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Abstract
The problem of finding a cycle with maximum Profit-to-Time (PTT) ratio where

the total profit is the sum of the arc profits of the cycle is a well known problem first
formulated by Dantzig et al. in the 60's. They showed that the problem can be
interpreted as finding the optimum tour of a bulk ship.

This thesis addresses the problem of finding the maximum PTT cycle for a con-
tainership. The less-than-vessel-load and many-origins-to-many-destinations char-
acteristics of containership make the problem distinct from bulk ship in one very
important aspect - the total profit is the sum of the arc and chordal profits of the
cycle. We prove that the problem is NP-Hard by showing that the Traveling Sales-
man Problem is a special case of it. However, when the visit sequence of ports is fixed
a priori, we find special cases under which the problem admits polynomial algorithm.
These uncapacitated cases correspond to ports arranged along a convex shoreline, a
river or a canal, or that port time dominates sailing time. For these special cases, we
give exact and compact linear program descriptions of the problem which can be used
to design optimum vessel capacity. Other than the special cases, we have evidence
that a compact LP description is unlikely. We derive new mixed integer program
formulations for two capacitated cases: one on ports along a shoreline, the other on
ports without the shoreline restriction but separated by a deep-sea. Our formulations
are based on the observation that the deployment can be modeled as a simple tour
in an extended graph. They do not require the vessel to be empty at any port. For
the real-world deployment of a fleet of containerships, a greedy heuristic is developed
for finding a pattern with maximum PTT ratio. The algorithm assigns ship to tour
sequentially in decreasing value of PTT ratio. It finds the optimum solution for a ho-
mogeneous fleet. By investigating the ships and operating characteristics of container
trades, we argue that the problem instances encountered often lead to our greedy
algorithm finding the optimal solution even when the fleet is non-homogeneous.

Thesis Supervisor: Ernst G. Frankel
Title: Professor of Marine Systems
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Chapter 1

Introduction

This research deals with finding the optimum way to deploy a fleet of ocean

going containerships. Given a group of deep-sea ports, and the estimated weekly

amount of containers flows among them, how should the liner operator design periodic

regular services to the ports so as to maximize his profit? We call this the Liner

Deployment Problem (LDP). The methodology we develop is suitable for medium-

to long-term strategic route planning for the liner operator. We focus on routing

of deep-sea trades which generate the majority of revenues for the liner operator in

an international market. Routing of deep-sea containerships is at the top of a series

of hierarchy decisions such as designing feeder services to serve the deep-sea routes,

selective cargo booking to maximize the revenue of each voyage leg, and back-hauling

of empty containers to balance the inventory at every port.

Dantzig et al. [4] give a very elegant formulation to find the optimum deploy-

ment of a bulk ship that maximizes the profit made per unit time. Using Dantzig-

Wolfe Decomposition, they show how the method can be extended for the optimum

deployment of a fleet of bulkers. Bulk ships operate very differently from container-

ships, and we will see that the decision nature of the latter makes it unlikely to be

solved by the same neat approach. Olson et al. [12] delineate various factors that

affect containership operations, and suggest a profit maximizing method to design

schedules. However, they avoid to discuss the more difficult routing issue. Almogy

10



and Levin [1], and Datz [3] suggest ways to maximize the profit of the liner operator

by selective cargo booking, assuming a given route. Boffey et al. [2] provide a method-

ology that determines both the routes and schedules for a fleet of containerships. The

routing part is selected by the planner using an interactive approach, and the profit

maximization of each route is based on a heuristic steepest ascent method. Later,

Lane et al. [10] extend their search effort for feasible routes by a route generating

subroutine. The planner analyzes as many routes as he likes by a profit maximizing

forward-looking heuristics subject to all shipping requirements are satisfied. Finally,

a set partition technique is used to make sure that no cargo shipment is performed

more than once. Perakis and Jaramillo ([14], [9]) formulate a given set of routes ex-

plicitly into a linear program which they solve and use rounding to obtain a minimum

cost deployment pattern for a fleet of containerships.

Rana and Vickson [17] are probably the first to address the liner routing prob-

lem rigorously. They define the problem on a set of ports the visit sequence of which

is allowed to switch from one direction (outbound) to another (inbound) exactly once.

Exploiting this very special network structure, they present an algorithm based on

decomposition to maximize the profits of a fleet of containerships over a fixed period

of time. This mixed integer formulation involves a non-linear objective function and

constraints. The non-linearity is due to quadratic terms coming from the product

of an integer variable with a binary variable and a continuous variable respectively.

They resolve the non-linearity by systematically fixing the integer variable at dif-

ferent values within its expected range, and then solving all these as subproblems.

Moreover, embedded in their route generating subroutine is a direct enumerative

procedure. Therefore the total effort spent is data dependent. The only coupling

constraints among ships are through the available cargo quantities in the planning

period. Hence they are able to decompose the fleet optimization problem into individ-

ual ship optimization problem by the Dantzig-Wolfe Decomposition technique. Each

subproblem corresponds to finding the optimum tour for one single ship, and deter-

mining what amount of cargo to carry in each voyage. They solve this subproblem

11



by Bender's Decomposition. Solution of all subproblems are returned to the reduced

master problem of the Dantzig-Wolfe Decomposition as new proposals. The reduced

master problem is an integer problem, since it is in general not possible to combine

two different routes to obtain a single feasible route. This reduced master problem is

solved by Lagrangean Relaxation on the coupling cargo constraints using subgradient

optimization. A special implicit enumeration procedure is used to resolve the duality

gap. The final optimality gap of their method is within 3%, and they give examples

of a 20 ports 3 ship scenario.

One critical condition under which the above algorithm works is that ports

are sequenced a priori. Two important assumptions are made as a result of this

condition. First, the ship changes direction exactly twice. Second, the ship is empty

at the end-ports where she changes direction. However, Figure 1-1 shows that in

deep-sea deployment, this critical condition may not hold. In other considerations of

the Liner Deployment Problem, the issue of the level-of-service, namely the frequency

of call and the transportation time, is not addressed. From the shippers' perspectives,

a carrier who calls a port weekly is more attractive than another carrier who calls

biweekly, even though the latter can provide double carrying capacity per call. The

drawback of modeling the problem over a long period of time is that the available

cargo amount is treated as a lump-sum in the whole period, indifferent to when it

is picked up. Another unexplored area of the Liner Deployment Problem is trans-

shipment. A trans-shipment takes place if a container travels on more than one

ship from the origin to the destination. This is a common phenomenon in deep-sea

container transportation when the cargo is originated from a small sea-port which is

not visited by any main-haul deep-sea containerships.

This thesis first delineates the characteristics of deep-sea liner trades from which

some useful guidelines for formulating our mathematical model are obtained. Despite

the efforts of various talented researchers, the LDP is yet far from being fully studied.

Chapter 3 explores the fundamental reason underlying the difficulty of the problem:

12



even with grossly simplified assumptions, the LDP is computationally equivalent to

the Traveling Salesman Problem. But we are still able to identify a special case that

the problem can be solved efficiently. It is the case in which distances are measured

along a rigid shoreline, and that neither the transportation time nor the ship capac-

ity are binding constraints. Exploiting the deep-sea trades characteristics, Chapter 4

describes a heuristic algorithm for the general capacitated case. Our algorithm is a

greedy assignment of ships to tours in non-decreasing order of Profit-to-Time (PTT)

ratio. We prove that this method is optimum if the fleet is homogeneous. Further-

more, even for non-homogeneous fleet, we argue that under most operating conditions

one likely to encounter in deep-sea trades, the method can still give a solution with

maximum overall PTT most of the time. Chapter 5 is devoted to explaining the

mixed integer linear mathematical formulation we use to find the maximum PTT

ratio of each ship when the port visit sequence is fixed a priori, a situation which

we called the Shoreline LDP. Instead of modeling the cargo as a lump-sum for the

whole period, we propose to specify a certain amount of cargo over a shorter period,

say, one week. If the ship calls within that period, she is eligible to collect the cargo,

else that fraction of cargo is lost forever to other competitors. Our model does not

require the vessel to be empty at any port. In Chapter 6, we extend the mixed integer

capacitated model to capture more realistic operating conditions. In particular, we

give a model without restriction to a shoreline geometry. Chapter 7 presents some

computational results of the formulation, which is solved by the Branch and Bound

method. Lastly, we discuss some exciting further research based on ideas developed

here that may lead to a more promising approach to handle a real-world containership

routing decision.
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In deep-sea trades, if we assume an a priori visit sequence and empty vessel at end-ports, we may

not be able to find the real optimum. The figure shows the ports numbered in an a priori sequence

and a hypothetical optimum tours had there been no restriction on the sequence of ports. In Tour
1, the ship changes direction from outbound to inbound twice, once at 6, the other at 5. This is not

allowed under the assumption. In Tour 2, if we impose the condition that the ship must be empty
at the end port 4, cargo can not be transported from 3 to 1.

Figure 1-1: Drawbacks of Common Assumptions in Liner Deployment: (1) Fixed A
Priori Port Visit Sequence (2) Empty Vessel at End-Ports
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Chapter 2

Characteristics of Deep-Sea Liner

Shipping

This Chapter serves two purposes. First, through describing the characteristics

of deep-sea liner trades, we simultaneously illustrate the nature of the optimization

problem we are addressing. As we will show in Chapter 3, this problem belongs to

the NP-hard class, which is notoriously difficult to solve. The second purpose for

understanding these characteristics is that we may make use of them to narrow down

the problem instances, concentrating on cases one likely to encounter in real-world,

and hopefully reduce the number of possible feasible solutions one needs to consider.

We then exploit these observations in formulating the Liner Deployment Problem,

and in designing an algorithm for solving it in Chapter 4.

Deep-sea container trades refer to shipment of containers across the Pacific and

Atlantic Oceans. Examples of nowadays deep-sea services are the trans-Pacific trades

between Asia and North America West Coast, the trans-Atlantic trades between

North America East Coast and Europe, and the Round-the-World trades which start

from Asia, cross Pacific Ocean to North America West Coast, sail through Panama

Canal to North America East Coast, and eventually return back to Asia via Suez

Canal, proceeding either east or west bound.
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Sea-borne container trade is a many-to-many-pick-up-and-delivery type of trans-

portation. This means that one port may have cargoes for several other ports, while

itself also being the destination from several other origin ports. Unlike bulk ship,

the cargoes loaded on board or discharged from a containership in a port usually

constitute only a fraction of the ship's capacity. In other words, the cargoes available

between a single pair of ports is seldom sufficient enough to fill the ship1. There-

fore, to gain more revenues instead of running near-empty ship is one reason why a

containership usually calls more than two ports in the tour she serves. However, the

more ports the ship calls in a tour, the longer is the time she needs to complete the

tour, which means that the on-board transportation time for some cargoes becomes

unacceptably long. This reduces the competitiveness of the carrier and the amount of

cargoes he can collect. Also, another factor that affects availability of cargoes is the

frequency of call. The operator who serves a tour once every month is less attractive

to a customer than another who serves it every week. Hence to ensure an acceptable

visit frequency, the longer the time for the tour, the more ships the operator needs

to deploy in the tour. The exact relationship between the level-of-service and cargo

availability is not very well known, and is not the objective of this research. But

the norm in the industry has been to provide weekly service. In order to achieve

this, liner operators frequently pool their ships together to form consortia. This phe-

nomenon of rationalization becomes more and more common nowadays and sees no

trend of reversal [18]. Throughout this thesis, we will use the term liner operator,

containership operator, carrier, and consortium interchangeably.

