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Abstract

The growth of competitiveness in the manufacturing industry has resulted in an acute need
to improve product quality. Efficient methods for Design of Experiments (DOE) have thus
become more important than ever before. With increases in complexity of manufactur-
ing processes and the cost of experimentation, it has become important to use all prior
knowledge of the processes, derived first from theory and experience and later from exper-
imentation, to determine subsequent experiments.

The objective of this work is to develop sequential DOE methods and software tools
which can be used by manufacturers with no prior knowledge in design of experiments.

Techniques for designing blocks of fractional factorial experiments have been developed
and implemented in computer software. In particular, given a block of factorial experiments
and a list of probable interactions, different sets of experiments are designed to augment
the original block of experiments and form new factorial designs with different confounding
patterns. The set of experiments which produces a new design with minimal confounding
between the variables and the probable interactions is the optimal set of experiments. Soft-
ware has been implemented to generate the optimal Full-Block or Half-Block of experiments.
The fold-over design technique, which is popularly used in DOE, is a special case of the
Full-Block design strategy. The analysis routines have been extended to analyze multiple
blocks of experiments with different confounding patterns and to determine the effects of
the confounding interactions.

A One-at-a-Time design strategy has been proposed which uses the results of the pre-
vious experiments to design the optimal experiments one at a time. This strategy assumes
that there is only one significant variable or interaction on each significant column of the
design matrix. Therefore, this strategy is particularly useful when the number of significant
effects is sparse. A hypothesis is made that certain interactions are significant on the basis
of their variables. The optimal experiment for this hypothesis, i.e., the experiment which is
expected to yield the maximum output quality, is conducted. The result of this experiment
is compared with the predicted output quality of all possible plant models. The model
which gives the least prediction error is selected as the next hypothesis and the procedure
is repeated. The simulation results for this design methodology have been very promising.

Thesis Supervisor: David H. Staelin
Title: Professor of Electrical Engineering
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Chapter 1

Introduction

In this chapter we outline the motivation driving the research in this area. A brief overview

of the existing methodologies is given in Section 2 along with the outline of the thesis in

Section 3. Section 4 gives the notation used in the report.

1.1 Reseach Motivation

With the increase in competitiveness in the manufacturing industry the methods of Ex-

perimental Design are becoming increasingly important. The need for efficient Design of

Experiments (DOE) stems from the desire to improve quality and productivity quickly and

economically. The concepts in Design of Experiments have been extensively researched

since Fisher [11] introduced the basic theory in 1926.

Although the basic ideas in the DOE are relatively simple, their application involves use

of comparatively advanced concepts in algebra and statistics. Hence, despite the extensive

literature, DOE has remained largely outside the purview of manufacturing and is used very

infrequently, if at all, in today's industry.

With the advent of high speed digital computers it is now possible to design and search

for optimal experimental designs and to use statistics without the need of the experimenter

to understand all the concepts. The goal of this thesis is to develop an experimental design

package for a user who is familiar with the plant/process to be optimized, but has no prior

experience with experimental design.

The basic proposed strategy for the DOE method developed here is shown in Figure 1-1.

An experimenter inexperienced with DOE can be expected to only perform the following

15



Block 6: Select bad

Probable Interactions

Block 5: Evaluate

Results

good

Block 7: Suggest

Optimum Setting

Figure 1-1: Proposed Experimental Design Strategy

tasks:

Block 1: Decide which parameters/ variables affect the process, and the approximate range

in which they can be varied for the normal operation of the plant. Also, based

on the knowledge of the process, the experimenter can guess some of the probable

interactions.

Block 3: Perform the set of experiments as determined by Block 2 of Figure 1-1.

Traditionally, an experimenter was expected to perform the tasks of all the blocks.

But as discussed above, it is possible to develop software so that the experimenter can

successfully use DOE without being required to understand all the concepts used in the

implementation of Blocks 2, 4, 5, 6 and 7 of Figure 1-1. With such simplification, DOE can

be used by a large number of manufacturers who are presently unable to do so.

This thesis is the continuation of the work done by Paul Fieguth et al. [10] based on

the insights developed by Dr. Ashraf Alkairy [1]. The earlier work focused on developing

software for Blocks 2 and 4. The contribution of this thesis is in the development of the

theory and software for Blocks 5, 6 and 7 along with an improvement of Block 2.

The thrust of the thesis is on designing sequential experiments. The need for sequential

16
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designs arises due to:

* Lack of a priori knowledge of the process/plant.

* Constraints of available resources on the size of experiments.

* Desire to find a good operating point even if unable to determine the best operating

point.

* Need to conduct the experiment in a systematic and efficient manner.

All these factors are outlined in greater detail in the next chapter.

1.2 Background

The concept of Design of Experiments (DOE) was first introduced by Fisher [11]. Plack-

ett and Burman [19] proved that in order for the parameters of the design matrix to have

certain optimal properties it was essential that the designs have an orthogonal structure.

This resulted in the use of Factorial Designs. In these designs, as the number of variables

controlling a given process grow, the number of experiments required to completely ana-

lyze the variables and their interactions grow exponentially and so become impractical to

perform.

Ideas of fractional factorial designs were developed to reduce the total number of ex-

periments and yet retain the beneficial properties of factorial designs. The reduction in the

total number of experiments leads to the problem of confounding.

Two variables ( or interactions ) Ti and Tj are said to be confounded with each other if

they vary in the same manner in all the experiments. That is, the value of the variables for

the mth experiment is given by,

Ti,m = k Tj,m Vm (1.1)

for some fixed k. In two-level factorial designs each of the variables are set at -1 or +1 level

in all the experiments. Therefore, Ti and Tj are confounded with each other if,

Ti,m = +Tj,m Vm (1.2)

17



or

Ti,m = -Tj,m Vm (1.3)

Given a process, there exists no well defined technique to select which variables/ in-

teractions are to be confounded. The selection is done on an ad hoc basis and hence an

element of subjectivity is introduced in the designs. After the experiments are carried out

all the significant variables/interactions may not be determined as there may be overlapping

between then.

In order to use DOE effectively it is very important that the exact dependence of qual-

ity on the variables and their interactions be established. Hence, whenever two or more

variables or interactions are confounded some technique is required by which their separate

effects can be determined.

Some of the DOE techniques available to determine the unknown plant models are

described below. The discussion is intentionally concise and should only serve to familiarize

the reader with the techniques.

1.2.1 Search Designs

Search Designs is a technique used for determining important interactions. Search designs

were developed by J. N. Srivastava [21]. The basic strategy of search designs is to design

a set of experiments which has the capacity to estimate the effects of a set of variables

and interactions and a few unknown interactions of a specified order. Readers may consult

Ghosh [13] or Srivastava [22] for a more detailed discussion on Search Designs.

Although the methodology is interesting there are shortcomings.

* The technique is relatively complicated and there exists no general technique to solve

all kinds of problems.

* The technique does not use a posteriori information and hence there is no obvious

extension to sequential experimentation.

1.2.2 Response Surface Methods

The Response Surface Methodology (RSM) is an alternative to factorial DOE. Like factorial

DOE, experiments are designed on a process to determine the relationship between the input

variables and the response. But in RSM the variables are not constrained to lie at any fixed

18



levels. Each design technique has its own advantages and disadvantages. These issues are

discussed in greater detail in [17].

RSM is a sequential design procedure and there are many software packages which use

RSM for process optimization [14]. Some of the popular ones are:

* Simplex- Evolutionary Operations (Simplex - V) 1

* ULTRAMAX 2

The ideas used in these procedures are significantly different from Factorial DOE dis-

cussed in this report. Hence the readers interested in RSM techniques may find the refer-

ences useful.

1.3 Thesis Overview

The thesis focuses on performing sequential experimental design using two different ap-

proaches:

1. Sequential Block Design Strategy

2. One-at-a-Time Design Strategy

Chapter 2 is based on these strategies and gives an overview. The need for sequential

experimentation is discussed and the basic assumptions on the models of the manufacturing

processes are enumerated.

In Chapter 3 the theory of Sequential Block Design is developed. The detail proofs are

given in the Appendices. The algorithm used in the computer software is discussed along

with the results of computer simulations.

Chapter 4 focuses on the Analysis of Sequential Block Designs. Classical techniques such

as Daniel Plots and Anova are discussed briefly. A closed loop technique for determining

significant interactions is described.

Chapter 5 deals with the One-at-a-Time Design Strategy. The basic concepts and advan-

tages are presented in this chapter. Simulation results are included to justify the strategy.

'Silnplex - V is a tradename of Statistical Program, Houston, Texas
2UJltramax is a tradename of Ultramax Corporation, Cincinnati, Ohio
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Chapter 6 describes the Complete DOE Software Tool which being currently developed

at MIT. It also lists the achievements of the thesis and suggests possible future work on

sequential design of experiments.

1.4 Notation

In this report we will try to use consistent notation. Given a plant P, its output or quality

is denoted by Y. The performance of that plant is governed by input variables. These

variables are denoted by T1, T2,..., Tn. The model of the plant is assumed to be non-linear

and the output Y is assumed to be a linear function of the variables and their interactions.

The interaction between the variables Ti and Tj is denoted by Iij. Denoting the coefficients

of the variables and interactions by we can represent the output as,

(1.4)

!

( o

/1

/32

tn

3ij

!

+ 6 (1.5)
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If there is more than one experiment then there will be one equation

each of the experiments. All such equations can be stacked together.

T1,m T2,m ... Tn,m

... Iij,1

... Iij,2

... Iij,m

/

( o

P1

/32

f3n

ij

like Equation 1.5 for

!

Cl

+ E,2 . (1.6)

Em

This can be represented as,

Y=Xf- + (1.7)

where ]Y is the Output Vector, X is the Regression Matrix, / is the Coefficient

Vector and is the Error Vector.

1.4.1 Factorial Fractional Designs

For a process, P, dependent on n variables, if the experiments are designed is such that

* In each of the experiments, the variables are at either one of two levels, denoted by

'+' and '-'.

* There are 2n different experiments.

then the experimental design is called a Full Factorial Design.

If the experimental design has half the number of experiments of a Full Factorial Design then

it is called a One-Half Factorial Design. Similarly, if it has a quarter of the experiments

of a Full Factorial then it is called a One-Quarter Factorial Design. In general, a 1/2k

fraction of a Full Factorial Design is called a 2
n - k Factorial Design.

This report deals with DOE using Fractional Factorial Designs which are based on

Binary Orthogonal Matrices. Appendix A discusses some of the relevant properties of

Binary Orthogonal Matrices. Table 1.1 is an example of a 25-2 Factorial Design based on

the 23 x23 Binary Orthogonal Matrix shown in Table 1.2. The first column of of the matrix

21
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Table 1.1: 25- 2 Factorial Design Matrix

Table 1.2: Basic and Non-Basic Columns of a Binary Orthogonal Matrix

22

Variable: T 1 T 2 T 3 T 4 T 5

Experiment Vl v2 v 3 V12 v 2 3

1 + + + + +
2 ± + - + -
3 + - + -
4 + - - +
5 - + + - +
6 - + - - -
7 - - + + -
8 - - - + +

Expt. Vavg VI V£ V3 V12 v23 V31 V123

1 + + + + + + + +
2 + + + - + - - -
3 + + - + - - + -
4 + + - - - + +
5 + + + - + -
6 + - + - - + +
7 + - - + + - +
8 + - - - + + + -



consists only of +1 and is called the Average Column (vavg).

1.4.2 Resolution of Factorial Designs

Resolution is a useful concept associated with factorial designs. The resolution of a design

is a measure of the ability of the design to resolve confounding between interactions.

A 2n--k factorial design is said to be of resolution R if no Pth order interaction is

confounded with another interaction of less than (R - P)th order. For example, a design

has a resolution III if no variable is confounded with another variable but at least one

second order interaction is confounded with a variable. Designs with higher resolution are

preferred.

In this report we will usually begin the sequential DOE procedure using a design of

resolution IV or higher. Such a design has the property that none of the variables are

confounded with second order interactions.

1.4.3 Basic Columns and Variables of Factorial Designs

In this subsection we discuss the notation used to represent an factorial design. An factorial

design is viewed as a mapping of variables and interactions to a set of columns of a binary

orthogonal matrix.

As discussed in Appendix A, given a binary orthogonal matrix X of size 2m, we can

determine a set of m independent columns. These columns are called basic columns. The

other 2m - m columns are called non-basic columns. The basic columns are denoted by

the symbols vl, v2, ... , Vm. Every non-basic column corresponds to a product of a unique

set of basic columns. A non-basic column is denoted by Vijk if it is generated by the product

of the columns vi, vj and k. An example of a 23 binary orthogonal matrix is given in

Table 1.2.

The set of experiments can be represented by assigning to every variable T1, T2, ... , T,

a column of the orthogonal matrix. For example, comparing Table 1.1 and Table 1.2, we

can represent the information of the experiments simply as shown in Design(I) of Table 1.3.

It is clear that if T1 lies on column v and T2 lies on column v2 , then the interaction of

these, represented by Il2, must lie on the column corresponding to the product of columns vl

and v2 , namely column v12 . Therefore, all variables and their interactions must correspond

to some basic or non-basic columns. In general, there are more variables and interactions

23



Table 1.3: Changes in Confounding Patterns

than there are columns. Hence, each column of the matrix may be associated with more

than one variable or interaction. All variables and interactions lying on one column are said

to be confounded with each other. All variables and interactions which are confounded

with each other are indistinguishable from each other, with respect to the given experiment.

The orthogonal matrix used to design a 2n-k factorial experiment in n variables has

n- k basic columns and 2 n-k-(n - k) non-basic columns. The design of experiments

corresponds to assigning n- k variables to the basic columns and the remaining k variables

to the non-basic columns. The assignment of these non-basic variables govern the overall

confounding pattern of the design. A set of variables lying on a set of basic columns are

called a set of basic variables and the other variables are called non-basic variables.

Example 1-1

Suppose a process P depends on 5 variables T1, ... , T5. A 25-2 Fractional Factorial

experiment is to be designed to study the process. As explained above, this is equiv-

alent to assigning 3 variables to a set of basic columns and the other 2 variables to

any non-basic columns. If T1, T2 and T3 are assigned to to vl, v2 and V3 respectively,

then T4 and T5 can be assigned to any of the non-basic columns. Different choices of

non-basic columns will lead to different confounding patterns.

In Design(I) of Table 1.3, T4 and T5 are assigned to columns vl2 and v2 respectively.

The corresponding positions of the second order interactions are shown in the Table.

When the assignments of T4 and T5 are changed to columns v23 and V123 respectively,

24

Expts. Vavg V1 V2 V3 V12 V23 12 V23 V31 V123

Design(I) T1 T 2 T 3 T 4 T 5

Interactions I24 114 I25 I12 123 113 I15

I35 I45 134

Design(II) T1 T 2 T 3 T4 T5

Interactions I45 134 124 112 123 113 114

I35 I15 I25

Design(III) T 4 T1 T2 T 3 T5

Interactions I14 I24 I34 I12 123 I13 I45

135 115 125



the confounding pattern of the design changes as shown in Design(II) of Table 1.3.

Design(III) is an example in which T4 and T5 are assigned to Vavg and vl23 respectively.

Such a design is not very desirable as it confounds the average effect with the main

effect of T4. Hence, both these important effects cannot be determined.

Design(I) and Design(II) have resolution III because there are second order interac-

tions which confound with the variables but there are no variables which confound

with another variable or the average column. Design(III) has resolution I because

T4 confounds with the average column - which can be considered as a zero order

interaction.

