Strategies for Sequential Design of Experiments

by

Rizwan R. Koita
Submitted to the Department of Electrical Engineering and Computer Science in partial fulfillment of the requirements for the degree of Master of Science in Electrical Engineering and Computer Science
> at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

September 1994
(C)Massachusetts Institute of Technology 1994. All Rights Reserved.

This thesis may be reproduced and distributed for LFM partners' internal use only. No other person or organization may reproduce this thesis without permission of the copyright owner. Requests for permission can be addressed to the LFM Manager,

Communications.

Author \qquad

[^0]
Strategies for Sequential Design of Experiments

by
Rizwan R. Koita
Submitted to the Department of Electrical Engineering and Computer Science on August 2, 1994, in partial fulfillment of the
requirements for the degree of Master of Science in Electrical Engineering and Computer Science

Abstract

The growth of competitiveness in the manufacturing industry has resulted in an acute need to improve product quality. Efficient methods for Design of Experiments (DOE) have thus become more important than ever before. With increases in complexity of manufacturing processes and the cost of experimentation, it has become important to use all prior knowledge of the processes, derived first from theory and experience and later from experimentation, to determine subsequent experiments.

The objective of this work is to develop sequential DOE methods and software tools which can be used by manufacturers with no prior knowledge in design of experiments.

Techniques for designing blocks of fractional factorial experiments have been developed and implemented in computer software. In particular, given a block of factorial experiments and a list of probable interactions, different sets of experiments are designed to augment the original block of experiments and form new factorial designs with different confounding patterns. The set of experiments which produces a new design with minimal confounding between the variables and the probable interactions is the optimal set of experiments. Software has been implemented to generate the optimal Full-Block or Half-Block of experiments. The fold-over design technique, which is popularly used in DOE, is a special case of the Full-Block design strategy. The analysis routines have been extended to analyze multiple blocks of experiments with different confounding patterns and to determine the effects of the confounding interactions.

A One-at-a-Time design strategy has been proposed which uses the results of the previous experiments to design the optimal experiments one at a time. This strategy assumes that there is only one significant variable or interaction on each significant column of the design matrix. Therefore, this strategy is particularly useful when the number of significant effects is sparse. A hypothesis is made that certain interactions are significant on the basis of their variables. The optimal experiment for this hypothesis, i.e., the experiment which is expected to yield the maximum output quality, is conducted. The result of this experiment is compared with the predicted output quality of all possible plant models. The model which gives the least prediction error is selected as the next hypothesis and the procedure is repeated. The simulation results for this design methodology have been very promising.

Thesis Supervisor: David H. Staelin

Title: Professor of Electrical Engineering

Acknowledgments

First and foremost, I would like to express my sincere thanks to my advisor Professor David Staelin for his excellent guidance, constant support and understanding. He taught me many things about research and life. Working with him was a privilege.

Thanks to my fellow group members: Ambrose, Carlos, Mark, Michelle and Mike for their help and cooperation. I appreciate the discussions I had with them and enjoyed the group meetings.

I acknowledge the efforts of the EECS Department for making it possible for me to rejoin MIT, particularly the staff of the EECS Graduate Office who have been so patient and supportive through my difficult periods.

Special thanks to Asif Shakeel, Sankar Sunder, S. R. Venkatesh and T. A. Venkatesh. Spending time with you all has probably been the most memorable part of my stay at MIT. Thanks to Amit Kumar who has always been a source of immense help and encouragement and to Firdaus Bhathena for helping me on numerous occasions.

I am very grateful to God for helping to me complete my masters degree at MIT and making life such an interesting challenge.

Finally, I am deeply indebted to my grandmother, my parents, my sister Irfana, Zarina Aunty and Rekha whose love and sacrifices have made a dream come true.

The work in this thesis was carried out at the Research Laboratory of Electronics and was supported by the Leaders for Manufacturing program at MIT.

Contents

1 Introduction 15
1.1 Reseach Motivation 15
1.2 Background 17
1.2.1 Search Designs 18
1.2.2 Response Surface Methods 18
1.3 Thesis Overview 19
1.4 Notation 20
1.4.1 Factorial Fractional Designs 21
1.4.2 Resolution of Factorial Designs 23
1.4.3 Basic Columns and Variables of Factorial Designs 23
1.4.4 Shifting with respect to a Columns 25
1.4.5 Fold-Over Designs 25
2 Sequential Experimental Design 27
2.1 Non-Sequential Approach to DOE 27
2.2 Sequential Design Philosophy 29
2.2.1 Sequential Block Design 30
2.2.2 One-at-a-Time Design 31
2.3 Assumptions on Manufacturing Models 31
3 Sequential Block Design 33
3.1 Need for Sequential Block Design 33
3.2 Sequential Design Methodology 34
3.3 Half-Block Designs 36
3.3.1 Algorithm to Determine the Optimal Half-Block Design 37
3.3.2 Advantages and Disadvantages of Half-Block Designs 41
3.4 Full-Block Designs 43
3.4.1 Algorithm to Determine the Optimal Full-Block Design 43
3.5 Completing Block Designs 46
4 Analysis of Sequential Experiments 49
4.1 Classical Analysis Techniques 49
4.1.1 Analysis of Variance (Anova) 49
4.1.2 Normal Probability Plots 50
4.1.3 Lenth's Algorithm for Determining Significant Coefficients 51
4.2 Closed Loop Technique for Determining Interactions 52
5 One-at-a-Time Designs 55
5.1 Need for One-at-a-Time Design Strategy 55
5.2 One-at-a-Time Design Strategy 56
5.3 Mathematical Justification 62
5.4 Advantages of One-at-a-Time Design Strategy 68
5.5 Partial Optimization 70
6 Conclusions and Future Work 75
6.1 The Complete DOE Software Tool 75
6.2 Thesis Achievements 77
6.3 Future Work 78
A Binary Orthogonal Matrices 81
A. 1 Definitions 81
A. 2 Properties of Binary Orthogonal Matrices 82
B Designing a Half-Block of Experiments 85
C Designing a Full-Block of Experiments 91
C. 1 Full-Block Design Strategy 91
C. 2 Fold-Over Designs 96
D Completing Fractional Factorial Blocks 99

E Computer Software Listings 105
Bibliography 159

List of Figures

1-1 Proposed Experimental Design Strategy 16
2-1 Non-Sequential Approach to Experimental Design 27
3-1 Pictorial Representation of Completing Block Design 47
4-1 Normal Probability Plot 51
5-1 One-at-a-Time Design Strategy 57
5-2 Permissible range of values of $\beta_{i j}$ 73
6-1 Overview of Complete DOE Software Tool 76

List of Tables

$1.1 \quad 2^{5-2}$ Factorial Design Matrix 22
1.2 Basic and Non-Basic Columns of a Binary Orthogonal Matrix 22
1.3 Changes in Confounding Patterns 24
3.1 Fold-over Design Matrix for Example 3-1 35
3.2 Results of Fold-over Design of Example 3-2 39
3.3 Analysis of Design of Example 3-2 39
3.4 Half-Block Experiments and Results of Example 3-2 40
3.5 Analysis of New Design of Example 3-2 40
3.6 Results of Fold-over Design of Example 3-3 44
3.7 Analysis of Design of Example 3-3 44
3.8 Full-Block Experiments for Example 3-3 45
3.9 Analysis of New Design of Example 3-3 45
5.1 Confounding pattern of the 2^{7-3} factorial experiments of Examples 5-1, 5-2 and 5-3 59
5.2 Results of One-at-a-Time Designs of Example 5-1 60
5.2 Results of One-at-a-Time Designs of Example 5-1 61
5.3 Results of One-at-a-Time Designs of Example 5-2 63
5.3 Results of One-at-a-Time Designs of Example 5-2 64
5.4 Results of One-at-a-Time Designs of Example 5-3 65
5.4 Results of One-at-a-Time Designs of Example 5-3 66
5.5 Results of Design of Example 5-4 70
A. 13×3 Binary Orthogonal Matrix 82B. 1 Equivalence of Different Designs89
B. 2 Changes in Confounding Pattern 89
C. 1 Columns of the variables in the original and the new design 92
C. 2 Table for Example C-1 95
C. 3 Initial Design of Example C-2 97
C. 4 Fold-over and Full-Block Design of Example C-2 98
D. 1 Incomplete Block of Experiments 102
D. 2 Missing Block of Experiments 103

Chapter 1

Introduction

In this chapter we outline the motivation driving the research in this area. A brief overview of the existing methodologies is given in Section 2 along with the outline of the thesis in Section 3. Section 4 gives the notation used in the report.

1.1 Reseach Motivation

With the increase in competitiveness in the manufacturing industry the methods of Experimental Design are becoming increasingly important. The need for efficient Design of Experiments (DOE) stems from the desire to improve quality and productivity quickly and economically. The concepts in Design of Experiments have been extensively researched since Fisher [11] introduced the basic theory in 1926.

Although the basic ideas in the DOE are relatively simple, their application involves use of comparatively advanced concepts in algebra and statistics. Hence, despite the extensive literature, DOE has remained largely outside the purview of manufacturing and is used very infrequently, if at all, in today's industry.

With the advent of high speed digital computers it is now possible to design and search for optimal experimental designs and to use statistics without the need of the experimenter to understand all the concepts. The goal of this thesis is to develop an experimental design package for a user who is familiar with the plant/process to be optimized, but has no prior experience with experimental design.

The basic proposed strategy for the DOE method developed here is shown in Figure 1-1. An experimenter inexperienced with DOE can be expected to only perform the following

Figure 1-1: Proposed Experimental Design Strategy
tasks:

Block 1: Decide which parameters/ variables affect the process, and the approximate range in which they can be varied for the normal operation of the plant. Also, based on the knowledge of the process, the experimenter can guess some of the probable interactions.

Block 3: Perform the set of experiments as determined by Block 2 of Figure 1-1.

Traditionally, an experimenter was expected to perform the tasks of all the blocks. But as discussed above, it is possible to develop software so that the experimenter can successfully use DOE without being required to understand all the concepts used in the implementation of Blocks 2, 4, 5, 6 and 7 of Figure 1-1. With such simplification, DOE can be used by a large number of manufacturers who are presently unable to do so.

This thesis is the continuation of the work done by Paul Fieguth et al. [10] based on the insights developed by Dr. Ashraf Alkairy [1]. The earlier work focused on developing software for Blocks 2 and 4. The contribution of this thesis is in the development of the theory and software for Blocks 5, 6 and 7 along with an improvement of Block 2.

The thrust of the thesis is on designing sequential experiments. The need for sequential
designs arises due to:

- Lack of a priori knowledge of the process/plant.
- Constraints of available resources on the size of experiments.
- Desire to find a good operating point even if unable to determine the best operating point.
- Need to conduct the experiment in a systematic and efficient manner.

All these factors are outlined in greater detail in the next chapter.

1.2 Background

The concept of Design of Experiments (DOE) was first introduced by Fisher [11]. Plackett and Burman [19] proved that in order for the parameters of the design matrix to have certain optimal properties it was essential that the designs have an orthogonal structure. This resulted in the use of Factorial Designs. In these designs, as the number of variables controlling a given process grow, the number of experiments required to completely analyze the variables and their interactions grow exponentially and so become impractical to perform.

Ideas of fractional factorial designs were developed to reduce the total number of experiments and yet retain the beneficial properties of factorial designs. The reduction in the total number of experiments leads to the problem of confounding.

Two variables (or interactions) T_{i} and T_{j} are said to be confounded with each other if they vary in the same manner in all the experiments. That is, the value of the variables for the m th experiment is given by,

$$
\begin{equation*}
T_{i, m}=k \cdot T_{j, m} \quad \forall m \tag{1.1}
\end{equation*}
$$

for some fixed k. In two-level factorial designs each of the variables are set at -1 or +1 level in all the experiments. Therefore, T_{i} and T_{j} are confounded with each other if,

$$
\begin{equation*}
T_{i, m}=+T_{j, m} \quad \forall m \tag{1.2}
\end{equation*}
$$

or

$$
\begin{equation*}
T_{i, m}=-T_{j, m} \quad \forall m \tag{1.3}
\end{equation*}
$$

Given a process, there exists no well defined technique to select which variables/interactions are to be confounded. The selection is done on an ad hoc basis and hence an element of subjectivity is introduced in the designs. After the experiments are carried out all the significant variables/interactions may not be determined as there may be overlapping between then.

In order to use DOE effectively it is very important that the exact dependence of quality on the variables and their interactions be established. Hence, whenever two or more variables or interactions are confounded some technique is required by which their separate effects can be determined.

Some of the DOE techniques available to determine the unknown plant models are described below. The discussion is intentionally concise and should only serve to familiarize the reader with the techniques.

1.2.1 Search Designs

Search Designs is a technique used for determining important interactions. Search designs were developed by J. N. Srivastava [21]. The basic strategy of search designs is to design a set of experiments which has the capacity to estimate the effects of a set of variables and interactions and a few unknown interactions of a specified order. Readers may consult Ghosh [13] or Srivastava [22] for a more detailed discussion on Search Designs.

Although the methodology is interesting there are shortcomings.

- The technique is relatively complicated and there exists no general technique to solve all kinds of problems.
- The technique does not use a posteriori information and hence there is no obvious extension to sequential experimentation.

1.2.2 Response Surface Methods

The Response Surface Methodology (RSM) is an alternative to factorial DOE. Like factorial DOE, experiments are designed on a process to determine the relationship between the input variables and the response. But in RSM the variables are not constrained to lie at any fixed
levels. Each design technique has its own advantages and disadvantages. These issues are discussed in greater detail in [17].

RSM is a sequential design procedure and there are many software packages which use RSM for process optimization [14]. Some of the popular ones are:

- Simplex - Evolutionary Operations (Simplex - V) ${ }^{1}$
- ULTRAMAX ${ }^{2}$

The ideas used in these procedures are significantly different from Factorial DOE discussed in this report. Hence the readers interested in RSM techniques may find the references useful.

1.3 Thesis Overview

The thesis focuses on performing sequential experimental design using two different approaches:

1. Sequential Block Design Strategy
2. One-at-a-Time Design Strategy

Chapter 2 is based on these strategies and gives an overview. The need for sequential experimentation is discussed and the basic assumptions on the models of the manufacturing processes are enumerated.

In Chapter 3 the theory of Sequential Block Design is developed. The detail proofs are given in the Appendices. The algorithm used in the computer software is discussed along with the results of computer simulations.

Chapter 4 focuses on the Analysis of Sequential Block Designs. Classical techniques such as Daniel Plots and Anova are discussed briefly. A closed loop technique for determining significant interactions is described.

Chapter 5 deals with the One-at-a-Time Design Strategy. The basic concepts and advantages are presented in this chapter. Simulation results are included to justify the strategy.

[^1]Chapter 6 describes the Complete DOE Software Tool which being currently developed at MIT. It also lists the achievements of the thesis and suggests possible future work on sequential design of experiments.

1.4 Notation

In this report we will try to use consistent notation. Given a plant \mathbf{P}, its output or quality is denoted by Y. The performance of that plant is governed by input variables. These variables are denoted by $T_{1}, T_{2}, \ldots, T_{n}$. The model of the plant is assumed to be non-linear and the output Y is assumed to be a linear function of the variables and their interactions. The interaction between the variables T_{i} and T_{j} is denoted by $I_{i j}$. Denoting the coefficients of the variables and interactions by β we can represent the output as,

$$
\begin{align*}
& Y=\beta_{0}+\beta_{1} T_{1}+\beta_{2} T_{2}+\ldots+\beta_{n} T_{n}+\ldots+\beta_{i j} I_{i j}+\ldots+\varepsilon \tag{1.4}\\
& Y=\left(\begin{array}{lllllllll}
1 & T_{1} & T_{2} & \ldots & T_{n} & \ldots & I_{i j} & \ldots
\end{array}\right) \cdot\left(\begin{array}{c}
\beta_{0} \\
\beta_{1} \\
\beta_{2} \\
\vdots \\
\beta_{n} \\
\vdots \\
\beta_{i j} \\
\vdots
\end{array}\right)+\varepsilon \tag{1.5}
\end{align*}
$$

If there is more than one experiment then there will be one equation like Equation 1.5 for each of the experiments. All such equations can be stacked together.

$$
\left(\begin{array}{c}
Y_{1} \tag{1.6}\\
Y_{2} \\
\vdots \\
Y_{m}
\end{array}\right)=\left(\begin{array}{cccccccc}
1 & T_{1,1} & T_{2,1} & \ldots & T_{n, 1} & \ldots & I_{i j, 1} & \ldots \\
1 & T_{1,2} & T_{2,2} & \ldots & T_{n, 2} & \ldots & I_{i j, 2} & \ldots \\
\vdots & \vdots \\
1 & T_{1, m} & T_{2, m} & \ldots & T_{n, m} & \ldots & I_{i j, m} & \ldots
\end{array}\right) \cdot\left(\begin{array}{c}
\beta_{0} \\
\beta_{1} \\
\beta_{2} \\
\vdots \\
\beta_{n} \\
\vdots \\
\beta_{i j} \\
\vdots
\end{array}\right)+\left(\begin{array}{c}
\varepsilon_{1} \\
\varepsilon_{2} \\
\vdots \\
\varepsilon_{m}
\end{array}\right)
$$

This can be represented as,

$$
\begin{equation*}
\bar{Y}=\bar{X} \cdot \bar{\beta}+\bar{\varepsilon} \tag{1.7}
\end{equation*}
$$

where \bar{Y} is the Output Vector, \bar{X} is the Regression Matrix, $\bar{\beta}$ is the Coefficient Vector and $\bar{\varepsilon}$ is the Error Vector.

1.4.1 Factorial Fractional Designs

For a process, \mathbf{P}, dependent on n variables, if the experiments are designed is such that

- In each of the experiments, the variables are at either one of two levels, denoted by ' + ' and ' - '.
- There are 2^{n} different experiments.
then the experimental design is called a Full Factorial Design.
If the experimental design has half the number of experiments of a Full Factorial Design then it is called a One-Half Factorial Design. Similarly, if it has a quarter of the experiments of a Full Factorial then it is called a One-Quarter Factorial Design. In general, a $1 / 2^{k}$ fraction of a Full Factorial Design is called a 2^{n-k} Factorial Design.

This report deals with DOE using Fractional Factorial Designs which are based on Binary Orthogonal Matrices. Appendix A discusses some of the relevant properties of Binary Orthogonal Matrices. Table 1.1 is an example of a 2^{5-2} Factorial Design based on the $2^{3} \times 2^{3}$ Binary Orthogonal Matrix shown in Table 1.2. The first column of of the matrix

Variable:	T_{1}	T_{2}	T_{3}	T_{4}	T_{5}
Experiment	v_{1}	v_{2}	v_{3}	v_{12}	v_{23}
1	+	+	+	+	+
2	+	+	-	+	-
3	+	-	+	-	-
4	+	-	-	-	+
5	-	+	+	-	+
6	-	+	-	-	-
7	-	-	+	+	-
8	-	-	-	+	+

Table 1.1: 2^{5-2} Factorial Design Matrix

Expt.	$v_{\text {avg }}$	v_{1}	v_{2}	v_{3}	v_{12}	v_{23}	v_{31}	v_{123}
1	+	+	+	+	+	+	+	+
2	+	+	+	-	+	-	-	-
3	+	+	-	+	-	-	+	-
4	+	+	-	-	-	+	-	+
5	+	-	+	+	-	+	-	-
6	+	-	+	-	-	-	+	+
7	+	-	-	+	+	-	-	+
8	+	-	-	-	+	+	+	-

Table 1.2: Basic and Non-Basic Columns of a Binary Orthogonal Matrix
consists only of +1 and is called the Average Column ($v_{\text {avg }}$).

1.4.2 Resolution of Factorial Designs

Resolution is a useful concept associated with factorial designs. The resolution of a design is a measure of the ability of the design to resolve confounding between interactions.

A 2^{n-k} factorial design is said to be of resolution R if no P th order interaction is confounded with another interaction of less than $(R-P)$ th order. For example, a design has a resolution III if no variable is confounded with another variable but at least one second order interaction is confounded with a variable. Designs with higher resolution are preferred.

In this report we will usually begin the sequential DOE procedure using a design of resolution IV or higher. Such a design has the property that none of the variables are confounded with second order interactions.

1.4.3 Basic Columns and Variables of Factorial Designs

In this subsection we discuss the notation used to represent an factorial design. An factorial design is viewed as a mapping of variables and interactions to a set of columns of a binary orthogonal matrix.

As discussed in Appendix A, given a binary orthogonal matrix \bar{X} of size 2^{m}, we can determine a set of m independent columns. These columns are called basic columns. The other $2^{m}-m$ columns are called non-basic columns. The basic columns are denoted by the symbols $v_{1}, v_{2}, \ldots, v_{m}$. Every non-basic column corresponds to a product of a unique set of basic columns. A non-basic column is denoted by $v_{i j k}$ if it is generated by the product of the columns v_{i}, v_{j} and v_{k}. An example of a 2^{3} binary orthogonal matrix is given in Table 1.2.

The set of experiments can be represented by assigning to every variable $T_{1}, T_{2}, \ldots, T_{n}$, a column of the orthogonal matrix. For example, comparing Table 1.1 and Table 1.2, we can represent the information of the experiments simply as shown in $\operatorname{Design}(\mathrm{I})$ of Table 1.3.

It is clear that if T_{1} lies on column v_{1} and T_{2} lies on column v_{2}, then the interaction of these, represented by I_{12}, must lie on the column corresponding to the product of columns v_{1} and v_{2}, namely column v_{12}. Therefore, all variables and their interactions must correspond to some basic or non-basic columns. In general, there are more variables and interactions

Expts.	$v_{\text {avg }}$	v_{1}	v_{2}	v_{3}	v_{12}	v_{23}	v_{31}	v_{123}
Design(I)		T_{1}	T_{2}	T_{3}	T_{4}	T_{5}		
Interactions		I_{24}	I_{14}	I_{25}	I_{12}	I_{23}	I_{13}	I_{15}
			I_{35}				I_{45}	I_{34}
Design(II)		T_{1}	T_{2}	T_{3}		T_{4}		T_{5}
Interactions		I_{45}	I_{34}	I_{24}	I_{12}	I_{23}	I_{13}	I_{14}
					I_{35}	I_{15}	I_{25}	
Design(III)	T_{4}	T_{1}	T_{2}	T_{3}				T_{5}
Interactions		I_{14}	I_{24}	I_{34}	I_{12}	I_{23}	I_{13}	I_{45}
					I_{35}	I_{15}	I_{25}	

Table 1.3: Changes in Confounding Patterns

than there are columns. Hence, each column of the matrix may be associated with more than one variable or interaction. All variables and interactions lying on one column are said to be confounded with each other. All variables and interactions which are confounded with each other are indistinguishable from each other, with respect to the given experiment.

The orthogonal matrix used to design a 2^{n-k} factorial experiment in n variables has $n-k$ basic columns and $2^{n-k}-(n-k)$ non-basic columns. The design of experiments corresponds to assigning $n-k$ variables to the basic columns and the remaining k variables to the non-basic columns. The assignment of these non-basic variables govern the overall confounding pattern of the design. A set of variables lying on a set of basic columns are called a set of basic variables and the other variables are called non-basic variables.