Liner operators who involve in deep-sea trades usually commit to a fixed regular

service for a long period of time. For example, the deployment patterns of the trans-

Pacific service of Neptune Orient Line, Inc., and its consortia shown in Table 2.1

have been maintained for 3 years. Since we are dealing with deep-sea, long-haul

containers transportation, the primary interest of the operator is to obtain revenues

1Had this been the case, the Liner Deployment Problem becomes exactly the same as the tramper
deployment problem which can be easily formulated and solved (see formulation (BSP) in beginning
of Chapter 5).
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Table 2.1: Neptune Orient Line, Inc. and Consortia Deployment Patterns for Trans-
Pacific and East Bound Round-the-World Trades

Deployment Route Number of Ships
Loop 1 LGB-OAK-HKG-KAO-LGB 5
Loop 2 LGB-OAK-YOK-NGO-KOB-HAK

-BSN-KOB-SHI-YOK-LGB 5

Loop 3 SEA-VAN-YOK-KOB-HKG-KAO-KOB
-NGO-YOK-SEA 5

EBRW SUZ-SGP-HKG-KAO-BSN-OSA-TKY
-LGB-PAN-CRS-NFK-NYK-HFX-SUZ 9

by transporting containers across the ocean. Thus it is natural to group ports into

Regions separated by deep-sea. Container trades among ports within the same Region

are either (1) cabotage, meaning they are usually restricted to local flag ships, or (2)

are of secondary importance, meaning that the revenues they generate can be regarded

as additional bonus should there be spare capacity to carry some cargoes belonging

to the Regional trade during voyages within the Region. Hence the profit gaining

ability of the deployment tour of a ship mainly depends on how fast and frequent she

can traverse the ocean separating the Regions, while loading herself with as many

containers on board as possible (Figure 2-1). Each time the ship calls a port, she

definitely wastes some time in harbor-in, harbor-out, berth or pilotage waiting, etc.

The poorer the facilities of the port, the more will such time be wasted, and the less

likely the port will be called by a deep-sea liner. Hence within each Region, only

the well equipped container ports needed be considered as candidates for visiting.

Note also that because of time spent in ports, the total travel time from port to

port satisfies the strict triangle inequality even if the ports are all arranged on an

Euclidean straight line.

In the case of the trans-Pacific trade between Asia and North America West

Coast, the deep-sea trade is between two sets of ports, one set in Asia, and the

other along North America West Coast. Here are the Asian ports that are likely

to be called: Hakata, Tokyo, Yokohama, Nagoya, Kobe, Osaka, Shimonoseki, Moji,

Shimizu, Busan, Inchon, Hong Kong, Kaohsiung, Keelung, and Singapore. North

17
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The primary interest of the deep-sea liner operator is to transport as much ocean

going cargoes as possible.

Figure 2-1: Cargo Transportation in Deep-Sea Container Trades

America West Coast has the following candidate ports: Vancouver, Seattle, Portland,

Oakland, Los Angeles, and Long Beach.

From the above discussion, and emphasizing the fact that additional revenues

from carrying cargoes within the same Region are less important than among different

Regions, the only reason to justify a ship calling a port more than once per tour is to

shorten the on-board time for the ocean cargoes from that port to another Region, or

to avoid over capacity in some intra-regional voyage legs (Figure 2-2). Extending this

argument, one can see that it is rare that a deep-sea containership will call the same

port more than two times per tour. Thus we have a very important observation on

the tour pattern of deep-sea liner trades - that if each port is modeled as two nodes,

all deep-sea deployment patterns are simple tours in this extended graph; further, if

transportation time and ship capacity are not binding constraints, the deployment

will be a simple tour in the original graph where each port is modeled as only one

node.

18



(a) Simple Tour

The tour of the ship is 1-2-3-4-5-1. If she picks up cargo at 1,

discharges cargo at 4, the sea-borne transportation time of this

ocean cargo is lengthened by stops at 2 and 3.

(b) Non-Simple Tour

The tour is 1-2-3-1-4-5-1: port 1 is called two times. The cargo

A14 can be loaded on board at the second call, its transportation
time to Region B is shorter. Another reason to call port 1 a

second time may be that at the first call, there is not enough

capacity on board for cargo A 14 because the ship is still carrying

I cargo from Region B to ports 2 and 3.

Figure 2-2: Possible Reasons for a Non-Simple Tour

The settings here are similar to that of Dynamic Network Flow problems studied

by operations researchers. Each arc (sea-link) on the network of nodes (sea ports)

has a profit (cargo revenue) as well as time (sea- plus port-time) associated with it.

But unlike the Dynamic Network Flow problem which can be efficiently solved ([5]

and [13]), the many-origins-to-many-destinations and the less-than-full-ship nature of

container trades complicate the way to calculate arc profits in a simple tour. In the

Liner Deployment Problem, the cargo revenues obtainable per tour can be imagined

as the sum of the arc profits of those arcs enclosed by the simple tour that spans

the ports visited (Figure 2-3). The time to complete the tour is the sum of the time

coefficients associated with only those arcs defining the tour. Thus the efficiency of

the ship in making profits can be calculated as the ratio of the sum of the enclosed arc

profits to the sum of the arc time of the enclosing tour. This idea of Profit-to-Time

ratio will be formally discussed in the next Chapter.

19
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Let rij be the profits the ship can gain for carrying cargo

from i to j. Suppose the ship travels on a simple tour 1-

2-3-4-1. She is eligible for gaining the profits of the arcs

enclosed by the tour:

1r2 +T13 +1r4 +T21 + 23+' 24+?31+T32 +T34 +Tr41 +r42+T43

sum of enclosed arc profitsPTT ratio =
length of enclosing tour

rZij
t12 + t2 3 + t34 + t41

Note that if there is cabotage, or there is intra-region trade

restrictions. T1i = ' = = = n = 0

Figure 2-3: Using Enclosed Arcs to Determine the Profit-to-Time Ratio

20
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Chapter 3

Some Theoretical Insights of Liner

Deployment Problem

The objective of the design of a containership deployment pattern is to max-

imize the profits of the liner operator over a period of time. Since the route of a

containership is maintained for a relative long planning horizon, the long-term av-

erage of profit over time, namely the Profit-to-Time (PTT) ratio, is a convenient

performance measure for the objective function. The PTT ratio for a ship is the total

profit per tour she makes divided by the time that is required to complete the tour

assigned to her. The sum of PTT ratios of all ships in the fleet is the overall PTT

ratio of the operator, which is the ratio of the total profit to the time needed to gain

this profit.

Finding the maximum PTT ratio for each containership turns out to be an

important step in solving the problem. To have a better understanding on the Liner

Deployment Problem (LDP), we will first study the complexity of finding the PTT

ratio in the context explained in Figure 2-3.

Let us consider an extremely simplified version of the LDP:

21



(1) There is only one ship to deploy;

(2) The vessel has capacity big enough for all cargoes in the system;

(3) The on-board transportation time does not affect the amount of cargo the

operator can get. This means that shippers are indifferent to the level-of-

service with respect to transport time;

(4) Cargo quantity between any port pair is expressed as TEU per week, which is

the maximum amount of cargo the operator can get whenever he serves that

port pair. Such quantity of cargo is not affected by his frequency of service or

transport time;

(5) No trans-shipment is allowed.

(1)-(5) together with the fact that the travel times satisfy straight triangle inequality

necessarily imply that the deployment must be a simple tour. We call this the Unca-

pacitated Linear Deployment Problem (ULDP).

3.1 Constant Travel Time Uncapacitated LDP

In the constant time uncapacitated LDP, in addition to the assumptions stated

above, the travel time for any arc (i, j) is a positive constant, which can be rescaled to

unity. Finding a tour with maximum PTT is equivalent to finding a subset of nodes

I from the given set / such that the total sum of arc profits in the set I divided by

the cardinality of I is maximized:

i Pj
max PTT =v max

where Pij is the arc profit of (i,j).

Proposition 3.1 When profits pij can be any real numbers, any algorithm that solves

22



the constant time ULDP also solves the Maximum Clique Problem.

Proof

Given an instance of the Maximum Clique Problem, transform it into the constant

time ULDP by assigning a profit of -(N 2 - N) to arc (i,j) if it does not exist in the

original graph, and a profit of unity if the arc exists. EO

Proposition 3.1 motivates us to consider only non-negative profits. In the context

of LDP, a non-negative arc profit corresponds to the case that the expenditure of

traveling from port i to j is at least compensated by the revenues of cargo that one

picks up at i and delivers at j. This assumption is not unrealistic.

3.2 Constant Time Non-Negative Profits ULDP

Proposition 3.2 When profits pij are non-negative and travel time along any arc is

a constant, the ULDP is solvable in polynomial time.

Proof

The proof is by constructing a compact linear program formulation for this problem:

z* = max E pijzij (P1)
i,jEAr

Subject to:

zx= i1 (3.1)
i

xij < xi V(i,j) (3.2)

xij < xj V(i,j) (3.3)

Xi, Xij > 0 (3.4)

23



As will be seen later, the variable xi has the interpretation of the reciprocal of the

cardinality of the selected set I if i is an element of I, and zero otherwise. Its dual

is:

A*= min A (D1)

Subject to:

A - E ctij - Z 3 ji > (3.5)
i J

aij + ij > Pij (i,j) (3.6)

aij,3iij > 0 (3.7)

where A is the dual variable for (3.1), aij is the dual variable for (3.2), ,ij is the dual

variable for (3.3), xi is the dual variable for (3.5), and xij is the dual variable for (3.6)

respectively.

Let (x, xj) and (A*, a*, /*) be the primal and dual optimum respectively. Con-

straint (3.1) and non-negativity of xi guarantee that at least one xz must be strictly

positive. Let us arrange the strictly positive values of xz* in descending order. With-

out loss of generality, let:

= * *... = = ... A= ,+> X* = XlAl+2 = ... = XIAJl+lA2 > XIAI+1A21+1 = ... > 
.A1 A2

By complementary slackness condition, we have:

Xi > z = a = O, t3*j > Pi, ai > Pi, /:i = 0 (3.8)

By the same reasoning, and by making use of the fact that pij is non-negative:
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X > > 0 = a = j pij , =pPijj, ii j = 0 (3.9)

Next we will argue that the set 41 is actually an alternate optimal solution.

For each x in A1, using relations (3.8) and (3.9), the dual constraint (3.5) must be

satisfied at equality:

- EZ c 7- E 0li V=° E V A, (3.10)
-i;EAlji EA4,ji

Since x* is strictly greater than zero for all x* in A1 , and we are maximizing the ob-

jective function which coefficients are non-negative, we must have x!* strictly greater

than zero whenever x* and are both in A1. By applying the complementary slack-

ness condition again on (3.6), we have:

(%t + *j - pij)x% = 0

for all xz and xz both in A1. This implies (atj + f*j) equals pij. Adding the A

equations (3.10), we have:

IlA* = ij (3.11)
2, ,aX EA1

(3.11) is equivalent to saying that the set A 1 has a PTT ratio same as the primal

optimum. Hence it must be an alternate optimum. In other words, we have shown

that by solving the compact primal program (P1), a feasible optimum solution to the

constant time, non-negative profits ULDP can be found easily by inspection. []
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3.3 Node-Oriented Time Non-Negative Profits ULDP

Proposition 3.3 When profits pij are non-negative and travel time to node i along

any arc is a positive constant ti which may be different among different i, the ULDP

is also solvable in polynomial time.

