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Abstract

The growth of competitiveness in the manufacturing industry has resulted in an acute need
to improve product quality. Efficient methods for Design of Experiments (DOE) have thus
become more important than ever before. With increases in complexity of manufactur-
ing processes and the cost of experimentation, it has become important to use all prior
knowledge of the processes, derived first from theory and experience and later from exper-
imentation, to determine subsequent experiments.

The objective of this work is to develop sequential DOE methods and software tools
which can be used by manufacturers with no prior knowledge in design of experiments.

Techniques for designing blocks of fractional factorial experiments have been developed
and implemented in computer software. In particular, given a block of factorial experiments
and a list of probable interactions, different sets of experiments are designed to augment
the original block of experiments and form new factorial designs with different confounding
patterns. The set of experiments which produces a new design with minimal confounding
between the variables and the probable interactions is the optimal set of experiments. Soft-
ware has been implemented to generate the optimal Full-Block or Half-Block of experiments.
The fold-over design technique, which is popularly used in DOE, is a special case of the
Full-Block design strategy. The analysis routines have been extended to analyze multiple
blocks of experiments with different confounding patterns and to determine the effects of
the confounding interactions.

A One-at-a-Time design strategy has been proposed which uses the results of the pre-
vious experiments to design the optimal experiments one at a time. This strategy assumes
that there is only one significant variable or interaction on each significant column of the
design matrix. Therefore, this strategy is particularly useful when the number of significant
effects is sparse. A hypothesis is made that certain interactions are significant on the basis
of their variables. The optimal experiment for this hypothesis, i.e., the experiment which is
expected to yield the maximum output quality, is conducted. The result of this experiment
is compared with the predicted output quality of all possible plant models. The model
which gives the least prediction error is selected as the next hypothesis and the procedure
is repeated. The simulation results for this design methodology have been very promising.

Thesis Supervisor: David H. Staelin
Title: Professor of Electrical Engineering
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Chapter 1

Introduction

In this chapter we outline the motivation driving the research in this area. A brief overview
of the existing methodologies is given in Section 2 along with the outline of the thesis in

Section 3. Section 4 gives the notation used in the report.

1.1 Reseach Motivation

With the increase in competitiveness in the manufacturing industry the methods of Ex-
perimental Design are becoming increasingly important. The need for efficient Design of
Experiments (DOE) stems from the desire to improve quality and productivity quickly and
economically. The concepts in Design of Experiments have been extensively researched
since Fisher [11] introduced the basic theory in 1926.

Although the basic ideas in the DOE are relatively simple, their application involves use
of comparatively advanced concepts in algebra and statistics. Hence, despite the extensive
literature, DOE has remained largely outside the purview of manufacturing and is used very
infrequently, if at all, in today’s industry.

With the advent of high speed digital computers it is now possible to design and search
for optimal experimental designs and to use statistics without the need of the experimenter
to understand all the concepts. The goal of this thesis is to develop an experimental design
package for a user who is familiar with the plant/process to be optimized, but has no prior
experience with experimental design.

The basic proposed strategy for the DOE method developed here is shown in Figure 1-1.

An experimenter inexperienced with DOE can be expected to only perform the following
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Block 1:
Select Variables
and guess Interactions

Block 2: Design Block 3: Conduct
Experiment Matrix Experiments

Block 4: Analyze

Results
Block 6: Select bad Block 5: Evaluate
Probable Interactions Results

good

Block 7: Suggest
Optimum Setting

Figure 1-1: Proposed Experimental Design Strategy

tasks:

Block 1: Decide which parameters/ variables affect the process, and the approximate range
in which they can be varied for the normal operation of the plant. Also, based
on the knowledge of the process, the experimenter can guess some of the probable

interactions.
Block 3: Perform the set of experiments as determined by Block 2 of Figure 1-1.

Traditionally, an experimenter was expected to perform the tasks of all the blocks.
But as discussed above, it is possible to develop software so that the experimenter can
successfully use DOE without being required to understand all the concepts used in the
implementation of Blocks 2, 4, 5, 6 and 7 of Figure 1-1. With such simplification, DOE can
be used by a large number of manufacturers who are presently unable to do so.

This thesis is the continuation of the work done by Paul Fieguth et al. [10] based on
the insights developed by Dr. Ashraf Alkairy [1]. The earlier work focused on developing
software for Blocks 2 and 4. The contribution of this thesis is in the development of the
theory and software for Blocks 5, 6 and 7 along with an improvement of Block 2.

The thrust of the thesis is on designing sequential experiments. The need for sequential

16



designs arises due to:
e Lack of a priori knowledge of the process/plant.
o Constraints of available resources on the size of experiments.

e Desire to find a good operating point even if unable to determine the best operating

point.
e Need to conduct the experiment in a systematic and efficient manner.

All these factors are outlined in greater detail in the next chapter.

1.2 Background

The concept of Design of Experiments (DOE) was first introduced by Fisher [11]. Plack-
ett and Burman [19] proved that in order for the parameters of the design matrix to have
certain optimal properties it was essential that the designs have an orthogonal structure.
This resulted in the use of Factorial Designs. In these designs, as the number of variables
controlling a given process grow, the number of experiments required to completely ana-
lyze the variables and their interactions grow exponentially and so become impractical to
perform.

Ideas of fractional factorial designs were developed to reduce the total number of ex-
periments and yet retain the beneficial properties of factorial designs. The reduction in the
total number of experiments leads to the problem of confounding.

Two variables ( or interactions ) T; and Tj are said to be confounded with each other if
they vary in the same manner in all the experiments. That is, the value of the variables for

the mth experiment is given by,
Tim=k-Tjm Vm (1.1)

for some fixed k. In two-level factorial designs each of the variables are set at -1 or +1 level

in all the experiments. Therefore, T; and T; are confounded with each other if,

Tim = +Tjm  Ym (1.2)
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or

Tim = —Tjm Ym (1.3)

’

Given a process, there exists no well defined technique to select which variables/ in-
teractions are to be confounded. The selection is done on an ad hoc basis and hence an
element of subjectivity is introduced in the designs. After the experiments are carried out
all the significant variables/interactions may not be determined as there may be overlapping
between then.

In order to use DOE effectively it is very important that the exact dependence of qual-
ity on the variables and their interactions be established. Hence, whenever two or more
variables or interactions are confounded some technique is required by which their separate
effects can be determined.

Some of the DOE techniques available to determine the unknown plant models are
described below. The discussion is intentionally concise and should only serve to familiarize

the reader with the techniques.

1.2.1 Search Designs

Search Designs is a technique used for determining important interactions. Search designs
were developed by J. N. Srivastava [21]. The basic strategy of search designs is to design
a set of experiments which has the capacity to estimate the effects of a set of variables
and interactions and a few unknown interactions of a specified order. Readers may consult
Ghosh [13] or Srivastava [22] for a more detailed discussion on Search Designs.

Although the methodology is interesting there are shortcomings.

e The technique is relatively complicated and there exists no general technique to solve

all kinds of problems.

e The technique does not use a posteriori information and hence there is no obvious

extension to sequential experimentation.

1.2.2 Response Surface Methods

The Response Surface Methodology (RSM) is an alternative to factorial DOE. Like factorial
DOE, experiments are designed on a process to determine the relationship between the input

variables and the response. But in RSM the variables are not constrained to lie at any fixed
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levels. Each design technique has its own advantages and disadvantages. These issues are
discussed in greater detail in [17].
RSM is a sequential design procedure and there are many software packages which use

RSM for process optimization {14]. Some of the popular ones are:
e Simplex - Evolutionary Operations (Simplex - V) !
¢ ULTRAMAX ?

The ideas used in these procedures are significantly different from Factorial DOE dis-
cussed in this report. Hence the readers interested in RSM techniques may find the refer-

ences useful.

1.3 Thesis Overview

The thesis focuses on performing sequential experimental design using two different ap-

proaches:
1. Sequential Block Design Strategy
2. One-at-a-Time Design Strategy

Chapter 2 is based on these strategies and gives an overview. The need for sequential
experimentation is discussed and the basic assumptions on the models of the manufacturing
processes are enumerated.

In Chapter 3 the theory of Sequential Block Design is developed. The detail proofs are
given in the Appendices. The algorithm used in the computer software is discussed along
with the results of computer simulations.

Chapter 4 focuses on the Analysis of Sequential Block Designs. Classical techniques such
as Daniel Plots and Anova are discussed briefly. A closed loop technique for determining
significant interactions is described.

Chapter 5 deals with the One-at-a-Time Design Strategy. The basic concepts and advan-

tages are presented in this chapter. Simulation results are included to justify the strategy.

!Simplex - V is a tradename of Statistical Program, Houston, Texas
*Ultramax is a tradename of Ultramax Corporation, Cincinnati, Ohio
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Chapter 6 describes the Complete DOE Software Tool which being currently developed
at MIT. It also lists the achievements of the thesis and suggests possible future work on

sequential design of experiments.

1.4 Notation

In this report we will try to use consistent notation. Given a plant P, its output or quality
is denoted by Y. The performance of that plant is governed by input variables. These
variables are denoted by 71, T5,. .., T,. The model of the plant is assumed to be non-linear
and the output Y is assumed to be a linear function of the variables and their interactions.
The interaction between the variables T; and T} is denoted by I;;. Denoting the coefficients

of the variables and interactions by # we can represent the output as,

Y=ﬁ0+ﬁ1T1+)82T2-I—...-l-ﬂnTn—i-...—i-ﬁiinj+...+E (1.4—)

( Bo \
B
B2

Y=(1 T1 T2 Tn Iij ) 6 +e (1.5)

Bij

20



If there is more than one experiment then there will be one equation like Equation 1.5 for

each of the experiments. All such equations can be stacked together.

( 5o )

B
Y1 1 Tl,l T271 e Tn71 ee Iij,l - ﬂ2 &1
T: Tn Ii' £
Y, _ 1 Tio 2.,2 .,2 7,2 ' + 2 (1.6)
Do B
Ym 1 Tl,m Tg,m e Tn,m e Iij,m fes Em
Bij
\ i)
This can be represented as,
Y=X.8+¢ (1.7)

where Y is the Output Vector, X is the Regression Matrix, § is the Coefficient

Vector and ¢ is the Error Vector.

1.4.1 Factorial Fractional Designs

For a process, P, dependent on n variables, if the experiments are designed is such that

e In each of the experiments, the variables are at either one of two levels, denoted by

t+’ and ‘_?.
e There are 2" different experiments.

then the experimental design is called a Full Factorial Design.
If the experimental design has half the number of experiments of a Full Factorial Design then
it is called a One-Half Factorial Design. Similarly, if it has a quarter of the experiments
of a Full Factorial then it is called a One-Quarter Factorial Design. In general, a 1/2%
fraction of a Full Factorial Design is called a 2" * Factorial Design.

This report deals with DOE using Fractional Factorial Designs which are based on
Binary Orthogonal Matrices. Appendix A discusses some of the relevant properties of
Binary Orthogonal Matrices. Table 1.1 is an example of a 25~2 Factorial Design based on

the 23x23 Binary Orthogonal Matrix shown in Table 1.2. The first column of of the matrix

21



Variable: |77 To T3 T, Ts
Experiment | v; vs vs vie s
1 + + + + 4+
2 + o+ -+ -
3 + -+ - -
4 + - - - +
5 -+ 4+ - +
6 -+ - - -
7 - -+ 4+ -
8 - - - 4+ o+

Table 1.1: 25-2 Factorial Design Matrix

Expt. | vayg U1 Uz U3 Uiz Upz U3 Vip3
1 [+ + + + + + + =
2 |+ + + - 4+ - - -
34+ 4+ - o+ - -+ -
4 |+ + - - -+ - 4+
5 |+ - o+ + -+ - -
6 | + - + - - - + 4
T+ - -+ o+ - -4+
8 |+ - - - 4+ 4+ 4+ -

Table 1.2: Basic and Non-Basic Columns of a Binary Orthogonal Matrix

22



consists only of +1 and is called the Average Column (vgyg).

1.4.2 Resolution of Factorial Designs

Resolution is a useful concept associated with factorial designs. The resolution of a design
is a measure of the ability of the design to resolve confounding between interactions.

A 2" % factorial design is said to be of resolution R if no Pth order interaction is
confounded with another interaction of less than (R — P)th order. For example, a design
has a resolution IIT if no variable is confounded with another variable but at least one
second order interaction is confounded with a variable. Designs with higher resolution are
preferred.

In this report we will usually begin the sequential DOE procedure using a design of
resolution IV or higher. Such a design has the property that none of the variables are

confounded with second order interactions.

1.4.3 Basic Columns and Variables of Factorial Designs

In this subsection we discuss the notation used to represent an factorial design. An factorial
design is viewed as a mapping of variables and interactions to a set of columns of a binary
orthogonal matrix.

As discussed in Appendix A, given a binary orthogonal matrix X of size 2™, we can
determine a set of m independent columns. These columns are called basic columns. The
other 2™ —m columns are called non-basic columns. The basic columns are denoted by
the symbols vy, vy, ..., vn. Every non-basic column corresponds to a product of a unique
set of basic columns. A non-basic column is denoted by v, if it is generated by the product
of the columns v;, v; and v;. An example of a 23 binary orthogonal matrix is given in
Table 1.2.

The set of experiments can be represented by assigning to every variable Ty, Ts, ..., T,,
a column of the orthogonal matrix. For example, comparing Table 1.1 and Table 1.2, we
can represent the information of the experiments simply as shown in Design(I) of Table 1.3.

It is clear that if 77 lies on column v; and T3 lies on column vy, then the interaction of
these, represented by I12, must lie on the column corresponding to the product of columns v,
and vy, namely column v;s. Therefore, all variables and their interactions must correspond

to some basic or non-basic columns. In general, there are more variables and interactions
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| Expts. [vay v1 vs s vz vsg ws Vs |

Design(I) T1 T2 T3 T4 T5
Interactions Iy Iy Ips Iis I3 ©Lis Is
I35 Iys I3
Design(II) T1 Tg T3 T4 T5
Interactions Iys I3q Iy Iio Iz I3 Iy
Iys L5 Ios
Design(III) T4 T1 T2 T3 T5
Interactions Ly Iny I3y Lt Ins Ly Igs
I35 Lis  Ips

Table 1.3: Changes in Confounding Patterns

than there are columns. Hence, each column of the matrix may be associated with more
than one variable or interaction. All variables and interactions lying on one column are said
to be confounded with each other. All variables and interactions which are confounded

with each other are indistinguishable from each other, with respect to the given experiment.

The orthogonal matrix used to design a 2"~* factorial experiment in n variables has
n — k basic columns and 2" *—(n — k) non-basic columns. The design of experiments
corresponds to assigning n — k variables to the basic columns and the remaining k variables
to the non-basic columns. The assignment of these non-basic variables govern the overall
confounding pattern of the design. A set of variables lying on a set of basic columns are

called a set of basic variables and the other variables are called non-basic variables.

Example 1-1

e Suppose a process P depends on 5 variables T, ..., T5. A 25=2 Fractional Factorial
experiment is to be designed to study the process. As explained above, this is equiv-
alent to assigning 3 variables to a set of basic columns and the other 2 variables to
any non-basic columns. If Ty, T and T3 are assigned to to vy, ve and v3 respectively,
then Ty and T can be assigned to any of the non-basic columns. Different choices of

non-basic columns will lead to different confounding patterns.

In Design(I) of Table 1.3, Ty and T} are assigned to columns v and vgg respectively.
The corresponding positions of the second order interactions are shown in the Table.

When the assignments of T4 and T5 are changed to columns vgs and v;g3 respectively,
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the confounding pattern of the design changes as shown in Design(II) of Table 1.3.
Design(I1I) is an example in which T4 and T5 are assigned to v,y and v;23 respectively.
Such a design is not very desirable as it confounds the average effect with the main

effect of T,. Hence, both these important effects cannot be determined.

Design(I) and Design(II) have resolution III because there are second order interac-
tions which confound with the variables but there are no variables which confound
with another variable or the average column. Design(III) has resolution I because
T, confounds with the average column - which can be considered as a zero order

interaction.

In this example only Ty and T5 have been shifted keeping the variables T, To and T3
fixed. If the basic variables are shifted from one column to another along with the
non-basic variables there are problems caused due to rearrangement of rows. This

issue is discussed in greater detail in Appendix B. m

1.4.4 Shifting with respect to a Columns

This report deals with sequential experimentation. Using sequential experimentation it is
possible to shift the variables and interactions to different columns of the design matrix and
reduce confounding. In order to mathematically define shifting, we introduce the concept
of Shifting with respect to a Column. A variable ( or interaction ) T is said to have shift
with respect to column v, if and only if the old column of T}, v;, and the new column of

T;, vy, are such that vy, = v,-vy.

1.4.5 Fold-Over Designs

Given a block of 2"~ factorial experiments, if the signs of all the elements of this block
are reversed, a fold-over design is obtained. This technique is originally due to Box and
Wilson [6].

If the first block has resolution III, then it can be shown that the fold-over design
together with the first block results in an factorial design of resolution IV, that is one in
which none of the second-order interactions are confounded with the variables. Therefore,
using such a design it is possible to determine the effect of all the variables independent of

the effect of any second-order interactions.
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Chapter 2

Sequential Experimental Design

In this chapter the concept of sequential design of experiments is introduced. Section 1
deals with the non-sequential approach to the DOE and the problems with it. In Section 2
the overall sequential approach is outlined. Section 3 lists the assumptions made on the

manufacturing models.

2.1 Non-Sequential Approach to DOE

The concept of Sequential Experimental Design is not completely understood especially
when the variables are at three and higher levels. Therefore, most of the commercial

software available for factorial DOE support non-sequential experimental design!. As shown

'A few of the commercial software products surveyed (PC-QPI and RS/Discover) do have sequential
design features but they do not generate optimal experiments based on previous results. Rather the user has
to design the experiments and the software analyzes the results. Also, these commercial software products
do not support sequential block analysis.

Block 1: Block 2: Design Block 3: Conduct
Select Variables Experiment Matrix Experiments

Block 4: Analyze
Results

Figure 2-1: Non-Sequential Approach to Experimental Design
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in Figure 2-1 the non-sequential approach to DOE can be divided into the following steps:

1. Selecting variables and potential variable interactions which are perceived as being

most important in determining the performance of a given process.
2. Given the number of variables, designing a set of experiments which is to be performed.

3. Conducting the experiments and obtaining the results, i.e. values of the output pa-

rameters to be optimized, such as strength, variance, etc.

4. Analyzing the results to obtain the coeflicients of the variables and their interactions

in the mathematical expression Equation 1.6 predicting the output parameters.

5. Using these coefficients to suggest new settings of the control variables, T, to improve

the process.

In order to use non-sequential experimental design, the experimenter has to guess the prob-
able interactions. The commercial DOE software can be used only after the list of probable
interactions has been obtained. Some of the main features currently available in commercial

DOE software include the following:

e Designing factorial experiments based on various criteria of optimality such as D-
optimality 2 [2].

e Analyzing results using different techniques. Some of the commonly used include:

1. Analysis of Variance (Anova)
2. Normal Probability Plots
3. Bayesian Estimation

Despite these advancements the commercial DOE software products are limited in their

application. Some of the main problems are:

e It is not possible to suggest a general design methodology which can be applied to all
processes. The concept of DOE depends a lot on the specific process to be optimized

and therefore a design that may be good for one process might not be so for another.

2A design matrix is said to be D-optimal with respect to a set of matrices if it has the maximum

determinant in the set.
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e The experimenter has to guess the interactions. In order to be safe it is necessary to
guess very conservatively. Thus, the effects of a much large set of interactions has to
be determined than is actually necessary. This results in the use of more experiments

than necessary.

o Irrespective of the sophistication of the design and analysis procedures, one cannot
overcome the fundamental limitations of confounding. That is if one variable/ in-
teraction is confounded with another, then the effects of each cannot be evaluated

separately irrespective of the nature of the analysis.

o Typically, there is a limit to an experimenter’s knowledge about the process he or she
wishes to optimize. Hence it is often true that having performed the experiment some

of the following situations might arise.

1. Some of the columns of the test matrix which were assigned to variable/ inter-
action(s) which the experimenter thought were unimportant were found to have

large coefficients.

2. The results of the experiments suggests the possible presence of interaction(s)
which are confounded with other variables/ interactions and hence could not be

evaluated.

3. Only a few variables and interactions are found to be important.

Hence the experimenter might be forced to ask: WHAT NEXT?2? This is exactly the

question that we hope to address in the course of this thesis.

2.2 Sequential Design Philosophy

In this project we aim to address the issue of DOE in a systematic manner. Given a process
which needs to be optimized the experimenter should start by studying its physics. Based
on this, a group of variables and interactions should be selected. The software will then
use this information and will design a matrix which has minimum possible confounding
between these variables and interactions. After conducting the experiments and analyzing
the results it may happen that the experimenter is not completely satisfied due to one or

more of the reasons stated in Section 2.1. Thus in order to proceed the software needs to
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consider all the possible conditions for which an experimenter may not be satisfied with
the results of the first set of experiments and suggest acceptable solutions for each of these
conditions.

It is difficult to determine which set of experiments the experimenter should perform,
in the most general sense. The choice of experiments depends not only on the specific
questions which the experimenter wishes to answer but also on the nature of the process at

hand. There are many factors which need to be considered.
e The level of noise in the experiments.
e The number of experiments that the experimenter wishes to perform.

e The accuracy required in estimating the parameters.

Fractional Factorial Designs have very interesting and important properties and are very

popular in experimental design techniques.
e The experiments are easy to perform.

e The analysis of the results yield uncorrelated estimates of the effects of the variables

and the interactions.
e Factorial designs support sequential experimentation.

e They can be applied to a large class of manufacturing processes.

Given these advantages, it is desirable to design a new fractional factorial experiment.
So the question is how to design a new block of experiments which will supplement the old
block of experiments and enable the experimenter to resolve many of the problems stated
above? The Sequential Block Design and the One-at-a-Time Design are developed with this

perspective. They are briefly described below.

2.2.1 Sequential Block Design

In this methodology first a fold-over block of experiments is designed. Since the design used
is at least of resolution IV, the effects of the variables can be determined independent of the
effects of second order interactions. Based on the assumptions on the models discussed in
Section 2.3, a list of probable significant interactions is formed. There may be confounding

between these interactions.
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With the help of the Half-Block Design and the Full-Block Designs discussed in Chap-
ter 3, an optimal set of experiments is obtained which ‘best’ disentangles the confounding
interactions. Hence, the new set of experiments allows the determination of the effects of
the confounding interactions. It may happen that there are still a few interactions which
remain confounded, but the optimal set of experiments ensures that these are relatively
less important. If desired, a second optimal design may be used to determine the effects of
these interactions. Hence using this method we can sequentially sort out the confounding

between interactions. Sequential block designs are discussed in detail in Chapter 3.

2.2.2 One-at-a-Time Design

In most manufacturing processes the number of significant variables and interactions af-
fecting the quality is usually small. Suppose a fold-over block of experiments has been
conducted. It is often reasonable to assume that at most one variable or interaction is
significant in any column of the design matrix.

Therefore, once the effects of the columns have been determined, only the significant
variable or interaction in each column needs to be determined. This is done by first making
a hypothesis about the significant variable or interaction in each column. Based on this
hypothesis an optimal operating point is computed. The actual output of the plant at that
operating point is obtained. The actual output is compared with the predicted output and
the hypothesis is verified. If the hypothesis fails, a new hypothesis is proposed.

There are several advantages of this approach. One-at-a-Time designs are discussed in

detail in Chapter 5.

2.3 Assumptions on Manufacturing Models

In this report we assume that the manufacturing systems that we deal with satisfy the

following assumptions. In case there are any deviations they will be noted in the report.

Al - Sparsity-of-Effect Principle: Most of the systems are dominated by the effects of
the variables and the low-order interactions. Most of the higher order interactions are
negligible. This assumption will also be referred to as the Sparsity Principle in the

report.

This assumption is widely used and is supported by experienced practitioners of DOE.
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A2 - Minimal Complexity of Models: Most systems are governed by interactions that
are important whenever the main effects of some of their variables are important too.

This assumption will be called the Simplicity Principle in the report.

A3 - Uncorrelated Noise Distribution: The noises in the different experiments are un-
correlated and are approximately gaussian distributed with zero mean and constant
variance. This justifies the use of least-square techniques in estimating the manufac-

turing models.

A4 - Sequential Experimentation: It is possible to combine the results of two or more
fractional factorial experiments to assemble sequentially a larger design to better

estimate the effects of the significant variables and interactions.
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Chapter 3

Sequential Block Design

This chapter discusses the concept of Sequential Experiments using Block Designs. Section 1
discusses the need for such a methodology. Section 2 deals with the initial steps required
to do sequential experimental design. Section 3 discusses Half-Block Designs. A detailed
example is given to help the reader understand the technique. Section 4 discusses Full-
Block Designs and Fold-over Designs. Section 5 illustrates a method for completing an
incomplete block of experiments. The mathematical proofs of the procedures are given in

the Appendices.

3.1 Need for Sequential Block Design

Consider a situation in which a manufacturer, inexperienced in DOE, desires to use exper-
imental design to improve the quality of the product. Before starting experimentation, the

manufacturer must do the following:

e Choose variables and their operating ranges.
e Guess the important interactions affecting the response.

e Choose a response or quality variable which really provides useful information about

the process under study.

