [%fp+-Oxl],%ol
stb %ol,[%fp+-Ox2]
ldsb [%fp+-Ox2],%o2
ldsb [%fp+Ox4b],%o3
cmp %o2,%o3
be L53
nop
mov 0,%oO0
b LE5i
nop
L53:
idsb %fp+-Oxl],%oO
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sethi %hi(_Ch_Glob),%ol
stb %oO,[%ol+%lo(_ChlGlob)]
mov Oxl,%oO
b LE51
nop
LE51:
mov %oO,%iO
ret
restore

LF51 = -72
LP51 = 64
LST51 = 64
LT51 = 64
.seg "data"
.seg "text"
.proc 04
.global _Func_2
_Func_2:
!#PROLOGUE# 0
sethi %hi(LF55),%gl
add %gl,%lo(LF55),%gl
save %sp,%gl,%sp
!#PROLOGUE# 1
st %iO,[%fp+Ox44]
st %il,[%fp+Ox48]

mov 0x2,%oO
st %oO,[%fp+-Ox4
L57:
ld [%fp+-Ox4],%ol
cmp %ol,0x2
bg L58
nop
ld [%fp+Ox44],%o2
ld [%fp+-Ox4],%o3
ldsb [%o2+%o3],%oO
ld %fp+Ox481,%o4
ld [%fp+-Ox4],%oS
add %o4,%o5,%o7
ldsb [%o7+Oxl],%ol
call _Func_l,2
nop
tst %oO
bne L59
nop
mov 0x41,%oO
stb %oO,[%fp+-OxS]
ld [%fp+-Ox4],%ol
add %ol,Oxl,%ol
st %ol,[%fp+-Ox4]
L59:
b L57
nop
L58:
ldsb [%fp+-Ox5],%o2
cmp %o2,0x57
bl L60
nop
ldsb [%fp+-OxS],%o3
cmp %o3,Ox5a
bge L60
nop
mov 0x7,%o4
st %o4,[%fp+-Ox4
L60:
ldsb [%fp+-OxS],%oS
cmp %o5,0x52
bne L61
nop
mov Oxl,%oO
b LE55
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lop
I61:
:d [%fp+0x44],%o0
ld [%fp+Ox48] ,%ol
call _strcmp,2
nIop
tst %oO
ble L63
nop
ld [%fp+-0x4],%o0
add %oO,Ox7,%oO
st %oO,[%fp+-Ox4]
ld [%fp+-Ox4],%ol
sethi %hi(_IntGlob),%o2
st %o1,[%o2+%lo(_IntGlob)]
mov Oxl,%oO
b LE55
nop
L63:
mov O,%0oO
b LE55
nop
L:E55:
mov %oO,%iO
ret
restore

LF55 = -104
LP55 = 96
LST55 = 96
LT55 = 96
.seg "data"
.seg "text"
.proc 04
.global _Func_3
Func_3:

!#PROLOGUE# 0
sethi %hi(LF64),%gl
add %gl,%lo(LF64),%gl
save %sp,%gl,%sp
!#:PROLOGUE# 1
st %iO,[%fp+Ox44]
ld [%fp+Ox44],%oO
:st %oO,[%fp+-Ox4]
:ld [%fp+-Ox4] ,%ol
cmp %o1,0x2
bne L66
hlOp
rnov Oxl,%oO
b LE64
hop
1.66:
mov 0,%oO
b LE64rop
LE64:
Ilov %oO,%iO
retrestore

LF64 = -72
LP64 = 64
LST64 = 64
LT64 = 64
.Se!g "data"
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"test":
Program Execution Time = 252 cycles / 33MHz = 7.64e-6
numData$MissCycles = 154 cycles

Data$MissCycleRate = 154 cycles / 252 cycles = 0.61

numData$MissEvents = 5 events
Data$MissRate = 5 events / 25 MEMops = .20

Data$MissDuration = 54 cycles / events = 10.80 cycle
numFPinterlockCycles = 5 cycles