Proof

The proof of Proposition 3.2 can be repeated with constraint (3.1) replaced by:

tixi = 1 (3.12)
i

where ti is the strictly positive node-oriented travel time. ]

When the travel time from port i to port j is negligible compared to the time

spent in i or j for all arc (i,j), we have a situation similar to a node-oriented travel

time. At this point, it is interesting to notice that the constant time, non-negative

profits ULDP has been known in the operations literature as the Maximum Density

Subgraph Problem. Picard et al. [15] are the first to study it. Goldberg [8] gives

a polynomial algorithm. However, his algorithm does not generalize to our node-

oriented travel time problem. Gallo et al. [6] interpret the problem from a boarder

perspective of parametric problems. They do not propose a compact formulation, but

their algorithm is able to solve the node-oriented non-negative profits ULDP.

3.4 Arc-Oriented Time Non-Negative Profits ULDP

Proposition 3.4 When profits Pi, are non-negative and travel time from node i to

j along arc (i,j) is a positive number tij, which may be different among different

arcs, any polynomial time algorithm that finds a tour with a mazimum PTT ratio

also solves the optimization version of the {1,2}-Traveling Salesman Problem.
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Proof

Given any instance of the {1, 2}-TSP optimization problem with distances cij equal

either 1 or 2, we construct an instance of our arc-oriented, non-negative profits ULDP

as follow:

tij = cij V(ij)

Pij =i V(i,j)

Then, the solution to our problem must be a cycle that touches all nodes exactly once,

with total profit N(N 2-1). Since the PTT ratio is maximized, the travel time around2

this cycle must be minimized, that is, the cycle is the {1, 2}-TSP optimal solution.

The recognition version of {1,2}-TSP problem is NP-complete [7], therefore

Proposition 3.4 implies that it is quite unlikely to find an efficient polynomial time

algorithm that solves this simplified Liner Deployment Problem.

3.5 Rigid Shoreline Non-Negative Profits ULDP

Proposition 3.4 suggests that the Liner Deployment Problem is difficult in an

Euclidean graph, and explains why researchers have considered graphs in which the

nodes are presequenced: such case corresponds to the ports being arranged along the

same shoreline ([16], [17], and [19]). Perhaps the most exciting discovery we obtain

from the above studies is that when distances are measured along a rigid shoreline,

the non-negative profits, uncapacitated version of LDP is solvable in polynomial time.

Definition 3.1 Ports i,j, and k are said to be on a shoreline if:

tik < tij + tjk (3.13)

whenever k is situated in between i and j on the shoreline, where tij is the non-negative
travel time from i to j.
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alona a river or canal

Figure 3-1: Real-World Examples of Shoreline Problem Instance

Definition 3.2 When the shoreline relationship (3.13) is satisfied at equality for all

i, j, k, we say that the nodes are arranged along a rigid shoreline.

A prerequisite for either the shoreline or the rigid shoreline case is that the nodes

are arranged and numbered in a sequence. An analogy to the rigid shoreline case are

ports along a river or canal (Figure 3-1).

Proposition 3.5 When profits pij are non-negative and travel time tij is measured

along a rigid shoreline, the non-negative profits ULDP is solvable in polynomial time.

Proof

Notice that because of the assumption of the ULDP stated in the beginning of this

Chapter, in the optimum tour, the vessel must change direction on the shoreline ex-

actly twice: once at each end-port of the tour. For each port pair (i,j) along the

shoreline, find the tour with the maximum PTT ratio such that the two extreme ports

of the tour are respectively i and j. This subproblem is easily solvable because given

fixed end-ports i and j, the total sailing time of the tour equals twice tij. Whether

the ship should stop at an intermediate port k between i and j or not depends on the

additional non-negative port time t at port k. Thus each subproblem reduces to the

node-oriented time non-negative profits ULDP which is solvable in polynomial time

by Proposition 3.3. All we need to do is to solve this O(N 2 ) subproblems and find

the port pair with the maximum ratio. [
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3.6 Shoreline Non-Negative Profits ULDP: an Open

Problem

Proposition 3.5 motivates us to push the limit further and explore the complex-

ity of the non-negative profits ULDP when relation (3.13) is not necessarily satisfied

at equality. Such case is one step nearer to the real-world deep-sea scenario when the

geographical locations of ports cause operators to prefer a fixed sequence of visits.

Unfortunately, no fruitful results is obtained along this direction.

Conjecture 3.6 When profits pij are non-negative, the visiting sequence of ports is

fixed a priori, and non-negative travel time tij is measured along a shoreline given by

inequality (3.13), the non-negative profits ULDP is NP-Hard.

Proposition 3.4 and Conjecture 3.6 justify us to adopt some heuristic technique

to handle the real-world Liner Deployment Problem. To this goal we will proceed in

the next Chapter of the thesis.
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Chapter 4

Algorithm for Containership Fleet

Deployment

We will present our algorithm, which iteratively assigns ships in decreasing order

of PTT ratio to tours, updates the remaining cargo matrix, and proceeds until no

ship remains. The algorithm calls a subroutine which evaluates the maximum PTT

ratio. Depending on which case we consider, the complexity of the subroutine is given

by the appropriate Propositions in Chapter 3. The detail solution methodology of

the subroutine is left to Chapter 5. We show that this greedy algorithm is optimum if

the fleet is homogeneous, and that it gives close to optimal deployment pattern most

of the time even when the fleet is non-homogeneous.

4.1 Input data

The algorithm requires the following input data:
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(1) The trade regions the liner operator or the consortia is interested in, and the

ports in each trade region;

(2) Estimated weekly available containers in TEU between all port pairs that are

in different trade regions, and the average revenue per TEU for each of this

port pair;

(3) For each ship in the fleet, its capacity in TEU, the sailing time in days between

every port pair, and the average port time in days at each port;

(4) For each ship in the fleet, the average daily operating costs at sea and in port,

and the cargo handling cost in $ per TEU at each port.

4.2 The Greedy Algorithm

The algorithm runs as follows:

Step 1: While there are unassigned ships, find for each ship, a tour which has

the maximum Profit-to-Time ratio;

Step 2: Find the ship/tour assignment in Step 1 that has the biggest ratio and

assign the ship to that tour;

Step 3: Check if there are enough ships of the same type to provide weekly

service to the tour found in Step 2. If necessary, readjust service speeds

of other ships so that enough ships can be assigned to this tour to

ensure a weekly call. Compare the overall Profit-to-Time ratio of such

adjustment with the second best or third best assignment found in Step

1 to determine which assignment to select eventually;

Step 4: Update the weekly cargo matrix as a result of the assignment decided

in Step 3. If there remain ships in the fleet, go to Step 1, else quit.
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Pi? = PTT ratio of assigning ship i to tour j.
A s . . . . . . . . . . . .. ~ A . s . ~ ·

The dotted arc from each ship represents her final optimal assign-

ment. The number of tours are much more than those listed. We only

show those tours that are eventually chosen in the optimum solution.

Tours and arc profits shown are highly symbolic. For example, the

arc coefficients are not constant but depend on all previously made

assignment. It may happen that two tours with the same ports in the
same sequence are listed twice with different numbers. This condi-

tion corresponds to we trying to assign ship to it at different moment,
therefore its incoming arc coefficients may be different depending on

which previous assignments have been made already.

Figure 4-1: Liner Deployment Problem Interpreted as Maximum Assignment Problem

4.3 Explanation of the Algorithm

We can view the Liner Deployment Problem as a very special type of Assignment

Problem - the problem of assigning ships to tours. This is a Maximum Assignment

Problem in which the profit of arc (i, j) corresponds to the PTT ratio Pi of assigning

ship i to tour j (Figure 4-1). We assume that there is no restriction on ships to

tours, i.e., every tour is accessible to every ship. This may not be true if some ports

have draft restriction to some ships, or if the ship is of post-Panamax design such

that she can not go through Panama Canal. As shown in Table 4.1, the fleets of the

consortia under our study do not show any draft or breadth restriction. The main

difference between our assignment problem and the classical assignment problem is

that the arc profits are neither constants nor known a priori, but are functions of

other assignments. Moreover, the total number of nodes is expoentially large, so that

one may not even write down all of them. These two facts make it impossible to solve

our problem by any of the efficient Assignment Problem algorithm. Nevertheless, it

does not prevent us from studying the problem from this perspective.

Figure 4-1 shows the solution of the Liner Deployment Problem solved by the

approach of our algorithm - assigning ships to tours in decreasing order of PTT
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Table 4.1: Neptune Orient Line, Inc. and its Consortia Vessel Characteristics for
Trans-Pacific and East Bound Round-the-World Deployment in 1991

Vessel Lgth Brth Dght TEU Speed T Tour
(m) (m) (m) (C) ()

OOCL Freedom 241.0 32.2 12.5 3161 21.5 0.04651 67962 1461172 EBRW
OOCL Fortune 241.0 32.2 12.5 3161 21.5 0.04651 67962 1461172 EBRW
OOCL Faith 241.0 32.2 12.5 3161 21.5 0.04651 67962 1461172 EBRW
OOCL Fair 241.0 32.2 12.5 3161 21.5 0.04651 67962 1461172 EBRW
Rainbow Bridge 241. 32.2 12.5 2901 22.4 0.04464 64982 1455606 EBRW
Ambassador Bridge 241 32.2 12.5 2901 22.4 0.04464 64982 1455606 EBRW
Neptune Jad e 244.0 32.3 12.5 2966 21.5 0.04651 63769 1371034 EBRW
Neptune Garnet 244.0 32.3 12.5 2966 21.5 0.04651 63769 1371034 EBRW
OOCL Friendship 241 32.2 12.5 2706 22.5 0.04444 60885 1369913 EBRW
Yamaaki Maru 230 32.2 10.5 2832 21.0 0.04762 59472 1248912 L1
China Container 250.5 32.2 11.5 2430 23.0 0.04348 55890 1285470 L1
OOCL Exporter 270.8 30.6 11.5 2466 22.5 0.04444 55484 1248413 L1
Neptune Amber 231.0 32.2 12.5 2216 23.0 0.04348 50968 1172264 L1
Neptune Diamond 233.5 32.3 12.5 2158 23.0 0.04348 49634 1141582 L3
Neptune Crystal 231.0 32.3 12.5 2084 23.0 0.04348 47932 1102436 L3
Oriental Explorer 252.2 30.5 10.9 2394 19.5 0.05128 46683 910319 L3
Oriental Executive 252.2 30.5 10.9 2394 19.5 0.05128 46683 910319 L3
OOCL Educator 252.2 30.5 10.9 2394 19.5 0.05128 46683 910319 L1
Japan Apollo 227 31.2 10.9 1919 22.5 0.04444 43178 971494 L3
Neptune Coral 222.4 32.3 11.5 1863 23.0 0.04348 42849 985527 L2
Shin Kashu Maru 221.5 31.2 10.9 1834 22.8 0.04386 41815 953387 L2
Neptune Pearl 222.4 32.3 11.5 1757 23.0 0.04348 40411 929453 L2
Shin Beishu Maru 204.4 32.2 11.5 1928 20.3 0.04926 39138 794510 L2
Japan Alliance 220 32.2 11.5 1692 22.3 0.04494 37647 837646 L2