It is not desirable to do only one block of experiments or a large first block of experiments

since:

1. The levels of the variables may be incorrectly chosen, making the effects of some of

the variables dominate the results.
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2. Since the significant variables and interactions are not known a priori, it is advanta-
geous to use the information from the first block of experiments to design subsequent

ones.

3. There are always constraints of time, funds etc. on the total number of experiments
that can be performed. Therefore, it is desirable to conduct most experiments when

there is more information available about the process.

It is usually recommended that the experimenter invest no more than 25 percent of
the available resources in the first block of experiments [17]. Therefore, it is necessary to
use an experimental design technique which supports sequential experimentation. Hence,
fractional factorial designs are often used. A detailed description of factorial designs can
be found in several books including [9], [17], [8]. In this report the reader is assumed to be

relatively familiar with the basic concepts of fractional factorial designs.

3.2 Sequential Design Methodology

Given a process P which depends on n variables Ti,...,T,, a complete factorial design
requires 2" experiments to determine the effects of all the variables and interactions. Even
for moderate values of n, the complete factorial design requires an infeasible number of
experiments to be performed. For example, for n equal to 8, 9 and 10, the number of
experiments required is 256, 512 and 1024 respectively.

Most manufacturing systems satisfy the assumptions given in Section 2.3 and there-
fore require far fewer experiments to completely determine the significant variables and
interactions. The basic steps involved in sequential block design are described below.
Step 1: Designing First Block of Experiments
We advocate that the first block of experiments should be a fold-over design. To obtain
a fractional factorial design which is also a fold-over design, first a 2™ factorial matrix is
designed, where m is the smallest integer for which 2™ > n. The n variables are then
assigned to unique columns of this matrix. The 2™ factorial matrix is now folded ie. a
matrix is formed whose elements are obtained by changing the sign of the elements of the
factorial matrix. The matrix is appended to the original factorial matrix and the new matrix

of 2™+ experiments is the desired fold-over design.
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Variables Ty To T3 Ty || e Iz Iz
& Interactions Iyy Ly Ip4
Expts. Uy Uz Us Vigs || Vig Ugy Usi
1 B+ + + + | + + +
2 L+ + - - |+ - -
3 K|+ - + - |- - +
4 1+ - - + |+ + -
v F|- - - - |+ + +
2 ol- - + + 1+ - -
3 Li- + - + |- - +
4 D|- + + - |- + -

Table 3.1: Fold-over Design Matrix for Example 3-1
Example 3-1

e Consider a process P which depends on 4 variables T7, T3, T35 and Ty. To obtain a
fold-over design, a 23 factorial experiment needs to be designed. First a 22 factorial
matrix is designed as shown in Block 1 of Table 3.1. The four variables are assigned
to the four columns of this matrix. Then the matrix is folded over and appended to
Block 1. The overall matrix corresponds to the desired fold-over design. Note that

none of the variables are confounded with any second order interaction. m

Step 2: Analyzing the Results

After conducting the fold-over experiments, the coefficients of the columns of the orthogonal
matrix are obtained. The fold-over design has resolution IV. Hence, if it is assumed that
the third and higher order interaction are insignificant, the estimates of the main-effects
of the variables are the coefficients of the columns on which they lie. Using the analysis
techniques described in the next chapter, a list of significant variables is obtained.

Step 3: Determining Probable Interactions

On the basis of the Minimal Complezity of Model assumption, a list of all second order inter-
actions containing at least one significant variable is made. From this list, the interactions
which lie on columns with significant coefficients are selected. This group of interactions
are called the probable interactions. By assumption, all the true interactions must lie in this
group. It may happen that there may be many probable interactions which are confounded

with each other and hence their effects cannot be determined from the results of the first

block of experiments.
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Step 4: Resolving Confounding between Interactions

In case there is confounding between the probable interactions it should be possible to
conduct more experiments to unconfound them and determine their separate effects. If we
view the variables and interactions as ‘sitting’ on the columns of the orthogonal matrix,
the DOE techniques correspond to ‘placing’ the variables on the columns of the matrix.
Once the variables have been assigned to the columns of the matrix, the positions of the
interactions get fixed.

Hence, in order to unconfound the interactions, the variables need to be shifted from
one column to another with the help of more experiments. In order to unconfound the
interactions, we must exactly understand the mechanics by which the variables can be
shifted from their original positions. Once the mechanics is understood it is possible to
search through the design and determine the columns to which the variables can be shifted
to achieve maximum unconfounding.

Shifting a variable from one column to another is equivalent to designing an experiment
with a different confounding pattern. This idea is discussed in more detail in Appendix B.
Given that the first block of 2"* factorial experiments has been conducted it is desired
that the second block of experiments leads to a fractional factorial design with a different

confounding pattern. There are essentially two options.

1. If possible, replace some of the rows of the first block of experiments by those of a

second block, and create a distinct fractional factorial design.

2. If possible, append the rows of the first block of experiments to the rows of a second
block of experiments to create a larger fractional factorial design having a different

confounding pattern.

Both these options are possible. The technique based on option 1) is called the Half-
Block design and the one based on option 2) is called the Full-Block design. These designs

are described in the next two sections.

3.3 Half-Block Designs

The focus of this section is to study the problem of unconfounding probable interactions.

It is assumed that a 2" * factorial experiment has been conducted on the process and the
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effects of the variables are known. On the basis of this, a list of probable interactions is
obtained. The effects of all the probable interactions are known, except for those which are
confounded with each other.

We need to determine the effects of the confounded probable interactions. Therefore, a
fractional factorial experiment has to be designed which has a different confounding pattern.
In order to save resources it is natural to inquire if it is possible to design a new factorial
experiment in which many of the experiments of the first block are similar, rather than one
in which all the 2"~* experiments are different from those of the first block. This issue has
been discussed in Appendix B. The main result is given below. The readers interested in

the proof can refer to Appendix B.

Result:

Given a block of 2"~* factorial ezperiments in n variables,

1. At least 2" %=1 experiments of the block need to be changed to obtain a new block of

factorial experiments with a different confounding pattern.

2. New blocks of factorial experiments which can be obtained by doing an additional set of
2n=k=1 eyperiments, can be generated by shifting the variables with respect to every

column of the design matriz.

3.3.1 Algorithm to Determine the Optimal Half-Block Design

To begin with, we need to assign each of the probable interactions a weight based on the
significance of its variables and the coefficient of its column. That is, an interaction of two
important variables should be weighted more than one in which only one of the variables
is significant. Also, an interaction lying on a column with a large coefficient should be
weighted more.

In this report, the weight of an interaction is obtained by taking the absolute value of
the products of the coefficients of its column and those of its variables. There are other
acceptable means of assigning the weights. Further work could be done to examine them
and determine if some are better than others.

The goodness of a design k is evaluated on the basis of four quantities:

1. Number of columns in which the variables confound with probable interactions, Nviy.
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2. Sum of the weights of the interactions confounded in 1., Wviy.

3. Number of columns in which the probable interactions are confounded with each other,

Niig.
4. Sum of the weights of the interactions confounded in 3., Wii.

For any two designs, design k and design [, design k is said to be better than design [ if
Nwviy < Nwgyy. If Nvip = Nvig, then design k is better than design [ if Wvip < Woi,. If
terms 1. and 2. are equal for both the designs, then design k is better than design [ if
Niiy < Nii;. Eventually if terms 1., 2., and 3. are equal, then design k is better than
design [ if Wii, < Wi,

This method of comparing different designs ensures that:
o Designs with less confounding between variables and interactions are preferred.

e Designs which have confounding between probable interactions with high weights are

avoided.
e A design with no confounding is preferred over all other designs.

This method of comparison has been found to yield good results. Nevertheless, there are
other measures which would be acceptable too. Further research should be done to de-
termine the existence of an ‘optimal’ comparison method which performs best over the
ensemble of manufacturing processes.

Given a block of experiments, the variables are shifted to with respect to different
columns and different designs are obtained. The search procedure follows the Tree Search
Algorithm. Each time a better design is found it is called the current optimum design
and is stored in memory. The search procedure stops when either all four quantities given
above reduce to zero, or if no design is found which is better than the current optimum
design. The Tree Search algorithm ensures that all acceptable sets of 2" ~*~! experiments

are searched.

The results given in Appendix B greatly reduce the search. Shifting any one variable
completely determines the permissible columns for the placement of all the other variables.
That is, once any one of the variables has been shifted, the other n—1 variables can each be

placed in only 2 of the 2% columns. Whenever the variables are placed in the permissible
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Experiment: 1 2 3 4 r 2’ 3 4
Result: 16.21 841 23.64 15.35 11.72 -6.22 16.57 0.84

Table 3.2: Results of Fold-over Design of Example 3-2

Column: Vavg Vg Vg U3 U193 Vo vgg V13
Variable T1 T2 T3 T4 112 123 113
& Interaction: Iy Ty Iy
Coefficient: 10.84 5.11 -0.33 -2.22 -0.31 -3.31 0.24 6.19

Table 3.3: Analysis of Design of Example 3-2

columns, there exists a block of 2" ~%~1 experiments which along with 2" *~! experiments
of the first block gives a new 2"~* factorial design.

Once the variables have been placed in the permissible columns, the procedure for
obtaining the new experiments is simple. The new design is generated from the old one
by shifting some of the variables with respect to a column of the old design as described
in Appendix B. The new block of experiments are the 2" *~! rows of the new design
matrix in which the elements of this column are -1. The rows for which the elements of the
column are +1 are common to both the new and the old block of experiments and therefore
these experiments need not be done again. Once the 2" %=1 new experiments have been
conducted, the new matrix can be formed and the effects of the probable interactions can

be determined.

Example 3-2

e Consider the process given in Example 3-1. Suppose that the true expression for

quality is given by,
y=10.6 +5.27y — 2.5T5 — 3.1115 + 6.11;3 (3.1)

The first block of experiments is the fold-over design of Table 3.1. The results obtained
are shown in Table 3.2. The coefficients of the columns obtained from these results

are shown in Table 3.3.

From Table 3.3 it is clear that only columns Vavgs V1, Vg, V13 and vy are significant.
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Experiment | Ty T T3 Ty | Result
17 - - -+ | 10.31
27 - - + - | -6.49
37 -+ - -] 1733
47 -+ + 4+ -036

Table 3.4: Half-Block Experiments and Results of Example 3-2

Column: Vavg vy Ug Vg Visgs  Vis Usg V13
Variable T1 T2 T3 I14 112 T4 I13
& Interaction: I34 Iy I3

Coefficient: 10.57 5.37 -0.17 -2.32 0.07 -3.46 -0.15 6.31

Table 3.5: Analysis of New Design of Example 3-2

Therefore, the significant variables are 77 and T3. The possible significant interactions
are: Iig, I13, I14, Iog and I34. Of these, only I19, I34 and I3 lie on significant columns

and constitute the set of probable interactions.

Since it is assumed that third and higher order interactions are negligible, the coefhi-
cients of the columns v4.4, v; and vg correspond to the effects of the constant, Ty and
T3 respectively. Since Io4 is assumed negligible, the coefficient of v;s is an estimate
of the effect of I;3. The effects of probable interactions I12 and I34 cannot be deter-
mined separately as the interactions are confounded with each other. Therefore, we
need to design a Half-Block experiment to unconfound the effects of I12 and I34. The
Half-Block algorithm suggests shifting T4 from column v;23 to vgg, that is, shifting T}
with respect to column v;. Thus, the experiments in which the elements of column v;
are ‘-’ need to be done. The sign of T} is reversed in each of these experiments. The
Half-Block experiments are shown in Table 3.4. The results of theses experiments are

given in the same table.

The experiments of Table 3.4 along with Experiments 1, 2, 3 and 4 of the the first
block give a new orthogonal matrix which has a different confounding pattern. The
confounding pattern and the result of the analysis of the new matrix is shown in

Table 3.5.

From Table 3.5 it is observed that each column has only one significant variable or
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probable interaction. Thus, the effect of each of them can be determined. Since the
column vy in Table 3.5 has a non-significant coefficient, it implies that Is4 is not
significant. The coefficients of columns of I;3 and I;5 have significant coefficients
which agree well in the result of the analysis of the old and the new design matrix.

Hence I;3 and I are significant interactions.

The results of the analysis of the two designs can be improved by taking the average
of the corresponding effects in Table 3.3 and Table 3.5. Dropping the non-significant

effects, the model of the plant is given by:
y = 10.71 4+ 5.24Ty — 2.27T3 — 3.39115 + 6.251 3 (3.2)

Equation 3.1 and Equation 3.2 agree quite well. Hence the Half-Block methodology

has been effectively used to estimate the model of this process.

In this example it is not possible to determine the optimal operating point of the
process before obtaining the model of the process because the conditions cited in

Section 5.5 are not satisfied.

The interactions I;4 and Is3 were dropped form the list of probable interactions be-
cause they were located on a non-significant column. If these interactions are signifi-
cant the coeflicients of the columns in Table 3.3 and Table 3.5 will not be consistent.
For example, if I3 is significant, the coefficients of the column I;5 would not be similar
in both Table 3.3 and Table 3.5 since it includes the effect of I53 in Table 3.5. This

procedure can be used to verify the process model. m

3.3.2 Advantages and Disadvantages of Half-Block Designs

The Half-Block designs procedure described in this section is suitable for a large number of

situations.
1. If the number of confounded probable interactions is small.

2. If the first block of experiments is large. The size of the design matrix increases
exponentially with the number of variables, n. Even in the worst case the number
of probable interactions (of second order) increase with n2. Therefore, as the num-

ber of variables increase, the number of columns increases and it becomes easier to
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disentangle the probable interactions using Half-Block designs.

3. Given a block of 2"* factorial experiments, a Half-Block design uses 2" %~ experi-
ments of this block to forms a new block of 2"~ factorial experiments. The analysis
of the new block yields uncorrelated estimates of the effects of the unconfounded

variables and interactions.

There are a few limitations of this design technique.

1. When a Half-Block design strategy is applied to a block of 2"~* factorial experiments,
on—k—1 experiments are determined which form a new block of 2"~ factorial exper-
iments with a group of 2" *~! experiments from the first block. The new block has
a different confounding pattern. It is possible to estimate the effects of the variables
and the interactions by analyzing all the 2"~* 4 2n~k~1 experiments which have
been conducted. The estimates obtained from this analysis will be correlated with
each other because the columns of the regression matrix are not orthogonal to each

other.

Instead, if only the experiments of the new block of 27—k factorial experiments are
analyzed, the regression matrix is orthogonal and the estimates will be uncorrelated.
These estimates will have a larger variance because the number of experiments used
in the analysis is reduced. Thus there is a trade-off between smaller variance and

uncorrelatedness of the estimates.

2. If the design is highly confounded, it may not be possible to unconfound all the

probable interactions using Half-Block designs.

This limitation is due to the fact that Half-Block designs can only restructure the
confounding pattern and not decrease the confounding. The optimal restructuring
ensures that the probable interactions get unconfounded at the expense of the non-
significant interactions. Therefore, the only manner in which the overall confounding
can be reduced is to design a larger matrix which is less confounded. This is the issue

of the next section.
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3.4 Full-Block Designs

This section deals with the theory and application of Full-Block Designs. The Half-Block
designs described in the last section are very useful but there may be situations where,

having conducted a 2"~* factorial experiment it may happen that:
1. The number of confounded probable interactions is large.
2. Uncorrelated estimates of low variance are required.
3. Resources permit conducting more than a Half-Block Design.

In such cases it is more desirable to have a design technique which simultaneously uses all
the experiments to determine the model of the process. The use of all the experiments is
advantageous on two counts. One, the larger design matrix leads to less confounding and
two, the estimates obtained from analysis have a smaller variance.

The basic problem can thus be stated as follows. Having done a block of 2" * factorial
experiments on a process, which is the next block of experiments that need to be performed
so that the analysis of both blocks ‘best’ unconfounds the probable interactions? This
question is the focus of Appendix C. The main result is stated below. The proof and an

illustrative example is given in Appendix C.

Result:

Given a block of 2% factorial experiments in n variables,

1. A new block of 2" % experiments forms a block of 2"~%+1 factorial ezperiments along with
the original block only if both the new and the original block have the same confounding

pattern.

2. There are 25-1 possible blocks of 2" % ezperiments which can form a block of 2"kl
factorial experiments with the original block. The new blocks can be generated by

reversing the signs of the columns of the non-basic variables in the original block.

3.4.1 Algorithm to Determine the Optimal Full-Block Design

In the Full-Block design algorithm, different blocks of 2"~* experiments are generated by
reversing the signs of all the possible subsets of the non-basic variables. Each block is

unique. The confounding pattern of the overall design is determined for each of these
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Experiment: 1 2 3 4 1 2 3 4
Result: 18.59 1843 13.89 14.60 2.81 -7.18 18.05 8.58

Table 3.6: Results of Fold-over Design of Example 3-3

Column: Vayg vy Vs U3 Vigg Uiz Ugg  Uj13
Variable T T, T3 T, Ly Iy Iy
& Interaction: I3y Ly Iy
Coefficient: 1097 541 4.94 -2.50 0.04 -2.81 0.17 2.36

Table 3.7: Analysis of Design of Example 3-3

blocks. The Tree Search algorithm is used to determine the optimal new design using the
criterion described in the previous section.

The results of Appendix C lead to a considerable simplification in the search procedure.
The Tree Search algorithm ensures that all 25-1 block designs, which can be used with the
first block to give a 2"~*+1 Fractional Design, are searched. Hence the search gives the true
optimum design.

The new block of experiments to be performed corresponds to the old design in which
the signs of certain columns of the non-basic variables are reversed in accordance with the
result of the search.

Once the new block of experiments have been carried out, the new design can be ap-
pended to the old one. The overall design corresponds to a 2" *+! factorial design. The
algorithm used to generate the new block of experiments guarantees that the overall design
matrix has optimal confounding between the probable interactions.

Example 3-3

e Suppose the process in Example 3-1 is given by,
y = 10.6 + 5.2T, + 4.9T» — 2.5T3 — 3.1[12 + 6.1113 — 3.7124 (3.3)

Let the first block of experiments be the fold-over design of Table 3.1. The results of
these experiments are given in Table 3.6. The coefficients of the columns of the matrix
are given in Table 3.7. It is observed that the variables T1, T> and T3 are significant.

According to our assumptions the possible significant interactions are Ii9, 13, I14,
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Experiment | T7 To T3 Ty | Result
1 + + + - 24.76
2 + + - 4+ | 1111
3 + - 4+ + | 21.72
4 + - - - 6.58
5 - - -+ 9.99
6 - -+ - | -14.78
7 -+ - - 25.29
8 -+ +  + 1.14

Table 3.8: Full-Block Experiments for Example 3-3

Column:

Vavg Ui Vg Vs Uy V12 Vis Uiy
Var.& Int.: T T T3 T, 1o I3 Iy
Coefficient: | 10.85 5.36 4.90 -2.51 0.15 -2.88 6.04 0.14
Column: Ugg Vg Usy  Uigs Vigy U13;  Vsg, Vig3y
Var.& Int.: | I3 Iy Isng Do Loy Iz Ioza Tiom
Coefficient: | 0.03 -3.67 -0.11 0.01 0.07 0.05 0.05 0.12

Table 3.9: Analysis of New Design of Example 3-3
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I3, Ir4 and I34. But the column of vgg is not significant. This implies that I3 and
I14 are not significant 1. Thus there are 4 probable interactions I12, I34, I3 and Iyy.

The first two and the last two probable interactions are confounded with each other.

When a Half-Block design algorithm is applied to this problem, it is found that there
exists no Half-Block design which can unconfound all the probable interactions. Thus
we have to resort to a Full-Block design. The Full-Block design algorithm suggests
reversing the sign of the column of T} keeping the other columns unchanged. Table 3.8
gives the Full-Block experiment. The results of the experiments are also given in the

same table.
The results of the analysis of all the 2* factorial experiments are given in Table 3.9.

Using Table 3.9 and selecting the significant terms, the estimate of the model is given

by:
y = 10.85 + 5.3677 + 4.90T5 — 2.51T5 — 2.88115 + 6.04113 — 3.671y4 (3.4)
This estimate compares very well with the true plant model,

y =10.6 + 5.2T1 +4.975 — 2.5T3 — 3.1119 + 6.1113 — 3.7124 (3.5)

Notice that if our assumption that I3 and I4 are not significant were wrong, the
coefficients of the column on which they lie would be significantly different in the
results of Table 3.9 and Table 3.7. Comparing the two results would permit the

estimation of the effects of these interactions. m

3.5 Completing Block Designs

This section deals with the issue of completing an incomplete block of fractional factorial
experiments. Suppose a block of 2"~ factorial experiment has been conducted followed by a
Half-Block of experiments. The Half-Block has the property that it forms a 2"~k orthogonal
matrix with 2%%~1 experiments of the first block of experiments. There may be situations

where, after conducting a Half-Block, it is desired that a set of experiments is found which

!There is a rare possibility that I»3 and I14 have effects which are similar in magnitude but opposite in
sign and therefore cancel each other. A check for this possibility is discussed later.
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Figure 3-1: Pictorial Representation of Completing Block Design

together with all the experiments conducted previously, determine a orthogonal matrix of
size 2"~%+1. This idea is represented in Figure 3-1. The procedure for completing a block
is equivalent to finding the missing block of 2" ¥~ experiments shown in Figure 3-1.

The concept of completing blocks is discussed in detail in Appendix D. The procedure
is demonstrated with an illustrative example. The general procedure for completing blocks

is given below.

Procedure for Determining the Missing Block:
Given an incomplete block of m (2" % < m < 27 *+1) experiments of a block of 2n—*+1

factorial experiments,
Step 1. Determine the basic variables and the confounding pattern of the incomplete block.

Step 2. Check which of the 2"~**! combinations of +1 and -1 are missing from the columns

of the basic variables. There will be 2”~*+1_m such combinations.

Step 3. For each of the combinations determined in Step 2, determine the entries of the

non-basic variables of the matrix using the confounding pattern of the incomplete

block.
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Chapter 4

Analysis of Sequential

Experiments

This chapter deals with the analysis techniques used to analyze sequential experiments.
Section 1 deals with classical techniques of analysis. Section 2 discusses the issue of closed

loop techniques for determining interactions.

4.1 Classical Analysis Techniques

In this section we deal with the classical analysis techniques that have been added to the
MIT computer software to analyze sequential block designs. These techniques are well

known and are discussed very briefly.

4.1.1 Analysis of Variance (Anova)

It is probably the most important technique used in statistical inference. The name is
derived from a partitioning of the total variability of the experimental results into component
parts. For a process P, dependent on n variables Ty, ..., Tp,, if Y; (¢ = 1,...,N) is the

result of the ith experiment and Y is the mean of the results, then the total sum of squares
N —
SSr =7 (Y,i-Y)? (4.1)

=1
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is used as a measure of the overall variability of the results. Suppose the process is modeled

as,

Y=00+01T1+ 0T+ ...+ OnTyn + Brodis + ... +ﬂijfij +...+¢ (4.2)

where the effects 3, are determined using the least-square technique, then it can be shown

that

SSp =Y B+ B + Y e’ (4.3)
5 0 5

The last term in Equation 4.3 is called the sum of squares of error, SSg, that is,
SSp =Y &’ (4.4)

If there are a terms in the model of the plant shown in Equation 4.2, then SSp and SSg
have N — 1 and N — a degrees of freedom, respectively. The F-ratio F}, for a coefficient (.,

g J
ﬂ 2
€T

Fe = gg (v =)

(4.5)

and it represents the measure of significance of the coefficient. If it is assumed that the noise
has a gaussian distribution then F} has an F-distribution. If F, is large then the variable/
interaction of the coefficient is significant.

A more detailed discussion on Anova can be found in many books including [17],[8].

4.1.2 Normal Probability Plots

This method of analysis attributed to Daniel [7] provides a simple way to determine signifi-
cant variables and interactions. Given the result of a factorial experiments, the coefficients
of the columns of the orthogonal matrix are calculated using the Least Squares technique.

In order to construct a normal probability plot!, the N coefficients are arranged in
increasing order and the kth of these ordered coefficients is plotted versus the cumulative
probability point P, = (kK — 1/2)/N on the normal probability paper.

The coefficients which contain only the noise effects tend to be normally distributed
with a zero mean and a common variance. Thus they lie along a straight line on the plot.

The slope of this line is the estimate of the common variance.

'A normal probability plot is a plot on a normal probability paper, a graph paper in which the ordinate
has been scaled so that the cumulative normal distribution plots as a straight line.
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On the other hand, the coefficients which contain the effects of the dominant variables

will typically have non-zero means and lie significantly away from the straight line. Thus

Figure 4-1: Normal Probability Plot

the normal probability plot can be used to determine these dominant coefficients.