FPinterlockCycleRate = 5 cycles / 252 cycles = 1.98e-2
numFPinterlockEvents = 2 events
FPinterlockDuration = 6 cycles / 2 events = 2.5 cycles,
numStallFreeCycles = 95 cycles
numI$MissCycles = 49 cycles
I$MissCycleRate = 49 cycles / 95 cycles = 0.52
numI$MissEvents = 9 events
I$MissRate = 9 / 64 = 0.14
I$MissDuration = 49 cycles / 9 events = 5.44 cycles/eve:
numOInstrGroup = 50
numlInstrGroup = 30
num2InstrGroup = 11
num3InstrGroup = 4

OInstrGroupFraction =

lInstrGroupFraction =

2InstrGroupFraction =

3InstrGroupFraction =
numProgramInstructions
IPC = 64 instructions

CPI = 252 cycles / 64
numMEMop = 25
numFPop = 5
numBRop = 10

seconds

s/event

/event

nt

50 / 95 = 0.53

30 / 95 = 0.32
11 / 95 = 0.12
4 / 95 = 4.21e-2
= 30 + 11 * 2 + 4 * 3 = 64

/ 252 cycles = 0.25 instructions/cycle
instructions = 3.94 cycles/instruction

numALUop = 64 - 25 - 5 - 10 = 24
numTakenBRop = 7
numUntakenBRop = 10 - 7 = 3

fractionTakenBRop = 7 / 10 = 0.7

fractionUntakenBRop = 3 / 10 = 0.3

115



APPENDIX E. SYSTEM PERFORMANCE PARAMETERS 116

"matrix6":
Program Execution Time = 1599 cycles / 33MHz = 4.85e-5 seconds
numData$MissCycles = 240 cycles

Data$MissCycleRate = 240 cycles / 1599 cycles = 0.15

numData$MissEvents = 10 events
Data$MissRate = 10 events / 420 MEMops = 2.38e-2

Data$MissDuration = 240 cycles / 10 events = 24 cycles/event

numFPinterlockCycles = 322 cycles

FPinterlockCycleRate = 322 cycles / 1599 cycles = 0.20

numFPinterlockEvents = 47 events
FPinterlockDuration = 322 cycles / 47 events = 6.85 cycles/event

numStallFreeCycles = 1039 cycles

numI$MissCycles = 202 cycles

I$MissCycleRate = 202 cycles / 1039 cycles = 0.19

numI$MissEvents = 32 events
I$MissRate = 32 / 1263 = 2.53e-2
I$MissDuration = 202 cycles / 32 events = 5.44 cycles/event

numOInstrGroup = 286

numlInstrGroup = 319

num2InstrGroup = 358

num3InstrGroup = 76

OInstrGroupFraction = 286 / 1039 = 0.28

lInstrGroupFraction = 319 / 1039 = 0.31

2InstrGroupFraction = 358 / 1039 = 0.34

3InstrGroupFraction = 76 / 1039 = 7.31e-2

numProgramInstructions = 319 + 358 * 2 + 76 * 3 = 1263

IPC = 1263 instructions / 1599 cycles = 0.79 instructions/cycle

CPI = 1599 cycles / 1263 instructions = 1.27 cycles/instruction

numMEMop = 420
numFPop = 180

numBRop = 81

numALUop = 1263 - 420 - 180 - 81 = 582

numTakenBRop = 55

numUntakenBRop = 81 - 55 = 26

fractionTakenBRop = 55 / 81 = 0.68

fractionUntakenBRop = 26 / 81 = 0.32
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"matrix200":
Program Execution Time = 1,904,282 cycles / 33MHz = 5.77e-2 seconds
numData$MissCycles = 693,568 cycles
Data$MissCycleRate = 693,568 cycles / 1,904,282 cycles = 0.36
numData$MissEvents = 79,677 events
Data$MissRate = 79,677 events / 605,015 MEMops = 0.13
Data$MissDuration = 693,568 cycles / 79,677 events = 8.70 cycles/event
numFPinterlockCycles = 282,784 cycles
FPinterlockCycleRate = 282,784 cycles / 693,568 cycles = 0.41
numFPinterlockEvents = 40,399 events
FPinterlockDuration = 282,784 cycles / 40,399 events = 7.00 cycles/event
numStallFreeCycles = 928,236 cycles
numI$MissCycles = 175 cycles
I$MissCycleRate = 175 cycles / 928,236 cycles = 1.89e-4