In this example only T4 and T5 have been shifted keeping the variables TI, T2 and T3

fixed. If the basic variables are shifted from one column to another along with the

non-basic variables there are problems caused due to rearrangement of rows. This

issue is discussed in greater detail in Appendix B. ·

1.4.4 Shifting with respect to a Columns

This report deals with sequential experimentation. Using sequential experimentation it is

possible to shift the variables and interactions to different columns of the design matrix and

reduce confounding. In order to mathematically define shifting, we introduce the concept

of Shifting with respect to a Column. A variable ( or interaction ) Ti is said to have shift

with respect to column v, if and only if the old column of Ti, v, and the new column of

Xi, vty, are such that v, = v'vy.

1.4.5 Fold-Over Designs

Given a block of 2n-k factorial experiments, if the signs of all the elements of this block

are reversed, a fold-over design is obtained. This technique is originally due to Box and

Wilson [6].

If the first block has resolution III, then it can be shown that the fold-over design

together with the first block results in an factorial design of resolution IV, that is one in

which none of the second-order interactions are confounded with the variables. Therefore,

using such a design it is possible to determine the effect of all the variables independent of

the effect of ally second-order interactions.
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Chapter 2

Sequential Experimental Design

In this chapter the concept of sequential design of experiments is introduced. Section 1

deals with the non-sequential approach to the DOE and the problems with it. In Section 2

the overall sequential approach is outlined. Section 3 lists the assumptions made on the

manufacturing models.

2.1 Non-Sequential Approach to DOE

The concept of Sequential Experimental Design is not completely understood especially

when the variables are at three and higher levels. Therefore, most of the commercial

software available for factorial DOE support non-sequential experimental design1 . As shown

1A few of the commercial software products surveyed (PC-QPI and RS/Discover) do have sequential
design features but they do not generate optimal experiments based on previous results. Rather the user has
to design the experiments and the software analyzes the results. Also, these commercial software products
do not support sequential block analysis.

Figure 2-1: Non-Sequential Approach to Experimental Design
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in Figure 2-1 the non-sequential approach to DOE can be divided into the following steps:

1. Selecting variables and potential variable interactions which are perceived as being

most important in determining the performance of a given process.

2. Given the number of variables, designing a set of experiments which is to be performed.

3. Conducting the experiments and obtaining the results, i.e. values of the output pa-

rameters to be optimized, such as strength, variance, etc.

4. Analyzing the results to obtain the coefficients of the variables and their interactions

in the mathematical expression Equation 1.6 predicting the output parameters.

5. Using these coefficients to suggest new settings of the control variables, T, to improve

the process.

In order to use non-sequential experimental design, the experimenter has to guess the prob-

able interactions. The commercial DOE software can be used only after the list of probable

interactions has been obtained. Some of the main features currently available in commercial

DOE software include the following:

* Designing factorial experiments based on various criteria of optimality such as D-

optimality 2 [2].

* Analyzing results using different techniques. Some of the commonly used include:

1. Analysis of Variance (Anova)

2. Normal Probability Plots

3. Bayesian Estimation

Despite these advancements the commercial DOE software products are limited in their

application. Some of the main problems are:

* It is not possible to suggest a general design methodology which can be applied to all

processes. The concept of DOE depends a lot on the specific process to be optimized

and therefore a design that may be good for one process might not be so for another.

2A design matrix is said to be D-optimal with respect to a set of matrices if it has the maximum
determinant in the set.
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* The experimenter has to guess the interactions. In order to be safe it is necessary to

guess very conservatively. Thus, the effects of a much large set of interactions has to

be determined than is actually necessary. This results in the use of more experiments

than necessary.

* Irrespective of the sophistication of the design and analysis procedures, one cannot

overcome the fundamental limitations of confounding. That is if one variable/ in-

teraction is confounded with another, then the effects of each cannot be evaluated

separately irrespective of the nature of the analysis.

* Typically, there is a limit to an experimenter's knowledge about the process he or she

wishes to optimize. Hence it is often true that having performed the experiment some

of the following situations might arise.

1. Some of the columns of the test matrix which were assigned to variable/ inter-

action(s) which the experimenter thought were unimportant were found to have

large coefficients.

2. The results of the experiments suggests the possible presence of interaction(s)

which are confounded with other variables/ interactions and hence could not be

evaluated.

3. Only a few variables and interactions are found to be important.

Hence the experimenter might be forced to ask: WHAT NEXT??? This is exactly the

question that we hope to address in the course of this thesis.

2.2 Sequential Design Philosophy

In this project we aim to address the issue of DOE in a systematic manner. Given a process

which needs to be optimized the experimenter should start by studying its physics. Based

on this, a group of variables and interactions should be selected. The software will then

use this information and will design a matrix which has minimum possible confounding

between these variables and interactions. After conducting the experiments and analyzing

the results it may happen that the experimenter is not completely satisfied due to one or

more of the reasons stated in Section 2.1. Thus in order to proceed the software needs to
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consider all the possible conditions for which an experimenter may not be satisfied with

the results of the first set of experiments and suggest acceptable solutions for each of these

conditions.

It is difficult to determine which set of experiments the experimenter should perform,

in the most general sense. The choice of experiments depends not only on the specific

questions which the experimenter wishes to answer but also on the nature of the process at

hand. There are many factors which need to be considered.

* The level of noise in the experiments.

* The number of experiments that the experimenter wishes to perform.

* The accuracy required in estimating the parameters.

Fractional Factorial Designs have very interesting and important properties and are very

popular in experimental design techniques.

* The experiments are easy to perform.

* The analysis of the results yield uncorrelated estimates of the effects of the variables

and the interactions.

* Factorial designs support sequential experimentation.

* They can be applied to a large class of manufacturing processes.

Given these advantages, it is desirable to design a new fractional factorial experiment.

So the question is how to design a new block of experiments which will supplement the old

block of experiments and enable the experimenter to resolve many of the problems stated

above? The Sequential Block Design and the One-at-a-Time Design are developed with this

perspective. They are briefly described below.

2.2.1 Sequential Block Design

In this methodology first a fold-over block of experiments is designed. Since the design used

is at least of resolution IV, the effects of the variables can be determined independent of the

effects of second order interactions. Based on the assumptions on the models discussed in

Section 2.3, a list of probable significant interactions is formed. There may be confounding

between these interactions.
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With the help of the Half-Block Design and the Full-Block Designs discussed in Chap-

ter 3, an optimal set of experiments is obtained which 'best' disentangles the confounding

interactions. Hence, the new set of experiments allows the determination of the effects of

the confounding interactions. It may happen that there are still a few interactions which

remain confounded, but the optimal set of experiments ensures that these are relatively

less important. If desired, a second optimal design may be used to determine the effects of

these interactions. Hence using this method we can sequentially sort out the confounding

between interactions. Sequential block designs are discussed in detail in Chapter 3.

2.2.2 One-at-a-Time Design

In most manufacturing processes the number of significant variables and interactions af-

fecting the quality is usually small. Suppose a fold-over block of experiments has been

conducted. It is often reasonable to assume that at most one variable or interaction is

significant in any column of the design matrix.

Therefore, once the effects of the columns have been determined, only the significant

variable or interaction in each column needs to be determined. This is done by first making

a hypothesis about the significant variable or interaction in each column. Based on this

hypothesis an optimal operating point is computed. The actual output of the plant at that

operating point is obtained. The actual output is compared with the predicted output and

the hypothesis is verified. If the hypothesis fails, a new hypothesis is proposed.

There are several advantages of this approach. One-at-a-Time designs are discussed in

detail in Chapter 5.

2.3 Assumptions on Manufacturing Models

In this report we assume that the manufacturing systems that we deal with satisfy the

following assumptions. In case there are any deviations they will be noted in the report.

Al - Sparsity-of-Effect Principle: Most of the systems are dominated by the effects of

the variables and the low-order interactions. Most of the higher order interactions are

negligible. This assumption will also be referred to as the Sparsity Principle in the

report.

This assumption is widely used and is supported by experienced practitioners of DOE.
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A2 - Minimal Complexity of Models: Most systems are governed by interactions that

are important whenever the main effects of some of their variables are important too.

This assumption will be called the Simplicity Principle in the report.

A3 - Uncorrelated Noise Distribution: The noises in the different experiments are un-

correlated and are approximately gaussian distributed with zero mean and constant

variance. This justifies the use of least-square techniques in estimating the manufac-

turing models.

A4 - Sequential Experimentation: It is possible to combine the results of two or more

fractional factorial experiments to assemble sequentially a larger design to better

estimate the effects of the significant variables and interactions.
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Chapter 3

Sequential Block Design

This chapter discusses the concept of Sequential Experiments using Block Designs. Section 1

discusses the need for such a methodology. Section 2 deals with the initial steps required

to do sequential experimental design. Section 3 discusses Half-Block Designs. A detailed

example is given to help the reader understand the technique. Section 4 discusses Full-

I3lock Designs and Fold-over Designs. Section 5 illustrates a method for completing an

incomplete block of experiments. The mathematical proofs of the procedures are given in

the Appendices.

3.1 Need for Sequential Block Design

Consider a situation in which a manufacturer, inexperienced in DOE, desires to use exper-

imental design to improve the quality of the product. Before starting experimentation, the

manufacturer must do the following:

* Choose variables and their operating ranges.

* Guess the important interactions affecting the response.

* Choose a response or quality variable which really provides useful information about

the process under study.

It is not desirable to do only one block of experiments or a large first block of experiments

since:

1. The levels of the variables may be incorrectly chosen, making the effects of some of

the variables dominate the results.
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2. Since the significant variables and interactions are not known a priori, it is advanta-

geous to use the information from the first block of experiments to design subsequent

ones.

3. There are always constraints of time, funds etc. on the total number of experiments

that can be performed. Therefore, it is desirable to conduct most experiments when

there is more information available about the process.

It is usually recommended that the experimenter invest no more than 25 percent of

the available resources in the first block of experiments [17]. Therefore, it is necessary to

use an experimental design technique which supports sequential experimentation. Hence,

fractional factorial designs are often used. A detailed description of factorial designs can

be found in several books including [9], [17], [8]. In this report the reader is assumed to be

relatively familiar with the basic concepts of fractional factorial designs.

3.2 Sequential Design Methodology

Given a process P which depends on n variables Tl,...,T,, a complete factorial design

requires 2n experiments to determine the effects of all the variables and interactions. Even

for moderate values of n, the complete factorial design requires an infeasible number of

experiments to be performed. For example, for n equal to 8, 9 and 10, the number of

experiments required is 256, 512 and 1024 respectively.

Most manufacturing systems satisfy the assumptions given in Section 2.3 and there-

fore require far fewer experiments to completely determine the significant variables and

interactions. The basic steps involved in sequential block design are described below.

Step 1: Designing First Block of Experiments

We advocate that the first block of experiments should be a fold-over design. To obtain

a fractional factorial design which is also a fold-over design, first a 2m factorial matrix is

designed, where m is the smallest integer for which 2m > n. The n variables are then

assigned to unique columns of this matrix. The 2m factorial matrix is now folded i.e. a

matrix is formed whose elements are obtained by changing the sign of the elements of the

factorial matrix. The matrix is appended to the original factorial matrix and the new matrix

of 2
m + l experiments is the desired fold-over design.
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Table 3.1: Fold-over Design Matrix for Example 3-1

Example 3-1

* Consider a process P which depends on 4 variables T1, T2, T3 and T4. To obtain a

fold-over design, a 23 factorial experiment needs to be designed. First a 22 factorial

matrix is designed as shown in Block 1 of Table 3.1. The four variables are assigned

to the four columns of this matrix. Then the matrix is folded over and appended to

Block 1. The overall matrix corresponds to the desired fold-over design. Note that

none of the variables are confounded with any second order interaction. 

Step 2: Analyzing the Results

After conducting the fold-over experiments, the coefficients of the columns of the orthogonal

matrix are obtained. The fold-over design has resolution IV. Hence, if it is assumed that

the third and higher order interaction are insignificant, the estimates of the main-effects

of the variables are the coefficients of the columns on which they lie. Using the analysis

techniques described in the next chapter, a list of significant variables is obtained.

Step 3: Determining Probable Interactions

On the basis of the Minimal Complexity of Model assumption, a list of all second order inter-

actions containing at least one significant variable is made. From this list, the interactions

which lie on columns with significant coefficients are selected. This group of interactions

are called the probable interactions. By assumption, all the true interactions must lie in this

group. It may happen that there may be many probable interactions which are confounded

with each other and hence their effects cannot be determined from the results of the first

block of experiments.
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Variables T 1 T 2 T3 T 4 112 I23 I31

& Interactions I34 114 124

Expts. Vl V2 V3 V123 V12 V23 V3 1

1 B + + + + + + +
2 L + + - - + --
3 K + - +
4 1 + -- + + -
1' F ----+ + +
2' 0 - -+ + + --
3' L - -+ - +
4' D - + + --+ -



Step 4: Resolving Confounding between Interactions

In case there is confounding between the probable interactions it should be possible to

conduct more experiments to unconfound them and determine their separate effects. If we

view the variables and interactions as 'sitting' on the columns of the orthogonal matrix,

the DOE techniques correspond to 'placing' the variables on the columns of the matrix.

Once the variables have been assigned to the columns of the matrix, the positions of the

interactions get fixed.

Hence, in order to unconfound the interactions, the variables need to be shifted from

one column to another with the help of more experiments. In order to unconfound the

interactions, we must exactly understand the mechanics by which the variables can be

shifted from their original positions. Once the mechanics is understood it is possible to

search through the design and determine the columns to which the variables can be shifted

to achieve maximum unconfounding.

Shifting a variable from one column to another is equivalent to designing an experiment

with a different confounding pattern. This idea is discussed in more detail in Appendix B.

Given that the first block of 2
n - k factorial experiments has been conducted it is desired

that the second block of experiments leads to a fractional factorial design with a different

confounding pattern. There are essentially two options.

1. If possible, replace some of the rows of the first block of experiments by those of a

second block, and create a distinct fractional factorial design.

2. If possible, append the rows of the first block of experiments to the rows of a second

block of experiments to create a larger fractional factorial design having a different

confounding pattern.

Both these options are possible. The technique based on option 1) is called the Half-

Block design and the one based on option 2) is called the Full-Block design. These designs

are described in the next two sections.

3.3 Half-Block Designs

The focus of this section is to study the problem of unconfounding probable interactions.

It is assumed that a 2 n-k factorial experiment has been conducted on the process and the
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effects of the variables are known. On the basis of this, a list of probable interactions is

obtained. The effects of all the probable interactions are known, except for those which are

confounded with each other.

We need to determine the effects of the confounded probable interactions. Therefore, a

fractional factorial experiment has to be designed which has a different confounding pattern.

In order to save resources it is natural to inquire if it is possible to design a new factorial

experiment in which many of the experiments of the first block are similar, rather than one

in which all the 2 n-k experiments are different from those of the first block. This issue has

been discussed in Appendix B. The main result is given below. The readers interested in

the proof can refer to Appendix B.

Result:

Given a block of 2
n-k factorial experiments in n variables,

1. At least 2 '- k - 1 experiments of the block need to be changed to obtain a new block of

factorial experiments with a different confounding pattern.

2. New blocks of factorial experiments which can be obtained by doing an additional set of

2 n - k - 1 experiments, can be generated by shifting the variables with respect to every

column of the design matrix.

3.3.1 Algorithm to Determine the Optimal Half-Block Design

To begin with, we need to assign each of the probable interactions a weight based on the

significance of its variables and the coefficient of its column. That is, an interaction of two

important variables should be weighted more than one in which only one of the variables

is significant. Also, an interaction lying on a column with a large coefficient should be

weighted more.

In this report, the weight of an interaction is obtained by taking the absolute value of

the products of the coefficients of its column and those of its variables. There are other

acceptable means of assigning the weights. Further work could be done to examine them

and determine if some are better than others.

The goodness of a design k is evaluated on the basis of four quantities:

1. Number of columns in which the variables confound with probable interactions, Nvik.
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2. Sum of the weights of the interactions confounded in 1., Wvik.

3. Number of columns in which the probable interactions are confounded with each other,

Niik.