Example 4-1

e A group of 20 random numbers are generated on the computer. Of these 20 numbers,
15 are normally distributed with zero mean and unit variance.
numbers have unit variance but non-zero means. As seen from Figure 4-1 the numbers

with zero means tend to lie on a straight line and can be distinguished from the other

numbers with non-zero means. =

4.1.3 Lenth’s Algorithm for Determining Significant Coefficients

In this section we describe the Lenth’s algorithm [15] which has been used to determine the

significant coefficients in this report. The advantages of this algorithm are that it is quick
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and easy to incorporate in computer software, and it does not require the user to use any
judgment in determining the significant coeflicients. The algorithm is described below.
Consider a process on which a 2”* factorial design is conducted and the results of the
experiments are analyzed. Let the coefficients of the design matrix be denoted by a1, ..., apn,
(m = 2"~%). If the noise in the process is assumed to be uncorrelated and gaussian dis-
tributed, then the coefficients will have a normal distribution. Let a; be independently

distributed with mean ; and variance o2. Let,
so = 1.5x "HI |0y (4.6)

The pseudo standard error (PSE) is defined as,
PSE = 15X o5, lail (4.7)

It has been shown in [15] that when the assumption of Sparsity Principle (Section 2.3)
is valid, PSE is a fairly good estimate of 0. Once the estimate of o is known, the coefficient
o; is significant if,

Ia’i' > t.975;m/3 x PSE (48)

where t g75.,,/3 is the .975th percentile of a t-distribution of m/3 degrees of freedom. The

range of values of ¢ g75.1,/3 varies from 3.76 for m = 8 to 1.99 for m = 256.

4.2 Closed Loop Technique for Determining Interactions

In most manufacturing processes the third and higher order interactions are negligible.
Suppose a fold-over experiment has been conducted and analyzed. The significant columns
can be determined by using any of the techniques discussed in the previous section. Since
the fold-over design has resolution of IV, the coefficients of the columns with variables are
the estimates of the effects of the variables. The group of variables lying on significant
columns form the group of significant variables.

Thus, only the effects of the interactions remain to be determined. In case there is con-
founding, the assumption of Simplicity Principle discussed in Section sec-ass, helps reduce
the total number of interactions that need to be analyzed. The group of all the interac-

tions which satisfy the assumption and lie on columns with significant coefficients are called
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probable interactions and have been discussed in Chapter 3.

Thus further experimentation is needed to determine the effects of the confounded prob-
able interactions and to determine which of them are significant. The Half-Block and the
Full-Block designs of Chapter 3 were developed with this goal.

It is possible to view the problem of determining the significant probable interactions
from a different perspective. Instead of determining the effects of all the probable interac-
tions, we can hypothesize that a subset of the probable interactions are significant and then

design experiments to check this hypothesis. This approach is developed in Chapter 5.
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Chapter 5
One-at-a-Time Designs

The sequential block design strategy was discussed in Chapter 3. In this chapter we propose
an alternative One-at-a-Time Design strategy to determine the unknown probable interac-
tions. Section 1 deals with the need to have such a method and the kinds of applications
where it will be useful. Section 2 outlines the algorithm and illustrates it with examples.
Section 3 presents a mathematical justification of this approach. The advantages of the
One-at-a-Time approach are discussed in Section 4. Section 5 deals with the concept of

Partial Optimization.

5.1 Need for One-at-a-Time Design Strategy

Consider a manufacturing process for which the assumptions of Sparsity Principle, Simplic-
ity Principle and Uncorrelated Noise Distribution discussed in Section 2.3 hold. Let this
process depend on n variables T1, ..., T},. Suppose a 2"* factorial fold-over experiment
is conducted on this process and the significant variables and probable interactions are de-
termined. In many processes the number of significant variables and interactions are small
and it is reasonable to assume that each significant column has only one significant variable
or interaction lying on it.

Therefore, under these assumptions, once a 2"~* factorial experiment is analyzed,

1. Significant variables and their effects are known.

2. Unconfounded probable interactions and their effects are known.

3. The effects of the confounded interactions are known although the interactions need
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to be determined.

If the number of confounding probable interactions is small there should be no need to
design either a Half-Block or a Full-Block experiment to determine the true interactions.
Instead it should be possible to determine the interactions with only a few more experiments.

In the next section we describe such a technique.

5.2 One-at-a-Time Design Strategy

Consider the example of the previous section in which a 2"~* factorial experiment is con-
ducted and the significant variables and probable interactions are determined. Let m
columns of the orthogonal matrix have more than one probable interaction and let the
number of probable interactions on each of these columns be denoted by n1, ng, ..., ny,. If
it is assumed that each significant column has only one significant variable or interaction

then there are a total of N7 possible models of the process, where N is given by:
NT=n1-n2...nm_1-nm (51)

That is, there are Ny models which are completely indistinguishable with respect to the
first block of 2" % experiments. Of these Ny possible models there is only one model
which corresponds to the true plant. Hence, under the above assumptions, the problem
of determining the plant is equivalent to determining the correct model from a set of Np
possible models.

To begin with, the confounded probable interactions are rank ordered on the basis of
the significance of their constituent variables and the significance of the coefficients of the
columns on which they lie. In this report the absolute value of the product of the effects of
the variables and coefficient of the column of the interaction is used as the weight. Therefore,
for a given column, usually interactions in which both the variables are significant, are
ranked above those which have only one significant variable.

The highest ranked probable interaction from every column is selected and a hypothesis
is made that these interactions correspond to the true interactions. On the basis of this
hypothesis an optimal experiment is designed which would give the highest quality if the

hypothesis is correct. If this experiment has already been carried out then the next high-
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est ranked interactions are selected and an optimal experiment is designed. The optimal
experiment is conducted on the actual plant.

Since the new experiment is different from those carried out earlier, not all the Nr
possible models predict the same result. The models are ranked in increasing order of their
prediction errors, that is the squared difference between the actual and predicted results.
If two or more models give the same least prediction error, then the one which has higher
ranked interactions is ranked higher. The highest ranked model, that is the model yielding
the lowest prediction error, is selected as the next hypothesis. Once again an experiment
is designed which would give the highest quality if the new hypothesis is correct. If this
experiment has been conducted before, then an experiment is designed such that it is the
optimal experiment for the model which gives the next least prediction error.

Having conducted the second experiment the prediction errors are computed for all the
models and the next hypothesis is made. The same recursive algorithm is implemented until
the hypothesis is verified by the results. Once the hypothesis is verified, ideally no further
experimentation is required since any further experimentation will lead to the selection of
the same hypothesis over and over again. In presence of noise it is advisable to do a few more
experiments to ensure that the results are consistent. The outline of the above procedure
is shown in Figure 5-1.

Example 5-1

e Consider a manufacturing process which depends on 7 variables T3, ...,77 and the

true model of the process is given by

y = 20.5 + 3.8Ty +4.175 + 9.07 — 3.7I34 + 2.3I13 — 6.1115 (52)

A 2773 factorial fold-over experiment is conducted and the results are analyzed. The
confounding pattern is shown in Table 5.1. From Table 5.2 (a) it is observed that
variables T}, Ty and Ty are significant. Also, the columns 9, 10 and 12 are significant.
The probable interactions lying on the significant columns are:

— Column 9: I12 and I34

— Column 10: Iy4 and I3

— Column 12: 115 and 126
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Column: 1 2 3 4 5 6 7 8
Vavyg V1 Vg Us Uigg Uy Vigy Uiy
Variable: T1 T2 T3 T4 T5 T5 T7
Column: 9 10 11 12 13 14 15 16
Vig Vjs Vg3 Yy Y2y U3y Vg2 U2y
Ly nLis Ly ©Lis L Lt Igs
Interaction: | Is4 Isgy Igr Ing Iy7  Iyg Iy7
Iss Is7 Ing I3r Ips I3z I3s

Table 5.1: Confounding pattern of the 27~3 factorial experiments of Examples 5-1, 5-2 and

5-3

Thus, assuming that only one of the interactions in each of the columns is significant

results in Nt = 8.

The initial guess of the process model is shown in Table 5.2(a). On the basis of this
hypothesis, Experiment 1 is designed. The model shown in Table 5.2(b) gives the least
prediction error and is the next hypothesis. The most significant interaction, I;5, is
determined. Experiment 2 is designed to optimize the current hypothesis. Notice that
it is not possible to discriminate between the pairs of interactions (Iy2, I34) and (Io4,
I3) using the first 2 experiments because both the interactions in the pairs take the

same value in both the experiments.

Since the hypothesis has not changed after the Experiment 2, Experiment 3 is designed
to optimize the next best hypothesis, that is, the model which gives the next least
prediction error. Experiment 4 is designed in the same manner as Experiment 3. By
now the true process model has been determined. Interestingly, from Table 5.2(f),
we notice that the true optimal operating point of the process, Experiment 5, is the
same as Experiment 3. This means that the true optimal point of the process was

determined prior to the determination of the true process model. m

Example 5-2

e Consider a process which is dependent on 7 variables Tj, ..., T,. A 2772 factorial
experiment is conducted on the process. The experiments are the same as those of
Example 5-1. The confounding pattern of the block is shown in Table 5.1. The results

of the One-at-a-Time strategy are given in Table 5.3.
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Pred(V/I) True Cf. True(V/I)

-3.70
2.30

-6.10

Initial Guess of Process Model.

Col. Est. Cf. Pred(V/I) True Cf. True(V/I)
1 20.04 Avg. 20.50 Avg.

2 3.69 T1 3.80 T1

3 3.87 T2 4.10 T2

4 -0.08 o T

5 9.26 T4 9.00 T4

6 -0.05 ™  e==—-

7 1.09 T @ ====-

8 -0.52 T  =m==e=-

9 -4.09 I12 -3.70 134

10 1.67 124 2,30 113
11 0.05 ---~- ===
12 -5.77 I15 -6.10 1I15

13 0.67 -=-==-  e==e-
14 0.77 --=--  ===—-
15 0.52 ----=-  ====-
16 0.3¢§ ----- ===
EXPERIMENT-WISE SUMMARY:

Expt. Experiment Prediction Observation
1. -+ -+ = ~ = 29.04 31.54
2. - =+ - 42.68 42.51

RMS Pred. Brror:

(c) Results after Experiment 2

Col. Est. Cf£. Pred(V/I) True Cf. True(V/I)
1 20.04 Avg. 20.50 Avg.

2 3.69 T1 3.80 T1

3 3.87 T2 4.10 T2

4 -0.08 ™  eeme-

5 9.26 T4 9.00 T4

6 -0.05s T 0 =eee-

7 1.09 ™ 0 =ee--

8 -0.52 ™ = =e---

9 -4.09 I12 -3.70 1I34

10 1.67 124 2.30 I13

11 0.05 ===--  emee-
12 ~5.77 115 -6.10 I1S

13 0.67 --===  em=—--
14 0.71 --=-=-  =m===-
15 0.52 =====  e=—e-
16 0.3 -----  mee--
EXPERIMENT-WISE SUMMARY:

Expt. Experiment Prediction Observation
1. -+ -+ - - - 29.04 31.54
RMS Pred. Error: 2.50

Col. Est. CE. Pred(V/I) True Cf£. True(V/I)
1 20.04 Avg. 20.50 Avg.

2 3.69 T1 3.80 T1
3 3.87 T2 4.10 T2
4 -0.08 T meee-
5 9.26 T4 9.00 T4
6 -0.05 TS5 ————
7 1.09 ™™ 0 mem==-
8 -0.52 o
9 -4.09 I12 -3.70 1I34

10 1.67 I24 2.30 113

11 0.05 -~~==-  =====

12 -5.77 I15 -6.10 I15

13 0.67 ----- ~———

14 0.717 =-=="-. ===~

15 0.52 -~=--  ====-

16 0.34 ----- ~—————

EXPERIMENT-WISE SUMMARY:

Expt. Experiment Prediction Observation
1. -+ -4 - - = 29.04 31.54
2. -+ -+ o+ - 42.68 42.51
3, + 4+ -+ - - 41.96 43.86

RMS Pred. Error: 1.81

(d) Results after Experiment 3

Table 5.2: Results of One-at-a-Time Designs of Example 5-1
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Col. Est. Cf. Pred(V/I) True Cf. True(V/I) Col. Est. Cf. Pred(V/I) True Cf. True(V/I)
1 20.04 Avg. 20.50 Avg. 1 20.04 Avg. 20.50 Avg.

2 3.69 T1 3.80 T1 2 3.69 T1 3.80 T1
3 3.87 T2 4.10 T2 3 3.87 T2 4.10 T2
4 -0.08 ™ = eee-- 4 -0.08 ™ 0 ==me-
5 9.26 T4 9.00 T4 5 9.26 T4 9.00 T4
6 -0.05 T 0 ee=-- [ -0.,05 T 0 =e---

7 1,09 ® 0 ====- 7 .09 ™ 0 e=m=-

8 -0.52 ™ === 8 -0.52 ™  m=e=—-

9 -4.09 I34 -3.70 1I34 9 -4.09 I34 -3.70 134
10 1.67 113 2.30 113 10 1.67 113 2.30 113
11 0.05 -=e--  emea- 11 0.05 ~=--==  me-e-
12 -5.77 115 -6.10 1I15 12 -5.77 115 -6.10 I15
13 0.67 --~--  eeee- 13 0.67 ==-=-  e=ee-
14 0.71 -=--- meee- 14 Q.71 --=-=  emee-
15 0.52 ~e-e:e eeees 15 0.52 =-=o- meee-
16 0,38 -=---  e—mee 16 0.38  -~--=- eeee-

EXPERIMENT-WISE SUMMARY: EXPERIMENT-WISE SUMMARY:

Expt. Experiment Prediction Observation Expt. Experiment Prediction Observation
1. -4~ 4 = - = 29.04 31.54 1. -4 -4 - - 29.04 31.54
2, -+ -+ - 42.68 42.51 2. -+ -+t o+ - 42.68 42.51
3. L 46.80 43.86 3. -+ -+ - 46.80 43.86
4. -+ o+ - 30.98 29.36 4. -+ - 30.98 29.36

5. + =+ -+ - 46.80 43.64

RMS Pred. Error: 2.09 RMS Pred. Error: 2.35

(e) Results after Experiment 4 (f) Results after Experiment 5

Table 5.2: Results of One-at-a-Time Designs of Example 5-1
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The example indicates that the more significant interactions are determined before the
others. Also, the example demonstrates that the procedure determines the optimal

operating point of the process before it determines the true process model.m
Example 5-3

e This example is a variant of Example 5-2 in which the crucial assumption that there
is only one significant variable or interaction per column of the design matrix, has
been violated. In Example 5-2, Column 9 has one significant interaction I34. In this
example the true plant model has two significant interactions Isg and I34 on Column
9. The coefficients of the two interactions are chosen to be effectively the same as
that of I34 in Example 5-2. Therefore, the results of the first block of experiments are
identical in both these examples. When the One-at-a-Time strategy is applied to the
plant the output behavior is very interesting. The results are shown in Table 5.4. In
the first few experiments, neither of the two interactions in Column 9 are selected by
the algorithm. But after Experiment 4, I34 is selected. Although the true model of
the plant cannot be determined, the experiments tend to improve the output quality.

Also, the interactions in the rest of the columns are determined correctly.

As expected, the RMS prediction error for this example is much larger than that for
the previous examples. The large RMS prediction error suggests that there may be

something wrong with the plant model that has been determined. m

5.3 Mathematical Justification

In this section we give a justification of the One-at-a-Time strategy introduced in this
chapter. We show that under certain assumptions, the model which gives the least prediction

error is the Maximum Likelihood estimate of the the model of the plant.

Claim:

Suppose T One-at-a-Time experiments are conducted and the results are Y1, ..., Yr. If
the noise in these experiments is independent and gaussian distributed with zero mean and
constant variance A, then the model which minimizes the squared prediction error is the

Mazimum Likelihood Estimate of the plant.
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COLUMNWISE SUMMARY:

Col. Est. Cf. Pred(V/I) True Cf£. True(V/I)
1 22.51 Avg. 22,50

2 5.45 T1 5.30

3 6.24 T2 7.30

4 2.95 T3 3.10

5 0.72 T4

6 -4.19 TS5 -4.90

7 -0.53 T6

8 0.31 T7

9 -3.54 112 -3.70

10 2.84 113 2.90

11 0.47 -=-=--

12 0.26 -----  eee-=
13 0.26 --=--  mee—-
14 -4.10 135 -4.30 117
15 ~0.35 ~==-- emmee-
16 -0.46 ---~-  ee=e-

Initial Guess of Process Model.

Col. Est. Cf., Pred(V/I) True Cf. True(V/I)
1 22.51 Avg. 22.50 Avg.

2 5.45 T1 5.30 T1
3 6.24 T2 7.30 T2
4 2.95 T3 3.10 T3
5 .72 ¢ @ e=e--
6 -4.19 TS -4.90 T5
7 -0.53 T6 —————
8 .3 7  =mem--
9 -3.54 1Il2 -3.70 134

10 2.84 157 2.90 1I57

11 0.47 --=-- meema

12 0.26 ~---=--  eeme-

13 0.26 ~-~---- ————

14 -4.10 1I17 -4.30 117

15 -0.35 -----  eeee-

16 -0.46 -----  mee--

EXPERIMENT-WISE SUMMARY:

Expt. Experiment Prediction Obsgervation
1. +++ - - 32.41 29.42
2. - - - 45.67 45.98

RMS Pred. Error: 2.13

(c) Results after Experiment 2

Col., Est. Cf. Pred(V/I) True Cf. True(V/I)
1 22.51 Avg. 22.50 Avg.
2 5.45 T1 5.30 T1
3 6.24 T2 7.30 T2
4 2,95 T3 3.10 T3
5 0.72 T4 m———
6 -4.19 T5 -4.90 T5
7 -0.53 »¢ = -----
8 0.3 7  e==e-
9 -3.54 112 -3.70 134
10 2.84 157 2,90 157
11 0.47 === emme-
12 0.26 =-=-=- e==--
13 0.26 ---=.~  e==--
14 -4.10 1I17 -4.30 117
15 “0,35 === eeeea
16 -0.46 -----  mee--
EXPERIMENT-WISE SUMMARY:
Expt. Bxperiment Prediction Observation
1. + 4+ - -+ 32.41 29.42

RMS Pred. Error:

Col. Est. Cf. Pred(V/I) True Cf. True(V/I)
1 22,51 Avg. 22.50 Avg.

2 5.45 T1 5.30 T1
3 6.24 T2 7.30 T2
4 2.95 T3 3.10 T3
5 0o.72 ™~ = eeee-
6 -4.19 T5 -4.90 T5
7 -0.53 ™6 00 ee=e-
8 0.3 7 = meeee
9 -3.54 -3.70 134

10 2.84 2.90 157

11 0.47 ----- eeea-

12 0.26 ~----  e--e-

13 0.26 -----  e==-a-

14 -4.10 -4.30 117

15 -0.35 -=-=--

16 -0.46 -----

EXPERIMENT-WISE SUMMARY:

Expt. Experiment Prediction Observation
1. A - - 32.41 29.42
2. 4+~ - 45.67 45.98
3. LI B 51.70 48.82

RMS Pred. Error: 2.41

(@) Results after Experiment 3

Table 5.3: Results of One-at-a-Time Designs of Example 5-2
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COLUMNWISE SUMMARY: COLUMNWISE SUMMARY:

Col. Est. Cf. True Cf. True(V/I) Col. Est. Cf. Pred(V/I) True Cf. True(V/I)
1 22.51 22.50 Avg. 1 22.51 22,50 Avg.

2 5.45 5.30 T1 2 5.45 5.30 T1
3 6.24 7.30 T2 3 6.24 7.30 T2
4 2.95 3.10 T3 4 2.95 3.10 T3
5 0.72 4 =e—-- 5 0.72 ™  me-=-
6 -4.19 -4.90 75 6 -4.19 -~4.90 T5
7 -0.53 6 = m=—--= 7 -0.53 ¢ 0 mme--
8 0.31 8 0.3 ™ mmm--
9 -3.54 -3.70 9 -3.54 ~3.70 134

10 2.84 2.90 10 2.84 2.90 157

11 0.47 11 0.47 =-~---  ===--

12 0.26 12 0.26 -~---  ===-=

13 0.26 13 0.26 -~---  ==e--

14 -4.10 -4.30 14 -4.10 -4.30 117

15 -0.35 -~-=-  ====-
16 -0.46 -~--—-  ====-

EXPERIMENT-WISE SUMMARY: EXPERIMENT-WISE SUMMARY:

Expt. Experiment Prediction Observation Expt. Experiment Prediction Observation
1. L A 32.41 29.42 1. + - - F 32.41 29.42
2. +F - - 45.67 45.98 2. + 4+ + - 45.67 45.98
3. E R 44.61 48.82 3. L 44.61 48.82
4. + - - - 51.32 53.66 4. + o+ - - - 51.32 53.66

5. R 46.85 49.79

RMS Pred. Error: 2.84

RMS Pred. Error: 2.86
(e) Results after Experiment 4 (£) Results after Experiment 5

Col. Est. Cf. Pred(V/I) True Cf. True(V/I)
1 22.51 Avg. 22,50 Avg.

2 5.45 T1 5.30 T1
3 6.24 T2 7.30 T2
4 2.95 T3 3.10 T3
5 0.72 ™ ===
6 -4.19 TS5 ~4.90 TS5
7 -0.3 ™ = ====-
8 0.31 T7
9 -3.54 1I34 -3.70

10 2.84 1I57 2.90

11 0.47 -----

12 0.26 -----

13 0.26 -----

14 -4.10 I17 -4.30

15 -0.35 -----

16 -0.46 -----

EXPERIMENT-WISE SUMMARY:

Expt. Experiment Prediction Observation
1. + + + + - - 32.41 29.42
2. + 4+ o+ - 45.67 45.98
3. +++ o+ - - 44.61 48.82
4. + 4+ - - - 51.32 53.66
5. + 4+ -4 - - - 46.85 49.79
6. + + - - - - 51.32 54.93

RMS Pred. Error: 3.00

(g) Results after Experiment 6

Table 5.3: Results of One-at-a-Time Designs of Example 5-2
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COLUMN-WISE SUMMARY:

Col. Est. Cf. Pred(V/I) True Cf. True(V/I)
1 22.51 Avg. 22.50
2 5.45 T1 5.30
3 6.24 T2 7.30
4 2.95 T3 3.10
5 0.72 T4
6 -4.19 TS5 -4.90
7 -0.53 T6
8 0.31 77
9 -3.54 1I12 4.70, -8.40
10 2.84 113 2.90 157
11 0.47 ===w-
12 0.26 -=----
13 0.26 =-----
14 -4.10 135 -4.30
15 -0.35 -----
16 -0.46 -----  emee-

EXPERIMENT-WISE SUMMARY:

Initial Guess of Process Model.

(a) Results after Experiment 0

COLUMN-WISE SUMMARY:

Col. Est. Cf. Pred(V/I) True Cf. True(V/I)
1 22.51 Avg. 22,50 Avg.
2 5.45 T1 5.30 T1
3 6.24 T2 7.30 T2
4 2.95 T3 3.10 T3
H o.72 ™4 = em——-
6 -4.19 TS5 -4.90 TS5
7 -0.53 "¢ = em—e-
8 .32 »» = ee=—-
9 -3.54 1I12 4.70, -8.40 I56, I34
10 2.84 157 2.90 157
1 0.47 =-=--= em=e-
12 0.26 -----  e==—-
13 0.26 -~---  em=e-
14 -4.10 1I17 -4.30 117
15 -0.3§ =----==  em=aa
16 -0.46 -----  e==e-
EXPERIMENT-WISE SUMMARY:
Expt. Experiment Prediction Observation
1. EE R B 32.41 34.43

RMS Pred. Error:

Col. Est. Cf. Pred(V/I) True Cf. True(V/I)
1 22.51 Avg. 22.50 Avg.
2 5.45 T1 5.30 T1
3 6.24 T2 7.30 T2
4 2.95 T3 3.10 T3
5 0.72 ™M 0 eeea=
6 -4.19 T5 -4.90 T5
7 -0.53 " 0 eee-a
8 0.31 ™ = eeee-
9 -3.54 1I12 4.70, -8.40 156, I34
2.90 157
-4.30 117
Prediction Observation
34.43
45.89

RMS Pred. Error:

{(c) Results after Experiment 2

Col. Est., Cf. Pred(V/I) True Cf. True(V/I)

1 22.51 Avg. 22.50 Avg.

2 5.45 T1 5.30 T1

3 6.24 T2 7.30 T2

4 2.95 T3 3.10 T3

5 .72 ™ = meea-

6 -4.19 TS5 -4.90 TS

7 -0.83 ™ @@= me-e-

8 0.3 7  mmee-

9 -3.54 1Il12 4.70, -8.40 1I56, I34

10 2.84 157 2.90 157

11 0.47 ==--=

12 0.26 -

13 0.26 -----

14 -4.10 1I17 -4.30

15 =0.35 -=e===  mee--

16 -0.46 -----  eeee-

EXPERIMENT-WISE SUMMARY:

Expt. Experiment Prediction Obgervation
1. LI IR I 32.41 34.43
2. + 4+ 4+ - - - 45.67 45.89
3. LRI IR SRR 44.61 37.78

RMS Pred. Error: 4.12

(d) Results after Experiment 3

Table 5.4: Results of One-at-a-Time Designs of Example 5-3



Col. Est. Cf. Pred(V/I) True Cf. True(V/I)

1 22,51 Avg. 22.50 Avg.