Example 1-1

- Suppose a process \mathbf{P} depends on 5 variables T_{1}, \ldots, T_{5}. A 2^{5-2} Fractional Factorial experiment is to be designed to study the process. As explained above, this is equivalent to assigning 3 variables to a set of basic columns and the other 2 variables to any non-basic columns. If T_{1}, T_{2} and T_{3} are assigned to to v_{1}, v_{2} and v_{3} respectively, then T_{4} and T_{5} can be assigned to any of the non-basic columns. Different choices of non-basic columns will lead to different confounding patterns.

In Design(I) of Table 1.3, T_{4} and T_{5} are assigned to columns v_{12} and v_{23} respectively. The corresponding positions of the second order interactions are shown in the Table. When the assignments of T_{4} and T_{5} are changed to columns v_{23} and v_{123} respectively,
the confounding pattern of the design changes as shown in Design(II) of Table 1.3. Design(III) is an example in which T_{4} and T_{5} are assigned to $v_{\text {avg }}$ and v_{123} respectively. Such a design is not very desirable as it confounds the average effect with the main effect of T_{4}. Hence, both these important effects cannot be determined.

Design(I) and Design(II) have resolution III because there are second order interactions which confound with the variables but there are no variables which confound with another variable or the average column. Design(III) has resolution I because T_{4} confounds with the average column - which can be considered as a zero order interaction.

In this example only T_{4} and T_{5} have been shifted keeping the variables T_{1}, T_{2} and T_{3} fixed. If the basic variables are shifted from one column to another along with the non-basic variables there are problems caused due to rearrangement of rows. This issue is discussed in greater detail in Appendix B.

1.4.4 Shifting with respect to a Columns

This report deals with sequential experimentation. Using sequential experimentation it is possible to shift the variables and interactions to different columns of the design matrix and reduce confounding. In order to mathematically define shifting, we introduce the concept of Shifting with respect to a Column. A variable (or interaction) T_{i} is said to have shift with respect to column v_{s} if and only if the old column of T_{i}, v_{x}, and the new column of T_{i}, v_{y}, are such that $v_{s}=v_{x} \cdot v_{y}$.

1.4.5 Fold-Over Designs

Given a block of 2^{n-k} factorial experiments, if the signs of all the elements of this block are reversed, a fold-over design is obtained. This technique is originally due to Box and Wilson [6].

If the first block has resolution III, then it can be shown that the fold-over design together with the first block results in an factorial design of resolution IV, that is one in which none of the second-order interactions are confounded with the variables. Therefore, using such a design it is possible to determine the effect of all the variables independent of the effect of any second-order interactions.

Chapter 2

Sequential Experimental Design

In this chapter the concept of sequential design of experiments is introduced. Section 1 deals with the non-sequential approach to the DOE and the problems with it. In Section 2 the overall sequential approach is outlined. Section 3 lists the assumptions made on the manufacturing models.

2.1 Non-Sequential Approach to DOE

The concept of Sequential Experimental Design is not completely understood especially when the variables are at three and higher levels. Therefore, most of the commercial software available for factorial DOE support non-sequential experimental design ${ }^{1}$. As shown

[^2]

Figure 2-1: Non-Sequential Approach to Experimental Design
in Figure 2-1 the non-sequential approach to DOE can be divided into the following steps:

1. Selecting variables and potential variable interactions which are perceived as being most important in determining the performance of a given process.
2. Given the number of variables, designing a set of experiments which is to be performed.
3. Conducting the experiments and obtaining the results, i.e. values of the output parameters to be optimized, such as strength, variance, etc.
4. Analyzing the results to obtain the coefficients of the variables and their interactions in the mathematical expression Equation 1.6 predicting the output parameters.
5. Using these coefficients to suggest new settings of the control variables, T, to improve the process.

In order to use non-sequential experimental design, the experimenter has to guess the probable interactions. The commercial DOE software can be used only after the list of probable interactions has been obtained. Some of the main features currently available in commercial DOE software include the following:

- Designing factorial experiments based on various criteria of optimality such as Doptimality ${ }^{2}$ [2].
- Analyzing results using different techniques. Some of the commonly used include:

1. Analysis of Variance (Anova)
2. Normal Probability Plots

3. Bayesian Estimation

Despite these advancements the commercial DOE software products are limited in their application. Some of the main problems are:

- It is not possible to suggest a general design methodology which can be applied to all processes. The concept of DOE depends a lot on the specific process to be optimized and therefore a design that may be good for one process might not be so for another.

[^3]- The experimenter has to guess the interactions. In order to be safe it is necessary to guess very conservatively. Thus, the effects of a much large set of interactions has to be determined than is actually necessary. This results in the use of more experiments than necessary.
- Irrespective of the sophistication of the design and analysis procedures, one cannot overcome the fundamental limitations of confounding. That is if one variable/ interaction is confounded with another, then the effects of each cannot be evaluated separately irrespective of the nature of the analysis.
- Typically, there is a limit to an experimenter's knowledge about the process he or she wishes to optimize. Hence it is often true that having performed the experiment some of the following situations might arise.

1. Some of the columns of the test matrix which were assigned to variable/ interaction(s) which the experimenter thought were unimportant were found to have large coefficients.
2. The results of the experiments suggests the possible presence of interaction(s) which are confounded with other variables/ interactions and hence could not be evaluated.
3. Only a few variables and interactions are found to be important.

Hence the experimenter might be forced to ask: WHAT NEXT??? This is exactly the question that we hope to address in the course of this thesis.

2.2 Sequential Design Philosophy

In this project we aim to address the issue of DOE in a systematic manner. Given a process which needs to be optimized the experimenter should start by studying its physics. Based on this, a group of variables and interactions should be selected. The software will then use this information and will design a matrix which has minimum possible confounding between these variables and interactions. After conducting the experiments and analyzing the results it may happen that the experimenter is not completely satisfied due to one or more of the reasons stated in Section 2.1. Thus in order to proceed the software needs to
consider all the possible conditions for which an experimenter may not be satisfied with the results of the first set of experiments and suggest acceptable solutions for each of these conditions.

It is difficult to determine which set of experiments the experimenter should perform, in the most general sense. The choice of experiments depends not only on the specific questions which the experimenter wishes to answer but also on the nature of the process at hand. There are many factors which need to be considered.

- The level of noise in the experiments.
- The number of experiments that the experimenter wishes to perform.
- The accuracy required in estimating the parameters.

Fractional Factorial Designs have very interesting and important properties and are very popular in experimental design techniques.

- The experiments are easy to perform.
- The analysis of the results yield uncorrelated estimates of the effects of the variables and the interactions.
- Factorial designs support sequential experimentation.
- They can be applied to a large class of manufacturing processes.

Given these advantages, it is desirable to design a new fractional factorial experiment. So the question is how to design a new block of experiments which will supplement the old block of experiments and enable the experimenter to resolve many of the problems stated above? The Sequential Block Design and the One-at-a-Time Design are developed with this perspective. They are briefly described below.

2.2.1 Sequential Block Design

In this methodology first a fold-over block of experiments is designed. Since the design used is at least of resolution IV, the effects of the variables can be determined independent of the effects of second order interactions. Based on the assumptions on the models discussed in Section 2.3, a list of probable significant interactions is formed. There may be confounding between these interactions.

With the help of the Half-Block Design and the Full-Block Designs discussed in Chapter 3 , an optimal set of experiments is obtained which 'best' disentangles the confounding interactions. Hence, the new set of experiments allows the determination of the effects of the confounding interactions. It may happen that there are still a few interactions which remain confounded, but the optimal set of experiments ensures that these are relatively less important. If desired, a second optimal design may be used to determine the effects of these interactions. Hence using this method we can sequentially sort out the confounding between interactions. Sequential block designs are discussed in detail in Chapter 3.

2.2.2 One-at-a-Time Design

In most manufacturing processes the number of significant variables and interactions affecting the quality is usually small. Suppose a fold-over block of experiments has been conducted. It is often reasonable to assume that at most one variable or interaction is significant in any column of the design matrix.

Therefore, once the effects of the columns have been determined, only the significant variable or interaction in each column needs to be determined. This is done by first making a hypothesis about the significant variable or interaction in each column. Based on this hypothesis an optimal operating point is computed. The actual output of the plant at that operating point is obtained. The actual output is compared with the predicted output and the hypothesis is verified. If the hypothesis fails, a new hypothesis is proposed.

There are several advantages of this approach. One-at-a-Time designs are discussed in detail in Chapter 5.

2.3 Assumptions on Manufacturing Models

In this report we assume that the manufacturing systems that we deal with satisfy the following assumptions. In case there are any deviations they will be noted in the report.

A1 - Sparsity-of-Effect Principle: Most of the systems are dominated by the effects of the variables and the low-order interactions. Most of the higher order interactions are negligible. This assumption will also be referred to as the Sparsity Principle in the report.

This assumption is widely used and is supported by experienced practitioners of DOE.

A2 - Minimal Complexity of Models: Most systems are governed by interactions that are important whenever the main effects of some of their variables are important too. This assumption will be called the Simplicity Principle in the report.

A3 - Uncorrelated Noise Distribution: The noises in the different experiments are uncorrelated and are approximately gaussian distributed with zero mean and constant variance. This justifies the use of least-square techniques in estimating the manufacturing models.

A4 - Sequential Experimentation: It is possible to combine the results of two or more fractional factorial experiments to assemble sequentially a larger design to better estimate the effects of the significant variables and interactions.

Chapter 3

Sequential Block Design

This chapter discusses the concept of Sequential Experiments using Block Designs. Section 1 discusses the need for such a methodology. Section 2 deals with the initial steps required to do sequential experimental design. Section 3 discusses Half-Block Designs. A detailed example is given to help the reader understand the technique. Section 4 discusses FullBlock Designs and Fold-over Designs. Section 5 illustrates a method for completing an incomplete block of experiments. The mathematical proofs of the procedures are given in the Appendices.

3.1 Need for Sequential Block Design

Consider a situation in which a manufacturer, inexperienced in DOE, desires to use experimental design to improve the quality of the product. Before starting experimentation, the manufacturer must do the following:

- Choose variables and their operating ranges.
- Guess the important interactions affecting the response.
- Choose a response or quality variable which really provides useful information about the process under study.

It is not desirable to do only one block of experiments or a large first block of experiments since:

1. The levels of the variables may be incorrectly chosen, making the effects of some of the variables dominate the results.
2. Since the significant variables and interactions are not known a priori, it is advantageous to use the information from the first block of experiments to design subsequent ones.
3. There are always constraints of time, funds etc. on the total number of experiments that can be performed. Therefore, it is desirable to conduct most experiments when there is more information available about the process.

It is usually recommended that the experimenter invest no more than 25 percent of the available resources in the first block of experiments [17]. Therefore, it is necessary to use an experimental design technique which supports sequential experimentation. Hence, fractional factorial designs are often used. A detailed description of factorial designs can be found in several books including [9], [17], [8]. In this report the reader is assumed to be relatively familiar with the basic concepts of fractional factorial designs.

3.2 Sequential Design Methodology

Given a process \mathbf{P} which depends on n variables T_{1}, \ldots, T_{n}, a complete factorial design requires 2^{n} experiments to determine the effects of all the variables and interactions. Even for moderate values of n, the complete factorial design requires an infeasible number of experiments to be performed. For example, for n equal to 8,9 and 10 , the number of experiments required is 256,512 and 1024 respectively.

Most manufacturing systems satisfy the assumptions given in Section 2.3 and therefore require far fewer experiments to completely determine the significant variables and interactions. The basic steps involved in sequential block design are described below.

Step 1: Designing First Block of Experiments

We advocate that the first block of experiments should be a fold-over design. To obtain a fractional factorial design which is also a fold-over design, first a 2^{m} factorial matrix is designed, where m is the smallest integer for which $2^{m} \geq n$. The n variables are then assigned to unique columns of this matrix. The 2^{m} factorial matrix is now folded i.e. a matrix is formed whose elements are obtained by changing the sign of the elements of the factorial matrix. The matrix is appended to the original factorial matrix and the new matrix of 2^{m+1} experiments is the desired fold-over design.

Variables \& Interactions		T_{1}	T_{2}	T_{3}	T_{4}	I_{12}	I_{23}	I_{31}
I_{34}	I_{14}	I_{24}						
Expts.		v_{1}	v_{2}	v_{3}	v_{123}	v_{12}	v_{23}	v_{31}
1	B	+	+	+	+	+	+	+
2	L	+	+	-	-	+	-	-
3	K	+	-	+	-	-	-	+
4	1	+	-	-	+	+	+	-
1^{\prime}	F	-	-	-	-	+	+	+
2^{\prime}	O	-	-	+	+	+	-	-
3^{\prime}	L	-	+	-	+	-	-	+
4^{\prime}	D	-	+	+	-	-	+	-

Table 3.1: Fold-over Design Matrix for Example 3-1

Example 3-1

- Consider a process \mathbf{P} which depends on 4 variables T_{1}, T_{2}, T_{3} and T_{4}. To obtain a fold-over design, a 2^{3} factorial experiment needs to be designed. First a 2^{2} factorial matrix is designed as shown in Block 1 of Table 3.1. The four variables are assigned to the four columns of this matrix. Then the matrix is folded over and appended to Block 1. The overall matrix corresponds to the desired fold-over design. Note that none of the variables are confounded with any second order interaction.

Step 2: Analyzing the Results

After conducting the fold-over experiments, the coefficients of the columns of the orthogonal matrix are obtained. The fold-over design has resolution IV. Hence, if it is assumed that the third and higher order interaction are insignificant, the estimates of the main-effects of the variables are the coefficients of the columns on which they lie. Using the analysis techniques described in the next chapter, a list of significant variables is obtained.

Step 3: Determining Probable Interactions

On the basis of the Minimal Complexity of Model assumption, a list of all second order interactions containing at least one significant variable is made. From this list, the interactions which lie on columns with significant coefficients are selected. This group of interactions are called the probable interactions. By assumption, all the true interactions must lie in this group. It may happen that there may be many probable interactions which are confounded with each other and hence their effects cannot be determined from the results of the first block of experiments.

Step 4: Resolving Confounding between Interactions

In case there is confounding between the probable interactions it should be possible to conduct more experiments to unconfound them and determine their separate effects. If we view the variables and interactions as 'sitting' on the columns of the orthogonal matrix, the DOE techniques correspond to 'placing' the variables on the columns of the matrix. Once the variables have been assigned to the columns of the matrix, the positions of the interactions get fixed.

Hence, in order to unconfound the interactions, the variables need to be shifted from one column to another with the help of more experiments. In order to unconfound the interactions, we must exactly understand the mechanics by which the variables can be shifted from their original positions. Once the mechanics is understood it is possible to search through the design and determine the columns to which the variables can be shifted to achieve maximum unconfounding.

Shifting a variable from one column to another is equivalent to designing an experiment with a different confounding pattern. This idea is discussed in more detail in Appendix B. Given that the first block of 2^{n-k} factorial experiments has been conducted it is desired that the second block of experiments leads to a fractional factorial design with a different confounding pattern. There are essentially two options.

1. If possible, replace some of the rows of the first block of experiments by those of a second block, and create a distinct fractional factorial design.
2. If possible, append the rows of the first block of experiments to the rows of a second block of experiments to create a larger fractional factorial design having a different confounding pattern.

Both these options are possible. The technique based on option 1) is called the HalfBlock design and the one based on option 2) is called the Full-Block design. These designs are described in the next two sections.

3.3 Half-Block Designs

The focus of this section is to study the problem of unconfounding probable interactions. It is assumed that a 2^{n-k} factorial experiment has been conducted on the process and the
effects of the variables are known. On the basis of this, a list of probable interactions is obtained. The effects of all the probable interactions are known, except for those which are confounded with each other.

We need to determine the effects of the confounded probable interactions. Therefore, a fractional factorial experiment has to be designed which has a different confounding pattern. In order to save resources it is natural to inquire if it is possible to design a new factorial experiment in which many of the experiments of the first block are similar, rather than one in which all the 2^{n-k} experiments are different from those of the first block. This issue has been discussed in Appendix B. The main result is given below. The readers interested in the proof can refer to Appendix B.

Result:

Given a block of 2^{n-k} factorial experiments in n variables,

1. At least 2^{n-k-1} experiments of the block need to be changed to obtain a new block of factorial experiments with a different confounding pattern.
2. New blocks of factorial experiments which can be obtained by doing an additional set of 2^{n-k-1} experiments, can be generated by shifting the variables with respect to every column of the design matrix.

3.3.1 Algorithm to Determine the Optimal Half-Block Design

To begin with, we need to assign each of the probable interactions a weight based on the significance of its variables and the coefficient of its column. That is, an interaction of two important variables should be weighted more than one in which only one of the variables is significant. Also, an interaction lying on a column with a large coefficient should be weighted more.

In this report, the weight of an interaction is obtained by taking the absolute value of the products of the coefficients of its column and those of its variables. There are other acceptable means of assigning the weights. Further work could be done to examine them and determine if some are better than others.

The goodness of a design k is evaluated on the basis of four quantities:

1. Number of columns in which the variables confound with probable interactions, $N v i_{k}$.
2. Sum of the weights of the interactions confounded in $1 ., W v i_{k}$.
3. Number of columns in which the probable interactions are confounded with each other, $N i i_{k}$.
4. Sum of the weights of the interactions confounded in $3 ., W i i_{k}$.

For any two designs, design k and design l, design k is said to be better than design l if $N v i_{k}<N v i_{l}$. If $N v i_{k}=N v i_{l}$, then design k is better than design l if $W v i_{k}<W v i_{l}$. If terms 1. and 2. are equal for both the designs, then design k is better than design l if $N i i_{k}<N i i_{l}$. Eventually if terms 1., 2., and 3. are equal, then design k is better than design l if $W i i_{k}<W i i_{l}$.

This method of comparing different designs ensures that:

- Designs with less confounding between variables and interactions are preferred.
- Designs which have confounding between probable interactions with high weights are avoided.
- A design with no confounding is preferred over all other designs.

This method of comparison has been found to yield good results. Nevertheless, there are other measures which would be acceptable too. Further research should be done to determine the existence of an 'optimal' comparison method which performs best over the ensemble of manufacturing processes.

Given a block of experiments, the variables are shifted to with respect to different columns and different designs are obtained. The search procedure follows the Tree Search Algorithm. Each time a better design is found it is called the current optimum design and is stored in memory. The search procedure stops when either all four quantities given above reduce to zero, or if no design is found which is better than the current optimum design. The Tree Search algorithm ensures that all acceptable sets of 2^{n-k-1} experiments are searched.

The results given in Appendix B greatly reduce the search. Shifting any one variable completely determines the permissible columns for the placement of all the other variables. That is, once any one of the variables has been shifted, the other $n-1$ variables can each be placed in only 2 of the 2^{n-k} columns. Whenever the variables are placed in the permissible

Experiment:	1	2	3	4	1^{\prime}	2^{\prime}	3^{\prime}	4^{\prime}
Result:	16.21	8.41	23.64	15.35	11.72	-6.22	16.57	0.84

Table 3.2: Results of Fold-over Design of Example 3-2

Column:	$v_{\text {avg }}$	v_{1}	v_{2}	v_{3}	v_{123}	v_{12}	v_{23}	v_{13}
Variable		T_{1}	T_{2}	T_{3}	T_{4}	I_{12}	I_{23}	I_{13}
\& Interaction:						I_{34}	I_{14}	I_{24}
Coefficient:	10.84	5.11	-0.33	-2.22	-0.31	-3.31	0.24	6.19

Table 3.3: Analysis of Design of Example 3-2
columns, there exists a block of 2^{n-k-1} experiments which along with 2^{n-k-1} experiments of the first block gives a new 2^{n-k} factorial design.

Once the variables have been placed in the permissible columns, the procedure for obtaining the new experiments is simple. The new design is generated from the old one by shifting some of the variables with respect to a column of the old design as described in Appendix B. The new block of experiments are the 2^{n-k-1} rows of the new design matrix in which the elements of this column are -1 . The rows for which the elements of the column are +1 are common to both the new and the old block of experiments and therefore these experiments need not be done again. Once the 2^{n-k-1} new experiments have been conducted, the new matrix can be formed and the effects of the probable interactions can be determined.

Example 3-2

- Consider the process given in Example 3-1. Suppose that the true expression for quality is given by,

$$
\begin{equation*}
y=10.6+5.2 T_{1}-2.5 T_{3}-3.1 I_{12}+6.1 I_{13} \tag{3.1}
\end{equation*}
$$

The first block of experiments is the fold-over design of Table 3.1. The results obtained are shown in Table 3.2. The coefficients of the columns obtained from these results are shown in Table 3.3.

From Table 3.3 it is clear that only columns $v_{\text {avg }}, v_{1}, v_{3}, v_{13}$ and v_{12} are significant.

Experiment	T_{1}	T_{2}	T_{3}	T_{4}	Result
$1 "$	-	-	-	+	10.31
$2 "$	-	-	+	-	-6.49
$3^{\prime \prime}$	-	+	-	-	17.33
$4 "$	-	+	+	+	-0.36

Table 3.4: Half-Block Experiments and Results of Example 3-2

Column:	$v_{\text {avg }}$	v_{1}	v_{2}	v_{3}	v_{123}	v_{12}	v_{23}	v_{13}
Variable		T_{1}	T_{2}	T_{3}	I_{14}	I_{12}	T_{4}	I_{13}
\& Interaction:			I_{34}	I_{24}		I_{23}		
Coefficient:	10.57	5.37	-0.17	-2.32	0.07	-3.46	-0.15	6.31

Table 3.5: Analysis of New Design of Example 3-2

Therefore, the significant variables are T_{1} and T_{3}. The possible significant interactions are: $I_{12}, I_{13}, I_{14}, I_{23}$ and I_{34}. Of these, only I_{12}, I_{34} and I_{13} lie on significant columns and constitute the set of probable interactions.

Since it is assumed that third and higher order interactions are negligible, the coefficients of the columns $v_{\text {avg }}, v_{1}$ and v_{3} correspond to the effects of the constant, T_{1} and T_{3} respectively. Since I_{24} is assumed negligible, the coefficient of v_{13} is an estimate of the effect of I_{13}. The effects of probable interactions I_{12} and I_{34} cannot be determined separately as the interactions are confounded with each other. Therefore, we need to design a Half-Block experiment to unconfound the effects of I_{12} and I_{34}. The Half-Block algorithm suggests shifting T_{4} from column v_{123} to v_{23}, that is, shifting T_{4} with respect to column v_{1}. Thus, the experiments in which the elements of column v_{1} are '-' need to be done. The sign of T_{4} is reversed in each of these experiments. The Half-Block experiments are shown in Table 3.4. The results of theses experiments are given in the same table.

The experiments of Table 3.4 along with Experiments 1, 2, 3 and 4 of the the first block give a new orthogonal matrix which has a different confounding pattern. The confounding pattern and the result of the analysis of the new matrix is shown in Table 3.5.