4. Sum of the weights of the interactions confounded in 3., Wiik.

For any two designs, design k and design 1, design k is said to be better than design I if

Nvik < Nvil. If Nvi = Nvil, then design k is better than design I if WVik < Wvil. If

terms 1. and 2. are equal for both the designs, then design k is better than design 1 if

Niik < Niil. Eventually if terms 1., 2., and 3. are equal, then design k is better than

design 1 if Wiik < Wiil.

This method of comparing different designs ensures that:

* Designs with less confounding between variables and interactions are preferred.

* Designs which have confounding between probable interactions with high weights are

avoided.

* A design with no confounding is preferred over all other designs.

This method of comparison has been found to yield good results. Nevertheless, there are

other measures which would be acceptable too. Further research should be done to de-

termine the existence of an 'optimal' comparison method which performs best over the

ensemble of manufacturing processes.

Given a block of experiments, the variables are shifted to with respect to different

columns and different designs are obtained. The search procedure follows the Tree Search

Algorithm. Each time a better design is found it is called the current optimum design

and is stored in memory. The search procedure stops when either all four quantities given

above reduce to zero, or if no design is found which is better than the current optimum

design. The Tree Search algorithm ensures that all acceptable sets of 2 n - k -1 experiments

are searched.

The results given in Appendix B greatly reduce the search. Shifting any one variable

completely determines the permissible columns for the placement of all the other variables.

That is, once any one of the variables has been shifted, the other n -1 variables can each be

placed in only 2 of the 2 n-k columns. Whenever the variables are placed in the permissible
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Experiment: 1 2 3 4 1' 2' 3' 4'
Result: 16.21 8.41 23.64 15.35 11.72 -6.22 16.57 0.84

Table 3.2: Results of Fold-over Design of Example 3-2

Column: Vavg VI V2 V3 V123 V12 V23 V13

Variable T1 T 2 T 3 T 4 112 I23 I13

& Interaction: 134 114 I24

Coefficient: 10.84 5.11 -0.33 -2.22 -0.31 -3.31 0.24 6.19

Table 3.3: Analysis of Design of Example 3-2

columns, there exists a block of 2 n - k - 1 experiments which along with 2
n - k - 1 experiments

of the first block gives a new 2n-k factorial design.

Once the variables have been placed in the permissible columns, the procedure for

obtaining the new experiments is simple. The new design is generated from the old one

l)y shifting some of the variables with respect to a column of the old design as described

in Appendix B. The new block of experiments are the 2n-k-1 rows of the new design

matrix in which the elements of this column are -1. The rows for which the elements of the

column are +1 are common to both the new and the old block of experiments and therefore

these experiments need not be done again. Once the 2 n-k-1 new experiments have been

conducted, the new matrix can be formed and the effects of the probable interactions can

be dletermined.

Example 3-2

* Consider the process given in Example 3-1. Suppose that the true expression for

quality is given by,

y = 10.6 + 5.2T 1 - 2.5T3 - 3.1112 + 6.1113 (3.1)

The first block of experiments is the fold-over design of Table 3.1. The results obtained

are shown in Table 3.2. The coefficients of the columns obtained from these results

are shown in Table 3.3.

From Table 3.3 it is clear that only columns Vag, vl, V3, vl3 and vl2 are significant.
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Table 3.4: Half-Block Experiments and Results of Example 3-2

Column: Vavg V1 V2 V3 V123 V12 V23 V13

Variable T1 T2 T3 I14 112 T4 I13
& Interaction: I34 I24 I23
Coefficient: 10.57 5.37 -0.17 -2.32 0.07 -3.46 -0.15 6.31

Table 3.5: Analysis of New Design of Example 3-2

Therefore, the significant variables are T1 and T3. The possible significant interactions

are: 112, I13, I14, I23 and 134. Of these, only I12, I34 and I13 lie on significant columns

and constitute the set of probable interactions.

Since it is assumed that third and higher order interactions are negligible, the coeffi-

cients of the columns v,,g, vl and v correspond to the effects of the constant, T1 and

T3 respectively. Since 124 is assumed negligible, the coefficient of vl3 is an estimate

of the effect of I13. The effects of probable interactions I12 and I34 cannot be deter-

mined separately as the interactions are confounded with each other. Therefore, we

need to design a Half-Block experiment to unconfound the effects of I12 and I34. The

Half-Block algorithm suggests shifting T4 from column vl23 to v2s, that is, shifting T4

with respect to column vl. Thus, the experiments in which the elements of column vl

are '-' need to be done. The sign of T4 is reversed in each of these experiments. The

Half-Block experiments are shown in Table 3.4. The results of theses experiments are

given in the same table.

The experiments of Table 3.4 along with Experiments 1, 2, 3 and 4 of the the first

block give a new orthogonal matrix which has a different confounding pattern. The

confounding pattern and the result of the analysis of the new matrix is shown in

Table 3.5.

From Table 3.5 it is observed that each column has only one significant variable or
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Experiment T 1 T 2 T3 T 4 Result

1" - - - + 10.31

2" - - + - -6.49
3" -+ - - 17.33
4" +- + + -0.36



probable interaction. Thus, the effect of each of them can be determined. Since the

column v2 in Table 3.5 has a non-significant coefficient, it implies that I34 is not

significant. The coefficients of columns of 13 and I12 have significant coefficients

which agree well in the result of the analysis of the old and the new design matrix.

Hence I13 and I12 are significant interactions.

The results of the analysis of the two designs can be improved by taking the average

of the corresponding effects in Table 3.3 and Table 3.5. Dropping the non-significant

effects, the model of the plant is given by:

y = 10.71 + 5.24T1 - 2.27T3 - 3.3912 + 6.25I13 (3.2)

Equation 3.1 and Equation 3.2 agree quite well. Hence the Half-Block methodology

has been effectively used to estimate the model of this process.

In this example it is not possible to determine the optimal operating point of the

process before obtaining the model of the process because the conditions cited in

Section 5.5 are not satisfied.

The interactions I14 and I23 were dropped form the list of probable interactions be-

cause they were located on a non-significant column. If these interactions are signifi-

cant the coefficients of the columns in Table 3.3 and Table 3.5 will not be consistent.

For example, if I23 is significant, the coefficients of the column I12 would not be similar

in both Table 3.3 and Table 3.5 since it includes the effect of I23 in Table 3.5. This

procedure can be used to verify the process model. 

3.3.2 Advantages and Disadvantages of Half-Block Designs

The Half-Block designs procedure described in this section is suitable for a large number of

situations.

1. If the number of confounded probable interactions is small.

2. If the first block of experiments is large. The size of the design matrix increases

exponentially with the number of variables, n. Even in the worst case the number

of probable interactions (of second order) increase with n2. Therefore, as the num-

ber of variables increase, the number of columns increases and it becomes easier to
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disentangle the probable interactions using Half-Block designs.

3. Given a block of 2
n - k factorial experiments, a Half-Block design uses 2 n-k- 1 experi-

ments of this block to forms a new block of 2 n- k factorial experiments. The analysis

of the new block yields uncorrelated estimates of the effects of the unconfounded

variables and interactions.

There are a few limitations of this design technique.

1. When a Half-Block design strategy is applied to a block of 2 n-k factorial experiments,

2 n-k- 1 experiments are determined which form a new block of 2 n-k factorial exper-

iments with a group of 2
n - k - 1 experiments from the first block. The new block has

a different confounding pattern. It is possible to estimate the effects of the variables

and the interactions by analyzing all the 2 n-k + 2 n-k- 1 experiments which have

been conducted. The estimates obtained from this analysis will be correlated with

each other because the columns of the regression matrix are not orthogonal to each

other.

Instead, if only the experiments of the new block of 2
n - k factorial experiments are

analyzed, the regression matrix is orthogonal and the estimates will be uncorrelated.

These estimates will have a larger variance because the number of experiments used

in the analysis is reduced. Thus there is a trade-off between smaller variance and

uncorrelatedness of the estimates.

2. If the design is highly confounded, it may not be possible to unconfound all the

probable interactions using Half-Block designs.

This limitation is due to the fact that Half-Block designs can only restructure the

confounding pattern and not decrease the confounding. The optimal restructuring

ensures that the probable interactions get unconfounded at the expense of the non-

significant interactions. Therefore, the only manner in which the overall confounding

can be reduced is to design a larger matrix which is less confounded. This is the issue

of the next section.
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3.4 Full-Block Designs

This section deals with the theory and application of Full-Block Designs. The Half-Block

designs described in the last section are very useful but there may be situations where,

having conducted a 2n-k factorial experiment it may happen that:

1. The number of confounded probable interactions is large.

2. Uncorrelated estimates of low variance are required.

3. Resources permit conducting more than a Half-Block Design.

In such cases it is more desirable to have a design technique which simultaneously uses all

the experiments to determine the model of the process. The use of all the experiments is

advantageous on two counts. One, the larger design matrix leads to less confounding and

two, the estimates obtained from analysis have a smaller variance.

The basic problem can thus be stated as follows. Having done a block of 2n-k factorial

experiments on a process, which is the next block of experiments that need to be performed

so that the analysis of both blocks 'best' unconfounds the probable interactions? This

question is the focus of Appendix C. The main result is stated below. The proof and an

illustrative example is given in Appendix C.

Result:

Given a block of 2n-k factorial experiments in n variables,

1. A new block of 2n-k experiments forms a block of 2n-k+1 factorial experiments along with

the original block only if both the new and the original block have the same confounding

pattern.

2. There are 2k-1 possible blocks of 2n-k experiments which can form a block of 2
n- k+1

factorial experiments with the original block. The new blocks can be generated by

reversing the signs of the columns of the non-basic variables in the original block.

3.4.1 Algorithm to Determine the Optimal Full-Block Design

In the Full-Block design algorithm, different blocks of 2 n-k experiments are generated by

reversing the signs of all the possible subsets of the non-basic variables. Each block is

unique. The confounding pattern of the overall design is determined for each of these
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Experiment: 1 2 3 4 1' 2' 3' 4'
Result: 18.59 18.43 13.89 14.60 2.81 -7.18 18.05 8.58

Table 3.6: Results of Fold-over Design of Example 3-3

Column: Vavg V1 V2 V3 V123 V12 v23 V13

Variable T1 T2 T3 T4 112 I23 I13
& Interaction: I34 I14 I24

Coefficient: 10.97 5.41 4.94 -2.50 0.04 -2.81 0.17 2.36

Table 3.7: Analysis of Design of Example 3-3

blocks. The Tree Search algorithm is used to determine the optimal new design using the

criterion described in the previous section.

The results of Appendix C lead to a considerable simplification in the search procedure.

The Tree Search algorithm ensures that all 2k-1 block designs, which can be used with the

first block to give a 2 n-k+1 Fractional Design, are searched. Hence the search gives the true

optimum design.

The new block of experiments to be performed corresponds to the old design in which

the signs of certain columns of the non-basic variables are reversed in accordance with the

result of the search.

Once the new block of experiments have been carried out, the new design can be ap-

pended to the old one. The overall design corresponds to a 2 n-k+ l factorial design. The

algorithm used to generate the new block of experiments guarantees that the overall design

matrix has optimal confounding between the probable interactions.

Example 3-3

* Suppose the process in Example 3-1 is given by,

y = 10.6 + 5.2T1 + 4.9T 2 - 2.5T3 - 3.1112 + 6.1113 - 37124 (3.3)

Let the first block of experiments be the fold-over design of Table 3.1. The results of

these experiments are given in Table 3.6. The coefficients of the columns of the matrix

are given in Table 3.7. It is observed that the variables T1, T2 and T3 are significant.

According to our assumptions the possible significant interactions are 112, 113, 114,
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Table 3.8: Full-Block Experiments for Example 3-3

Column: Vavg V1 V2 V 3 V4 V12 V13 V1 4

Var.& Int.: T 1 T 2 T3 T 4 112 113 114

Coefficient: 10.85 5.36 4.90 -2.51 0.15 -2.88 6.04 0.14

Column: V23 V24 V34 V123 V124 V134 V234 V1234

Var.& Int.: 123 124 134 1123 1124 1134 1234 1234

Coefficient: 0.03 -3.67 -0.11 0.01 0.07 0.05 0.05 0.12

Table 3.9: Analysis of New Design of Example 3-3

45

Experiment T1 T2 T3 T4 Result
1 + + + - 24.76
2 + + - + 11.11
3 + - + + 21.72
4 + - - - 6.58
5 - - + 9.99
6 - - + - -14.78
7 - + - 25.29
8 - + + + 1.14



I23, I24 and I34. But the column of v23 is not significant. This implies that I23 and

114 are not significant 1. Thus there are 4 probable interactions 112, 134, 113 and 124-

The first two and the last two probable interactions are confounded with each other.

When a Half-Block design algorithm is applied to this problem, it is found that there

exists no Half-Block design which can unconfound all the probable interactions. Thus

we have to resort to a Full-Block design. The Full-Block design algorithm suggests

reversing the sign of the column of T4 keeping the other columns unchanged. Table 3.8

gives the Full-Block experiment. The results of the experiments are also given in the

same table.

The results of the analysis of all the 24 factorial experiments are given in Table 3.9.

Using Table 3.9 and selecting the significant terms, the estimate of the model is given

by:

y = 10.85 + 5.36T1 + 4.90T2 - 2.51T3 - 2.88112 + 6.04113 - 3.67124 (3.4)

This estimate compares very well with the true plant model,

y = 10.6 + 5.2T1 + 4.9T2 - 2.5T3 - 3.1112 + 6.1113 - 3.7124 (3.5)

Notice that if our assumption that I23 and 114 are not significant were wrong, the

coefficients of the column on which they lie would be significantly different in the

results of Table 3.9 and Table 3.7. Comparing the two results would permit the

estimation of the effects of these interactions. 

3.5 Completing Block Designs

This section deals with the issue of completing an incomplete block of fractional factorial

experiments. Suppose a block of 2 n-k factorial experiment has been conducted followed by a

Half-Block of experiments. The Half-Block has the property that it forms a 2 n-k orthogonal

matrix with 2 n-k-1 experiments of the first block of experiments. There may be situations

where, after conducting a Half-Block, it is desired that a set of experiments is found which

1There is a rare possibility that I23 and 14 have effects which are similar in magnitude but opposite in
sign and therefore cancel each other. A check for this possibility is discussed later.
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2 n-k Experiments

Figure 3-1: Pictorial Representation of Completing Block Design

together with all the experiments conducted previously, determine a orthogonal matrix of

size 2 n-k+ l . This idea is represented in Figure 3-1. The procedure for completing a block

is equivalent to finding the missing block of 2 n-k-1 experiments shown in Figure 3-1.

The concept of completing blocks is discussed in detail in Appendix D. The procedure

is demonstrated with an illustrative example. The general procedure for completing blocks

is given below.

Procedure for Determining the Missing Block:

Given an incomplete block of m (2 n - k < m < 2 n- k+ l) experiments of a block of 2 n-k +1

factorial experiments,

Step 1. Determine the basic variables and the confounding pattern of the incomplete block.

Step 2. Check which of the 2 n-k + l combinations of +1 and -1 are missing from the columns

of the basic variables. There will be 2 n-k+l-m such combinations.

Step 3. For each of the combinations determined in Step 2, determine the entries of the

non-basic variables of the matrix using the confounding pattern of the incomplete

block.
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Chapter 4

Analysis of Sequential

Experiments

This chapter deals with the analysis techniques used to analyze sequential experiments.

Section 1 deals with classical techniques of analysis. Section 2 discusses the issue of closed

loop techniques for determining interactions.

4.1 Classical Analysis Techniques

In this section we deal with the classical analysis techniques that have been added to the

MIT computer software to analyze sequential block designs. These techniques are well

known and are discussed very briefly.