2 5.45 T1 5.30 T1

3 6.24 T2 7.30 T2

4 2.95 T3 3.10 T3

5 0.72 ™4  ==ae-

6 -4.19 T5 -4.90 TS

7 -0.53 T6

8 0.31 T7

9 -3.54 134 4.70, -8.40 156, I34

10 2.84 157 2.90 157

11 0.47 -----

12 0.26 -----

13 0.26 -----

14 -4.10 117 -4.30

15 -0,35 --==-  ==—e-

16 -0.46 ----- em——-

EXPERIMENT-WISE SUMMARY:

Expt. Experiment Prediction Obgervation
1. LR N 32.41 34.43
2. + + +F - - - 45.67 45.89
3. + 4+ F -+ - 44.61 37.78
4. L 51.32 66.29

RMS Pred. Error: 8.29

Results after Experiment 4

COLUMN-WISE SUMMARY:

Col. Est. Cf. Pred(V/I) True Cf. True(V/I)
1 22.51 Aavg. 22.50 Avg.

2 5.45 T1 5.30 T1

3 6.24 T2 7.30 T2

4 2,95 T3 3.10 T3

5 .72 ™ = ==——-

6 -4.19 TS5 -4.90 T5

7 -0.53 66 = mese-

8 0.31. 7  em=e-

9 -3.54 1I34 4.70, -8.40 156, I34

10 2,84 157 2.90 1I57

11 0.47 -=-~-=- ===e=

12 0.26 =-=~--  ====-

13 0.26 --~--  ====-

14 -4.10 117 -4.30 117

15 -0.35 ----- —————

16 -0.46 -=-~~-  ==e=-

EXPERIMENT-WISE SUMMARY:

Expt. Experiment Prediction Observation
1. + + + - -+ 32.41 34.43
2. + -~ - 45.67 45.89
3. + 4+ 4 -+ - 44.61 37.78
4. 4+~ - - 51.32 66.29
5. ++ =% - - - 46.85 59.33
6. + b F - - - - 51.32 63.59

RMS Pred. Error: 9.84

Results after Experiment 6

Col. Est. Cf. True Cf. True(V/I)

1 22.51 22.50 Avg.

2 5.45 5.30 T1

3 6.24 7.30 T2

4 2.95 3.10 T3

5 0.72 ™4 = m==--

6 -4.19

7 -0.53

8 0.31

9 -3.54 4.70, -8.40 156, 134

10 2.84 2.90 157

11 0.47

12 0.26

13 0.26

14 -4.10 -4.30

15 -0.35 -~e-=  mm=e-

16 -0.46 -~=--  =e---

EXPERIMENT-WISE SUMMARY:

Expt. Experiment Prediction Observation
1. + 4+ F - - 32.41 34.43
2. + 4+ - - 45.67 45.89
3. + 4+ -+ - 44.61 37.78
4. + k- - - 51.32 66.29
5. + 4 - - - - 46.85 59.33

RMS Pred. Error: 9.28

(£) Results after Experiment 5

Table 5.4: Results of One-at-a-Time Designs of Example 5-3
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Proof:
Consider the model discussed in the previous section. Let the Np possible models be
denoted by My, ..., MNT'
In the One-at-a-Time design methodology it is assumed that the coefficients of the
variables and interactions have been determined and only the confounded interactions need
to be determined.
Given the T observations, let Yr= [V}, ..., Y7]. The Maximum Likelihood Estimate is
defined by,

Myyi[Yr) = arg max P(M;;Yr) (5.3)
= Myy[Yr) = arg max P(M;) -P(Yr/M;) (5.4)

In case the probabilities of the different models P(M;), are known, Equation 5.4 can be
simplified.. In absence of any such information, all models can be assumed to be equally

likely. That is, P(M;) = 1/Np, and Equation 5.4 reduces to,
MML[YT] = arg mzax P(YT/M,') (5.5)

Let the predicted result of model M; for the jth experiment be denoted by }A’” Since the
noise in the different experiments is assumed to be independent,
— T A
P(Yr/M;) =[] fo(Y; - Yy) (5.6)
j=1
where f.(:) is the probability distribution of the noise corrupting the results. If this distri-

bution is assumed to be gaussian with zero mean and constant variance ), then

_ T 1 .
peir/m) = 11 — o (~ 5% - %)) (5.7
1 1 & 0
= Gy o g 2~ ) (58)
j=1

Maximizing the likelihood function in Equation 5.5 is the same as maximizing its logarithm.
Thus,
Mpyg[Yr] = arg max log P(Yr/M;) (5.9)



Using Equation 5.8 in Equation 5.9 we get,

_ 1 1 & .
MML[YT] = arg m;'ix log [Wi - exXp (—ﬁ (Y} — Y;j)z) (5.10)
7=1
T 1 & .
= argmax |~ log2mh — o~ > (Y - Yi)? (5.11)
i 2\ =
1 N
= argmin | o >y - Yi))? (5.12)
z i =1
[ T )
= argmin | 3(¥; - Vi)’ (5.13)
P _j:l

The expression on the right hand side of the equation is the total squared prediction error
of model M;. Thus, the Maximum Likelihood Estimate of the plant, My, is one which
minimizes the total prediction error. This proves the claim.

The One-at-a-Time strategy selects models based on minimum prediction error. Hence,
under the above assumptions, the results obtained using One-at-a-Time strategy converge
to the maximum likelihood estimate of the plant. The most critical assumption is that there

is only one unknown significant interaction per significant column of the orthogonal matrix.

5.4 Advantages of One-at-a-Time Design Strategy

The One-at-a-Time design strategy can be very useful particularly when the number of
confounded probable interactions is small. The main advantages of the One-at-a-Time

design strategy are:

1. Maximum Likelihood Estimate: The One-at-a-Time strategy uses the minimum
prediction error criterion to hypothesize the plant model. This criterion is equivalent
to the Maximum Likelihood estimate under the assumptions discussed in the previous

section. These assumptions are justified in most situations.

2. Designing Optimal Experiment: Given the hypothesized plant model, the One-
at-a-Time strategy designs the optimal experiment for this hypothesis, i.e. the exper-
iment which would maximize the quality of the output if the hypothesis is correct.

This leads to interesting behavior.
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e In case the hypothesis is wrong and some very significant interactions have been
guessed wrongly, the optimal experiment for the hypothesis tends to produce a
very poor output. Although this experiment is far away from the true optimal,
it can be very useful. The prediction errors for such an experiment tend to be
very large for the wrong models. Hence, this experiment helps in discriminating

between different models.

e If the hypothesis is correct, the optimal experiment will produce a very good
quality output. The prediction error of the correct model will be much smaller

compared to the wrong model and the hypothesis will be verified.

3. Validation of Assumptions: When a block of factorial experiments is analyzed
some of the columns have large coefficients which correspond to the effects of signif-
icant variables and interactions of the plant. The non-significant coefficients can be

used to determine the variance of the plant.

Suppose that the One-at-a-Time design strategy is applied and the most probable
plant model is determined. If it is found that the average prediction error is very
large, it could be due to the the violations of one or more assumptions made above.
In such a situation it is desirable that sequential block design strategy should be used

to determine the correct plant model.

4. Determination of the Most Significant Interactions: Suppose that there are
two columns, one of which has a large significant coefficient and the other has a
small significant coefficient. Suppose that each of these columns contain two probable
interactions. It is clear that models which contain the wrong probable interaction in
the column with the larger coefficient will give larger prediction errors than models

which have the wrong probable interaction in the column with smaller coefficient.

In the simulations it is observed that after a few One-at-a-Time experiments have been
carried out, all models having wrong probable interactions in the significant columns
with large coefficients give prediction errors which are more than an order of magnitude
greater than the error of the correct model. Hence, the probable interactions lying
on such columns can be determined within a few One-at-a-Time experiments and the

number of possible models is then considerably reduced.
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Column: Vavg Ul Up vUs Uyeg Usg Usg Ujg
Variable n b T3 Ty Lis Ds I
& Interaction: Iy Ly I
Coefficient: 106 7.2 01 -6.5 -0.2 -3.1 -03 23

Table 5.5: Results of Design of Example 5-4

It is shown in the next section that not all the unknown probable interactions need
to be determined to determine the optimal operating point of the true plant. Hence,

the One-at-a-Time strategy needs to be implemented only until the very significant

probable interactions have been determined.

5.5 Partial Optimization

The goal of the DOE procedure is to determine the plant model. But in many cases only
the optimal operating point, that is the operating point of the plant which produces the
best quality, needs to be determined. Hence, in such cases, the sole purpose of determining
the plant model is to determine the optimal operating point. In this section we will demon-
strate that it is not always necessary to determine the complete plant model to determine

the optimal operating point. It may be possible to determine it only on the basis of the

significant variables and the known significant interactions.

Example 5-4

e Consider a process dependent on 4 variables T}, Ty, T3 and Ty. Suppose a 24~! factorial
experiment is conducted on this process and the results are as shown in Table 5.5.
Using Table 5.5, we can express the model of the process as

I I
21 43 B

I34 Iy

Y = 10.6 + 7.2Ty — 6.5T3 — 3.1 (5.14)

where only one of the interactions expressed in (.) is actually significant. If the terms

involving T} are arranged together, the model can be expressed as,

Y = 10.6 + T1[7.5 + (—3.1T%) + (2.3T3)] + terms not involving T} .... (5.15)
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The terms within (.) might not be present in the true model. Since, |7.5| > | —3.1| +
|2.3|, irrespective of which combination of interactions is really important, the quality
Y is maximized only if T7 is set at +1. Therefore the optimal setting of 77 is +1.

Similarly,
Y =10.6 + T3[—6.5 + (—3.1T4) + (2.3T1)] + terms not involving T3 ....  (5.16)

Since, | — 6.5| > | — 3.1] + |2.3|, the optimal setting for T3 is -1 irrespective of which
interactions are really important. It is not possible to determine the optimal settings

of Ty and T} since their settings are dependent on the unknown interactions. m

It is clear from this example that it may be possible to determine the optimal settings
of some (if not all) of the variables without knowing the exact plant model. In the above
example the optimal settings of the variables T} and T3 could be determined because their

coefficients were dominant. The general analysis for such cases is given below.

1. Dominant Variable:
Consider a process in which a 2"~* factorial fold-over experiment has been carried

out. The results are analyzed and the model of the process is determined.

A A

ml

I
Y=ﬂ0+ﬁ1T1+...+ﬂnTn+...+ﬂiinj+’yl R +...+Ym . (5.17)
Ilm Impm

where (3; is the known coefficient of the ith variable, 3;; is the known coefficient of the
known probable interaction I;;, and <y is the known coefficient of the kth significant
column with an unknown probable interaction. The probable interactions lying on

the kth column are Iz1, ..., fkpk.

Let Di be the set of all the columns which have one unknown probable interaction of
T;. Namely, if keDi, then the columns contain fi.g(,-,k), the interaction between T} and

Ty4(i,k)- The optimal setting of variable T; can be determined if the expression

Bi + ZﬂijTj + 2 YeTy(i k) (5.18)

J#i keDi
has a known sign irrespective of the unknown setting of the other variables.

If the setting of all the variables are unknown then the condition in Equation 5.18 can
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be restated as,

181> S 1851+ 3 el (5.19)

j#i keDi
If Equation 5.19 is true, the optimal setting of T; is +1 if §; is positive and is -1 if
B; is negative. Thus if a variable is dominant, its optimal setting can be determined

without the complete knowledge of the process.

. Dominant Pair of Variables:

In many situations Equation 5.19 cannot be applied because one or more known
significant interactions are large. That is, one or more of the coefficients 3;; are large.
In such situations it may be possible to determine the optimal settings of variables

taken two at a time. This procedure is explained below.

Suppose that B;; is large. In the expression for quality given in Equation 5.17, the

terms containing T; and T} are separated as follows:

Y = T;[B; + interactions involving T;]
+0;;1;; + Tj[B; + interactions involving Tj]

+ terms not involving T; and T} (5.20)

Suppose that the terms corresponding to the coefficients of T; and T} in Equation 5.20

satisfy Equation 5.19. The range of these terms is,

R; ¢ [0, 07"] = Klﬁil - 16al =) (m) ) (lﬂil + > Bl + ) |’Yk‘)}

1#4,5 keD1i l#£1,7 keDq
(5.21)

R;j € [§7",07%%] = [(lﬁjl =Y 1Bl - > |’7k|> ) (lﬁﬂ + ) 1Bl + > |’Yk|)}

I£3.i keDj 1£5,i keDj

It can be shown that the optimal settings of T; and T} can be determined only if the

ranges R; and R; do not intersect and if 3;; lies in the intervals 1, 3 or 5 of Figure 5-2.

In case any of the above conditions are not satisfied, the optimal setting of T; and T}
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Figure 5-2: Permissible range of values of §;;

cannot be determined. Further experiments are required to determine more unknown

probable interactions before the settings of T; and T} can be determined.

3. Dominant Group of Three or more Variables:
In principle it is possible to analyze groups of 3 or more variables to determine their
optimal setting. But the procedure becomes very complicated. Also the conditions
required to be able to determine the settings are fairly strong and will not be satisfied

very often.

Thus it is seen that if the plant contains some dominant variables or pairs of variables, then
their optimization may be possible without the complete determination of the interactions.
The setting of the other variables can be obtained by further experimentation. Usually the
variables that cannot be set easily using this technique are ones which are associated with

weak interactions and hence they do not affect the quality very much.
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Chapter 6

Conclusions and Future Work

In this chapter the basic ideas of the thesis are integrated. Section 1 discusses the Complete
DOE Software Tool which is being currently developed at MIT. Section 2 outlines the

contributions of the thesis. The possible areas for future research are discussed in Section 3.

6.1 The Complete DOE Software Tool

In this section we show how the different ideas of Block Design and One-at-a-Time Design
are being integrated to develop a Complete DOE Software Tool. The underlying motivation
for developing such a DOE software tool is that it should aid an inexperienced user in DOE
to successfully improve the performance of his/her plant more rapidly than with existing
software tools.

Consider the flow-chart shown in Figure 6-1. Given a plant, an experimenter has to
select the variables affecting the performance and guess the important interactions. This
permits the experimenter to use the past knowledge about the plant which may be very
important. Even if some of the interactions are guessed incorrectly, a few more experi-
ments will generally be required to estimate them, but nothing is lost. On the basis of this
information, an optimal fold-over factorial block of experiment is designed. Next, the exper-
iment results are analyzed and the effects of the variables and the guessed interactions are
determined. The variables with significant effects are used to generate the list of probable
interactions - in accordance with the Simplicity Principle.

Usually there is confounding within the set of probable interactions and guessed inter-

actions. Therefore further experimentation is required to determine the effects of all these
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Figure 6-1: Overview of Complete DOE Software Tool
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interactions. At this stage there are 2 possibilities.

Case 1: The number of significant columns is small compared to the number of unknown
interactions and it is reasonable to assume that there is only one unknown significant

interaction per significant column of the design matrix.

Case 2: The number of significant columns is not small and there may be more than one

unknown significant interaction per significant column of the design matrix.

If Case 1 is valid for the given plant, the assumptions of the One-at-a-Time Design
Strategy discussed in Chapter 5 are satisfied, and the One-at-a-Time Technique can be
effectively used to determine the plant model and optimize its performance.

If Case 1 is not valid, the Block Design Technique described in Chapter 3 can be used.
With the help of Half-Block or Full-Block Designs the confounding of the interactions can
be sorted either completely or to an extent that the One-at-a-Time Design Strategy can be
applied.

Presently, we are implementing the Complete DOE Software Tool. Much of the work has
been completed. The basic concepts of Block Design and One-at-a-Time Design Strategies
have been implemented and tested separately. Also, the analysis tools have been developed.
Techniques required to simultaneously analyze block designs with different confounding
patterns have been developed and implemented in computer software.

Some of the concepts that can be added to make the software more automated and less

dependent on the user are discussed in Section 3.

6.2 Thesis Achievements

The goal of the DOE project at MIT is to automate the entire process of DOE. At the time
this thesis began, the goal was well defined but the path to achieve it was a little unclear.
During the course of the thesis, the process of sequential DOE has been formulated in a
structured fashion. We have identified the conceptual problems that need to be solved
before the goal of the Complete DOE Software Tool can be completely realized. Some of
these problems have been resolved and implemented. As for the other problems, they have
been formulated in a mathematically meaningful manner. Even if these problems are hard

to tackle, we know exactly what questions need to be addressed in the overall project.
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The contributions of the thesis are enumerated below.

Block Designs: The techniques of Half-Block and Full-Block Designs are implemented in
computer software. They have been found to be very useful in resolving confounding

interactions.

Completing Block Designs: Algorithm for completing incomplete blocks of experiments

have been developed and added to the software.

Block Analysis: The analysis routines of the DOE software have been improved to enable
it to simultaneously analyze confounding interactions in different blocks of experi-

ments.

One-at-a-Time Designs: The concept of One-at-a-Time Designs have been developed
and verified by simulation results. The results are very encouraging and we believe
that the One-at-a-Time Design Strategy can be generalized as explained in the next

section.

Complete DOE Software Tool: The basic ideas for the Complete DOE Software Tool

are developed and their implementation is being carried out.

6.3 Future Work

The following represents some of the more significant issues that could be added to the

computer software to make it more general and useful to various manufacturing processes.

e As seen in Figure 6-1 the Complete DOE Software Tool needs to make a deci-
sion whether only one unknown significant interaction per column is likely or not.
Presently, this decision is made by the experimenter using the software. It may be
possible to determine the probability of there being only one unknown significant
interaction per column. Using this probability and the level of risk that the experi-
menter is willing to take, the computer can make that decision which minimizes the

expected value of the overall cost of experimentation.
e Once the Block Design option is selected the experimenter has the following options:
1. Design a Half-Block of experiments for any of the previous blocks.
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2. Design a Full-Block of experiments for any of the previous blocks.

3. Complete any of the previous incomplete blocks.

Therefore as the number of blocks of experiments conducted increases there are more
options. If the cost model for the experiments is known, the software could choose

between the above options based on:

— Total number of confounded probable interactions.

— Relative unconfounding achieved with each of the options.

The present software can be used with any plant in which the variables are at 2 levels.
The two-level factorial designs have many strong advantages as outlined in Chapter 1.
But there may be situations in which the plant intrinsically has one or more of its
variables at 3 or more levels. Extension of the software is required to handle such

situations.

It should be possible to extend the ideas of One-at-a-Time Design Strategy to be
able to design arbitrary numbers of optimal experiments based on the results of the

experiments conducted earlier.

A Graphical User Interface (GUI) can be added to the software to make its use
easier. Also, adding various graphical features can help the experimenter get a better

understanding of the results.
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Appendix A

Binary Orthogonal Matrices

In this section we enumerate some of the properties of Binary Orthogonal Matrices which
are required in the report.

The Binary Orthogonal matrices belong to a general class of matrices called Hadamard
Matrices [19], matrices in which each of the elements are either +1 or -1. The most general
Binary Orthogonal Matrices are the Plackett-Burman Designs. These designs are based
on the Hadamard Matrices of size m x m where m is a multiple of 4. In the Plackett-
Burman Designs all the columns of the matrices are balanced (equal number of +1 and -1
elements) and pairwise orthogonal. When m is not a power of two, these designs have a
very complicated alias structure and should be used very carefully. A detailed discussion of
these designs is given in [19].

Orthogonal Binary Matrices in which m is a power of two are widely used and have very
useful properties. Hence only Binary Orthogonal Matrices in which m = 2™ for some n, are
studied in the report. For simplicity of terminology the term Orthogonal Matriz is used to

denote such a Binary Orthogonal Matrix, as defined below.

A.1 Definitions

Orthogonal Matrix: An Orthogonal Matrix, M, of size 2"x2" is defined as a matrix
whose elements are either +1 or -1 and which satisfies the condition MTM = 2" xI, where
I is an identity matrix of size 2" x2™. Table A.1 is an example of an Orthogonal Matrix of

size 23 x23.
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Rows {cpg €1 C2 €3 ¢4 ¢35 ¢ c71
1 |+ + + + + + + +
2 + + + - + - - -
3+ + - o+ - -+ -
4 + + - - - 4+ - 4+
5 |+ - 4+ 4+ - 4+ - -
6 | + - + - - - + +
7 + - - + + - - 4+
8 |+ - - - + 4+ + -

Table A.1: 3 x 3 Binary Orthogonal Matrix

Dependent Column: A column c; is said to be dependent on a set of columns ¢;, c,
..., ¢p if and only if ¢; is identically equal to the column obtained by taking an element-by-

element product of the columns of c;, ck, ..., cp.

Independent Column: A column c; is said to be independent of a set of columns c;, ck,
.., ¢p if and only if ¢; is not dependent on any group of columns taken from the set of

columns c;j, cg, ..., Cp.

Independent Set of Columns: A set of columns c;j, ¢, ..., ¢, are independent if none

of the columns within the set is dependent on any group of other columns of the set.

Column ¢4 in Table A.1 is dependent on columns ¢; and cg, since column ¢4 corresponds
to the column formed by the product of the column ¢; and column cs. Also, columns ¢, ¢

and c3 form an independent set of columns.

A.2 Properties of Binary Orthogonal Matrices

Given below are some of the properties of an 2™ x2™ binary orthogonal matrix, M.

1. One of the columns of the orthogonal matrix consists of only +1 elements and is called

the Average Column. This column is denoted as ¢4y in Table A.1.

2. Every column other than the Average column has equal numbers of +1 and -1 ele-

ments.
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3. A product of any two columns of the matrix equals a column of the matrix. That is,

the product of column ¢; and c¢; must equal ¢ for some k.

G Cj = Ck (Al)
Using the fact that,
Ci * Ci = Caug Vi (A.2)
it can be seen that,
Ci Cj=ck
= CiCk=Cj
— Cj-Ck =¢

4. Any set of n independent columns can be used to generate the entire matrix. Hence,
any set of n independent set of columns completely characterizes the entire matrix.
Such a set of columns is defined as a set of basic columns. The other columns are

called non-basic columns. The set of basic columns is not unique.

5. Every 2"x2" binary orthogonal matrix, M, has n basic column and 2" —n non-basic

columns.

6. Any set of n basic columns is such that every row of these columns corresponds to a
unique combination of +1 and -1. There are two possible options for every element
in a row. Therefore, there are a total of 2" possible combinations, each corresponding

to a different row of the orthogonal matrix.
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Appendix B

Designing a Half-Block of

Experiments

In this section we will try to illustrate the mechanism for shifting variables and interactions
from one column to another when an additional block of experiments is carried out to
augment the existing one. Let us formulate the problem in a general manner. Given
a block of 2"* factorial experiments, is it possible to replace some of the experiments
by other experiments, and obtain a new block of factorial experiments with a different

confounding pattern?

Claim:
Given a block of 2" * factorial ezperiments in n variables,

1. At least 2" %1 experiments of the block need to be changed to obtain a mew block of

factorial experiments with a different confounding pattern.

2. New blocks of factorial experiments which can be obtained by doing an additional set
of 2" %=1 new ezperiments, can be generated by shifting the variables with respect to

every column of the design matriz.

Proof:

Consider a process P which depends on n variables Ty, T5, ..., T,. Suppose a 2"~ * factorial
experiment has been designed on it. Let the design be such that variables Ty, T, ..., T,

form a set of basic variables. T;,_g41, ..., 1), are the corresponding non-basic variables.
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It is desired that a set of experiments be designed which together with a set of exper-
iments from the original block of experiments, determines a new block of 2"~* factorial
experiments with a different confounding pattern.

In order to change the confounding pattern, the variables must be shifted to different
columns of the design matrix. In Part 1 we show that at least 2" *~! new experiments are
required to produce a new factorial design. In Part 2 an algorithm is developed to generate

the different new designs which can be obtained by doing 2"~ new experiments.

Part 1:

In a factorial design the columns are balanced and orthogonal to each other. This implies
that any two distinct columns of a 2*~* factorial design will agree and disagree in exactly
2" k=1 rows.

To change the confounding pattern at least one variable should be shifted from its
existing column to a new column. This requires that an experiment be carried out for every
row in which the elements of the existing column and new column differ with each other.
There are exactly 2°~*~! rows in which the elements of the two columns differ. Hence, at

least 2"%~1 experiments of the original design must be changed to obtain a new one with

a different confounding pattern. This proves the first part of the claim.

Part 2:

In Part I it was demonstrated that 2" %~1 experiments can be used to shift one variable
from one column to another. Suppose that variable 7; is shifted from column v; to column
vy by doing 2" %! experiments, one for each row in which column v; and v; differ.

The question now arises whether it is possible to shift more than one variable using
the same experiments. If another variable Tj is to be shifted from v; to v; along with Tg,
then the columns v; and v; must differ in the same rows in which the columns v; and vy
differ. That is, the product of the columns v; and v; must be the same as the product of
the column v; and vy ( the product of two columns is a column which has a +1 element for
each row in which the elements of the two columns agree and a -1 element for each row in

which the elements of the two columns disagree ). That is,

'Us=’U1'"U]=’Uj"U_] (Bl)
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Using the notation introduced in Section 1.4.4, we can restate the condition in Equa-
tion B.1 as - the variables T; and T} can be shifted by doing only 27—k=1 new experiments
if and only if they shift with respect to the same column v, of the design matrix.