From Table 3.5 it is observed that each column has only one significant variable or
probable interaction. Thus, the effect of each of them can be determined. Since the column v_{2} in Table 3.5 has a non-significant coefficient, it implies that I_{34} is not significant. The coefficients of columns of I_{13} and I_{12} have significant coefficients which agree well in the result of the analysis of the old and the new design matrix. Hence I_{13} and I_{12} are significant interactions.

The results of the analysis of the two designs can be improved by taking the average of the corresponding effects in Table 3.3 and Table 3.5. Dropping the non-significant effects, the model of the plant is given by:

$$
\begin{equation*}
y=10.71+5.24 T_{1}-2.27 T_{3}-3.39 I_{12}+6.25 I_{13} \tag{3.2}
\end{equation*}
$$

Equation 3.1 and Equation 3.2 agree quite well. Hence the Half-Block methodology has been effectively used to estimate the model of this process.

In this example it is not possible to determine the optimal operating point of the process before obtaining the model of the process because the conditions cited in Section 5.5 are not satisfied.

The interactions I_{14} and I_{23} were dropped form the list of probable interactions because they were located on a non-significant column. If these interactions are significant the coefficients of the columns in Table 3.3 and Table 3.5 will not be consistent. For example, if I_{23} is significant, the coefficients of the column I_{12} would not be similar in both Table 3.3 and Table 3.5 since it includes the effect of I_{23} in Table 3.5. This procedure can be used to verify the process model.

3.3.2 Advantages and Disadvantages of Half-Block Designs

The Half-Block designs procedure described in this section is suitable for a large number of situations.

1. If the number of confounded probable interactions is small.
2. If the first block of experiments is large. The size of the design matrix increases exponentially with the number of variables, n. Even in the worst case the number of probable interactions (of second order) increase with n^{2}. Therefore, as the number of variables increase, the number of columns increases and it becomes easier to
disentangle the probable interactions using Half-Block designs.
3. Given a block of 2^{n-k} factorial experiments, a Half-Block design uses 2^{n-k-1} experiments of this block to forms a new block of 2^{n-k} factorial experiments. The analysis of the new block yields uncorrelated estimates of the effects of the unconfounded variables and interactions.

There are a few limitations of this design technique.

1. When a Half-Block design strategy is applied to a block of 2^{n-k} factorial experiments, 2^{n-k-1} experiments are determined which form a new block of 2^{n-k} factorial experiments with a group of 2^{n-k-1} experiments from the first block. The new block has a different confounding pattern. It is possible to estimate the effects of the variables and the interactions by analyzing all the $2^{n-k}+2^{n-k-1}$ experiments which have been conducted. The estimates obtained from this analysis will be correlated with each other because the columns of the regression matrix are not orthogonal to each other.

Instead, if only the experiments of the new block of 2^{n-k} factorial experiments are analyzed, the regression matrix is orthogonal and the estimates will be uncorrelated. These estimates will have a larger variance because the number of experiments used in the analysis is reduced. Thus there is a trade-off between smaller variance and uncorrelatedness of the estimates.
2. If the design is highly confounded, it may not be possible to unconfound all the probable interactions using Half-Block designs.

This limitation is due to the fact that Half-Block designs can only restructure the confounding pattern and not decrease the confounding. The optimal restructuring ensures that the probable interactions get unconfounded at the expense of the nonsignificant interactions. Therefore, the only manner in which the overall confounding can be reduced is to design a larger matrix which is less confounded. This is the issue of the next section.

3.4 Full-Block Designs

This section deals with the theory and application of Full-Block Designs. The Half-Block designs described in the last section are very useful but there may be situations where, having conducted a 2^{n-k} factorial experiment it may happen that:

1. The number of confounded probable interactions is large.
2. Uncorrelated estimates of low variance are required.
3. Resources permit conducting more than a Half-Block Design.

In such cases it is more desirable to have a design technique which simultaneously uses all the experiments to determine the model of the process. The use of all the experiments is advantageous on two counts. One, the larger design matrix leads to less confounding and two, the estimates obtained from analysis have a smaller variance.

The basic problem can thus be stated as follows. Having done a block of 2^{n-k} factorial experiments on a process, which is the next block of experiments that need to be performed so that the analysis of both blocks 'best' unconfounds the probable interactions? This question is the focus of Appendix C. The main result is stated below. The proof and an illustrative example is given in Appendix C.

Result:

Given a block of 2^{n-k} factorial experiments in n variables,

1. A new block of 2^{n-k} experiments forms a block of 2^{n-k+1} factorial experiments along with the original block only if both the new and the original block have the same confounding pattern.
2. There are $2^{k}-1$ possible blocks of 2^{n-k} experiments which can form a block of 2^{n-k+1} factorial experiments with the original block. The new blocks can be generated by reversing the signs of the columns of the non-basic variables in the original block.

3.4.1 Algorithm to Determine the Optimal Full-Block Design

In the Full-Block design algorithm, different blocks of 2^{n-k} experiments are generated by reversing the signs of all the possible subsets of the non-basic variables. Each block is unique. The confounding pattern of the overall design is determined for each of these

Experiment:	1	2	3	4	1^{\prime}	2^{\prime}	3^{\prime}	4^{\prime}
Result:	18.59	18.43	13.89	14.60	2.81	-7.18	18.05	8.58

Table 3.6: Results of Fold-over Design of Example 3-3

Column:	$v_{a v g}$	v_{1}	v_{2}	v_{3}	v_{123}	v_{12}	v_{23}	v_{13}
Variable		T_{1}	T_{2}	T_{3}	T_{4}	I_{12}	I_{23}	I_{13}
\& Interaction:						I_{34}	I_{14}	I_{24}
Coefficient:	10.97	5.41	4.94	-2.50	0.04	-2.81	0.17	2.36

Table 3.7: Analysis of Design of Example 3-3
blocks. The Tree Search algorithm is used to determine the optimal new design using the criterion described in the previous section.

The results of Appendix C lead to a considerable simplification in the search procedure. The Tree Search algorithm ensures that all $2^{k}-1$ block designs, which can be used with the first block to give a 2^{n-k+1} Fractional Design, are searched. Hence the search gives the true optimum design.

The new block of experiments to be performed corresponds to the old design in which the signs of certain columns of the non-basic variables are reversed in accordance with the result of the search.

Once the new block of experiments have been carried out, the new design can be appended to the old one. The overall design corresponds to a 2^{n-k+1} factorial design. The algorithm used to generate the new block of experiments guarantees that the overall design matrix has optimal confounding between the probable interactions.

Example 3-3

- Suppose the process in Example 3-1 is given by,

$$
\begin{equation*}
y=10.6+5.2 T_{1}+4.9 T_{2}-2.5 T_{3}-3.1 I_{12}+6.1 I_{13}-3.7 I_{24} \tag{3.3}
\end{equation*}
$$

Let the first block of experiments be the fold-over design of Table 3.1. The results of these experiments are given in Table 3.6. The coefficients of the columns of the matrix are given in Table 3.7. It is observed that the variables T_{1}, T_{2} and T_{3} are significant. According to our assumptions the possible significant interactions are I_{12}, I_{13}, I_{14},

Experiment	T_{1}	T_{2}	T_{3}	T_{4}	Result
1	+	+	+	-	24.76
2	+	+	-	+	11.11
3	+	-	+	+	21.72
4	+	-	-	-	6.58
5	-	-	-	+	9.99
6	-	-	+	-	-14.78
7	-	+	-	-	25.29
8	-	+	+	+	1.14

Table 3.8: Full-Block Experiments for Example 3-3

Column:	$v_{\text {avg }}$	v_{1}	v_{2}	v_{3}	v_{4}	v_{12}	v_{13}	v_{14}
Var.\& Int.:		T_{1}	T_{2}	T_{3}	T_{4}	I_{12}	I_{13}	I_{14}
Coefficient:	10.85	5.36	4.90	-2.51	0.15	-2.88	6.04	0.14

Column:	v_{23}	v_{24}	v_{34}	v_{123}	v_{124}	v_{134}	v_{234}	v_{1234}
Var.\& Int.:	I_{23}	I_{24}	I_{34}	I_{123}	I_{124}	I_{134}	I_{234}	I_{1234}
Coefficient:	0.03	-3.67	-0.11	0.01	0.07	0.05	0.05	0.12

Table 3.9: Analysis of New Design of Example 3-3
I_{23}, I_{24} and I_{34}. But the column of v_{23} is not significant. This implies that I_{23} and I_{14} are not significant ${ }^{1}$. Thus there are 4 probable interactions I_{12}, I_{34}, I_{13} and I_{24}. The first two and the last two probable interactions are confounded with each other. When a Half-Block design algorithm is applied to this problem, it is found that there exists no Half-Block design which can unconfound all the probable interactions. Thus we have to resort to a Full-Block design. The Full-Block design algorithm suggests reversing the sign of the column of T_{4} keeping the other columns unchanged. Table 3.8 gives the Full-Block experiment. The results of the experiments are also given in the same table.

The results of the analysis of all the 2^{4} factorial experiments are given in Table 3.9. Using Table 3.9 and selecting the significant terms, the estimate of the model is given by:

$$
\begin{equation*}
y=10.85+5.36 T_{1}+4.90 T_{2}-2.51 T_{3}-2.88 I_{12}+6.04 I_{13}-3.67 I_{24} \tag{3.4}
\end{equation*}
$$

This estimate compares very well with the true plant model,

$$
\begin{equation*}
y=10.6+5.2 T_{1}+4.9 T_{2}-2.5 T_{3}-3.1 I_{12}+6.1 I_{13}-3.7 I_{24} \tag{3.5}
\end{equation*}
$$

Notice that if our assumption that I_{23} and I_{14} are not significant were wrong, the coefficients of the column on which they lie would be significantly different in the results of Table 3.9 and Table 3.7. Comparing the two results would permit the estimation of the effects of these interactions.

3.5 Completing Block Designs

This section deals with the issue of completing an incomplete block of fractional factorial experiments. Suppose a block of 2^{n-k} factorial experiment has been conducted followed by a Half-Block of experiments. The Half-Block has the property that it forms a 2^{n-k} orthogonal matrix with 2^{n-k-1} experiments of the first block of experiments. There may be situations where, after conducting a Half-Block, it is desired that a set of experiments is found which

[^4]

Figure 3-1: Pictorial Representation of Completing Block Design
together with all the experiments conducted previously, determine a orthogonal matrix of size 2^{n-k+1}. This idea is represented in Figure 3-1. The procedure for completing a block is equivalent to finding the missing block of 2^{n-k-1} experiments shown in Figure 3-1.

The concept of completing blocks is discussed in detail in Appendix D. The procedure is demonstrated with an illustrative example. The general procedure for completing blocks is given below.

Procedure for Determining the Missing Block:

Given an incomplete block of $m\left(2^{n-k}<m<2^{n-k+1}\right)$ experiments of a block of 2^{n-k+1} factorial experiments,

Step 1. Determine the basic variables and the confounding pattern of the incomplete block.
Step 2. Check which of the 2^{n-k+1} combinations of +1 and -1 are missing from the columns of the basic variables. There will be $2^{n-k+1}-m$ such combinations.

Step 3. For each of the combinations determined in Step 2, determine the entries of the non-basic variables of the matrix using the confounding pattern of the incomplete block.

Chapter 4

Analysis of Sequential Experiments

This chapter deals with the analysis techniques used to analyze sequential experiments. Section 1 deals with classical techniques of analysis. Section 2 discusses the issue of closed loop techniques for determining interactions.

4.1 Classical Analysis Techniques

In this section we deal with the classical analysis techniques that have been added to the MIT computer software to analyze sequential block designs. These techniques are well known and are discussed very briefly.

4.1.1 Analysis of Variance (Anova)

It is probably the most important technique used in statistical inference. The name is derived from a partitioning of the total variability of the experimental results into component parts. For a process \mathbf{P}, dependent on n variables T_{1}, \ldots, T_{n}, if $Y_{i}(i=1, \ldots, N)$ is the result of the i th experiment and \bar{Y} is the mean of the results, then the total sum of squares

$$
\begin{equation*}
S S_{T}=\sum_{i=1}^{N}\left(Y_{i}-\bar{Y}\right)^{2} \tag{4.1}
\end{equation*}
$$

is used as a measure of the overall variability of the results. Suppose the process is modeled as,

$$
\begin{equation*}
Y=\beta_{0}+\beta_{1} T_{1}+\beta_{2} T_{2}+\ldots+\beta_{n} T_{n}+\beta_{12} I_{12}+\ldots+\beta_{i j} I_{i j}+\ldots+\varepsilon \tag{4.2}
\end{equation*}
$$

where the effects β_{x} are determined using the least-square technique, then it can be shown that

$$
\begin{equation*}
S S_{T}=\sum_{i} \beta_{i}^{2}+\sum_{i, j} \beta_{i j}{ }^{2}+\sum_{i} \varepsilon_{i}{ }^{2} \tag{4.3}
\end{equation*}
$$

The last term in Equation 4.3 is called the sum of squares of error, $S S_{E}$, that is,

$$
\begin{equation*}
S S_{E}=\sum_{i} \varepsilon_{i}{ }^{2} \tag{4.4}
\end{equation*}
$$

If there are a terms in the model of the plant shown in Equation 4.2, then $S S_{T}$ and $S S_{E}$ have $N-1$ and $N-a$ degrees of freedom, respectively. The F-ratio F_{x}, for a coefficient β_{x}, is given by

$$
\begin{equation*}
F_{x}=\frac{\beta_{x}^{2}}{S S_{E} /(N-a)} \tag{4.5}
\end{equation*}
$$

and it represents the measure of significance of the coefficient. If it is assumed that the noise has a gaussian distribution then F_{x} has an F -distribution. If F_{x} is large then the variable/ interaction of the coefficient is significant.

A more detailed discussion on Anova can be found in many books including [17],[8].

4.1.2 Normal Probability Plots

This method of analysis attributed to Daniel [7] provides a simple way to determine significant variables and interactions. Given the result of a factorial experiments, the coefficients of the columns of the orthogonal matrix are calculated using the Least Squares technique.

In order to construct a normal probability plot ${ }^{1}$, the N coefficients are arranged in increasing order and the k th of these ordered coefficients is plotted versus the cumulative probability point $P_{k}=(k-1 / 2) / N$ on the normal probability paper.

The coefficients which contain only the noise effects tend to be normally distributed with a zero mean and a common variance. Thus they lie along a straight line on the plot. The slope of this line is the estimate of the common variance.

[^5]

Figure 4-1: Normal Probability Plot

On the other hand, the coefficients which contain the effects of the dominant variables will typically have non-zero means and lie significantly away from the straight line. Thus the normal probability plot can be used to determine these dominant coefficients.

Example 4-1

- A group of 20 random numbers are generated on the computer. Of these 20 numbers, 15 are normally distributed with zero mean and unit variance. The remaining 5 numbers have unit variance but non-zero means. As seen from Figure 4-1 the numbers with zero means tend to lie on a straight line and can be distinguished from the other numbers with non-zero means.

4.1.3 Lenth's Algorithm for Determining Significant Coefficients

In this section we describe the Lenth's algorithm [15] which has been used to determine the significant coefficients in this report. The advantages of this algorithm are that it is quick
and easy to incorporate in computer software, and it does not require the user to use any judgment in determining the significant coefficients. The algorithm is described below.

Consider a process on which a 2^{n-k} factorial design is conducted and the results of the experiments are analyzed. Let the coefficients of the design matrix be denoted by $\alpha_{1}, \ldots, \alpha_{m}$ ($m=2^{n-k}$). If the noise in the process is assumed to be uncorrelated and gaussian distributed, then the coefficients will have a normal distribution. Let α_{i} be independently distributed with mean γ_{i} and variance σ^{2}. Let,

$$
\begin{equation*}
s_{o}=1.5 \times{ }_{i}^{\text {median }}\left|\alpha_{i}\right| \tag{4.6}
\end{equation*}
$$

The pseudo standard error (PSE) is defined as,

$$
\begin{equation*}
P S E=1.5 \times \underset{\left|\alpha_{i}\right|<2.5 \cdot s_{o}}{\text { median }}\left|\alpha_{i}\right| \tag{4.7}
\end{equation*}
$$

It has been shown in [15] that when the assumption of Sparsity Principle (Section 2.3) is valid, $P S E$ is a fairly good estimate of σ. Once the estimate of σ is known, the coefficient α_{i} is significant if,

$$
\begin{equation*}
\left|\alpha_{i}\right|>t_{.975 ; m / 3} \times P S E \tag{4.8}
\end{equation*}
$$

where $t_{.975 ; m / 3}$ is the .975 th percentile of a t-distribution of $m / 3$ degrees of freedom. The range of values of $t_{.975 ; m / 3}$ varies from 3.76 for $m=8$ to 1.99 for $m=256$.

4.2 Closed Loop Technique for Determining Interactions

In most manufacturing processes the third and higher order interactions are negligible. Suppose a fold-over experiment has been conducted and analyzed. The significant columns can be determined by using any of the techniques discussed in the previous section. Since the fold-over design has resolution of IV, the coefficients of the columns with variables are the estimates of the effects of the variables. The group of variables lying on significant columns form the group of significant variables.

Thus, only the effects of the interactions remain to be determined. In case there is confounding, the assumption of Simplicity Principle discussed in Section sec-ass, helps reduce the total number of interactions that need to be analyzed. The group of all the interactions which satisfy the assumption and lie on columns with significant coefficients are called
probable interactions and have been discussed in Chapter 3.
Thus further experimentation is needed to determine the effects of the confounded probable interactions and to determine which of them are significant. The Half-Block and the Full-Block designs of Chapter 3 were developed with this goal.

It is possible to view the problem of determining the significant probable interactions from a different perspective. Instead of determining the effects of all the probable interactions, we can hypothesize that a subset of the probable interactions are significant and then design experiments to check this hypothesis. This approach is developed in Chapter 5.

Chapter 5

One-at-a-Time Designs

The sequential block design strategy was discussed in Chapter 3. In this chapter we propose an alternative One-at-a-Time Design strategy to determine the unknown probable interactions. Section 1 deals with the need to have such a method and the kinds of applications where it will be useful. Section 2 outlines the algorithm and illustrates it with examples. Section 3 presents a mathematical justification of this approach. The advantages of the One-at-a-Time approach are discussed in Section 4. Section 5 deals with the concept of Partial Optimization.

5.1 Need for One-at-a-Time Design Strategy

Consider a manufacturing process for which the assumptions of Sparsity Principle, Simplicity Principle and Uncorrelated Noise Distribution discussed in Section 2.3 hold. Let this process depend on n variables T_{1}, \ldots, T_{n}. Suppose a 2^{n-k} factorial fold-over experiment is conducted on this process and the significant variables and probable interactions are determined. In many processes the number of significant variables and interactions are small and it is reasonable to assume that each significant column has only one significant variable or interaction lying on it.

Therefore, under these assumptions, once a 2^{n-k} factorial experiment is analyzed,

1. Significant variables and their effects are known.
2. Unconfounded probable interactions and their effects are known.
3. The effects of the confounded interactions are known although the interactions need

to be determined.

If the number of confounding probable interactions is small there should be no need to design either a Half-Block or a Full-Block experiment to determine the true interactions. Instead it should be possible to determine the interactions with only a few more experiments. In the next section we describe such a technique.

5.2 One-at-a-Time Design Strategy

Consider the example of the previous section in which a 2^{n-k} factorial experiment is conducted and the significant variables and probable interactions are determined. Let m columns of the orthogonal matrix have more than one probable interaction and let the number of probable interactions on each of these columns be denoted by $n_{1}, n_{2}, \ldots, n_{m}$. If it is assumed that each significant column has only one significant variable or interaction then there are a total of N_{T} possible models of the process, where N_{T} is given by:

$$
\begin{equation*}
N_{T}=n_{1} \cdot n_{2} \ldots n_{m-1} \cdot n_{m} \tag{5.1}
\end{equation*}
$$

That is, there are N_{T} models which are completely indistinguishable with respect to the first block of 2^{n-k} experiments. Of these N_{T} possible models there is only one model which corresponds to the true plant. Hence, under the above assumptions, the problem of determining the plant is equivalent to determining the correct model from a set of N_{T} possible models.

To begin with, the confounded probable interactions are rank ordered on the basis of the significance of their constituent variables and the significance of the coefficients of the columns on which they lie. In this report the absolute value of the product of the effects of the variables and coefficient of the column of the interaction is used as the weight. Therefore, for a given column, usually interactions in which both the variables are significant, are ranked above those which have only one significant variable.

The highest ranked probable interaction from every column is selected and a hypothesis is made that these interactions correspond to the true interactions. On the basis of this hypothesis an optimal experiment is designed which would give the highest quality if the hypothesis is correct. If this experiment has already been carried out then the next high-

Figure 5-1: One-at-a-Time Design Strategy
est ranked interactions are selected and an optimal experiment is designed. The optimal experiment is conducted on the actual plant.

Since the new experiment is different from those carried out earlier, not all the N_{T} possible models predict the same result. The models are ranked in increasing order of their prediction errors, that is the squared difference between the actual and predicted results. If two or more models give the same least prediction error, then the one which has higher ranked interactions is ranked higher. The highest ranked model, that is the model yielding the lowest prediction error, is selected as the next hypothesis. Once again an experiment is designed which would give the highest quality if the new hypothesis is correct. If this experiment has been conducted before, then an experiment is designed such that it is the optimal experiment for the model which gives the next least prediction error.

Having conducted the second experiment the prediction errors are computed for all the models and the next hypothesis is made. The same recursive algorithm is implemented until the hypothesis is verified by the results. Once the hypothesis is verified, ideally no further experimentation is required since any further experimentation will lead to the selection of the same hypothesis over and over again. In presence of noise it is advisable to do a few more experiments to ensure that the results are consistent. The outline of the above procedure is shown in Figure 5-1.

Example 5-1

- Consider a manufacturing process which depends on 7 variables T_{1}, \ldots, T_{7} and the true model of the process is given by

$$
\begin{equation*}
y=20.5+3.8 T_{1}+4.1 T_{2}+9.0 T_{4}-3.7 I_{34}+2.3 I_{13}-6.1 I_{15} \tag{5.2}
\end{equation*}
$$

A 2^{7-3} factorial fold-over experiment is conducted and the results are analyzed. The confounding pattern is shown in Table 5.1. From Table 5.2 (a) it is observed that variables T_{1}, T_{2} and T_{4} are significant. Also, the columns 9,10 and 12 are significant. The probable interactions lying on the significant columns are:

- Column 9: I_{12} and I_{34}
- Column 10: I_{24} and I_{13}
- Column 12: I_{15} and I_{26}

Column: 1 2 3 4 5 6 7 8 $v_{\text {avg }}$ v_{1} v_{2} v_{3} v_{123} v_{4} v_{124} v_{134} Variable: T_{1} T_{2} T_{3} T_{4} T_{5} T_{6} T_{7}
Column:

Table 5.1: Confounding pattern of the 2^{7-3} factorial experiments of Examples 5-1, 5-2 and 5-3

Thus, assuming that only one of the interactions in each of the columns is significant results in $N_{T}=8$.