4.1.1 Analysis of Variance (Anova)

It is probably the most important technique used in statistical inference. The name is

derived from a partitioning of the total variability of the experimental results into component

parts. For a process P, dependent on n variables T1, ... , T, if Yi (i = 1,..., N) is the

result of the ith experiment and Y is the mean of the results, then the total sum of squares

N

SST = (Y - )2 (4.1)
i=l
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is used as a measure of the overall variability of the results. Suppose the process is modeled

as, -= /0 + 1T1 + /2T2 + ... + ~OnTn + 0l12112 + . . . +- ijlij +... ' + (4.2)

where the effects 1,, are determined using the least-square technique, then it can be shown

that

SST: = L i2 + E/3j 2 + ci 2 (4.3)
i i,j i

The last term in Equation 4.3 is called the sum of squares of error, SSE, that is,

SSE = E i2 (4.4)

If there are a terms in the model of the plant shown in Equation 4.2, then SST and SSE

have N - 1 and N - a degrees of freedom, respectively. The F-ratio Fx, for a coefficient /,

is given by

SSE/(N - a) (4.5)

and it represents the measure of significance of the coefficient. If it is assumed that the noise

has a gaussian distribution then Fx has an F-distribution. If Fx is large then the variable/

interaction of the coefficient is significant.

A more detailed discussion on Anova can be found in many books including [17],[8].

4.1.2 Normal Probability Plots

This method of analysis attributed to Daniel [7] provides a simple way to determine signifi-

cant variables and interactions. Given the result of a factorial experiments, the coefficients

of the columns of the orthogonal matrix are calculated using the Least Squares technique.

In order to construct a normal probability plot', the N coefficients are arranged in

increasing order and the kth of these ordered coefficients is plotted versus the cumulative

probability point Pk = (k - 1/2)IN on the normal probability paper.

The coefficients which contain only the noise effects tend to be normally distributed

with a zero mean and a common variance. Thus they lie along a straight line on the plot.

The slope of this line is the estimate of the common variance.

1A normal probability plot is a plot on a normal probability paper, a graph paper in which the ordinate
has been scaled so that the cumulative normal distribution plots as a straight line.
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Figure 4-1: Normal Probability Plot

On the other hand, the coefficients which contain the effects of the dominant variables

will typically have non-zero means and lie significantly away from the straight line. Thus

the normal probability plot can be used to determine these dominant coefficients.

Example 4-1

* A group of 20 random numbers are generated on the computer. Of these 20 numbers,

15 are normally distributed with zero mean and unit variance. The remaining 5

numbers have unit variance but non-zero means. As seen from Figure 4-1 the numbers

with zero means tend to lie on a straight line and can be distinguished from the other

numbers with non-zero means. 

4.1.3 Lenth's Algorithm for Determining Significant Coefficients

In this section we describe the Lenth's algorithm [15] which has been used to determine the

significant coefficients in this report. The advantages of this algorithm are that it is quick
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and easy to incorporate in computer software, and it does not require the user to use any

judgment in determining the significant coefficients. The algorithm is described below.

Consider a process on which a 2 n-k factorial design is conducted and the results of the

experiments are analyzed. Let the coefficients of the design matrix be denoted by a,..., a.,

(m = 2 n-k). If the noise in the process is assumed to be uncorrelated and gaussian dis-

tributed, then the coefficients will have a normal distribution. Let ai be independently

distributed with mean 'yi and variance a2. Let,

So= 1.5x median ail (4.6)

The pseudo standard error (PSE) is defined as,

median
PSE = 1.5x m1il<2.So lail (4.7)

It has been shown in [15] that when the assumption of Sparsity Principle (Section 2.3)

is valid, PSE is a fairly good estimate of a. Once the estimate of a is known, the coefficient

ai is significant if,

Iail > t. 9 7 5 ;m/ 3 X PSE (4.8)

where t.97 5 ;m/ 3 is the .975th percentile of a t-distribution of m/3 degrees of freedom. The

range of values of t.975;m/3 varies from 3.76 for m = 8 to 1.99 for m = 256.

4.2 Closed Loop Technique for Determining Interactions

In most manufacturing processes the third and higher order interactions are negligible.

Suppose a fold-over experiment has been conducted and analyzed. The significant columns

can be determined by using any of the techniques discussed in the previous section. Since

the fold-over design has resolution of IV, the coefficients of the columns with variables are

the estimates of the effects of the variables. The group of variables lying on significant

columns form the group of significant variables.

Thus, only the effects of the interactions remain to be determined. In case there is con-

founding, the assumption of Simplicity Principle discussed in Section sec-ass, helps reduce

the total number of interactions that need to be analyzed. The group of all the interac-

tions which satisfy the assumption and lie on columns with significant coefficients are called
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probable interactions and have been discussed in Chapter 3.

Thus further experimentation is needed to determine the effects of the confounded prob-

able interactions and to determine which of them are significant. The Half-Block and the

Full-Block designs of Chapter 3 were developed with this goal.

It is possible to view the problem of determining the significant probable interactions

from a different perspective. Instead of determining the effects of all the probable interac-

tions, we can hypothesize that a subset of the probable interactions are significant and then

design experiments to check this hypothesis. This approach is developed in Chapter 5.
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Chapter 5

One-at-a-Time Designs

The sequential block design strategy was discussed in Chapter 3. In this chapter we propose

an alternative One-at-a-Time Design strategy to determine the unknown probable interac-

tions. Section 1 deals with the need to have such a method and the kinds of applications

where it will be useful. Section 2 outlines the algorithm and illustrates it with examples.

Section 3 presents a mathematical justification of this approach. The advantages of the

One-at-a-Time approach are discussed in Section 4. Section 5 deals with the concept of

Partial Optimization.

5.1 Need for One-at-a-Time Design Strategy

Consider a manufacturing process for which the assumptions of Sparsity Principle, Simplic-

ity Principle and Uncorrelated Noise Distribution discussed in Section 2.3 hold. Let this

process depend on n variables T1, ... , Tn. Suppose a 2 n-k factorial fold-over experiment

is conducted on this process and the significant variables and probable interactions are de-

termined. In many processes the number of significant variables and interactions are small

and it is reasonable to assume that each significant column has only one significant variable

or interaction lying on it.

Therefore, under these assumptions, once a 2 n - k factorial experiment is analyzed,

1. Significant variables and their effects are known.

2. Unconfounded probable interactions and their effects are known.

3. The effects of the confounded interactions are known although the interactions need
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to be determined.

If the number of confounding probable interactions is small there should be no need to

design either a Half-Block or a Full-Block experiment to determine the true interactions.

Instead it should be possible to determine the interactions with only a few more experiments.

In the next section we describe such a technique.

5.2 One-at-a-Time Design Strategy

Consider the example of the previous section in which a 2n-k factorial experiment is con-

ducted and the significant variables and probable interactions are determined. Let m

columns of the orthogonal matrix have more than one probable interaction and let the

number of probable interactions on each of these columns be denoted by n1, n2, ... , nm. If

it is assumed that each significant column has only one significant variable or interaction

then there are a total of NT possible models of the process, where NT is given by:

NT = n1 ' n2 . . . nm- 'rim (5.1)

That is, there are NT models which are completely indistinguishable with respect to the

first block of 2
n - k experiments. Of these NT possible models there is only one model

which corresponds to the true plant. Hence, under the above assumptions, the problem

of determining the plant is equivalent to determining the correct model from a set of NT

possible models.

To begin with, the confounded probable interactions are rank ordered on the basis of

the significance of their constituent variables and the significance of the coefficients of the

columns on which they lie. In this report the absolute value of the product of the effects of

the variables and coefficient of the column of the interaction is used as the weight. Therefore,

for a given column, usually interactions in which both the variables are significant, are

ranked above those which have only one significant variable.

The highest ranked probable interaction from every column is selected and a hypothesis

is made that these interactions correspond to the true interactions. On the basis of this

hypothesis an optimal experiment is designed which would give the highest quality if the

hypothesis is correct. If this experiment has already been carried out then the next high-
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est ranked interactions are selected and an optimal experiment is designed. The optimal

experiment is conducted on the actual plant.

Since the new experiment is different from those carried out earlier, not all the NT

possible models predict the same result. The models are ranked in increasing order of their

prediction errors, that is the squared difference between the actual and predicted results.

If two or more models give the same least prediction error, then the one which has higher

ranked interactions is ranked higher. The highest ranked model, that is the model yielding

the lowest prediction error, is selected as the next hypothesis. Once again an experiment

is designed which would give the highest quality if the new hypothesis is correct. If this

experiment has been conducted before, then an experiment is designed such that it is the

optimal experiment for the model which gives the next least prediction error.

Having conducted the second experiment the prediction errors are computed for all the

models and the next hypothesis is made. The same recursive algorithm is implemented until

the hypothesis is verified by the results. Once the hypothesis is verified, ideally no further

experimentation is required since any further experimentation will lead to the selection of

the same hypothesis over and over again. In presence of noise it is advisable to do a few more

experiments to ensure that the results are consistent. The outline of the above procedure

is shown in Figure 5-1.

Example 5-1

* Consider a manufacturing process which depends on 7 variables T1, ... ,T7 and the

true model of the process is given by

y = 20.5 + 3.8T1 + 4.1T2 + 9.0T4 - 3.7134 + 2.3113 - 6.1115 (5.2)

A 27-3 factorial fold-over experiment is conducted and the results are analyzed. The

confounding pattern is shown in Table 5.1. From Table 5.2 (a) it is observed that

variables T1, T2 and T4 are significant. Also, the columns 9, 10 and 12 are significant.

The probable interactions lying on the significant columns are:

- Column 9: 112 and I34

- Column 10: I24 and I13

- Column 12: 115 and I26
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Column: 1 2 3 4 5 6 7 8

Vavg V1 V2 V3 V123 V4 V124 V134

Variable: T1 T2 T3 T4 T 5 T 6 T7

Table 5.1: Confounding pattern of the 27-3 factorial experiments of Examples 5-1, 5-2 and
5-3

Thus, assuming that only one of the interactions in each of the columns is significant

results in NT = 8.

The initial guess of the process model is shown in Table 5.2(a). On the basis of this

hypothesis, Experiment 1 is designed. The model shown in Table 5.2(b) gives the least

prediction error and is the next hypothesis. The most significant interaction, I15, is

determined. Experiment 2 is designed to optimize the current hypothesis. Notice that

it is not possible to discriminate between the pairs of interactions (12, 134) and (124,

I13) using the first 2 experiments because both the interactions in the pairs take the

same value in both the experiments.

Since the hypothesis has not changed after the Experiment 2, Experiment 3 is designed

to optimize the next best hypothesis, that is, the model which gives the next least

prediction error. Experiment 4 is designed in the same manner as Experiment 3. By

now the true process model has been determined. Interestingly, from Table 5.2(f),

we notice that the true optimal operating point of the process, Experiment 5, is the

same as Experiment 3. This means that the true optimal point of the process was

determined prior to the determination of the true process model. 

Example 5-2

* Consider a process which is dependent on 7 variables T1, ... , Tn. A 27-2 factorial

experiment is conducted on the process. The experiments are the same as those of

Example 5-1. The confounding pattern of the block is shown in Table 5.1. The results

of the One-at-a-Time strategy are given in Table 5.3.
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Column: 9 10 11 12 13 14 15 16

V12 V13 V23 V14 V24 V34 V1234 V 2 3 4

112 113 114 I15 116 117 I45

Interaction: I34 I24 I67 I26 I47 I46 I27
156 157 I23 I37 I25 I35 I36



COLUMNWISE SUMMARY:

Col. Est. Cf. Pred(V/I) True Cf. True(V/I)

1 20.04 Avg. 20.50 Avg.
2 3.69 T1 3.80 T1
3 3.87 T2 4.10 T2
4 -0.08 T3 -----
5 9.26 T4 9.00 T4
6 -0.05 T5 -----
7 1.09 T6 -----
8 -0.52 T7 -----
9 -4.09 I12 -3.70 I34

10 1.67 I24 2.30 113
11 0.05 ----- -----
12 -5.77 I26 -6.10 I15
13 0.67 -----
14 0.71 ----- -----
15 0.52 ----- -----
16 0.34 ----- -----

EXPERIMENT-WISE SUMMARY:

Initial Guess of Process Model.

COLUMNWISE SUMMARY:

Col. Est. Cf. Pred(V/I) True Cf. True(V/I)

1 20.04 Avg. 20.50 Avg.
2 3.69 T1 3.80 T1
3 3.87 T2 4.10 T2
4 -0.08 T3 -----
5 9.26 T4 9.00 T4
6 -0.05 T5 -----
7 1.09 T6 -----
8 -0.52 T7 -----
9 -4.09 I12 -3.70 I34

10 1.67 I24 2.30 113
11 0.05 ----- -----
12 -5.77 I15 -6.10 I15
13 0.67 -----
14 0.71 ----- -----
15 0.52 ----- -----
16 0.34 ----- ----

EXPERIMENT-WISE SUMARY:

Expt. Experiment Prediction Observation

1. - + - + - - - 29.04 31.54

RMS Pred. Error: 2.50

(a) Results after Experiment 0

COLUMNWISE SUMMARY:

Col. Est. Cf. Pred(V/I) True Cf. True(V/I)

1 20.04 Avg. 20.50 Avg.
2 3.69 T1 3.80 T1
3 3.87 T2 4.10 T2
4 -0.08 T3 -----
5 9.26 T4 9.00 T4
6 -0.05 T5 -----
7 1.09 T6 -----
8 -0.52 T7 -----
9 -4.09 I12 -3.70 134

10 1.67 I24 2.30 113
11 0.05 -----
12 -5.77 I15 -6.10 I15
13 0.67 -----
14 0.71 ----- -----
15 0.52 ----- -----
16 0.34 -----

EXPERIMZENT-WISE SUMMARY:

Expt. Experiment Prediction Observation

1. - + - + - - - 29.04 31.54

2. - + - + + + - 42.68 42.51

RMS Prod. Error: 1.77

(b) Results after Experiment 1

COLUMNWISE SUMMARY:

Col. Est. Cf. Pred(V/I) True Cf. True(V/I)

1 20.04 Avg. 20.50 Avg.
2 3.69 T1 3.80 T1
3 3.87 T2 4.10 T2
4 -0.08 T3 -----
5 9.26 T4 9.00 T4
6 -0.05 T5 -----
7 1.09 T6 -----
8 -0.52 T7 -----
9 -4.09 I12 -3.70 134

10 1.67 124 2.30 113
11 0.05 ----- ----
12 -5.77 115 -6.10 115
13 0.67 ----- -----
14 0.71 ----- -----
15 0.52 ----- -----
16 0.34 ----- --

EXPZRIMENT-WISE SUMMARY:

Expt. Experiment Prediction Observation

1. - + - + - - - 29.04 31.54
2. - + - + + + - 42.68 42.51
3. + + - + - + - 41.96 43.86

RMS Pred. Error: 1.81

(c) Results after Experiment 2 (d) Results after Experiment 3

Table 5.2: Results of One-at-a-Time Designs of Example 5-1
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COLD1fWISE SUMKARY 

Col. Est. Cf. Pred(V/I) True Cf. True(V/I)

1 20.04 Avg. 20.50 Avg.
2 3.69 T1 3.80 T1
3 3.87 T2 4.10 T2
4 -0.08 T3 -----
5 9.26 T4 9.00 T4
6 -0.05 T5 -----
7 1.09 T6 -----
8 -0.52 T7 -----
9 -4.09 134 -3.70 134

10 1.67 113 2.30 I13
11 0.05 ----- -----
12 -5.77 115 -6.10 115
13 0.67 ----- -----
14 0.71 ----- -----
15 0.52 ----- -----
16 0.34 ----- ----

EXPERIMENT-WISE SUIUVARYs

Expt. Experiment Prediction Observation

1. - + - + - - - 29.04 31.54

2. - + - + + + - 42.68 42.51

3. + + - + - + - 46.80 43.86

4. - + + + + + - 30.98 29.36

RMS Pred. Error: 2.09

COLIWISZ SIRY:

Col. st. Cf. Pred(V/I) True Cf. True(V/I)

1 20.04 Avg. 20.50 Avg.
2 3.69 T1 3.80 T1
3 3.87 T2 4.10 T2
4 -0.08 T3 -----
5 9.26 T4 9.00 T4
6 -0.05 T5 -----
7 1.09 T6 -----
8 -0.52 T7 -----
9 -4.09 134 -3.70 134

10 1.67 I13 2.30 I13
11 0.05 -__- -----
12 -5.77 115 -6.10 115
13 0.67 ----- -----
14 0.71 ----- -----
15 0.52 ----- -----
16 0.34 ----- ----

ZXPERIMENT-WISE SUMMARY:

Expt. Experiment Prediction Observation

1. - + - + - - - 29.04 31.54

2. - + - + + + - 42.68 42.51
3. + + - + - + - 46.80 43.86

4. - + + + + + - 30.98 29.36

5. + + - + - + - 46.80 43.64

RMS Pred. Error:

(e) Results after Experiment 4

2.35

(f) Results after Experiment 5

Table 5.2: Results of One-at-a-Time Designs of Example 5-1
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The example indicates that the more significant interactions are determined before the

others. Also, the example demonstrates that the procedure determines the optimal

operating point of the process before it determines the true process model..

