
Optimization of Power and Delay in VLSI Circuits

Using Transistor Sizing and Input Ordering

by

Chin Hwee Tan

B.S. Electrical Engineering with highest honors

University of Illinois at Urbana-Champaign, 1992

Submitted to the Department of Electrical Engineering and Computer Science
in partial fulfillment of the requirements for the degree of

Master of Science

in

Electrical Engineering

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

May 1994

© 1994 Chin Hwee Tan. All rights reserved.

The author hereby grants to MIT permission to reproduce and to distribute
publicly paper and electronic copies of the thesis document in whole or in part.

Signature of Author
Departmen/of Electrical Engineering and Computer Science

/, AMarch 11, 1994.

Certified by .. ,
Jonathan Allen

Director, Research Laboratory of Electronics, MIT
Professor, Department of Electric Ei gneeng and Computer Science

A-4h A n Thesis Supervisor

Accepted by
Frederic R. Morgenthaler

Chair, Department Comnttee on Graduate Students
1: % t

pASSiWjfS t
J O rrn; leak

· Jd;8-,:19~i --s4 > | w v fi ok _ Hi

L '.I RARE'

I

I

Optimization of Power and Delay in VLSI Circuits

Using Transistor Sizing and Input Ordering

by

Chin Hwee Tan

Submitted to the Department of Electrical Engineering and Computer Science
on March 11, 1994 in partial fulfillment of the requirements for the Degree of

Master of Science in Electrical Engineering.

ABSTRACT

Low-power design is becoming increasingly important in today's technology as

wireless communication and mobility of equipment become increasingly desirable. In

this thesis, a fast and efficient low power design method using cell libraries is

developed. This optimization routine utilizes accurate and efficient statistical power

estimation methods, transistor sizing, and input ordering. A delay model which takes

into account input transition time is developed. An augmented cell library that

contains cells that have been designed and sized to give good power and delay trade-

offs is constructed, keeping area and input ordering in mind. Finally, an algorithm that

selects the best sized versions to use for the circuit so that a given delay constraint is

satisfied with minimal power dissipation is developed. Options that use the switching

probabilities of a node, input ordering, and critical path analysis, are also provided to

enhance the basic algorithm.

Thesis supervisor: Jonathan Allen

Title: Director, Research Laboratory of Electronics, MIT
Professor, Department of Electrical Engineering and Computer Science

3

4

Acknowledgments

Special thanks to my thesis supervisor, Jonathan Allen, for his help and advice

throughout the development and completion of this thesis. His patience, understanding

and encouragement has been invaluable.

Thanks to Jose Monteiro, Ignacio McQuirk, Ricardo Telichevesky, Mark Seidel

and Chris Umminger for their technical assistance, and to rest of the VLSI group up on

the 8th floor for their help in one way or another.

Thanks to the Singapore Economic Development Board for their support of my

pursuit of a graduate degree at MIT, which is truly a great institution, both for its

achievements and its people.

Thanks to all my friends in Massachusetts, who have made my stay here

enjoyable and memorable.

Heartfelt thanks to my family, especially my parents, for all their love and

support, for always.

5

6

Contents

1 Introduction 15

1.1 Introduction 15

1.2 Background 16

1.2.1 Transistor Sizing 16
1.2.2 Power Estimation 16
1.2.3 Input ordering 17

1.3 Motivation 18

1.4 Outline of thesis 19

2 Delay Modeling 21

2.1 Introduction 21

2.2 Delay Model 21

2.3 Data Point 25

2.4 Capacitive Load Extraction 27

2.5 Circuit Delay 28

2.6 Summary 29

3 The Augmented Standard Cell Library 31
3.1 Introduction 31

3.2 Layouts 32
3.2.1 Standard Cell Geometry 32
3.2.2 Area Minimization 33
3.2.3 Sizing Methodology with Input Ordering 34

3.3 Power and Delay Curves 35

3.4 Parameter Extraction 38
3.4.1 Delay Parameters 38
3.4.2 Capacitive Load 40

3.5 Summary 41

7

4 Optimization Strategies
4.1 Introduction

4.2 Definitions

4.3 Critical Path Determination

4.4 Impact of change of gate
4.4.1 Power Dissipation
4.4.2 Delay

4.5 Basic Optimization Strategy

4.6 Problems and Solutions

4.7 Limitations

4.8 Summary

5 Enhancements to the Basic Strategy

5.1 Introduction

5.2 Threshold

5.3 Check_Critical_Path

5.4 Maxtime

5.5 Summary

6 Input Ordering
6.1 Introduction

6.2 Dual Process

6.3 Input Ordering at a Gate

6.4 Input Ordering Options
6.4.1 Input Ordering at All Nodes
6.4.2 Input Ordering at each stage

6.5 Summary

7 Implementation and Results
7.1 Introduction

7.2 Implementation

7.3 Test Set

7.4 Results

7.5 Effectiveness of the optimization tools
7.5.1 The Augmented Standard Cell Library
7.5.2 The Basic Algorithm

8

43

43

43

45

47
47
49

50

53

54

55

57
57

57

60

61

62

63

63

63

64

65
65
66

66

67

67

67

69

70

72
72
73

7.5.3 Threshold 74
7.5.4 Maxtime 74
7.5.5 Input Ordering at all Nodes 75
7.5.6 Input Ordering at each stage 76
7.5.7 Check_Critical_Path 76