Clearly, any number of variables can be shifted to different columns provided they all
shift with respect to the same column of the design matrix. Moreover, the variables can
be shifted with respect any column of the design matrix. Therefore, we have shown that
by doing 2" *~! more experiments any of the variables can be shifted with respect to any
column of the design matrix.

The new designs can be obtained by shifting all the possible combinations of the variables

with respect to every column of the design matrix. This proves the second part of the claim.

Problems caused by rearrangement of rows

Although all the variables can be shifted with respect to any column of the design matrix,
it is not necessary that the design obtained are all distinct. In particular, it may happen
that given a column with respect to which the variables are being shifted, two different
combinations of variables may produce equivalent designs, i.e. identical designs in which
the rows are arranged differently. This point is best illustrated with the help of an example.
Example B-1 addresses this issue.

A problem with the procedure of shifting of columns, as described above, is that the
procedure is negated by changing the order of the rows of the designs. From the properties
of binary orthogonal matrices discussed in Appendix A, it is known that the set of basic
columns must have rows corresponding to all the permutations of + and —. Thus the
problem could be resolved if we ensure that any set of basic variables is not shifted. That
is, we shift only subsets of non-basic variables.

In the Example B-1, T3, T3 and T3 form a set of basic variables. Hence Ty and/or T5 can
be shifted by doing 4 more experiments. Also, T2, T3 and T} form a set of basic variables,
so Ty and/or T5 can be shifted keeping the other variables fixed. But, T3, T3 and T do not
form a basic set. Hence we cannot move 77 and Ty without encountering the problem of
generating equivalent designs.

Therefore, we believe that an algorithm which generates different factorial designs by
shifting all possible subsets of non-basic variables with respect to all the columns of the

matrix will produce all possible designs where each will be distinct. Although this idea
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seems to be correct, the proof is not known to the author.
The MIT software currently generates new factorial designs by shifting all combinations

of variables.
Example B-1

e Suppose a process P depends on variables T, Ty, T3, T4 and T5. An initial design of
8 experiments is conducted as shown in Table B.1. The location of the variables and

their second order interactions are shown in Table B.2.

Given the Initial Design of Table B.2 four experiments (Expt. 3, 4, 7 and 8) are
designed to shift the variables with respect to column vg. Table B.1 gives the actual
experiment matrix of the designs. In Design(I) 7y is shifted from v;g to vygs. The
other variables are kept unchanged. In Design(II) both T} and T are shifted to
columns v;e and wv;es respectively. In Design(1II) only 7} is shifted to vs2 and the

other variables are kept unchanged.

Examining Table B.2 we expect that the confounding patterns of the designs must
be very different. But this is not so. From Table B.1 we observe that Design(I) and
Design(III) are essentially equivalent to each other and only the order of the experi-
ments are different. Hence, shifting T} to v;2, keeping the other variables unchanged,

is exactly equivalent to shifting T4 to vs23, keeping T1, T2, T3 and T5 unchanged.

In the same way, from Table B.1 it is seen that Design(II) is equivalent to the Initial
Design. That is, shifting two variables T1 and T4 has not changed anything, except

the order of the rows.

In the Initial Design and in Design(II) the variables T1, T2 and T3 form a set of basic
variables. The variables T4 and T5 correspond to I;3 and I3 respectively, in both these
design. Therefore the Initial Design and in Design(II) have the same confounding
pattern and are equivalent. In the same way, in Design(I) and in Design(III) Ty, T»
and T3 form a set of basic variables. The variables Ty and T5 confound with I123
and Io3 respectively, in both these design. Therefore, Design(I) and Design(III) are

equivalent. m
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Initial Design Design(II)
T T, Tz Ty T n Ty T3 Ty T
Expt. | vy ve wvg wvig vss Expt. | vie ve wvs V23 g3
1 [+ + + + + 1 |+ + + + 4
2 |+ 4+ - - - 2 |+ o+ - - -
31+ -+ o+ - 3 - -+ - -
4 |+ - - -+ 4 | - - -+ o+
5 |- 4+ o+ -+ 5 -+ o+ -+
6 |- + - + - 6 -+ -+ -
A T+ -+ 4+ -
8 - - -+ 4+ 8 + - - - +
Design(I) Design(I11I)
T 1o Tj Ty Ts T Ty T3 1Ty Ts
Expt. | vy ve vs vy Vo3 Expt. | vie ve wvs vig o3
1 + + + + + 1 + + 4+ + +
2 +  + - - - 2 + + - - -
3 + - + - - 3 - - + + -
4 + - - + + 4 - - - - +
) - + + - + ) - +  + - +
6 + - + - 6 - + - + -
7 - + + - 7 + - + - -
8 - - - - + 8 + - - + +
Table B.1: Equivalence of Different Designs
[ Expts. [ vay v v 3 v Ups Usg visg |
Initial Design n T, T3 T Ty
Interactions Is4 I3z Ins Lo I I3 Ihs
Ly Iy L4
| Design(I) TN T, T Ts Ty
Interactions 145 135 125 112 123 113 .[15
I3y Iy Iy
Design(II) T2 T3 Tl T5 T4
Interactions I45 135 .[25 134 123 115 113
1o Iy Iy
De51gn(III) T2 T3 T1 Tr) T4
Interactions Ly I35 Ios lys Iy Iy I3
I34 I3 Iy

Table B.2: Changes in Confounding Pattern
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Appendix C

Designing a Full-Block of

Experiments

In Appendix B a technique was demonstrated by which, a block of 2n—k=1 experiments
could be designed which along with 2"~*~1 experiments of the first block of 2"~k factorial
experiments, forms a new block of 2" % factorial experiments. In Section 1 we will demon-
strate the technique of selecting a block of 2% experiments which along with all the on—k
experiments of the first block, forms a block of 2"~¥+1 factorial experiments. In Section 2
we show that the popular fold-over design technique is a special case of the Full-Block de-

sign strategy. The method of generating the fold-over design using the Full-Block design

strategy is demonstrated.

C.1 Full-Block Design Strategy

Claim:

Given a block of 2"~* factorial experiments in n variables,

1. A new block of 2"~* experiments forms a block of 2"~**1 factorial experiments along with
the original block only if both the new and the original block have the same confounding

pattern.

2. There are 2%-1 possible blocks of 2"~* ezperiments which can form a block of 2n—%+1
factorial experiments with the original block. The new blocks can be generated by

reversing the signs of the columns of the non-basic variables in the original block.
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Variable W T ... Thok| Thoks+ .. T,
Original Design Uy U2 ... Un—k | Up(n—k+1) --- Up(n)
New Design UL U2 ... Up—k | Up—k+1 A T

Table C.1: Columns of the variables in the original and the new design

Proof:

Factorial designs are of size 2". Hence it is clear that the number of experiments required
to be added to a block of 2"* factorial experiments to form a larger factorial design must
be at least 2%+l _ 9n—k — 9n—=k Tp Part 1 of the proof we determine the constraints on
the new block of 2" % experiments. In Part 2 we prove the second part of the above claim.

Consider a process which depends on n variables Ty, T, .. ., Tn. A block of 2"~* factorial
experiments is designed on this process. Let the design be such that variables T, T, ...,
T,,—« form a set of basic variables. The variables T},_g41, ..., T, are the corresponding
non-basic variables. Let the columns of the basic variables T, T3, ..., T, be denoted
by vy, ve, ..., Un_k respectively. The column of a non-basic variable T;, corresponds to a
unique product of the columns of the basic variables and is denoted by wvp(,) as shown in

Table C.1.

Part 1:

Suppose 2" % new experiments are to be designed such that these experiments and the gn—k

experiments from the original design, form a 2"~*+1 factorial design. Let the columns of
the variables Ty, T3, ..., T, in the new design be denoted by wui, ..., u, respectively as
shown in in Table C.1. The requirement that the overall design be a factorial design puts
severe constraints on the choice of the new design, that is on columns uy, ..., u,, as shown

below.

Constraint 1: Every column, u;, must have equal numbers of +1 and -1 entries. This result
follows from the the fact that all columns of the original design have equal numbers of +1

and -1 elements and so must the columns of the overall design.

Constraint 2: The columns of the overall design will be orthogonal only if the columns of

the new design are orthogonal.
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Proof: Consider any two distinct columns v, and v, of the overall design. They are orthog-

onal only if,

[UZT uf] Wl=o (C.1)

But, v; and vy are orthogonal to each other. That is, vg T - vy = 0. Therefore the necessary

condition for Equation C.1 to hold is that,
wl uy=0 Vz#y (C.2)

Thus, the overall design will be orthogonal only if the new design is orthogonal.

Constraint 3: If a set of variables is independent in the original design, it is independent in
the new design too.
Proof: Let us assume that the constraint is not true. Let variable T, (z < n — k) be
dependent on variables T;, T}, ..., Ty (¢,4,...,k < n — k) in the new design. That is,
Uy = Ui " Uj... Uk OF Uy = —U; - Uj...U;. The arguments for both these cases are identical,
so only the former case has been considered in the proof below.

The product of the columns of T;, Tj, ..., Tk, and Ty in the overall design is given by,

r .
Vij...kz

1

V4 vj Uk Uz Vij.. .kz
7l _ _ 7 ... _ _ 7
Lok = : . = = 1 =V g (C.3)
Uq 7] Ug, Uy Uij.. kx

L
In Equation C.3, v;_, has equal numbers of +1 and -1 entries. Consequently, the

column v/

5i..kz Will have more +1 than -1 entries. Hence, the column v} 4, cannot be

i
part of an orthogonal matrix. Therefore the assumption that columns u; is dependent on
columns u;, uj, ..., ux is wrong.

We can generalize the above result and claim that, the overall design will be orthogonal
only if, every set of independent variables of the original design, is independent in the

new design too. This implies that a set of basic variables of the original design must be

independent in the new design.
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Constraint 4: Every non-basic variable in the new design must correspond to the interaction
of the same basic variables as it did in the original design. The sign of the interaction can
differ.

Proof: Consider a non-basic variable Ty (y > n — k). Its column in the original design is
denoted as vy(,). Let this variable be confounded with interaction I;;.. i, of basic variables T;,
Ty, ..., Ty (4,4,. ..,k < n—k) in the original design. That is, Up(y) = Vij..k OF Up(y) = —Vjj. k-
The arguments for both these cases are identical, so only the former case has been considered
in the proof below. The product of the columns of T;, T}, ..., Tk, and Ty, in the overall

design is given by,

1
1
Vi vj Vg Vp( .
Gk = PO (C.4)
U; Uy Uk Uy
1
| Yij.ky |

If the overall matrix is orthogonal then there are only two possible cases.

L. Il; ky = Vaug- That is all the elements of u;; g, are +1.

!

ij...ky 18 zero. That is all the elements of u;j. , are -1.

2. The sum of the elements of

For any other choice of u;;. iy, the columns I{j__.k will not correspond to a column of a

y
orthogonal matrix. Therefore, the only way in which the overall matrix will be orthogonal
is if ;5. ky = +Vavg OF if U;5. gy = -Vayg. This implies that uy = v;; % or uy = - v;;_ in
the new design. That is, the non-basic variable in the new design must correspond to the
interaction of the same basic variables as it did in the original design although the sign of

the interaction may differ.

Combining the above constraints, we conclude that the new design and the original
design must have the same basic variables, and the non-basic variables must correspond to
the same interactions of the basic variables. That is, the confounding pattern of the new
design must be the same as that of the original design. This proves the first part of the

claim.
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[ Variable [T1 T, T3 Ty T5 |
[rExpt. Block 1 | vy Vs Uz Upg V23 “
[rExpt. Block 2 | vy ve wvg Tvuze FEuss ”

Table C.2: Table for Example C-1

Part 2:

In Part 1 we have established the following results:

e A set of basic variables of the original design must be a set of basic variables of the

new design.

e Every non-basic variable of the new design must correspond to the same interaction

of basic variables as in the original design, although the sign may differ.

Therefore, the only choice in selecting the new design is the signs of the interactions
confounding with the non-basic variables. That is, if a non-basic variable T, corresponds to
interaction vy, in the first block of experiments, then it can correspond to either +uv, ()
or t0 -v,(y) in the second.

There are k non-basic variables in the original design. Hence there are 2¥ possible choices
for selecting the signs of the columns. The choice corresponding to selecting all positive
signs results in the same design as the original one. Hence the overall design will have two
sets of identical rows and will not correspond to a 2" *+1 factorial design. Each of the
remaining 2¥-1 combinations corresponds to a distinct block design which can be used with
the original design to form a larger factorial design. Thus, the second part of the claim is
proved.

Using this result, we develop an algorithm which generates different block designs and
selects the one which produces the minimum confounding between the variables and the

probable interactions.

Example C-1

e Suppose a process depends on 5 variables T}, ..., T5 and 8 experiments have been

performed as shown in Table C.2. Tj, T, and T3 form a set of basic variables.
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In the second block of 8 experiments Ty and T5 can be assigned to +v;s and Fwvsg
respectively. Hence, there are essentially 4 choices. Choosing columns of T4 and T as
+v;2 and +wvgg respectively in the second block, gives the same block of experiments

as in the first block. Therefore, this choice is not valid.

If we choose -vyp for Ty, then, Ty along with T, Ty and T3 forms a set of basic variables
of the overall design. Choosing the column of T5 as +wvsgg will make Ty confound with
the column I, in the overall design. If the -vgs is selected then, T5 will be confounded
with Ij34 in the overall design. In general, it is more desirable to confound T5 with

I{34 than With Ié3. [ ]

C.2 Fold-Over Designs

The procedure of folding factorial designs is commonly used to increase the resolution of
the designs and enable them to determine important interactions. In this section we show
that this procedure is a special case of the Full-Block design strategy. This result not only
justifies the use of Full-Block designs, but also establishes its superiority over the fold-over

designs in sorting out the important interactions.

Claim:

The fold-over design is a particular case of a Full-Block design. A fold-over design can be

obtained by the following procedure:

1. Determine the order of each non-basic variable, that is, order of the interaction of the
basic variables with which it is confounded. (For example, if Ts is confounded with

the interaction of basic variables Ty, T and T3 then its order is 3.)

2. Design a Full-Block of experiments by changing the signs of the even-ordered non-basic

variables only.

Proof:

Consider a process dependent on n variables, T1, Ty, ..., T,, on which a 2"~k factorial
experiment has been designed. Let T}, Ty, ..., T,,—k be a set of basic variables and Ty, _g41,

Ty, ..., Ty, be the corresponding set of non-basic variables. A non-basic variable corresponds
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VII |Th T T3 T, Ts
Expt. | vy ve v3 v Ui23

1 + + + + +
2 |+ + - 4+ -
3 + - + - -
4 |+ - - - 4+
5 -+ + - -
6 -+ - - +
7 - -+ + +
8 - - -+ -

Table C.3: Initial Design of Example C-2

to a distinct interaction of the basic variables. Hence, given the settings of the basic
variables, the settings of the non-basic variables can be uniquely determined.

From the property of orthogonal matrices discussed in Appendix A, we know that the
columns of the basic variables contain rows with all the possible combinations of +1 and
-1 elements. Therefore, for every row of the design, there exists a second row in which the
signs of all the elements of the basic columns are reversed. Clearly, in the second row the
signs of the elements of the columns of the odd-ordered non-basic variables will be reversed
too.

Comparing these two rows, we find that the signs of all the elements are reversed except
those which lie on the even-ordered non-basic variables. Suppose a new design is obtained
by reversing only the signs of the columns of the even-ordered non-basic variables. For
every row of the original design, there will be a row in the new design which has the sign
of all its elements reversed. Thus the new design is a fold-over design. Moreover, only the
signs of the columns of the non-basic variables have been changed. Therefore the design is
also a Full-Block design.

Thus we have determined a technique of designing the fold-over design using the Full-

Block design strategy. This proves the claim.

Example C-2
e Consider the initial design shown in Table C.3. The fold-over design of the initial

design is shown in Table C.4. Table C.4 also shows the Full-Block design obtained

using the above procedure. Comparing the Full-Block design and the fold-over design
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Fold-over Design Full-Block Design

V/II | Th T» T3 Ty Ts Vi T, Ts T, Ts

Expt. | -v; -ve -vg -vip -vjs3 Expt. | v v w3 -vis wiss
1 | - - - - - 1 |+ + + - +
2 |- - o+ -+ 2 |+ + - - -
3 |- 4+ -+ 4+ 3 |+ - + o+ -
4 |- o+ o+ o+ - 4 |+ - -+ o+
5 |+ - -+ 4+ 5 - + + + -
6 |+ - + + - 6 |- + - + 4+
7+ o+ - - - 70 - 4+ -+
8 |+ + + -+ 8 |- - - -

Table C.4: Fold-over and Full-Block Design of Example C-2

we find that they are identical, except that the rows are arranged differently. From
this example, it can be seen that if the signs of the columns of the even-ordered

non-basic variables are changed, the fold-over design is obtained. m
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Appendix D

Completing Fractional Factorial

Blocks

In this section, we will study the techniques of completing a partially incomplete block of a

factorial design.

Claim:

Given an incomplete block of m (m > 2"%) experiments of a complete block of a gn—k+1

fractional factorial design,

1. The incomplete block must have the same confounding pattern as the complete design

block.

2. There exists a unique set of 2%+t —m experiments which complete the block.

Proof:

In order to prove the above claim, it is assumed that the given set of m experiments indeed
corresponds to an incomplete factorial design. Later, using the properties of the above
claim, a procedure is developed to check if the incomplete block is part of a factorial design
or not. We shall prove the Claim 1 in two parts. In Part 1(a) we show that if any group of
variables are confounded in the complete block then they must confound in the incomplete
block too. In Part 1(b) we prove the converse result. The first part of the claim is proved
by putting together the results of Part 1(a) and 1(b). Part 2 of the proof proves the second

part of the claim.

99



Part 1(a):

Consider a block of 2" *+! factorial design. From this block any m (m > 2"*) rows are
selected to form an incomplete block. The columns of the complete block are denoted by
u;. The columns of the incomplete block are indicated by prime and those of the missing

block by double primes. Therefore,

u=| ° Vi (D.1)

For any column u; of the complete block which is dependent on some other columns u;,

Uk, « vy Up,
Ui = Uj Uk * ... Up (D.2)
! ! /
B I e I B (D.3)
ul uj Uy

Clearly, this relationship holds for the incomplete block too. Therefore, any group of vari-
ables which are confounded in the complete block, must be confounded in the incomplete

block too.

Part 1(b):

Next we need to show that if that any column u; is dependent on columns uj, ug, ..., u,

in the incomplete block, it must be so in the complete block too. In order to prove this, let

us assume that the statement is not true. Suppose,

U= UG U U (D.4)
By assumption,
up A uup (D.5)

In any orthogonal matrix if a column is not equal to another, it must be orthogonal to
it. Therefore, if the column u; of the complete block is not dependent on the column

corresponding to the product of columns u;, ug,..., up it must be orthogonal to it.
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If the product of the columns u;, ug,.. ., up is denoted by u,x. p, then

!
u -
T _ jk.p | __ T 1 nT o _
u;  Ujk.p = [ ul  ufT ] 1 =uUg U ot U Uy =0 (D.6)
Ujk..p
But from Equation D.4 u; and uf;, , are identical. Therefore,
T . _ nroo i _
Ui Ujk.p=mtu; Uy , =0 (D.7)
= ulT o, =-m (D.8)
() 'jk...p .
nro,.n — n—k
= |u; -ujk__'p| =m > 2 (D.9)

The dimension of uf and ufy_, is 2" **1—m and their elements are +1 or -1. Hence,

Wl ull, | <20k —m < onk (D.10)

Comparing Equations D.9 and Equations D.10, there is a contradiction. Therefore
the assumption that column w; of the complete block is not dependent on the column
corresponding to the product of columns u;, ug,. .., up is incorrect. Hence the column u; of
the complete block is dependent on the columns u;, ug,.. ., u,.

Therefore, if any column depends on a set of columns in the incomplete block, it must
do so in the complete block too. Consequently, if a variable is confounded with a group
of variables in the incomplete block, then it must be confounded with the same group of
variables in the complete block too.

From the results of Part 1(a) and Part 1(b) we conclude that the confounding patterns

of the complete and incomplete blocks must be identical.

Part 2:

In Part 1 it was shown that the confounding patterns of the complete and the incomplete
blocks are the same. Therefore, any set of basic variables of the complete block must be a
set of basic variables of the incomplete block and visa versa.

From the properties of Binary Orthogonal Matrices given in Appendix A, it is known

that the rows of the basic variables must be such that each row corresponds to a unique
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Expt. T1 T2 T3 T4 T5
1) [+ + + + +
212) {+ + - - -
3@) [+ - + + -
4G) | - + + - +
57 | - - + - -

Table D.1: Incomplete Block of Experiments

combination of +1 and -1. Also, the columns of the complete block contain all possible

combinations of +1 and -1.

Using this property of Binary Orthogonal Matrices along with the result of Part 1, the

incomplete block can be completed in the following steps:
Step 1. Determine the basic variables and the confounding pattern of the incomplete block.

Step 2. Check which of the 2" ~*+! combinations of +1 and -1 are missing from the columns

of the basic variables. There will be 2" **+1_m such combinations.

Step 3. For each of the combinations determined in Step 2, determine the entries of the

non-basic variables of the matrix using the confounding pattern of the incomplete
block.

Since each of the steps of the above procedure is deterministic and unique, we prove

Claim 2, i.e. there exists a unique set of 2"~**1_m experiments which completes the block.

Example D-1

e Consider a process P which is dependent on five variables T}, T», T3, Ty and T5. Say
a 25~2 fractional factorial experiment is to be carried out on this process, as shown in
the Initial Design of Table B.1. Suppose that of these 8 experiments, 5 (m =5 > 4)
have already been carried out as shown in Table D.1. Which 3 experiments need to

be carried out to complete such an incomplete block?

Step 1: As per the procedure described above, the first step is to determine the 3
(n — k + 1) basic variables. From Table D.1 it is observed that the following

combination of variables correspond to a basic set of variables:
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Step 2 Step 3
Expt. | Th Ty Ts | To=lys T3=I

16) | - + - | + -
204 |+ - + - -
38) |- + +| - -

Table D.2: Missing Block of Experiments

(i) T, T3, T3 (i) T, To, Ty (ii)) Ty, Tp, T (iv) T, T3, T5

(V) Th, Ty, Ts (Vi) Ty, T3, Ty (vil) T, Ty, T5  (viil) T3, Ty, T
Since only one set of basic variables is required, it is not necessary to enumerate
all the sets of basic variables as done here. Let us select T, T4 and Ty as the set

of basic variables.

Step 2: Scanning the columns of 7}, T4 and T5 the missing combinations of +1 and

-1 are determined. They are shown in Table D.2.

Step 3: From Table D.1, it is observed that T» confounds with interaction I145 and
T3 confounds with I34. Using this information the missing columns of T3 and T3
are determined in Table D.2.
Comparing Table D.2 with the Initial Design of Table B.1, we conclude that
Expts. 1, 2 and 3 of Table D.2 correspond to the missing experiments 6, 4, and
8 of the Initial Design of Table B.1 respectively. Hence, the missing experiments

of the incomplete block have been determined. m

Determining Incomplete Factorial Blocks

All the results determined above assume that the the incomplete block of experiments

indeed corresponds to a complete 2" ~*+1 fractional factorial block. Therefore, if the set of

experiments does not correspond to a complete block, the results do not hold.