Sources: [18], [11], and courtesy of Neptune Orient Line, Inc.
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Table 4.2: Neptune Orient Line, Inc. Controlled Containership Fleet in 1989

Vessel Lgth Brth Dght TEU Speed T 
(m) (m) (m) (C) ( )

Neptune Zicron 275.1 32.3 12.5 3327 24.0 0.04167 79848 1916352
Neptune Topaz 275.8 32.3 12.5 3327 24.0 0.04167 79848 1916352
Neptune Ruby 275.8 32.2 12.5 3300 23.0 0.04348 75900 1745700
Neptune Jade 244.0 32.3 12.5 2966 21.5 0.04651 63769 1371034
Neptune Garnet 244.0 32.3 12.5 2966 21.5 0.04651 63769 1371034
Neptune Amber 231.0 32.2 12.5 2216 23.0 0.04348 50968 1172264
Neptune Diamond 233.5 32.3 12.5 2158 23.0 0.04348 50968 1172264
Neptune Crystal 231.0 32.3 12.5 2084 23.0 0.04348 47932 1102436
Neptune Coral 222.4 32.3 11.5 1863 23.0 0.04348 42894 985527
Ace Concord 207 32.2 11.5 1948 21.0 0.04762 40908 859068
Neptune Pearl 222.4 32.3 11.5 1757 23.0 0.04348 40411 929453
Omex Pioneer 1408 21.0 0.04762 29568 620928
Neptune Emerald 225 27.2 1543 18.0 0.05556 27774 499932
Neptune Ivory 225 27.2 1543 18.0 0.05556 27774 499932
Neptune Beryl 161 25.0 9.7 859 17.6 0.05682 15118 266084
Neptune Jasper 161 25.0 9.7 859 17.6 0.05682 15118 266084
Supanya 152 20.1 9.5 610 17.5 0.05714 10675 186813
Paithoon 152 20.1 9.5 608 15.0 0.06667 9120 136800
Perkasa 126.5 20.1 8.3 369 14.0 0.07143 5166 72324

Sources: [18], [11]
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I I
P1 is the maximum. After assigning ship 1 to tour 1, P22 is the
maximum.

Ships Tours PTT by greedy: P1 + P2 = 10+1= 11~ L__ _. n, rl _ , i Ar"L'l Dy otner: rf~I- = 2 a - = t

The greedy algorithm fails. Notice that criteria in Assumption 4.1

is not satisfied because:
1 P 2 , P 9

____________ I5 p12 Pi21 3 10

Figure 4-2: Example of an Assignment Problem in which Greedy Algorithm Fails

ratio. Without loss of generality, we assume the assignment is ship 1 to tour 1, ship

2 to tour 2,..., and so on in that order. That is, we assume that P1 is the biggest

arc profit, and after tour 1 is occupied by ship 1, P2 is the biggest are profit for

the remaining assignment graph with the two node l's and all their incident arcs

removed, and so on. Also, without loss of generality, we can assume that there are

only N tours available for us, and all these N tours are already listed in the Figure

(one can imagine that the unlisted tours are all less profitable and therefore need not

be considered). To reiterate the condition described above in mathematical language,

we assume:

P = max {P/: 1 < i,j < N}

P2 = max {P :2 < i,j < N}

PN-1 = max{P: N-1 < i,j < N}

Our question is: under what condition will the algorithm obtain the optimal

solution, given it uses the above greedy approach to solve the Assignment Problem,

i.e., it assigns ships to tour as per the maximum Pi'? For the generic Assignment

Problem in which the arc profits are arbitrary, the greedy approach easily fails to find

the optimum. The reason is that it is too short-sighted so that toward the end of

the assignment, it is forced to assign people/ships to very bad jobs/tours so that the

overall gain is much degraded. Figure 4-2 shows an example.
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However, the problem instances of our Liner Deployment Problem is not that

arbitrarily to discourage the use of a greedy approach. For example, notice that if

the fleet is homogeneous, i.e., the performance of the ship is same for every tour:

Pi? equals Pi for all ship i, then, the greedy approach guarantees optimum. In this

special case, the challenge is not solving the Assignment Problem, but to find the

best tour for the remaining unassigned ships among the many possible tours. But as

seen in Table 4.1 and 4.2, the fleet of a liner operator is seldom homogeneous. We

next explore under what circumstances this greedy approach still gives an optimum

solution.

4.4 Performance of Greedy for Non-Homogeneous

Fleet

For a non-homogeneous fleet, let us first understand what are the main factors

that cause the PTT ratio to differ from tour to tour. To make our argument more

tractable, we will concentrate on the revenue per unit time of the tour, and assume

that the cost per unit time is constant. From the liner operator's perspective, this

assumption is justified because the operating costs per day of a ship is roughly fixed

as long as the operator is committed to keeping his ship running at her design speed.

Let us consider the case of two ships, ship 1 and ship 2, and two possible tours, tour

1 and tour 2. Let Vi be the capacity of ship i, s be the speed of ship i, Ti? be the

time for ship i to complete tour j, uj be the utilization 1 of ship i in tour j, and rj be

the average revenue per container in tour j. Suppose the PTT ratio of ship 1 in tour

1 is bigger than in tour 2, i.e., P1 > P1. We an express the PTT ratios as:

r 1 ulV1

T1

lUtilization is the ratio of the amount of loaded containers on-board to the vessel capacity.
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1 rlu2V2
P2 = 72

By assumption, P1 is bigger than P12. The possible reasons for this to occur are either

one or a combination of the followings:

(1) in tour 2, ship 1 has to travel a longer distance to gain the same utilization

whereas the average revenue per container in both tours are the same;

(2) utilization and average revenue are the same, but the ports visited in tour 2

has an inferior service, causing ship 1 to waste more time in the ports;

(3) less cargo is available in tour 2 than in tour 1, but travel time and average

revenue per container of both tours are the same;

(4) the average revenue per container in tour 2 is smaller, but both tours have the

same tour travel time and same utilization.

Non-Homogeneity Assumption

We assume that our non-homogeneous fleet satisfies the following condition:

If P,1 is the maximum ratio, then under each of the case (1) through (4), provided that

the speed/capacity ratio of the container ships satisfied certain relationship explained

below, we have:

P> P1 (4.1)
P2 -P 1

1

The physical interpretation of the above relationship is: when ship 2 performs worse

than ship 1 in a tour 1 (i.e., P2' < P1), then in tour 2 in which ship 1 has a poorer

performance than the previously mentioned tour (i.e., P1 < P1
1), the relative perfor-

mance of ship 2 to the ship 1 will not deteriorate (i.e., inequality (4.1)). Furthermore,

we will show that even when (4.1) is not satisfied, the greedy approach to assign ship

1 to tour 1, ship 2 to the remaining tour 2 results in the highest cumulative PTT
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ratio for most of the time compared with the assignment otherwise (ship 1 to tour 2,

ship 2 to tour 1).

To justify this assumption this, let us consider separately case (1) to (4).

4.5 Justification of Non-Homogeneity Assumption

Case (1)

Let the travel time of ship 1 in tour 2 be increased by from that of tour 1. Under

constant utilization and average revenue assumption, we have:

P2 r2u2V2 (T 1 + )
pi2 (T,1 + S)1 rlu1VI

V2 s 2

Vls1

P

Case (2)

Let the total increase in port time in tour 2 be . Then, under constant utilization

and average revenue assumption:

P2 V2 (Tl + a)
P2 (T2 +8) V1

P2 P21 _ V2(T +) _ V2T'
P2 Pl V(T + ) V1T2

_ V2(T21-T1 )
V T2

1(T2' +8)

The above difference will be negative if T21 is less than T 1 , i.e., ship 2 is faster than

ship 1. Since we have assumed P1 is bigger than P21, the only possibility for this to

happen is V2 is less than V1, i.e., ship 2 is smaller than ship 1. Although it is possible

to have a faster and smaller ship, contemporary design characteristics for container
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vessels is bigger ships usually travel faster (Table 4.1 and 4.2). Nevertheless, let us

also consider the case of a smaller but faster ship. The difference between the cumu-

lative PTT ratio of the greedy assignment versus the other assignment is:

v2greedy: P + P = + 
TP1 (+ 7 '±8)

V2 V1other: P + P = +
T2] (TI + )

(p~ - P2)8 (V (T1)2 -V 2(T~)8)egreedy- other: z(8) -= - (+ 2
(T1 + )(T2 + ) (T1 + )(T1 + )Tl'T2

By assumption, the first term is always positive. The second term is negative if

Vl(T21)2 is less than V2 (T1
1)2. To see how likely the second term will be negative, we

look into the fleet composition of the deep-sea trades of the NOL consortia and other

independent operators (Table 4.1 and 4.2). By arranging the ships in decreasing order

of Visi (which is a rough estimate of the PTT ratio), we plot the quantity Vis? versus

Vsi in Figures 4-3, 4-4, and 4-5. As seen from the figures, only a few ships - those

that correspond to the small valleys in the graphs - can possibly have a negative sec-

ond term. Thus we conclude that under this condition, the cumulative PTT ratio of

the greedy assignment still gives better overall profits for most of the real-world cases.

Case (3)

Assume that in tour 2, the weekly cargo available is p less than in tour 1, and the

total tour time is the same. Therefore:

V1-p
T1

2 min (V - p, V2)u s : P2 t2e
Subcase (a): when V -p > V2, then:
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P2 P21 V2 Ti V T1

_ V __p12 P1 T2 V -P T2 V1
T2 V 1-P V1)>°

Subcase (b): when V1 - p < V2, then:

P2 P21 V,-p T1 V2 T

P,2 Pl T21 V-p T 2 V1

= T 1 whichis if V2 < V

T2' kV1 <0 ifV2>Vl

Hence for subcase (3b), the condition (4.1) is not satisfied if the ship that performs

worse in the best tour is a bigger ship. Unfortunately, we can not rule out the possi-

bility of this occurring, and this is a case in which the greedy approach may lead to a

suboptimal.

Case (4)

If the average revenue per container in tour 2 is smaller than that of tour 1 by a

factor of f, and assuming both tours have the same utilization and travel time, it is

straightforward to see that:

P2- fV2 fv,
P 2 T2 T1

P 1

Hence to conclude, we can say that relationship (4.1) holds most of the time

given the current trend in the design of ocean going containerships and if the as-

sumption that ships have similar utilization in all tours is valid. By exploiting this
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special problem instance commonly encountered in deep-sea container trades, our

next Proposition guarantees that the greedy approach to assign ships to tours gives

an optimum solution.

Proposition 4.1 Let pb be the arc profit of assigning node a to b in an n x n Max-

imum Assignment Problem. Suppose the arc profits satisfy these criteria:

(a) Let Pij be the maximum of all feasible arc profits, i.e.,

P? = maxz {P : for all feasible assignment s to t );

(b) For all s 4 i,t 4 j, we have:

pAt - P .

(c) Both conditions (a) and (b) apply to all square subsets of the Assignment graph.