7.6 Overall Effectiveness 77

7.7 Summary 79

8 Conclusion 81
8.1 Introduction 81

8.2 Unique Contributions 81

8.3 Future directions 82

8.4 Summary 83

9 Bibliography 85

9

10

List of Figures

FIGURE

FIGURE

2.1

2.2

FIGURE 2.3

FIGURE 2.4

FIGURE

FIGURE

FIGURE

FIGURE

FIGURE

FIGURE

FIGURE

FIGURE

FIGURE

FIGURE

FIGURE

FIGURE

FIGURE

FIGURE

FIGURE

FIGURE

2.5

2.6

3.1

3.2

3.3

3.5

3.6

4.1

4.2

4.3

4.4

4.5

4.6

5.1

7.1

7.1

Nand gate with input load of two and output load of four.

Fall delay of oai21 gate versus output load with different
input transition times.

Fall delay of oai21 gate versus input load with different
output loads

SPICE plots for nand2 rise delay to illustrate 25%, 50%
and 70% data points.

Capacitive load determination

Delay of inverter versus width of transistors (p & n)

Layout of a two-input nand gate.

Sizing of transistors in a three-input nand gate.

Power versus delay curve for a three-input nand gate
with output loads of xl, x2 and x8.

Input drive lines for both pin inputs of nand2.

Capacitive load extraction

Definitions of terms in describing circuit topology

Critical path determination

Changes in power dissipation due to changes in load.

Impact of change of gate version on delay

Slack determination

Propagation of effects of change of gate

Change in critical path

Plot of power and delay trade-offs achieved

Redundant Optimization

22

23

24

26

27

28

33

35

36

39

40

44

47

48

50

52

53

60

73

77

11

12

List of Tables

Table 3.1: Delay parameters for minimum-sized 2-input nand gate 40
Table 7.1: Results for minimum-sized mapping 71

Table 7.2: Results for basic algorithm 71

Table 7.3: Results for using threshold with and without maxtime 71
Table 7.4: Results for using input ordering and threshold with and

without maxtime 72

Table 7.5: Results for using threshold, input ordering at all nodes and at
each stage with and without check critical path. 72

Table 7.6: Summary and comparisons of best results 78

13

14

CHAPTER 1

Introduction

1.1 Introduction

In VLSI circuit design, two major concerns in optimization have been delay and area.

Research has been done on the circuit level to examine the trade-offs between them. In

particular, transistor sizing has been well established as a good way to achieve

reductions in the delay of circuits, while the resultant increase in rectangular area from

transistor sizing can be minimized by special layout techniques.

As wireless communication and mobility of equipment become increasingly

desirable, power dissipation of circuits has become a major concern in circuit

synthesis. In performance driven synthesis of VLSI circuits, low-power design has

joined the ranks of area and delay as major motivations in optimization.

Hence in today's VLSI circuit design, there is a need to ensure low power

dissipation while satisfying delay constraints.

15

Introduction

1.2 Background

1.2.1 Transistor Sizing

Transistor sizing is well established as an effective way to speed up circuits. Numerous

studies have been done in this area [1 to 9].

For static CMOS, the delay of a transition can be modelled as dependent on RC,

where R is the effective resistance of the transistors in the pull-up or pull-down

circuitry and C is the capacitive load driven by these transistors. R is inversely

proportional to the width of the transistors while C is proportional to the size of the

transistors in the next stage. Hence by increasing the width of the transistor at the

current stage delay can be reduced.

The effects of transistor sizing were studied by custom sizing a four-bit adder

[38]. A speedup of 2.3:1 was achieved. The transistors were arranged such that the

large p-transistors were above the small n-transistors and vice versa, so that no

increase in rectangular area resulted from sizing.

In most of the literature on sizing, the length of each transistor is kept at a set

value while the width is treated as a continuous variable. Linear Programming

methods or other numerical simulation methods are then applied to find the optimal

size for each transistor in a circuit [1, 17].

Delay has been shown to be reduced by 60% [2] and in certain cases up to 73%

[1], hence proving that transistor sizing is a useful tool in delay optimization.

1.2.2 Power Estimation

As power dissipation becomes an increasingly important issue, accurate power

estimation models are needed. Previous work on power, delay and area optimization

16

Background

such as Berkelaar's work, [17, 18] lack a technique for accurately estimating power

dissipation.

Recent developments of probabilistic techniques have produced a fast and

efficient way of estimating power [13], which is proportional to the average switching

probability of a node. The power dissipation of a gate is approximated by the change

in energy for charging and discharging the output capacitance of the gate. Since a gate

does not necessarily switch at every clock cycle, the frequency of switching is

estimated by the clock frequency multiplied by the expected number of switches per

cycle.