The initial guess of the process model is shown in Table 5.2(a). On the basis of this hypothesis, Experiment 1 is designed. The model shown in Table 5.2(b) gives the least prediction error and is the next hypothesis. The most significant interaction, I_{15}, is determined. Experiment 2 is designed to optimize the current hypothesis. Notice that it is not possible to discriminate between the pairs of interactions $\left(I_{12}, I_{34}\right)$ and (I_{24}, I_{13}) using the first 2 experiments because both the interactions in the pairs take the same value in both the experiments.

Since the hypothesis has not changed after the Experiment 2, Experiment 3 is designed to optimize the next best hypothesis, that is, the model which gives the next least prediction error. Experiment 4 is designed in the same manner as Experiment 3. By now the true process model has been determined. Interestingly, from Table 5.2(f), we notice that the true optimal operating point of the process, Experiment 5, is the same as Experiment 3. This means that the true optimal point of the process was determined prior to the determination of the true process model.

Example 5-2

- Consider a process which is dependent on 7 variables T_{1}, \ldots, T_{n}. A 2^{7-2} factorial experiment is conducted on the process. The experiments are the same as those of Example 5-1. The confounding pattern of the block is shown in Table 5.1. The results of the One-at-a-Time strategy are given in Table 5.3.

COLO	SE SU	MARY:		
Col	t. Cf	Pred(V/I)	True Cf.	True (V/I)
1.	20.04	Avg.	20.50	Avg .
2	3.69	T1	3.80	T1
3	3.87	T2	4.10	T2
4	-0.08	T3		
5	9.26	T4	9.00	T4
6	-0.05	T5		-----
7	1.09	T6		-----
8	-0.52	T7		-----
9	-4.09	112	-3.70	I34
10	1.67	I24	2.30	113
11	0.05	-----		-----
12	-5.77	126	-6.10	I15
13	0.67	-----		-----
14	0.71	-----		-----
15	0.52	-----		-----
16	0.34	-----		-----
EXPERIMENT-WISE SUMLARY:				
Initial Guess of Process Model.				

(c) Results after Experiment 2

(b) Results after Experiment 1

Expt	Experiment	Prediction	Observation
1.	- + - + - - -	29.04	31.54
2.	+ - + + +	42.68	42.51
3.	+ + - + - +	41.96	43.86
Rus	d. Error:	1.81	

(d) Results after Experiment 3

Table 5.2: Results of One-at-a-Time Designs of Example 5-1

(e) Results after Experiment 4

COLONAWISE SUNEARY:

(f) Results after Experiment 5

Table 5.2: Results of One-at-a-Time Designs of Example 5-1

The example indicates that the more significant interactions are determined before the others. Also, the example demonstrates that the procedure determines the optimal operating point of the process before it determines the true process model.

Example 5-3

- This example is a variant of Example 5-2 in which the crucial assumption that there is only one significant variable or interaction per column of the design matrix, has been violated. In Example 5-2, Column 9 has one significant interaction I_{34}. In this example the true plant model has two significant interactions I_{56} and I_{34} on Column 9. The coefficients of the two interactions are chosen to be effectively the same as that of I_{34} in Example 5-2. Therefore, the results of the first block of experiments are identical in both these examples. When the One-at-a-Time strategy is applied to the plant the output behavior is very interesting. The results are shown in Table 5.4. In the first few experiments, neither of the two interactions in Column 9 are selected by the algorithm. But after Experiment 4, I_{34} is selected. Although the true model of the plant cannot be determined, the experiments tend to improve the output quality. Also, the interactions in the rest of the columns are determined correctly.

As expected, the RMS prediction error for this example is much larger than that for the previous examples. The large RMS prediction error suggests that there may be something wrong with the plant model that has been determined.

5.3 Mathematical Justification

In this section we give a justification of the One-at-a-Time strategy introduced in this chapter. We show that under certain assumptions, the model which gives the least prediction error is the Maximum Likelihood estimate of the the model of the plant.

Claim:

Suppose T One-at-a-Time experiments are conducted and the results are Y_{1}, \ldots, Y_{T}. If the noise in these experiments is independent and gaussian distributed with zero mean and constant variance λ, then the model which minimizes the squared prediction error is the Maximum Likelihood Estimate of the plant.

Col	. Cf.	Pred (V/I)	True Cf.	True (V/I)
1	22.51	Avg.	22.50	Avg .
2	5.45	T1	5.30	T1
3	6.24	T2	7.30	T2
4	2.95	T3	3.10	T3
5	0.72	T4		
6	-4.19	T5	-4.90	T5
7	-0.53	T6		-----
8	0.31	T7		-----
9	-3.54	I12	-3.70	134
10	2.84	I13	2.90	I57
11	0.47	-----		-----
12	0.26	-		-----
13	0.26	-		-----
14	-4.10	135	-4.30	117
15	-0.35	----		-----
16	-0.46	-		-----
EXPERIMENT-WISE SUMANARY:				
Initial Guess of Process Model.				

Expt.	Experiment	Prediction	Observation
1.	+ + + +	32.41	29.42
2.	+ + + + -	45.67	45.98

(c) Results after Exporiment 2

COLUMNWISE SUREGRY:

Col.	. CE.	Pred () True Cf	True (V/I)
1	22.51	Avg.	22.50	Avg.
2	5.45	T1	5.30	T1
3	6.24	T2	7.30	T2
4	2.95	T3	3.10	T3
5	0.72	T4		
6	-4.19	T5	-4.90	T5
7	-0.53	T6		-----
8	0.31	T7		-----
9	-3.54	112	-3.70	I34
10	2.84	157	2.90	157
11	0.47	-----		-----
12	0.26	-----		-----
13	0.26	-----		-----
14	-4.10	117	-4.30	117
15	-0.35	-----		-----
16	-0.46	-----		-----
EXPERIMENT-WISE SUMMARY:				
Expt.	Experiment		Prediction	Observation
1.	+ + + + - - +		32.41	29.42
RHS P	. Error		3.00	

\qquad
(b) Results after Experiment 1

Col.	Est. Cf.	Pred (True Cf.	True (V/I)
1	22.51	Avg.		22.50	Avg.
2	5.45	T1		5.30	T1
3	6.24	T2		7.30	T2
4	2.95	T3		3.10	T3
5	0.72	T4			
6	-4.19	T5		-4.90	T5
7	-0.53	T6			-----
8	0.31	T7			-----
9	-3.54	I56		-3.70	I34
10	2.84	I57		2.90	I57
11	0.47	-----			-----
12	0.26	-----			-----
13	0.26	-			-----
14	-4.10	I17		-4.30	I17
15	-0.35	-----			-----
16	-0.46	-----			-----
EXPERIMENT-WISE SUMDARY:					
Expt.	Experiment		Prediction		Observation
1.	+ + + + - +		32.41		29.42
2.	+ + + + - - -		45.67		45.98
3.	$++++-+$		51.70		48.82
RMS Pred. Error:			2.41		

(d) Results after Experiment 3

Table 5.3: Results of One-at-a-Time Designs of Example 5-2

(e) Results after Experiment 4

COLITRNISE SUMMARY:

Col.	Est. Cf.	Pred(V/I)	True Cf.	True (V/I)
1	22.51	Avg.	22.50	Avg.
2	5.45	T1	5.30	T1
3	6.24	T2	7.30	T2
4	2.95	T3	3.10	T3
5	0.72	T4		
6	-4.19	T5	-4.90	T5
7	-0.53	T6		-----
8	0.31	T7		
9	-3.54	134	-3.70	134
10	2.84	157	2.90	157
11	0.47	-----		-----
12	0.26	-----		-----
13	0.26	-----		-----
14	-4.10	117	-4.30	117
15	-0.35	-----		-----
16	-0.46	-----		-----

EXPERIMENT-WISE SUMMARY:

Expt.	Experiment	Prediction	Observation
1.	+ + + + -	32.41	29.42
2.	+ + + + - -	45.67	45.98
3.	+ +	44.61	48.82
4.	+ +	51.32	53.66
5.	+ + - +	46.85	49.79
6.	+ + + -	51.32	54.93
RMS P	, Error:	3.00	

(g) Results after Experiment 6

COLODNWISE SUMMARY:

Col.	Est. Cf.	Pred		True Cf.	True (V/I)
1	22.51	Avg.		22.50	Avg.
2	5.45	T1		5.30	T1
3	6.24	T2		7.30	T2
4	2.95	T3		3.10	T3
5	0.72	T4			
6	-4.19	T5		-4.90	T5
7	-0.53	T6			-----
8	0.31	T7			--
9	-3.54	134		-3.70	134
10	2.84	157		2.90	157
11	0.47	-----			---
12	0.26	-----			--
13	0.26	-----			--
14	-4.10	117		-4.30	117
15	-0.35	-----			-----
16	-0.46	-----			-----
EXPERINESNT-WISE SUMMARY:					
Expt	Experim	ent	Predict	tion	Observation
1.	+ + + +	- +	32.41		29.42
2.	+ + + +	- - -	45.67		45.98
3.	+ + + +	- + -	44.61		48.82
4.	+ + + -	- - -	51.32		53.66
5.	+ + - +	- - -	46.85		49.79
RMS Pred. Error:			2.86		

(f) Results after Experiment 5

Table 5.3: Results of One-at-a-Time Designs of Example 5-2

COL	ISE S	MLARY			
Col	Cf.	Pred		ue Cf	True (V/I)
1	22.51	Avg.		22.50	Avg.
2	5.45	T1		5.30	T1
3	6.24	T2		7.30	T2
4	2.95	T3		3.10	T3
5	0.72	T4			-----
6	-4.19	T5		-4.90	T5
7	-0.53	T6			-----
8	0.31	T7			-----
9	-3.54	112	4.70,	-8.40	I56, 工34
10	2.84	113		2.90	157
11	0.47	----			-----
12	0.26	----			-----
13	0.26	----			
14	-4.10	135		-4.30	117
15	-0.35	--			
16	-0.46	----			-----
EXPERIMENT-WISE SUTMARY:					
Initial Guess of Process Model.					

(c) Results after Experiment 2

COLDAN-WISE SUMRARY:

Expt.	Experiment	Prediction	Observation
1.	$++++-+$	32.41	34.43

\qquad
(b) Results after Experiment 1

COLOLN-WISE SUMGARY:

1	22.51	Avg.	22.50	Avg.
2	5.45	T1	5.30	T1
3	6.24	T2	7.30	T2
4	2.95	T3	3.10	T3
5	0.72	T4		
6	-4.19	T5	-4.90	T5
7	-0.53	T6		-----
8	0.31	T7		-----
9	-3.54	112	4.70, -8.40	156, 134
10	2.84	157	2.90	157
11	0.47	-----		-----
12	0.26	-----		-----
13	0.26	-----		-----
14	-4.10	I17	-4.30	117
15	-0.35	-----		-----
16	-0.46	-----		-----

EXPERIMENT-WISE SUMMARY:

Expt	Experiment	Prediction	Observation
1.	+ + + + - +	32.41	34.43
2.	+ + + +	45.67	45.89
3.	+ + + + - +	44.61	37.78
RUS	. Error:	4.12	

RMS Pred. Error: 4.12
(d) Results after Experiment 3

Table 5.4: Results of One-at-a-Time Designs of Example 5-3

(e) Results after Experiment 4

COLOMN-WISE SUMAARY:

1	22.51	Avg.	22.50	Avg.
2	5.45	T1	5.30	T1
3	6.24	T2	7.30	T2
4	2.95	T3	3.10	T3
5	0.72	T4		
6	-4.19	T5	-4.90	T5
7	-0.53	T6		-----
8	0.31	T7		-----
9	-3.54	I34	4.70, -8.40	I56, 工34
10	2.84	157	2.90	157
11	0.47	-----		------
12	0.26	-----		-----
13	0.26	-----		-----
14	-4.10	117	-4.30	I17
15	-0.35	-----		-----
16	-0.46	-----		-----
EXPERIMENT-WISE SUS				

Expt.	Experiment	Prediction	Observation
1.	$++++-+$	32.41	34.43
2.	+ + + + -	45.67	45.89
3.	+ + + + - +	44.61	37.78
4.	+ + + - -	51.32	66.29
5.	+ + - + - - -	46.85	59.33
RMS P	, Error:	9.28	

(f) Results after Experiment 5

(g) Results after Experiment 6

Table 5.4: Results of One-at-a-Time Designs of Example 5-3

Proof:

Consider the model discussed in the previous section. Let the N_{T} possible models be denoted by $M_{1}, \ldots, M_{N_{T}}$.

In the One-at-a-Time design methodology it is assumed that the coefficients of the variables and interactions have been determined and only the confounded interactions need to be determined.

Given the T observations, let $\bar{Y}_{T}=\left[Y_{1}, \ldots, Y_{T}\right]$. The Maximum Likelihood Estimate is defined by,

$$
\begin{gather*}
M_{M L}\left[\bar{Y}_{T}\right]=\arg \max _{i} \mathbf{P}\left(M_{i} ; \bar{Y}_{T}\right) \tag{5.3}\\
\Longrightarrow M_{M L}\left[\bar{Y}_{T}\right]=\arg \max _{i} \mathbf{P}\left(M_{i}\right) \cdot \mathbf{P}\left(\bar{Y}_{T} / M_{i}\right) \tag{5.4}
\end{gather*}
$$

In case the probabilities of the different models $\mathbf{P}\left(M_{i}\right)$, are known, Equation 5.4 can be simplified.. In absence of any such information, all models can be assumed to be equally likely. That is, $\mathbf{P}\left(M_{i}\right)=1 / N_{T}$, and Equation 5.4 reduces to,

$$
\begin{equation*}
M_{M L}\left[\bar{Y}_{T}\right]=\arg \max _{i} \quad \mathbf{P}\left(\bar{Y}_{T} / M_{i}\right) \tag{5.5}
\end{equation*}
$$

Let the predicted result of model M_{i} for the j th experiment be denoted by $\hat{Y}_{i j}$. Since the noise in the different experiments is assumed to be independent,

$$
\begin{equation*}
\mathbf{P}\left(\bar{Y}_{T} / M_{i}\right)=\prod_{j=1}^{T} f_{e}\left(Y_{j}-\hat{Y}_{i j}\right) \tag{5.6}
\end{equation*}
$$

where $f_{e}(\cdot)$ is the probability distribution of the noise corrupting the results. If this distribution is assumed to be gaussian with zero mean and constant variance λ, then

$$
\begin{align*}
\mathbf{P}\left(\bar{Y}_{T} / M_{i}\right) & =\prod_{j=1}^{T} \frac{1}{\sqrt{2 \pi \lambda}} \cdot \exp \left(-\frac{1}{2 \lambda}\left(Y_{j}-\hat{Y}_{i j}\right)^{2}\right) \tag{5.7}\\
& =\frac{1}{(2 \pi \lambda)^{T / 2}} \cdot \exp \left(-\frac{1}{2 \lambda} \sum_{j=1}^{T}\left(Y_{j}-\hat{Y}_{i j}\right)^{2}\right) \tag{5.8}
\end{align*}
$$

Maximizing the likelihood function in Equation 5.5 is the same as maximizing its logarithm. Thus,

$$
\begin{equation*}
M_{M L}\left[\bar{Y}_{T}\right]=\arg \max _{i} \log \mathbf{P}\left(\bar{Y}_{T} / M_{i}\right) \tag{5.9}
\end{equation*}
$$

Using Equation 5.8 in Equation 5.9 we get,

$$
\begin{align*}
M_{M L}\left[\bar{Y}_{T}\right] & =\arg \max _{i} \log \left[\frac{1}{(2 \pi \lambda)^{T / 2}} \cdot \exp \left(-\frac{1}{2 \lambda} \sum_{j=1}^{T}\left(Y_{j}-\hat{Y}_{i j}\right)^{2}\right)\right] \tag{5.10}\\
& =\arg \max _{i}\left[-\frac{T}{2} \log 2 \pi \lambda-\frac{1}{2 \lambda} \cdot \sum_{j=1}^{T}\left(Y_{j}-\hat{Y}_{i j}\right)^{2}\right] \tag{5.11}\\
& =\arg \min _{i}\left[\frac{1}{2 \lambda} \cdot \sum_{j=1}^{T}\left(Y_{j}-\hat{Y}_{i j}\right)^{2}\right] \tag{5.12}\\
& =\arg \min _{i}\left[\sum_{j=1}^{T}\left(Y_{j}-\hat{Y}_{i j}\right)^{2}\right] \tag{5.13}
\end{align*}
$$

The expression on the right hand side of the equation is the total squared prediction error of model M_{i}. Thus, the Maximum Likelihood Estimate of the plant, $M_{M L}$, is one which minimizes the total prediction error. This proves the claim.

The One-at-a-Time strategy selects models based on minimum prediction error. Hence, under the above assumptions, the results obtained using One-at-a-Time strategy converge to the maximum likelihood estimate of the plant. The most critical assumption is that there is only one unknown significant interaction per significant column of the orthogonal matrix.

5.4 Advantages of One-at-a-Time Design Strategy

The One-at-a-Time design strategy can be very useful particularly when the number of confounded probable interactions is small. The main advantages of the One-at-a-Time design strategy are:

1. Maximum Likelihood Estimate: The One-at-a-Time strategy uses the minimum prediction error criterion to hypothesize the plant model. This criterion is equivalent to the Maximum Likelihood estimate under the assumptions discussed in the previous section. These assumptions are justified in most situations.
2. Designing Optimal Experiment: Given the hypothesized plant model, the One-at-a-Time strategy designs the optimal experiment for this hypothesis, i.e. the experiment which would maximize the quality of the output if the hypothesis is correct. This leads to interesting behavior.

- In case the hypothesis is wrong and some very significant interactions have been guessed wrongly, the optimal experiment for the hypothesis tends to produce a very poor output. Although this experiment is far away from the true optimal, it can be very useful. The prediction errors for such an experiment tend to be very large for the wrong models. Hence, this experiment helps in discriminating between different models.
- If the hypothesis is correct, the optimal experiment will produce a very good quality output. The prediction error of the correct model will be much smaller compared to the wrong model and the hypothesis will be verified.

3. Validation of Assumptions: When a block of factorial experiments is analyzed some of the columns have large coefficients which correspond to the effects of significant variables and interactions of the plant. The non-significant coefficients can be used to determine the variance of the plant.

Suppose that the One-at-a-Time design strategy is applied and the most probable plant model is determined. If it is found that the average prediction error is very large, it could be due to the the violations of one or more assumptions made above. In such a situation it is desirable that sequential block design strategy should be used to determine the correct plant model.
4. Determination of the Most Significant Interactions: Suppose that there are two columns, one of which has a large significant coefficient and the other has a small significant coefficient. Suppose that each of these columns contain two probable interactions. It is clear that models which contain the wrong probable interaction in the column with the larger coefficient will give larger prediction errors than models which have the wrong probable interaction in the column with smaller coefficient.

In the simulations it is observed that after a few One-at-a-Time experiments have been carried out, all models having wrong probable interactions in the significant columns with large coefficients give prediction errors which are more than an order of magnitude greater than the error of the correct model. Hence, the probable interactions lying on such columns can be determined within a few One-at-a-Time experiments and the number of possible models is then considerably reduced.

Column:	$v_{\text {avg }}$	v_{1}	v_{2}	v_{3}	v_{123}	v_{12}	v_{23}	v_{13}
Variable		T_{1}	T_{2}	T_{3}	T_{4}	I_{12}	I_{23}	I_{13}
\& Interaction:						I_{34}	I_{14}	I_{24}
Coefficient:	10.6	7.2	0.1	-6.5	-0.2	-3.1	-0.3	2.3

Table 5.5: Results of Design of Example 5-4

It is shown in the next section that not all the unknown probable interactions need to be determined to determine the optimal operating point of the true plant. Hence, the One-at-a-Time strategy needs to be implemented only until the very significant probable interactions have been determined.

5.5 Partial Optimization

The goal of the DOE procedure is to determine the plant model. But in many cases only the optimal operating point, that is the operating point of the plant which produces the best quality, needs to be determined. Hence, in such cases, the sole purpose of determining the plant model is to determine the optimal operating point. In this section we will demonstrate that it is not always necessary to determine the complete plant model to determine the optimal operating point. It may be possible to determine it only on the basis of the significant variables and the known significant interactions.

Example 5-4

- Consider a process dependent on 4 variables T_{1}, T_{2}, T_{3} and T_{4}. Suppose a 2^{4-1} factorial experiment is conducted on this process and the results are as shown in Table 5.5. Using Table 5.5, we can express the model of the process as

$$
\begin{equation*}
Y=10.6+7.2 T_{1}-6.5 T_{3}-3.1\binom{I_{12}}{I_{34}}+2.3\binom{I_{13}}{I_{24}} \tag{5.14}
\end{equation*}
$$

where only one of the interactions expressed in (.) is actually significant. If the terms involving T_{1} are arranged together, the model can be expressed as,

$$
\begin{equation*}
Y=10.6+T_{1}\left[7.5+\left(-3.1 T_{2}\right)+\left(2.3 T_{3}\right)\right]+\text { terms not involving } T_{1} \ldots \tag{5.15}
\end{equation*}
$$

The terms within (.) might not be present in the true model. Since, $|7.5|>|-3.1|+$ |2.3|, irrespective of which combination of interactions is really important, the quality Y is maximized only if T_{1} is set at +1 . Therefore the optimal setting of T_{1} is +1 . Similarly,

$$
\begin{equation*}
Y=10.6+T_{3}\left[-6.5+\left(-3.1 T_{4}\right)+\left(2.3 T_{1}\right)\right]+\text { terms not involving } T_{3} \ldots \tag{5.16}
\end{equation*}
$$

Since, $|-6.5|>|-3.1|+|2.3|$, the optimal setting for T_{3} is -1 irrespective of which interactions are really important. It is not possible to determine the optimal settings of T_{2} and T_{4} since their settings are dependent on the unknown interactions.

It is clear from this example that it may be possible to determine the optimal settings of some (if not all) of the variables without knowing the exact plant model. In the above example the optimal settings of the variables T_{1} and T_{3} could be determined because their coefficients were dominant. The general analysis for such cases is given below.

1. Dominant Variable:

Consider a process in which a 2^{n-k} factorial fold-over experiment has been carried out. The results are analyzed and the model of the process is determined.

$$
\begin{equation*}
Y=\beta_{0}+\beta_{1} T_{1}+\ldots+\beta_{n} T_{n}+\ldots+\beta_{i j} I_{i j}+\gamma_{1}\binom{\hat{I}_{11}}{\hat{I}_{1 p_{1}}}+\ldots+\gamma_{m}\binom{\hat{I}_{m 1}}{\hat{I}_{m p_{m}}} \tag{5.17}
\end{equation*}
$$

where β_{i} is the known coefficient of the i th variable, $\beta_{i j}$ is the known coefficient of the known probable interaction $I_{i j}$, and γ_{k} is the known coefficient of the k th significant column with an unknown probable interaction. The probable interactions lying on the k th column are $\hat{I}_{k 1}, \ldots, \hat{I}_{k p_{k}}$.