Then, the greedy algorithm which assigns sequentially by using the remaining feasible

arc with maximum arc profit correctly solves the Maximum Assignment Problem.

Proof

The proof by mathematical induction is given in Appendix A. o

Let us see how Proposition 4.1 can be used in our Liner Deployment Problem.

First, as we have argued above, the Liner Deployment Problem can be viewed as an

Assignment Problem, although the arc profits are unknown a priori. Second, we can

apply Assumption 4.1 to establish criteria (a) and (b). Third, if we assign the ship to

the tour that has the maximum PTT ratio, the remaining fleet forms another deploy-

ment problem, which by Assumption 4.1, also satisfies criteria (a) and (b) most of

41



the time. Thus this ship by ship approach solves the Assignment Problem optimally,

provided that:

(1) the problem instances of the deployment problem always obey Assump-

tion (4.1), and

(2) we can calculate the best assignment for each ship at every iteration.

From now on, we assume condition (1) is satisfied, so that our greedy algorithm

still gives an optimum fleet deployment so long as each subproblem is solved to opti-

mum. We probably need some post-optimization heuristics to improve our solution

if we find a major violation of relation (4.1) in our data. In the next Chapter, we

concentrate on presenting our formulation for solving the best assignment for each

ship. i.e., for finding a tour with maximum PTT ratio.

42



1.6x106

1.4x106 -

el 1.2x106 -
Q

x

*S .Ox10 6

U

5Q ^V1 hiO.UAVU

6.0x105fill - I I I

30000 40000 50000 60000 70000

Capacity x Speed (C/T)

Sources: [18], [11], and courtesy of Neptune Orient Line, Inc.

Figure 4-3: Fleet Characteristics of Trans-Pacific and Round-the-World Trades of
Neptune Orient Line, Inc. and Consortia in 1991
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Figure 4-4: Characterisitcs of Neptune Orient Line, Inc. Controlled Containerships
in 1991
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Figure 4-5: Characteristics of Sea-Land Service Inc. Controlled Containerships in
1989
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Chapter 5

Finding Maximum PTT Ratio for

Shoreline Capacitated LDP

Proposition 3.4 highlights the intrinsic difficulty of the LDP and explains why

researchers have developed more efforts to study the case in which ports are arranged

in a sequence. The rigorous mathematical programming approach in [17] is based on

the assumption that the ports are arranged on a shoreline such that in each tour,

the ship changes direction exactly twice at the end-ports. We call this the Shoreline

Capacitated LDP. In this Chapter, we provide a new mathematical formulation for

finding a tour with maximum PTT ratio. Our formulation does not require the vessel

to be empty at her end-ports. This overcomes the drawback shown in Figure 1-1.

Dantzig et al. [4] gave a very elegant method for finding the maximum PTT

ratio for a tramper, or bulk ship operator:

max E 'pijzij (BSP)

Subject to:

Z Z tijzi = 1 (5.1)
i j

zij - E :ji=O V port i (5.2)
j J

xij > 0 V port pairs (i,j) (5.3)
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X_ Outbound Direction

Whenever the ship changes direction from outbound to inbound, an (i, i') arc is used.

Figure 5-1: Each Port Modeled as Two Nodes

where pij = profit if tramper travels from port i to j

tij = time for tramper to travel from port i to j

This problem can be solved in polynomial time, and the solution is guaranteed to

be a simple tour which has the maximum PTT ratio. In the solution, xij equals

the reciprocal of the tour time if the arc from i to j is included in the solution, and

zero otherwise. Unfortunately, it can not be applied directly to the LDP because

the revenue of a containership is generated differently from that of a tramp ship (see

Figure 2-3). This slight variation of the problem is enough to make it extremely

difficult to solve as implied by Proposition 3.4: pure linear programming formulation

probably does not work, we need to use zero/one integer variables.

An assumption that frequently accompanies the Shoreline geometry is that the

ports are numbered consecutively along the shoreline in an outbound direction from

port 1, and that each port is visited at most twice per tour, once in the outbound

voyage, once in the inbound. A natural approach to model this situation is to create

two nodes for each port. Thus i and i' represent the same port, one for the outbound

visit, the other for the inbound visit respectively (Figure 5-1).
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5.1 Nomenclature

Parameters

Aij : estimated weekly available cargo from port i to port j assuming there
is a weekly service from i to j (TEU per week);

cl : daily operating costs at sea for ship s ($ per day);
cl2 : daily operating costs at port i for ship s ($ per day);
csi : port due at port i for ship s ($);
Csd : cargo handling cost at port i for ship s ($ per TEU);
rij : average revenue of cargo from port i to port j ($ per TEU);

t : average port time for ship s at port i (days);

tp : sailing time for ship s from port i to port j (days);

V. : capacity of ship s (TEU);

A( : the given set of ports;

X' : the duplicate set of ports of Af to model a second visit;

N : number of ports along the shoreline, i.e., the cardinality of Kf or Kf'.

For sake of simplicity, the superscript s which stands for ship s is dropped hereafter.

Continuous Variables

j 0 if ship s does not sail directly from port i to port j
y if ship s sails directly from port i to port j;

y : is the reciprocal of the time needed by ship s to complete her tour
(days- 1 );

xicj : this quantity divided by y is the fraction of weekly cargo from port i
to port j that is carried by ship s;

Binary Variables

f 0 if ship s does not sail directly from i to j
1 if ship s sails directly from i to j

I O if ship s does not visit port i
1 if ship s visits port i
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5.2 Mixed Integer Formulation

Objective Function - maximization (SLDP)

E {(r - (4i + c))Aij} [i + i + ii + X
i,jc-A(

E £ ij-
j' ECA

j - ((ci - l)ti + C'
jEAI it CV

Network Constraints

j>i
Zii + E Zij Zi

j' <EA
ziti + E Zi' = Zi'

j<i
Ziti + E Zji = zi

jEAf

3 >j

ziil + E Zjif -- zil
i CAf

Vi A

vi' C A

Vi 

Vi' n'

Subtour Breaking Constraint

zii ' 1
iEA(

Integer Constraints

zi,zi, C {0,1} ViAr 

Imposing Integer Constraints on Variables x

ij zij Vi,j < ,i < j

Xij ' < Zij '

Xii 22 Zii,

Vi ',j C A',ij > j

Vi A
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(5.4)

I .Zs
iEA

(5.5)

(5.6)

(5.7)

(5.8)

(5.9)

(5.10)

(5.11)

(5.12)

(5.13)

- 11 f(C'2i - lftl + C30
iEA(



Xi i < Zili

Network Constraints on Variables x

Vi' A.c

j<i
- xiii + xJi

. >z

Xiii + S Zji'I

Xii = y
iEA

j>i j >i* j>i
S tiixij + S txjixji '+ ti 5 Xij + ti

i,jEX i ,j EA iEA jEA i(I

Direct Shipment Constraints

j>s
vt t j

jEAr
i<t

X + t J < sI
I~ If~ I

I I, zil>t

st' + S t E Xi 't'
i' Ec '

3 <
.I ,i

5 xi' I- 1

Vs, t C E

Vs, t eC A

Vss, t C A

Vs, t C E
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j>i
xii + E xij

<it

i'i E i'j' =
j'EV'

Vi E A (5.15)

Vi' C Af (5.16)

(5.17)

(5.18)

(5.19)

(5.20)

(5.21)

(5.22)

(5.14)



Capacity Constraints

j<i<k

Z Ajki +
j,kEAt

k >i >3j

E Ajk'3' +
sI l k ·A l jj

j<i joi
Z Ajx + E Aij [ +ij 2i]

jEA('EA/k ' jEA(,j' '

j <k ' k>i,koj
+ E Ajkj + Z Ajkj < Vy Vi E K (5.23)

ji, kIEJtf j' EV',kEgA
.3 .I. .

E Ajxi, k + Z Aij 7 + j|
' EA',kEA j En,j' EAr'

j>K kk <i ,k :j' ' I
+ E AJkj kj + E Ajk < Vy Vi' E A (5.24)

j,kEAf jEAk'EA

Non-Negativity Constraints

Xi, Xij > 0

i > 

Vi,(i,j)

V(i,j)

(5.25)

(5.26)

5.3 Explanation of Model

Integer Solution is a Simple Tour in Extended Graph

The network constraints (5.5)-(5.8) set up the shoreline network structure. The

shoreline property implies that whenever the ship changes direction from outbound

to inbound, she must use one of the artificial arcs (i,i'). Hence (5.9) and (5.10) are

enough to ensure that the integer solution represents a simple tour in the extended

graph A U A', and that there is no subtour. Next we use the idea of the bulker

model (BSP) at the beginning of the Chapter to construct the PTT requirement.

Constraints (5.15),(5.16), and (5.17) resemble the constraints (5.1) and (5.2). Con-

straints (5.11)-(5.14) guarantee that when all z's attain integer values, a simple tour

solution on the Xij variables is imposed. Hence those values of x's that are strictly

positive must be identical to the reciprocal of the tour time, which, according to (5.18)

is the sum of sailing time and port time. Since the tour uses exactly one of the arcs

(i,i') to change sailing direction from outbound to inbound, (5.17) implies that y
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must be the reciprocal of the tour time.

Cargoes Pick-up and Delivery of without Trans-shipment

Constraints (5.19)-(5.22) mean that cargoes can not be shipped from port to

t unless both are visited by the same ship. Hence this model does not allow trans-

shipment. The available cargo between port s and t is expressed in terms of a weekly

estimated quantity At. Here, we try to model the situation that if there is a weekly

service by a fleet of ships in a tour containing both ports and t, then, the maxi-

mum amount of the weekly cargo from s to t that can be gained by each ship in the

fleet is A,t. Even if the containership operator succeeds to arrange more than one

visit per week to and t in this particular tour, the maximum combined amount of

weekly cargo gained is still At. Thus At can be interpreted as the amount of weekly

cargo that can be reserved for the liner operator by his local agents given that he

can provide weekly regular service. Of course, A,t varies with the level-of-service and

market demand. We will neither explore nor model this relationship in the thesis.

We just assume that in order to maintain this maximum available amount of cargo,

the service must be maintained at a weekly frequency. That is why in Step 3 of

our greedy algorithm, we request a post-optimization adjustment. This procedure

intends to model the common practice among containership operators to maintain

weekly calls for staying competitive.

Amount of Cargo On-Board Can Not Exceed Vessel Capacity

Constraints (5.23) and (5.24) ensure that the amount of cargo on-board does not

exceed the ship capacity. We first argue that each term in the LHS represents a cargo

on its way to the final destination that is on-board the ship when the latter leaves

port i. To see this, if the ship calls port i, the shoreline network structure (5.15)-

(5.17) imply that the sum of the ij terms over j plus the term ii' equals y. By

constraints (5.19)-(5.22), none of the Z's values can be bigger than y. Thus x divided
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by y represents the fraction of weekly cargo gained by the ship. Dividing both sides of

(5.23) by y, one can see that the LHS is exactly the total amount of cargo on-board

the ship when she leaves i. This quantity must be less than or equal to the vessel

capacity which is the RHS bound. When the ship does not call port i, (5.23) becomes

redundant. Thus applying this inequality for each node in the graph guarantees that

the vessel capacity constraint is not violated.

