
Eliminating Intermediate Lists in pH
using Local Transformations

by

Jan-Willem Maessen

Submitted to the Department of Electrical Engineering and Computer Science
in Partial Fulfillment of

the Requirements for the Degrees of
Bachelor of Science in Computer Science and Engineering

and Master of Engineering in Electrical Engineering and Computer Science

at the

Massachusetts Institute of Technology

May, 1994

© Jan-Willem Maessen 1994. All rights reserved.

The author hereby grants to MIT permission to reproduce
and to distribute copies of this thesis document in whole or in part,

and to grant others the right to do so.

Signature of Author --- -__ , S-
V Departnient of Electrical Engineering and Computer Science

May 6, 1994

Certified by

Accepted by

LaxH1

AV Arvind

' A " t f -fn pupu ter Science and Engineering
SD , Thesis Supervisor

Y
r

Eliminating Intermediate Lists in pH
using Local Transformations

by

Jan-Willem Maessen

Submitted to the Department of Electrical Engineering and Computer Science
on May 6, 1994

in partial fulfillment of the requirements for the degrees of
Bachelor of Science in Computer Science and Engineering

and Master of Engineering in Electrical Engineering and Computer Science

Abstract
The extensive use of lists in functional programming languages exacts a cost penalty for important op-
erations such as array construction. In addition, because lists are linear data structures, it is difficult to
generate and traverse them efficiently in parallel given a purely-functional environment. Three common
methods of traversal-left and right fold, and reduction-can be described in terms of map and reduce
operations yielding higher-order functions; these higher-order functions can be represented entirely at
compile time. This thesis examines this representation of list traversal, describes its implementation in
the desugaring phase of the compiler for pH (an implicitly-parallel, mostly-functional dialect of the lan-
guage Haskell). This approach to desugaring gives rise to a set of rules for compiling list comprehensions
efficiently, and to a pair of functions unfold and synthesize which can be immediately eliminated if
the lists they generate are traversed by folding or reduction.

Thesis Supervisor: Arvind

Title: Professor of Computer Science and Engineering

3

4

Eliminating Intermediate Lists in pH
using Local Transformations

by

Jan-Willem Maessen

Submitted to the Department of Electrical Engineering and Computer Science
on May 6, 1994

in partial fulfillment of the requirements for the degrees of
Bachelor of Science in Computer Science and Engineering

and Master of Engineering in Electrical Engineering and Computer Science

Abstract
The extensive use of lists in functional programming languages exacts a cost penalty for important op-
erations such as array construction. In addition, because lists are linear data structures, it is difficult to
generate and traverse them efficiently in parallel given a purely-functional environment. Three common
methods of traversal-left and right fold, and reduction-can be described in terms of map and reduce
operations yielding higher-order functions; these higher-order functions can be represented entirely at
compile time. This thesis examines this representation of list traversal, describes its implementation in
the desugaring phase of the compiler for pH (an implicitly-parallel, mostly-functional dialect of the lan-
guage Haskell). This approach to desugaring gives rise to a set of rules for compiling list comprehensions
efficiently, and to a pair of functions unfold and synthesize which can be immediately eliminated if
the lists they generate are traversed by folding or reduction.

Thesis Supervisor: Arvind

Title: Professor of Computer Science and Engineering

5

6

It is impossible that two things only should be joined together without a third. There must be

some bond in between both to bring them together. - Plato, Timaeus 31 b-c

7

Acknowledgments

My graduate studies have been supported in large part by a National Science Foundation Graduate

Fellowship.

I am indebted to many people for many things:

To Arvind, for getting the ball rolling, supervising this work, forcing me to repeatedly rewrite a

proposal which deperately needed it, and providing feedback and encouragement on the final drafts.

To Lennart Augustsson, for providing the foundation upon which the pH effort is being built, and

for reading and commenting on a late draft in well-nigh superhuman time.

To Shail Aditya, for equalling Lennart's time-to-read and fixing several more trouble spots as a result.

To my numerous fellow students in the MIT Computation Structures Group, who have been around

at every conceivable hour of the day or night to offer advice, encouragement, and sympathy.

To my family and friends, for dealing with my rather shadowy existence over the past few months.

And finally, to Jennifer, who has played the part of Thesis Widow with sympathy and good humour,

despite distressingly mismatched schedules. I love you.

8

Contents

1 Introduction
1.1 The Problem .
1.2 Parallelism
1.3 Motivation
1.4 The Thesis

2 Describing List Traversals
2.1 foldl and foldr

2.1.1 Unifying foldl and foldr
2.1.2 foldr is universal
2.1.3 Folds and for loops
2.1.4 Bidirectional traversal and foldr

2.2 map and reduce
2.2.1 How reduce works
2.2.2 What reduce cannot do
2.2.3 Expressing monoids using lists
2.2.4 Expressing folds using map and reduce .

3 Describing the generation of lists
3.1 Overview of list generation techniques
3.2 unfold and synthesize

4 The map/reduce desugarer
4.1 Desugaring rules using map and concat
4.2 Incorporating reductions .

4.2.1 Performing calls at compile time
4.3 Loops for innermost expressions

4.3.1 Basic rules.
4.3.2 Specializing the generated code .

4.4 Concrete implementation.
4.5 Correctness
4.6 Language Features.

4.6.1 Open lists.
4.6.2 Arrays.

5 Evaluating map/reduce elimination
5.1 Verifying the operation of the desugarer
5.2 Limitations of the desugarer
5.3 Performance.

5.3.1 Queens
5.3.2 Shortest Path .

5.4 Style
5.5 'Using lifting to create monoids with idenl

34
............................ 34
............................ 36
............................ 37
............................ 39
............................ 39
............................ 40
............................ 41
............................ 44
............................ 44
............................ 44
............................ 46

50............................ 50............................ 54
............................ 55.. 56
............................ 57
............................ 58

tities 59

9

12
12
14
15
16

17
17
18
19
20
22
23
24
24
25
26

29
29
31

.I I 1
..

..

5.6 Representing collections using monoids 60
5.7 Representing complex iteration systematically 60

6 Related work

7 Conclusions
7.1 Future Work.

7.1.1 Inlining.
7.1.2 Loop Introduction.
7.1.3 Improving heuristics.
7.1.4 Separating desugaring from map/reduce optimization
7.1.5 Combining multiple traversals
7.1.6 Bottom-up unfold/synthesize optimization

10

62

64
65
65
65
66
66
67
67

...... I ...

List of Figures

4.1 Desugaring rules for lists using map and concat
4.2 Desugaring rules for lists with implicit map/reduce elimination
4.3 A desugared version of queens with the introduction of some simple loops .
4.4 Efficient compilation of reductions for lists and unfold
4.5 Efficient compilation of reductions for synthesize
4.6 A desugared version of queens with more agressive loop generation
4.7 A desugared version of queens using open lists
4.8 A desugared version of table

5.1 Definitional equivalences proved by the desugarer
5.2 Performance data for benchmarks
5.3 10-queens benchmark program
5.4 Code to define an implicitly-bolcked array indexing scheme

11

.. c... 35

.. . . . 38

. 40

. 42

. 43

.. .. . 43

.. .. . 47

.. . . . 49

.. . .. 53

.. . . . 56

... . . 56

... . . 61

Chapter 1

Introduction

Lists are a basic computational "glue" in many functional and almost-functional languages. They are

easily expressed and understood by programmers, and offer a compact notation for representing collec-

tions of data. This allows us to reason about operations on such collections. The functional language

Haskell [8] is no exception to this rule, and in fact encourages or even requires the use of lists to express

certain sorts of computation.

1.1 The Problem

An example of the pervasiveness of lists is the canonical definition of the function elem in the standard

prelude of Haskell:1

elem = any . (==)

elem takes an object and a list, and states whether that object is contained somewhere in the given list.

It is defined in terms of any; the code can be read as "if any are equal". The . operator is functional

composition, and == is equality. Thus, by applying == to its first argument elem builds a predicate which

is true for objects which are equal to that argument.2

To understand the definition of elem, one must know how to compute the function any. any takes

a predicate and a list as arguments, and returns the boolean value True if the predicate is true of any

element in the list, or False otherwise. Referring to the canonical definitions in the Haskell prelude once

again reveals that:

any p = or . map p

That is, any of the elements of a list satisfy predicate p if applying p to the elements of the list (yielding

a list of boolean values) and taking the boolean or of the elements of the result yields the value True.

1The standard prelude in Haskell has the role of the standard libraries in most other languages-it is the collection of
datatypes and functions that are available by default in Haskell programs.

2Leaving aside the question of what it means to be equal, a question which Haskell attempts to address cleanly through
the Eq type class.

12

Now there are two as-yet-undefined functions on lists-map and or.

First there is the function or, which takes the boolean or of all the elements of a list. The Haskell

prelude defines it as follows:

or = foldr (II) False

The foldr basically says "starting with the rightmost end of the list and the value False, use the binary

boolean or operator I I to combine the value so far with the element of the list we are currently looking at;

when the list has been completely traversed, return the value thus accumulated." Thus, the way Haskell

expresses the or operation implies a specific way of computing the result. Several ways of expressing

this computation will be examined later on.

If we like, the map operation can be defined in a manner similar to or, that is: 3

map f = foldr (\x soFar -> f x : soFar) []

"Start with the empty list, and to its front add the value of f applied to the elements of the given

list, working from right to left." Again, a fairly operational definition. However, Haskell provides list

comprehensions-a nice way of expressing functions which iterate over lists and produce a list as a result:

map f xs = [f x x <- xs]

This says "build a list of the values of f x, drawing x from the elements of xs, so that the order of

elements in the two lists match." Apart from the last restriction-that the order of elements in the

result match the order of elements in xs-there is nothing stating precisely how the result ought to be

constructed. This leaves the compiler free to choose the best possible way of doing so (naturally, we as

programmers would like to be able to trust it to actually do so; this concern is addressed at length in

this thesis).

There is syntax for expressing map in a manner which leaves its exact implementation to be chosen

by the compiler; now, can the same thing be done with or? Essentially, an operator is needed to express

the fact that the or operation can be defined by breaking the list into pieces and combining those pieces

using the I I operation, and that the identity of II is the value False. This operator is reduce, and is

used as follows:

or = reduce (11) False

For the time being, suppose that the compiler understands reduce as a separate operation, and will

choose to perform reductions on lists as efficiently as it can.

3I do not make use of the standard definition of map in Haskell, because it expresses the computation directly by breaking
apart its list argument and applying the function explicitly, like so:
map f [] = []
map f (x:xs) = f x : map f xs
Nonetheless. the definitions are equivalent.

13

The implementation of elem is still not terribly efficient, even given that map and or are defined

efficiently. elem is currently defined using function composition and the list operation any, and any is

in turn defined by the composition of the two list operations or and map. The definition of any can be

simplified, thus:

any p = (\f g x -> f (g x)) or (map p) -- in-line (.)

any p = (\x -> or (map p x)) -- beta reduce

any p x = or (map p x) -- consolidate lambdas

The steps shown above can be performed by hand, or by a decent code inliner; a similar process may

be used on elem itself to eliminate the composition operation. Nevertheless, map must still be called in

order to compute any, and or must be applied to the resulting list of boolean values.

The intermediate list created in the definition of any is unnecessary. List construction can potentially

be quite costly-a cons cell must be allocated for each element, that cell must be filled in with the

element's value, the value must be fetched back from the cell, and finally the cell must be deallocated.

If the definition of any is written more operationally-say using foldr-the calls to map and or can be

combined, eliminating the intermediate list:

any p = foldr (\x soFar -> (p x) II soFar) False

The compiler is relied upon to choose efficient ways to iterate over lists expressed using list comprehen-

sions and reduce; it must be expected to eliminate unnecessary intermediate lists as well.

1.2 Parallelism

Exploiting the parallelism implicit in a program further complicates the problem. For example, the list

append operation ++ can be used with elem to discover if x is an element of either of the lists a or b:

elem x (a ++ b)

That is, x is an element of the list (a++b) if it is a member of either a or b. But the following code is

also correct:

elem x a I elem x b

Here, the lists a and b can be traversed in parallel and the boolean or of the results can be found at the

end.

What if the expression (a ++ b) has been uncovered by the compiler? If any is defined in terms of

foldr as above, this expression would eventually result:

foldr (\x' soFar -> (x==x') II soFar) False (a ++ b)

Because computation must start from the right and proceed, accumulating results, to the left, the

compiler can use the following relationship:

14

foldr f z (a ++ b) - foldr f (foldr f z b) a

Unfortunately, this means that the outer foldr (over list a) might not be able to be fully computed until

the inner foldr has produced a result. Any scheme devised to handle list operations must be capable

of recognizing potential parallelism, and of generating code which can exploit it.

1.3 Motivation

We are implementing a compiler for pH [10], a dialect of Haskell with eager semantics and imperative

features (I-structures and M-structures) similar to the language Id [11]. In doing so, we would like to

incorporate a phase in the compiler that eliminates intermediate lists, so that we can retain Haskell's

compositional coding style without paying a heavy price in execution speed. Since we are targeting

parallel machines, and would like to exploit the parallelism implicit in the programs we write, we would

like to devise a scheme which also maximizes the amount of parallelism available. Such a scheme would

have immediate benefits for list and array comprehensions, in addition to making ordinary list operations

cheaper.

Id provides syntax for array comprehensions, allowing every element of an array to be computed in

parallel (modulo data dependencies). These can easily be desugared into for loops [19]. In Haskell,

such a comprehension would be expressed by applying a function, array, to a series of concatenated

list comprehensions. This sequentializes the generation of array elements along the spine of the list,

and requires an intermediate list larger than the resulting array itself! If we define array as a traversal

over a list, our compiler should eliminate the list itself and generate the loops directly, using I-structure

operations to write each element into the array at most once as in the Id desugaring and thus exposing

the same amount of parallelism.

In Id, list comprehensions use open lists to construct lists starting at the head and working toward

the tail. The head of a list can thus be made available before the remainder of the list has been fully

constructed. In addition, if sublists are being created in nested loops, each sublist can be generated

independently, and a single I-structure operation can be used to join pairs of them together. This is

a form of producer/consumer parallelism, and allows parts of a list that have been fully used to be

discarded before the remainder of the list even exists. A general traversal mechanism ought to generate

lists using open lists if it is beneficial to do so.