A block of experiments which do not correspond to a complete block will have either

more than n — k41 or less than n —k + 1 independent columns. Thus there will not be any

set of n — k + 1 basic variables. When the procedure for completing the block is applied to

such a block, the method will fail in Step 1. Thus the procedure of determining the basic

variables can be used to check if a block of experiments correspond to an incomplete block

or not.
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Appendix E

Computer Software Listings

E.1 Startup Routines

IR 7 o 107
D22 5 B 1 (5 114

E.2 Block Design Routines

1. BlocKk.C oo 116
2. BRIt O ot e e 123
2. Comp bR C L e e e e e e 125
2. BlR . C o e e 129

E.3 One-at-a-Time Design Routines

1. QA AT . C i e e e e e 132
2. DA AT . C e e e 141
3. DA AT 0Dt G it e e i 144

E.4 Common Routines

L Plant. G o e e e e e s 146
P20 103 o 4L 147
3. Dispanfo.C .o 148
4. Database.C ... . 150
8. Setmat.C L 152



E.5 Header and Data Files

1. ConinCl H .. e 153
2. Comine2.H ..o i 154
3. True Process.Dat . ....o.uuunii i i e e e 156
4. Interaction.Dat ... e e 156
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int i, row, blk; 90

set_mat(num_vars, 0, expt_mnat, sel_row, size blk, &mat_rows,
&mat_cols, &var_col, &mat, &conint);

pmalloc( (void **) &matres, mat_rows*sizeof(float));

pmalloc( (void **) &coeff, mat_cols*sizeof(float));

pmalloc( (void **) &covar, mat_cols*mat_cols*sizeof(float));

pmalloc( (void **) &overlap, mat_cols*sizeof(int));

/* assign results to matres */

for(i=0; i<mat_rows; i++){
blk=sel_ptr(0, i, SBL);
row=sel ptr(0, i, SEP);
matres{i] = res_ptr(blk, row);
}

return;

}

\**%******%********%**************%****
*

* Initializes variables.
*

************%***********%%%****%****%**\

static void initialize_data(void){

int i,j,k, matsize;
char tempch{] = "T "
int set_exptmat(void);

printf("Enter number of variables: ");
scanf("%d", &num_vars);

120

/ * variable label */
pmalloc( (void **) &var label, (num_vars+1)*sizeof(char *));
for(i=0; i<num_vars+1; i++){
var_label[i] = NULL;
pmalloc( (void **) &(var_label(i]), Label Length*sizeof(char));
}
for(i=1; i<num_vars+1; i++){
itoa(i, tempch+1, 10);
strepy(var_label[i—1], tempch);
}

strcpy(var_label[num_vars], "Avg.");

130

num_blocks = 1;
pmalloc( (void **) &size expt, MAX_BLK*sizeof(int));
pmalloc( (void **) &size_blk, MAX_BLK*sizeof(int));
pmalloc( (void **) &type_blk, MAX BLK*sizeof(int));
pmalloc( (void **) &blk_info, MAX_BLK?*sizeof(int));
140
pmalloc( (void **) &res mat, MAX_BLK*sizeof(float *));
pmalloc( (void **) &expt_mat, MAX_BLK*sizeof(int *));
pmalloc( (void **) &sel_ row, MAX_BLK*sizeof(int *));

for(i=0; i<MAX_BLK; i++){
size_expt[i]=0;
size_blk[i]=0;
type_blk[i]=0;
blk_info[i]=0;
res_mat[i]=NULL; 150
res_mat[i]=NULL;
expt_mat[i]=NULL;
sel_row[i]=NULL;

}

matsize = set_exptmat();

mat_rows = matsize;
size_blk[0] = matsize;
type_blk[0]=0;
160
pmalloc((void **) &(sel row[0]),  sof selrow(0)*sizeof(int));
pmalloc( (void **) &(res_mat[0]), sof resmat(0)*sizeof(float));
/* set res_mat and get plant results */
printf("EXPT. NO. \t\tRESULT\n");
for(i=0; i<mat_rows; i++){
actual_plant_result(1, num_vars, expt_ptr(0, i), &(res_ptr(0,i)) );
printf("%3d\t\t\t%6.2f\n", i+1, res_ptr(0, 1));
}
170

/* set sel_row */

for(j=0; j<size_expt[0]; j++){
sel_ptr(0, j, SBL) = 0;
sel_ptr(0, j, SEP) = j;
}

return;

}
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for(i=0; i<cints_ptr(count, COR); i++) 270
for(j=i; j<cints_ptr(count, COR); j++)
if(cints_ptr(count, CV1+i)>cints_ptr(count, CV1+i)){
k = cints_ptr(count, CV1+i);
cints_ptr(count, CV1+i) = cints_ptr(count, CV1+j);
cints_ptr(count, CV1+j) = k;
}

if(!get_label(temp_str)) error("error:", f name, fileline);

exint_wt{count] = atoi(temp_str);

count++; 280

}
if(count != exint_count) error("error in interaction data", f name, —1);
for(i=0, count=0; i<exint_count; i++)

if(cints_ptr(i, COR)==3){

memcpy (tempvect, &(cints_ptr(i, 0)), cint_len*sizeof(int));
memcpy (& (cints_ptr(i,0)), &(cints_ptr(count, 0)), cint_len* sizeof(int));
memcpy (& (cints_ptr(count, 0)), tempvect, cint_len*sizeof(int));
k = exint_wt[i]; 290
exint_wt[i] = exint_wt[count];
exint_wt[count] = k;
count+-+;
}
*pth_ord = count;
for(count=0; count<exint_count; count++)

(* @m:aﬁ:znoczs = cints v:maoc:ﬁ CV1+cints_ptr{count, COR)—1);
fclose(handle); 300
return;

}

[ RARREEEERR R AL ASSEKES A BRI AR SALES
*

* Selects important effects using the

* Lenth’s Algorithm(Technometrics, Nov ’89)
*

FEFHAKEKRIAAAEF KA KA I KREAKA AR |

310

static void select_imp_columns(void){

int i, j, temp=0, count;

float T 975=2.0, *ord_eff=NULL, *abs eff=NULL, templ, temp2;
float So, ME, PSE, SSE, noise_var;

pmalloc((void **) &ord_eff, mat_cols*sizeof(float));
pmalloc((void **) &abs_eff, mat_cols*sizeof(float));
pmalloc((void **) &prob_col, mat_cols*sizeof(float));
pmalloc((void **) &sel_col, mat_cols*sizeof(int));
pmalloc((void **v &sel_var, mat_cols*sizeof(int));
for(i=0; i<mat_cols; i++) {sel_col[i]=1; prob_col[i]=0.0;}
for(i=0; i<mat_cols; i++){

ord_eff[i]=0.0;

ord_eff[i]=abs_eff[i]= fabs{coef[i]);

}
/ * ordering the values of abs_eff in accending order */
for(i=0; i<mat_cols; i++) 330

for(j=i; j<mat_cols; j++)

if(ord_eff{i}>ord_eff[j}){
templ=ord_eff[i]; ord_eff[i]=ord_eff[j]; ord_eff[j]=templ;
}

So = 1.5 * ord_eff{mat_cols/2—2];
for(i=0; i<mat_cols; i++) if(ord_eff[i]
PSE = 1.5 * ord_eff[temp/2];
ME = T_975 * PSE;

>= 1.5*%S0) { temp = i—1; break;}

for(i=0; i<mat_cols; i+-+) if(abs_eff[i] <= ME) sel_col[i]=0;

for(i=0, count=0, SSE=0.0; i<mat_cols; i++)
if(sel_col[i]==0){ count++; SSE += coeff[i]*coeff[i]; }

for(i=0; i<num_vars; i++)
if(sel_col[var_colfi]|==1) sel_var[i]=1;
else sel_var[i|=0;

if(count>1){
noise_var — SSE/(count—1);
for(i=0; i<mat_cols; i++){
if(fabs(coeff[i]*coeff[i]) > (noise_var)){
f test(coeff[i]*coeff[i], 1, noise_var, count—1, &templ, &temp2);
prob_col[i]=1—temp2;
}
else prob_col[i]=0.0;

}

350
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/* determine 2nd order interactions */

for(v1=0; vi<num_vars; v14-+){

for(v2=v1+1; v2<num_vars; v2++) if((sel_var[vl]==1)||(sel_var[v2]==1)){

k= conint[ var_col[v1]*mat_cols + var_col[v2] ];

weight_int =

(int) 100*fabs(coeff{k]*coeff[var_col[v1]] *coeff[var_col[v2]]);

if(no_int_col{k] <max _int){
no_int_col[k]++;

list_ptr(k, (no_int_col[k]—1),

[k]—
list_ptr(k, (no_int_col[k]—-1),
list_ptr(k, (no_int_col{k]—1),
list_ptr(k, (no_int_col[k]—

}

else{
min_weight=weight_int;
count=-—1;

LOR) = 2;
LV1) = vl
LV2) = v2;

1), LWE) = weight_int;

for(i=0; i<no_int_col[k]; i++)
if(min_weight> list_ptr(k, i, LWE)){
min_weight=list_ptr(k, i, LWE);

count=i;

}

if(count>=0){

list_ptr(k, (count), LOR) = 2;

list_ptr(k, (count), LV1)
list_ptr(k, (count), LV2)

=vl;
v2;

)

Il

list_ptr(k, (count), LWE) = weight_int;

}

}

for(i=0; i<mat_cols; i++)
for(j=0; j<no_int_colfi}; j++)

for(k=j+1; k<no_int_col[i]; k++)

if(list_ptr(i, j, LWE) < list_
memcpy(tempvect, &(list_ptr(i, j, 0)), int_len*sizeof(int));
memecpy (& (list_ptr(i, j, 0)), &(list_ptr(i, k, 0)),

memcpy (& (list_ptr(i, k, 0)), tempvect, int_len*sizeof(int));

}

printf("Select all interactions?
fllush(stdin);
if(getch()=="y")

ptr(i, k, LWE)){

int_len*sizeof(int));

(y/n)\n");

for(i=0; i<mat_cols; i++) sel_col_int{i]=1;
450 else
for(i=0; i<mat_cols; i++) if(sel_colli]==1) sel_colint[i]=1;

for(i=0; i<num_vars; i++) if(sel_col{var_col[i]]==1)
sel_col_int[var_col[i}]=0;

sel_colLint[0]=0; /* no interaction on avg. col */

return;

}

\***%%***%*%************%********%*****

460 *
* Forms the database for the software.
* The variables tot_ints, blk_mat,
* yar_mat, int_mat are initialized here.
* The other variables were set in
* initialize()
*
FAAAR AR RKAKE KKK AA ARSI FAEFEAAAARRA ]

static void make_data_base(void){

int i, j, k, 1, v1, sum, sign, count, *tempvect=NULL, col;

/* makes VARIABLE DATABASE */

pmalloc((void **) &var_mat, sof varmat*sizeof(int));
for(i=0; i<sof_varmat; i-++) var_mat[i]=0;
var_ptr(num_vars, VNO) = num_vars;
var_ptr(num_vars, VCO) = (int)(C_FACTOR*coeff[0]);

for(i=0; i<num_vars; i++){
480 var_ptr(i, VNO) = i;
var_ptr(i, VCO) = (int)(C_FACTOR*coeff[var_colfi]]});
var_ptr(i, VBO) = var_colli];

}

/* makes INTERACTION DATABASE */
pmalloc((void **) &tempvect, — mat_cols*sizeof(int));

for(i=0, tot_ints=0; i<mat_cols; i++)
if(sel_col_int[i}==1) tot_ints += no_int_collil;
490
pmalloc((void **) &int_mat, sof intmat*sizeof(int));
for(i=0; i<sof intmat; i++) int_mat[i]=0;
for(i=0, count=0; i<mat _cols; i++){
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E.1.2 Str_itr.C

\*******%%%***********%*******%********
*

*This routine is called by Startup.c if
*there are any third—order interactions.
*The routine selects the experiments so
*that none of the variables are confounded

*with the interactions.
*

*****************%*******%*****%%*****%\

10
#include "coninc.h"
#define enough_tries 100
int successes = 0;
int *optvar, minvar, minint, matsize;
float minvsum, minisum;
int *varcol=NULL, *int_pattern=NULL, *assign—NULL;
extern int num vars, *cints;
static int *weights, int_count, *endvar;
static int rec_str(int *, stats *); 20
void select_experiments(int tint_count, int *tweights, int *pmatsize,

int *tendvar, int **ptempmat){

int i, j, k, 1, prod, sum, *tempmat=NULL, *temp_vect=NULL;
stats *statvar;
weights = tweights;
int_count= tint_count;
endvar = tendvar; 30
matsize=1;
while(matsize<num_vars) matsize *=2;
*pmatsize = matsize;
pmalloc((void **) &tempmat,  matsize*matsize*sizeof(int));
pmalloc((void **) &temp_vect,  matsize*sizeof(int));
pmalioc((void **) &int_pattern, matsize*matsize*sizeof(int));
create_matrix(matsize, tempmat);
/ * set int_pattern (same as conint in other programs) */ 40

for (i=0; i<matsize; i++) for (j=0; j<matsize; J++){
for (k=0; k<matsize; k++)
temp_vect[k] = tempmat[k*matsize+i]*tempmat[k*matsize-+j];

prod = 1;
for (1=0; l<matsize; 14++){
sum = 0;

for (k=0; k<matsize; k++)
sum += (temp_vect[k]*tempmat[k*matsize+1]);
if (abs(sum) == matsize) {int_pattern[i*matsize+j]=1; prod=0;}
} 50
if (prod != 0) printf( "Non orthogonal matrix found" );
}
/ * variables for recon */
pmalloc((void **) &optvar,
pmalloc((void **) &varcol,
pmalloc((void **) &assign,

(num_vars)*sizeof(int));
(num_vars)*sizeof(int));
2*matsize*sizeof(int));

for(i=0; i<2*matsize; i++) assign[i] = 0;

/* note that assign has (varno+1) and not (varno) */

varcol[0]=0; 60
varcol[1]=1;

assign{0]=1;

assign{1]=2;

minvar
minvsum = minint = minisum = 0;

statvar—>set=2;

statvar—>curvar = 0;

statvar—>curvsum= 0;

statvar— >curint = 0;

statvar—>curisum= 0; 70

= nuim_vars,

rec_str(assign, statvar);
if(minvar>0) error("Higher order matrix required", NULL, -1);

pmalloc((void **) ptempmat,  matsize*matsize*sizeof(int));

for(i=0; i<matsize*matsize; i++) (*ptempmat)[i]=0;

for(i=0; i<num_vars; i++) for(j=0; j<matsize; j++)
*(*ptempmat + j*matsize +i)=tempmat[j*matsize-+optvar(i]];

pfree((void **) &optvar); 80
pfree((void **) &varcol);

pfree((void **) &int_pattern);

pfree((void **) &assign);

pfree((void **) &tempmat);

pfree((void **) &temp_vect);

return;

}
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/ * interacting columns now in I, update */
if (assign[matsize+1] == 0){
/* new interaction here, check if occupied */
if (assign(l] > 0){
statvar—>curvar++;
statvar—>curvsum += weights[i];
}
assign[matsize+1] = weightsli];
}
else if (assign[matsize+1} > 0){
/* new overlapping interaction column */
if (assign[l] == 0){
statvar—>curint+-+;
statvar— >curisum += assign[matsize+1] + weights[i];
}

else statvar—>curvsum += weights]i];

assign[matsize+1] = —assign[matsize+1]—weights(i];
}

else{
/ * already overlapping interaction */
if (assign[l] == 0) statvar—>curisum += weights]i];
if (assign[l] != 0) statvar—>curvsum += weights
assign[matsize+1] —= weights[il;

}

/* tests this arrangement */
done = —check_worse( statvar );

if (done == 0){

/ * next variable */

statvar—>set++;

done = rec_str( assign, statvar );

}
memcpy( assign, assign2, 2 * matsize * sizeof( int ) );
memcpy( statvar, &backstat, sizeof( stats ) );

}
}
pfree( (void **) &assign2 );
return( (done == 1) );

}
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E.2.1 Block.C

\*********%******%%%**%***%*****%%%****
*

*Program: Block.C
*

*This routine uses the database and

*designs the optimal Full—Block or

*Half— Block of experiments. The algorithm

*used here is outlined in Appendices B and

*C of the report. The ezperiments are then

*stored in the database. 10
*

*Input: Block number.

*Output: Full— Block/Half— Block Design

*

**%****%**%*********%******%%*%********\

#include "coninct.h"
#include "coninc2.h"

/* main variables */ 20
int num_vars, num_blocks, **expt_mat=NULL, **sel row=NULL;
int *int_mat=NULL, *var_mat=NULL, *size_expt=NULL, *size_blk=
int **bik mat=NULL, tot_ints, *type_blk=NULL, *blk_info=NULL;
char **var_label=NULL;

float **res_mat=NULL;

int block_no=0;

/ * variables for combine.c */

intstruct *int_root=NULL;

int *var_col=NULL, mat_rows, mat_cols, *mat=NULL, *conint=NULL; 30
int int_count, *endvar;

stats initstat;

/* variables for re_con() */

int *optvar=NULL, *new_assign=NULL, *old_assign=NULL, *cints=NULL;

int dim;

int *old_varcol=NULL, *new_varcol=NULL, *ord_ass=NULL, full_set;

int minvar, minint;

int minvsum, minisum, *weights=NULL;

int re_con(int *, stats *); 40

main{){
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| = cints_ptr(intno, CV1+k);
cints_ptr(intno, CV1+k) = cints_ptr(intno, CV1+1+k);
cints_ptr(intno, CV1+4+1+4k) = ;

warning("The Int. Variables are not in right order", NULL, —1);

}

/* set int_root */
cur_intptr—>order = cints_ptr(intno, COR);
pmalloc((void **) &(cur_intptr—>>vars), cur_intptr—>order*sizeof(int));
for (k=0; k<cur_intptr—>order; k++)

cur_intptr—>vars[k] = cints_ptr(intno, CV1+k)—1;
cur_intptr—>weight = (float) weights[intno;
cur_intptr—>type = 1;

pmalloc( (void **) &(cur_intptr—>next), sizeof( intstruct ));
cur_intptr = cur_intptr—>next;

cur_intptr—>vars = NULL;

cur_intptr—>next = NULL;

intno++;

}

return;

}

\************%*************%****%%*****
*

* Sets up the variables for re_con()
*

******%**%*****************************\

static void setup_variables(void){

int i, j;
void get_ord_ass(void);

pmalloc( (void **) &optvar, (num_vars+1)*sizeof(int));

/ ***old_assign ***/
pmalloc( (void **) &old_assign, mat_rows*sizeof(int));
pmalloc( (void **) &old_varcol, (num_vars+1)*sizeof(int));
for(i=0; i<mat_rows; i++) old_assign[i]=0;
for(i=0; i<(num_vars+1); i++) old_varcol[i]=0;
for(i=0; i<num_vars; i++){
j=var_col[i];
old_assign[jj=i+1; / ** check if correct **/
old_varcol[i+1]=j;

}

pmalloc( (void **) &ord_ass, (num_vars+1)*sizeof(int));
for(i=0; i<(num_vars+1); i++) ord_ass[i]=0;

get_ord_ass();
return;

}

\*%**%***********%*******%*%******%**%%*

140

*

* Determines the basic variables and

* sets up ord_ass[]
¥

FHAFEAKERHAAK KKK AR KR EF A A EFRAAAARAR ]
static void get_ord_ass(void){

150 int i, j, varno, temp, power;
int *covered=NULL, selected, no_cov;

pmalloc( (void **) &covered, mat_rows*sizeof(int));
for(i=0; i<mat_rows; i++) covered[i|=0;
power=0;
temp=mat_rows;
while(temp>1) {power +=1; temp /=2;}
ord_ass[1] = 1;
ord_ass[2] = 2;
160 covered[l] = covered[2] = I;
covered|conint[1*mat_rows+2]] = covered|conint[1*mat_rows+1]]=1;
no_cov=4;

/ * assign the basic variables to ord_ass[] */
for(i=3, varno=3; i<power+1; i++) {
selected=0;
while(selected==0){

if(varno > num_vars) error("Not enough Basic Variables", NULL, -1);

for( j=0; j<mat_rows; j++)

180

190

200

210

170 if((covered[j]==1)&&(covered[conint [j*mat_rows-old_varcol[varno]]]==0))

selected +=1;
if(selected==no_cov){
ord_ass|i] = varno;
covered|old_varcol[varnol}=1;
for( j=0; j<mat_rows; j++)
if (covered[j]==1)
covered[conint[j*mat_rows+old_varcol [varno]]]=1;
no_cov = no_cov¥2;
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pfree( (void **) &var_label);
pfree( (void **) &expt_mat);
pfree( (void **) &res_mat);
pfree( (void **) &size_expt);
pfree( (void **) &blk_mat);
pfree( (void **) &sel_row);
pfree( (void **) &cints);
pfree( (void **) &weights);
pfree( (void **) &endvar);
pfree( (void **) &old_assign);
pfree( (void **) &new_assign);

pfree( (void **) &old_varcol);
i

pfree( (void **) &new_varcol);
pfree( (void **) &ord_ass);
pfree( (void **) &optvar);

\*********%*****%***%%*****%***********
*

* Prints Final Results ..

*

***************%******%*%***%%%****%***\

static int print_results( void){

int i, j, k, *var_list=NULL, max_label=0, main_col = —1;
char f name[100];

stats mat_stats;

FILE *out_handle;

out_handle = stdout;

printf("Do you want to save the screen output? (y/n)
if(getch()=="y"){
printf("\nEnter output file name: ");
fliush(stdin);
gets(f_name);
out_handle = fopen(f name, "w");
if(out_handle==NULL){
warning( "Cant open output file", NULL, —1);
out_handle = stdout;

}

320

330

340

350

fprintf( out_handle, file_divider );
fprintf( out_handle, "OPTIMAL COMBINATION IS: \n"); 360
for(i=1; i<num_vars+1; i++){

fprintf(out_handle, "Var: ¥%s \t Column: %d \t", var_label[i—1], optvar[i]);

if(old_varcol[i]==optvar[i]) fprintf( out_handle, "Same col\n");

else fprintf( out_handle, "Shifted w.r.t. Col: %d\n",

(main_col = conint{dim*old_varcol{ij+optvar[i]}));
}

fprintf( out_handle, file_divider );
if(out_handle == stdout) getch();
fprintf( out_handle, file_divider );

/* set_up new experiment. main_col=—1 implies no expts. required */
if(main_col!=—1){
pmalloc( (void **) &var _list, (num_vars+1)*sizeof(int));
for(i=0; i<num_vars; i++) var_list[i]=i;
var_list[num_vars]=—1;
for(i=0; i<num _vars; i++) max_label=max( max_label, strlen(var_label[i}));
max_label4++;

fprintf( out_handle, "01d Overlap Information:\n");
fprintf( out_handle, "~-===m---v-—- ———mm o \n"); 380
get_matrix_stats( dim, mat, num_vars, var_list, old_varcol+1,

int_root, &mat stats, 1, out_handle, var_label, max_label );

fprintf( out_handle, "New Overlap Information:\n");

fprintf( out_handle, "---=-=-—cmmmmmmmmmem - \n");

get_matrix_stats( dim, mat, num_vars, var_list, optvar+1, int_root,
&mat _stats, 1, out_handle, var_label, max_label );

fprintf( out_handle, file_divider );

if(out_handle == stdout) getch();

390
pfree( (void **) &var _list);
}
if(out_handle != stdout) fclose(out_handle);
return(main_col);
}
\**************%**%*****************%**
*
* Stores the new experiments in expt mat/]
* 400

**%*************%*%*%******%***%*******\

static void save_new_expts(int main_col){

120
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conint[i*dim+j} = »rnonw:eE\Ea\wv*A&E\mv+.._la:5\wf

}

/* setting new mat */
for(i=0; i<dim/2; i++)
for(j=0; j<dim/2; j++)
mat[i*dim+j] = t_mat[i*(dim/2)+j};
for(i=dim/2; i<dim; i++)
for(j=0; j<dim/2; j++)
mat[i*dim+j] = t_mat[(i—dim/2)*(dim/2)+j};
for(i=0; i<dim/2; i++) mat[i*dim + dim/2] = 1;
for(i=dim/2; i<dim; i++) mat[i*dim + dim/2] = —1;
for(j=dim/2+1; j<dim; j++) for(i=0; i<dim; i++)
mat[i*dim-+j] = mat[i*dim+dim/2]*mat[i*dim+j—dim/2];

pfree( (void **) &t_mat);
pfree( (void **) &t_conint);
return;

}

\**%**%************%*************%****%
*

* Updates information and store it in the

* database.
*

*%%********************%***************\

static void save comb_data(int main_col){

int i, count;

/* set sel_row */

sel_row[num_blocks—1]=NULL;

pmalloc((void **) &(sel_row[num_blocks—1]),
sof selrow(num_blocks—1)*sizeof(int));

if(type_blk[num_blocks—1]==TYPE_HBLK){
for(i=0, count=0; i<dim; i++) if(mat[i*dim+main col]==1){
sel_ptr(num_blocks—1, count, SBL) = sel_ptr(block_no, i, SBL);
sel_ptr(num_blocks—1, count, SEP) = sel_ptr(block_no, i, SEP);
count++;

}

if(count!=dim/2) error("Some problem with data!!!", NULL, -1);

for(i=0; i<dim/2; 1++){

sel_ptr(num_blocks—1, count, SBL) = num_blocks—1;
sel_ptr(num_blocks—1, count, SEP) = i; 540
count+-+;
}
}
if(type_blk[num_blocks—1]==TYPE_FBLK){
500 for(i=0; i<dim/2; i++){
sel_ptr(num_blocks—1, i, SBL) = sel_ptr(block_no, i, SBL);
sel_ptr(num_blocks—1, i, SEP) = sel_ptr(block_no, i, SEP);
}
for(i=dim/2; i<dim; i++){
sel_ptr(num_blocks—1, i, SBL) = num_blocks—1; 550
sel_ptr(num_blocks~1, i, SEP) = i—dim/2;
}
}
save_database(data_file, num_vars, tot_ints, num_blocks,
510 size_expt, size_blk, type_blk, var_mat, int_mat,
blk_mat, sel_row, expt_mat, res_mat, var_label, blk_info);
return;

}

520
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if(col == old_varcol[pres_var]) col_ok=1;
if(col == old_varcol[pres_var] + dim/2) col_ok=1;
shifted_wrt_col = dim/2;

}

else{
if((shifted_col == 1)&& (assign[col] == 0)){
if(col == old_varcol[pres_var}) col_ok=1;
if(col == conint[old_varcol[pres_var]*dim + shifted_wrt_col])
col_ok=1;

}
else if((shifted_col==0)&&(assign[col]==0))}{
col_ok=1;
just_shifted=1;
shifted_col=1,
shifted_wrt_col = conint[old_varcol[pres_var]*dim--coll;
}
}

if ((assignfcol] == 0)&&(col_ok == 1)){
assign|col] = pres_var;
new_varcol[pres_var] = col;
done = 0;