Non-Empty Vessel Allowed at End-Ports

Notice that we do not require that the ship be empty at the end-ports. For

example, jt' can be strictly positive with s in N (an outbound port), and t' in AJ'

(an inbound port).

Objective Function

The objective is to maximize the Profit-to-Time ratio of the ship. Since the

ship is committed to serve the fixed tour for a relatively long time, the PTT ratio is

essentially the profit gained per tour divided by the time to complete the tour. As

explained above, the tour time is y-1 . Recall that the weekly cargo is Aij, and that

if there is a service in a tour, we will arrange ships to serve the tour weekly. Also,

recall that ij divided by y is the fraction of cargo captured per tour by the ship.

For clarity, we will omit the superscripted ports which are located on the inbound

direction of the model. Then the revenue of the tour is:

(ij) Y

Revenue per unit time is the above expression divided by y-' and equals:

Z rijAijxij
(id)
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The costs of the tour consist of

ship operating cost at sea

ship operating cost at ports

port dues

cargo handling costs

these terms:

sea-cost x sea-time
day

Port-cost
= day x port-tme

= port dues

handling costs
TEU x cargo

= c -- E tizi

= XE csitzi

- Z c;zi

E (c4i + C4) Aiji
(i,j) Y

The total operating costs per unit time is the sum of the above costs divided by y-.

By the shoreline network structure again, when z are integers, the product of zi and

y is simply the sum of xii, and Ej x;j. Thus the operating cost per unit time can be

simplified to:

C- ti [Xii' + Xi] + C2iti [Xii + Xii + C3i [Xii' + Xii]

+ Z (c4i + c;j) Ai j - (i + c;i)tiii
(ij)

The last term in the above expression corrects the double counting of daily port

charge ci and port due ci for the end-ports. The PTT ratio is the difference of these

two terms and thus equals our objective function:

{(rij - (i + c4j))Ai} j - E {(c2i - )ti + ci} xij -c;
(j) iEAr jEAl

Update of Weekly Cargoes

Whenever we assign a ship to a tour, part or all of the weekly available cargoes

Aij of the ports that the ship visits is taken. Since we will make sure that enough ships
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are assigned to this tour in order to maintain weekly service, the remaining available

weekly cargo is the same in every week, i.e., it equals either zero in case all the weekly

cargo is taken by the ship, or it equals the fraction of Aij that is not loaded on-board.

However, it may happen that the operator runs out of the same type of vessel to

assign to the tour, and the remaining ships are of so different in design characteristics

that it is impossible to adjust speed to fit the service requirement. In this case, the

operator may only be able to provide less than weekly service, say, biweekly service

to the ports in the tour. This may cause a difficulty to define the new weekly cargo

quantities Aij for the next iteration. Because if we are considering a week in which

no ship in the fleet provides service to port i in a tour that goes through i and j, we

have, according to our assumption, the full availability of the old weekly cargo Aij.

But if we are considering a week in which a ship in the fleet is visiting port i, we are

only left with a fraction or none of Aij.

Strictly speaking, since the level-of-service in this case is degraded (from ex-

pected weekly to actual biweekly), some customers may turn to other carriers and

thus the available cargo is less than Aij, which is estimated on a weekly service base.

We will resort to this simplified method to model this real world phenomenon: sim-

ply averaging the fraction of cargo left. Thus for the particular example in which the

service is degraded from weekly to biweekly, we assume that the new weekly cargo

equals half of the remaining fraction of cargo left by our previous assignment. This

implies that if we are able to deploy additional ships to this port such that weekly

service is provided, then we are able to capture all the left-over cargoes. Else part of

the cargoes is lost to other competitors for ever.

5.4 Valid Inequalities to Strengthen Formulation

The following valid inequalities are found to be useful in reducing the integrality

gap of the formulation (SLDP).
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st + + t + ' < y s,t (5.27)
j<i

xii, < E xji Vi E .A, i 1 (5.28)
jEhA

i'i < xj,', i' C K', i' $7 N' (5.29)

Constraints (5.27) help to prevent the same (s, t) cargo pair be counted several times

in the objective function when both ports s and s' or t and t' are visited. They

are useful to generate tighter gap when the weekly available cargo amount A,t is

very small compared with the vessel capacity V. In this case, (5.27) dominates the

capacity constraints (5.23) and (5.24). Constraints (5.28) and (5.29) help prevent

both xii, and xi i are positive.
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Chapter 6

Extensions of Shoreline

Capacitated LDP Model

The goal of the Chapter is to develop a model closer to the real-world operating

scenario. Such model can then be used in the PTT ratio optimization subroutine of

our greedy algorithm in Chapter 4 to handle a fleet deployment problem. We will

consider two extensions of our shoreline capacitated LDP model of Chapter 5: (1)

imposing travel time constraint between some specified port pairs; and (2) routing

without the shoreline restriction.

6.1 Imposing Transportation Time Constraint

Between big container ports competition among operators is high because ship-

pers have more choices among carriers. Our thesis does not address the issue of

competition, which is measured by the level-of-service of the operator. One impor-

tant element of the level-of-service is the transportation time. When the operator

designs his route, he may want to introduce a minimum bench mark transport time

between certain port pairs so that his level-of-service is not too small compared with

his competitors. For each port pair (s, t) which the operator wants to impose a travel

time upperbound Tat, add the following constraints:
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Ei- t;j~j < Tt (6.1)
(i,j)

Zj < Zij < V(i,j) 4 (s s)(s',s),(t,t'),(t' t) (6.2)

-1 if i=s

ij _zst _ 0 otherwise (6.3)O,1 if= (6.4)
ZtS2 E {0, 1} V(i,j) (6.4)

By constraints (6.2)-(6.4), the integer variables which equal unity represent a path

from s to t. Constraints (6.2) only allow those voyage legs served by the ship to define

the path. Finally (6.1) guarantees that the transport time along the (s,t) path is less

than or equal to the bench mark value Tat. Preventing constraints (6.2) to act on

the artificial links (s, s'), (s', s), (t, t'), and (t', t), the shortest path time between the

nodes created for s and t respectively will be used to satisfy the travel time bench

mark constraint (6.1).

6.2 Relaxing Shoreline Network Restriction

We face two difficulties for a routing formulation without the shoreline geometry.

The first difficulty is how to eliminate subtours. The second difficulty is how to

guarantee the vessel capacity constraint is obeyed at every voyage leg. Central to

the new formulation are two key observations of deep-sea containership deployment:

(1) a port is not visited more than twice in a tour; (2) the ship crosses the deep-sea

from one trade Region to the other once in each direction per tour (see Chapter 2)

(see Chapter 2. From the first observation, we can keep on using two nodes to model

every given port, and we call the graph with these extra nodes an extended graph.

In the Shoreline model (SLDP), the assumption derived from this observation is that

the ship changes direction at most twice. In the model below in which we relax the

Shoreline geometry, the weaker assumption adopted is that each arc in the extended
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graph is not used more than once. This w eaker assumption is sufficient to allow our

formulation give a simple tour solution without the shoreline network. The second

observation enables us to derive a mixed integer description of the problem. We

overcome the first difficulty by using a modified Traveling Salesman subtour breaking

constraint, at the expense of increasing the size of the formulation expoentially. We

overcome the second difficulty by introducing a dummy cargo that fills the ship at

her deep-sea and consequent voyage legs.

6.2.1 Subtour Breaking Constraints

We use the same nomenclature as in Chapter 5.1. The following model is con-

structed for a containership which trades between Region A and Region B separated

by deep-sea. The objective function is similar to (5.4).

Network Constraints

Zie + E Zij = z i EG J (6.5)

Zii + E Zij = zi, Vi' E Af' (6.6)
i' EY

Zii + zji = zi Vi EAf (6.7)
jEA

Zii' + E Zj'' = Zi' Vi E JVI (6.8)
j'l EA

Subtour Breaking Constraint

EZ zij < (6.9)
iEAUA' jEBUB'

ij < zi - zk VS C AU A, any k AU A
(i,j)Es iES

VS C BUB', any k E BUB' (6.10)

Integer Constraints

zj, zi i E {0,1} V(i,j),Vi (6.11)
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The integer constraints imposed on x variables, the network constraints on vari-

ables, the direct shipment constraints, and the non-negativity constraints are similar

to (5.11)-(5.22), and (5.25)-(5.26) respectively.

Constraint (6.9) prevents more than one tour to span Region A and B. It

is built on the observation that each tour crosses the deep-sea from A to B exactly

once. Constraints (6.10) prevents subtours to form within each Region. The difference

between our constraint and the classical TSP subtour breaking constraint is that for

each subset S under consideration, we do not know a priori how many nodes in S

are visited. Therefore, the RHS of (6.10) is a variable rather than the cardinality of

S minus one. If all the nodes in S are visited, (6.10) correctly prevents those nodes

to form a subtour. If some nodes in S are not visited, (6.10) for S is redundant.

6.2.2 Vessel Capacity Constraints

To make sure that every voyage leg satisfies the capacity constraint, we intro-

duce the following new variables:

Bij : a dummy cargo with no revenue and with abundant supply between
any port pair (i,j);{ 1 if i is the last port in Region B that the ship visits

0 otherwise

These constraints make sure that the vessel can not be overloaded on any voyage leg:

Vessel Capacity Constraints

i= zij Vi B (6.12)
jEA

B 3J < Vij i E B,Vj VE A (6.13)

A C At,"t°+ (wi- 1)V + E Bst
sEB tEA sEB tEA

<V t z,, Vi c B (6.14)
sEB tEA

60



V E E x.t- Aji _ B- i
sEB tEA Vs

+ EAjt3t + Z Bit+ (zij - )V < V x t V(i, j) (6.15)
Vt Vt sEB tEA

Imagine inequality (6.15) is divided throughout by y. As discussed in Chap-

ter 5.3 when we explain the objective function, each term can now be interpreted as

a cargo quantity. When voyage leg (i, j) is used, zij equals one and constraint (6.15)

is activated. Let us track each voyage leg of the vessel starting from that deep-sea leg

(i,j) which crosses from Region B to A. The first term in the LHS of (6.15) repre-

sents the total amount of cargo onboard the vessel when she crosses the deep-sea from

Region B to A. The second term represents the amount of cargo unloaded at port

j, the first port of Region A. The third term is the amount of dummy cargo carried

on the deep-sea leg (i, j). Hence the sum of the second and third term represents the

new space available onboard the vessel after she unloads at j. The forth and fifth

term in the LHS represent the amount of new

cargoes loaded on-board at j. Hence sum of all terms in the LHS should not exceed

the vessel capacity. However, the RHS will be less than the vessel capacity unless she

is fully loaded when she crosses the deep-sea. This can always be achieved because she

can be loaded with dummy cargoes Bij if necessary. In fact, since i is the last port in

Region B, (6.14) guarantees that the ship can not be overloaded by dummy cargoes.