Example 5-3

* This example is a variant of Example 5-2 in which the crucial assumption that there

is only one significant variable or interaction per column of the design matrix, has

been violated. In Example 5-2, Column 9 has one significant interaction I34. In this

example the true plant model has two significant interactions I56 and 134 on Column

9. The coefficients of the two interactions are chosen to be effectively the same as

that of 134 in Example 5-2. Therefore, the results of the first block of experiments are

identical in both these examples. When the One-at-a-Time strategy is applied to the

plant the output behavior is very interesting. The results are shown in Table 5.4. In

the first few experiments, neither of the two interactions in Column 9 are selected by

the algorithm. But after Experiment 4, I34 is selected. Although the true model of

the plant cannot be determined, the experiments tend to improve the output quality.

Also, the interactions in the rest of the columns are determined correctly.

As expected, the RMS prediction error for this example is much larger than that for

the previous examples. The large RMS prediction error suggests that there may be

something wrong with the plant model that has been determined. 

5.3 Mathematical Justification

In this section we give a justification of the One-at-a-Time strategy introduced in this

chapter. We show that under certain assumptions, the model which gives the least prediction

error is the Maximum Likelihood estimate of the the model of the plant.

Claim:

Suppose T One-at-a-Time experiments are conducted and the results are Y1, ... , YT. If

the noise in these experiments is independent and gaussian distributed with zero mean and

constant variance A, then the model which minimizes the squared prediction error is the

Maximum Likelihood Estimate of the plant.
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COLUMNWISE SMMARYs

Col. ESt. Cf. Pred(V/I) True Cf. True(V/I)

1 22.51 Avg. 22.50 Avg.
2 5.45 T1 5.30 T1
3 6.24 T2 7.30 T2
4 2.95 T3 3.10 T3
5 0.72 T4 -----
6 -4.19 T5 -4.90 T5
7 -0.53 T6 -----
8 0.31 T7 -----
9 -3.54 I12 -3.70 I34
10 2.84 113 2.90 I57
11 0.47 ----- -----
12 0.26 -----
13 0.26 ----- -----
14 -4.10 135 -4.30 117
15 -0.35 ----- ----
16 -0.46 -----

EXPERIMENT-WISE UMMARY:

Initial Guess of Process Model.

COLUMNWISE SUMMARY:

Col. Est. Cf. Pred(V/I) True Cf. True(V/I)

1 22.51 Avg. 22.50 Avg.
2 5.45 T1 5.30 T1
3 6.24 T2 7.30 T2
4 2.95 T3 3.10 T3
5 0.72 T4 -----
6 -4.19 T5 -4.90 T5
7 -0.53 T6 -----
8 0.31 T7 -----
9 -3.54 I12 -3.70 134

10 2.84 I57 2.90 157
11 0.47 ----- -----
12 0.26 ----- -----
13 0.26 ----- -----
14 -4.10 I17 -4.30 117
15 -0.35 ---- ----
16 -0.46 -----

ZXPfRIMENT-WISE SUMMARY:

Expt. Experiment Prediction Observation

1. + + + + - -+ 32.41 29.42

RMS Pred. Error: 3.00

(a) Results after Experiment 0

COLUMNWISE SUMMARY:

Col. Et. Cf. Pred(V/I) True Cf. True(V/I)

1 22.51 Avg. 22.50 Avg.
2 5.45 T1 5.30 T1
3 6.24 T2 7.30 T2
4 2.95 T3 3.10 T3
5 0.72 T4 -----
6 -4.19 T5 -4.90 T5
7 -0.53 T6 -----
8 0.31 T7 -----
9 -3.54 I12 -3.70 134

10 2.84 157 2.90 157
11 0.47 ----- -----
12 0.26 ----- -----
13 0.26 ----- -----
14 -4.10 117 -4.30 I17
15 -0.35 ----- ----
16 -0.46 ----- -----

EXPERIMENT-WISE SUMMARY:

Expt. Experiment Prediction Observation

1. + + + + - - + 32.41 29.42
2. + + + * - - - 45.67 45.98

RMS Pred. Error: 2.13

(b) Results after Experiment 1

COLUMNWISE SUMMARY:

Col. Est. Cf. Pred(V/I) True Cf. True(V/I)

1 22.51 Avg. 22.50 Avg.
2 5.45 T1 5.30 T1
3 6.24 T2 7.30 T2
4 2.95 T3 3.10 T3
5 0.72 T4 -----
6 -4.19 T5 -4.90 T5
7 -0.53 T6 -----
8 0.31 T7 -----
9 -3.54 156 -3.70 134

10 2.84 157 2.90 I57
11 0.47 ----- ----
12 0.26 ----- -----
13 0.26 ----- -----
14 -4.10 I17 -4.30 I17
15 -0.35 ----- ----
16 -0.46 -----

EXPERIMENT-WISE SUMMARY:

Expt. Experiment Prediction Observation

1. + + + + - - + 32.41 29.42
2. + + + + - - - 45.67 45.98
3. + + + + - + - 51.70 48.82

RMS Pred. Error:

(c) Results after Experiment 2

2.41

(d) Results after Experiment 3

Table 5.3: Results of One-at-a-Time Designs of Example 5-2
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COLUMNWISE SUMMARY:

Col. Est. Cf. Pred(V/I) True Cf. True(V/I)

1 22.51 Avg. 22.50 Avg.
2 5.45 T1 5.30 T1
3 6.24 T2 7.30 T2
4 2.95 T3 3.10 T3
5 0.72 T4 -----
6 -4.19 T5 -4.90 T5
7 -0.53 T6 -----
8 0.31 T7 -----
9 -3.54 134 -3.70 134

10 2.84 I57 2.90 157
11 0.47 ----- ----
12 0.26 -----
13 0.26 -----
14 -4.10 I17 -4.30 117
15 -0.35 -__- -----
16 -0.46 ----- -

EXPERIMENT-WISE SUMMARY:

Expt. Experiment Prediction Observation

1. + + + + - - + 32.41 29.42

2. + + + + - - - 45.67 45.98

3. + + + + - + - 44.61 48.82

4. + + + - - - - 51.32 53.66

RMS Pred. Error: 2.84

(e) Results after Experiment 4

COLUMNWISE SUMMARYI

Col. Est. Cf. Pred(V/I) True Cf. True(V/I)

1 22.51 Avg. 22.50 Avg.
2 5.45 T1 5.30 Ti
3 6.24 T2 7.30 T2
4 2.95 T3 3.10 T3
5 0.72 T4 -----
6 -4.19 T5 -4.90 T5
7 -0.53 T6 -----
8 0.31 T7 -----
9 -3.54 I34 -3.70 134

10 2.84 157 2.90 I57
11 0.47 ----- ----
12 0.26 ----- -----
13 0.26 -----
14 -4.10 I17 -4.30 117
15 -0.35 ----- ----
16 -0.46 -----

EXPERIMENT-WISE SUMMARY:

Expt. Experiment Prediction Observation

1. + + + + - - + 32.41 29.42

2. + + + + - - - 45.67 45.98

3. + + + + - + - 44.61 48.82

4. + + - - - - 51.32 53.66

5. + + - + - - - 46.85 49.79

RMS Pred. Error: 2.86

(f) Results after Experiment 5

COLUNNWISE SUMMARY:

Col. Est. Cf. Pred(V/I) True Cf. True(V/I)

1 22.51 Avg. 22.50 Avg.
2 5.45 T1 5.30 T1
3 6.24 T2 7.30 T2
4 2.95 T3 3.10 T3
5 0.72 T4 -----
6 -4.19 T5 -4.90 T5
7 -0.53 T6 -----
8 0.31 T7 -----
9 -3.54 134 -3.70 134
10 2.84 157 2.90 157
11 0.47 ----- ----
12 0.26 ----- ----
13 0.26 ----- ---
14 -4.10 I17 -4.30 117
15 -0.35 ----- ----
16 -0.46 ----- -

..................---------------------------......
EXPERIMENT-WISE SUMMARY:

Expt. Experiment Prediction Observation..---.---------------------------------------....
1. + + + - - + 32.41 29.42

2. + + + + - - - 45.67 45.98

3. + + + + - + - 44.61 48.82

4. + + + - - - - 51.32 53.66

5. + + - - - - 46.85 49.79

6. + + + - - - - 51.32 54.93

RMS Pred. Error: 3.00

(g) Results after Experiment 6

Table 5.3: Results of One-at-a-Time Designs of Example 5-2
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COLUMN-WISE SUMMARY:

Col. Est. Cf. Pred(V/I) True Cf. True(V/I)

1 22.51 Avg. 22.50 Avg.
2 5.45 T1 5.30 T1
3 6.24 T2 7.30 T2
4 2.95 T3 3.10 T3
5 0.72 T4 -----
6 -4.19 T5 -4.90 T5
7 -0.53 T6 -----
8 0.31 T7 -----
9 -3.54 I12 4.70, -8.40 I56, 134

10 2.84 113 2.90 157
11 0.47 ----- ----
12 0.26 ----- -----
13 0.26 ----- ---
14 -4.10 135 -4.30 117
15 -0.35 ----- ----
16 -0.46 ----- ---

EXPERIMENT-WISE SUMMARY:

Initial Guess of Process Model.

COLUMN-WISE SUMWARY:

Col. Est. Cf. Pred(V/I) True Cf. True(V/I)

1 22.51 Avg. 22.50 Avg.
2 5.45 T1 5.30 T1
3 6.24 T2 7.30 T2
4 2.95 T3 3.10 T3
5 0.72 T4 -----
6 -4.19 T5 -4.90 T5
7 -0.53 T6 -----
8 0.31 T7 -----
9 -3.54 112 4.70, -8.40 156, 134

10 2.84 I57 2.90 157
11 0.47 ----- ----
12 0.26 -----
13 0.26 ----- -
14 -4.10 I17 -4.30 117
15 -0.35 ----- ----
16 -0.46 -----

EXPERIMENT-WISE SUMMARY:

Zxpt. Experiment Prediction Observation

1. + + + - - + 32.41 34.43

RMS Pred. Error: 2.02

(a) Results after Experiment 0

COLUDM-WISZ SUMMARY:

Col. Est. Cf. Pred(V/I) True Cf. True(V/I)

1 22.51 Avg. 22.50 Avg.
2 5.45 T1 5.30 T1
3 6.24 T2 7.30 T2
4 2.95 T3 3.10 T3
5 0.72 T4 -----
6 -4.19 T5 -4.90 T5
7 -0.53 T6 -----
8 0.31 T7 -----
9 -3.54 I12 4.70, -8.40 156, 134

10 2.84 I57 2.90 157
11 0.47 ----- -----
12 0.26 ----- -----
13 0.26 ----- -----
14 -4.10 117 -4.30 I17
15 -0.35 ----- ----
16 -0.46 ----- -----

EXPERIMENT-WISE SUMMARY:

Expt. Experiment Prediction Observation

1. + + + + - - + 32.41 34.43

2. + + + - - - 45.67 45.89

RMS Pred. Error: 1.44

(b) Results after Experiment 1

COLDN-WISE SUMMARY:

Col. Est. Cf. Pred(V/I) True Cf. True(V/I)

1 22.51 Avg. 22.50 Avg.
2 5.45 T1 5.30 T1
3 6.24 T2 7.30 T2
4 2.95 T3 3.10 T3
5 0.72 T4 -----
6 -4.19 T5 -4.90 T5
7 -0.53 T6 -----
8 0.31 T7 -----
9 -3.54 I12 4.70, -8.40 I56, 134

10 2.84 157 2.90 I57
11 0.47 ----- -----
12 0.26 -----
13 0.26 ----- -----
14 -4.10 I17 -4.30 117
15 -0.35 ----- ----
16 -0.46 -----

XPZRIMZNT-WISE SUMMARY:

Expt. Experiment Prediction Observation

1. + + + + - - + 32.41 34.43

2. + + + + - - - 45.67 45.89

3. + + + - + - 44.61 37.78

RMS Pred. Error:

(c) Results after Experiment 2

4.12

(d) Results after Experiment 3

Table 5.4: Results of One-at-a-Time Designs of Example 5-3
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COLUMN-WISE SUMMARY:

Col. Eat. Cf. Pred(V/I) True Cf. True(V/I)

1 22.51 Avg. 22.50 Avg.
2 5.45 T 5.30 Ti
3 6.24 T2 7.30 T2
4 2.95 T3 3.10 T3
5 0.72 T4 -----
6 -4.19 T5 -4.90 T5
7 -0.53 T6 -----
8 0.31 T7 -----
9 -3.54 134 4.70, -8.40 156, I34

10 2.84 I57 2.90 157
11 0.47 ----- -----
12 0.26 ----- --
13 0.26 ----- -----
14 -4.10 117 -4.30 117
15 -0.35 ----- ----
16 -0.46 ----- -----

EXPZRIMENT-WISE SUMMARY:

Expt. Experiment Prediction Observation

1. + + + + - - 32.41 34.43
2. + + + + - - - 45.67 45.89
3. + + + + - + - 44.61 37.78
4. + + + - - - - 51.32 66.29

RMS Pred. Error: 8.29

(e) Results after Experiment 4

COLUMN-WISE SUMMARY:

Col. Est. Cf. Pred(V/I) True Cf. True(V/I)

1 22.51 Avg. 22.59 Avg.
2 5.45 T1 5.30 T1
3 6.24 T2 7.30 T2
4 2.95 T3 3.10 T3
5 0.72 T4 -----
6 -4.19 T5 -4.90 T5
7 -0.53 T6 -----
8 0.31 T7 -----
9 -3.54 134 4.70, -8.40 156, 134

10 2.84 157 2.90 157
11 0.47 ----- -----
12 0.26 ----- -----
13 0.26 -----
14 -4.10 I17 -4.30 117
15 -0.35 ----- ----
16 -0.46 -----

EXPERIMENT-WISE SUNMARY:

Expt. Experiment Prediction Observation

1. + + . + - - + 32.41 34.43
2. + + + + - - - 45.67 45.89
3. + + + + - + - 44.61 37.78
4. + - - - - 51.32 66.29
5. + + - + - - - 46.85 59.33

RMS Pred. Error: 9.28

(f) Results after Experiment 5

COLUMN-WISE SUMMARY:

Col. Est. Cf. Pred(V/I) True Cf. True(V/I)
...................................................