Let $D i$ be the set of all the columns which have one unknown probable interaction of T_{i}. Namely, if $k \epsilon D i$, then the columns contain $\hat{I}_{i \cdot g(i, k)}$, the interaction between T_{i} and $T_{g(i, k)}$. The optimal setting of variable T_{i} can be determined if the expression

$$
\begin{equation*}
\beta_{i}+\sum_{j \neq i} \beta_{i j} T_{j}+\sum_{k \in D i} \gamma_{k} T_{g(i, k)} \tag{5.18}
\end{equation*}
$$

has a known sign irrespective of the unknown setting of the other variables.
If the setting of all the variables are unknown then the condition in Equation 5.18 can
be restated as,

$$
\begin{equation*}
\left|\beta_{i}\right| \stackrel{?}{>} \sum_{j \neq i}\left|\beta_{i j}\right|+\sum_{k \in D i}\left|\gamma_{k}\right| \tag{5.19}
\end{equation*}
$$

If Equation 5.19 is true, the optimal setting of T_{i} is +1 if β_{i} is positive and is -1 if β_{i} is negative. Thus if a variable is dominant, its optimal setting can be determined without the complete knowledge of the process.

2. Dominant Pair of Variables:

In many situations Equation 5.19 cannot be applied because one or more known significant interactions are large. That is, one or more of the coefficients $\beta_{i j}$ are large. In such situations it may be possible to determine the optimal settings of variables taken two at a time. This procedure is explained below.

Suppose that $\beta_{i j}$ is large. In the expression for quality given in Equation 5.17, the terms containing T_{i} and T_{j} are separated as follows:

$$
\begin{align*}
Y= & T_{i}\left[\beta_{i}+\text { interactions involving } T_{i}\right] \\
& +\beta_{i j} I_{i j}+T_{j}\left[\beta_{j}+\text { interactions involving } T_{j}\right] \\
& + \text { terms not involving } T_{i} \text { and } T_{j} \tag{5.20}
\end{align*}
$$

Suppose that the terms corresponding to the coefficients of T_{i} and T_{j} in Equation 5.20 satisfy Equation 5.19. The range of these terms is,

$$
\begin{align*}
& R_{i} \in\left[\theta_{i}^{\text {min }}, \theta_{i}^{\text {max }}\right]=\left[\left(\left|\beta_{i}\right|-\sum_{l \neq i, j}\left|\beta_{i l}\right|-\sum_{k \in D i}\left|\gamma_{k}\right|\right),\left(\left|\beta_{i}\right|+\sum_{l \neq i, j}\left|\beta_{i l}\right|+\sum_{k \in D i}\left|\gamma_{k}\right|\right)\right]_{(5.21} \tag{5.21}\\
& R_{j} \in\left[\theta_{j}^{\text {min }}, \theta_{j}^{\text {max }}\right]=\left[\left(\left|\beta_{j}\right|-\sum_{l \neq j, i}\left|\beta_{j l}\right|-\sum_{k \in D_{j}}\left|\gamma_{k}\right|\right),\left(\left|\beta_{j}\right|+\sum_{l \neq j, i}\left|\beta_{j l}\right|+\sum_{k \in D j}\left|\gamma_{k}\right|\right)\right] \tag{5.22}
\end{align*}
$$

It can be shown that the optimal settings of T_{i} and T_{j} can be determined only if the ranges R_{i} and R_{j} do not intersect and if $\beta_{i j}$ lies in the intervals 1,3 or 5 of Figure 5-2. In case any of the above conditions are not satisfied, the optimal setting of T_{i} and T_{j}

Figure 5-2: Permissible range of values of $\beta_{i j}$
cannot be determined. Further experiments are required to determine more unknown probable interactions before the settings of T_{i} and T_{j} can be determined.

3. Dominant Group of Three or more Variables:

In principle it is possible to analyze groups of 3 or more variables to determine their optimal setting. But the procedure becomes very complicated. Also the conditions required to be able to determine the settings are fairly strong and will not be satisfied very often.

Thus it is seen that if the plant contains some dominant variables or pairs of variables, then their optimization may be possible without the complete determination of the interactions. The setting of the other variables can be obtained by further experimentation. Usually the variables that cannot be set easily using this technique are ones which are associated with weak interactions and hence they do not affect the quality very much.

Chapter 6

Conclusions and Future Work

In this chapter the basic ideas of the thesis are integrated. Section 1 discusses the Complete DOE Software Tool which is being currently developed at MIT. Section 2 outlines the contributions of the thesis. The possible areas for future research are discussed in Section 3.

6.1 The Complete DOE Software Tool

In this section we show how the different ideas of Block Design and One-at-a-Time Design are being integrated to develop a Complete DOE Software Tool. The underlying motivation for developing such a DOE software tool is that it should aid an inexperienced user in DOE to successfully improve the performance of his/her plant more rapidly than with existing software tools.

Consider the flow-chart shown in Figure 6-1. Given a plant, an experimenter has to select the variables affecting the performance and guess the important interactions. This permits the experimenter to use the past knowledge about the plant which may be very important. Even if some of the interactions are guessed incorrectly, a few more experiments will generally be required to estimate them, but nothing is lost. On the basis of this information, an optimal fold-over factorial block of experiment is designed. Next, the experiment results are analyzed and the effects of the variables and the guessed interactions are determined. The variables with significant effects are used to generate the list of probable interactions - in accordance with the Simplicity Principle.

Usually there is confounding within the set of probable interactions and guessed interactions. Therefore further experimentation is required to determine the effects of all these

Figure 6-1: Overview of Complete DOE Software Tool
interactions. At this stage there are 2 possibilities.

Case 1: The number of significant columns is small compared to the number of unknown interactions and it is reasonable to assume that there is only one unknown significant interaction per significant column of the design matrix.

Case 2: The number of significant columns is not small and there may be more than one unknown significant interaction per significant column of the design matrix.

If Case 1 is valid for the given plant, the assumptions of the One-at-a-Time Design Strategy discussed in Chapter 5 are satisfied, and the One-at-a-Time Technique can be effectively used to determine the plant model and optimize its performance.

If Case 1 is not valid, the Block Design Technique described in Chapter 3 can be used. With the help of Half-Block or Full-Block Designs the confounding of the interactions can be sorted either completely or to an extent that the One-at-a-Time Design Strategy can be applied.

Presently, we are implementing the Complete DOE Software Tool. Much of the work has been completed. The basic concepts of Block Design and One-at-a-Time Design Strategies have been implemented and tested separately. Also, the analysis tools have been developed. Techniques required to simultaneously analyze block designs with different confounding patterns have been developed and implemented in computer software.

Some of the concepts that can be added to make the software more automated and less dependent on the user are discussed in Section 3.

6.2 Thesis Achievements

The goal of the DOE project at MIT is to automate the entire process of DOE. At the time this thesis began, the goal was well defined but the path to achieve it was a little unclear. During the course of the thesis, the process of sequential DOE has been formulated in a structured fashion. We have identified the conceptual problems that need to be solved before the goal of the Complete DOE Software Tool can be completely realized. Some of these problems have been resolved and implemented. As for the other problems, they have been formulated in a mathematically meaningful manner. Even if these problems are hard to tackle, we know exactly what questions need to be addressed in the overall project.

The contributions of the thesis are enumerated below.

Block Designs: The techniques of Half-Block and Full-Block Designs are implemented in computer software. They have been found to be very useful in resolving confounding interactions.

Completing Block Designs: Algorithm for completing incomplete blocks of experiments have been developed and added to the software.

Block Analysis: The analysis routines of the DOE software have been improved to enable it to simultaneously analyze confounding interactions in different blocks of experiments.

One-at-a-Time Designs: The concept of One-at-a-Time Designs have been developed and verified by simulation results. The results are very encouraging and we believe that the One-at-a-Time Design Strategy can be generalized as explained in the next section.

Complete DOE Software Tool: The basic ideas for the Complete DOE Software Tool are developed and their implementation is being carried out.

6.3 Future Work

The following represents some of the more significant issues that could be added to the computer software to make it more general and useful to various manufacturing processes.

- As seen in Figure 6-1 the Complete DOE Software Tool needs to make a decision whether only one unknown significant interaction per column is likely or not. Presently, this decision is made by the experimenter using the software. It may be possible to determine the probability of there being only one unknown significant interaction per column. Using this probability and the level of risk that the experimenter is willing to take, the computer can make that decision which minimizes the expected value of the overall cost of experimentation.
- Once the Block Design option is selected the experimenter has the following options:

1. Design a Half-Block of experiments for any of the previous blocks.
2. Design a Full-Block of experiments for any of the previous blocks.
3. Complete any of the previous incomplete blocks.

Therefore as the number of blocks of experiments conducted increases there are more options. If the cost model for the experiments is known, the software could choose between the above options based on:

- Total number of confounded probable interactions.
- Relative unconfounding achieved with each of the options.
- The present software can be used with any plant in which the variables are at 2 levels. The two-level factorial designs have many strong advantages as outlined in Chapter 1. But there may be situations in which the plant intrinsically has one or more of its variables at 3 or more levels. Extension of the software is required to handle such situations.
- It should be possible to extend the ideas of One-at-a-Time Design Strategy to be able to design arbitrary numbers of optimal experiments based on the results of the experiments conducted earlier.
- A Graphical User Interface (GUI) can be added to the software to make its use easier. Also, adding various graphical features can help the experimenter get a better understanding of the results.

Appendix A

Binary Orthogonal Matrices

In this section we enumerate some of the properties of Binary Orthogonal Matrices which are required in the report.

The Binary Orthogonal matrices belong to a general class of matrices called Hadamard Matrices [19], matrices in which each of the elements are either +1 or -1 . The most general Binary Orthogonal Matrices are the Plackett-Burman Designs. These designs are based on the Hadamard Matrices of size $m \times m$ where m is a multiple of 4 . In the PlackettBurman Designs all the columns of the matrices are balanced (equal number of +1 and -1 elements) and pairwise orthogonal. When m is not a power of two, these designs have a very complicated alias structure and should be used very carefully. A detailed discussion of these designs is given in [19].

Orthogonal Binary Matrices in which m is a power of two are widely used and have very useful properties. Hence only Binary Orthogonal Matrices in which $m=2^{n}$ for some n, are studied in the report. For simplicity of terminology the term Orthogonal Matrix is used to denote such a Binary Orthogonal Matrix, as defined below.

A. 1 Definitions

Orthogonal Matrix: An Orthogonal Matrix, M, of size $2^{n} \times 2^{n}$ is defined as a matrix whose elements are either +1 or -1 and which satisfies the condition $M^{T} M=2^{n} \times \mathrm{I}$, where I is an identity matrix of size $2^{n} \times 2^{n}$. Table A. 1 is an example of an Orthogonal Matrix of size $2^{3} \times 2^{3}$.

Rows	$c_{\text {avg }}$	c_{1}	c_{2}	c_{3}	c_{4}	c_{5}	c_{6}	c_{7}
1	+	+	+	+	+	+	+	+
2	+	+	+	-	+	-	-	-
3	+	+	-	+	-	-	+	-
4	+	+	-	-	-	+	-	+
5	+	-	+	+	-	+	-	-
6	+	-	+	-	-	-	+	+
7	+	-	-	+	+	-	-	+
8	+	-	-	-	+	+	+	-

Table A.1: 3×3 Binary Orthogonal Matrix

Dependent Column: A column c_{i} is said to be dependent on a set of columns c_{j}, c_{k}, \ldots, c_{p} if and only if c_{i} is identically equal to the column obtained by taking an element-byelement product of the columns of $c_{j}, c_{k}, \ldots, c_{p}$.
Independent Column: A column c_{i} is said to be independent of a set of columns c_{j}, c_{k}, \ldots, c_{p} if and only if c_{i} is not dependent on any group of columns taken from the set of columns $c_{j}, c_{k}, \ldots, c_{p}$.
Independent Set of Columns: A set of columns $c_{j}, c_{k}, \ldots, c_{p}$ are independent if none of the columns within the set is dependent on any group of other columns of the set.

Column c_{4} in Table A. 1 is dependent on columns c_{1} and c_{2}, since column c_{4} corresponds to the column formed by the product of the column c_{1} and column c_{2}. Also, columns c_{1}, c_{2} and c_{3} form an independent set of columns.

A. 2 Properties of Binary Orthogonal Matrices

Given below are some of the properties of an $2^{n} \times 2^{n}$ binary orthogonal matrix, M .

1. One of the columns of the orthogonal matrix consists of only +1 elements and is called the Average Column. This column is denoted as $c_{a v g}$ in Table A.1.
2. Every column other than the Average column has equal numbers of +1 and -1 elements.
3. A product of any two columns of the matrix equals a column of the matrix. That is, the product of column c_{i} and c_{j} must equal c_{k} for some k.

$$
\begin{equation*}
c_{i} \cdot c_{j}=c_{k} \tag{A.1}
\end{equation*}
$$

Using the fact that,

$$
\begin{equation*}
c_{i} \cdot c_{i}=c_{a v g} \quad \forall i \tag{A.2}
\end{equation*}
$$

it can be seen that,

$$
\begin{aligned}
& c_{i} \cdot c_{j} & =c_{k} \\
\Longrightarrow \quad & c_{i} \cdot c_{k} & =c_{j} \\
\Longrightarrow \quad & c_{j} \cdot c_{k} & =c_{i}
\end{aligned}
$$

4. Any set of n independent columns can be used to generate the entire matrix. Hence, any set of n independent set of columns completely characterizes the entire matrix. Such a set of columns is defined as a set of basic columns. The other columns are called non-basic columns. The set of basic columns is not unique.
5. Every $2^{n} \times 2^{n}$ binary orthogonal matrix, M, has n basic column and $2^{n}-n$ non-basic columns.
6. Any set of n basic columns is such that every row of these columns corresponds to a unique combination of +1 and -1 . There are two possible options for every element in a row. Therefore, there are a total of 2^{n} possible combinations, each corresponding to a different row of the orthogonal matrix.

Appendix B

Designing a Half-Block of Experiments

In this section we will try to illustrate the mechanism for shifting variables and interactions from one column to another when an additional block of experiments is carried out to augment the existing one. Let us formulate the problem in a general manner. Given a block of 2^{n-k} factorial experiments, is it possible to replace some of the experiments by other experiments, and obtain a new block of factorial experiments with a different confounding pattern?

Claim:

Given a block of 2^{n-k} factorial experiments in n variables,

1. At least 2^{n-k-1} experiments of the block need to be changed to obtain a new block of factorial experiments with a different confounding pattern.
2. New blocks of factorial experiments which can be obtained by doing an additional set of 2^{n-k-1} new experiments, can be generated by shifting the variables with respect to every column of the design matrix.

Proof:

Consider a process \mathbf{P} which depends on n variables $T_{1}, T_{2}, \ldots, T_{n}$. Suppose a 2^{n-k} factorial experiment has been designed on it. Let the design be such that variables $T_{1}, T_{2}, \ldots, T_{n-k}$ form a set of basic variables. T_{n-k+1}, \ldots, T_{n} are the corresponding non-basic variables.

It is desired that a set of experiments be designed which together with a set of experiments from the original block of experiments, determines a new block of 2^{n-k} factorial experiments with a different confounding pattern.

In order to change the confounding pattern, the variables must be shifted to different columns of the design matrix. In Part 1 we show that at least 2^{n-k-1} new experiments are required to produce a new factorial design. In Part 2 an algorithm is developed to generate the different new designs which can be obtained by doing 2^{n-k-1} new experiments.

Part 1:
In a factorial design the columns are balanced and orthogonal to each other. This implies that any two distinct columns of a 2^{n-k} factorial design will agree and disagree in exactly 2^{n-k-1} rows.

To change the confounding pattern at least one variable should be shifted from its existing column to a new column. This requires that an experiment be carried out for every row in which the elements of the existing column and new column differ with each other. There are exactly 2^{n-k-1} rows in which the elements of the two columns differ. Hence, at least 2^{n-k-1} experiments of the original design must be changed to obtain a new one with a different confounding pattern. This proves the first part of the claim.

Part 2:
In Part I it was demonstrated that 2^{n-k-1} experiments can be used to shift one variable from one column to another. Suppose that variable T_{i} is shifted from column v_{i} to column v_{I} by doing 2^{n-k-1} experiments, one for each row in which column v_{i} and v_{I} differ.

The question now arises whether it is possible to shift more than one variable using the same experiments. If another variable T_{j} is to be shifted from v_{j} to v_{J} along with T_{i}, then the columns v_{j} and v_{J} must differ in the same rows in which the columns v_{i} and v_{I} differ. That is, the product of the columns v_{j} and v_{J} must be the same as the product of the column v_{i} and v_{I} (the product of two columns is a column which has a +1 element for each row in which the elements of the two columns agree and a -1 element for each row in which the elements of the two columns disagree). That is,

$$
\begin{equation*}
v_{s}=v_{i} \cdot v_{I}=v_{j} \cdot v_{J} \tag{B.1}
\end{equation*}
$$

Using the notation introduced in Section 1.4.4, we can restate the condition in Equation B. 1 as - the variables T_{i} and T_{j} can be shifted by doing only 2^{n-k-1} new experiments if and only if they shift with respect to the same column v_{s}, of the design matrix.

Clearly, any number of variables can be shifted to different columns provided they all shift with respect to the same column of the design matrix. Moreover, the variables can be shifted with respect any column of the design matrix. Therefore, we have shown that by doing 2^{n-k-1} more experiments any of the variables can be shifted with respect to any column of the design matrix.

The new designs can be obtained by shifting all the possible combinations of the variables with respect to every column of the design matrix. This proves the second part of the claim.

Problems caused by rearrangement of rows

Although all the variables can be shifted with respect to any column of the design matrix, it is not necessary that the design obtained are all distinct. In particular, it may happen that given a column with respect to which the variables are being shifted, two different combinations of variables may produce equivalent designs, i.e. identical designs in which the rows are arranged differently. This point is best illustrated with the help of an example. Example B-1 addresses this issue.

A problem with the procedure of shifting of columns, as described above, is that the procedure is negated by changing the order of the rows of the designs. From the properties of binary orthogonal matrices discussed in Appendix A, it is known that the set of basic columns must have rows corresponding to all the permutations of + and - . Thus the problem could be resolved if we ensure that any set of basic variables is not shifted. That is, we shift only subsets of non-basic variables.

In the Example B-1, T_{1}, T_{2} and T_{3} form a set of basic variables. Hence T_{4} and/or T_{5} can be shifted by doing 4 more experiments. Also, T_{2}, T_{3} and T_{4} form a set of basic variables, so T_{1} and/or T_{5} can be shifted keeping the other variables fixed. But, T_{2}, T_{3} and T_{5} do not form a basic set. Hence we cannot move T_{1} and T_{4} without encountering the problem of generating equivalent designs.

Therefore, we believe that an algorithm which generates different factorial designs by shifting all possible subsets of non-basic variables with respect to all the columns of the matrix will produce all possible designs where each will be distinct. Although this idea
seems to be correct, the proof is not known to the author.
The MIT software currently generates new factorial designs by shifting all combinations of variables.

Example B-1

- Suppose a process \mathbf{P} depends on variables $T_{1}, T_{2}, T_{3}, T_{4}$ and T_{5}. An initial design of 8 experiments is conducted as shown in Table B.1. The location of the variables and their second order interactions are shown in Table B.2.

Given the Initial Design of Table B. 2 four experiments (Expt. 3, 4, 7 and 8) are designed to shift the variables with respect to column v_{2}. Table B. 1 gives the actual experiment matrix of the designs. In $\operatorname{Design}(\mathrm{I}) T_{4}$ is shifted from v_{13} to v_{123}. The other variables are kept unchanged. In Design(II) both T_{1} and T_{4} are shifted to columns v_{12} and v_{123} respectively. In Design(III) only T_{1} is shifted to v_{12} and the other variables are kept unchanged.

Examining Table B. 2 we expect that the confounding patterns of the designs must be very different. But this is not so. From Table B. 1 we observe that $\operatorname{Design(I)~and~}$ Design(III) are essentially equivalent to each other and only the order of the experiments are different. Hence, shifting T_{1} to v_{12}, keeping the other variables unchanged, is exactly equivalent to shifting T_{4} to v_{123}, keeping T_{1}, T_{2}, T_{3} and T_{5} unchanged.

In the same way, from Table B. 1 it is seen that Design(II) is equivalent to the Initial Design. That is, shifting two variables T_{1} and T_{4} has not changed anything, except the order of the rows.

In the Initial Design and in Design(II) the variables T_{1}, T_{2} and T_{3} form a set of basic variables. The variables T_{4} and T_{5} correspond to I_{13} and I_{23} respectively, in both these design. Therefore the Initial Design and in Design(II) have the same confounding pattern and are equivalent. In the same way, in $\operatorname{Design}(\mathrm{I})$ and in $\operatorname{Design(III)~} T_{1}, T_{2}$ and T_{3} form a set of basic variables. The variables T_{4} and T_{5} confound with I_{123} and I_{23} respectively, in both these design. Therefore, Design(I) and Design(III) are equivalent.

	Initial Design				
	T_{1}	T_{2}	T_{3}	T_{4}	T_{5}
Expt.	v_{1}	v_{2}	v_{3}	v_{13}	v_{23}
1	+	+	+	+	+
2	+	+	-	-	-
3	+	-	+	+	-
4	+	-	-	-	+
5	-	+	+	-	+
6	-	+	-	+	-
7	-	-	+	-	-
8	-	-	-	+	+

	Design(II)				
	T_{1}	T_{2}	T_{3}	T_{4}	T_{5}
Expt.	v_{12}	v_{2}	v_{3}	v_{123}	v_{23}
1	+	+	+	+	+
2	+	+	-	-	-
3	-	-	+	-	-
4	-	-	-	+	+
5	-	+	+	-	+
6	-	+	-	+	-
7	+	-	+	+	-
8	+	-	-	-	+

	$\operatorname{Design(I)}$				
	T_{1}	T_{2}	T_{3}	T_{4}	T_{5}
Expt.	v_{1}	v_{2}	v_{3}	v_{123}	v_{23}
1	+	+	+	+	+
2	+	+	-	-	-
3	+	-	+	-	-
4	+	-	-	+	+
5	-	+	+	-	+
6	-	+	-	+	-
7	-	-	+	+	-
8	-	-	-	-	+

	Design(III)				
	T_{1}	T_{2}	T_{3}	T_{4}	T_{5}
Expt.	v_{12}	v_{2}	v_{3}	v_{13}	v_{23}
1	+	+	+	+	+
2	+	+	-	-	-
3	-	-	+	+	-
4	-	-	-	-	+
5	-	+	+	-	+
6	-	+	-	+	-
7	+	-	+	-	-
8	+	-	-	+	+

Table B.1: Equivalence of Different Designs

Expts.	$v_{\text {avg }}$	v_{1}	v_{2}	v_{3}	v_{12}	v_{23}	v_{13}	v_{123}
Initial Design	T_{1}	T_{2}	T_{3}		T_{5}	T_{4}		
Interactions	I_{34}	I_{35}	I_{25}	I_{12}	I_{23}	I_{13}	I_{15}	
			I_{14}	I_{45}			I_{24}	
Design(I)	T_{1}	T_{2}	T_{3}		T_{5}		T_{4}	
Interactions	I_{45}	I_{35}	I_{25}	I_{12}	I_{23}	I_{13}	I_{15}	
				I_{34}	I_{14}	I_{24}		
Design(II)		T_{2}	T_{3}	T_{1}	T_{5}		T_{4}	
Interactions	I_{45}	I_{35}	I_{25}	I_{34}	I_{23}	I_{15}	I_{13}	
	I_{12}		I_{14}			I_{24}		
Design(III)		T_{2}	T_{3}	T_{1}	T_{5}	T_{4}		
Interactions	I_{12}	I_{35}	I_{25}	I_{45}	I_{14}	I_{15}	I_{13}	
	I_{34}				I_{23}		I_{24}	

Table B.2: Changes in Confounding Pattern

Appendix C

Designing a Full-Block of

Experiments

In Appendix B a technique was demonstrated by which, a block of 2^{n-k-1} experiments could be designed which along with 2^{n-k-1} experiments of the first block of 2^{n-k} factorial experiments, forms a new block of 2^{n-k} factorial experiments. In Section 1 we will demonstrate the technique of selecting a block of 2^{n-k} experiments which along with all the 2^{n-k} experiments of the first block, forms a block of 2^{n-k+1} factorial experiments. In Section 2 we show that the popular fold-over design technique is a special case of the Full-Block design strategy. The method of generating the fold-over design using the Full-Block design strategy is demonstrated.