numI$MissEvents = 38 events
I$MissRate = 38 / 1,411,658 = 2.69e-5
I$MissDuration = 175 cycles / 38 events = 4.61 cycles/event
numOInstrGroup = 80,580
numlInstrGroup = 324,051
num2InstrGroup = 483,205
num3InstrGroup = 40,399
OInstrGroupFraction = 80,580 / 928,236 = 8.68e-2
lInstrGroupFraction = 324,051 / 928,236 = 0.35
2InstrGroupFraction = 483,205 / 928,236 = 0.52
3InstrGroupFraction = 40,399 / 928,236 = 4.35e-2
numProgramInstructions = 324,051 + 483,205 * 2 + 40,399 * 3 = 1,411,658
IPC = 1,411,658 / 1,904,282 = 0.74
CPI = 1,904,282 / 1,411,658 = 1.35
numMEMop = 605,015
numFPop = 161,200
numBRop = 81,409
numALUop = 1,411,658 - 605,015 - 161,200 - 81,409 = 564,034
numTakenBRop - 40,809
numUntakenBRop = 81,409 - 40,809 = 40,600
fractionTakenBRop = 40,809 / 81,409 = 0.50
fractionUntakenBRop = 40,600 / 81,409 = 0.50
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"dhry":
Program Execution Time = 7,124,729,181 cycles / 33MHz = 215.90 seconds

3.6 minutes
numData$MissCycles = 5,831,728,245 cycles
Data$MissCycleRate = 5,831,728,245 cycles / 7,124,729,181 cycles = 0.82
numData$MissEvents = 363,000,010 events
Data$MissRate = 363,000,010 events / 740,000,005 MEMops = 0.49
Data$MissDuration = 5,831,728,245 cycles / 363,000,010 events =
16.07 cycles/event
numFPinterlockCycles = 0 cycles
FPinterlockCycleRate = 0
numFPinterlockEvents = 0 event
FPinterlockDuration = 0 cycle/event
numStallFreeCycles = 1,293,000,945 cycles
numI$MissCycles = 40,000,896 cycles
I$MissCycleRate = 40,000,896 cycles / 1,293,000,945 cycles = 3.09e-2
numI$MissEvents = 20,000,139 events
I$MissRate = 20,000,139 / 1,642,000,016 = 1.22e-2
I$MissDuration = 40,000,896 cycles / 20,000,139 events = 2.00 cycles/event
numOInstrGroup = 154,000,898
numlInstrGroup = 719,000,076
num2InstrGroup = 336,999,970
num3InstrGroup = 83,000,000
OInstrGroupFraction = 154,000,898 / 1,293,000,945 = 0.12
lInstrGroupFraction = 719,000,076 / 1,293,000,945 = 0.56
2InstrGroupFraction = 336,999,970 / 1,293,000,945 = 0.26
3InstrGroupFraction = 83,000,000 / 1,293,000,945 = 6.42e-2
numProgramInstructions = 719,000,076 + 336,999,970 * 2 + 83,000,000 * 3
= 1,642,000,016
IPC = 1,642,000,016 instructions / 7,124,729,181 cycles = 0.23
CPI = 7,124,729,181 cycles / 1,642,000,016 instructions = 4.34
numMEMop = 740,000,005
numFPop = 0
numBRop = 229,000,001
numALUop = 1,642,000,016 - 740,000,005 - 229,000,001
= 673,000,010
numTakenBRop = 152,999,999
numUntakenBRop = 229,000,001 - 152,999,999 = 76,000,002
fractionTakenBRop = 152,999,999 / 229,000,001 = 0.67
fractionUntakenBRop = 76,000,002 / 229,000,001 = 0.33
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