Finally, it is impossible to eliminate intermediate lists without providing a systematic way of con-

structing them. The approach chosen must integrate nicely with the traversal methods available, so that

a traversal over a systematically generated list will become a simple loop. Haskell has functions which

return lists of indices and special notation for generating lists of numbers; both of these will immediately

benefit from being integrated into the desugarer through a more general mechanism.

15

1.4 The Thesis

By expressing list traversal in terms of map and reduce over higher-order functions a large body of

different list traversals can be captured, including foldl, foldr, and for loops. This representation

concisely captures the dependencies between adjacent elements, and thus exposes the parallelism that

exists in traversals which use reduce while retaining the dependencies inherent in traversals with foldl

and foldr. Moreover, the higher-order functions required to express traversals in this manner are

entirely compile-time artifacts; by representing them only at compile time, and by using techniques such

as n7-abstraction, they can be eliminated from generated code. At the same time, lists can be constructed

using the functions synthesize (which mirrors reduce) and unfold (whose operation is similar in spirit

to the fold operations). Both of these functions combine nicely with reduction to produce iterative loops

or recursive functions-eliminating the need for lists.

A simple set of desugaring rules will express list comprehensions in terms of map and reduce. Since

reduction behaves in well-defined ways when applied to comprehensions, all the special syntax provided

for lists in the Haskell and pH compilers is automatically open to optimization and parallelization.

The optimization of list traversal can therefore be combined with desugaring. This phase can still

be considered "desugaring", since the transformations it performs are local-that is, nested folds are

combined together into a single fold. Doing so does not interfere with other aspects of desugaring, such

as pattern matching compilation. There is a simple set of heuristics which can be used to improve the

resulting code, by choosing the traversal direction to generate an iterative function, by minimizing the

number of list elements examined before a result is obtained, and by eliminating constant arguments

from loops and recursive function calls.

While the desugarer can produce efficient code for a broad class of functions, it requires a certain

degree of intelligence on the part of the programmer to realize the best performance. It is therefore

important to characterize exactly what sorts of program are amenable to optimization, and what the

effects of that optimization will be. For example, certain useful data structures can be expressed as list

traversals in the framework provided by the desugarer. This allows us to optimize the construction of

arrays using I-structures, and replace ordinary lists with open lists.

The existing implementation of the desugarer using these transformations produces measurable im-

provements in benchmark programs where certain function definitions have been expanded in-line; this

shows promise for future implementations, and suggests that programming in an applicative style is

worthwhile. Nonetheless, though the desugarer as it stands will process the pH language correctly and

efficiently, there are a number of improvements neccessary to realize the full power of these techniques.

16

Chapter 2

Describing List Traversals

This chapter describes three major methods of traversing lists-f oldr, foldl, and map/reduce. All three

methods of traversal are very closely related, but each captures properties that are useful in different

sets of circumstances. The need to exploit parallelism, combined with a slightly more general notion of

"traversal", leads to the choice of map and reduce to represent list traversals in the pH compiler.

2.1 foldl and foldr

The most lucid definitions of the two folds-f oldl and foldr-are mathematical rather than operational:

foldr z [1,x2,...,x,] = x1 (x2 (... (n (Z)))
foldl z [x1,x2,...,x. = (((Z D x) D 2) D ..) D Xn

The parenthesization in the above definitions show that foldr traverses a list "right to left", while

foldl traverses the list "left to right."

Using these definitions, some useful functions can be defined; for example sum can be defined as

either of the following:

sum xs = foldr (+) O xs

sum xs = foldl (+) O xs

Notice that the E) operation forms a spine which combines the "result so far" (initially z) with the

value of the requisite list element (xi). foldi goes "with the pointers"-data flows from the head of the

list to the tail, and the result is immediately available when the end of the list is reached. It thus seems

natural that the Haskell code for foldl is tail recursive (iterative):

foldl f z [] = Z

foldi f z (x:xs) = foldl f (f z x) xs

On the other hand, in foldr data goes "against the pointers"-flowing from the tail of the list towards

the head. Generally, the result will not be fully computed until the list is traversed all the way to

17

its end-the actual computation takes place (conceptually) on the way back. This is, of course, the

description of a recursive function:

foldr f z [] = z

foldr f z (x:xs) = f x (foldr f z xs)

Assuming iteration will produce better code than recursion1 favors foldl for expressing most kinds of

list traversals. And, indeed, the pH compiler will generate iterative code in favor of recursive code.

A different, potentially more revealing view of the fold operations is used in [6]. By writing ed wherever

the code to generate our list used the cons operation (:), and replacing the tail [] of the list by z, the

mathematical definition of foldr given above is obtained. For example, if sum xs = foldr (+) 0 xs,

then the following equivalence is a matter of straightforward substitution:

sum (3:(1:(4:(1:(5:(9:[])))))) - 3 + (1 + (4 + (1 + (5 + (9 + 0)))))

Note that the parentheses on the left side are actually superfluous, since the cons operator is right

associative. foldl operates the same way on a reversed view of the list as foldr does on the list

itself. Wadler, in [16], imagines that the list is actually being constructed in the opposite direction,

using a "snoc" (backwards cons) operation, and that foldl replaces "snoc" and "lin" constructors.

Conceptually, the technique of replacing cons and nil has been known for quite some time [17, 13, 6]. It

provides a springboard for the transformations presented in this thesis.

2.1.1 Unifying foldl and foldr

Given that foldl is often a more efficient way of traversing lists, but that foldr cancels easily, the

obvious unifying step is to define one in terms of the other. Indeed, this can be done in either direction

(foldl in terms of foldr is shown in [6], and the other case is analogous):

foldl f z xs = foldr (\ b g a -> g (f a b)) (\a -> a) xs z

foldr f z xs = foldl (\ g a b -> g (f a b)) (\b -> b) xs z

These definitions are somewhat difficult to grasp-examine what happens when foldl is defined in

terms of foldr. The flow of data through the recursion must be turned around. The computation at each

list element requires two pieces of data-first the value of that element, and second the accumulated

result flowing in from the computation to its left. Thus, instead of getting a result from the left,

foldr will build a function which can be passed as data to the left. Thus, the function being folded,

(\b g a -> g (f a b)), packages up b, the list element, and g, the computation for the piece of the

list to the right. It returns a function with a single argument, a, which performs the computation for this

element (f a b) and passes the resulting value to the right by calling g. When the list is traversed, the

resulting accumulated value is returned, so the rightmost (initial) function must be the identity function.

1 Not true in most lazy languages! In addition, lazy languages permit the use of inifnite lists, for which foldl will never
terminate. For more on wh to choose foldr over foldl, refer to the excellent discussion on the topic in [3].

18

Essentially the whole complicated process amounts to "wiring together" the calls to f so that data flows

from left to right as in foldl, but actually performing the wiring starting from the rightmost end of the

list.

2.1.2 foldr is universal

Since foldl and foldr can be defined in terms of each other, choosing one ought to allow every fold over

a list to be represented. To do so effectively, however, there must be a guarantee that the resulting code

is at least as efficient as the original folding code. Examine what happens when the original definition

of foldr is inlined in the higher-order definition of foldl:

foldl f z xs =
let foldr' [] = (\a -> a)

foldr' (x:xs) = (\b g a -> g (f a b)) x (foldr' xs)

in foldr' xs z

The first two arguments of foldr, which are invariant during the recursion, have been eliminated to obtain

foldr'. 3-reducing the second disjunct of the definition yields:

foldl f z xs =

let foldr' [] = (\a -> a)

foldr' (b:xs) = (\a -> foldr' xs (f a b))

in foldr' xs z

Finally, observe that the values of the two disjuncts above are both lambda expressions with one argu-

ment. Moreover, the only applications of foldr' provide two arguments, rather than one! Thus, adding

an argument to foldr' (-abstracting it) produces the following:

foldl f z xs =

let foldr' [] a = a

foldr' (b:xs) a = foldr' xs (f a b)
in foldr' xs z

Note that this is virtually identical to the original definition of foldl-in particular, the inner procedure

foldr' is tail-recursive, so this definition can execute iteratively. Thus, using foldr to represent folds

in either direction is perfectly acceptable.

This process of converting foldl to foldr and then optimizing is best demonstrated with an example.

implodeNum takes a list of digits (base ten) and computes the corresponding integer-that is, the list

[1,2,3,4,5] would convert to the integer 12345. implodeNum is simple to define using foldl:

implodeNum ds = foldl (\num digit -> num*10 + digit) 0 ds

Transforming foldl to foldr and simplifying somewhat results in:

implodeNum ds = foldr (\ b g a -> g (a*10 + b)) (\a -> a) ds 0

19

The call to foldr can be expanded to generate an explicit recursive function:

implodeNum ds =
let foldr' [] = (\a -> a)

foldr' (b:ds) = (\a -> foldr' xs (a*10 + b))
in foldr' ds 0

Finally, the 17-abstraction step yields an iterative function:

implodeNum ds =
let foldr' [] a = a

foldr' (b:ds) a = foldr' xs (a*10 + b)

in foldr' ds 0

On the other hand, foldr doesn't convert terribly nicely when expressed in terms of foldl:

foldr f z xs =

let foldl' z [] = z

foldl' z (x:xs) = foldl' ((\ g a b -> g (f a b)) z x) xs

in foldl' (\b -> b) xs z

Neither of the disjuncts in the definition of foldl' is a lambda expression; the first disjunct returns a

previously computed function, and the second requires a recursive call to compute the function to be

applied. Thus, attempting to q1-abstract foldl' will not eliminate the higher-order functions which the

definition of foldr introduced. This result is unsurprising, since foldr parallels the recursive structure

of the list itself, while foldl inverts that structure.

2.1.3 Folds and for loops

An additional advantage to viewing all folds in terms of foldr is evident when defining a for loop as

a fold. Assume the loop is expressed as in Id[11], as a series of bindings which includes free references

to a set of k circulating variables C1 , C2 ,... Ck and which binds a corresponding set of nextified variables,

nl, n2, ... nk. 2 A for loop over the list xs is thus written:

let

initial bindings for cl, c2,... ck
in
for x <- xs do

bindings, including ones for nl, n2, . . . nk
finally f cl,c2,... ck

For example, to find the arithmetic mean of a list of numbers, the following function can be used:

mean xs =
let sum = 0

len = 0

in for x <- xs do

2Note that in Id, ni is written as next ci. This renders the rules virtually unreadable; thus the choice of notation here.

20

next sum = sum + x
next len = len + 1

in sum / len

Traditionally, foldl and tupling are used when explaining for in terms of folds over a list:

let
initial bindings for C1 , C2 ,... Ck

in
((\(Cl,C2,..Ck) -> f C,C2,...Ck)

(foldl (\(C1, 2,...ck) x ->
let

body bindings as above, including nl, n2,... nk
in (nl,n2, .. .nk))

(Cl, C2,.. .ck)
xs))

This produces the following translation for mean. Notice how a new tuple is laboriously contructed and

taken apart again at each iteration:

mean xs =
let sum = 0

len = 0
in ((\(sum, len) -> sum / len)

foldl (\(sum, len) x ->
let next sum = sum + x

next len = len + 1
in (sum, prod))

(sum, len)
xs)

The most obvious way to express for in terms of foldr is to translate the above definition using

the definition of foldl in terms of foldr. Instead, note that the argument which is n-abstracted in the

earlier definition represents the circulating value in the iteration over the list. Thus, extra arguments

can simply be added to the functions:

let
initial bindings for c1, c2,... ck

in
foldr (\x cont c1 c2 ... Ck ->

let
body bindings as above, including n, n2,... nk

in cont n n2 ... nk)
f
xs
C1 C2 ·. Ck

This definition completely eliminates the tupling and detupling operations which occur throughout the

first definition. In addition, using inlining and q-abstracting all arguments which correspond to circu-

lating variables, once again produces a completely iterative expression of the loop. The function being

21

passed backward to construct the iteration is effectively the continuation of the loop; thus this definition

uses continuation-passing style to capture the passing of multiple values between loop iterations. This

leads to a more concise compiled definition for mean:

mean xs =
let sum = 0

len = 0

in foldr (\x cont sum len ->

let next sum = sum + x

next len = len + 1
in cont sum prod)

(\sum len -> sum / len)

xs sum len

2.1.4 Bidirectional traversal and foldr

Having shown that foldr can easily express left folds and loops, an obvious question is whether it can

embody bidirectional traversal-that is, one where the information passed to the right must initially

be computed; after new results are obtained computation must occur to derive the information that is

returned to the left. This can be expressed generally with the following function:

leftright right left rightmost leftmost xs =

let lr fromleft xs =

case xs of

[] -> rightmost fromleft

(x:xs) -> right x (lr (left fromleft x) xs)

in lr leftmost xs

Here left and right correspond to the functions that are folded as in foldl and foldr. Similarly,

leftmost describes the initial value which is passed to the right. rightmost is a function which yields

the initial value to be passed from right to left in terms of the final value passed from left to right. Thus,

the value passed right is "transformed" to begin the return trip to the left.

The continuation-passing definition of leftright in terms of foldr is routine:

leftright right left rightmost leftmost xs =

foldr (\x cont fromleft -> right x (cont (left fromleft x)))

rightmost
xs

leftmost

This definition has the same nice properties as the previous definitions which used foldr-inlining and

i-reduction produce the original definition, and replacing fromleft with a series of variables allows

multiple values to be passed from left to right without using tuples, just as was done in the for loop

translation.