C. 1 Full-Block Design Strategy

Claim:

Given a block of 2^{n-k} factorial experiments in n variables,

1. A new block of 2^{n-k} experiments forms a block of 2^{n-k+1} factorial experiments along with the original block only if both the new and the original block have the same confounding pattern.
2. There are $2^{k}-1$ possible blocks of 2^{n-k} experiments which can form a block of 2^{n-k+1} factorial experiments with the original block. The new blocks can be generated by reversing the signs of the columns of the non-basic variables in the original block.

Variable	T_{1}	T_{2}	\ldots	T_{n-k}	T_{n-k+1}	\ldots	T_{n}
Original Design	v_{1}	v_{2}	\ldots	v_{n-k}	$v_{p(n-k+1)}$	\ldots	$v_{p(n)}$
New Design	u_{1}	u_{2}	\ldots	u_{n-k}	u_{n-k+1}	\ldots	u_{n}

Table C.1: Columns of the variables in the original and the new design

Proof:

Factorial designs are of size 2^{n}. Hence it is clear that the number of experiments required to be added to a block of 2^{n-k} factorial experiments to form a larger factorial design must be at least $2^{n-k+1}-2^{n-k}=2^{n-k}$. In Part 1 of the proof we determine the constraints on the new block of 2^{n-k} experiments. In Part 2 we prove the second part of the above claim.

Consider a process which depends on n variables $T_{1}, T_{2}, \ldots, T_{n}$. A block of 2^{n-k} factorial experiments is designed on this process. Let the design be such that variables T_{1}, T_{2}, \ldots, T_{n-k} form a set of basic variables. The variables T_{n-k+1}, \ldots, T_{n} are the corresponding non-basic variables. Let the columns of the basic variables $T_{1}, T_{2}, \ldots, T_{n-k}$ be denoted by $v_{1}, v_{2}, \ldots, v_{n-k}$ respectively. The column of a non-basic variable T_{y} corresponds to a unique product of the columns of the basic variables and is denoted by $v_{p(y)}$ as shown in Table C.1.

Part 1:

Suppose 2^{n-k} new experiments are to be designed such that these experiments and the 2^{n-k} experiments from the original design, form a 2^{n-k+1} factorial design. Let the columns of the variables $T_{1}, T_{2}, \ldots, T_{n}$ in the new design be denoted by u_{1}, \ldots, u_{n} respectively as shown in in Table C.1. The requirement that the overall design be a factorial design puts severe constraints on the choice of the new design, that is on columns u_{1}, \ldots, u_{n}, as shown below.

Constraint 1: Every column, u_{i}, must have equal numbers of +1 and -1 entries. This result follows from the the fact that all columns of the original design have equal numbers of +1 and -1 elements and so must the columns of the overall design.

Constraint 2: The columns of the overall design will be orthogonal only if the columns of the new design are orthogonal.

Proof: Consider any two distinct columns v_{x}^{\prime} and v_{y}^{\prime} of the overall design. They are orthogonal only if,

$$
\left[\begin{array}{ll}
v_{x}^{T} & u_{x}^{T}
\end{array}\right] \cdot\left[\begin{array}{l}
v_{y} \tag{C.1}\\
u_{y}
\end{array}\right]=0
$$

But, v_{x} and v_{y} are orthogonal to each other. That is, $v_{x}{ }^{T} \cdot v_{y}=0$. Therefore the necessary condition for Equation C. 1 to hold is that,

$$
\begin{equation*}
u_{x}^{T} \cdot u_{y}=0 \quad \forall x \neq y \tag{C.2}
\end{equation*}
$$

Thus, the overall design will be orthogonal only if the new design is orthogonal.
Constraint 3: If a set of variables is independent in the original design, it is independent in the new design too.

Proof: Let us assume that the constraint is not true. Let variable $T_{x}(x \leq n-k)$ be dependent on variables $T_{i}, T_{j}, \ldots, T_{k}(i, j, \ldots, k \leq n-k)$ in the new design. That is, $u_{x}=u_{i} \cdot u_{j} \ldots u_{k}$ or $u_{x}=-u_{i} \cdot u_{j} \ldots u_{k}$. The arguments for both these cases are identical, so only the former case has been considered in the proof below.

The product of the columns of $T_{i}, T_{j}, \ldots, T_{k}$, and T_{x} in the overall design is given by,

$$
I_{i j \ldots k x}^{\prime}=\left[\begin{array}{c}
v_{i} \tag{C.3}\\
u_{i}
\end{array}\right] \cdot\left[\begin{array}{c}
v_{j} \\
u_{j}
\end{array}\right] \ldots\left[\begin{array}{c}
v_{k} \\
u_{k}
\end{array}\right] \cdot\left[\begin{array}{c}
v_{x} \\
u_{x}
\end{array}\right]=\left[\begin{array}{c}
v_{i j \ldots k x} \\
u_{i j \ldots k x}
\end{array}\right]=\left[\begin{array}{c}
v_{i j \ldots k x} \\
1 \\
1 \\
\vdots \\
1
\end{array}\right]=v_{i j \ldots k x}^{\prime}
$$

In Equation C.3, $v_{i j \ldots k x}$ has equal numbers of +1 and -1 entries. Consequently, the column $v_{i j \ldots k x}^{\prime}$ will have more +1 than -1 entries. Hence, the column $v_{i j}^{\prime} \ldots k x$ cannot be part of an orthogonal matrix. Therefore the assumption that columns u_{x} is dependent on columns $u_{i}, u_{j}, \ldots, u_{k}$ is wrong.

We can generalize the above result and claim that, the overall design will be orthogonal only if, every set of independent variables of the original design, is independent in the new design too. This implies that a set of basic variables of the original design must be independent in the new design.

Constraint 4: Every non-basic variable in the new design must correspond to the interaction of the same basic variables as it did in the original design. The sign of the interaction can differ.

Proof: Consider a non-basic variable $T_{y}(y>n-k)$. Its column in the original design is denoted as $v_{p(y)}$. Let this variable be confounded with interaction $I_{i j \ldots k}$ of basic variables T_{i}, $T_{j}, \ldots, T_{k}(i, j, \ldots, k \leq n-k)$ in the original design. That is, $v_{p(y)}=v_{i j \ldots k}$ or $v_{p(y)}=-v_{i j \ldots k}$. The arguments for both these cases are identical, so only the former case has been considered in the proof below. The product of the columns of $T_{i}, T_{j}, \ldots, T_{k}$, and T_{y} in the overall design is given by,

$$
I_{i j \ldots k y}^{\prime}=\left[\begin{array}{c}
v_{i} \tag{C.4}\\
u_{i}
\end{array}\right] \cdot\left[\begin{array}{c}
v_{j} \\
u_{j}
\end{array}\right] \ldots\left[\begin{array}{c}
v_{k} \\
u_{k}
\end{array}\right] \cdot\left[\begin{array}{c}
v_{p(y)} \\
u_{y}
\end{array}\right]=\left[\begin{array}{c}
1 \\
1 \\
\vdots \\
1 \\
u_{i j \ldots k y}
\end{array}\right]
$$

If the overall matrix is orthogonal then there are only two possible cases.

1. $I_{i j \ldots k y}^{\prime}=v_{a v g}^{\prime}$. That is all the elements of $u_{i j \ldots k y}$ are +1 .
2. The sum of the elements of $I_{i j \ldots k y}^{\prime}$ is zero. That is all the elements of $u_{i j \ldots k y}$ are -1 .

For any other choice of $u_{i j \ldots k y}$, the columns $I_{i j \ldots k y}^{\prime}$ will not correspond to a column of a orthogonal matrix. Therefore, the only way in which the overall matrix will be orthogonal is if $u_{i j \ldots k y}=+v_{a v g}$ or if $u_{i j \ldots k y}=-v_{a v g}$. This implies that $u_{y}=v_{i j \ldots k}$ or $u_{y}=-v_{i j \ldots k}$ in the new design. That is, the non-basic variable in the new design must correspond to the interaction of the same basic variables as it did in the original design although the sign of the interaction may differ.

Combining the above constraints, we conclude that the new design and the original design must have the same basic variables, and the non-basic variables must correspond to the same interactions of the basic variables. That is, the confounding pattern of the new design must be the same as that of the original design. This proves the first part of the claim.

Variable	T_{1}	T_{2}	T_{3}	T_{4}	T_{5}
Expt. Block 1	v_{1}	v_{2}	v_{3}	v_{12}	v_{23}
Expt. Block 2	v_{1}	v_{2}	v_{3}	$\pm v_{12}$	$\pm v_{23}$

Table C.2: Table for Example C-1

Part 2:

In Part 1 we have established the following results:

- A set of basic variables of the original design must be a set of basic variables of the new design.
- Every non-basic variable of the new design must correspond to the same interaction of basic variables as in the original design, although the sign may differ.

Therefore, the only choice in selecting the new design is the signs of the interactions confounding with the non-basic variables. That is, if a non-basic variable T_{y} corresponds to interaction $v_{p(y)}$ in the first block of experiments, then it can correspond to either $+v_{p(y)}$ or to $-v_{p(y)}$ in the second.

There are k non-basic variables in the original design. Hence there are 2^{k} possible choices for selecting the signs of the columns. The choice corresponding to selecting all positive signs results in the same design as the original one. Hence the overall design will have two sets of identical rows and will not correspond to a 2^{n-k+1} factorial design. Each of the remaining $2^{k}-1$ combinations corresponds to a distinct block design which can be used with the original design to form a larger factorial design. Thus, the second part of the claim is proved.

Using this result, we develop an algorithm which generates different block designs and selects the one which produces the minimum confounding between the variables and the probable interactions.

Example C-1

- Suppose a process depends on 5 variables T_{1}, \ldots, T_{5} and 8 experiments have been performed as shown in Table C.2. T_{1}, T_{2} and T_{3} form a set of basic variables.

In the second block of 8 experiments T_{4} and T_{5} can be assigned to $\pm v_{12}$ and $\pm v_{23}$ respectively. Hence, there are essentially 4 choices. Choosing columns of T_{4} and T_{5} as $+v_{12}$ and $+v_{23}$ respectively in the second block, gives the same block of experiments as in the first block. Therefore, this choice is not valid.

If we choose $-v_{12}$ for T_{4}, then, T_{4} along with T_{1}, T_{2} and T_{3} forms a set of basic variables of the overall design. Choosing the column of T_{5} as $+v_{23}$ will make T_{5} confound with the column I_{23}^{\prime} in the overall design. If the $-v_{23}$ is selected then, T_{5} will be confounded with I_{134}^{\prime} in the overall design. In general, it is more desirable to confound T_{5} with I_{134}^{\prime} than with I_{23}^{\prime}.

C. 2 Fold-Over Designs

The procedure of folding factorial designs is commonly used to increase the resolution of the designs and enable them to determine important interactions. In this section we show that this procedure is a special case of the Full-Block design strategy. This result not only justifies the use of Full-Block designs, but also establishes its superiority over the fold-over designs in sorting out the important interactions.

Claim:

The fold-over design is a particular case of a Full-Block design. A fold-over design can be obtained by the following procedure:

1. Determine the order of each non-basic variable, that is, order of the interaction of the basic variables with which it is confounded. (For example, if T_{5} is confounded with the interaction of basic variables T_{1}, T_{2} and T_{3} then its order is 3.)
2. Design a Full-Block of experiments by changing the signs of the even-ordered non-basic variables only.

Proof:

Consider a process dependent on n variables, $T_{1}, T_{2}, \ldots, T_{n}$, on which a 2^{n-k} factorial experiment has been designed. Let $T_{1}, T_{2}, \ldots, T_{n-k}$ be a set of basic variables and T_{n-k+1}, T_{2}, \ldots, T_{n} be the corresponding set of non-basic variables. A non-basic variable corresponds

V/I	T_{1}	T_{2}	T_{3}	T_{4}	T_{5}
Expt.	v_{1}	v_{2}	v_{3}	v_{12}	v_{123}
1	+	+	+	+	+
2	+	+	-	+	-
3	+	-	+	-	-
4	+	-	-	-	+
5	-	+	+	-	-
6	-	+	-	-	+
7	-	-	+	+	+
8	-	-	-	+	-

Table C.3: Initial Design of Example C-2
to a distinct interaction of the basic variables. Hence, given the settings of the basic variables, the settings of the non-basic variables can be uniquely determined.

From the property of orthogonal matrices discussed in Appendix A, we know that the columns of the basic variables contain rows with all the possible combinations of +1 and -1 elements. Therefore, for every row of the design, there exists a second row in which the signs of all the elements of the basic columns are reversed. Clearly, in the second row the signs of the elements of the columns of the odd-ordered non-basic variables will be reversed too.

Comparing these two rows, we find that the signs of all the elements are reversed except those which lie on the even-ordered non-basic variables. Suppose a new design is obtained by reversing only the signs of the columns of the even-ordered non-basic variables. For every row of the original design, there will be a row in the new design which has the sign of all its elements reversed. Thus the new design is a fold-over design. Moreover, only the signs of the columns of the non-basic variables have been changed. Therefore the design is also a Full-Block design.

Thus we have determined a technique of designing the fold-over design using the FullBlock design strategy. This proves the claim.

Example C-2

- Consider the initial design shown in Table C.3. The fold-over design of the initial design is shown in Table C.4. Table C. 4 also shows the Full-Block design obtained using the above procedure. Comparing the Full-Block design and the fold-over design

	Fold-over Design				
V/I	T_{1}	T_{2}	T_{3}	T_{4}	T_{5}
Expt.	$-v_{1}$	$-v_{2}$	$-v_{3}$	$-v_{12}$	$-v_{123}$
1	-	-	-	-	-
2	-	-	+	-	+
3	-	+	-	+	+
4	-	+	+	+	-
5	+	-	-	+	+
6	+	-	+	+	-
7	+	+	-	-	-
8	+	+	+	-	+

	Full-Block Design				
V/I	T_{1}	T_{2}	T_{3}	T_{4}	T_{5}
Expt.	v_{1}	v_{2}	v_{3}	$-v_{12}$	v_{123}
1	+	+	+	-	+
2	+	+	-	-	-
3	+	-	+	+	-
4	+	-	-	+	+
5	-	+	+	+	-
6	-	+	-	+	+
7	-	-	+	-	+
8	-	-	-	-	-

Table C.4: Fold-over and Full-Block Design of Example C-2
we find that they are identical, except that the rows are arranged differently. From this example, it can be seen that if the signs of the columns of the even-ordered non-basic variables are changed, the fold-over design is obtained.

Appendix D

Completing Fractional Factorial Blocks

In this section, we will study the techniques of completing a partially incomplete block of a factorial design.

Claim:

Given an incomplete block of $m\left(m>2^{n-k}\right)$ experiments of a complete block of a 2^{n-k+1} fractional factorial design,

1. The incomplete block must have the same confounding pattern as the complete design block.
2. There exists a unique set of $2^{n-k+1}-m$ experiments which complete the block.

Proof:

In order to prove the above claim, it is assumed that the given set of m experiments indeed corresponds to an incomplete factorial design. Later, using the properties of the above claim, a procedure is developed to check if the incomplete block is part of a factorial design or not. We shall prove the Claim 1 in two parts. In Part 1(a) we show that if any group of variables are confounded in the complete block then they must confound in the incomplete block too. In Part 1(b) we prove the converse result. The first part of the claim is proved by putting together the results of Part 1 (a) and 1(b). Part 2 of the proof proves the second part of the claim.

Part 1(a):

Consider a block of 2^{n-k+1} factorial design. From this block any $m\left(m>2^{n-k}\right)$ rows are selected to form an incomplete block. The columns of the complete block are denoted by u_{i}. The columns of the incomplete block are indicated by prime and those of the missing block by double primes. Therefore,

$$
u_{i}=\left[\begin{array}{c}
u_{i}^{\prime} \tag{D.1}\\
u_{i}^{\prime \prime}
\end{array}\right] \quad \forall i
$$

For any column u_{i} of the complete block which is dependent on some other columns u_{j}, u_{k}, \ldots, u_{p},

$$
\begin{align*}
u_{i} & =u_{j} \cdot u_{k} \cdot \ldots \cdot u_{p} \tag{D.2}\\
{\left[\begin{array}{c}
u_{i}^{\prime} \\
u_{i}^{\prime \prime}
\end{array}\right] } & =\left[\begin{array}{c}
u_{j}^{\prime} \\
u_{j}^{\prime \prime}
\end{array}\right] \cdot \ldots \cdot\left[\begin{array}{c}
u_{p}^{\prime} \\
u_{p}^{\prime \prime}
\end{array}\right] \tag{D.3}
\end{align*}
$$

Clearly, this relationship holds for the incomplete block too. Therefore, any group of variables which are confounded in the complete block, must be confounded in the incomplete block too.

Part 1(b):

Next we need to show that if that any column u_{i}^{\prime} is dependent on columns $u_{j}^{\prime}, u_{k}^{\prime}, \ldots, u_{p}^{\prime}$ in the incomplete block, it must be so in the complete block too. In order to prove this, let us assume that the statement is not true. Suppose,

$$
\begin{equation*}
u_{i}^{\prime}=u_{j}^{\prime} \cdot u_{k}^{\prime} \cdot \ldots \cdot u_{p}^{\prime} \tag{D.4}
\end{equation*}
$$

By assumption,

$$
\begin{equation*}
u_{i}^{\prime \prime} \neq u_{j}^{\prime \prime} \cdot u_{k}^{\prime \prime} \cdot \ldots \cdot u_{p}^{\prime \prime} \tag{D.5}
\end{equation*}
$$

In any orthogonal matrix if a column is not equal to another, it must be orthogonal to it. Therefore, if the column u_{i} of the complete block is not dependent on the column corresponding to the product of columns $u_{j}, u_{k}, \ldots, u_{p}$ it must be orthogonal to it.

If the product of the columns $u_{j}, u_{k}, \ldots, u_{p}$ is denoted by $u_{j k \ldots p}$, then

$$
u_{i}^{T} \cdot u_{j k \ldots p}=\left[\begin{array}{cc}
u_{i}^{\prime T} & u_{i}^{\prime \prime T}
\end{array}\right] \cdot\left[\begin{array}{c}
u_{j k \ldots p}^{\prime} \tag{D.6}\\
u_{j k \ldots p}^{\prime \prime}
\end{array}\right]=u_{i}^{\prime T} \cdot u_{j k \ldots p}^{\prime}+u_{i}^{\prime \prime T} \cdot u_{j k \ldots p}^{\prime \prime}=0
$$

But from Equation D. $4 u_{i}^{\prime}$ and $u_{j k \ldots p}^{\prime}$ are identical. Therefore,

$$
\begin{gather*}
u_{i}^{T} \cdot u_{j k \ldots p}=m+u_{i}^{\prime \prime T} \cdot u_{j k \ldots p}^{\prime \prime}=0 \tag{D.7}\\
\Longrightarrow u_{i}^{\prime \prime T} \cdot u_{j k \ldots p}^{\prime \prime}=-m \tag{D.8}\\
\Longrightarrow\left|u_{i}^{\prime \prime T} \cdot u_{j k \ldots p}^{\prime \prime}\right|=m>2^{n-k} \tag{D.9}
\end{gather*}
$$

The dimension of $u_{i}^{\prime \prime}$ and $u_{j k \ldots p}^{\prime \prime}$ is $2^{n-k+1}-m$ and their elements are +1 or -1 . Hence,

$$
\begin{equation*}
\left|u_{i}^{\prime \prime T} \cdot u_{j k \ldots p}^{\prime \prime}\right| \leq 2^{n-k+1}-m<2^{n-k} \tag{D.10}
\end{equation*}
$$

Comparing Equations D. 9 and Equations D.10, there is a contradiction. Therefore the assumption that column u_{i} of the complete block is not dependent on the column corresponding to the product of columns $u_{j}, u_{k}, \ldots, u_{p}$ is incorrect. Hence the column u_{i} of the complete block is dependent on the columns $u_{j}, u_{k}, \ldots, u_{p}$.

Therefore, if any column depends on a set of columns in the incomplete block, it must do so in the complete block too. Consequently, if a variable is confounded with a group of variables in the incomplete block, then it must be confounded with the same group of variables in the complete block too.

From the results of Part 1(a) and Part 1(b) we conclude that the confounding patterns of the complete and incomplete blocks must be identical.

Part 2:

In Part 1 it was shown that the confounding patterns of the complete and the incomplete blocks are the same. Therefore, any set of basic variables of the complete block must be a set of basic variables of the incomplete block and visa versa.

From the properties of Binary Orthogonal Matrices given in Appendix A, it is known that the rows of the basic variables must be such that each row corresponds to a unique

Expt.	T_{1}	T_{2}	T_{3}	T_{4}	T_{5}
$1(1)$	+	+	+	+	+
$2(2)$	+	+	-	-	-
$3(3)$	+	-	+	+	-
$4(5)$	-	+	+	-	+
$5(7)$	-	-	+	-	-

Table D.1: Incomplete Block of Experiments
combination of +1 and -1 . Also, the columns of the complete block contain all possible combinations of +1 and -1 .

Using this property of Binary Orthogonal Matrices along with the result of Part 1, the incomplete block can be completed in the following steps:

Step 1. Determine the basic variables and the confounding pattern of the incomplete block.
Step 2. Check which of the 2^{n-k+1} combinations of +1 and -1 are missing from the columns of the basic variables. There will be $2^{n-k+1}-m$ such combinations.

Step 3. For each of the combinations determined in Step 2, determine the entries of the non-basic variables of the matrix using the confounding pattern of the incomplete block.

Since each of the steps of the above procedure is deterministic and unique, we prove Claim 2, i.e. there exists a unique set of $2^{n-k+1}-m$ experiments which completes the block.