/* find amount of interaction in this column */
if (assign[dim+col] != 0){

/* indicate overlap */

statvar—>curvar++;

statvar—>curvsum += abs(assign[dim-col]);

/* was it marked as combination of ints?, if so, remove */
if (assign[dim+-col] < 0){

statvar—>curint——;

statvar—>curisum —= abs(assign[dim-+col});

}

done = —check_worse( statvar );

}

/ * update interactions with other columns */
for (i=0; i<int_count; i++) if (endvarli] == pres_var){
k = i*cint_len;
1 = new_varcol[cints[k+1]};
for (m=1; m<cints[k]; m+4+)
l=conint[I*dim+new_varcol{cints{k+14+m]]];

/ * interacting columns now in I, update */

if (assign[dim+1] == 0){
90 /* new interaction here, check if occupied */
if (assign(l] > 0){
statvar— >curvar+-+;
statvar—>curvsum += (float) weights][i];
}
assign[dim+1] = weights[i]; 140
}
else if (assign[dim+1] > 0){
/ * new overlapping interaction column */
if (assign[l] == 0){
100 statvar— >curint++;
statvar—>curisum += (float) (assign[dim+1] + weights[i]);
}
else statvar—>curvsum += (int) weights(i];
assign[dim+1] = —assign[dim+1] — weights[i];
} 150
else{
/* already overlapping interaction */
if (assign[l] == 0) statvar—>curisum += (float) weights(i};
if (assign[l] != 0) statvar—>curvsum += (float) weights[i;
110 assign[dim+1] —= weightsi];
}
}
/ * test this arrangement */
done = —check_worse( statvar ); 160
if (done == 0){
/ * next variable */
statvar—>set++;
done = re_con( assign, statvar );
120 }
memcpy( assign, assign2, 2 * dim * sizeof( int ) );
memcpy( statvar, &backstat, sizeof( stats ) );
if(just_shifted) shifted_col=0;
}
w 170
/* finish up */
pfree( (void **) &assign2 );
return( (done == 1) );

}
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*pcomp_mat = temp_mat;

l=mat_cols;

while(1>1) {l/=2; power+=1;}
covered[0]=1; /* avg. col */
no_cov=1;

varno=0;

pmalloc((void **) &basic_var, power*sizeof(int));

/* determine the basic variables */

for(i=0; i<power; i++) {
selected=0;
while(selected==0){

if(varno > num_vars) error("Not enough Basic Variables", NULL, —1);

for( j=0; j<mat_cols; j++)
if ((covered[j]==1)&&
(covered[conint[j*mat_cols+var_col[varno]}]==0)) selected +=1;
if(selected==no_cov){
covered|var_col[varno]]=1;
for( j=0; j<mat_rows; j++)
if (covered[j]==1)
covered[conint[j*mat_cols+var_col[varno]}]=1;
basic_var[i] = varno;
no_cov = no_cov*2;
}
else selected=0;
varno+-+;
}
}

/* determine which combinations of the basic variables are missing */
for(i=0; i<mat_cols; i++) covered[i]=0;
for(i=0; i<mat_rows; i++){
for(j=0, no_cov=0, multiplier=1; j<power; j++){
if(mat[i*mat_cols+var_col[basic_var(j]]]==1) no_cov += multiplier;
multiplier ¥*=2;
}
covered[no_cov]=1;

}

/* add the missing combinations to temp_mat */
for(i=0, row=0; i<mat_cols; i++){
if(covered[i]==0){
no_cov=i;
for(j=0; j<power; j++){
if(no_cov & 1) temp_mat[row*mat_cols + var_col[basic_varj}]] =1;

)

else temp_mat[row*mat_cols + var_col{basic_var[j]]] =—1;
90 no_cov>>=1;
}
row-+-;

}
1
/ * completes temp_mat */
for(i=0; i<mat_cols—mat_rows; i++) temp_mat[i*mat_cols]=1;
for(i=0; i<mat_cols; i++) covered[i]=0;
covered[0]=1;
for(i=0; i<power; i++) covered[var_col[basic_var{i]]] = 1;
100 for(i=0; i<mat_cols; i++4){
for(j=i+1; j<mat_cols; j++){
l=conint[i*mat_cols+jl;
if((covered[i]==1)&& (covered|j]==1)&& (covered[lj==0)){
for(k=0; k<mat_cols—mat_rows; k++)
temp_mat[k*mat_cols+1] =
temp_mat[k*mat_cols+i]*temp_mat{k*mat_cols -+jl;
covered([l]=1;

1
¥
110 }

pfree((void **) &basic_var);
pfree((void **) &temp_mat);
pfree((void **) &temp_vect);
pfree((void **) &covered);
return;

}

[ REREREEEAE KRS AAE KRS AR AR IR EASS R K
*

120 * Prints missing block of experiments.
*
FRKAFAAREREKEREKRHEKERAIE IR A AIA S AK

static void print_block(char **var label, int num_vars,
int blk_rows, int *print_mat){

char format_str[100], temp_str[100};
int i, j, max_label=0;
FILE *out_handle;
130
out_handle=stdout;

for(i=0; i<num_vars; i++) max_label = max( max label, strlen(var_label[i]));

max_label4++;
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pfree({(void **) &temp_vect); }

return; 270 save_database(data_file, num_vars, tot_ints, num_blocks,
} size_expt, size_blk, type_blk, var_mat, int_mat,
blk_mat, sel_row, expt_mat, res_mat, var_label, blk_info);
[ EEEEERRREAAAAKERREEFRRRAAR IR EAAAF KRR 1
* return,;
* Updates the database } 320
*
FREREKEIHIAEKERERKRRIAFH I KK EAKA KA AR, [ EEEEAA LA FREIK ISR RREA AL RAF KRR
*

static void save comp_data(int save data){ * Free pointers and arrays

280 *
int i, j, count; FRARKARARKF R KERIAAK KK I AR KKK SR

void print_block(char **, int, int, int *);
static void finish_up(void){
/* set expt_mat */

expt_mat[num_blocks—1}=NULL; int i; 330
pmalloc((void **) &(expt_mat[num_blocks—1]), for(i=0; i<num_vars; i+-+) pfree((void **) &(var_label[i]));
sof_exptmat(num_blocks—1)*sizeof(int)); pfree( (void **) &mat);
pfree( (void **) &var_col);
for(i=0; i<mat_cols—mat_rows; i++) pfree( (void **) &conint);
for(j=0; j<num_vars; j++) 200 pfree( (void **) &var label);
*(expt_ptr((num_blocks—1), i) +j) = comp_mat{i*mat_cols+var_col[j]]; pfree( (void **) &expt_mat);
printf("\n"); pfree( (void **) &res_mat);
print_block(var_label, num_vars, mat_cols-—mat_rows, expt_mat[num_blocks—1]); pfree( (void **) &size_expt);
return;
if(save_data==1){ } 340

/* set sel_row */
sel_row[num_blocks—1]=NULL;
pmalloc((void **) &(sel_row[num_blocks—1]),
sof_selrow(num_blocks—1)*sizeof(int));
for(i=0, count=0; i<size_blk[block_nol; i++){ 300
sel_ptr(num_blocks—1, count, SBL) = sel_ptr(block_no, i, SBL);
sel_ptr(num_blocks—1, count, SEP) = sel_ptr(block_no, i, SEP);
count+—+;
}
for(i=0; i<size_expt[expt_no]; i++){
sel_ptr(num_blocks—1, count, SBL) = expt_no;
sel_ptr(num_blocks—1, count, SEP) = i;
count+-+;
}
for(i=0; i<size_expt[num_blocks—1]; i++){ 310
sel_ptr(num_blocks—1, count, SBL) = num_blocks~—1;
sel_ptr(num_blocks—1, count, SEP) = i;
count+-;

128
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set_mat(num_vars, block_no, expt_mat, sel_row, size_blk, &tot_rows, 90
&tot_cols, &var_col, &big_mat, &conint);

pmalloc((void **) &big_covar,
pmalloc((void **) &big_res,
pmalloc((void **) &big_coeft,
pmalloc((void **) &overlap,

tot_cols*tot_cols*sizeof(float));
tot_rows*sizeof(float));

tot_cols*sizeof(float));
tot_cols*sizeof(int));

/* assign variables to big_mat */
for(i=0; i<tot_rows; i++){

blk=sel_ptr(block_no, i, SBL); 100

row=sel_ptr(block_no, i, SEP);

big_res[i] = res_ptr(blk, row);

}
get_coefficients(tot_rows, tot_cols, big_mat, big_res, big_coeff,

big_covar, overlap);
update_database(tot_rows, tot_cols, big_mat, big_coeff);
pfree( (void **) &big mat);
pfree( (void **) &big res);
pfree( (void **) &big_coeff); 110
pfree( (void **) &big_covar);
pfree( (void **) &overlap);
return;
}
[ ERRRRRR A AAAFAA IS IS A IS A A A I A AL
*
* Updates the database and sorts the
* interactions. 120
*
RARAA AR EIEKEREEFIRAARFHFE RIS RIARAAAA
static void update database(int mat_rows, int mat_cols, int *mat, float *coeff){
int i, j, k, 1, sum, *temp_vect=NULL;
int sign, *no_int_col=NULL, *tot_int_col=NULL, col, varno, intno, intname;
int prod, count, *update_int=NULL;
float *net_coeff=NULL;
130

pmalloc((void **) &(blk_mat[block_nol), sof blkmat(block_no)*sizeof(int));
for(i=0; i<sof blkmat(block_no); i++) *(blk_mat[block _no] + i) = 0;
pmalloc((void **) &temp_vect, mat_rows*sizeof(int));

pmalloc((void **) &net_coefl,
pmalloc((void **) &no_int_col,
pmalloc((void **) &tot_int_col, mat_cols*sizeof(int});
pmalloc((void **) &update_int, tot_ints*sizeof(int));
for(i=0; i<mat_cols; i++) net_coeff[i] = coeffi];
for(i=0; i<mat_cols; i++) no_int_col[i] = 0;

for(i=0; i<mat_cols; i++) tot_int_col[i] = 0;

for(i=0; i<tot_ints; i++) update_int[i] = 0;

mat_cols*sizeof(float));
mat_cols*sizeof(int));

140

for(i=0; i<mat_cols; i+-+) blk_ptr(block_no, i, BCO) = (int)(coefI[i]*C_FACTOR);
for(i=0; i<mat_cols; i++) blk_ptr(block_no, i, BVA) = —1;
for(i=0; i<num_vars; i++) blk_ptr(block_no, var_col[i], BVA) = i;

/* determines net effect on the columns */
for(i=0; i<num_vars; i++) net_coeff[var_col[i]] —= var_ptr(i, VCO)/C_FACTOR;

/ * determines cols and sign of the interactions */
for(i=0; i<tot_ints; i++){
col=0;
for(k=0; k<mat_rows; k++) temp_vect[k]=1;
for(j=0; j<int_ptr(i, IOR); j++4){
varno=int_ptr(i, IV1+4j);
for(k=0; k<mat_rows; k+-) temp_vect[k]*=mat[k*mat_cols+var_col[varnol};
col = conint[col*mat_cols + var_col[varnol};
}
for(k=0, sum=0; k<mat_rows; k++) sum += temp_vect[k]*mat[k*mat_cols+coljg0
if(abs(sum)!= mat_rows) error("Check Block !!", NULL, —1);
sign = (sum>0) ? 1: —1;
int_ptr(i, IBO-+block_no) = sign*col;

blk_ptr(block_no, col, BNI)+=1;
intno =  blk_ptr(block_no, col, BNI);
blk_ptr(block_no, col, Bll+intno—1) = sign*int_ptr(i, INO);

if(int_ptr(i, [IUC)==1) net_coeff[col] —= sign*coeff[col;
else no_int_col[col]++;

}

for(i=0; i<mat_cols; i++) if(no_int_col[i]==1){
intname = abs(blk_ptr(block_no, i, BI1));
for(j=0, intno=—1; j<tot_ints; j++) if(intname==int_ptr(j, INO)) intno=j;
if(intno<0) error("Interaction Not found", NULL, -1);

170

int_ptr(intno, IUC) = 1;

130
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E.3.1 OAAT.C

\**************%*********************%*
*

*Program: QAAT.C
*

*This program performs the One—at—a— Time

*algorithm outlined in the report.

*The following tasks are performed:

*1) Read the database

*2) Determine number of unknown interactions

*  on each column of the matriz. 10
*3) Generate optimum designs based on the

*  current hypothesized process model.

*4) Update the database and save it.

*

*The program prompts the user for various

*inputs required.
*

*%*%***********%*%**%****%********%****\

#include "conincl.h" 20
#include "coninc2.h"
extern int fileline;

/* main variables */

int num_vars, num_blocks, **expt_mat=NULL, **sel row=NULL;

int *int_mat=NULL, *var mat=NULL, *size_expt=NULL, *size_blk=NULL;

int **blk_ mat=NULL, tot_ints, *type_blk=NULL, *blk_info=NULL;

char **var label=NULL;

float **res_mat=NULL;

int block_no=0; 30

/* basic variables */

int *var_col=NULL, mat_rows, mat_cols, opt_exptnum, *sel col=NULL;
int *opt_exptmat=NULL;

float *coeff=NULL, *opt_res=NULL, noise_var, *net_coeff;

/ * interaction variables */

int int_count, *sel_col_int=NULL, *list_int=NULL, *no_int_col=NULL;

int *cur int_col=NULL, *intcol_ord=NULL, num_calls=0, *b_int_data=NULL;

int *chk_zero_ int=NULL, *chk_col_int=NULL, *known_int=NULL, num_knownint; 40
int num_best_sel;

int act_int_count, *act_list_int=NULL, act_list_len=>5, *conint=NULL;

float act_variance, est_variance, *act_var_coeff=NULL, *act_int_coeff=NULL;

float act_avg_coef;

void f test(float, int, float, int, float *, float *);
void actual plant_result(int, int, int *, float *);

main(){

void load_oaat_data(char *); 50
void free_up(void);

void make_list_int(void);

void select_imp_interactions(void);

void update_database(void);

void get_act_plant(char *);

load_oaat_data(data_file);

make_list_int();

get_act_plant(plant_file);

select_imp_interactions(); 60
update_database();

free_up();

return;

}

\*******%%**************%****%*****%***
*

* Searches the different combinations
* of interactions.

* 70
ERKKKHFFFFAAAFARAAAAAAA A AT H KKK KRR |

static void select_imp_interactions(void){

int i, *opt_assign=NULL, done=0, data num=0;

int *temp_int_data=NULL, opt_good=0;

char file_name[100];

void get_optimum(int *, int *, int);

void sort_interaction(int *);

void print_curr_summary(FILE *); 80
FILE *out_handle;

pmalloc({void **) &opt_assign, num_vars*sizeof(int));
pmalloc((void **) &temp_int_data, mat_cols*sizeof(int));
pmalloc((void **) &b _int_data, num_best*mat_cols*sizeof(int)):

printf("Do you want to save the output?\n");
if(getch()=="y"){
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printf("No Int.

return;

}
printf(file_divider);
printf("No.\t Interaction \t Value");
printf(file_divider);
for(i=0; i<no_int_col[col]; i++)

if(chk_colint[col*max_int + i] == 1){

for(j=0, signl=1; j<list_ptr(col, i, LOR); j++)
signl *= opt_assign(list_ptr(col, i, LV1+j)];
intl=i;
break;
}
for(i=int1+1, opt_valid=0; i<no_int_col[col]; i++)
if(chk_col_int[col*max_int + i] == 1){

case of Col:%2d being sorted ... \n", col);

180

190

for(j=0, sign2=1; j<list_ptr(col, i, LOR); j++)
sign2 *= opt_assign[list_ptr(col, i, LV1+j)];

int2 =
if(signl!=sign2){ opt_valid=1; break; }
}
if(opt_valid==0){

for(i=0, count=0; i<list_ptr(col, intl, LOR); i++, count++)
intvar[count] = list_ptr(col, intl, LV1+i);

for(i=0; i<list_ptr(col, intl, LOR); i+, count++)
intvarfcount] = list_ptr(col, int2, LV14i);

200

signl = cur_int_col[col];
cur_int_col[col] = —1;
tempf = model_plant_result(opt_assign);
for(i=0; i<count; i++){
opt_assign[intvar(i]] *= —1; 210
diff[i] = fabs(model plant_result(opt_assign) — tempf);
opt_assign[intvar[i]] *= —1;
}
cur_int_col|col] = signl;
printf("01ld Optimal assignment:\t ");
for(j=0; j<num_vars; j++) printf( "%c ", (opt_assign[j]>0) ? *+7:2= );
printf("\n");

for(k=0; k<count; k++){
for(i=1, sign1=0; i<count; i++) if(diff[sign1] > diff[i]) signl = i;
opt_assign[intvar{signl]] *= —1;
for(i=0, opt_good=1; i<opt_exptnum; i++)
if(memcmp(opt_assign, (opt_exptmat-+num_vars*i),

220

num_vars*sizeof(int))==0) opt_good=0;
if(opt_good==1) break;
diff[sign1]=0;
opt_assign[intvar[signl]] *= —1;
}

printf("New Optimal assignment:\t ");

for(j=0; j<num_vars; j++) printf( "%c ", (opt_assign[j]>0) ? ’+:7-" ); 230
printf("\n");
}
else printf("Optimum Good for Sorting Ints in Col:%d\n", col);
pfree((void **) &rem_int_col);
return;
}
[ FRFEREEREA K AAK KA KA EFAAERREAR AR
*
* Loads the variables from the database 240
¥
FHFRRRRRAASAR AR ASAAR KR EAA R EEIRAAAAA AR |
static void load_oaat_data(char *filen){
int 1,j,k;
printf(file_divider);
load_database(filen, &num_vars, &tot_ints, &num_blocks,
&size_expt, &size blk, &type_blk, &var_mat, &int_mat, 250
&blk_mat, &sel row, &expt_mat, &res_mat, &var_label, &blk_info);
disp_blk_info(num_blocks, size_expt, size_blk, blk_mat, type_blk, blk_info);
/* make space for oaat ezperiments */
opt_exptnum=0;
pmalloc( (void **) &opt_res, lim_expts*sizeof(float));
pmalloc( (void **) &opt_exptmat, num_vars*lim_expts*sizeof(int));
printf("Enter Block No:"); 260

scanf("%d", &block_no);

if((block_no<0)||(block_no>num_blocks—1)||(blk_mat[block_no]==NULL)){
printf("Invaild Block Number ..... Exiting Program
exit(1);

}

disp_col_info(block_no, size_blk, blk_mat);

/* set var_col and coeff */
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pfree((void **) &opt_res);
pfree((void **) &known _int);
return;

}

[ FEEE AR X KREEAAEASASAAF IR RRRAAA
*

* Forms list_int from interaction data

*

KHFREEARRARAK R AR EA SRR SAASHEA KA AA KA
static void make_list_int(void){

int i, j, k, 1, v1, v2, count, min_weight, col;
int *tempvect=NULL;
void select_imp_columns(void);

pmalloc((void **) &tempvect,
pmalloc{(void **) &no_int_col,  mat_cols*sizeof(int));
pmalloc((void **) &list_int,  list_len*mat_cols*sizeof(int));
for(i=0; i<mat_cols; i++) no_int_col[i]=0;

for(i=0; i<list_len*mat_cols; i++) list_int[i]=0;

int_len*sizeof(int));

/* Remove Known effects of the avg. effect and variables from net_coeff[] */
col = var_ptr(num_vars, VB0+block_no);
net_coeff[col] —= var_ptr(num_vars, VCO)/C_FACTOR;
for(i=0; i<num_vars; i++){
col = var_ptr(i, VBO+block_no);
net_coeff[col] —= var_ptr(i, VCO)/C_FACTOR;

}

/* Determine Known Interactions and remove them from list_int */
for(i=0, num_knownint=0; i<tot_ints; i4++)

if(int_ptr(i, IUC)==1) num_knownint++;
pmalloc((void **) &known_int, num_knownint*sizeof(int));

for(i=0, count=0; i<tot_ints; i+4){

k=abs(int_ptr(i, IBO+block_no)};

if(int_ptr(i, [UC)==1){
known_int[count]=i;
count—+-+;
vl = (int_ptr(i, IBO+block_no)>0)? 1:—1;
net_coeff[k] —= v1*int_ptr(i, ICO)/C_FACTOR;
}

else{

360

370

380

390

400

list_ptr(k, no_int_col[k], LOR) = int_ptr(i, IOR);
list_ptr(k, no_int_col(k], LWE) = int_ptr(i, IWE);
list_ptr(k, no_int_colk], LSG) =

(int_ptr(i, IBO+block_no)>0) ? 1:=1;

for(1=0; 1<list_ptr(k, no_int_col[k], LOR); 14++)
list_ptr(k, no_int_colk], LV1+l) = int_ptr(i, IV1+1); 410
no_int_col[k]++;
if(no_int_col[k]>max_int)
error("Too many Interactions in Column", NULL, —1);
}

}

/ *sorts interactions in decreasing order of weight */
for(i=0; i<mat_cols; i++)
for(j=0; j<no_int_colli]; j++)
for(k=j+1; k<no_int_col[i]; k++) 420
if(list_ptr(i, j, LWE) < list_ptr(i, k, LWE)){
memecpy (tempvect, &(list_ptr(i, k, 0)), int_len*sizeof(int));
memcpy (&(list_ptr(i, k, 0)), &(list_ptr(i, j, 0)),
int_len*sizeof(int));

memcpy(&(list_ptr(i, j, 0)), tempvect, int_len*sizeof(int));
¥

select_imp_columns();

pmalloc((void **) &sel_col_int, mat_cols*sizeof(int));

for(i=0; i<mat_cols; i++) sel_col_int[i]=0; 430
for(i=0; i<mat_cols; i++) if(no_int_col[i]>0) sel_col_int[i] = 1;

int_count=0;

for(i=0; i<mat_cols; i++) if(sel_col int{i]==1) int_count++;

pmalloc((void **) &cur_int_col, mat_cols*sizeof(int));
for(i=0; i<mat_cols; i++) cur_int_col[i]=0;

/ * sort col in decending order and assign to intcol_ord ***/
pmalloc((void **) &intcol_ord, int_count*sizeof(int));
count=0; 440
for(i=0; i<mat_cols; i++) if(sel_col_int[i]==1) intcol_ord[count++] = i;
for(i=0; i<int_count; i++)
for(j=i+1; j<int_count; j++){
vi=intcol_ord[i]; v2=intcol_ord[j];
if(abs(net_coeff[v1])<abs(net_coeff[v2])){
intcol_ord[i]=v2;
intcol_ord[jj=v1;

}
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static float model_plant_result(int *var_value){

int i, j, temp, intno, sign;
float res=—0.0;

res = var_ptr(num_vars, VCO)/C_FACTOR;
for(i=0; i<num_vars; i+-+) res += var_ptr(i, VCO)/C_FACTOR*var_value[i};

moﬂnmﬂﬂlAampunc_mwm.TnTv umo
if((sel_col_int[i]==1)&&(cur_int_col[i]>=0)){
for(j=0, temp=1; j<list_ptr(i, cur_int_col[i], LOR); j4++)
temp *= var_valuellist_ptr(i, cur_int_col[i], LV1+j)];
sign = list_ptr(i, cur_int_colfi], LSG);
res += sign*net_coeff[i]*temp;
}
for(i=0; i<num_knownint; i++){
intno = known_int[i];
for(j=0, temp=1; j<int_ptr(intno, IOR); j++)
temp *= var_value[int_ptr(intno, IV1+j)];
res += int_ptr(intno, ICO)/C_FACTOR*temp;
}

return(res);

}

\***%****%%*************************%**
*

* Reads the True process parameters from
* file plant_file.
*

570
*****************x*********************\

static void get_act_plant(char *f name){

int i, j, varno, tmat_rows, tmat_cols, *tvar_col=NULL, *tmat=NULL;
char temp_str[200];
FILE *handle;

handle = fopen(f_name, "r");
if(handle==NULL) error( "Cant open output file", f name, —1);
get_line( temp_str, handle);

if(temp_str{1]!="n’) error("Invalid actual model file:
get_line( temp_str, handle); get_label(temp_str);

580

" f name, fileline);
/* read num_vars */

get_line( temp_str, handle);

if(temp_str[1]!="a’) error("Invalid actual model file: ", f name, fileline);
get_line( temp str, handle); get_label(temp_str);  /* read avg. coeff */
act_avg_coeff=atof(temp_str);

get_line( temp_str, handle);

if(temp_str(1]'="v’) error("Invalid actual model file: ", f name, fileline);

pmalloc((void **) &act_var_coeff, num_vars*sizeof(float)); 590
for(i=0; i<num_vars; i++) act_var_coeff[i]=0.0;
while (!get_line( temp_str, handle )){
if (temp_str[0] == Field_Char){
unget_line();
break;
}
if(!get_label(temp_str)) error("error:", f name, fileline);
varno = atoi(temp_str)—1;
if(!get_label(temp_str)) error("error:", f name, fileline); 600
act_var_coeff[varno] = atof(temp_str);
}
get_line( temp_str, handle);
if(temp_str[1]!="1’) error("Invalid actual medel file: ", f name, fileline):
get_line( temp_str, handle); get_label(temp_str);
act_int_count=atoi(temp_str);
pmalloc((void **) &act _list_int, act_list_len*act_int_count*sizeof(int));
pmalloc((void **) &act_int_coeff, act_int_count*sizeof(float)); 610
i=0;
while (!get_line( temp_str, handle )){
if (temp_str[0] == Field_Char){
unget_line();
break;
} .
if(!get_label(temp_str)) error("error:", { name, fileline);
act_list_int[i*act_list_len] = atoi(temp_str);
620

for(j=0; j<act_list_int{i*act_list_len]; j++){
if(lget_label(temp_str)) error("error:", f name, fileline);
act_list_int[i*act_list_len + 1 +j] = atoi(temp_str)—1;