22

2.2 map and reduce

Given the relationships between the fold operations and the various ways in which a list can be traversed,

one can simply proclaim that "foldr is the universal fold," and design desugaring and optimization

phases accordingly. This is the approach taken in [6] to eliminate repeated traversal and construction

of intermediate lists, and it is assumed for the case of lists by most papers which address the subject

(including [13, 9, 3]). pH is intended as an implicitly parallel programming language, and the linear

structure of lists makes them unappealing. Nevertheless, it is always beneficial to eliminate intermediate

list construction, since this will reduce the number of places in the program where such sequentiality can

be introduced. Choosing the right list representation, for example an open list [7], can help to further

exploit parallelism (this will be discussed in greater depth in Section 4.6). However, the fact remains

that fold operations impose a particular ordering on the flow of data in their computations, and that

this ordering can create bottlenecks where computations are left waiting for the data being passed along

the "spine" of the fold. The bottleneck is best expressed algebraically by the following identities:

foldr f z (a ++ b) = foldr f (foldr f z b) a
foldl f z (a ++ b) = foldl f (foldl f z a) b

These identities state that if the list folded over can be separated into two pieces, a and b, then in order

to fold over the list, simply fold over the two pieces, feeding the result of the first fold into the spine of

the second. These results are clear from the original mathematical definitions of the folds:

foldr f z [al,a2, .. ,an] ++ [bl,b2,...,bn]
=al, (a2 (an (bl (b2 (bn E z)))))
= foldr (foldr z [b1,b2 , ... ,bn) [al,a 2,...,an]

foldl z [a 1 ,a 2,...,an] ++ [bl,b 2 ,...,bn]
= (((((z (a) a2) 'an) (D bi) (9 b2) bn
= foldl (foldl z [a1,a2,...,a,]) [b 1,b 2 ,...,bn]

Neither of these definitions captures the fact that (for example) sum (a++b) is equivalent to sum a+sum b.

The solution is to describe the traversal of lists symmetrically-that is, by saying (the backquoted op-

erator 'op' is infix):

traversal (a ++ b) = traversal a 'op' traversal b

Bird describes a general version of such an operator, called reduce, in [1, 2]. A partial mathematical

definition of reduce is very similar indeed to the definitions of foldl and foldr:

reduce z [x1,x2,..., Xn] = X1 X2'E .. Xn
reduce z [] = z

The obvious differences in the definition are the absence of parentheses and the fact that z is only used

to define the value of reduce on the empty list. and z must satisfy several properties which will allow

the exact operation of reduce (for any value of a, b, or c of the appropriate type) to be characterized:

23

a D (b ED c) = (a ED b) e c

a z z-z Ea- a

That is, is associative (thus the absence of parentheses in the above definition), and z is the left

and right identity for D. This leads to a more rigorous (though still mathematical) definition of reduce:

reduce f z (a ++ b) = (reduce f z a) 'f' (reduce f z b)

reduce f z [el = e

reduce f z [] = z

The first line of the definition restates the original goal. Thus, reduce is a way of traversing a list by

breaking it into two arbitrary sublists and reducing them in parallel.

The structure of reduce suggests a third view of lists which parallels the "cons" and "snoc" views

reflected by foldr and foldl. In this view, every list is either empty, of unit size, or is obtained by

appending two arbitrary lists. This view is codified by the list monoid, which will be discussed in

Section 2.2.3.

2.2.1 How reduce works

Defining what is meant operationally by reduce is more difficult. Bird notes that either of the following

definitions is perfectly valid, since z is the identity of f:

reduce f z = foldl f z
reduce f z = foldr f z

Because these definitions simply re-introduce the sequential fold operations, they are quite unsatisfactory.

Instead,the precise definition of reduce is left up to the compiler. In this way, the compiler can choose

different implementations of reduce based on context. Indeed, if a call to reduce is inlined in several

different places, quite different implementations of the reduction can be chosen in each case.

2.2.2 What reduce cannot do

Above it was shown that foldr can be used as a universal fold operation. Since foldr doesn't seem to be

the right way to express parallel list traversals, however, it would be nice to express fold-like operations

using just the reduce operation. For example, the length operation ought to be expressible using a

reduce-like scheme:

length (a ++ b) = (length a) + (length b)

The problem is obvious when the types of the functions are examined:

reduce :: (a -> a -> a) -> a -> [a] -> a

foldl :: (b -> a -> b) -> b -> [a] -> b

foldr :: (a -> b -> b) -> b -> [a] -> b

length :: [a] -> Int

24

reduce requires that the list it traverses have elements with the same type as the type of the value it

returns. What is needed is some way of transforming individual elements of the list into objects of the

correct type, which can then be combined using reduce. The most natural way of accomplishing this is

with list comprehensions; this is how map was defined in the introduction.

However, the duty of the desugarer is to eliminate list comprehensions, since they simply represent

a clean syntax for a class of list traversals which yield lists as results. Instead, a simple operation can

be chosen which will transform individual elements of a list regardless of context. map itself is an ideal

candidate! (In Chapter 4 a translation between list comprehensions and map/reduce will be defined.)

map transforms every element of the list separately. It is easy to define length in terms of map and

reduce:

length = reduce (+) 0 . map (_->1)

The length of each element of the list is one; the number of list elements is simply summed. A definition

of length using foldlwould have been:

length = foldl (\1 _ -> 1 + 1) 0

The map/reduce definition simply separates this definition into two pieces-the addition (a reduction)

and the part of the function which says "ignore the element's value and return 1" (a map).

2.2.3 Expressing monoids using lists

Bird [2] notes that map and reduce used in this way express the homomorphism between an arbitrary

monoid with an identity over some type a, and a list of element type a. In effect, this means that any

type which is expressible as a monoid can be written in terms of lists and list comprehensions, which

are then mapped over and reduced. The compiler exploits this structure to optimize the construction of

such objects. A monoid (, ®, ids, i) over some type a is a mathematical structure consisting of a type

(/,), an associative binary operation on that type (), and i, a unit function from a to the monoid type.

The monoids of interest are those whose operation has an identity, id, (the associativity of means

that this will be both a right and a left identity). Note that the definition of Band ide correspond

nicely to the requirements for the arguments and z of the reduce function from the beginning of the

section. Types which can be expressed nicely by monoids include the integers (with addition and zero, or

multiplication and one), bags, sets, sorted lists, open lists, and arrays. Some of these data structures will

be examined in Section 5.4. For our purposes, however, the most important monoid is the list monoid

over an arbitrary type a, given by (a] ,++, [], (Ax.(x: [])).

A homomorphism between two monoids over the same a must insure that the resepctive operations

behave in equivalent ways (here for the homomorphism h from the monoid (, A(, idE, i) to (y, 0, id®, j),

taken from [2]):

25

h ide = id®
h(ia) = ja

h(x y) = (h x)(hy)

Thus, the homomorphism must translate one identity into the other, and that using the homomor-

phism on the result of a binary operation ~ is equivalent to using it on both arguments and then applying

the binary operator of the second monoid 0. The interesting result is that map and reduce together

form the homomorphism from the monoid of lists over a to an arbitrary monoid (, ®, ide, i):

h I = reduce ide(map i l)

This structure will prove very powerful for describing a whole class of list traversals.

2.2.4 Expressing folds using map and reduce

In unifying foldl and foldr, the computation on an individual element of a list was "packaged up"

by a higher-order function; the list traversal then "wired together" these higher-order functions in the

correct direction. Conceptually, exactly the same thing can be done to express the folds in terms of map

and reduce. Here, the "packaging up" stage is expressed as a map and the "wiring together" stage as a

reduce:

foldl f z xs = reduce (\ 1 r -> r . 1) (\x -> x)

(map (\e t -> f t e) xs) z

foldr f z xs = reduce (\ 1 r -> 1 . r) (\x -> x)

(map (\e t -> f e t) xs) z

In both cases, the function being mapped packages up a list element and produces a function which is

waiting for the value arriving along the spine of the traversal. Thus, the reduction takes and produces

functions waiting for values. In order to do so, it simply composes the functions in the appropriate

order-when we're folding left, we apply the right-hand function to the result of the left-hand function,

and vice versa for foldr. In either case, the identity function is the identity of the reduction, since it

is the left and right identity of composition. The identity function says "for an empty sublist, simply

return the same value as was passed in." The final argument, z, is the input to the function which is

built-that is, the initial value of the fold. For example, here is another formulation of the implodeNum

function (originally defined using foldl):

implodeNum ds = reduce (\ 1 r -> r . 1) (\x -> x)

(map (\e t -> 10*t + e) ds) 0

In this framework, for loops make use of the same continuation-passing transform as before, turn-

ing them into right folds, and the above translation for foldr yields and equivalent homomorphism

26

(the continuation-passing trick is necessary if tupling or multiple value return are to be avoided). This

will require more arguments (including the continuation) in place of t in the function being mapped,

but reduce still uses function composition to build up the loop. Similarly, the continuation-like trans-

formation presented earlier and the above definition of foldr can be used to define leftright as a

homomorphism.

This new formulation once again begs the question of efficiency. A good inlining of these functions

ought to exist. Using the fact that reduce can be defined as foldr the latest definition of foldl can

be rewritten:

foldl f z xs = foldr (\ 1 r -> r .1) (\x -> x)

(map (\e t -> f t e) xs) z

The following equivalence can be used to simplify the above expression:

(foldr f z) . (map g) _ foldr (f . g) z

Yielding the following definition:

foldl f z xs = foldr ((\ 1 r -> r . 1).(\e t -> f t e))

(\x -> x) xs z

Inlining the two occurrences of composition, performing a number of -reductions, and consolidating

the resulting arguments results in:

foldl f z xs = foldr (\e r t -> r (f t e)) (\x -> x) xs z

This is identical to the original definition of foldl in terms of foldr! Thus, for example, the above

rewritings recover the definition of implodeNum (modulo renaming) in terms of foldr from the above

definition of implodeNum in terms of reduce:

implodeNum ds = foldr (\e r t -> r (1O*t + e)) (\x->x) ds 0

Inlining and reducing the definition of foldr in terms of reduce (in an attempt to recover the

definition of foldr once again) doesn't quite produce an equivalent definition:

foldr f z xs = foldr (\e r t -> f e (r t)) (\x -> x) xs z

Nonetheless, like all the previous definitions which used foldr and higher-order functions, this one will

inline and 7-reduce nicely:

foldr f z xs = foldr' xs z

where foldr' [] r = r

foldr' (x:xs) r = f x (foldr' xs r)

This definition is almost equivalent to the original definition of foldr. The difference is that the argument

r to foldr' is always z; exploiting this fact eliminates r and replaces the only remaining occurrence of r

27

(in the first disjunct) with z. The difference is minor, and possibly irrelevant in a compiler which performs

lambda-lifting-as a free variable of foldr', z would be lifted away and turned into an argument.

For the sake of symmetry, reduce itself can be defined so that it has the same identity as foldl and

foldr:

reduce f z xs = reduce (\1 r z -> (1 z) 'f' (r z)) (\x -> x)

(map (\e z -> e) xs) z

This definition essentially "scatters" the value of z across the reduction, where it is generally simply

dropped. Only when an empty list is encountered is this extra argument actually put to use.

This approach is clean-a list traversal is represented as a monoid with the identity function as its

identity, and the homomorphism of the monoid is then applied to a single argument to start the actual

computation. The desugarer uses the above definitions to describe all list traversals, yielding a canonical

list traversal of the following form:

(reduce a (\x->x) (map u 1)) t

Here a is the higher-order monoid operation, and consequently is a function of at least three arguments;

u is the higher-order unit operation, with at least two arguments; t represents either the initial value of

a fold or the identity of an operation being reduced. For example, here are the values of a, u, and t for

foldr f z:

a = (\1 r -> r . 1)

u = (\e t -> f t e)

t =z

This choice of canonical form raises a number of issues, however. The most critical is parallelism.

The approach outlined above seems to advocate turning occurrences of reduce into loops-or worse,

recursive function calls-despite the fact that the reductions were originally introduced to eliminate such

sequential behavior unless it is needed.

Several steps must be taken to make the approach practical. First, the desugaring rules must exploit

the parallelism of a reduction over a list with well-understood structure. Remaining reductions should

generate iterative loops if doing so is efficient (in the absence of special provisions for reduction in the

target language). This requires some degree of cleverness in constructing the desugarer.

28

Chapter 3

Describing the generation of lists

To actually eliminate intermediate lists, and not simply optimize their traversal, the generation of the

lists must be described as systematically as the consumption. List comprehensions are a partial solution,

since they describe the generation of new lists in terms of traversals over existing lists. Nevertheless,

there are many cases where lists are generated without reference to other lists-for example, Haskell

contains special syntax for arithmetic series expressed as lists written as [k ,k 2.. kn]. In such cases,

there needs to be a systematic way to generate a list from the initial data.

3.1 Overview of list generation techniques

The chief problem with list generation is that lists are a full-fledged data structure in the language.

This means that in the process of constructing a list, the partially-constructed result (the "accumulative

result variable" of [13]) can be traversed at any time. This precludes eliminating the list, since it must

either be built once so that the repeated traversals will behave as they were written, or be re-constructed

every time it is re-traversed. In the first case, nothing is gained, and in the second case there is a risk

that reconstruction and re-traversal could proceed ad infinitum.

Much of the literature on the elimination of intermediate data structures has focused on ways of

preventing this problem from occurring. In order to do so without adding language constructs, Wadler's

deforestation algorithm [17] simply legislates against it, requiring the program to be in so-called treeless

form. Chin [5] describes a conservative method of figuring out when arbitrary expressions can be

subject to deforestation. In both cases, higher-order functions must either be inlined or left unoptimized.

Proposed solutions in this vein all require intensive, non-local analysis of the program, and are thus ill-

suited for the desugarer.

Another alternative is to define special functions which allow a list to be generated without providing

access to the accumulated result. Various variations on this approach have been tried. The short cut

to deforestation [6] focuses on an operator called build, which takes a function as an argument. That

function (the built function) is called with the constructors cons and nil as arguments. Thus, to generate

29

the list of integers from one to ten (written in Haskell as [1.. 10]) one can write:

build (\cons nil -> let loop 0 1 = 1
loop (n+l) 1 = loop n (cons (n+l) 1)

in loop 10 nil)

An application of foldr to build simply calls the built function, passing it the function being folded

with and the initial value for the fold in place of cons and nil. The parameters to the built function

effectively become the constructors of an abstract, list-like datatype, and they can be used exactly as

cons and nil are used in everyday code. The difference, of course, is that the nice syntax for lists is lost

(or must be handled by an inner fold), and the function's result, because it does not explicitly create

a data structure of some particular type, cannot be traversed. Also, the actual build operator itself is

not Hindley-Milner typable, though making it into a "black box" circumvents this difficulty.

A similar approach is to actually use an abstract datatype to construct a list, and call a coercion

function to convert the fully-constructed abstract object into an ordinary list again. This introduces a

systematic set of names into the translation. Scoping problems make it hard to use for local optimizations,

since it becomes difficult to characterize what it means for a function to return an object of type

"untraversable list" unless it is immediately coerced to an ordinary list.