Example D-1

- Consider a process \mathbf{P} which is dependent on five variables $T_{1}, T_{2}, T_{3}, T_{4}$ and T_{5}. Say a 2^{5-2} fractional factorial experiment is to be carried out on this process, as shown in the Initial Design of Table B.1. Suppose that of these 8 experiments, $5(m=5>4)$ have already been carried out as shown in Table D.1. Which 3 experiments need to be carried out to complete such an incomplete block?

Step 1: As per the procedure described above, the first step is to determine the 3 ($n-k+1$) basic variables. From Table D. 1 it is observed that the following combination of variables correspond to a basic set of variables:

	Step 2			Step 3	
Expt.	T_{1}	T_{4}	T_{5}	$T_{2}=I_{145}$	$T_{3}=I_{14}$
$1(6)$	-	+	-	+	-
$2(4)$	+	-	+	-	-
$3(8)$	-	+	+	-	-

Table D.2: Missing Block of Experiments
(i) T_{1}, T_{2}, T_{3}
(ii) T_{1}, T_{2}, T_{4}
(iii) T_{1}, T_{2}, T_{5}
(iv) T_{1}, T_{3}, T_{5}
(v) T_{1}, T_{4}, T_{5}
(vi) T_{2}, T_{3}, T_{4}
(vii) T_{2}, T_{4}, T_{5}
(viii) T_{3}, T_{4}, T_{5}

Since only one set of basic variables is required, it is not necessary to enumerate all the sets of basic variables as done here. Let us select T_{1}, T_{4} and T_{5} as the set of basic variables.

Step 2: Scanning the columns of T_{1}, T_{4} and T_{5} the missing combinations of +1 and -1 are determined. They are shown in Table D.2.

Step 3: From Table D.1, it is observed that T_{2} confounds with interaction I_{145} and T_{3} confounds with I_{14}. Using this information the missing columns of T_{2} and T_{3} are determined in Table D.2.

Comparing Table D. 2 with the Initial Design of Table B.1, we conclude that Expts. 1, 2 and 3 of Table D. 2 correspond to the missing experiments 6, 4, and 8 of the Initial Design of Table B. 1 respectively. Hence, the missing experiments of the incomplete block have been determined.

Determining Incomplete Factorial Blocks

All the results determined above assume that the the incomplete block of experiments indeed corresponds to a complete 2^{n-k+1} fractional factorial block. Therefore, if the set of experiments does not correspond to a complete block, the results do not hold.

A block of experiments which do not correspond to a complete block will have either more than $n-k+1$ or less than $n-k+1$ independent columns. Thus there will not be any set of $n-k+1$ basic variables. When the procedure for completing the block is applied to such a block, the method will fail in Step 1. Thus the procedure of determining the basic variables can be used to check if a block of experiments correspond to an incomplete block or not.

Appendix E

Computer Software Listings

E. 1 Startup Routines

1. Startup.C ... 107
2. Stritr.C .. . 114
E. 2 Block Design Routines
3. Block.C ... 116
4. Blk_itr.C .. 123
5. Comp_blk.C .. 125
6. Blk_itr.C ... 129
E. 3 One-at-a-Time Design Routines
7. OAAT.C ... 132
8. OAAT_itr.C ... 141
9. OAAT_opt.C .. 144
E. 4 Common Routines
10. Plant.C .. 146
11. Sort_int.C ... 147
12. Disp_info.C 148
13. Database.C ... 150
14. Set_mat.C ... 152
E. 5 Header and Data Files
15. Conincl.H 153
16. Coninc2.H 154
17. True_Process.Dat 156
18. Interaction.Dat 156
E.1.1 Startup.C

E.1.1 Startup.C		```void f_test(float, int, float, int, float *, float *); void actual_plant_result(int, int, int *, float *); void select_experiments(int, int *, int *, int *, int **);```
/**************************************		
*Program: Startup.c		main() $\{$
*This program is the first program to be		void initialize_data(void);
*executed. It performs the following functions:		void setup_matrix(void);
$\left.{ }^{*} 1\right)$ Designs an optimal fold-over design.		void select_imp_columns(void);
${ }^{*}$ 2) Reads the results of the experiments and		void free_up(void);
* analyzes them.		void make_list_int(void);
*3) The results are used to form a list of		* probable interactions.
$\left.{ }_{*}^{*} 4\right)$ The databases required for the subsequent		
* programs are formed.		initialize_data();
		setup_matrix();
*Inputs: (a) No. of Variables (b) External * Interaction File (See sample file)		get_coefficients(mat_rows, mat_cols, mat, matres, coeff, covar, overlap);
		select_imp_columns();
*Output: Results of the analysis of the first		fflush(stdin); getch(); make list int ()$;$
		make_data_base();
***************************************/ 20		
\#include "coninc1.h"		disp_var_info(num_vars, num_blocks, var_mat, type_blk, var_label); disp_int_info(tot_ints, num_blocks, type_blk, int_mat, var_label);
\#include "coninc2.h"		disp_col_info(0, size_blk, blk_mat); -
extern int fileline;		disp_blk_info(num_blocks, size_expt, size_blk, blk_mat, type_blk, blk_info);
/* main variables */		printf("Save Database? (y/n)");
int num_vars, num_blocks, ${ }^{* *}$ expt_mat=NULL, ${ }^{* *}$ sel_row=NULL;		flush(stdin);
int *int_mat=NULL, *var_mat=NULL, *size_expt=NULL, *size_blk=NULL;		$\text { if }\left(\operatorname{getch}()==' y^{\prime}\right)\{$
int ${ }^{* *}$ blk_mat $=$ NULL, tot_ints, ${ }^{*}$ type_blk=NULL, ${ }^{*}$ blk_info=NULL; char ${ }^{* *}$ var label=NULL;		save_database(data_file, num_vars, tot_ints, num_blocks, size_expt, size blk, type blk, var mat, int mat
float ${ }^{* *}$ res_mat=NULL;	30	size_expt, size_blk, type_blk, var_mat, int_mat, blk_mat, sel_row, expt_mat, res_mat, var_label, blk_info);
		\} -
/* basic variables */		free_up();
int *var_col=NULL, mat_rows, mat_cols, *mat=NULL, ${ }^{*}$ conint $=$ NULL;		return;
int *sel_col=NULL, *overlap=NULL;		\}
float ${ }^{*}$ matres=NULL, ${ }^{*}$ coeff=NULL, *covar=NULL, ${ }^{*}$ prob_col=NULL; char file_name[100];		/**************************************
/* interaction variables */		* Sets up the matrices mat and conint
	40	
/* eternal interaction variables */		**************************************/
		static void setup_matrix(void)\{

static void initialize_data(void) $\{$ pmalloc ((void ${ }^{* *}$) \&overlap, mat_cols*sizeof(int));
 pmalloc($\left(\right.$ void $\left.^{* *}\right) \&$ matres, \quad mat_rows*sizeof(float $)$);
pmalloc $\left(\left(\right.\right.$ void $\left.^{* *}\right) \&$ coeff,
mat_cols*sizeof(float $)) ;$
set_mat(num_vars, 0 , expt_mat, sel_row, size_blk, \&mat_rows,
int i, row, blk;

OTI

450	for $(\mathrm{i}=0$ else
450	$\begin{aligned} & \text { else } \\ & \quad \text { for }(i=0 ; i<\text { mat_cols; } i++) \text { if(sel_col }[i]==1) \text { sel_col_int }[i]=1 ; \end{aligned}$
	```for(i=0; i<num_vars; i++) if(sel_col[var_col[i]]==1) sel_col_int[var_col[i]]=0; sel_col_int[0]=0; / * no interaction on avg.col */ return; }```
460	${ }_{*}^{*}$ ************************************
	* Forms the database for the software.   * The variables tot_ints, blk_mat,   * var_mat, int_mat are initialized here.   * The other variables were set in   * initialize()   *
	static void make_data_base(void)\{
470	int $\mathrm{i}, \mathrm{j}, \mathrm{k}, \mathrm{l}, \mathrm{v} 1$, sum, sign, count, *tempvect=NULL, col;
	```/* makes VARIABLE DATABASE */ pmalloc((void **) &var_mat, sof_varmat*sizeof(int)); for(i=0; i<sof_varmat; i++) var_mat[i]=0; var_ptr(num_vars, VNO) = num_vars; var_ptr(num_vars, VCO) = (int) (C_FACTOR*coeff[0]);```
480	```for(i=0; i<num_vars; i++){ var_ptr(i, VNO) = i; var_ptr(i, VCO) = (int)(C_FACTOR*coeff[var_col[i]]); var_ptr(i, VB0) = var_col[i]; }```
	/* makes INTERACTION DATABASE */ pmalloc((void $\left.{ }^{* *}\right)$ \&tempvect, mat_cols*sizeof(int));
	$\begin{aligned} & \text { for }(\mathrm{i}=0, \text { tot_ints=0; } \mathrm{i}<\text { mat_cols; } ; \text { i }++) \\ & \quad \text { if(sel_col_int }[\mathrm{i}]==1) \text { tot_ints }+=\text { no_int_col }[\mathrm{i}] ; \end{aligned}$
490	pmalloc((void $\left.{ }^{* *}\right)$ \&int_mat, sof_intmat*sizeof(int)); for ($\mathrm{i}=0$; $\mathrm{i}<$ sof_intmat; $\mathrm{i}++$) int_mat $[\mathrm{i}]=0$; for $\left(i=0\right.$, count $=0 ; i<$ mat_cols $^{2} i++$) $\{$
	12

\#include "coninc.h"
\#define enough_tries 100

E.1.2 Str_itr.C

 int dim;
int ${ }^{\text {oldd_varcol=NULL, }}{ }^{*}$ new_varcol=NULL, ${ }^{\text {ord_ass }}=$ NULL, full_set;
 intstruct
int *ar_col=NULL, mat_rows
int int_count, *endvar;

 int **blk_mat=NULL, tot_ints, *type_blk=NULL, *blk_info=NULL;

$$
\left.\right|_{* ~} ^{*}
$$

$$
\begin{aligned}
& { }^{*} \text { C of the report. The experiments are then } \\
& { }_{\text {stored in the database. }}
\end{aligned}
$$

$$
\begin{aligned}
& { }^{*} \text { stored in the database. } \\
& { }_{*}^{*} \text { Input: Block number. }
\end{aligned}
$$

$$
\begin{aligned}
& \text { *Input: Block number. } \\
& { }^{*} \text { * } \mathrm{*} \text { utput: Full-Block/Half-Block Design }
\end{aligned}
$$

 int int_ount, endvar,
stats initstat;

$\stackrel{\stackrel{-}{-}}{-}$
$\stackrel{?}{2}$

size_blk[num_blocks-1] = mat_cols;
dim $=$ mat_cols;
get_new_assign();
get_new_assign();
main_col = print_results();

15
int intno, $i, j, k, l ;$
intstruct ${ }^{*}$ cur_intpt
60 * Sets up the interaction data.

ror $(i=0$, int_count $=0 ; i<$ tot_ints $; i++) \mathbf{i f}($ int_ptr $(i, I U C)==0)$ int_count $++;$ pmalloc((void ${ }^{* *}$) \&cints, int_count*cint_len*sizeof(int)); for $(\mathrm{i}=0 ; \mathrm{i}$ <int_count* cint_len; $\mathrm{i}++$) cints $[\mathrm{i}]=0$;

80 for $(\mathrm{i}=0$, intno $=0 ; \mathrm{i}<$ tot_ints; $\mathrm{i}++)$ if(int_ptr $(\mathrm{i}, \mathrm{IUC})==0)\{$

for $(j=0 ; j<$ int_ptr $(i, I O R) ; j++)$
weights[intno] $=$ int_ptr(i, IWE);
/* sort columns */
for $(j=0 ; j<$ cints_ptr(intno, COR $)-1 ; j++$)
for $(\mathrm{k}=0 ; \mathrm{k}<=\mathrm{j} ; \mathrm{k}++$)
if (cints $\operatorname{ptr}($ intno,$C V 1+k)$
if (cints_ptr(intno, CV $1+\mathrm{k})>$ cints_ptr(intno, CV1 $+\mathrm{l}+\mathrm{k}$)) $\{$
type_blk[num_blocks-1] $=$ TYPE_HBLK;
size_expt[num_blocks-1] $=$ mat_cols $/ 2 ;$

int main_col $=-1$;
 int main_col=-1; FILE ${ }^{*}$ out_file;

void setup_intdata(void);
void setup_variables(void);
void setup_fullset (void)
int print_results(void
void finish up(void);

 out_file = fopen(data_file, "rb");
if(out_file==NULL) error("Cant open INPUT file", data_file, -1);
load_database(data_file, \&num_vars, \&tot_ints, \&num_blocks,
\quad \&size_expt, \&size_blk, \&type_blk, \&var_mat, \&int_mat,
\quad \&blk_mat, \&sel_row, \&expt_mat, \&res_mat, \&var_label, \&blk info); disp_int_info(tot_ints, num_blocks, type_blk, int_mat, var_label); disp_blk_info(num_blocks, size_expt, size_blk, blk_mat, type_blk, blk_info); $\operatorname{printf("Please~Enter~Block~No:");~}$
scanf("\%d", \&block no);
void setup fullset (void
if(out file $==$ NULL) error("Cant open INPUT file", data file, -1);
load database(data_nle, \&num_vars, \&tot_ints, \&num_blocks

$$
\begin{aligned}
& \text { set_mat(num_vars, block_no, expt_mat, sel_row, size_blk, \&mat_rows, } \\
& \quad \text { \&mat_cols, \&var_col, \&mat, \&conint); } \\
& \text { setup_intdata(); } \\
& \text { num_blocks_+; } \\
& \text { setup_variables(); } \\
& \text { blk_info[num_blocks-1] = block_no; } \\
& \text { printf("\nSelect (1)Full-Block Design (2)Half-Block Design? (1/2)"); } \\
& \text { scanf("\%d", \&full_set); } \\
& \text { if(full_set==1)\{ } \\
& \text { type_blk[num_blocks-1] = TYPE_FBLK; } \\
& \text { size_expt[num_blocks-1] = mat_cols; } \\
& \text { size_blk[num_blocks-1] = } 2^{*} \text { mat_cols; } \\
& \text { dim =2*mat_cols; } \\
& \text { setup_fullset(); } \\
& \} \\
& \text { else\{ } \\
& \text { type blk[num blocks-1] = TYPE HBLK; }
\end{aligned}
$$

(void);

$\stackrel{R}{\sim}$

응

printf("Do you want to save the screen output? (y/n) ");
if(getch()=='y')\{
printf("\nEnter output file name: ");
fflush(stdin);
gets(f_name);
out_handle = fopen(f_name, "w");
if(out_handle==NULL)\{
warning("Cant open output file", NULL, -1);
\quad out_handle = stdout;
\}
\}
out_handle $=$ stdout;
FILE *out_handle; int $\mathrm{i}, \mathrm{j}, \mathrm{k}$, * var_list $^{\text {chen }}=$ NULL, max_label $=0$, main_col $=-1$;
char f_name[100];
static int print_results(void) \{

8
$\underset{\substack{\infty \\ \hline \\ \hline}}{ }$
㞼

int i, j, line_no, max label $=0$;
char format_str[100], temp_str[100];
FILE *out_handle,
 pmad (void) \& (expt_mat num_blocks-1),
sprintf(format_str, "\%\%\% ds ", max_label);
fprintf(out handle, "\nNew set of \%d Experiments: $\backslash \mathrm{n} \backslash \mathrm{t} \backslash \mathrm{t}$ ", $\operatorname{dim} / 2$);
fprintf(out handle, format str, var label[i]);
fprintf(out_handle, "\n");
sprintf(temp_str, "\%\%\%ds\%\%\%\%\%s\%\%\%ds", max_label/2, max_label-max_label/2);
sprintf(format_str, temp_str, " ", " ");

for $(\mathrm{i}=\operatorname{dim} / 2$, line_no= $=0 ; \mathrm{i}<$ dim; $\mathrm{i}++$) $\{$
극

8
\therefore
\varnothing

E.2.3 Comp_Blk.C

 \%
126

E.2.4 Blk_anl.C
\therefore
∞

$*$
*Program: Blk_anl.C
*
*This program analyzes the results of the
*block of experiments. It updates the
*interaction coefficients and sorts
*confounding interactions.
*
***************************************/

[^6]out_file = fopen(filen, "rb");
if(out_file==NULL) error("Cant open INPUT file", filen, -1);
printf(file_divider);
load_database(data_file, \&num_vars, \&tot_ints, \&num_blocks,
\quad \&size_expt, \&size_blk, \&type_blk, \&var_mat, \&int_mat,
\&blk_mat, \&sel_row, \&expt_mat, \&res_mat, \&var_label, \&blk_info);

printf("Expt: $\%$ d \backslash Result: $\% 7.2 f \backslash n "$, row, res_ptr(blk, row $)$) $; ~$
$\underset{r}{\text { return }}$
actual_plant_result(1, num_vars, expt_ptr(blk, row),
pmalloc $\left(\left(\right.\right.$ void $\left.^{* *}\right)$ \&temp_vect, \quad mat_rows ${ }^{*}$ sizeof $($ int $)$); pmalloc $\left(\left(\right.\right.$ void $\left.{ }^{* *}\right)$ \& (blk_mat[block_no $\left.]\right)$, sof_blkmat(block_no $)^{*}$ sizeof(int $\left.)\right) ;$
for $(\mathrm{i}=0 ; \mathrm{i}$ <sof_blkmat(block_no $) ; \mathrm{i}++)^{*}($ blk_mat[block_no] +i$)=0 ;$ int $1, j, k, 1$, sum, ${ }^{*}$ temp_vect=N_,
int sign, no_int_col=NULL, *tot_int_col=NULL, col, varno, intno, intname;
int prod, count, *update_int=NULL;
foat *net_coeff=NULL;

update_database(tot_rows, tot_cols, big_mat, big_coeff); get_coefficients(tot_rows, tot_cols, big_mat, big_res, big_coeff,

pmalloc ((void $\left.{ }^{* *}\right)$ \&overlap, tot_cols*sizeof(int)); pmalloc $\left(\left(\right.\right.$ void $\left.^{* *}\right) \&$ big_res, \quad tot_rows*sizeof(float) $) ;$

pmalloc $\left(\left(\right.\right.$ void $\left.^{* *}\right) \&$ big_coeff, \quad tot_cols*sizeof(float $)$); $\begin{array}{ll}\text { pmalloc }\left(\left(\text { void }^{* *}\right)\right. & \text { \&big_covar, tot_cols*tot_cols*sizeof(float) }) \text {; } \\ \text { tot_rows*sizeof(float) }) \text {; }\end{array}$ set_mat(num_vars, block_no, expt_mat, sel_row, size_blk, \&tot_rows,
\&tot_cols, \&var_col, \&big_mat, \&conint);

[^7]$\stackrel{\rightharpoonup}{8}$ for $(\mathrm{i}=0 ; \mathrm{i}<$ num_vars $; \mathrm{i}++$) blk_ptr(block_no, var_col $[\mathrm{i}], \mathrm{BVA})=\mathrm{i}$;

 for $(i=0 ; i<$ mat_cols $; i++)$ no_int_col $[i]=0 ;$
for $(i=0 ; i<$ mat_cols; $i++)$ tot_int_col $[i]=0 ;$ for $(\mathrm{i}=0 ; \mathrm{i}<$ mat_cols $; i++)$ net_coeff $[\mathrm{i}]=$ coeff $[\mathrm{i}] ;$
for $(\mathrm{i}=0 ; \mathrm{i}<$ mat cols $; \mathrm{i}++)$ no_int_col $[\mathrm{i}]=0 ;$ pmalloc $\left(\left(\right.\right.$ void $\left.^{* *}\right)$ \&tot_int_col, mat_cols*sizeof(int $)$
pmalloc (void $\left.^{* *}\right)$ \&update_int, tot_ints*sizeof(int) $)$
 pmalloc((void $\left.{ }^{* *}\right)$ \&net_coeff, mat_cols*sizeof(float)) ; 8

$\underset{\sim}{\otimes}$ -
-
$$
\stackrel{\circ}{\sim}
$$
$\stackrel{\rightharpoonup}{2}$

[^8]132
/* basic variables */
int *var_col=NULL, mat_rows, mat_cols, opt_exptnum, *sel_col=NULL;
int *opt_exptmat_NULL;
float *coeff=NULL, *opt_res=NULL, noise_var, *net_coeff;
/ * interaction variables ${ }^{* /}$
int int_count, *sel_col_int=NULL, *list_int=NULL, ${ }^{*}$ no_int_col=NULL;
int *cur_int_col=NULL, *intcol_ord=NULL, num_calls=0, *b_int_data=NULL;
int *chk_zero_int=NULL, *chk_col_int=NULL, *known_int=NULL, num_knownint; 40
int num_best_sel;
int act_int_count, *act_list_int=NULL, act_list_len=5, *conint=NULL;
float act_variance, est_variance, *act_var_coeff=NULL, *act_int_coeff=NULL;
 char ${ }^{* *}$ var_label=NULL; int $*_{\text {int_mat }}=$ NULL, ${ }^{*}$ var_mat =NULL, *size expt =NULL, *size_blk=NULL;
int ${ }^{* *}$ blk_mat $=$ NULL, tot_ints, ${ }^{\text {ty }}$ type_blk=NULL, ${ }^{\text {blk }}$ blkfo=NULL; /* main variables */ extern int fileline;
 /*************************************
*
*Program: OAAT.C
*
*This program performs the One-at-a-Time
*algorithm outlined in the report.
*The following tasks are performed:
*1) Read the database
*2) Determine number of unknown interactions

* on each column of the matrix.
*3) Generate optimum designs based on the
* current hypothesized process model.
*4) Update the database and save it.
*

*The program prompts the user for various
*inputs required.
*
**********************************/ D`LVVO I•\&•当
 void print_curr_summary (FILE *);
FILE ${ }^{\text {out_handle; }}$ void get_optimum $\left(\right.$ int ${ }^{*}$, int ${ }^{*}$, int);
void sort_interaction(int $\left.{ }^{*}\right) ;$ int *temp_int_data=NULL, opt_good=0
char file_name[100];
$\ddot{\circ}$ シ ®ั
®
-

 void get_act_plant(char *);
 void f_test(float, int, float, int, float ${ }^{*}$, float *);
void actual_plant_result(int, int, int ${ }^{*}$, float $\left.{ }^{*}\right) ;$

fllush(stdin);

mat_rows=size_blk[block_no];

static void select imp columns(void) \{

int i, j, temp $=0$, safety_margin $=3$;
float $T _975=2.0$, So, ME, PSE, *ord_eff=NULL, *abs_eff=NULL;
float noise_var, temp1, temp2;

pmalloc ((void $\left.^{* *}\right)$ \&known_int, num_knownint*sizeof(int)); /* Determine Known Interactions and remove them from list_int */
for $(\mathrm{i}=0$, num_knownint $=0 ; \mathrm{i}<$ totints; $\mathrm{i}++)$
$\quad \mathrm{if}(\mathrm{int} \operatorname{ptr}(\mathrm{i}, \mathrm{IUC})==1)$ num knownint $++;$ for $\left(\mathrm{i}=0 ; \mathrm{i}<\right.$ mat_cols $^{2}+++$ no $^{\text {int_col }[1]=0 ;}$
for $(\mathrm{i}=0 ; \mathrm{i}<$ list_len*mat_cols $;-++$) list_int $[\mathrm{i}]=0$

 int $\mathrm{i}, \mathrm{j}, \mathrm{k}, 1, \mathrm{v} 1$, v2, count, min_weight, col;
int *tempvect=NULL;
void select_imp_columns(void);