1 22.51
2 5.45
3 6.24
4 2.95
5 0.72
6 -4.19
7 -0.53
8 0.31
9 -3.54

10 2.84
11 0.47
12 0.26
13 0.26
14 -4.10
15 -0.35
16 -0.46

Avg.
T1
T2
T3
T4
T5
T6
T7
134
I57

I17

.....

22.50 Avg.
5.30 T1
7.30 T2
3.10 T3

-4.90 T5

4.70, -8.40 I56, 134
2.90 I57

.....

-4.30 117

.....

EXPERIZMENT-WISE SUMMARY:

Expt. Experiment Prediction Observation

1. + + + + - - + 32.41 34.43
2. + + + + - - - 45.67 45.89
3. + + + + - + - 44.61 37.78
4. + + + - - - - 51.32 66.29
5. + + - + - - - 46.85 59.33
6. + + + - - - - 51.32 63.59

RMS Pred. Error: 9.84

(g) Results after Experiment 6

Table 5.4: Results of One-at-a-Time Designs of Example 5-3
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Proof:

Consider the model discussed in the previous section. Let the NT possible models be

denoted by M1, ... , MNT

In the One-at-a-Time design methodology it is assumed that the coefficients of the

variables and interactions have been determined and only the confounded interactions need

to be determined.

Given the T observations, let YT= [Y1, ... , YT]. The Maximum Likelihood Estimate is

defined by,

MML[YT] = argmax P(Mi; YT) (5.3)
i

= MML[YT] = argmax P(Mi) P(YT/Mi) (5.4)

In case the probabilities of the different models P(Mi), are known, Equation 5.4 can be

simplified.. In absence of any such information, all models can be assumed to be equally

likely. That is, P(Mi) = 1/NT, and Equation 5.4 reduces to,

MML[YT] = argmax P(YT/Mi) (5.5)

Let the predicted result of model Mi for the jth experiment be denoted by Yij. Since the

noise in the different experiments is assumed to be independent,

T

P(YT/Mi) = l fe(Yj - Yij) (5.6)
j=1

where fe() is the probability distribution of the noise corrupting the results. If this distri-

bution is assumed to be gaussian with zero mean and constant variance A, then

T 1 (1(1,
P(YT/Mi) = -A exp yj _ Yj)2 (5.7)

j=l
1 (i T

(27rA)T/2.exp -2L(Y - j)2 (5.8)

Maximizing the likelihood function in Equation 5.5 is the same as maximizing its logarithm.

Thus.

MML[YT] = argmax logP(YT/Mi) (5.9)i
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Using Equation 5.8 in Equation 5.9 we get,

MML[YT] = arg max log (2 ) T/2 -exp j2 (5.10)
L(2irA) T / exp )j= 1

argmax - log2(rA- 2- #- (Y,-Ij)2 (5.11)

1

argmin -- Y )2]] (5.12)

= argmin (Yj j)2] (5.13)

The expression on the right hand side of the equation is the total squared prediction error

of model Mi. Thus, the Maximum Likelihood Estimate of the plant, MML, is one which

minimizes the total prediction error. This proves the claim.

The One-at-a-Time strategy selects models based on minimum prediction error. Hence,

under the above assumptions, the results obtained using One-at-a-Time strategy converge

to the maximum likelihood estimate of the plant. The most critical assumption is that there

is only one unknown significant interaction per significant column of the orthogonal matrix.

5.4 Advantages of One-at-a-Time Design Strategy

The One-at-a-Time design strategy can be very useful particularly when the number of

confounded probable interactions is small. The main advantages of the One-at-a-Time

design strategy are:

1. Maximum Likelihood Estimate: The One-at-a-Time strategy uses the minimum

prediction error criterion to hypothesize the plant model. This criterion is equivalent

to the Maximum Likelihood estimate under the assumptions discussed in the previous

section. These assumptions are justified in most situations.

2. Designing Optimal Experiment: Given the hypothesized plant model, the One-

at-a-Time strategy designs the optimal experiment for this hypothesis, i.e. the exper-

iment which would maximize the quality of the output if the hypothesis is correct.

This leads to interesting behavior.
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* In case the hypothesis is wrong and some very significant interactions have been

guessed wrongly, the optimal experiment for the hypothesis tends to produce a

very poor output. Although this experiment is far away from the true optimal,

it can be very useful. The prediction errors for such an experiment tend to be

very large for the wrong models. Hence, this experiment helps in discriminating

between different models.

* If the hypothesis is correct, the optimal experiment will produce a very good

quality output. The prediction error of the correct model will be much smaller

compared to the wrong model and the hypothesis will be verified.

3. Validation of Assumptions: When a block of factorial experiments is analyzed

some of the columns have large coefficients which correspond to the effects of signif-

icant variables and interactions of the plant. The non-significant coefficients can be

used to determine the variance of the plant.

Suppose that the One-at-a-Time design strategy is applied and the most probable

plant model is determined. If it is found that the average prediction error is very

large, it could be due to the the violations of one or more assumptions made above.

In such a situation it is desirable that sequential block design strategy should be used

to determine the correct plant model.

4. Determination of the Most Significant Interactions: Suppose that there are

two columns, one of which has a large significant coefficient and the other has a

small significant coefficient. Suppose that each of these columns contain two probable

interactions. It is clear that models which contain the wrong probable interaction in

the column with the larger coefficient will give larger prediction errors than models

which have the wrong probable interaction in the column with smaller coefficient.

In the simulations it is observed that after a few One-at-a-Time experiments have been

carried out, all models having wrong probable interactions in the significant columns

with large coefficients give prediction errors which are more than an order of magnitude

greater than the error of the correct model. Hence, the probable interactions lying

on such columns can be determined within a few One-at-a-Time experiments and the

number of possible models is then considerably reduced.
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Column: Vavg Vl V2 V3 V1 2 3 V1 2 V23 V13

Variable T 1 T 2 T3 T 4 112 123 I13

& Interaction: 134 114 124

Coefficient: 10.6 7.2 0.1 -6.5 -0.2 -3.1 -0.3 2.3

Table 5.5: Results of Design of Example 5-4

It is shown in the next section that not all the unknown probable interactions need

to be determined to determine the optimal operating point of the true plant. Hence,

the One-at-a-Time strategy needs to be implemented only until the very significant

probable interactions have been determined.

5.5 Partial Optimization

The goal of the DOE procedure is to determine the plant model. But in many cases only

the optimal operating point, that is the operating point of the plant which produces the

best quality, needs to be determined. Hence, in such cases, the sole purpose of determining

the plant model is to determine the optimal operating point. In this section we will demon-

strate that it is not always necessary to determine the complete plant model to determine

the optimal operating point. It may be possible to determine it only on the basis of the

significant variables and the known significant interactions.

Example 5-4

* Consider a process dependent on 4 variables T1, T2, T3 and T4. Suppose a 24-1 factorial

experiment is conducted on this process and the results are as shown in Table 5.5.

Using Table 5.5, we can express the model of the process as

Y= 10.6 + 7.2T1 - 6.5T3 - 3.1 ( 12 ) + 2.3 1243 (5.14)
I34 I24

where only one of the interactions expressed in (.) is actually significant. If the terms

involving T are arranged together, the model can be expressed as,

Y= 10.6 + T1 [7.5 + (-3.1T2) + (2.3T3 )] + terms not involving T1 .... (5.15)
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The terms within (.) might not be present in the true model. Since, 17.51 > I - 3.11 +

12.31, irrespective of which combination of interactions is really important, the quality

Y is maximized only if T1 is set at +1. Therefore the optimal setting of T1 is +1.

Similarly,

Y= 10.6 + T3 [-6.5 + (-3.1T4) + (2.3T1)] + terms not involving T3 .... (5.16)

Since, - 6.51 > I - 3.11 + 12.31, the optimal setting for T3 is -1 irrespective of which

interactions are really important. It is not possible to determine the optimal settings

of T2 and T4 since their settings are dependent on the unknown interactions. 

It is clear from this example that it may be possible to determine the optimal settings

of some (if not all) of the variables without knowing the exact plant model. In the above

example the optimal settings of the variables T1 and T3 could be determined because their

coefficients were dominant. The general analysis for such cases is given below.

1. Dominant Variable:

Consider a process in which a 2
n- k factorial fold-over experiment has been carried

out. The results are analyzed and the model of the process is determined.

Y= 30 + lT +-...+ nTn+ + - ijIij +-l ̂  + -+ m (5.17)
/~1 mpr

where /3i is the known coefficient of the ith variable, Pij is the known coefficient of the

known probable interaction Iij, and yk is the known coefficient of the kth significant

column with an unknown probable interaction. The probable interactions lying on

the kth column are ikl, ... , ikpk

Let Di be the set of all the columns which have one unknown probable interaction of

Ti. Namely, if keDi, then the columns contain Ii.g(i,k), the interaction between Ti and

Tg(i,k). The optimal setting of variable Ti can be determined if the expression

/3i + , /3ijTj + E YkTg(i,k) (5.18)
ji keDi

has a known sign irrespective of the unknown setting of the other variables.

If the setting of all the variables are unknown then the condition in Equation 5.18 can
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be restated as,

IAI > Z Iiji + E hI (5.19)
j74 i kcDi

If Equation 5.19 is true, the optimal setting of Ti is +1 if /i is positive and is -1 if

f3i is negative. Thus if a variable is dominant, its optimal setting can be determined

without the complete knowledge of the process.

2. Dominant Pair of Variables:

In many situations Equation 5.19 cannot be applied because one or more known

significant interactions are large. That is, one or more of the coefficients f 3ij are large.

In such situations it may be possible to determine the optimal settings of variables

taken two at a time. This procedure is explained below.

Suppose that /3ij is large. In the expression for quality given in Equation 5.17, the

terms containing Ti and Tj are separated as follows:

Y = Ti[Pi + interactions involving Ti]

+PijIij + Tj[3j + interactions involving Tj]

+ terms not involving Ti and Tj (5.20)

Suppose that the terms corresponding to the coefficients of Ti and Tj in Equation 5.20

satisfy Equation 5.19. The range of these terms is,

\ 10i keDi /mij ke il Di 1: )
17i,j kcDi I i,j keDi

(5.21)

Rj in, ax] = [(1j I E 3iI ) , + IjlI+ Z I) 1
10 j,'i kcDj 1/ \ j,i keDj

(5.22)

It can be shown that the optimal settings of Ti and Tj can be determined only if the

ranges Ri and Rj do not intersect and if 3ij lies in the intervals 1, 3 or 5 of Figure 5-2.

In case any of the above conditions are not satisfied, the optimal setting of Ti and Tj
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Figure 5-2: Permissible range of values of 3ij

cannot be determined. Further experiments are required to determine more unknown

probable interactions before the settings of Ti and Tj can be determined.

3. Dominant Group of Three or more Variables:

In principle it is possible to analyze groups of 3 or more variables to determine their

optimal setting. But the procedure becomes very complicated. Also the conditions

required to be able to determine the settings are fairly strong and will not be satisfied

very often.

Thus it is seen that if the plant contains some dominant variables or pairs of variables, then

their optimization may be possible without the complete determination of the interactions.

The setting of the other variables can be obtained by further experimentation. Usually the

variables that cannot be set easily using this technique are ones which are associated with

weak interactions and hence they do not affect the quality very much.
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Chapter 6

Conclusions and Future Work

In this chapter the basic ideas of the thesis are integrated. Section 1 discusses the Complete

DOE Software Tool which is being currently developed at MIT. Section 2 outlines the

contributions of the thesis. The possible areas for future research are discussed in Section 3.

6.1 The Complete DOE Software Tool

In this section we show how the different ideas of Block Design and One-at-a-Time Design

are being integrated to develop a Complete DOE Software Tool. The underlying motivation

for developing such a DOE software tool is that it should aid an inexperienced user in DOE

to successfully improve the performance of his/her plant more rapidly than with existing

software tools.

Consider the flow-chart shown in Figure 6-1. Given a plant, an experimenter has to

select the variables affecting the performance and guess the important interactions. This

permits the experimenter to use the past knowledge about the plant which may be very

important. Even if some of the interactions are guessed incorrectly, a few more experi-

ments will generally be required to estimate them, but nothing is lost. On the basis of this

information, an optimal fold-over factorial block of experiment is designed. Next, the exper-

iment results are analyzed and the effects of the variables and the guessed interactions are

determined. The variables with significant effects are used to generate the list of probable

interactions - in accordance with the Simplicity Principle.

Usually there is confounding within the set of probable interactions and guessed inter-

actions. Therefore further experimentation is required to determine the effects of all these
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Figure 6-1: Overview of Complete DOE Software Tool
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interactions. At this stage there are 2 possibilities.

Case 1: The number of significant columns is small compared to the number of unknown

interactions and it is reasonable to assume that there is only one unknown significant

interaction per significant column of the design matrix.

Case 2: The number of significant columns is not small and there may be more than one

unknown significant interaction per significant column of the design matrix.

If Case 1 is valid for the given plant, the assumptions of the One-at-a-Time Design

Strategy discussed in Chapter 5 are satisfied, and the One-at-a-Time Technique can be

effectively used to determine the plant model and optimize its performance.

If Case 1 is not valid, the Block Design Technique described in Chapter 3 can be used.

With the help of Half-Block or Full-Block Designs the confounding of the interactions can

be sorted either completely or to an extent that the One-at-a-Time Design Strategy can be

applied.

Presently, we are implementing the Complete DOE Software Tool. Much of the work has

been completed. The basic concepts of Block Design and One-at-a-Time Design Strategies

have been implemented and tested separately. Also, the analysis tools have been developed.

Techniques required to simultaneously analyze block designs with different confounding

patterns have been developed and implemented in computer software.

Some of the concepts that can be added to make the software more automated and less

dependent on the user are discussed in Section 3.

6.2 Thesis Achievements

The goal of the DOE project at MIT is to automate the entire process of DOE. At the time

this thesis began, the goal was well defined but the path to achieve it was a little unclear.

During the course of the thesis, the process of sequential DOE has been formulated in a

structured fashion. We have identified the conceptual problems that need to be solved

before the goal of the Complete DOE Software Tool can be completely realized. Some of

these problems have been resolved and implemented. As for the other problems, they have

been formulated in a mathematically meaningful manner. Even if these problems are hard

to tackle, we know exactly what questions need to be addressed in the overall project.
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The contributions of the thesis are enumerated below.

Block Designs: The techniques of Half-Block and Full-Block Designs are implemented in

computer software. They have been found to be very useful in resolving confounding

interactions.

Completing Block Designs: Algorithm for completing incomplete blocks of experiments

have been developed and added to the software.

Block Analysis: The analysis routines of the DOE software have been improved to enable

it to simultaneously analyze confounding interactions in different blocks of experi-

ments.

One-at-a-Time Designs: The concept of One-at-a-Time Designs have been developed

and verified by simulation results. The results are very encouraging and we believe

that the One-at-a-Time Design Strategy can be generalized as explained in the next

section.

Complete DOE Software Tool: The basic ideas for the Complete DOE Software Tool

are developed and their implementation is being carried out.

6.3 Future Work

The following represents some of the more significant issues that could be added to the

computer software to make it more general and useful to various manufacturing processes.

* As seen in Figure 6-1 the Complete DOE Software Tool needs to make a deci-

sion whether only one unknown significant interaction per column is likely or not.

Presently, this decision is made by the experimenter using the software. It may be

possible to determine the probability of there being only one unknown significant

interaction per column. Using this probability and the level of risk that the experi-

menter is willing to take, the computer can make that decision which minimizes the

expected value of the overall cost of experimentation.

* Once the Block Design option is selected the experimenter has the following options:

1. Design a Half-Block of experiments for any of the previous blocks.
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2. Design a Full-Block of experiments for any of the previous blocks.

3. Complete any of the previous incomplete blocks.

Therefore as the number of blocks of experiments conducted increases there are more

options. If the cost model for the experiments is known, the software could choose

between the above options based on:

- Total number of confounded probable interactions.

- Relative unconfounding achieved with each of the options.