All of these approaches were explored in an effort to find the best way to express parallel list generation

so that it can be combined with mapping and reduction. The complexity of "blazing" a program ruled

out approaches based on deforestation. A build-like operation was implemented, and worked to some

extent; however, the structure of the desugarer is such that the arguments of the built function must

be bound after the function body itself has already been optimized. This eliminated a number of useful

transformations which would otherwise have been performed, most notably the immediate elimination

of copy operations (traversals which do nothing, a frequent and ordinarily easily spotted problem). This

led to the introduction of abstract datatypes for untraversable lists, which were ruled out because of the

scoping problems mentioned above.

Instead, functions can be defined which generate lists systematically. For example, Bird and Wadler

[3] describe a function called iterate which takes an initial element and a generator and produces an

infinite list one element at a time. Each succeeding element is produced by applying the generator to the

previous element. Thus, to generate the list of integers from one to infinity one writes iterate (1+) 1.

A more general operation, the list anamorphism [9], includes a predicate to terminate generation, so

that finite lists can be created systematically, and separates the element value which is generated from

the data which is used to generate succeeding elements. This approach is explored in more detail in the

remainder of the chapter.

30

3.2 unfold and synthesize

The programmer uses two functions, unfold and synthesize, to produce lists. The former has the

following declaration (where a vertical bar I denotes a conditional disjunct):

unfold p f v = h v
where h v p v = []

I otherwise = a:h b
where (a,b) = f v

unfold is not the function of the same name described by Bird and Wadler[3], but rather the closely

related list anamorphism [9]. Its structure is very similar to the structure of both foldl and foldr. A

value v is propagated from left to right along the spine of the list as it is created. When predicate p is

true of the value, the end of the list has been reached; otherwise, the function f is used to generate a new

list element and a fresh value for propagation. The list is created recursively rather than iteratively-

nevertheless, the elements at the head of the list are conceptually computed before the elements which

succeed them. The following transformation can then be used to combine map, reduce and unfold (note

that the map and reduce are assumed to be in the canonical form used above):

(reduce a (\x->x) (map u 1)) t

hiz
where h v r p v = r

I otherwise = f (g a) (h b) r
where (a,b) = j v

Note that generating this code directly will yield a fully iterative function if the reduction was generated

by a call to foldl; however, the parameter r will be constant when the reduction is created by a call to

foldr or reduce. In both cases, however, a better function can be generated using heuristics similar to

those used to generate list traversals (see 4.3.2).

The list of integers from one to ten is simply given by unfold (>10) (\e->(e, (+e))) 1. Consum-

ing this list using foldl yields:

foldl f z (unfold (>10) (\e->(e,(l+e))) 1)

hlz
where h v r v>10 = r

I otherwise = h (v+l) (f v r)

This is completely iterative. If foldr is used instead, the following equivalence results:

foldr f z (unfold (>10) (\e->(e,(+e))) 1)

hlz
where h v r I v>10 = r

I otherwise = f v (h (v+l) r)

31

Finally, if map and reduce are used on the list, the following code is generated:

reduce f z (map g (unfold (>10) (\e->(e,(1+e))) 1))

hlz
where h v r v>10 = r

I otherwise = f (g v) (h (v+l) r)

Thus, the latter two cases produce (by default) code which is recursive, in which the r argument to

h is constant. Note that all of the above results are very similar to the code generated for simple list

traversals. Indeed, list traversal can be expressed as an identity operation:

traverse xs = unfold (\1 -> case 1 of

[]->True

_ ->False)

(\(x:xs) -> (x,xs))
XS

The similarity to list traversals suggests that unfold expresses the sequential generation of lists.

The diligent reader will note that unfold makes use of tupling, a practice which was shunned in

the transformations for loops. There are several reasons for this. First, the number of values being

returned (two) is fixed for all time. Second, tuples are not passed between recursive calls, so inlining the

generation function will eliminate the tuple entirely. This happened in the example above. The most

important reason for retaining tuples, however, is that they make unfold type safe. unfold is well typed

as defined above:

unfold :: (a -> Bool) -> (a -> (b,a)) -> a -> [b]

To eliminate tupling, the second argument would need to be converted to continuation-passing style.

This would yield the following type:

unfold :: (a -> Bool) -> (a -> (b->a -> b]) -> [b]) -> a -> [b]

This would allow definitions which ignore their continuations such as the following:

unfold (_ -> False) (_ cont -> [1..10]) 1

local quantification is required in the type system in order to define a safe version of unfold similar to

the above. The type of continuation-passing unfold is directly analogous to the type of build [6].

While unfold reflects the operation of foldl and foldr, the function synthesize mirrors the reduce

operation:

synthesize p e f v = h v
where h v I p v = if e v then [] else [v]

I otherwise = h 1 ++ h r

where (l,r) = f v

32

Here the task of generating a list is split up into two subtasks-generating the left and right chunk of

the list. Function f generates two values which are used to generate each piece. Predicate p indicates

whether v can be further split; if it can (p v is false), h is called recursively on each value returned by

f. The results are then concatenated together. If p v is true, then e indicates whether, given v, the

resulting sublist should be empty or should have unit length.

Like unfold, synthesize can be combined with the canonical map and reduce functions produced

by the desugarer:

(reduce a (\x->x) (map u 1)) t

hiz
where h v t I p v = if n v then t else u v t

I otherwise = a (h 1) (h r) t

where (l,r) = j v

This inlining produces good code. Nonetheless, if reduce is called on the value of synthesize, r will

be constant; its argument can be eliminated by a simple heuristic. In any case, synthesize is intended

expressly to capture the notion of generating lists in parallel.

Either unfold or synthesize can be used to define versions of Haskell's arithmetic series (these

definitions work for nondecreasing series):

[k1,k 2. .kn] = unfold (>kn) (\k->(k,k+(k 2 - k)) k
= map Fst (synthesize (\(l,u)->l==u) (_->True)

(\(l,u)->let mid = (l+u) 'quot' 2

imid = mid - mid 'mod' (k2 - kl)

umid = mid + (k2 - k)

in ((l,lmid),(umid,u))) (k1 ,kn)

The definition using unfold actually generates its result arithmetically from left to right, as is custom-

arily done. The second definition, using synthesize, breaks the series in half and generates each half

recursively.

By marking the spine of the list being unfolded, any unfold operation can be expressed as a call to

synthesize:

unfold p f v

synthesize (\(e,v) -> e 11 p v) (\(e,v) -> p v)

(\(False,v) -> case f v of (e,v') -> ((True,e),(False,v')))

(False,v)

This construction passes tuples as arguments to recursive calls, however, and is therefore to be avoided.

More work is necessary to coherently unite unfold and synthesize; see Section 7.1.6.

33

Chapter 4

The map/reduce desugarer

In order to take advantage of the optimizations described in the previous chapters, the program must

be translated into a form which uses optimizable functions optimized. Library functions must simply

be written using folds, reductions, comprehensions, syntheses, and unfoldings. This library code should

then be in-lined wherever the library functions are called, permitting them to be desugared. Ideally,

user code should also be inlinable; the possible consequences of automating this process are discussed in

Section 7.1.1.

As a first step to optimizing list expressions, the desugarer must translate list comprehensions into

maps and reductions. This is similar to other well-understood schemes for compiling list comprehensions,

and is outlined in the next section.

The most important aspect of the desugarer is its ability to perform map/reduce elimination on the fly.

It exploits the fact that all of the transformations necessary are implicit (that is, they will be employed

regardless of which desugaring scheme is chosen) or local (requiring only three additional arguments

beyond the syntactic information from the outermost expression being desugared). The desugarer also

incorporates heuristics so that the various folds, maps, and reductions can be implemented efficiently;

the most notable example so far is q-abstraction, which generates for loops from recusive functions with

higher-order return values.

4.1 Desugaring rules using map and concat

The problem of compiling list comprehensions is well understood; the canonical approach is the one

given by Wadler[15]. A simple and correct desugaring for list comprehensions (very similar to Wadler's

may be found in Figure 4.1. The most significant difference between this scheme and Wadler's (apart

from the inclusion of more disjuncts) is that Wadler's function flatMap has been expanded into concat

applied to map (that is, the "flattening" and the "mapping" are separated). The rules can be used to

compile the main loop of queens, so that

34

T6C [Es 3] = TF[[Es]
TE[Ei++E2 = TF[E++E2]

etc. for other list expressions E for which T[E] is defined

T£ applies recursively to
otherwise desugared

T[E [E1, E2, ... En]
Tr[E1 ++E2]
T [[E I]
TF[CE I B, Q]
TCF[[E I P <- L , Q]

TFEJ

inner expressions (applications, conditionals, etc.) not

= ETE[El]] ++ [Te[E 2 1] ++ · · [CE[Ej]]
= TYjE 1]++T[jE2
= ETE[E]
= if TE[B] then T.FI[E I Q]] else []
= concat (map (\e -> case e of

P-> Tr[[E I Q]
-> [])

T[L])

= T£[E] for all other forms

Figure 4.1: Desugaring rules for lists using map and concat

queens m = q ++ n] I q <- queens (m-i), n <- [l..k], safe q n]

becomes:

queens m = concat (map (\q -> concat (map (\n -> if safe q n then
q ++ ([nl++[])

else [])
[l..k]))

(queens (m-l)))

Most schemes for list comprehension compilation eliminate the append operations in the desugaring

rules by parameterizing them with respect to the tail of the list being desugared. Indeed, if so many

append operations were performed at run time they would irreparably damage program performance.

Instead of eliminating calls to append first, however, the program transformations described so far can

be applied directly to the desugaring rules. Given the conflicting goals of parallelism and sequential

efficiency, this is in the true spirit of Wadler's presentation [15].

The function concat can be defined in terms of a reduction:

concat xs = reduce (++) [] xs

In the desugaring rules, replacing the occurrence of concat by the above definition results in a scheme

which constructs lists using only reduce, map, [], and the list unit operation [El (expressed as a

Haskell function by writing (: [])). These are exactly the operations with which the list monoid and its

homomorphisms were defined (Section 2.2.3).

35

Defining list comprehensions in terms of the list monoid allows the comprehensions to be computed

in any other monoid. Since traversals express homomorphisms with the list monoid, substituting the

relevant monoid operations in a traversal will result in code which eliminates the construction and

traversal of the list entirely.

4.2 Incorporating reductions

To realize this goal, a traversal must be carried down to the point where the list being traversed is

constructed. Traversals are described canonically, as in Section 2.2.4. After converting every traversal

into canonical form, the desugarer substitutes the appropriate functions for the operations in the list

monoid. To see how this substitution is derived, compare the canonical form of a traversal over a list 1

to the identity operation on the same list using the above functions:

(reduce a (\x->x) (map u 1)) t canonical traversal
(reduce (++) [] (map (:[]) 1)) list identity

So in the code to generate the list, every append operation (++) will be replaced by a, every empty list

[] by the identity function, and every unit operation (: []) by u. The result will be a function which,

when applied to t, returns the same result as if the list had been separately generated and traversed.

This unconditional replacement is justified by the promotion rules for lists described by Bird [2].

These rules push calls to map and reduce inwards through [], calls to concat, and calls to the list unit

(: []):

map g [] = []
reduce f z [] = z

map g (E:]) = (g E: [])
reduce f z (E:[]) = E

map g (concat L) = concat (map (map g) L)

reduce f z (concat L) = reduce f z (map (reduce f z) L)

To see how this works, try performing a canonical reduction on the result of queens m:

(reduce a id (map u (queens m))) t

If the definition of queens is inlined, and the promotion rules are applied, the resulting code is:

(reduce a id (map (\q -> reduce a id (map (\n ->
if safe q n then

a q (a (u n) id)
else [])

[1..k]))

(queens (m-i)))) t

The fundamental problem with the canonical form is that it uses higher-order functions; no call to

a or u can yield a first-order result until t is provided as an argument. Thus, the above desugaring of

queens will create closures in place of list elements, gaining nothing.

36

4.2.1 Performing calls at compile time

Luckily, the structure of the function a is known. It is in one of the following forms:

(\1 r t -> 1 (r t)) from foldr
(\1 r t -> r (1 t)) from foldl
(\1 r t -> f (1 t) (r t)) from reduce

In addition, every application of a in the desugared code can be given two arguments-rather than

unconditionally replacing (++) by a, simply replace only those occurrences which have arity two (includ-

ing those which are introduced during desugaring). Since every call to the unit function u is introduced

by desugaring, all calls to u will have exactly one argument.

Given that the desugarer is generating two-argument applications to a, and that a is known at

compile time, the next step is to eliminate a entirely from the desugared code, performing all calls to

a at compile time. Every application of a can be viewed as an administrative redex, introduced by the

transformation and open to immediate reduction at compile time [12]. This is very similar to what

Wadler does with calls to (++) [15]; indeed, a represents the operator which replaces (++).

The simplest way to perform these calls is to represent a as an ordinary higher-order function in

the desugarer. Thus, the desugarer will use actual higher-order functions at compile time, rather than

representations of higher-order functions to be called at run time. Note also that the first two arguments

to a are also assumed to be higher-order functions with a single argument apiece. These functions will

therefore also be called at compile time.

Unsurprisingly, values of the functions a and u form a class of monoids which parallel the structure

of the monoids for traversal-that is, the elements of all the monoid types are compile-time functions

which, when called, yield a piece of code to be executed at run time. The binary operation of a particular

monoid is the reduction function a imposed by the traversal, and the unit operation is the function u

which generates code to process a single list element. The identity of a is the compile-time identity

function (since a's arguments are called at compile time). The final argument to all of these higher-

order functions is a piece of run-time code named t which has the same role as the final argument in

the canonical form-that is, for folds it represents the cumulative value of the computation, and for

reductions it represents the identity of the operation used.