The above argument leads to the fact that the vessel capacity is obeyed at the deep-

sea leg (i,j) between Region B and A, and that we know exactly how much empty

space is available onboard after the vessel unloads at j, the first port of call in Region

A. Using these two information, one can repeat similar reasoning and conclusion for

the next and subsequent voyage legs after (i, j). Thus this recurring recurring nature

of constraints (6.14) and (6.15) eventually guarantee that the ca pacity constraint is

always satisfied. Finally, notice that the first term in the LHS of (6.15) is same as

the RHS term. They cancel out each other in the final formulation, but are shown

here to help the explanation.
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Chapter 7

Computation Results

The purpose of test computations is to see how our formulation behaves. We

test the extended version of the capacitated LDP with two Regions. The first Region

consists of 11 ports, the second consists of 3. We did not include all the subtour

breaking constraints. But we have all those constraints that prevent a subtour be-

tween two nodes within each region. The rest of the constraints are added whenever

we encounter subtours. Once added, a subtour breaking constraint is kept in the

formulation. Any CPU time reported below refers to the CPU time for a solution

where subtours have already been eliminated, using the number of subtour breaking

constraints up to that moment.

We want to choose bad input instances to test our formulation. Since the

optimum solution is a tour with maximum Profit-to-Time ratio, we adjust the de-

nominator - the distance input - in order to get some difficult instances. The distance

matrix for this test computation given in Table 7.1 is generated as follow. We first

generate a 14 x 14 asymmetric distance matrix at random from the interval [0,10].

For a distance pair between the two Regions, we increase its value by 10. We solve

the LP relaxation of the classical TSP formulation using this distance matrix. Then

we deliberately adjust the distance so that this LP relaxation solution has fewer inte-

ger variables. We iterate the process till we got a highly non-integral solution of the

relaxed problem. At the end of this process, we have a distance matrix that is a very
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bad problem instance for the 14 nodes TSP problem. It obeys neither the triangular

inequality nor symmetry. Being a denominator of a ratio, its role is to imitate the

randomness of the cost and revenue input data.

The cargo matrix, and port dues are selected at random as shown in Table 7.2

and 7.3. Given that we deliberately use the distance matrix to create a bad input

instance, we do not spend further effort in generating a random cargo revenue matrix.

All cargo revenues rij's are set to unity, all other costs are set to zero except a port

due for each port. This is equivalent to imposing a fixed charge whenever a port is

called. The vessel capacity for the base case is 3000 TEU.

The mixed integer program shown in Chapter 6 is solved using Version 1.2

(1991) of the mixed-integer optimization package CPLEX installed in a SUN 3-280

workstation. The optimum tour of the base case is shown in Figure 7-1, which is of

length 34.9 days. For this particular instance, it happens that the ship visits quite a

number of ports in her tour, which is a simple tour in the original graph.

To speed up the Branch-and-Bound process in finding integer solution, we make

use of the user interface ability of CPLEX to input valid lower cut-off bound generated

heuristically. At the end of the LP optimization process, we check which solutions

ipj's are strictly positive. For those that are positive, the ship must visit both ports

i and j. Then we set the zi's of those ports to one. This process fixes most of the

influential undecided 0/1 integer variables except the w's, i.e., from which ports the

ship should exit Region B. We determine this using the CPLEX Branch-and-Bound

process again. This is relatively easy to solve and we got a valid lower cutoff fairly

quickly. Without this accelerated way to generate the first lower cutoff, as shown in

Table 7.4, the search process is much longer. The reason this heuristics is very helpful

in this case is explained as follows.

From the computation experience we gained, the Branch-and-Bound process

usually sets most of the zi's to zero initially in a depth first search, thus leading to a
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tour with a very small number of ports to begin with. As shown in Figure 7-1, if the

optimum tour happens to have quite a number of ports, the poor lower cutoff found

at the beginning of the Branch-and-Bound process creates a lot of unfathomed nodes

to be explored. In the exploration of each of these nodes, the search again starts with

a very small tour first, thus lengthening the optimum search.

As seen in Table 7.4, the valid inequalities (5.27)-(5.29) reduce dramatically the

gap between the LP and IP from 18% to 4%, and speed up the calculation process.

Table 7.5 and 7.6 show the performance of the model with respect to various

vessel capacity and cargo availability Aij. The solution time seems to increase with

decreasing vessel capacity. When the capacity is decreased to 2300, a more complicate

tour pattern emerges: port 3 is visited two times to compromise some violated capac-

ity constraint within Region A. As seen from Table 7.6, solution time also increases

with cargo quantity, but the tour gets simpler. The reason of a longer solution time

is that when the Aij's are bigger, the valid inequalities (5.27)-(5.29) become less and

less binding, hence their presence does not help reducing the integrality gap. In fact,

when Aij's tend to infinity, we no longer have the less-than-vessel-load condition and

the problem reduces to the bulk ship problem (5.1)-(5.3). In that case, our complicate

fo rmulation is highly redundant and hence a longer time is needed for finding the

optimum.

If we can estimate the real-world cargo quantity and revenue between all port

pairs, it is useful to repeat similar calculations to see the change in deployment pattern

vis-a-vis the change in operating conditions. Testing with real-world data is the only

way to judge how our model behaves in practice.
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Table 7.1: Distance Matrix for a Fictitious 2 Regions Problem Without Shoreline
Network Restriction

tij (in days)

Table 7.2: Cargo Matrix for a Fictitious 2 Regions Problem

Aij (TEU per week)

1 2 3 4 5 6 7 8 9 10 11 12 13 14

1 0 0 0 0 0 0 0 0 0 0 0 50 100 150

2 0 0 0 0 0 0 0 0 0 0 0 100 200 450
3 0 0 0 0 0 0 0 0 0 0 0 100 100 100

4 0 0 0 0 0 0 0 0 0 0 0 80 200 100

5 0 0 0 0 0 0 0 0 0 0 0 50 50 100

6 0 0 0 0 0 0 0 0 0 0 0 0 0 100
7 0 0 0 0 0 0 0 0 0 0 0 20 70 50

8 0 0 0 0 0 0 0 0 0 0 0 130 100 80

9 0 0 0 0 0 0 0 0 0 0 0 150 200 400

10 0 0 0 0 0 0 0 0 0 0 0 300 200 400
11 0 0 0 0 0 0 0 0 0 0 0 50 300 330
12 30 40 20 100 150 10 30 50 100 200 190 0 0 0
13 10 50 100 180 200 50 100 100 200 190 200 0 0 0
14 50 100 300 310 200 70 50 10 400 350 210 0 0 0

,~~~~~~~~~~~~~~~~~~~~

65

D 1 2 3 4 5 6 7 8 9 10 11 12 13 14

1 - 5.8 0.8 1.2 5.9 6.0 2.9 0.8 4.6 1.5 5. 7 12.1 14.1 14.4
2 1.2 - 2.7 4.1 4.5 4.9 5.4 2.0 1.2 1.0 5.9 14.9 14.6 17.5
3 6.0 4.6 - 0.5 2.4 0.6 2.4 0.8 0.9 0.8 5.3 12.6 15.2 13.9
4 4.1 3.3 3.8 - 1.9 1.9 1.8 3.8 2.8 2.4 4.6 13.8 14.9 15.1
5 0.5 0.8 0.8 4.0 - 0.9 1.2 2.1 2.5 1.6 3.5 14.9 15.2 17.7
6 3.4 2.0 3.5 5.3 5.1 - 1.8 2.0 3.4 1.7 1.2 16.5 15.0 17.8
7 1.9 3.7 2.1 3.7 4.2 3.2 - 1.7 3.1 4.4 3.6 12.6 12.7 11.4
8 0.5 2.0 5.0 1.2 5.6 4.3 2.0 - 3.7 1.9 3.1 14.9 15.6 15.1
9 1.5 4.2 5.0 4.3 4.2 3.1 3.8 4.1 - 1.9 2.9 13.5 12.6 13.4
10 3.7 3.2 1.2 2.5 1.8 1.5 1.3 2.7 2.6 - 1.2 11.6 16.7 14.6
11 4.8 2.5 2.8 4.5 2.2 2.7 2.4 3.3 1.9 3.1 - 16.3 18.1 14.8
12 12.3 16.7 15.9 13.7 17.7 19.5 13.9 17.5 12.9 15.2 13.6 - 5.2 4.8
13 15.3 15.9 16.1 15.1 17.9 14.7 16.7 15.2 14.2 14.2 17.1 2.8 - 2.6
14 12.6 13.5 12.4 14.2 14.6 14.9 13.3 14.1 15.1 13.9 14.2 4.0 3.9 -



Table 7.3: Cost Matrix for a Fictitious 2 Regions Problem

Only port dues are non-zero. All other costs are assumed to be zero.
The port dues c3i are:

1 2 3 4 5 6 7 8 9 10 11 12 13 14

50 200 150 180 180 130 110 80 70 100 110 100 80 80

Figure 7-1: Optimum Tour of a Two Regions Capacitated LDP without Shoreline
Network Restriction
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Table 7.4: Test Results: Base Case

Base Case, Vessel Capacity = 3000

Scenario Optimum Tour Tour Length LP Value IP Value CPU Time 

no lc, - 1625.7 1246* > 2 hrs
no (5.27)-(5.29)

with lc, 3-4-5-2-10-11-9-13-14-3 34.9 1625.7 1378.2 32.0 min
no (5.27)-(5.29)

both lc and 3-4-5-2-10-11-9-13-14-3 34.9 1427.0 1378.2 2.6 min

(5.27)-(5.29)

lc = heuristic lower cutoff implemented;
* = this is the best IP solution after 2 hours of computation

Table 7.5: Variation of Maximum PTT Ratio with Vessel Capacity

Scenario Optimum Tour Tour Length LP Value IP Value CPU Time
V = 1000 1-3-9-13-14-1 31.3 636.0 530.4 8.9 min
V = 1900 3-10-11-9-13-14-3 31.5 1077.6 1009.5 2.6 min
V = 2300 3-8-1-10-3-13-14-3 37.9 1264.3 1170.2 5.7 min
V = 3000 3-4-5-2-10-11-9-13-14-3 34.9 1427.0 1378.2 2.6 min
V = 3400 1-3-10-11-5-2-9-13-14-12-1 38.5 1529.9 1466.8 2.6 min
V = 4000 1-3-4-5-2-10-11-9-13-14-12-1 39.6 1616.1 1616.1 1.0 min

-~~~~~~~~~~~...
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Computations are done with the heuristics for finding a lower cutoff earlier, and the
valid inequalities (5.27)-(5.29).



Table 7.6: Variation of Maximum PTT Ratio with Cargo Quantity

|| Scenario || Optimum Tour I Tour Length I LP Value IP Value I CPU Time I|

| Base Case 3-4-5-2-10-11-9-13-14-3 1 34.9 | 1427.0 1378.2 2.6 min 

T by 1000 || 1-10-14-1 28.7 145.5 113.6 3.5 min

T by 2000 11 1-10-14-1 28.7 72.3 34.3 4.1 min

Computations are done with the heuristics for finding a lower cutoff earlier, and the
valid inequalities (5.27)-(5.29).

We make an across the board increase in the cargo matrix. The solution value ap-
pears smaller than the basecase because the cargo revenues rij are not rescaled.
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Chapter 8

Conclusions and Further Research

8.1 Summary of Findings

Despite containership routing is on the top hierarchy of a series of operational

decisions, the efforts done on it are far from satisfactory. This thesis views the

problem from the perspective of finding a deployment pattern with maximum Profit-

to-Time (PTT) ratio. We identify the fundamental difficulty of the problem from

which we obtain useful insights. There are two special cases under which the problem

can be efficiently solved. Without surprise, both correspond to the uncapacitated

version. Our vision of the problem to model the cargo on a weekly available basis

leads to a useful application of the uncapacitated version - in designing the optimum

vessel capacity. The first special case corresponds to the situation when port time

dominates sailing time. Mathematically, it is also known as the Weighted Maximum

Density Subgraph Problem among operational researchers. Our studies lead to a

compact linear program description of this problem. The second special case can be

interpreted as the ports being located along a rigid shoreline, such as the convex coast

of a continent, or along a river or canal. We propose an O(N 2 ) algorithm to solve it,

N being the number of ports.