* The present software can be used with any plant in which the variables are at 2 levels.

The two-level factorial designs have many strong advantages as outlined in Chapter 1.

But there may be situations in which the plant intrinsically has one or more of its

variables at 3 or more levels. Extension of the software is required to handle such

situations.

* It should be possible to extend the ideas of One-at-a-Time Design Strategy to be

able to design arbitrary numbers of optimal experiments based on the results of the

experiments conducted earlier.

* A Graphical User Interface (GUI) can be added to the software to make its use

easier. Also, adding various graphical features can help the experimenter get a better

understanding of the results.
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Appendix A

Binary Orthogonal Matrices

In this section we enumerate some of the properties of Binary Orthogonal Matrices which

are required in the report.

The Binary Orthogonal matrices belong to a general class of matrices called Hadamard

Matrices [19], matrices in which each of the elements are either +1 or -1. The most general

Binary Orthogonal Matrices are the Plackett-Burman Designs. These designs are based

on the Hadamard Matrices of size m x m where m is a multiple of 4. In the Plackett-

Burman Designs all the columns of the matrices are balanced (equal number of +1 and -1

elements) and pairwise orthogonal. When m is not a power of two, these designs have a

very complicated alias structure and should be used very carefully. A detailed discussion of

these designs is given in [19].

Orthogonal Binary Matrices in which m is a power of two are widely used and have very

useful properties. Hence only Binary Orthogonal Matrices in which m = 2n for some n, are

studied in the report. For simplicity of terminology the term Orthogonal Matrix is used to

denote such a Binary Orthogonal Matrix, as defined below.

A.1 Definitions

Orthogonal Matrix: An Orthogonal Matrix, M, of size 2nx2n is defined as a matrix

whose elements are either +1 or -1 and which satisfies the condition MTM = 2n xI, where

I is an identity matrix of size 2n x2 n . Table A.1 is an example of an Orthogonal Matrix of

size 23 x23.
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Table A.1: 3 x 3 Binary Orthogonal Matrix

Dependent Column: A column ci is said to be dependent on a set of columns cj, ck,

... , cp if and only if ci is identically equal to the column obtained by taking an element-by-

element product of the columns of cj, ck, ... , Cp.

Independent Column: A column ci is said to be independent of a set of columns cj, ck,

... , cp if and only if ci is not dependent on any group of columns taken from the set of

columns cj, Ck, ... , cp.

Independent Set of Columns: A set of columns cj, ck, ... , cp are independent if none

of the columns within the set is dependent on any group of other columns of the set.

Column c4 in Table A.1 is dependent on columns cl and c2, since column C4 corresponds

to the column formed by the product of the column cl and column c2. Also, columns cl, c2

and C3 form an independent set of columns.

A.2 Properties of Binary Orthogonal Matrices

Given below are some of the properties of an 2 nx 2n binary orthogonal matrix, M.

1. One of the columns of the orthogonal matrix consists of only +1 elements and is called

the Average Column. This column is denoted as Cavg in Table A.1.

2. Every column other than the Average column has equal numbers of +1 and -1 ele-

ments.
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3. A product of any two columns of the matrix equals a column of the matrix. That is,

the product of column ci and cj must equal ck for some k.

Ci Cj k (A.1)

Using the fact that,

ci . ci = Cavg Vi (A.2)

it can be seen that,

Ci ' cj = Ck

: =' CiCk =Cj

"- Cj C Ck = Ci

4. Any set of n independent columns can be used to generate the entire matrix. Hence,

any set of n independent set of columns completely characterizes the entire matrix.

Such a set of columns is defined as a set of basic columns. The other columns are

called non-basic columns. The set of basic columns is not unique.

5. Every 2n x2 n binary orthogonal matrix, M, has n basic column and 2n-n non-basic

columns.

6. Any set of n basic columns is such that every row of these columns corresponds to a

unique combination of +1 and -1. There are two possible options for every element

in a row. Therefore, there are a total of 2n possible combinations, each corresponding

to a different row of the orthogonal matrix.
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Appendix B

Designing a Half-Block of

Experiments

In this section we will try to illustrate the mechanism for shifting variables and interactions

from one column to another when an additional block of experiments is carried out to

augment the existing one. Let us formulate the problem in a general manner. Given

a block of 2 n-k factorial experiments, is it possible to replace some of the experiments

by other experiments, and obtain a new block of factorial experiments with a different

confounding pattern?

Claim:

Given a block of 2 n-k factorial experiments in n variables,

1. At least 2n - k - 1 experiments of the block need to be changed to obtain a new block of

factorial experiments with a different confounding pattern.

2. New blocks of factorial experiments which can be obtained by doing an additional set

of 2n-k-1 new experiments, can be generated by shifting the variables with respect to

every column of the design matrix.

Proof:

Consider a process P which depends on n variables T1, T2, ... , Tn. Suppose a 2n - k factorial

experiment has been designed on it. Let the design be such that variables T1, T2, ... , Tn-k

form a set of basic variables. Tn-k+l, ... , T are the corresponding non-basic variables.
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It is desired that a set of experiments be designed which together with a set of exper-

iments from the original block of experiments, determines a new block of 2 n-k factorial

experiments with a different confounding pattern.

In order to change the confounding pattern, the variables must be shifted to different

columns of the design matrix. In Part 1 we show that at least 2 n- k - 1 new experiments are

required to produce a new factorial design. In Part 2 an algorithm is developed to generate

the different new designs which can be obtained by doing 2 n-k-1 new experiments.

Part 1:

In a factorial design the columns are balanced and orthogonal to each other. This implies

that any two distinct columns of a 2
n - k factorial design will agree and disagree in exactly

2 n- k-1 rows.

To change the confounding pattern at least one variable should be shifted from its

existing column to a new column. This requires that an experiment be carried out for every

row in which the elements of the existing column and new column differ with each other.

There are exactly 2
n - k - 1 rows in which the elements of the two columns differ. Hence, at

least 2 n-k - 1 experiments of the original design must be changed to obtain a new one with

a different confounding pattern. This proves the first part of the claim.

Part 2:

In Part I it was demonstrated that 2 n-k-1 experiments can be used to shift one variable

from one column to another. Suppose that variable Ti is shifted from column vi to column

vI by doing 2n- k - 1 experiments, one for each row in which column vi and vI differ.

The question now arises whether it is possible to shift more than one variable using

the same experiments. If another variable Tj is to be shifted from vj to vj along with Ti,

then the columns vj and vj must differ in the same rows in which the columns vi and vI

differ. That is, the product of the columns vj and vj must be the same as the product of

the column vi and vl ( the product of two columns is a column which has a +1 element for

each row in which the elements of the two columns agree and a -1 element for each row in

which the elements of the two columns disagree ). That is,

vS = vi VI =-- Vj . v (B.1)
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Using the notation introduced in Section 1.4.4, we can restate the condition in Equa-

tion B.1 as - the variables Ti and Tj can be shifted by doing only 2 n-k-1 new experiments

if and only if they shift with respect to the same column v, of the design matrix.

Clearly, any number of variables can be shifted to different columns provided they all

shift with respect to the same column of the design matrix. Moreover, the variables can

be shifted with respect any column of the design matrix. Therefore, we have shown that

by doing 2 n-k-1 more experiments any of the variables can be shifted with respect to any

column of the design matrix.

The new designs can be obtained by shifting all the possible combinations of the variables

with respect to every column of the design matrix. This proves the second part of the claim.

Problems caused by rearrangement of rows

Although all the variables can be shifted with respect to any column of the design matrix,

it is not necessary that the design obtained are all distinct. In particular, it may happen

that given a column with respect to which the variables are being shifted, two different

combinations of variables may produce equivalent designs, i.e. identical designs in which

the rows are arranged differently. This point is best illustrated with the help of an example.

Example B-1 addresses this issue.

A problem with the procedure of shifting of columns, as described above, is that the

procedure is negated by changing the order of the rows of the designs. From the properties

of binary orthogonal matrices discussed in Appendix A, it is known that the set of basic

columns must have rows corresponding to all the permutations of + and -. Thus the

problem could be resolved if we ensure that any set of basic variables is not shifted. That

is, we shift only subsets of non-basic variables.

In the Example B-1, T1, T2 and T3 form a set of basic variables. Hence T4 and/or T5 can

be shifted by doing 4 more experiments. Also, T2, T3 and T4 form a set of basic variables,

so T1 and/or T5 can be shifted keeping the other variables fixed. But, T2, T3 and T5 do not

form a basic set. Hence we cannot move T1 and T4 without encountering the problem of

generating equivalent designs.

Therefore, we believe that an algorithm which generates different factorial designs by

shifting all possible subsets of non-basic variables with respect to all the columns of the

matrix will produce all possible designs where each will be distinct. Although this idea
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seems to be correct, the proof is not known to the author.

The MIT software currently generates new factorial designs by shifting all combinations

of variables.

Example B-1

* Suppose a process P depends on variables T1, T2, T3, T4 and T5. An initial design of

8 experiments is conducted as shown in Table B.1. The location of the variables and

their second order interactions are shown in Table B.2.

Given the Initial Design of Table B.2 four experiments (Expt. 3, 4, 7 and 8) are

designed to shift the variables with respect to column v2. Table B.1 gives the actual

experiment matrix of the designs. In Design(I) T4 is shifted from v to v12s. The

other variables are kept unchanged. In Design(II) both T1 and T4 are shifted to

columns vl2 and vl23 respectively. In Design(III) only T1 is shifted to vl2 and the

other variables are kept unchanged.

Examining Table B.2 we expect that the confounding patterns of the designs must

be very different. But this is not so. From Table B.1 we observe that Design(I) and

Design(III) are essentially equivalent to each other and only the order of the experi-

ments are different. Hence, shifting T1 to vl2 , keeping the other variables unchanged,

is exactly equivalent to shifting T4 to vl12, keeping T1, T2, T3 and T5 unchanged.

In the same way, from Table B.1 it is seen that Design(II) is equivalent to the Initial

Design. That is, shifting two variables T1 and T4 has not changed anything, except

the order of the rows.

In the Initial Design and in Design(II) the variables T1, T2 and T3 form a set of basic

variables. The variables T4 and T5 correspond to I13 and I23 respectively, in both these

design. Therefore the Initial Design and in Design(II) have the same confounding

pattern and are equivalent. In the same way, in Design(I) and in Design(III) T 1, T2

and T3 form a set of basic variables. The variables T4 and T5 confound with I123

and 23 respectively, in both these design. Therefore, Design(I) and Design(III) are

equivalent. 
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Initial Design
T 1 T 2 T 3 T 4 T 5

Expt. vl v2 v3 V1i3 23

1 + + + + +
2 + + - -

3 + - + -
4 + - - +
5 - + - +
6 + - +
7 + -
8 - +

Design(I)
T 1 T2 T3 T 4 T5

Expt. vl v2 v 3 V123 v2 3

1 - - + + +
2 + + ---
3 + + --
4 + - + +
5 + + +- 

6 + + -
7 - + + -
8 - - - +

Expt.
1

2

3

4
5

6

7

8

Design(II)
T1 T 2 T 3 T4 T 5

V12 V V2 V3 V123 V23
+ + + + +
+ + - _
- - A- - _

_ _+ +

+ + - ++ - + -
+ -+ + -
+ - +

Table B.1: Equivalence of Different Designs

Expts. Vavg VI V2 V3 V1 2 V23 V V 12 3

Initial Design T1 T 2 T 3 T 5 T 4

Interactions 134 135 125 112 123 113 115

114 145 124

Design(I) T1 T 2 T 3 T 5 T 4

Interactions 145 135 125 112 123 113 I15

134 I14 I24

Design(II) T2 T3 T1 T 5 T4

Interactions 145 135 125 134 123 115 113

112 114 124

Design(III) T2 T 3 T 1 T 5 T 4

Interactions 112 135 125 145 114 115 '13

I34 I23 I24

Table B.2: Changes in Confounding Pattern
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Design(III)
T 1 T 2 T 3 T 4 T 5

Expt. v 12 v 2 v 3 v 13 v23

1 + + + + +
2 + + - - -
3 - - + +
4 - - +
5 - + + - +
6 - + - + -
7 + - + - -
8 + - - + +

. -

-
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Appendix C

Designing a Full-Block of

Experiments

In Appendix B a technique was demonstrated by which, a block of 2n- k- 1 experiments

could be designed which along with 2 n-k-1 experiments of the first block of 2 n-k factorial

experiments, forms a new block of 2 n-k factorial experiments. In Section 1 we will demon-

strate the technique of selecting a block of 2 n-k experiments which along with all the 2 n-k

experiments of the first block, forms a block of 2 n-k + l factorial experiments. In Section 2

we show that the popular fold-over design technique is a special case of the Full-Block de-

sign strategy. The method of generating the fold-over design using the Full-Block design

strategy is demonstrated.

C.1 Full-Block Design Strategy

Claim:

Given a block of 2n-k factorial experiments in n variables,

1. A new block of 2 n - k experiments forms a block of 2n- k +1 factorial experiments along with

the original block only if both the new and the original block have the same confounding

pattern.

2. There are 2 k- 1 possible blocks of 2 n- k experiments which can form a block of 2 n-k+1

factorial experiments with the original block. The new blocks can be generated by

reversing the signs of the columns of the non-basic variables in the original block.
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Variable T1 T2 ... Tn- k T_k+l ... Tn
Original Design vl v2 ... Vn-k V pn-k+l) ... 2 (n)

New Design u1 u2 ... Un-k Unk+l ... Un

Table C.1: Columns of the variables in the original and the new design

Proof:

Factorial designs are of size 2n. Hence it is clear that the number of experiments required

to be added to a block of 2n-k factorial experiments to form a larger factorial design must

be at least 2n-k +1 - 2 n-k = 2n-k . In Part 1 of the proof we determine the constraints on

the new block of 2 n-k experiments. In Part 2 we prove the second part of the above claim.

Consider a process which depends on n variables T1, T2, ... , Tn. A block of 2 - k factorial

experiments is designed on this process. Let the design be such that variables T1, T2, ... ,

Tn-k form a set of basic variables. The variables Tn-k+1, ... , Tn are the corresponding

non-basic variables. Let the columns of the basic variables T1, T2, ... , Tn-k be denoted

by vi, v2, ... , vn-k respectively. The column of a non-basic variable Ty corresponds to a

unique product of the columns of the basic variables and is denoted by vp(y) as shown in

Table C.1.

Part 1:

Suppose 2
n - k new experiments are to be designed such that these experiments and the 2n-k

experiments from the original design, form a 2
n - k+ l factorial design. Let the columns of

the variables T1, T2, ... , Tn in the new design be denoted by ul, ... , un respectively as

shown in in Table C.1. The requirement that the overall design be a factorial design puts

severe constraints on the choice of the new design, that is on columns ul, ... , un, as shown

below.

Constraint 1: Every column, ui, must have equal numbers of +1 and -1 entries. This result

follows from the the fact that all columns of the original design have equal numbers of +1

and -1 elements and so must the columns of the overall design.

Constraint 2: The columns of the overall design will be orthogonal only if the columns of

the new design are orthogonal.
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Proof: Consider any two distinct columns v and v' of the overall design. They are orthog-

onal only if,

[T T [ ] 0 (C.1)

But, v and vy are orthogonal to each other. That is, vT .v = 0. Therefore the necessary

condition for Equation C.1 to hold is that,

UT U = ¥Z y (C.2)

Thus, the overall design will be orthogonal only if the new design is orthogonal.

Constraint 3: If a set of variables is independent in the original design, it is independent in

the new design too.

Proof: Let us assume that the constraint is not true. Let variable Tx (x < n - k) be

dependent on variables Ti, Tj, ... , Tk (i,j,... , k < n - k) in the new design. That is,

Ux = ui Uj . . uk or us = -ui Uj ... Uk. The arguments for both these cases are identical,

so only the former case has been considered in the proof below.