The final version of the desugaring rules can be seen in Figure 4.2. The underlined constructs

appear in the code generated by the desugarer, as do the values returned by recursive calls to T£ and

T. The remaining functions are evaluated entirely at compile time. TE schemes have been added for

foldr, foldl, and reduce so that their list arguments are desugared in the appropriate monoid. Note

also that TF schemes have been added-not only for cons and nil (desugaring rules for these constructors

would have been vacuous in the previous scheme), but also for the functions reverse and map. The

definition of reverse simply reverses the order in which sublists are glued together by a; since this

function restructures its argument, it is impossible to define using reduction or synthesis without its

37

T£[[Es] = TF[[Es] alist ulist tist
TE[Ei++E2] = TlE++E2] alist ulit tist

etc. for other list expressions E for which TBF[E] is defined
T£[reduce f z Li = T7F[L] (rz. T £.f] (I z)(r z)) (e z. e) TES[z]
T£E[foldr f z L] = TF[L] (Al r e. (r e)) (Ae t. TES[f] e t) TSl[z]
TE[foldl f z L = T[L] (Al r e. r (e)) (e t.T[f te) T[z]

TE applies recursively
otherwise desugared

to inner expressions (applications, conditionals, etc.) not

F' [E1, E2, ... E,]
T.%[E 1 ++E2

T.[A:L]
TgF[map f L]
TYl[reverse L]

TJF[CE I]
TI[[E I B , Q]]
Tr[[E I P <- L, Q]

TFF[E]

a u t = ((u TE[El]) 'a' (u T£[E2]) 'a'
a u t = (TF[E1] a u 'a' T[E 2 a u) t
aut=t
a u t = (u A 'a' T[L] a u) t
a u t = TF[L[a (Ae t'. u (£[f] e) t') t
a u t = T[L] (Al r e. (r 'a') e) u t
a u t = u TE[E] t
a u t = if TE[B] then TFJ[E I Q] a u
a u t = let f e t' = case e of

P -> T [E I Q
-> t'

in TY[L a f t
a u t = reduce a (Ax. x) (map u TE[E) t

Figure 4.2: Desugaring rules for lists with implicit map/reduce elimination

argument list being constructed. The rule for map desugars the list being mapped over using a new u

which is the composition of the current value of u and the function which is being mapped.

Also new in this desugaring scheme are the constant values alilt, ulist and tit. These are the default

values of a, u and t, and actually build a list in memory. While the operations of the list monoid could

be used here, it is much more efficient to define them as if they were generated by a foldr as follows:

alit = (Al rt. I (r t))
Ulist = (Ae t. e : t)
tlist = []

This translation linearizes the process of creating a list, but eliminates the enormous number of

append operations required if the list monoid were used. Because the list is being created as a linear

data structure in memory, it must be traversed linearly in any case-so the loss of parallelism may not

be significant. Open lists (discussed in Section 4.6) provide an alternative definition for these three

quantities more similar to the original list monoid.

38

... (u T[E.])) t

t else t

]] au t'

for all other forms

4.3 Loops for innermost expressions

The transformations described so far push the consumption of a list towards the point of its creation.

Once there, however, the following disjunct is encountered:

TFI[E] a u t = reduce a (Ax.x) (map u TE[E]) t

There is no provision for traversing the list E efficiently; indeed, E could well be a call to unfold or

synthesize, and could therefore be entirely eliminated. Rules and heuristics are necessary to perform

much of the inlining explored in the previous two chapters.

4.3.1 Basic rules

The most basic step is to generate a recursive function call in place of the reduce and the map (all

code shown is generated by the desugarer and executed at run time; only the calls to a, u and TE are

performed at compile time):

TFI[EJ a u t = let h 1st tl = case 1st of
El[] -> tl
e:es -> a ((ue) (At'. h es t')) tl

in h Tg[E] t

As noted in Section 2.2.4, this code generates a tail-recursive loop when a is generated by a foldl,

and otherwise results in a single recursive function whose second argument is constant.

Basic rules for unfold and synthesize can also be added. They are quite similar to the previous

rule:

TY[unfold P F V a u t = let h v tl = case TEP] v of
True -> tl
False -> (a(ue) (At'. h v' t')) tl
where (e,v') = TE[F] v

in h TIrEV t

TF[synthesize P E F V a u t = let h v tl = case TE[P] v of
True ->

case T£[EJ v of

True -> tl
False -> u v tl

False ->

(a(At'. h v' t') (At". h v'' t")) tl
where (v',v'") = TE[F] v

in h T[V] t

With rules in place to generate loops, it is a simple matter to desugar queens. To obtain the

desugaring in Figure 4.3, the expression El[.. k] has been replaced by the equivalent unfolding,

unfold (>k) (\v->(v,v+l)) 1. Note how the tail of the list being constructed is passed in tl in favor

of using calls to (++).

39

queens m =
let hi stl = case lstl of

[] -> []
el : esi ->

let h2 v2 = case v2 > k of

True -> hi esi
False ->

case safe el v2 of

False -> h2 (v2 + 1)
True ->

(let h3 lst3 =

case lst3 of

[] -> v2 : []
e3 : es3 -> e3 : h3 es3

in h3 el) : h2 (v2 + 1)

in h2 1

in hi (queens (m - 1))

Figure 4.3: A desugared version of queens with the introduction of some simple loops

4.3.2 Specializing the generated code

Because a can only take on three different values, it is simple to specialize code generation based on a's

value. The values of a can be distinguished either by calling a with appropriate arguments and seeing

what is returned, by representing a by a simple enumerated type which can be converted into a function

as necessary, or by tagging a with the direction of traversal. The pH desugarer tags the value of a, since

this method permits a itself to be specialized on its inputs (for example, by discarding identities) while

still retaining an easily-checked indication of its basic structure.

Since it is easy to tell if a results from a call to reduce, several improvements can be made in the

generated code simply given that reductions are associative. The obvious change is to traverse the

list iteratively rather than recursively. Unfortunately, this is not always as efficient as it sounds. In

particular, observe the following reduction:

reduce (&&) True [False, True, True, True, True]

If the reduction is turned into a tail-recursive loop, the following code results (ignoring the fact that the

list is constant, and could therefore be eliminated entirely by the desugarer):

let h 1st tl = case 1st of

[] -> tl

(e:es) -> h es (tl && es)

in h [False, True, True, True, True] True

This definition will traverse the entire input list. A programmer writing the same function would

undoubtedly write a version similar to the non-tail-recursive one:

40

let h 1st = case 1st of

[] -> True
(e:es) -> e && (h es)

in h [False, True, True, True, True]

If (&&) is short-circuiting (as it would be in a lazy implementation) then only the first element of the list

will be examined! Even if it isn't (the eager semantics of pH force all function arguments to be evaluated),

the result will become available before the recursive calls are complete, and a clever compiler will be able

to eliminate the tail call because it neither performs side effects nor influences the function's value (issues

such as correctness and termination properties are addressed in the next section). The heuristic used

to circumvent cases like these is quite naive-it simply looks for an opening case construct in the code

generated for a, and generates a recursive definition if it finds one. A more sophisticated heuristic would

insure that only one of the disjuncts requires the value of the recursive call before rejecting iteration in

favor of recursion.

In addition, the compilation of for loops must be made more efficient. This is a simple matter of

aq-abstracting the ordinary recursive code to consolidate the additional functions which are introduced.

In fact, the desugarer incorporates a general -abstraction mechanism so that arbitrary higher-order

funcitons will generate loops when used with reduce or foldr.

The rules for generating code for concrete list traversals and unfold can be found in Figure 4.4; the

corresponding rules for synthesize are in Figure 4.5. When applied to queens (using unfold as above),

it produces the code in Figure 4.6.

4.4 Concrete implementation

The desugaring rules and the code to generate specialized list traversals have been incorporated into the

front end of the hbcc compiler. This compiler is being written primarily by Lennart Augustsson, and is

intended to compile both Haskell and pH; as of this writing the front end for Haskell is complete and

correct. Writing the desugarer involved completely replacing the list comprehension rules, adding rules

for the various functions treated specially by the desugaring rules, and installing extensive "plumbing"

to propagate necessary information through the remaining portions of the desugarer. A separate module

implements the representations for canonical traversals, and is actually responsible for generating the

compiled code for reductions. The current implementation of the desugarer operates independently of

other compiler phases, meaning that modifications to the other phases of the compiler will not require

corresponding changes in the code for the desugarer.

41

When a is generated by a foldl:
For already-constructed lists TF[E] a u t:

let h 1st tl = case 1st of
[] -> tl
e:es -> (At'. h es t') ((u e) tl)

in h TC£[E t
For T.i[unfold P F V a u t:

let h v tl = case T£PP v of
True -> tl
False -> (At'. h v' t') ((u e) tl)

where (e,v') = T£[F v
in h T£[V t

When a is generated by a foldr, or by a reduce for which ((u e) 'a' (At'. h es t')) tl
is either a function or a case statement, return the following after q-abstracting h:

For already-constructed lists TF[E] a u t:
let h 1st = case 1st of

[] -> t
e:es -> ((ue) 'a' (At'. h es)) t

in h TE[E]
For TF[unf old P F V a u t:

let h v = case TS[P] v of
True -> t
False -> ((ue) 'a' (At'. h v')) t

where (e,v') = T£[F v
in h TE[V

When a is generated by a call to reduce whose second disjunct value (see above) is
neither a function nor a case:

For already-constructed lists TF[E a u t:
let h 1st ac = case 1st of

[] -> ac
e:es -> h es ((ue) 'a' ac)

in h T£[E]
For TF[unfold P F VI a u t:

let h v tl = case TE[IP v of
True -> tl
False -> h v' ((ue) 'a' tl)

where (e,v') = TE[F] v
in h T£[V] t

Figure 4.4: Efficient compilation of reductions for lists and unfold

42

Figure 4.5: Efficient compilation of reductions for synthesize

queens m =

let hl lstl tll = case lstl of
[] -> tll
el : esl ->

let h2 v2 t12 =
case v2 > k of
True -> t12

False ->

case safe el v2 of

False -> h2 (v2 + 1) t12
True ->

(let h3 lst3 t13 =

[]
e3

in h3 el v2]) :
in h2 1 (hl esl tli)

in hl (queens (m - 1)) []

case lst3 of

-> t13
: es3 -> e3 : h3 es3 t13

h2 (v2 + 1) t12

Figure 4.6: A desugared version of queens with more agressive loop generation

43

For TF[synthesize P E F V a u t:
When a is generated by any call to reduce:

let h v = case TE[PJ v of

True -> case T[E] v of

True -> t
False -> u v t

False -> ((At'. h v') 'a' (At". h v'')) t
where (v',v'') = £[F] v

in h TE£[V t
When a is generated by foldl or foldr:

let h v tl = case T[P v of
True -> case TE[E] v of

True -> tl

False -> u v tl

False -> ((At'. h v' t') 'a' (At". h v" t")) tl
where (v',v'') = TE£F] v

in h TE[V] t

4.5 Correctness

There are some correctness issues raised by the desugaring rules as they stand. First, the rules above

tend to inline certain quantities aggressively, particularly t. In a lazy environment this results at worst

in code duplication; in an eager environment, it may cause side-effecting expressions to be skipped over

or executed multiple times. Problems of duplication and elimination can be circumvented by binding

new names to the relevant values and inlining these new names in the generated code.

A higher-level problem (alluded to in the previous section) is the issue of termination properties. The

first question which must be answered is, 'Should program optimizations preserve the precise termination

properties of the source program?' The pH compiler is being constructed with the assumption that the

termination properties of the generated code must be at least as good as those of the source program,

in the sense that the generated code must terminate in every situation in which the source program

semantically terminates (modulo resource limitations, which are machine-imposed). Thus, it is all right

for the desugarer to eliminate non-side-effecting expressions which do not contribute to computing the

value of a function, since such expressions can only cause the program to potentially loop forever.

The second question about termination properties which must be answered is, 'What are the ter-

mination properties of the language features which are given special treatment by the desugarer?' The

answer to this question depends heavily on which representation is chosen for the final loop. For exam-

ple, depending on whether reduce is defined recursively or iteratively, the following piece of code may

or may not return a result (it will not terminate if eager semantics are used):

reduce (&&) True (False:True:True:True: ...

As a programmer, one cannot reason systematically about all such cases as one is writing code. The

safest stand in such ambiguous cases is simply to state that the program does not produce a result-that

is, any infinite or circular list which is used in a list comprehension or as an argument to reduce is not

guaranteed to produce a result, and so semantically it must be considered not to; if it actually happens

to do so, it is simply through the cleverness or beneficence of the compiler.

4.6 Language Features

The specialized comprehensions of Id originally motivated this research, since a well-understood but

highly specialized set of rules existed to handle them[19]. The earliest goal was to match or improve

upon the code produced in Id, but to do so in a more general and flexible framework.

4.6.1 Open lists

To this end, open lists must be introduced into the language. For the sake of this exposition, the following

definitions will be used for open lists:

44

emptyOpen :: () -> Open a -- return empty open list

(>:) :: Open a -> a -> Open a -- add element to tail
(++:) :: Open a -> Open a -> Open a -- append tail to head
closeOpen :: Open a -> Open a -> [a] -- convert given head and tail

Open lists are represented internally by data structures which are identical to lists, except that their

tails are initially empty and can later be filled in using I-structure operations. However, the above

definitions keep these particular features under wraps. The only observable results are that all of the

open list operations can be performed in unit time, and any given open list may only be modified once

(that is, supplied as an argument to >:, as the second argument to closeOpen, or as the first argument

to ++:). Note that open lists form a class of monoids whose types are of the form openlist at with unit

operation >: and binary operation ++:. Unfortunately, open lists do not have a well-defined identity.

The problem is that while a call to emptyOpen will act as an identity if it appears as either argument to

(++:), there is no single, distinguishable object which can be so used.

A solution using higher-order functions can be imagined; all operations could be made to take a

dummy argument, which would make emptyOpen itself the identity of the monoid. Instead, the desugarer

exploits the fact that internally it is simply using a higher-order representation of the above functions.

The actual process of appending two open lists will require the tail of the list to be created and named,

then fed separately to each piece of the list being built. Thus, as with foldl and foldr, open lists

are represented by a monoid at compile time, but not at run time. This approach is chosen because

using run-time higher-order functions requires manipulating the representations of these higher-order

functions, and beta-reducing these representations. While the desugarer is capable of performing the

necessary manipulations, doing so introduces substantial overhead. Since detecting and circumventing

the problem is trivial, the compiler does so.