}

if(!get_label(temp_str)) error("error:", f_name, fileline);
act_int_coeff[i] = atof(temp_str);
i++;
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fprintf( out_handle, file_divider);

for(i=0, variance=0; i<opt_exptnum; i++){

fprintf( out_handle, "%2d.\t", i+1)

tempf = model_plant_result(opt_exptmat-+num_vars*i);

for(j=0; j<num_vars; j++)

)

720

fprintf(out_handle,"%c ", (*(opt_exptmat+i*num_vars+j)>0)7’+7:=");
fprintf( out_handle, "\t%6.2f\t\t %6.2f

fprintf( out_handle, "\n");

}

fprintf( out_handle, "\nRMS Pred. Error:\t%6.2f \n",
(float)sqrt((double) variance/opt_exptnum));

}

else fprintf( out_handle, "Initial Guess of Process Model.

fprintf( out_handle, file_divider);

fprintf( out_handle, "\t\t(%c) Results after Experiment %d\n",

(’a’+opt_exptnum), opt_exptnum)
return;

}

\**********%**%%%*************%******%*

*

* Updates the database

*

)

*****%****************%**************%*\

static void update_database(void){

int i, j, k, 1, sign, found, num selint, selint_no;

size_expt[num_blocks|=opt_exptnum;
size_blk[num_blocks]=0;
type_blk[num_blocks]=TYPE_OAAT;
blk_info[num_blocks]|=block_no;

pmalloc({void **) &(res_mat[num_blocks]),
sof_resmat(num_blocks)*sizeof(float));

pmalloc((void **) &(expt_mat[num_blocks]),

sof_exptmat(num_blocks)*sizeof(int))
sel_row[num_blocks] = NULL;
blk_mat{num_blocks] = NULL;

/* Update INT MAT */
for(i=0; i<mat_cols; i++) if(sel_col_int/[i]

1

A

\t", tempf, opt_res[i] );
variance += (opt_res[i]— tempf)*(opt_res[i]—tempf);

730

740

750

760

/* Delete non—significant interactions */
for(j=0, num_selint=0; j<no_int_col[i]; j++){
if(chk_col_int[i*max_int+j]==0){
for(k=0; k<tot_ints; k++){
for(1=0, found=1; 1<list_ptr(i, j, LOR); 1++)
if(int_ptr(k, IV1+4j)!=list_ptr(i, j, LV1+j)) found=0;
if(found==1){ 770
int_ptr(k, IUC) = 1;
int_ptr{k, ICO) = 0;
break;
}
}
if(found==0) error("Error in database",NULL,-1);
}
else{ num_selint++; selint_ no = j; }

}

/* Store Selected Interactions */
if((chk_zero_int[i]==0)&& (num_selint==1)){
for(k=0; k<tot_ints; k+-+){
for(1=0, found=1; I<list_ptr(i, selint_no, LOR); 14+4)
if(int_ptr(k, IV1+j)!=list_ptr(i, selint_no, LV1+j)) found=0;
if(found==1){
sign = (int_ptr(k, IBO+block no)>0)? 1:-1;
int_ptr(k, IUC) = 1;
int_ptr(k, ICO) = (int)(sign*net_coeff[i]* C_FACTOR);
break; 790
}
¥
if(found==0) error("Error in database", NULL, —1);
}
}
num_blocks++;
printf("\nDo you want to save updated database? (y/m)");
if(getch()=="y"){
save_database(data_file, num_vars, tot_ints, num_blocks,
size_expt, size_blk, type_blk, var_mat, int_mat, 800
blk_mat, sel row, expt_mat, res_mat, var_label, blk_info);

780

}

return;

}
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for(j=0; j<num_opt_int; j++){
count=0; 90
if(opt_error[j]<BIG_VALUE—-1){
printf("Num_best_sel: %d ", num_best_sel);
for(i=0; i<int_count; i++){
col = intcol_ord[il;
intno = opt_int_col[j*int_count + iJ;
if((intno ==—1)&& (chk_zero_int[col]==0)) count=1;
if((intno>—1) && (chk_col_int[col*max_int + intno ]==0)) count=1;
b_int_data[num_best_sel*mat_cols + col] = intno;
printf("%2d ", intno);
} 100
if(count==0) num_best_sel++;
printf(" OPT_ERROR: %6.3f \n", opt_errorlj]);
}
if(num_best_sel >= num_best) break;

}

flush(stdin); getch();

pfree((void **) &temp_int_col);
pfree((void **) &opt_int_col);
pfree((void **) &err_vect);
pfree((void **) &opt_error);
pfree((void **) &err_per_int);
return;

}

\*%%*************%*****************%*%*
*

110

¥ Main Recursion routine
*

***%*******************%%%***********%*\ 120

float recur(int num_assign, int *inter_col, float *error_v){

int 1, j, int_no;
int *temp_inter_col=NULL, temp_num_assign;
float err, *temp_error_v=NULL, iter err = BIG_VALUE, temp_iter_err;

float update_min_error(int *, float *);
void update_error(int, int , float *);
void delete_interaction(void);

pmalloc((void **) &temp_inter_col, int_count*sizeof(int));
pmalloc((void **) &temp_error_v, opt_exptnum*sizeof(float));

memcpy(temp_inter_col, inter_col, int_count*sizeof(int));
memcpy (temp_error_v, error_v, opt_exptnum*sizeof(float));
temp_num_assign = num_assign;

if(num_assign>=int_count){

err = update_min_error(inter_col, error_v); 140
pass++;
return(err);
}

for(int_no=-1; int_no<no_int_col[intcol_ord[num_assign]]; int_no++){
if((int_no==-1)&& (chk_zero_int{intcol_ord [num_assign]]==0)) continue;
if((int_no >—1) &&

(chk_col_int{intcol_ord[num_assign]*max_int + int_no] ==0)) continue;
if(num_assign == 0) iter_err = BIG_VALUE; 150
if(int_no >= 0) update_error(num_assign, int_no, error_v);
inter_col[num_assign] = int_no;
num_assign-+-+;
temp_iter_err = recur(num_assign, inter_col, error_v);
if(temp_iter_err < iter_err) iter_err = temp_iter_err;
memcpy(inter_col, temp_inter_col, int_count*sizeof(int)):
memcpy (error_v, temp_error_v, opt_exptnum*sizeof(float));
num_assign = temp_num_assign;
if((num_calls>1)&& (num _assign==0)){ 160

if(int_no == —1) err_no_int = iter_err;

else err per_int[int_no] = iter_err;

1
}

if((num_calls>>1)&& (num_assign==0)) delete_interaction();

pfree((void **) &temp_inter_col);

pfree((void **) &temp_error_v);

return(iter_err); 170

}

\***%**************%*%****%*****%******
*

* Prints the least prediction

* error for each of the interactions in

* the column. The interactions which have
* yery large predicition errors can be

142
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void update_error(int num_assign, int int_no, float *error_v){

int i, j, v1, sign, temp;
float i_coeff;

sign = list_ptr(intcol_ord[num_assign], int_no, LSG);
i_coeff = net_coefffintcol_ord[num_assign]];
for(i=0; i<opt_exptnum; i++){
for(j=0, temp=1; j<list_ptr(intcol_ord[num_assign], int_no, LOR); j++){
vl = list_ptr(intcol_ord[num_assign], int_no, LV1+j);
temp *=opt_exptmat[i*num_vars + v1J;
}
error_v[i] —= sign*i_coeff*temp;
}

return;

}

E.3.3 OAAT.opt.C

\*********%*******%***************%****

*

*This routine is a modification of
*optimize() written by P. Fieguth, M. Spina
*and D. DeCaprio. It is called by OAAT.C.

*G
*th

1wen the variables and the interactions,
e function determines the optimal ezpt.

*i.e. the experiment which is expected to

280

*yeild the highest output quality.
*

*%***********%%********************%*%*\

#include "coninc1.h"

float oaat_opt(int *solved_var, int num_vars, int num_ints, int *int_data,

int

\*

int
int
int

*int_sign, float avg_coeff, float *var_coeff, float *int_coeff){

optimalily calculation variables */
*grouped_var=NULL, *valid_int=NULL, *tested_int=NULL;
int_used, bitlim, count, mask, i, j, k, 1, done;
*temp_vect=NULL, *vect_transl=NULL;

float quality, min_quality, sum_quality, temp_float=0.0;

/*
pm
pm
if(

pm
for

\*

initialize — include all interations, no variables yet solved */
alloc( (void **) &grouped_var, num_vars * sizeof{ int ) );
alloc( (void **) &vect_transl, num_vars * sizeof( int ) );
num_ints > 0 ){

pmalloc( (void **) &valid_int, num_ints * sizeof( int ) );
pmalloc( (void **) &tested_int, num_ints * sizeof( int ) );

}

alloc( (void **) &temp_vect, num_vars * sizeof( int ) );
(i=0; i<num_vars; i++) solved_var(i] = 0;

loop over variables to solve */

sum_quality = avg_coeff;
for (i=0; i<num_vars; i++) if (solved_var[i] == 0){

144

/* mark all non—overlapping or dominant interactions as valid */
for (j=0; j<num_ints; j++) valid_int[j] = 1;

done = 0;
while (!done){
/ * reset list of variables in this group & tested interactions */
/* only test non—overlapping or dominant interactions (from earlier) */
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E.4.1 Plant.C

\%****%********%*%%%%***%*********%****
*

*This routine is the simulated plant or
*process. The true plant model is stored
*in the file "plant_file”. The routine is
*called by the other programs.

*It returns the value of the output quality
*of the plant at the desired operating point.
*

************%%**%*************%******%*\ 10

#include "conincl.h"
#include "coninc2.h"
extern int fileline;

static inter_len=35;
static float *act_var_coeff=NULL, *act_int_coeff=NULL, lambda, act_avg_coeff;
static int act_int_count, *act_list_int=NULL;
static int read_plant_data=0;
20
void actual_plant_result(int num_pts, int num_vars,
int *var_data, float *plt_opt){

int i, j, k, *var_value=NULL;
float res, temp;

float get_rv(void);

void get_act_plant(char *, int);

pmalloc((void **) &var_value, num_vars*sizeof(int));
if(read_plant_data == 0){ 30
get_act_plant(plant_file, num_vars);
read_plant_data=1;
}
for(j=0; j<num_pts; j++){
memcpy(var_value, var_data+j*num_vars, num_vars*sizeof(int));
res = act_avg_coeff;
for(i=0; i<num_vars; i++) res += act_var_coeff(i]*var_value[i};
for(i=0; i<act_int_count; i++){
for(k=0, temp=1; k<act_list_int[i*inter_len]; k+-)
temp *= var_value[act_list_int[i*inter_len +1+k]]; 40
res += act_int_coeff[i|*temp;
}

temp = get_rv()/4;

res += lambda*temp;
*(plt_opt+j) = res;
}
pfree((void **) &var_value);
return;

}

JERRRRR AR LSRRI AAS ALK RRRR RIS AAAAEAK |
float get_rv{void){

50

float rv;
short 1,j;

for(j=0, rv=0.0; j<47; j++)
rv + = (rand()%1000 — 500)/1000;
return(rv);
w 60

\*%******%************%*%*********%%%**
*

* Loads the plant model from the user
* specified file.
*

********%***%*%******%%***********%****\

static void get_act_plant(char *f name, int num_vars){
70
int i, j, varno, tnum_vars;
char temp_str[200];
FILE *handle;

handle = fopen(f_name, "r");

if(handle==NULL) error( "Cant open output file", f name, —1);

get_line( temp_str, handle);

if(temp str[1]'="n") error("Invalid actual model file: ", f name, fileline);
get_line( temp_str, handle); get_label(temp_str); /* read num_vars */

tnum_vars = atoi(temp_str); 80
if(tnum_vars!=num _vars) error("Invalid actual model file: " f name, fileline);
get_line( temp_str, handle);

if(temp_str[1]!="a’) error("Invalid actual model file: ", f name, fileline);
get_line( temp_str, handle); get_label(temp_str); /* read avg. coeff */
act_avg_coeff=atof(temp_str);

get_line( temp_str, handle);

if(temp_str[1]!="v’) error("Invalid actual model file: ", f name, fileline);
pmalloc((void **) &act_var_coefl, tnum_vars*sizeof(float));
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int_name = abs(blk_ptr(blk, col, BI1+j));

for(k=0, intl=-—1; k<tot_ints; k+-+)
if(int_ptr(k, INO)==int_name) intl = k;
if(int1<0) error("Interaction not found!", NULL, —1);
if(int_ptr(intl, IUC) == 1){
if(blk_ptr(blk, col, BI1+j) > 0) 50
col_coeff —= int_ptr(intl, ICO)/C_FACTOR;
else col_coeff += int_ptr(intl, ICO)/C_FACTOR,;
unknown_int——;

}

else newint = intl;

}

if(unknown_int == 1){
printf("Found Unconfounded Interaction: %d\n", newint);
int_ptr(newint, JUC)=1; 60

int_ptr(newint, ICO)= (int)(col_coeff*C_FACTOR);
if(int_ptr(newint, IBO+blk)<0) int_ptr(newint, ICO) *= —1;
update_int[newint] = 1;
}
}
}
for(inter=0, k=0; inter<tot_ints; inter++) if(update_int[inter]==1) k-+-+;

if(k>0) sort_interactions(block_no, update_int, num_vars, tot_ints,
num_blocks, size_blk, type blk, var_mat, int_mat, blk_mat); 70
return;

}

E.4.3 Disp._info.C

\************%*********%*****%*********
*

*This program contains routines which

*display information about the database.
*

*%%**%********#***%****%*%**%****%*****\

#include "coninci.h"
#include "coninc2.h"

\*****%********%****************%%*****\

void disp_var_info(int num_vars, int num_blocks, int *var_mat,
int *type_blk, char **var_label){
int 1, j;

printf("\nVARIABLE INFORMATION:\n");
printf("---======--=-=----m--=- \n\n");
printf("Var. \t Coeff");
for(i=0; i<num blocks; i+-+) printf("\tBlk %d", i);
printf("\n\n");
for(i=0; i<num_vars+1; i++4){
printf("%s \t%7.2f", var_label[i], var_ptr(i, VCO)/C_FACTOR);
for(j=0; j<num_blocks; j++)
if(type bIK[j]'=TYPE_OAAT) printf("\t%2d", var_ptr(i, VBO+]));
else printf("\t---");
printf("\n");

}

printf("\nHit key to continue ..... \n\n");
fAush(stdin); getch();
return;

}

\*******%********%***%******%%***%**%**\

void disp_int_info(int tot_ints, int num_blocks,
int *type blk, int *int_mat, char **var_label){
int i, j;

printf("\nINTERACTION INFORMATION:\n");
printf("---======-=-o=mm—o—mm - \n");
printf("Int. \tC/UC \t Coeff\tWeight");
for(i=0; i<num_blocks; i+-+) printf(" Bk¥d", 1);
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E.4.4 Database.C

\********%************%****%%*********%
*

*This routine saves the

*database i.e.the information about the
*1) blocks 2) variables 3) interactions
*and other information that the

*subsequent programs need.
*

%%*************%******%****************\

10
#include "coninci.h"
#include "coninc2.h"
extern int fileline;
void save database(char *filen, int num_vars, int tot_ints, int num _blocks,
int *size_expt, int *size_blk, int *type_blk, int *var_mat, int *int_mat,
int **blk_mat, int **sel_row, int **expt_mat, float **res_mat,
char **var_label, int *blk_info){
int i, *wr_blkmat=NULL, *wr_selrow=NULL, *wr_exptmat=NULL; 20
int *wr_resmat=NULL;
FILE *out_file;
out_file = fopen(filen, "wb");
if(out_file==NULL) error("Cant open INPUT file", filen, —1};
pmalloc((void **)  &wr selrow,  num_blocks*sizeof(int));
pmalloc((void **)  &wr_exptmat, num_blocks*sizeof(int));
pmalloc((void **) &wr resmat,  num_blocks*sizeof(int));
pmalloc((void **)  &wr_blkmat,  num_blocks*sizeof(int)); 30
for(i=0; i<num_blocks; i++)
wr_selrow[i] = wr_exptmat[i] = wr_blkmat(i] = wr_resmat[i] = 0;
for(i=0; i<num_blocks; i++){
if(blk_mat[i)!=NULL) wr_blkmat|i] =1;
if(expt_mat[i!=NULL) wr_exptmat[i]=1;
if(res_mat[i]]=NULL)  wr_resmatl[i] =
if(sel_row[i]!=NULL)  wr_selrow[i] =1;
}
fwrite(&num_vars,  sizeof(int), 1, out_file); 40

fwrite(&tot_ints,  sizeof(int), 1, out_file);
fwrite(&num_blocks, sizeof(int), 1, out_file);
fwrite(size_expt, MAX_BLK*sizeof(int), 1, out_file);

fwrite(size_blk,
fwrite(type_blk,

( MAX _BLK*sizeof(int), 1, out _file);

(
fwrite(blk_info,

(

(

(

MAX _BLK*sizeof(int), 1, out_file);
MAX_BLK*sizeof(int), 1, out_file);
sof varmat*sizeof(int), 1, out_file);
sof intmat*sizeof(int), 1, out_file);
num_blocks*sizeof(int), 1, out_file);
num_blocks*sizeof(int), 1, out_file); 50
num_blocks*sizeof(int), 1, out_file);
num_blocks*sizeof(int), 1, out_file);

fwrite(var_mat,
fwrite(int_mat,
fwrite(wr_blkmat,
fwrite(wr_selrow,
fwrite(wr_exptmat,
fwrite(wr_resmat,

for(i=0; i<num_blocks; i4++){
if(wr_blkmat[i]==1) fwrite(blk_mat[i], sof blkmat(i)*sizeof(int), 1, out_file);
if(wr_selrow[i]==1) fwrite(sel_rowli], sof selrow(i)*sizeof(int), 1, out_file);
if(wr_exptmat[i]==1) fwrite(expt_mat[i], sof exptmat(i)*sizeof(int), 1, out_file);
if(wr_resmat(i]==1) fwrite(res_mat[i], sof resmat(i)*sizeof(float), 1, out file);
}

for(i=0; i<num_vars+1; i++) 60
fwrite(var_label[i], Label Length*sizeof(char), 1, out_file);

pfree((void **) &wr_selrow);
pfree((void **) &wr_exptmat);
pfree((void **) &wr _resmat);
pfree((void **) &wr_blkmat);

fclose(out_file);
return;
} 70

\**********************%***%***********
*

* This routine loads the database i.e.
* the information about the 1) blocks

* 2) variables 3) interactions etc.
*

*****%********%******%***********%*****\

80
void load_database(char *filen, int *pnum_vars, int *ptot_ints,
int *pnum_blocks, int **psize_expt, int **psize_blk, int **ptype_blk,
int **pvar_mat, int **pint_mat, int ***pblk_mat, int ***psel_row,
int ***pexpt_mat, float ***pres_mat, char ***pvar_label, int **pblk_info){

int i, *rd_blkmat=NULL, *rd_selrow=NULL, *rd_exptmat=NULL;
int tot_ints, num_vars, num_blocks, *size_expt, *size_blk, *rd_resmat=NULL;
FILE *out_file;
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E.4.5 Set_mat.C

\*******%***************%*%*****%%***
*

*QGiven a block of experiments, this routine

*forms the design matriz and confounding table.
*

*******%***%***%****%********%*******\

#include "conincl.h"
#include "coninc2.h"
10
void set mat(int num_vars, int block no, int **expt_mat,
int **sel_row, int *size_blk, int *pmat_rows, int *pmat_cols,
int **pvar_col, int **pmat, int **pconint){

int i, j, k, 1, eq, sum, prod, varno, colno, *temp_vect=NULL;
int row, blk, power, mat_rows, mat_cols;

mat_rows=size_blk[block no};

mat_cols=1;

while(mat_cols < mat_rows){ mat_cols *=92: power +=1;} 20
*pmat_rows = mat_rows;

*pmat_cols = mat_cols;

pmalloc( (void **) pmat, mat_rows*mat_cols*sizeof(int));
pmalloc( (void **) pconint, mat_cols*mat_cols*sizeof(int));
pmalloc( (void **) pvar_col, num _vars*sizeof(int));
pmalloc( (void **) &temp_vect, mat_rows*sizeof(int));
for(i=0; i<mat_rows; i+-) for(j=0; j<mat_cols; j+-+) (*pmat)[i*mat_cols+j]=0;
for(i=0; i<mat_rows; i++) (*pmat)[i*mat_cols]=1;
30
] *¥* assign variables to mat ***/
for(i=0; i<mat_rows; i++){
blk=sel_ptr(block_no, i, SBL);
row=sel_ptr(block_no, i, SEP);
memcpy( (*pmat + i*mat_cols+1), expt_ptr(blk, row), num_vars*sizeof(int));
}

for(i=0; i<num_vars; i++) (*pvar_col)[i]=i+1;

/ * complete the mat */
colno=num_vars+1; 40
i=0 j=1
while (colno < mat_cols){
/ * take product of matriz columns */

for (k=0; k<mat_rows; k++)
temp_vect[k] = A*Edmev?*3&%0?.‘.;*A*vawav?*:&n-ﬁcﬂmn“bw

/ * look for vector in matriz ¥/

k=eq=0;
while ((k<colno) && (abs(eq)<mat_rows)){
eq = 0; 50

for (1=0; lI<mat _rows; I4++) eq += (*pmat)[I*mat_cols+k] * temp_vect[l];
if (abs(eq) < mat_rows) k++;
}
if (abs(eq) < mat_rows){
/* found new column, add it */
for (1=0; l<mat _rows; 1++)
(*pmat){l*mat_cols+colno] = temp_vect[l];
colno++;
}

60
/* advance to nezt column pair */
i+
if (j == colno){
i+ j =i+
if (j == colno)

error( "Not enough independent columns in matrix.", NULL, -1 );
}
}

/* form conint */ 70
for (i=0; i<mat_cols; i++) for (j=0; j<mat_cols; J+H+)9
for (k=0; k<mat_rows; k++) temp_vect[k] =
A*GBQS?*Emetnowm+5i*ﬁ5w3?*BNFGOTLT.:“
for (1=0, prod=1; 1<mat_cols; 1H++){

sum = 0;
for (k=0; k<mat_rows; k++) sum += ?mavuﬁmgE*A*wdam&?*gwﬁn&m+:vw
if (abs(sum) == mat_rows) { (*pconint)[i*mat_cols+j] = I; prod = 0; }

}

if (prod != 0) error("Non orthogonal matrix found.", NULL, —1);
} 80

pfree((void **) &temp_vect);
return;

}
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float

int *cols, intstruct *introot, stats *matstats, int print,
FILE *handle, char **var_label, int max_label );
optimize(int *solved_var, int avg_col, int num_vars, int num _ints,
int *int_type, int *int_col, int *int_data, int *int_sign,
int *var_col, float *reg_coeff );

90

E.5.2 Coninc2.H

#include <time.h>

#define max_int 5
#define C FACTOR  1000.00

/* Interaction constants for Combine.C */
#define cint_len (num_vars+1)
#define cints_ptr(intno, data)
#define COR 0

#define CV1 1 10

cints[(intno)*cint_len + dataj

/ * Constants for OAAT.C */
#define lim_expts 16
#define list len  max_int*int_len
#define int_len 7 [* lst_len = maz_wnt*int len */
#define num_best 10
#define BIG_VALUE 10000
#define list_ptr(col, intno, data)
list_int[(col)*list_len+(intno)*int_len+(data)] 20
#define LOR 0
#define LV1 1
#define LV2 2
#define LWE 5
#define LSG 6
void get_best_interaction(void);

/* Constants for databases */

#define MAX BLK 5

#define intmat_row (9+MAX_BLK) 30
#define varmat_row (2+MAX_BLK)

#define blkmat_row (34+max_int)

] * Sizes of database matrices */

#define sof intmat (tot_ints*(9+MAX_BLK))

#define sof varmat ((num_vars+1)*(2+MAX_BLK))

##define sof blkmat(bno)  (size_blk[bno}*(3+max_int))

#define sof exptmat(bno) (size_expt{bno|*num_vars)

#define sof resmat(bno)  (size_expt[bno])

#£define sof selrow(bno)  (2*size_blk[bno]) 40

/ * Definitions of pointers to database matrices */
#£define var_ptr(vno, data) (var_mat[(vno)*varmat_row + data])
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E.5.3 True_Process.Dat

E.5.4 Interaction.Dat

*number of var
7

*avg

225

*vars

153

273

5 —4.9

331

*Interaction
3

234 -84
217 -4.3
256 4.7
*lambda

4

*end

*interactions
5
4123620
215 10
3632 5
241 8
3431 12

10 *end

10
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