The product of the columns of Ti, Tj, ... , Tk, and Tx in the overall design is given by,

If 1 [ ]. [ Vi . ]k 
Ui Uj Uk Ux Uij ... kx

Vij...kx

1

1

1

= vk (C.3)

In Equation C.3, vij...kx has equal numbers of +1 and -1 entries. Consequently, the

column v...kx will have more +1 than -1 entries. Hence, the column v...kz cannot be

part of an orthogonal matrix. Therefore the assumption that columns u is dependent on

columns ui, uj, ... , uk is wrong.

We can generalize the above result and claim that, the overall design will be orthogonal

only if, every set of independent variables of the original design, is independent in the

new design too. This implies that a set of basic variables of the original design must be

independent in the new design.
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Constraint 4: Every non-basic variable in the new design must correspond to the interaction

of the same basic variables as it did in the original design. The sign of the interaction can

differ.

Proof: Consider a non-basic variable Ty (y > n - k). Its column in the original design is

denoted as vp(y). Let this variable be confounded with interaction ij...k of basic variables Ti,

Tj, ... , Tk (i, j,. ,k < n-k) in the original design. That is, vp(y) = ij...k or vp(y) = -ij...k.

The arguments for both these cases are identical, so only the former case has been considered

in the proof below. The product of the columns of Ti, Tj, ... , Tk, and Ty in the overall

design is given by,

I k [Ui Uj uk Uy
UiUi Uk U

1

1

1

Uij...ky

(C.4)

If the overall matrix is orthogonal then there are only two possible cases.

1. Ij...ky - Vag. That is all the elements of ij...ky are +1.

2. The sum of the elements of Ij...ky is zero. That is all the elements of Uij...ky are -1.

For any other choice of Uij...ky, the columns Ij ky will not correspond to a column of a

orthogonal matrix. Therefore, the only way in which the overall matrix will be orthogonal

is if Uij...ky = +Vavg or if Uij...ky = -avg. This implies that uy = Vij...k or uy = - vij...k in

the new design. That is, the non-basic variable in the new design must correspond to the

interaction of the same basic variables as it did in the original design although the sign of

the interaction may differ.

Combining the above constraints, we conclude that the new design and the original

design must have the same basic variables, and the non-basic variables must correspond to

the same interactions of the basic variables. That is, the confounding pattern of the new

design must be the same as that of the original design. This proves the first part of the

claim.
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Variable T1 T2 T3 T4 T5

Expt. Block 1 v v 2 v3 v 1 2 v 2 3

Expt. Block 2 vl v2 vs ±vl 2 ±v 23 

Table C.2: Table for Example C-1

Part 2:

In Part 1 we have established the following results:

* A set of basic variables of the original design must be a set of basic variables of the

new design.

* Every non-basic variable of the new design must correspond to the same interaction

of basic variables as in the original design, although the sign may differ.

Therefore, the only choice in selecting the new design is the signs of the interactions

confounding with the non-basic variables. That is, if a non-basic variable Ty corresponds to

interaction vp(y) in the first block of experiments, then it can correspond to either +Vp(y)

or to -Vp(y) in the second.

There are k non-basic variables in the original design. Hence there are 2k possible choices

for selecting the signs of the columns. The choice corresponding to selecting all positive

signs results in the same design as the original one. Hence the overall design will have two

sets of identical rows and will not correspond to a 2 n- k + l factorial design. Each of the

remaining 2k-1 combinations corresponds to a distinct block design which can be used with

the original design to form a larger factorial design. Thus, the second part of the claim is

proved.

Using this result, we develop an algorithm which generates different block designs and

selects the one which produces the minimum confounding between the variables and the

probable interactions.

Example C-1

* Suppose a process depends on 5 variables T1, ... , T5 and 8 experiments have been

performed as shown in Table C.2. T1, T2 and T3 form a set of basic variables.
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In the second block of 8 experiments T4 and T5 can be assigned to ±vl2 and ±v 23

respectively. Hence, there are essentially 4 choices. Choosing columns of T4 and T5 as

+v1 2 and +v23 respectively in the second block, gives the same block of experiments

as in the first block. Therefore, this choice is not valid.

If we choose -v 12 for T4, then, T4 along with T1, T2 and T3 forms a set of basic variables

of the overall design. Choosing the column of T5 as +v23 will make T5 confound with

the column I23 in the overall design. If the -v23 is selected then, T5 will be. confounded

with I34 in the overall design. In general, it is more desirable to confound T5 with

I134 than with I23. ·

C.2 Fold-Over Designs

The procedure of folding factorial designs is commonly used to increase the resolution of

the designs and enable them to determine important interactions. In this section we show

that this procedure is a special case of the Full-Block design strategy. This result not only

justifies the use of Full-Block designs, but also establishes its superiority over the fold-over

designs in sorting out the important interactions.

Claim:

The fold-over design is a particular case of a Full-Block design. A fold-over design can be

obtained by the following procedure:

1. Determine the order of each non-basic variable, that is, order of the interaction of the

basic variables with which it is confounded. (For example, if T5 is confounded with

the interaction of basic variables T1, T2 and T3 then its order is 3.)

2. Design a Full-Block of experiments by changing the signs of the even-ordered non-basic

variables only.

Proof:

Consider a process dependent on n variables, T1, T2, ... , Tn, on which a 2n-k factorial

experiment has been designed. Let T1, T2, ... , Tn-k be a set of basic variables and Tn-k+l,

T2, ... , Tn be the corresponding set of non-basic variables. A non-basic variable corresponds
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V/I T1 T2 T3 T4 T5

Expt. vl v2 v3 vl2 v123

1 + + + ± +
2 + + - + -
3 + -+ --
4 + - - - +

5 -+ + --
6 + -- +
7 - + + +
8 - - - + -

Table C.3: Initial Design of Example C-2

to a distinct interaction of the basic variables. Hence, given the settings of the basic

variables, the settings of the non-basic variables can be uniquely determined.

From the property of orthogonal matrices discussed in Appendix A, we know that the

columns of the basic variables contain rows with all the possible combinations of +1 and

-1 elements. Therefore, for every row of the design, there exists a second row in which the

signs of all the elements of the basic columns are reversed. Clearly, in the second row the

signs of the elements of the columns of the odd-ordered non-basic variables will be reversed

too.

Comparing these two rows, we find that the signs of all the elements are reversed except

those which lie on the even-ordered non-basic variables. Suppose a new design is obtained

by reversing only the signs of the columns of the even-ordered non-basic variables. For

every row of the original design, there will be a row in the new design which has the sign

of all its elements reversed. Thus the new design is a fold-over design. Moreover, only the

signs of the columns of the non-basic variables have been changed. Therefore the design is

also a Full-Block design.

Thus we have determined a technique of designing the fold-over design using the Full-

Block design strategy. This proves the claim.

Example C-2

* Consider the initial design shown in Table C.3. The fold-over design of the initial

design is shown in Table C.4. Table C.4 also shows the Full-Block design obtained

using the above procedure. Comparing the Full-Block design and the fold-over design
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Table C.4: Fold-over and Full-Block Design of Example C-2

we find that they are identical, except that the rows are arranged differently. From

this example, it can be seen that if the signs of the columns of the even-ordered

non-basic variables are changed, the fold-over design is obtained. ·
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Fold-over Design

V/I T1 T2 T3 T 4 T 5

Expt. -vl -v 2 -v 3 -v12 -v 12s
1 - - - - -

2 - - + - +

3 - + - + +

4 - + + + -
5 + - - + +

6 + - + + -
7 + + - -

8 ± + + - +

Full-Block Design
V/I T1 T2 T3 T4 T5

Expt. vl v2 vs -vl2 v123
1 + + + - +
2 + + - - -

3 + - + + -
4 + - - + +
5 - + + -
6 - + - + +
7 - - + - +
8 - - - - -



Appendix D

Completing Fractional Factorial

Blocks

In this section, we will study the techniques of completing a partially incomplete block of a

factorial design.

Claim:

Given an incomplete block of m (m > 2n- k ) experiments of a complete block of a 2n-k+ l

fractional factorial design,

1. The incomplete block must have the same confounding pattern as the complete design

block.

2. There exists a unique set of 2n-k+l-m experiments which complete the block.

Proof:

In order to prove the above claim, it is assumed that the given set of m experiments indeed

corresponds to an incomplete factorial design. Later, using the properties of the above

claim, a procedure is developed to check if the incomplete block is part of a factorial design

or not. We shall prove the Claim 1 in two parts. In Part 1(a) we show that if any group of

variables are confounded in the complete block then they must confound in the incomplete

block too. In Part 1(b) we prove the converse result. The first part of the claim is proved

by putting together the results of Part 1(a) and 1(b). Part 2 of the proof proves the second

part of the claim.
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Part (a):

Consider a block of 2 n-k + l factorial design. From this block any m (m > 2 n- k ) rows are

selected to form an incomplete block. The columns of the complete block are denoted by

ui. The columns of the incomplete block are indicated by prime and those of the missing

block by double primes. Therefore,

Ui:
Ui =

Ui

Vi (D.1)

For any column ui of the complete block which is dependent on some other columns uj,

Uk, ... , Up,

Ui

Ui

Clearly, this relationship holds for

ables which are confounded in the

block too.

Ui = uj uk ' . ..- up (D.2)

1 = [ X J. [][U;P ] (D.3)

the incomplete block too. Therefore, any group of vari-

complete block, must be confounded in the incomplete

Part 1(b):

Next we need to show that if that any column ui is dependent on columns u, k, ... , u z U~7 k, , Up

in the incomplete block, it must be so in the complete block too. In order to prove this, let

us assume that the statement is not true. Suppose,

U~ =UUk ... Uz j k p (D.4)

By assumption,

II II * k .U ...Uu i k uj .U Up (D.5)

In any orthogonal matrix if a column is not equal to another, it must be orthogonal to

it. Therefore, if the column ui of the complete block is not dependent on the column

corresponding to the product of columns uj, uk,..., up it must be orthogonal to it.
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If the product of the columns Uj, Uk,..., Up is denoted by Ujk...p, then

[ uk ...p I ITUT Ujk...p - - - jul =UIT UT... +Ui Uk 0 (D.6)ii 'a/I. i

But from Equation D.4 u and k are identical. Therefore,

UT T Ujk...p m + u i (D.7)u:Ujk...p = m u ·Ujk...p

' u'i Uk...p = -m (D.8)

uIT . uI=j... -=m > 2n- k (D.9)

The dimension of u and u"p is 2n-k+l-m and their elements are +1 or -1. Hence,

lT U l < 2 n-k+l - m < 2 n-k (D.10)

Comparing Equations D.9 and Equations D.10, there is a contradiction. Therefore

the assumption that column ui of the complete block is not dependent on the column

corresponding to the product of columns uj, k,..., up is incorrect. Hence the column ui of

the complete block is dependent on the columns uj, Uk,..., up.

Therefore, if any column depends on a set of columns in the incomplete block, it must

do so in the complete block too. Consequently, if a variable is confounded with a group

of variables in the incomplete block, then it must be confounded with the same group of

variables in the complete block too.

From the results of Part 1(a) and Part 1(b) we conclude that the confounding patterns

of the complete and incomplete blocks must be identical.

Part 2:

In Part 1 it was shown that the confounding patterns of the complete and the incomplete

blocks are the same. Therefore, any set of basic variables of the complete block must be a

set of basic variables of the incomplete block and visa versa.

From the properties of Binary Orthogonal Matrices given in Appendix A, it is known

that the rows of the basic variables must be such that each row corresponds to a unique
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Table D.i: Incomplete Block of Experiments

combination of +1 and -1. Also, the columns of the complete block contain all possible

combinations of +1 and -1.

Using this property of Binary Orthogonal Matrices along with the result of Part 1, the

incomplete block can be completed in the following steps:

Step 1. Determine the basic variables and the confounding pattern of the incomplete block.

Step 2. Check which of the 2
n- k +l combinations of +1 and -1 are missing from the columns

of the basic variables. There will be 2 n-k+l-m such combinations.

Step 3. For each of the combinations determined in Step 2, determine the entries of the

non-basic variables of the matrix using the confounding pattern of the incomplete

block.

Since each of the steps of the above procedure is deterministic and unique, we prove

Claim 2, i.e. there exists a unique set of 2 n- k+l - m experiments which completes the block.

Example D-1

* Consider a process P which is dependent on five variables T1, T2, T3, T4 and T5 . Say

a 25-2 fractional factorial experiment is to be carried out on this process, as shown in

the Initial Design of Table B.1. Suppose that of these 8 experiments, 5 (m = 5 > 4)

have already been carried out as shown in Table D.1. Which 3 experiments need to

be carried out to complete such an incomplete block?

Step 1: As per the procedure described above, the first step is to determine the 3

(n - k + 1) basic variables. From Table D.1 it is observed that the following

combination of variables correspond to a basic set of variables:
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Expt. T T2 T3 T4 T5

1(1) + + + + +

2 (2) + + - - -
3 (3) + - + + -
4 (5) - + + - +

5 (7) - - + - -



Table D.2: Missing Block of Experiments

(i) T1, T2 , T3 (ii) T 1, T2 , T 4 (iii) T1 , T 2, T 5 (iv) T 1, T3 , T5

(v) T 1, T4 , T 5 (vi) T 2 , T3 , T 4 (vii) T2 , T4 , T5 (viii) T3 , T4 , T5

Since only one set of basic variables is required, it is not necessary to enumerate

all the sets of basic variables as done here. Let us select T1, T4 and T5 as the set

of basic variables.

Step 2: Scanning the columns of T1, T4 and T5 the missing combinations of +1 and

-1 are determined. They are shown in Table D.2.

Step 3: From Table D.1, it is observed that T2 confounds with interaction I145 and

T3 confounds with I14. Using this information the missing columns of T2 and T3

are determined in Table D.2.

Comparing Table D.2 with the Initial Design of Table B.1, we conclude that

Expts. 1, 2 and 3 of Table D.2 correspond to the missing experiments 6, 4, and

8 of the Initial Design of Table B.1 respectively. Hence, the missing experiments

of the incomplete block have been determined. a

Determining Incomplete Factorial Blocks

All the results determined above assume that the the incomplete block of experiments

indeed corresponds to a complete 2 n-k+l fractional factorial block. Therefore, if the set of

experiments does not correspond to a complete block, the results do not hold.

A block of experiments which do not correspond to a complete block will have either

more than n - k + 1 or less than n - k + 1 independent columns. Thus there will not be any

set of n - k + 1 basic variables. When the procedure for completing the block is applied to

such a block, the method will fail in Step 1. Thus the procedure of determining the basic

variables can be used to check if a block of experiments correspond to an incomplete block

or not.
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Step 2 Step 3
Expt. T1 T 4 T5 T2 =1 14 5 T 3 =-I1 4

1 (6) - + - +

2 (4) + -+
3 (8) - + + -
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Appendix E

Computer Software Listings

E.1 Startup Routines

1. Startup.C ........................................ 107

2. Stritr.C ........................................ 114

E.2 Block Design Routines

1. Block.C ........................................ 116

2. Blkitr.C ........................................ 123

2. Compblk.C ........................................ 125

2. BlkAitr.C ........................................ 129

E.3 One-at-a-Time Design Routines

1. OAAT.C ........................................ 132

2. OAAT-itr.C ........................................ 141

3. OAATopt.C ........................................ 144

E.4 Common Routines

1. Plant.C ........................................ 146

2. Sortint.C ........................................ 147

3. Dispinfo.C ...................................................................... 148

4. Database.C ........................................ 150

5. Setmat.C ........................................ 152

105



E.5 Header and Data Files

1. Conincl.H ........................................ 153

2. Coninc2.H ........................................ 154

3. TrueProcess.Dat ........................................ 156

4. Interaction.Dat ........................................ 156
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