Thus, introducing open lists gives the following default values for list traversals:

alist = (Alrt. let rst= emptyOpen()

- =(It) ++: rst
in (r rst))

ulist = (Aet. e>:t)
tlist = name given to outermost emptyOpen()

One problem remains-an open list is not a list! A type conversion function, closeOpen, exists, but

it needs to be introduced implicitly by the desugarer in order to maintain type safety. This simply means

that the expressions which are desugared by the TY scheme must have a "wrapper" placed around the

corresponding disjuncts in TE. Thus, the desugaring rules for such constructs will now have the following

form (where the part inside the double braces changes depending on the rule):

TE[[Es 1] = let hd = emptyOpen()
in closeOpen hd (hd ++: T[[Es]| alit list tist)

45

Finally, the actual compile-time representation for alist performs a simple optimization based on the

following identity:

1++: (t :> e) = :> e
when t is bound to emptyOpen()

This insures, for example, that the list t ++ [1,2] is desugared as:

t:>1:>2

and not as:

t++:(let t=emptyOpen();_=t>:1 in t)++:(let t=emptyOpen();_=t>:2 in t)

A version of queens compiled using open lists can be found in Figure 4.7. Note how the innermost loop

constructs its open list sequentially using (>:), while the outer loop simply joins together the inner lists

using (++:). Thus, every execution of the inner loop is free to proceed in parallel.

4.6.2 Arrays

One of the chief complaints about Haskell from the Id community is that Haskell's array system is bulky-

in particular, a number of array operations require a list of index/value bindings as an argument. In

pH, this mechanism supplants Id's specialized array comprehensions and accumulators. Thus, pH trades

syntactic compactness and elegance for a potentially large loss in performance. Id array comprehensions

make use of I-structures to construct an array in parallel with its use [19]. By defining a list traversal

which uses these same techniques, the full performance of Id array comprehensions can be realized.

The basic array constructor in Haskell is the function array. For example, this expression creates a

grade-school multiplication table for pairs of integers between 0 and 10:

table = array b [i := a*b I i (a,b) <- range b]

where b = ((0,0),(10,10))

The first argument to array is the lower and upper bounds of the array; the second argument is a list

of bindings between indices and values. Any valid index which is not bound is considered to have no

value; indexing into an array is only meaningful if the array has been defined at that index.

In pH, the implementation of arrays is kept under wraps, just as the implementation of lists in terms

of open lists is hidden by the compiler. The definition of arrays can be thought of in terms of a primitive

I-structure (write-once) array type called IArray, with the following basic operations: 1

emptyIArray :: Ix a => (a,a) -> IArray a b -- empty IArray given bounds

writeIArray :: Ix a => IArray a b -> a -> b -> () -- write b at index a, then ()

readIArray :: Ix a => IArray a b -> a -> b -- read from index a

closeIArray :: Ix a => IArray a b -> Array a b -- convert IArray into array

1The problem of representing arrays has several other aspects, such as abstracting and linearizing indices, which are
ignored in this presentation for simplicity.

46

queens m =
let hdl = emptyOpen()

in

closeOpen hdl

(let hl lstl tll=

case lstl of

[] -> till
el:esl ->

hi esl

(let rst2 = emptyOpen()
_ = tll ++: rst2

h2 v2 t12 =

case v2 > k of

True -> t12

False ->

let v2' = v2 + 1

in

h2 v2'

(let rst2 = emptyOpen()

= t12 ++: rst2

in

case safe el v2 of

False -> rst2

True ->

rst2 >: (let hd3 = emptyOpen()

in closeOpen hd3

((let h3 lst3 t31 =

case lst3 of

[] -> tl3
e3 : es3 ->

h3 es3 (t13 :> e3)

in h3 el hd3)

>: v2)))

in h2 1 rst2)

in h (queens (m - 1)) hd)

Figure 4.7: A desugared version of queens using open lists

47

The definition of array is as follows:

array bnds bindings = let iarr = emptyIArray bnds

sideEffect =

reduce (\sideEffectl sideEffect2 -> ()) ()

(map (\(indx:=val) ->

writeIArray iarr indx val)

(someOrder bindings))

in iarr

Note that the function passed to reduce does nothing! Both of its arguments must be evaluated for side

effects, but no furthur action is necessary. This articulates the notion that any assignment to the array

is completely independent every other assignment (except if indices overlap, in which case the program

is erroneous anyway). In addition, by using an I-structure model and executing generation and use in

parallel the array can be returned before the reduce expression had been completely evaluated for its

side effects.

There is one strange function in the above code-someOrder. This function returns a permutation

of the list provided to it. In general, it could be defined as the identity function. When it is encountered

by the desugarer, it causes the desugarer to assume that the internal function a is commutative; the

desugarer will then try to choose the best possible traversal directions for the sublists of the list it

is desugaring. It is used here because the function being passed to reduce really is commutative;

however, it could also be used to indicate that the program doesn't care about the order in which

the result is computed, since it is being used as, say, a bag. One instance where the desugarer would

reorder the argument to someOrder is the list ([1..5] ++ reverse [1..5]). This would ordinary

yield the list [1,2,3,4,5,5,4,3,2,1]. However, if the list [1. .5] can be computed more efficiently

forwards than backwards, then someOrder ([1..5] ++ reverse [1..5]) will instead yield the list

[1,2,3,4,5,1,2,3,4,5].
Now that the necessary machinery is in place, the function table can be desugared (inlining range

b) to obtain:

[(a,b) I a <- unfold (>10) (\n->(n,l+n)) 0, b <- unfold (>10) (\n->(n,l+n)) 0]

The desugared code for table can be found in Figure 4.8. Note that there is an extraneous loop

constant-tl or tl'--being carried around by the loops, but that this value is simply discarded by the

next iteration. Loop optimization will eliminate this unused value. Nonetheless, each iteration of the

outer and inner loops is free to proceed in parallel with every other iteration, since there are no data

dependencies between them.

48

Figure 4.8: A desugared version of table

49

table = let bnds = ((0,0),(10,10))

iarr = emptyIArray bnds
sideEffect =

let h a tl =

case a > 10 of

True -> tl

False ->

h (+a)

let sideEffectl =

let h' b tl' =

case b > 10 of

True -> tl'

False ->

h (+b)
let sideEffectl' = writeIArray iarr (a,b) (a*b)

in ()

in h' 0 ()
in ()

in h O ()
in iarr

Chapter 5

Evaluating map/reduce elimination

This chapter evaluates the existing desugarer in an attempt to answer three questions. First, does the

desugarer actually implement the transformations described in the preceeding chapters? This can be

verified by seeing if the desugarer produces identical code for instances of the transformations it embodies;

such an approach also gives insight into the desugarer's shortcomings. Next, does the desugarer improve

the performance of programs? Existing results suggest that it does, and that further development of

this approach is justified. Finally, what sort of programming style will result in efficient programs in

this framework? A few examples will be developed to show how lists can be used to express abstract

datatypes and embody a general notion of "iteration" versus "iteration in parallel."

5.1 Verifying the operation of the desugarer

Every program optimization attempts to convert a source program to an equivalent (but hopefully more

efficient) target program. The programmer can consider any two pieces of code which produce identical

output from the optimizer to be equivalent with respect to that program transformation. A detailed

characterization of this equivalence is beyond the scope of this thesis; this chapter will instead explore

two uses of program equivalences. First, the desugarer can be used to show the equivalances which it

supposedly embodies. This provides a simple (though not exhaustive) check on the correctness of the

desugarer. Second, by passing pieces of code which are known to have the same operational behavior

to the desugarer, the power of the desugarer's transformations can be assesed. It should thereby be

possible to develop a notion of what the desugarer can and cannot do, and to explain the important

differences between pieces of code which are operationally identical but produce different output from

the desugarer.

As a simple example of the operation of the desugarer, examine the code produced from the following:

basicreduceids a b e o z =

let 11 = reduce o z [] -- should equal z

12 = reduce o z [e] -- should equal e (or o e z or o z e)

50

13 = reduce o z (a ++ b) -- these two lines should be equal
14 = (reduce o z a) 'o ' (reduce o z b)

in (11,12,13,14)

The intent of this routine is to verify that the desugarer's transformations of reduce fulfill the math-

ematical definition given for reduce-thus, the left hand sides of the mathematical definition appear.

The right-hand side of the complex third part of the definition appears as well; because the desugarer

will produce loops, the idea is to see if both pieces of code result in the same output. When desugared,

we discover that reduce does indeed behave as expected:

basic_reduce_ids a b e o z =

(Z,
(o e z),

(o (let h = \ 1 tl ->

in h a z)

(let h = \ 1 tl ->

in h b z)),

(o (let h = \ 1 tl ->

in h a z)

(let h = \ 1 tl ->

in h b z)))

case 1 of

[] -> tl

(:) e es ->

case 1 of

[] -> tl

(:) e es ->

case 1 of

[] -> tl

(:) e es ->

case 1 of

[] -> tl

(:) e es ->

h es (o tl e)

h es (o tl e)

h es (o tl e)

h es (o tl e)

It also suggests a possible optimization, since the second expression can most efficiently be compiled to

e rather than (o e z) (remembering that z is the identity of o).

The equivalence of the final two expressions is serendipitous in two respects. First, the output of the

desugarer is absolutely identical in both cases; in general, expressions will be considered equivalent if

they are simply identical up to renaming, so that equivalence in this case just happens to be stronger

(and thus easier to check visually). Second, because both expressions consume the lists a and b using

reduce, the desugarer's output will be identical for both expressions regardless of context; this is not

true of many expressions which generate one list from another. For example, consider the following code,

which shows that the desugarer uses a definition of ++ equivalent to the commonly accepted one:

basicappend_identity a b =

let 11 = a ++ b

16 = foldr (:) b a

in (11,16)

-- basic

-- definitional

This desugars to:

51

basic_appendidentities e a b =

((let h = \ 1 -> case 1 of

[] -> b

(:) e es -> (:) e (h es)

in h a),

(let h = \ 1 -> case 1 of

[] -> b

(:) e es -> (:) e (h es)

in h a))

This is straightforward enough. However, observe what happens when the latter list is consumed:

consumedappend o z a b =
reduce o z (foldr (:) b a)

This function yields code quite different from the code for 13 in the previous example:

consumedappend o z a b =
(let hi = \ 11 tll -> case 11 of

[] -> till

(:) el esl -> hi esl (o tll el)
in hi (let h2 = \ 12 -> case 12 of

[] -> b

(:) e2 es2 -> (:) e2 (h2 es2)

in h a)
z)

This points up two important aspects of the desugarer. First, while the transformations it performs are

local in the sense that they are based on small pieces of program text, and only require a fixed amount

of information to proceed, that information (in the desugarer, the variables a, u, and t) has important

effects on the desugaring process. The values of a, u and t are locally derived, too, since they are chosen

when desugaring the immediately surrounding program text. Nonetheless, the behavior of the desugarer

is context-dependent for expressions which generate new lists from existing ones.

The second (and related) argument is that the desugarer can only transform traversals of lists which

are generated canonically-using simple list operations (such as (:), [], and ++) directly, or using the

list generating expressions unfold and synthesize. In particular, the traversal foldl (:) b a actually

consumes the list a, and generates a completely new list whose contents are the same as (a++b). The

call to (:) does not appear directly in the source program, and consequently cannot be eliminated.

Becaues foldl is a list consumer, the desugarer cannot use information about the list which is traversed

to systematically generate the list which is produced. This suggests that using ++ to append lists is

actually superior to explicitly writing code to traverse the lists, since ++ will be understood by the

desugarer and represented efficiently regardless of context.

Some of the basic identities which the desugarer embodies are shown in Figure 5.1. Note especially

the promotion rules, which are the rules used by the desugarer to move traversal towards construction.

Also note that some definitions are given as equalities (using =) rather than equivalences (using -); in

52

Copy/list identity
[x I x<-l]

Append
a ++ b
[] ++ b

a ++ El[]

[el ++ b
(e:a) ++ b

= foldr (:) [1

= foldr (:) b a
= b

E [x I x<-a]

e:b
e:(a++b)

Operational

Operational
Left identity
Right identity
Unit
Definition

Concat
[x I xs<-l, x<-xsl
[x I xs<-[], x<-xs]
[x I xs<-[1], x<-xsl
[x I xs<-(l:ls), x<-xs]

Map definition
map f El[]

map f [el

map f (a++b)

reduce definition
reduce o z []
reduce o z [e]
reduce o z (a++b)

foldr definition
foldr f z El[]

foldr f z (a:l)

foldl definition
foldl f z []

foldl f z (l1++[a])

= reduce (++) [] 1

[x I x <- 1]
- 1 ++ [x x s<- ls, x<-xs]

1 ++ x I xs<-ls, x<-xsl

= []
= [f el
= (map f a) ++ (map f b)

= []
= (o z e)
_ reduce o z

= []
= f a (foldr

a 'o' reduce o z b

f z l)

f (foldl f z 1) af foldl z 1) a

reverse identities
reverse 1

reverse (reverse 1)

reduce o z (reverse 1)
foldl f z (reverse 1)
Promotion rules
[f xlx<-Eylys<-l, y<-ys]]

reduce o z [ylys<-l, y<-ys]l

= foldl (:) [] 1
1

reduce (\a b->o b a) z 1

foldr (\e v->f v e) z 1

[ylxs<-l, y<-[f xlx<-xsll]]

- reduce o z [reduce o z yslys<-l\l

Operational
Self-inverse
Swap in red.
Swap in fold

map thru.
reduce thru.

Figure 5.1: Definitional equivalences proved by the desugarer

53

Operational
Empty
Unit elim.
Definition

Empty
Unit
Join

Empty
Unit
Join

Empty
Step

Empty
Step

such equations, the right-hand side only holds as written, because the list is not systematically con-

structed. Thus, the previous example appears as an equality. The remaining entries will be true in all

contexts.

5.2 Limitations of the desugarer

The most important limitation of the desugarer was discussed in the previous section-it can only

optimize traversals of lists which are generated and consumed systematically using the functions handled

by the desugarer. With facilities to inline code, this limitation becomes less severe. However, there are

classes of list traversal which, though they traverse their argument only once, cannot be described using

these transformations. One important (and common) example is zip:

zip (a:as) (b:bs) = (a,b):zip as bs

zip_ _ = []

This function causes problems with similar schemes for eliminating lists [6]; here the problem is that zip

is traversing two lists. Three different systematic definitions can be given for zip; the first two consume

an argument systematically, the last one generates the result systematically:

zipfold (l,ac) e = case 1 of

[] ->([],ac)

(x:xs)->(xs,(x,e):ac)
zipl a b = (reverse . snd) (foldl zipfold (a,ac) b)

zip2 a b = (reverse . snd) (foldr (flip.zipfold) (b,ac) a)

zip3 a b = unfold (\(a,b)->case a of

[]->True

->case b of

[]->True

_ ->False)

(\(x:a,y:b)->((x,y),(a,b))

(a,b)

A more revealing function is the equally common takeWhile. This function is representable and

optimizable in systems which abstract over the list constructors (for example, using build):

takeWhile p (x:xs) I p x = x:takeWhile p xs

I otherwise = []

takeWhile p [] = []

The problem with this function, and many others, is that expressing it as a list traversal requires more

information than just the list itself-some information must be carried between iterations. In this

example, some record must be kept of whether the predicate has yet returned False.