$\stackrel{\text { g }}{8}$
⿷匚 select_imp_columns(); pmalloc $\left(\left(\right.\right.$ void $\left.{ }^{* *}\right)$ \&sel_col_int, mat_cols*sizeof(int) $)$;
for $\left(i=0 ; i<\right.$ mat_cols; $\left.^{2}++\right)$ sel_col_int $[i]=0 ;$ memcpy memcpy(tempvect, \& (list_ptr(i, k, 0)), int_len*sizeof(int))
memcpy $(\&($ list_ptr(i, $\mathrm{k}, 0)), \&(\operatorname{list} \operatorname{ptr}(\mathrm{i}, \mathrm{j}, 0))$,

int len*sizeof(int) $)$; | $\mathbf{i f}($ list_ptr $(\mathrm{i}, \mathrm{j}, \mathrm{LWE})<$ list.ptr $(\mathrm{i}, \mathrm{k}$, LWE $))\{$ |
| :--- |
| | for $(\mathrm{k}=\mathrm{j}+1 ; \mathrm{k}<$ no_int_col[$[\mathrm{i}] ; \mathrm{k}++$)

$\underset{\substack{\omega}}{\sim}$ $\left\{^{\{ }\right.$
(int_ptr(i, IBO ${ }^{-}$+block_no) >0) ? 1:-1;

암 $\%$ \square 520婁

int_data[num_vars*count $+1+\mathrm{j}]=$ list_ptr(i, opt_int_col $[\mathrm{i}], \mathrm{LV} 1+\mathrm{j})$;
for $(\mathrm{i}=0 ; \mathrm{i}<$ num_knownint; $\mathrm{i}++)\{$

int_data[num_vars*count+1+j] = int_ptr(intno, IV1 $1+\mathrm{j})$;
optint_coeff[count $]=-$ int_ptr(intno, ICO)/C_FACTOR;
count+ $+;$ \}早
sign $=$ list_ptr(i. opt_int_col[i]. LSG);
optint_coeff[count] $\xlongequal{=}=-$ net_coeff[i]*sign;

470

[^9] char temp_str[100];
opt_int_count $=$ int_count + num_knownint;
for $(\mathrm{i}=0 ; \mathrm{i}<$ mat_cols; $\mathrm{i}++)$
pmalloc ((void $\left.{ }^{* *}\right)$ \&int_data, opt_int_count*num_vars*sizeof(int)); pmalloc ((void $\left.{ }^{* *}\right)$ \&int_sign, opt_int_count*sizeof(int)); pmalloc((void ${ }^{* *}$) \&optint coeff, opt int count*sizeof(float));
for ($\mathrm{i}=0 ; \mathrm{i}<$ num_vars $; i++$) solved_var $[\mathrm{i}]=0 ;$
for $(\mathrm{i}=0 ; \mathrm{i}<$ opt_int_count; $\mathrm{i}++$) int_sign $[\mathrm{i}]=1$;
for $\left(i=0 ; i<\right.$ num_vars $; i++$) var_coeff $[i]=-$ var_ptr($(\mathrm{i}, \mathrm{VCO}) /$ C_FACTOR 2 avg_coeff $=-$ blk_ptr(block_no, 0, BCO) $/$ C_FACTOR; 2
for $(\mathrm{i}=0$, count $=0 ; \mathrm{i}<$ mat_cols; $;++$)
\quad if($($ sel_col_int $[\mathrm{i}]==1) \& \&($ opt_int_col
$\operatorname{if}(($ sel_col_int $[\mathrm{i}]==1) \& \&($ opt_int_col $[\mathrm{i}]>=0))\{$
138

 for $(\mathrm{i}=0 ; \mathrm{i}<$ num_knownint; $i++)\{$
intno $=$ known int $[i]$; res += sign* ${ }^{\text {net_coeff }[i]}{ }^{\text {T}}$ temp;

int i, j, temp, intno, sign;
float res $=0.0$;
static float model_plant_result(int *var_value)\{
${ }_{*}^{*} * / ~$

$\underbrace{800}$
$\stackrel{y}{8}$

for $(\mathrm{i}=0$; $\mathrm{i}<$ num_vars; $\mathrm{i}++$) act_var_coeff $[\mathrm{i}]=0.0$
pmalloc((void ${ }^{* *}$) \&act_var_coeff, num_var**sizeot(Hoat)

管

if(i!=(act_int_count)) error("error in interaction data", f_name, -1);
get_line(temp_str, handle); get_line(temp_str, handle);
if(temp_str[1]!='1') error("Invalid actual model file: ", f_name, fileline); get_line(temp_str, handle); if(!get_label(temp_str)) error("error:", f_name, fileline); act_variance $=$ atof(temp_str);
set_mat(num_vars, block_no, expt_mat, sel_row, size_blk, \&tmat_rows, \&tmat_cols, \&tvar_col, \&tmat, \&conint);
pfree((void $\left.{ }^{* *}\right)$ \&tvar_col);
pfree((void $\left.{ }^{* *}\right) \&$ tmat $)$;

return; $\}$

/***************************************

* Prints summary of current optimal proces
* Prints summary of current optimal process * OAAT experiment results. static void printcurr_summary(FILE *out_handle) int i, j, col, coll, pred_prt, act_ prt; float model_plant_result(int *); fprintf(out_handle, file_divider);
fprintf(out_handle, "COLUMNWISE SUMMARY:");
fprintf(out_handle, file_divider);
fprintf(out_handle,
fprintf(out_handle, "COLUMNWISE SUMMARY:");
fprintf(out_handle, file_divider);
fprintf(out_handle,
"Col. Est. Cf. \tPred(V/I) True Cf. \tTrue(V/I)");
fprintf(out_handle, file_divider);
fprintf(out_handle, "\%2d $\quad \% 6.2 f \backslash t ", 1$, coeff[0]);
fprintf(out_handle, "Avg.
t $\backslash t \% 6.2 f \backslash t A v g . \backslash n ", ~$
fprintf(out_handle, "Avg. \t $\backslash t \% 6.2 f \backslash t A v g . \backslash n "$, act_avg_coeff);
for $\left(\operatorname{col}=1 ; \mathrm{col}_{<\text {mat_cols } ; ~}^{\operatorname{col}++}+\right.$) $\{$
fprintf(out_handle, "\%2d $\% 6.2 \mathrm{f} \backslash \mathrm{t}$ ", col +1 , coeff[col]);
140
형
 blk_mat[num_blocks] $=$ NULL sel_row[num_blocks] $=$ NULL pmalloc $\left(\left(\right.\right.$ void $\left.^{* *}\right) \&($ expt_mat $[$ num_blocks $])$,
pmalloc ((void $\left.{ }^{* *}\right) \&($ res_mat[num_blocks] $)$,
sof_resmat(num_blocks) ${ }^{*}$ sizeof(float $\left.)\right) ;$ type_blk[num_blocks] = TYPE_OAAT
blk_info[num_blocks] $=$ block_no; size_expt[num_blocks]=opt_exptnum;
size_blk[num_blocks] $=0$; int i, j, k, l, sign, found, num_selint, selint_no;
 /***********************************
 *************************************/苞 fprintf(out_handle, " $\backslash t \backslash t(\% \mathrm{c}$) Results after Experiment $\% \mathrm{~d} \backslash \mathrm{n} "$, else fprintf(out_handle, "Initial Guess of Process Model. \n");
fprintf(out_handle, file_divider);

E.3.2 OAAT_itr.C

142

 float update_min_error(int *, float *);
void update_error(int, int, float *);
void delete_interaction(void);

 for $(\mathrm{j}=0 ; \mathrm{j}$ <num_opt_int; $\mathrm{j}++$) $\{$

焐I

OT	 	087	
		02%	

8

8
/* remove smallest interaction */
~
else $\left\{\begin{array}{l}\text { try again with fewer ints }- \text { eliminate least important one }\end{array}\right]$
$\mathrm{k}=0 ;$
temp_float $=($ MAXFLOAT $/ 2) ;$
for $(\mathrm{j}=0 ; \mathrm{j}<$ num_ints; $\mathrm{j}++)$ if $($ valid_int $[\mathrm{j}])$
if $($ fabs $($ int_coeff $[\mathrm{j}])<$ temp_float $)\{$
temp_float $=$ fabs $($ int_coeff $[\mathrm{j}]) ;$
$\quad \mathrm{k}=\mathrm{j} ;$
$\quad\}$
valid_int $[\mathrm{k}]=0$
$\}$ - 敬
¿
146

 pmalloc ((void $\left.{ }^{* *}\right)$ \&var_value, num_vars*sizeof(int) $)$;
if(read_plant_data $==0)\{$
get_act plant(plant_file, num_vars);
void get_act_plant(char *, int); int $i, j, k,{ }^{*}$ var_value $=$ NULL;
float res, temp;

void actual_plant_result(int num_pts, int num_vars, static inter_len=5;
static float_ $*$ act_var_coeff=NULL, *act_int_coeff=NULL, lambda, act_avg_coeff;
static int act_int_count, $*$ act_list_int $=$ NULL;
static int read_plant_data $=0 ;$

for $(i=0 ; i<$ tnum_vars $; i++)$ act_var_coeff $[i]=0.0$;
while (!get_line(temp_str, handle))\{
if $($ temp_str $[0]==$ Field_Char $)\{$
\quad unget_line ()$;$
break;

148

$$
\begin{aligned}
& \text { for }(\mathrm{i}=0 ; \mathrm{i}<\text { num_blocks; } \mathrm{i}++ \text {) printf(" } \mathrm{Bk} \% \mathrm{~d} ", \mathrm{i}) \text {; }
\end{aligned}
$$

i
요 8

149
09L

 fwrite(wr_blkmat, num_blocks*sizeof(int), 1, out_file) fwrite(var_mat, $\quad \begin{aligned} & \text { sof_varmat*sizeof(int), } 1 \text {, out_file); } \\ & \text { fwrite(int_mat, } \\ & \text { sof intmat*sizeof(int), } 1 \text {, out_file); }\end{aligned}$ fwrite(type_blk, \quad MAX_BLK*sizeo(int
fwrite(blk_info, \quad MAX_BLK*sizeof(int), 1, out_file); fwrite(size_blk, \quad MAX_BLK*sizeof(int), 1, out_file);
fwrite(type_blk,

out_file $=$ fopen(filen, "rb");
if(out_file==NULL) error("Cant open INPUT file", filen, -1);
fread(pnum_vars, $\operatorname{sizeof}($ int $), 1$, out_file); read pnum blocks, sizeof(int), 1, out, file); fread(pnum_blocks, sizeof(int), 1 , out_file) tot_ints $={ }^{*}$ ptot ints;
num blocks $=$ *pnum_blocks; $^{-}$
pmalloc ((void ${ }^{* *}$) psize pmalloc $\left(\left(\right.\right.$ void $\left.^{* *}\right)$ psize_expt, MAX_BLK*sizeof(int) $)$;
pmalloc ((void $\left.{ }^{* *}\right)$ psize_blk, MAX_BLK*sizeof(int $\left.)\right) ;$ pmalloc((void ${ }^{* *}$) ptype_blk, MAX_BLK*sizeof(int)); pmalloc ((void ${ }^{* *}$) pblk_info, MAX_BLK*sizeof(int));
fread(*psize_expt, MAX BLK*sizeof(int), 1, out file); fread (${ }^{\text {p psize_blk, MAX_BLK* }}$ sizeof(int) $)$ 1, out_file); fread(${ }^{*}$ ptype_blk, MAX_BLK*sizeof(int), 1 , out_file); fread(${ }^{\text {plolk_info, MAX_BLK*sizeof(int), }}$, , out_file);

size_expt $={ }^{*}$ psize_expt;

prnalloc((void $\left.{ }^{* *}\right)$ pvar_mat, sof_varmat*sizeof(int)); pmalloc((void $\left.{ }^{* *}\right)$ pint_mat, sof_intmat*sizeof(int) $)$;
fread $\left({ }^{*}\right.$ pvar_mat, sof_varmat*sizeof(int), 1, out_file); fread(*pint_mat, sof_intmat*sizeof(int), 1 , out_file);
pmalloc ((void ${ }^{* *}$) \&rd selrow, num blocks*sizeof(int)); $\begin{array}{lll}\text { pmalloc((void } & \text { \&rd_selrow, } & \text { num_blocks*sizeof(int) }) ; \\ \text { pmalloc((void } & \text { **) } & \text { \&rd_exptmat, } \\ \text { num_blocks*sizeof(int) })\end{array}$ pmalloc ((void $\left.{ }^{* *}\right) \quad$ \&rd_resmat, num_blocks*sizeof(int) $)$; pmalloc((void **) \&rd_blkmat, num_blocks*sizeof(int)); fread(rd_blkmat, num_blocks*sizeof(int), 1, out_file); fread(rd_selrow, num_blocks*sizeof(int), 1, out_file); fread(rd_exptmat, num_blocks*sizeof(int), 1, out_file); fread(rd_resmat, num_blocks*sizeof(int), 1, out_file);
pmalloc((void ${ }^{* *}$) pres_mat, MAX_BLK*sizeof(float $\left.{ }^{*}\right)$); pmalloc((void ${ }^{* *}$) pexpt_mat, MAX_BLK*sizeof(int *)); pmalloc ((void ${ }^{* *}$) pblk_mat, MAX_BLK*sizeof(int *));
pmalloc((void ${ }^{* *}$) psel_row, \quad MAX_BLK*sizeof(int $\left.{ }^{*}\right)$);

合
$\ddot{\circ}$

*pmat_rows = mat_rows;
${ }^{*}$ pmat_cols = mat_cols; mat_rows=size_blk[block_no];
mat_cols=1;
while(mat_cols < mat_rows) $\{$ mat_cols $*=2 ;$ power $+=1 ;\}$
$*$ pmat_rows = mat_rows; int $\mathrm{i}, \mathrm{j}, \mathrm{k}, 1$, eq, sum, prod, varno, colno, *temp_vect=NULL;
int row, blk, power, mat_rows, mat_cols;
\#include "coninc1.h"
\#include "coninc2.h"
void set_mat(int num_v
 Given a the dend confounding table. $/_{*}^{* ~}$
${ }^{*}$ Given a block of experiments, this routine
$\stackrel{\square}{\circ}$
ธ

\begin{tabular}{|c|c|c|}
\hline \& \& \% \\
\hline 08
\(\vdots\)
\(\vdots\)
02 \& \& \(0 \varepsilon\) \\
\hline \& \begin{tabular}{l}
 \\
 \(![+!=!!++!\) \(\}\left(\right.\) oulos \(==\begin{array}{l}\text { ! }) ~ \\ \vdots \\ ++!\end{array}\) \\

\end{tabular} \& 0\%. \\
\hline 09

09 \& \& 01

\hline 09 \& \&

\hline
\end{tabular}

E.4.5 Set_mat.C
$\begin{aligned} & \text { for }(\mathrm{k}=0 ; \mathrm{k}<\text { mat_rows; } \mathrm{k}++) \\ & \text { temp_vect }[\mathrm{k}]=\left({ }^{\text {pmat }}\right)\left[\mathrm{k}^{*} \text { mat_cols }+\mathrm{i}\right]^{*}\left({ }^{*} \text { pmat }\right)\left[\mathrm{k}^{*} \text { mat_cols }+\mathrm{j}\right] \text {; }\end{aligned}$
complete the mat
colno=num_vars $+1 ;$
$\mathrm{i}=0 ; \mathrm{j}=1 ;$
while (colno < mat_cols) $\{$
$\quad /^{*}$ take product of matrix columns */

154

\#define int_ptr(ino, data) (int_mat[(ino)*intmat_row + data])
\#define blk_ptr(bno, col, data) *(blk_mat[bno] + (col)*blkmat row + data)

/ * Storage of Databases *
\#define data_file "c:
rizwan
data
\$d_base\$.dat" \#define plant_file "c:
rizwan
data
true_pr.dat"
\#define SBL $0 \quad$ / *position of the block info */ \#define SEP $1 \quad /{ }^{*}$ position of the expt. info */
\#define sel_ptr(bno, expt, data) ${ }^{*}\left(\right.$ sel_row $[$ bno $]+2^{*}(\operatorname{expt})+$ data $)$
 \#define res_ptr(bno, expt_no) *(res_mat[bno]+expt_no)

[^10]$\stackrel{\rightharpoonup}{\infty}$

Bibliography

[1] Ashraf Alkhairy. Optimal Product and Manufacturing Process Selection - Issues of Formulation and Methods for Parameter Design. RLE Technical Report No. 572, 1992.
[2] A. C. Atkinson and A. N. Donev. Optimum Experimental Designs. Oxford Science Publication, Oxford, 1992.
[3] Soren Bisgaard. A Method for Identifying Defining Contrasts for 2^{k-p} Experiments. Journal of Quality Technology, 25, p28-35, 1993.
[4] G. E. P. Box, W. G. Hunter, and J. S. Hunter. Statistics for Experimenters. John Wiley, New York, 1978.
[5] G. E. P. Box and R. D. Meyer. An Analysis for Unreplicated Fractional Factorials. Technometrics, 28, p11-18, 1986.
[6] G. E. P. Box and K. B. Wilson. On the Experimental Attainment of Optimal Conditions. Journal Roy. Stat. Soc. Ser. B., 13, p1-45, 1946.
[7] C Daniel. Use of Half-Normal Plots in Interpreting Factorial Two-Level Experiments. Technometrics, 1, p311-341, 1959.
[8] M. N. Das and N. C. Giri. Design and Analysis of Experiments. Wiley Eastern Limited, New Delhi, 1991.
[9] Aloke Dey. Orthogonal Fractional Factorial Designs. Wiley Eastern Limited, New Delhi, 1985.
[10] Paul Fieguth, M. S. Spina, and D. H. Staelin. Conformal Design of Experiments: An Automated Tool for Supporting Experimental Design and Analysis for Efficient

Improvement of Products and Processes. MIT Leaders for Manufacturing Program Publication, 1992.
[11] R. A. Fisher. The Arrangement of Field Experiments. Journal Min. Agri. 33, p503-513, 1926.
[12] R. A. Fisher. The Theory of Confounding in Factorial Experiments in Relation to the Theory of Groups. Biometrika, Ann. Eugen. XI, p341, 1942.
[13] S. Ghosh. On some new Search Designs for 2^{m} Factorial Experiments. Journal of Statistical Planning and Inference, 5, p381-389, 1981.
[14] Arnon Hurwitz. Sequential Process Optimization with a Commercial Package. Sixth National Symposium on Statistics and Design in Automated Manufacturing, 1993.
[15] Russell Lenth. Quick and Easy Analysis of Unreplicated Factorials. Technometrics, 31, p469-473, 1989.
[16] T. J. Mitchell. An Algorithm for Constructing D-Optimal Design. Technometrics, 16, p203-210, 1974.
[17] D. C. Montgomery. Design and Analysis of Experiments. John Wiley and Sons, New York, 1991.
[18] Srivastava J. N. On the Inadequacy of Orthogonal Arrays in Quality, Control and General Scientific Experimentation and the need for Probing Designs. Comm. Statis. 16, p2901-2941, 1987.
[19] R. L. Plackett and J. P. Burman. Design of Optimal Multi-Factorial Experiments". Biometrika, 23, p305-325, 1946.
[20] E. G. Schilling. The Relation of Analysis of Variance to Regression. Journal of Quality Technology, 6, p74-83, 1974.
[21] J. N. Srivastava. Design for Searching Non-negligible Effects. A Survey of Statistical Designs and Models, Amsterdam, p507-509, 1975.
[22] J. N. Srivastava and S. Ghosh. Balanced 2^{m} Factorial Designs of Resolution V which allows Search and Experimentation of one Extra Unknown Effect, $4 \leq m \leq 8$. Comm. Statis. - Theory Methods A6, p141-166, 1977.
[23] G. Taguchi. Introduction to Quality Engineering. Asian Productivity Organization, Tokyo, 1986.
[24] G. Taguchi. System of Experimental Design. UNIPUB/Kraus International Publication, White Plains, New York, 1987.
[25] C. F. J. Wu and Chen Youyi. A Graph-Aided Method for Planning Two-Level Experiments when Certain Interactions are Important. Technometrics, 34, p162-174, 1992.
[26] W. J. Youden. Partial Confounding in Fractional Replications. Technometrics, 3, p353-358, 1961.

[^0]: Barker Eng

[^1]: ${ }^{1}$ Simplex - V is a tradename of Statistical Program, Houston, Texas
 ${ }^{2}$ Ultramax is a tradename of Ultramax Corporation, Cincinnati, Ohio

[^2]: ${ }^{1} \mathrm{~A}$ few of the commercial software products surveyed (PC-QPI and RS/Discover) do have sequential design features but they do not generate optimal experiments based on previous results. Rather the user has to design the experiments and the software analyzes the results. Also, these commercial software products do not support sequential block analysis.

[^3]: ${ }^{2} A$ design matrix is said to be D-optimal with respect to a set of matrices if it has the maximum determinant in the set.

[^4]: ${ }^{1}$ There is a rare possibility that I_{23} and I_{14} have effects which are similar in magnitude but opposite in sign and therefore cancel each other. A check for this possibility is discussed later.

[^5]: ${ }^{1}$ A normal probability plot is a plot on a normal probability paper, a graph paper in which the ordinate has been scaled so that the cumulative normal distribution plots as a straight line.

[^6]: \#include "coninc1.h"

[^7]: int_ptr $(\mathrm{i}$, IB0 + block_no $)=\operatorname{sign} * \mathrm{col} ;$ if(abs(sum)!= mat_rows) error("Check Block !!", NULL, -1),
 sign $=($ sum $>0) ? 1:-1 ;$

 ${ }_{0} \mathrm{St}$

[^8]: pree((void $\left.{ }^{* *}\right)$ \&temp_vect);
 return;
 \}

 static void finish_up(void) $\{$
 pfree((void $^{* *}$) \&expt_mat);
 pfree((void ${ }^{* *}$) \&res_mat);
 pfree((void ${ }^{* *}$) \&blk_mat);
 pfree((void ${ }^{* *}$) \&sel_row);
 pfree((void ${ }^{* *}$) \&size_expt);
 pfree((void ${ }^{* *}$) \&size_blk);

[^9]: int i, j, *int_data $^{\text {N }}$ NULL, intno, sign,
 int *int_sign=NULL, count, opt_int_count;
 float quality, *var coeff=NULL, ${ }^{*}$ optint_coe
 float quality, *var_coeff=NULL, *optint_coeff=NULL, avg_coeff;

[^10]: * Types of blocks */
 \#define TYPE_FIR
 \#define TYPE_OAAT