For the remaining cases, we propose new mathematical programming models

to find the maximum PTT ratios. Following the common assumption that the visit
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sequence of ports is determined a priori, the problem becomes which port to select

for visit along the sequence. Apparently, this version is non-trivial. Our model does

not require the containership to be completely empty at any port, capturing a more

realistic scenario than current models. In deep-sea trades, ports can be grouped

in trade Regions, using this fact, we extend the capacitated model to one without

restrictions on visit sequence.

We examine the fleet deployment problem from an engineering perspective by

relating the maximum PTT ratio of a tour with the vessel's principal characteris-

tics, namely her speed and capacity. We deduce a relationship which if satisfied by

the ships and the system, implies that the problem can be solved by a greedy as-

signment procedure. This relation is always satisfied for a homogeneous fleet. The

non-homogeneous fleet characteristics of the operators we studied suggest that such

relationship is still fulfilled most of the time, provided that the utilization of the vessel

is the same for all tours.

8.2 Further Research

This work opens our view to the Liner Deployment Problem in several interest-

ing areas.

From the theoretical perspective, Conjecture 3.6 is still unsettled. The Shore-

line Non-Negative Profits Uncapacitated LDP is challenging because of its intrinsic

simplicity yet the decision version of it appears to be in the border of the class P and

NP. Resolving it may lead to new insight to some other problems, and perhaps a

better understanding of the boundary between the two classes.

From the practical perspective, there are other important issues of the Liner

Deployment Problem that this research does not address. Trans-shipment is an im-

portant practice in liner shipping, yet as far as we know, no routing model ever takes

into account of it. We have attempted the issue without much success. The other
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issue is the quality of service of the deployment pattern.

The theme of our research has been using mathematical programming approach

to help containership operator design a better deployment pattern. Throughout the

thesis, we recognize the importance of the level-of-service of the operator in his de-

ployment pattern, but our emphasis have been placed on the routing issue per se,

isolating the effect of routing on the level-of-service provided to customers. The two

strategies we have adopted to capture the interaction between routing and level-of-

service are (a) the amount of cargo available is modeled as a weekly available quantity,

which will be foregone to other competitors if the operator is not able to provide a

weekly service; and (b) a total transport time upperbound between some selected

port pairs to ensure the service quality between these port pairs is not inferior to that

provided by other competitors.

However, we strongly feel the need of a more comprehensive treatment of level-

of-service in a strategic routing decision such as the LDP. For example, the level-

of-service consists not only of the transport time, but also the total transit time,

frequency of service, and reliability of service, etc. It affects the amount of cargo

available to the operator, and the amount of available cargo determines where to

deploy the ships. Unfortunately, pure mathematical programming approach similar

to ours has treated the problem in the reverse direction: assume a fixed cargo available

pattern, then find the optimum deployment. This seems not an adequate method.

Thus our next effort is to develop an integrated framework such that the level-

of-service of each route is included as a feed back to the selection of the route itself.

Such treatment of the routing decision necessarily expands the problem to a larger

domain, for example, inclusion of other competitors in the model. Though it requires

a new methodology, our current studies provide useful building blocks.
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Appendix A

One Necessary Condition that the

Greedy Approach Solves the

Assignment Problem

We want to prove Proposition 4.1 in this Appendix.

Proposition 4.1

Let Pb be the arc profit of assigning node a to b in an n x n Maximum Assignment
Problem. Suppose the arc profits satisfy these criteria:

(a) Let Pij be the maximum of all feasible arc profits, i.e.,
Pi = max {(pt: for all feasible assignment s to t };

(b) For all s # i, t # j, we have:

Pt Pj
Pt - pj-

(c) Both conditions (a) and (b) apply to all square subsets of the Assignment graph.

Then, the greedy algorithm which assigns sequentially by using the remaining feasible
arc with the mazimum arc profit correctly solves the Mazimum Assignment Problem.

Proof
We will establish the proof by induction on n. First consider n equals 2. We have a
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p

Figure A-i: A Two by Two Assignment

2 x 2 Assignment Problem as shown in Figure A-1.

By (a), we can assume: 1P1

P1pi,,

> P2

> 2
1

> P22

p2 Al
By (b), we have: p2 > p ;

If P2 is less than P2, then, since P1' is the largest, we have:

total PTT by greedy = P1 + P2 > P1 + P2

and the case is proved. So let us assume that P2
1 is bigger. In this case, we can rewrite

the above relationships as:

P1

P1,Pi
P1

from (b),

aP2 
bP2 i where a, b, c > 1
P= where

a = kc where k > 1

The total PTT ratio of the two assignments can be calculated as follows:

greedy assignment: g = p 2 + 2
other assignment: = P2 + P2

The ratio of total PTTs, i.e., 9: z = ( + b a

a+b kc
z k (kc2- 1) > 0

a (b + kC)2

dic (b + kc)2 l
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Thus to minimize z, b is set at a minimally constant, and c is increased to maximum,
i.e., b tends to 1, c tends to infinity imply that z is minimized. Plugging these values
into the above expression for z, we find that z is greater than or equal to 1, proving
that the greedy assignment is optimal for n equals 2.

Next, let us use a similar technique to prove the case for n equals 3. We refer to the
3 x 3 Assignment Problem shown in Figure A-2.

By (a), we can assume:

By (b), we have:

By (c), and WLOG, we have:

IP'1
_,

P1

P 1P1Pi
P 1Pi

P 1

P
Ip2
P 2
p2

P3
2

P3

P1
2
3

P3
P13

> P2,
> P2,
> P2

> P3
2 ,

> P3
3 ,> p3 X

> P 2,

> P2
1

P 

p, 
P1- p3,

> P1
3p~,

P2
2 > P23,

P2
2

p3
P3
3

3P2

> P 3
3,

> P3
2

2

or P = aP2'
or P1 = bP2
or P1 = cP2
or P1 = dP31
or P11 = e32

or Pl- = fP3
or P1 = gp2
or P11 = hP3

g 1or ->
b a
h 1or -> -
c a
g 1or - >
e d
h 1

or >f - d
1 1

or >
b c
1 1

or > 
b e
1 1or - > -
b f
c bor - > -
f e

where a, b, c, d, e, f, g, h > 1.

Let gi be the total PTT ratio by the greedy assignment:

91= P1 +P2 + P3
3 = P(1+ .B+)

Using the result for n equals 2, the total PTT ratio by other potential better assign-
ments are:
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Figure A-2: A Three by Three Assignment

92 =P + P -

g93 = P 2+P 23-

94 = + P2

5 = p13 1

Now we argue thai
the above assignm

Proof of gl g92

91 > g92 1 

P33 =

P32 

P1-+ + d)
g c d

t the greedy approach gives at least as great a PTT ratio as any of
ents.

1 1 1 1+-+ > -+-+-bf ga f
b+ 1 a+g

b - ag
since ag > b, let b= ag, where k >1

ag+k > a+g

Hence the proof reduces to showing that the optimum value of the following mathe-
matical programming is non-negative:

min
subject to

ag+k -(a +g)
a>1
g_1>l
k>1
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1ximum

a+g)

1

:1 4
increasing a+g

From the figure, given the constraint set,
ag-(a+g) > 6

= c - 2/c
ag - (a + g) + k > c-2~ +

> c-2V/-+1
= (- 1)2
> 0

Figure A-3: Graphical Proof of 91 g2

The result follows by inspection from Figure A-3.

Proof of 91 > g4
9 1 1 1 1

9Ž94 b f+- h b d

f+l
f

d+h
- ddh

hd
since hd > f, let f = ,
hd+k > h+d

where k > 1

Hence the proof can be established using exactly the same argument as above.

Proof of g9 > g9
1 1

gl > g3 1 +-+ b f
1 1 1

g c 
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Here the proof reduces to showing that the optimum value of the following mathe-
matical programming is non-negative:

min (1+ + - 1 +1 + 
b f +g c d

qlg 93
Subject to:

ag > b

ah > c
dg > e

dh > f
c >b

e >b

f >b
ce > bf

a,b,c,d,e,f,g,h >1

(A.1)

(A.2)

(A.3)

(A.4)

(A.5)

(A.6)

(A.7)

(A.8)

(A.9)

The above problem can be solved by a non-linear programming
But we proceed to solve it by inspection as follows.

software package.

We want to make gl as small as possible,while maintaining g3 as big as possible
within the constraint set. Suppose we let f -- oo. (A.4) implies either d or h should
go to infinity. To maximize g3, we choose to let h - oo instead. Moreover, by (A.8),

1
either c or e should go to infinity. Again, since g3 contains the term -, we choose to

c
set e to infinity. But in this case, (A.3) forces us to set d or g to infinity. Selecting
either one of this will make one term in g3 vanishes. Suppose we have selected g to
be at infinity. Then, we have:

1
gl- 1 +

i 1
93 - +-c d

But (A.5) implies
1 1-- c b

and since d is greater than or equal to one, it follows that 93 is less than or equal
to gl. Similar conclusion can be obtained when we try to set different variables to
infinity.
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Proof of gl g95

The proof of this case again involves solving another non-linear optimization problem
and can be done by the inspection method shown above, or by a non-linear software
package.

At this point, we have proved the Proposition for the case of n = 2,3. Now, we
proceed to complete the main induction proof. Assume the greedy approach works
for n = 1, 2, ... , N. For n = N + 1, without loss of generality, let us assume:

P1 = max {g : 1 < i,j < N + 1}

meaning that the greedy will assign ship 1 to tour 1.

Case 1: None of ships 2, 3, ... , N, N + 1 has tour as her best tour
Then obviously, it is correct to assign ship 1 to tour 1. After this
assignment, we are left with an N x N assignment subgraph which the
greedy solves optimally by induction.

Case 2: Some of the ships 2, 3, ... , N, N + 1 has tour 1 as her best tour
Without loss of generality, assume that the greedy approach assigns
ship 1 to tour 1, ship 2 to tour 2,..., and so on. Now consider any
other feasible solution. If there exist assignments in this alternate so-
lution that are the same as some greedy assignments, we can remove
them from the assignment graph (Figure A-4). The remaining square
subgraph, by criteria (c) and our induction assumption, is solvable to
optimum by the greedy approach. Hence the feasible assignment can
not outperform our greedy solution.
On the otherhand, if none of the assignment in the feasible solution is
the same as our greedy assignment, we have a situation as shown in
Figure A-5. In that case, the N + 1 x N + 1 Assignment Problem can
be considered as the union of two smaller assignment problems, each of
which the greedy is able to solve to optimum by induction assumption
and by criteria (c). Hence, in this case, the feasible solution still can
not outperform the greedy solution.

This concludes the Proposition by mathematical induction for all values of n. []
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Figure A-4: Some Assignments Same as Greedy's

Figure A-5: No Assignment Same as Greedy's
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