Several possible solutions to this problem can be imagined. The most obvious is to create functions

which can be used to describe such situations. Unfortunately, this solution compromises much of the

current desugarer, which relies on a very small core of functions to perform its transformations. In

54

choosing to use a parallel set of functions (reduce and map) to represent traversal, the desugarer has

been structured in such a way that it will be difficult to incorporate traversals which (because of their

data dependencies) must be described as sequential operations. Many of these traversals can be described

by the list paramorphism found in Meijer et al [9].

Another significant limitation of the desugarer is its inability to handle nested lists cleanly. This is

evident in the following statement of concat. (map (map f)) (the right-hand side of the promotion rule

for map across concat):

[y I ys <- [[f x I x <- xs] I xs <- 1, y <- ys]

This generates the following code:

let hi = \ 11 -> case 11 of

[] -> []
(:) el esl ->

let es' = hi esl

in let h2 = \12 -> case 12 of

[] -> es'
(:) e2 es2 -> (:) e2 (h2 es2)

in h2 (let h3 = \13 -> case 13 of

[] -> []
(:) e3 es3 -> (:) (f e3) (h3 es3)

in h3 el)

in h 1

Here, the outermost traversals are properly combined to form the tail-recursive function hl; however,

the inner map (h3) is separated from the inner loop of concat (h2). This is because the inner traversals

are not nested until the outer traversals have already been combined by the desugarer; by this time the

code for both loops has already been generated.

5.3 Performance

Because the existing desugarer lacks a general code inliner, program code which is compiled directly

derives very little benefit from the transformations performed by the desugarer. In addition, the compiler

for which the desugarer is written is not complete enough to actually run code reliably and consistently.

Thus, an extensive performance analysis could not be done. The early results presented in this section

have been obtained by simulating the action of an inliner by hand. The resulting code has been compiled

using the desugarer, and the output has been massaged somewhat to produce an equivalent Haskell

program (type declarations have been inserted, dictionaries passed as arguments to prelude functions

have been removed, and overlapping identifier names have been uniquified).

Two versions of each benchmark program have been evaluated-the original source program, and

the inlined and desugared version. Both were compiled using hbc, the Chalmers Haskell B compiler,

producing binary files for a Sun SPARCstation. The code was run on a workstation with a SPARC-2

55

Figure 5.2: Performance data for benchmarks

main = (print.sum.concat.queens) 10

queens :: Int -> [[Int]]

queens k = queens_l k
where

queens_l :: Int -> [[Int]]

queens-l 0 = [[]]
queens_l m = [q ++ [n] I q <-

n <-
safe

queensl (m-i),

[l..k],

q n]

safe :: [Int] -> Int -> Bool

safe q n = and [(j /= n) && (i+j /= m+n)
&& (i-j /= m-n)

I (i,j) <- zip [1..m-1] q]

where m = length q + 1

Figure 5.3: 10-queens benchmark program

processor, and all of the times obtained varied by approximately .1 of a second at most. The performance

data is summarized in Figure 5.2.

5.3.1 Queens

The first benchmark used to evaluate the desugarer was the implementation of the n-queens problem

used as a benchmark in [6], and reproduced in Figure 5.3 (note that a simple version of the queensil

routine was used as an example in Chapter 4). This program is expressed entirely with lists, and as

such stands to benefit immensely from the desugarer's optimizations. Statistics are given for the ten-

queens problem, primarily because it runs in a reasonable amount of time when compared with larger

and smaller problems. The program simply sums the queens' positions in each solution, and returns

this sum; this forces every queen position in every solution to be completely evaluated, but generates a

minimal amount of output.

In addition to inlining the prelude functions and replacing enumeration with unfold, the source

56

queens shortest-path
hbc wall clock:
undesugared 45.4 38.4
desugared 25.9 33.8
% improvement 43 11
hbc heap usage (MB):
undesugared 190 98.6
desugared 66 78.1
% improvement 65 27

program itself has been aggressively inlined. The function safe is only called once, and so it has been

replaced by an equivalent comprehension in the body of queensl; further, since queens simply calls

queensl , the only call to queens was replaced by a call to queensl , and the body of queens was

inlined in main. Since this outermost call to queens l is a list traversal which is being summed over,

inlining it resulted in a radically different loop structure in main.

The most effective inlining, however, was to use the following definition for the function and:

and = reduce (\a b -> if a then b else False) True

This definition simply inlines the definition of the boolean and function && in the reduction. However,

this causes the loop-generation heuristics to recognize that the reduction can be terminated early if it

is represented as recursion, since the reduction now involves a case expression rather than a function

application.

The results are quite dramatic-the execution speed improved by about 43% (where 50% corresponds

to a twofold speedup), and memory usage improved by 65% (nearly a threefold drop). The speed improves

even more (to about 47%) when both versions of the program are compiled with optimization on; this

suggests that the desugarer exposes more opportunities for later optimization. All the figures obtained

are comparable to the rough estimates for the same benchmark in [6]. Nonetheless, as noted there, this

version of queens uses lists extensively, and so the performance improvement is likely to be much larger

than in most applications.

5.3.2 Shortest Path

The shortest path program is based on a program by Paul Sanders which was obtained over the Internet.

The version used for benchmarking repeatedly finds the shortest paths through a small acyclic graph,

and returns the sum of the lengths of the paths (in order to force repeated execution). A rather

poorly-written "split" routine was rewritten (an algorithm for merge sort will be described in the next

section) before benchmarking; the naive shortest-path algorithm used was not changed, however. Each

of three functions were only used once, and consequently were inlined and eliminated; because none of

the remaining functions is a simple list traversal, more aggressive inlining was not performed.

The performance improvements for this program were more modest. The run time improved by 11%,

heap allocation by about 27%. This is because while lists are used extensively in the program, they are

treated as data structure, and consequently cannot be easily eliminated. Most of the intermediate lists

which do get eliminated are created in one or another of the list comprehensions found in the program

code.

57

5.4 Style

A program optimization is only effective if it speeds up the code which is actually written by program-

mers. This section explores a coding style which is intended to be abstract while still providing ample

opportunity for optimization by the desugarer (assuming that there is a code inliner).

Earlier in this chapter, a number of examples were presented which showed that many expressions

cannot be optimized by the desugarer, particularly those which construct lists without using unfold or

synthesize. Often, however, a list needs to be constructed and stored into a data structure anyhow.

In cases like this, it doesn't matter much from the compiler's point of view how the list is constructed.

The best general rules of thumb for manipulating lists are these:

* Use a list comprehension or a prelude function whenever possible.

* If the list being traversed already exists in memory, it can be traversed by unfold or synthesize

when building an intermediate result.

* If the list being constructed must exist in memory, it can be built using a fold or a reduction.

The last two cases make defining certain common list functions (such as zip above) somewhat difficult,

since the programmer must guess how the function is being used before writing it. This suggests that a

more general solution to such problems is needed.

One way of circumventing such difficulties is to familiarize programmers with some of the theory of

lists [1, 2]. This, however, presumes a well-read and mathematically sophisticated programmer. The best

alternative in this framework will be libraries of routines which can provide the appropriate structure

to programs. For example, a routine which must repeatedly split a list and then recombine it can be

written as a reduction along with an abstraction of synthesize:

splitting :: ([a]->([a],[a])) -> [a] -> [a]
splitting splitter = concat . synthesize smallish empty splitter

where smallish (_:_:_) = False
smallish _ = True

empty [] = True

empty _ = False

This function allows two different versions of sorting to be expressed efficiently. The simplest is quicksort

quickSort = splitting QSplit

where QSplit (x:xs) = (a,x:b)

where (a,b) = partition (<x) xs

This function sorts stably; an unstable version can be made by partitioning (someOrder xs) instead.

A more complicated sort is merge sort, which can be defined (unstably) as follows:

mergeSort = reduce merge [] . splitting logSplit

where merge asQ(a:as') bsc(b:bs') I a < b = a:merge as' bs

58

I otherwise = b:merge as bs'

logSplit 1 = reduce joiner . someOrder . map (\e->(e,[]))

joiner (a,b) (a',b') = (someOrder (a++b'),someOrder (b++a'))

This uses the splitter logSplit to break the list up so that reduce will call merge a number of times

proportional to the length of the list, but with a call depth that is logarithmic in the length.

5.5 Using lifting to create monoids with identities

The true power of the map/reduce transformations, however, lies in their ability to express data struc-

tures other than lists-in fact, any data structure which is representable as a monoid. In order to

represent an arbitrary monoid, however, a translation must be given which will create an identity for

monoids which lack one. Mathematically, this is simply the process of lifting the monoid, which adds

the meaningless element I to it. In Haskell, this is expressed using the type Maybe, whose elements are

Nothing (representing I) and Just obj, which represents the object obj from the original domain of the

monoid. Thus, the following definitions can be used to lift a monoid:

lift = Just

lifted op (Just a) (Just b) = Just (op a b)

lifted op Nothing b = b

lifted op a Nothing = a

unlift (Just a) = a

The lift operation lifts an object, placing it in the lifted domain. The lifted version of op works

identically to op itself for elements of the original domain which have been lifted, but given Nothing

will do nothing with the remaining value, making Nothing the identity of op. Finally, unlift eliminates

lifting; because it does not include a clause for Nothing, it captures the fact that a lifted computation

which returns Nothing has no well-defined value.

A simple example of a monoid without an identity is the monoid of lists with at least one element,

which is the same as the ordinary list monoid except that the empty list [] cannot be used. The function

reducel expresses isomorphisms between this monoid and all others, just as reduce did for monoids

with identities:

reducel op xs = unlift (reduce (lifted op) Nothing (map lift xs))

There are also equivalents of foldl and foldr for lists with at least one element:

foldll op xs = unlift (foldl (lifted op) Nothing (map lift xs))
foldrl op xs = unlift (foldr (lifted op) Nothing (map lift xs))

Ttlus, anything that can be expressed with non-empty lists fits nicely into the framework of the opti-

mizations on arbitrary lists.

59

5.6 Representing collections using monoids

The third class of monoids which can be efficiently represented by lists are the Abelian monoids (which

are commutative and have an identity). These have already appeared briefly in the discussion of arrays,

and are expressed using the someOrder operation. This permits reductions to be performed in the most

efficient possible order, without regard to the order in which they occur in the program.

It is worth noting that many interesting data structures can be represented abstractly as abelian

monoids, even if expressing them this way concretely is difficult. One example of this is a bag, which

(for the purposes of this discussion) is a collection of objects in no particular order. It is most simply

represented as a list and can thus be written as follows:

bag = someOrder

contentsBag = someOrder

That is, a bag is simply a list the order of whose contents is immaterial. More complex sorts of bag can

be imagined; for example, Id uses imperativeness to implement a bag whose contents are truly arbitrarily

ordered. Nonetheless, the above definitions allow producer/consumer relationships like the following to

be written:

let products = bag C producer x I x<-rawMaterials]

in reduce consumer empty (contentsBag products)

5.7 Representing complex iteration systematically

Another use of the unfold/synthesize framework is to systematically represent complex iteration.

One example of this was the function splitting, which expressed complex tree-structured traversals

over a list. This section will examine a problem from parallel computing-blocking and strip mining of

arrays-and explain how it can be done implicitly in pH using type classes and systematic list generation.

The problem is to divide an n x n matrix into k2 m x m blocks, where n = kinm, so that the work

of processing the array can be divided evenly among k2 processors. Haskell and pH have arrays which

can be indexed by any type which is a member of the type class Ix. Thus, the idea is to define a special

instance of the Ix type which generates array indices in the appropriate manner. For the purposes of

the example, assume that the arrays are square, have sides whose length n is divisible by k, and have

bottommost index (0,0).

The definition of the datatype blocked can be found in Figure 5.4. The interesting function from the

figure is range. The array is split apart first horizontally and then vertically according to the list blocks.

The call to synthesize to construct blocks causes the indices to be splist in half, then each half to be

split in half again, and so on. As a result, any computation which uses range to obtain the indices of

an array (this ought to be every computation on that array) will first divide the computation up into k

60

data blocked = B (Int, Int)

k:: Int

k = 4 -- If we have, say, 16 processors

instance Ix blocked where

range (S(_,_),S(n-1,_)) = [S(x+xb,y+yb) I (xb,_)<-blocks, (yb,_)<-blocks,
x <- unfold (>=m) stepper 0,

y <- unfold (>=m) stepper 0]
where m = quot n k

blocks = synthesize msized (_->False) split (O,n)
msized x = x==m

split (base,side) = ((base,side2),(base+side+l,side-side2))

where side2 = quotient side 2

stepper n = (n,n+1)

index (S(_,_),S(n-1,_)) S(x,y) = xp*m + yp + bsize * (xb*k + yb)
where m = quot n k

bsize = m * m
(xb, xp) = quotRem x k

(yb, yp) = quotRem y k

inRange (S(_,_),S(n-1,_)) S(x,y) = O<=x && x<n && O<=y && y<n

Figure 5.4: Code to define an implicitly-bolcked array indexing scheme

strips in the x direction, and then divide each strip into k blocks in the y direction. Each of these blocks

is then iterated over from lowest to highest index in the y and x directions. The linearization specified

bly the function index is imposed by Haskell, and groups blocks together; the rows and columns of the

array as a whole are thus not stored contiguously in the linearized array. The conceptual notion is that

each block will map to storage local to a different processor in a multiprocessor implementation of the

algorithm. Using the desugarer, that notion can be expressed in one place, and simply used abstractly

anywhere it is needed. This avoids a great deal of effort which would otherwise be necessary to strip mine

loops throughout the program, and ensure that these loops remain properly coded whan the problem

dimensions or machine size change.

61

Chapter 6

Related work

The transformations described in this thesis are (as noted previously) based heavily on Gill, Launchbury,

and Peyton-Jones's "Short Cut to Deforestation" [6]. That work focuses heavily on the interaction of

the foldr and build operations, just as this work centers around the use of map, reduce, unfold and

synthesize. Both share the view that lists play a pivotal role in functional programs, and that it is

therefore worth spending time and effort on optimizations specifically geared towards them.

The work of Waters [18] suggests that lists need not be used so pervasively; rather, a special abstract

notion of a sequence can be used exclusively to express iteration. This divorces the data structure (lists)

from the abstract concept of iteration, and prevents the programmer from unintentionally mixing them

in ways which affect performance. Nonetheless, the constraints of Haskell prevent the integration of

a separate sequence type into the compiler, though such an extension can probably be added to the

language without tremendous difficulty.

Most of the papers on deforestation focus on general transformations which will work for arbitrary

algebraic data types. Wadler's original transformation [17] required that the program be in a special

treeless form, which meant that it could not be used on arbitrary source code. The precursor to de-

forestation, the listless machine [14], is even more constrained; its programs must execute in bounded

space. The work of Chin [5] allows the compiler to discover when code can be safely deforested, and

permits higher-order functions to be used with deforestation by perfoming inlining to obtain first-order

code wherever possible.

A number of works on constructive programming proved indispensible in fleshing out the theory

behind map and reduce, and in providing inspiration for the unification of reduction and folding. Chief

among these are Bird's lecture notes on constructive programming, which heavily emphasize the use of the

list monoid to express computation (though the reduce operation is invariably discarded in favor of foldl

or foldr when code is actually run) [1, 2]. The text by Bird and Wadler [3] provides a more pragmatic

view of the constructive style, directed as much towards explaining the invention of new abstractions

as to exploring the efficient uses of existing ones. An amusingly-titled paper by Meijer, Fokkinga, and

Paterson [9] explores general relationships between algebraic types and the recursive functions used to

62

traverse them; the examples for lists are excellent, and the paper presents structures for traversal which

are not covered elsewhere, in particular anamorphisms (such as unfold) and paramorphisms (the list

paramorphism can capture patterns of traversal similar to map, but where the resulting list will also

depend on information carried between iterations).

Both the works on constructive programming and the works on mathematical tranformation of func-

tional programs have roots in an early paper by Burstall and Darlington [4]. This paper described

general approaches which can be used to optimize functional programs by describing their operations

algebraically or inductively, and essentially proving them equivalent to simpler or faster programs. The

style of their examples is remarkably similar to that found in the later papers on constructive program-

ming. This early paper was intended to describe how such proof techniques might be automated by

unfolding uses of a function (similar to inlining) and then folding them into new functions.

Finally, the actual implementation of the desugarer-particularly the translation for list compre-

hensions-is based on previous work on list comprehension compilation. As noted in Chapter 4, the

canonical presentation of list comprehension compilation can be found in Simon Peyton-Jones's book

on functional language implementation [15]. The original motivation for the work presented here was

to transparently encapsulate the behavior of the list and array comprehensions from Id, which were

designed and implemented over the course of several years by a large group of people (including Aditya,

Nikhil, and Arvind) and are described in documentation put together by Zhou 119]. Finally, the paper

by Heytens and Nikhil [7] provided a springboard in its discussion of open lists and comprehensions in

a parallel environment.

63

Chapter 7

Conclusions

By using the functions map and reduce, a large class of list traversals can be described. The particular

choice of these two functions permits parallel list traversals to be cleanly and efficiently described. Higher

order functions can be used to express data dependencies between elements as they are traversed. Be-

cause map and reduce together express homomorphisms between lists and other monoids with identities,

computations on a large class of abstract data structures can be written using list notation for iteration.

This permits parallelization of the corresponding data structures without additional compile-time ma-

chinery, and suggests that an abstract coding style coupled with a suitable compiler will permit efficient

code to be generated with comparatively little effort.

List traversals cannot be entirely eliminated unless the lists they traverse are described systematically.

This can be done using a pair of list generating functions, unfold and synthesize. Here again, an

abstract coding style allows such lists to be used to represent how to perform iteration; for example,

synthesize can be used to block an array into smaller chunks which are then iterated over in a more

conventional manner using unfold. Used this way, these functions capture the notion of "iteration" in

a clean and abstract manner.

The desugarer built based on these principles shows a good deal of promise, though it has not yet

realized the practical potential of the approach. List comprehensions and loops, crucial expressive tools in

pH, can be expressed as canonical list traversals when they are rewritten by the desugarer. The higher

order functions necessary to exploit the expressive power of the transformations can be represented

entirely at compile time. Thus, the run-time code will generate additional closures, which would impose

a heavy performance penalty. In addition, code for list traversals can be generated using heuristics which

are based on the structure of the list being traversed and of the traversal itself. Writing list traversals

using map and reduce therefore allows compilation to be adapted to the structure of the list which being

traversed.

64

7.1 Future Work

The pH desugarer and the transformations upon which it is based are complete and work as planned;

nonetheless, there is still a great deal of work to be done to make the new optimizations useful and

effective. Only when map/reduce optimization is working as planned on ordinary program code can its

true effectiveness be judged.

7.1.1 Inlining

The most important step in making map/reduce optimization broadly applicable is to allow uesr code to

be inlined and optimized. Functions from the prelude can also be most cleanly optimized using the gen-

eral framework of inlining, rather than building their definitions into the desugarer. This eliminates the

numerous engineering problems associated with using built-in functions in a language where identifiers

can easily be renamed and redefined.

The basic principle of the code inliner is simple. The programmer annotates the program, indicating

that certain objects ought to be inlined; the definitions of these objects are then copied by the compiler

wherever they occur. Special provision must be made for recursive (or mutually recursive) objects; in

general, it is possible to inline a function too many times, resulting in code explosion. Some care is

therefore necessary, since the goal is primarily to inline functions so that their code can be optimized

away, not to increase the net amount of code in the program.

One tricky engineering problem must be overcome to allow a general code inliner to be used with

the desugarer. The difficulty is that the inliner would like to represent its code in the clean intermediate

language outputted by the desugarer. However, the desugarer itself needs to perform code inlining before

it optimizes the code it is producing. This means first that the program must be carefully ordered so that

desugared code is available to be inlined when it is needed. In addition, all the "plumbing" necessary to

implement the transformations during desugaring will need to be extended to the code inliner (otherwise

the desired optimizations will not occur).

These difficulties suggest that the transformations may be better performed as a later, separate stage

of compilation. This will be discussed in greater depth below (Section 7.1.4).

7.1.2 Loop Introduction

The eventual targets of the pH compiler are the back ends of existing Id compilers. These compilers

have special syntax and semantics for iterative loops quite different from the corresponding semantics for

tail-recursive functions. The pH compiler represents loops as specially-structured tail-recursive function

calls marked by a "loop" pragma. Though the desugarer attempts to use this structure in the code it

generates, no effort has yet been made to tag occurrences of loops, or to guarantee that they are "the

right shape". These annotations need to be added.

65

A more general "loop introduction" phase could prove beneficial; such a phase would recognize any

tail-recursive function expressible as a loop, and re-structure it accordingly. Because existing Id compilers

have a large amount of specialized machinery for compiling loops efficiently, this could have a significant

impact on the observed efficiency of the code generated by the desugarer (especially when 77-abstraction

turns recursion into iteration).

7.1.3 Improving heuristics

While the compiler currently generates good code for list traversals, there will always be room for

improvement in the heuristics which do so. At the moment the heuristics are very simple-the most

complex ones check to see if traversal functions are higher-order or contain a case expression. More

complex heuristics may be necessary to prevent the needless introduction of loop constants, or to make

more sophisticated choices between tail recursion and forward list traversal. Some generated code can

also be specialized based on the execution model or language being used-for example, in a lazy execution

of a program, not all calls to functions need to be evaluated, thus permitting some traversals to be "cut"

when a result is obtained.

Any changes to the heuristics will need to be evaluated to determine their efficacy. Thus, this work

is being deferred until the remainder of the compiler stabilizes. Once the compiler works reliably, and

the inliner is in place, the effects of different heuristics on the speed of compiled code can be determined.

7.1.4 Separating desugaring from map/reduce optimization

One solution to the problem of integrating inlining, desugaring, and map/reduce optimization is not to

integrate them at all! Given that the latter two are already integrated in the existing compiler, there are

several options. The first is simply to discard the desugarer and modify the original Haskell desugarer to

use the naive desugaring rules. Alternatively, the compiler can use the desugarer without any inlining,

and generate code which includes a special canonical traversal function. This function could then be

used in later stages of the compiler to re-create the internal data structures required for optimization.

In either case, a separate optimization phase can make use of most of the same data structures and

loop generation routines as the existing desugarer, and as such would not require a large amount of

reengineering. If inlining is incorporated into the compiler, there need only be one or two dependencies

between the new transformation phase and the prelude routines; these dependencies could even be made

internal, so that renaming problems would not occur.

Turning map/reduce transformations into a separate compiler phase would also allow experimentation

with more sophisticated optimizations. For example, nested lists can be handled by repeatedly applying

the transformations, expanding traversals into loops only on the final pass (or as a separate pass at the

end).

66

7.1.5 Combining multiple traversals

One particularly tricky variation on map/reduce optimization is to permit it to combine multiple traver-

sals of the same list. This was described in the original shortcut paper [6], but was not implemented

in the Glasgow Haskell compiler at the time. It requires a good deal of record-keeping on the part of

the compiler, but can completely eliminate a far larger set of list traversals than would otherwise be

possible without heavy inlining. There is a tradeoff between code duplication (a constant risk when

using inlining) and loss of iteration (for example, when a list is traversed using both foldl and foldr,

combining thse traversals will yield a recursive function).

7.1.6 Bottom-up unfold/synthesize optimization

Instead of implementing list optimization as a top-down process, in which traversals are combined and

moved towards the lists which they traverse, the compiler can instead move lists upwards towards the

code which traverses them. As noted in Section 3.2, this would require a uniform notion of what it means

to generate a list. The chief attraction of upwards optimization is that it can potentially solve the zip

problem (see Section 5.2) by providing rules to combine systematically generated lists. Some information

would still need to be carried downwards, however-for example, in order to combine multiple traversals

those traversals need to be "brought together" somehow.

Unfortunately, unfold and synthesize are not easily unified. Even if unfold is expressed as a

synthesis, it is still unclear how to generate efficient code for both sorts of list traversal. Moreover, while

synthesize breaks the construction of a list up into the construction of its sublists, it does not need to

do so evenly--a simple example is generating a list from the right or from the left:

leftnum = synthesize (\(l,u)->l==u) (_->False) (\(l,u)->((l,1),(l+1,u))) (1,10)
rightnum = synthesize (\(l,u)->l==u) (_->False) (\(l,u)->((l,u-1),(u,u))) (1,10)

These widely disparate uses of synthesize hint at the difficulty of combining list generation techniques

without discarding parallelism. A clean solution will likely yield insight into the structure of parallel

iteration, and perhaps suggest new ways of formulating data structures which can be iterated over.

67

Bibliography

[1] Richard Bird. An introduction to the theory of lists. In Logic of Programming and Calculi of
Discrete Design, pages 5-42. Springer-Verlag, 1987.

[2] Richard Bird. Lectures on constructive functional programming. In Constructive Methods in Com-
puting Science, pages 151-216. Springer-Verlag, 1989.

[3] Richard Bird and Philip Wadler. Introduction to Functional Programming. Prentice Hall, 1988.

[4] R M Burstall and John Darlington. A transformation system for developing recursive programs.
Journal of the Association for Computing Machinery, 24, 1977.

[5] Wei-Ngan Chin. Safe fusion of functional expressions. In Proc. of the ACM Symposium on LISP
and Functional Programming, pages 11-20, 1992.

[6] Andrew Gill, John Launchbury, and Simon L Peyton Jones. A short cut to deforestation. In
Proceedings of the 6th ACM Conference on Functional Programming Languages and Computer
Architecture, pages 223-232, 1993.

[7] Hichael L Heytens and Rishiyur S Nikhil. List comprehensions in AGNA, a parallel persistent
object system. In Proceedings of the 5th ACM Conference on Functional Programming Languages
and Computer Architecture, 1991.

[8] Paul Hudak, Simon L Peyton Jones, and Philip Wadler, eds., et. al. Report on the functional
programming language Haskell, version 1.2. SIGPLAN Notices, 27, 1992.

[9] Erik Meijer, Maarten Fokkinga, and Ross Paterson. Functional programming with bananas, lenses,
envelopes, and barbed wire. In Proceedings of the 5th ACM Conference on Functional Programming
Languages and Computer Architecture, pages 124-144, 1991.

[10] Rishiyur S Nikhil, Arvind, and James Hicks. ph language proposal (preliminary). Working docu-
ment describing pH extensions to Haskell.

[11] R.S. Nikhil. Id language reference manual, version 90.1. Technical Report 284-2, MIT Computation
Structures Group Memo, July 1990.

[12] Amr Sabry and Matthias Felleisen. Reasoning about programs in continuation-passing style. In
Proc. of the ACM Symposium on LISP and Functional Programming, pages 288-298, 1992.

[13] Tim Sheard and Leonidas Fegaras. A fold for all seasons. In Proceedings of the 6th ACM Conference
on Functional Programming Languages and Computer Architecture, pages 233-242, 1993.

[14] Philip Wadler. Listlessness is better than laziness: Lazy evaluation and garbage collection at
compile-time. In Proc. of the ACM Symposium on LISP and Functional Programming, pages 45-
52, 1984.

[15] Philip Wadler. Chapter 7: List comprehensions. In Simon L. Peyton-Jones, editor, The Implemen-
tation of Functional Programming Languages. Prentice Hall, 1987.

68

[16] Philip Wadler. Views: A way for pattern matching to cohabit with data abstraction. In Proc. of
the Workshop on Implementation of Funtional Languages, pub. as as Chalmers PMG -R17, 1987.

[17] Philip Wadler. Deforestation: Transforming programs to eliminate trees. Theoretical Computer
Science, 73:231-248, 1991.

[18] Richard C Waters. Automatic transformation of series expressions into loops. ACM Transactions
on Programming Languages and Systems, 13, 1991.

[19] Yuli Zhou, ed. List and array comprehension desugaring. Chapter in Id-in-id compiler documenta-
tion.

69