Average power is given by:

1 2d) (E (transitions/cycle)
P vX C XV)X T((Eqn 1.1)

cyc

where Pavg denotes average power, Cload is the load capacitance, Vdd is the

supply voltage, Tcyc is the global clock period, and E(transitions) is the expected value

of the number of gate output transitions per global clock cycle [13].

In [13], signal probabilities are estimated by a process of symbolic simulation. A

general delay model is used so that the Boolean conditions that cause glitching in

circuits can be correctly computed to be included in calculations of switching

probabilities.

This statistical method of power estimation provides a simple way of examining

power dissipation in terms of sizing, since gate capacitance is proportional to transistor

width.

1.2.3 Input ordering

Delay through gates with multiple inputs is dependent on the arrival times of the input

transitions. The time between the latest switching of the inputs to the switching of the

17

Introduction

output is minimal if the input that switches last is closest to the output node, due to

body effects.[37]

The inputs to a gate can be ordered such that the latest arriving input is placed at

the fastest pin of a gate, so as to achieve better speed performance. Previous studies

have shown that input ordering can achieve a speedup of up to 60% decrease in delay

[25].

Input ordering does not cause any increase in power dissipation due to capacitive

load increase, and may actually decrease power due to shorter delay times and hence

possible reduction in glitching. It provides yet another means of delay and power

optimization.

1.3 Motivation

Previous work has attempted to size individual transistors in custom designed

circuits. However, commercially, product to market times must be small, and hence

much circuit design is done with standard cells as the target technology. Since standard

cell libraries are widely used, it is feasible to have a library of gates with transistors

that are previously sized to give good power and delay trade-offs, and then the

problem of optimization is to choose the best version of each cell to use. This provides

a method with larger granularity, and because of the early binding of transistor widths,

a computationally simple method of optimization.

In many available standard cell libraries, cell transistors are not minimum-sized,

and only one version of each gate is available. Examination of the power and delay

curves of various gates show that delay can be reduced significantly with sizing

without much increase in power. Hence, a library where several sized versions of a

gate are available, where each gate is sized with area minimization and input ordering

in mind such that they give good delay response without high power dissipation,

18

Outline of thesis

would be very useful when designing for power and delay performance. Since the aim

is to have low power dissipation, circuits are first mapped with minimum-sized gates

and then changed to larger gates as necessary to satisfy delay constraints. In this way,

we start with minimum power, and gates that are not dominant in determining the

delay of the circuit remain minimum-sized, thereby ensuring low-power dissipation.

Having mapped the circuit, the switching probability of each node can be calculated,

and this information, as well as the delay parameters of each gate, can be utilized in

optimization routines that select the version that is best suited for each node, such that

a given delay constraint is satisfied with minimum power.

1.4 Outline of thesis

This thesis presents a fast and efficient low power design method using cell

libraries. Transistor sizing, input ordering and accurate and efficient statistical power

estimation methods are utilized in the optimization process. This work can be divided

into three sections. The first is the development of an accurate delay model, which

takes into account input transition times and the different delay times of each input pin

of a gate. This is described in chapter 2.

The second section is the development of an augmented standard cell library,

which contains cells that have good power and delay trade-offs. This involves

designing the geometry of each cell so as to reduce area increases due to sizing,

developing a sizing methodology for delay reduction, a selection process of cells from

power and delay curves, and finally extracting the necessary parameters. All these

processes are described in chapter 3.

The last section is the development of optimization strategies used in selecting the

best versions of each gate function to use in a circuit so as to satisfy a delay constraint

while minimizing power dissipation. Chapter 4 describes the basic traversal and

selection process, including circuit delay calculations and critical path determination.

19

Introduction

Chapter 5 describes several options implemented to enhance the basic algorithm.

These options include the threshold option which uses the switching probabilities and

output load of nodes to determine what cells to be changed first, a check-critical-path

option and a maxtime option that allows more flexibility in cell selection. Chapter 6

describes how input ordering is implemented and used in optimizing circuits.

Results from testing the augmented library with the selection algorithms on

several test circuits are presented in chapter 7, along with a discussion of the

effectiveness of the cells in giving good power and delay trade-offs, as well as the

contribution of the various options.

The thesis is concluded with a discussion of the contribution of this work and

possible avenues for future work.

20

CHAPTER 2

Delay Modeling

2.1 Introduction

An accurate delay model is a necessity for speed optimization. Often, in optimization

routines, gate delays are treated as a fixed quantity, regardless of input slope and

output load. There is also a tendency to associate a gate with only one delay, ignoring

the difference between output rise (pull-up) and fall (pull-down) times. These issues,

however, have been shown to affect the speed of a gate [12, 27], and hence need to be

taken into account in delay estimation.

2.2 Delay Model

In this thesis, a "pin delay" model for delay is used. This model is built upon that

provided by the Sequential Interactive Synthesis (SIS) package [32]. The output delay

is modeled for each pin of a gate when it is the last one to change, or the one that will

cause a switching event. This delay model introduces block and drive values for each

21

Delay Modeling

input pin into the cell library characterization. Separate block and drive values are

derived for rise and fall delay. Delay is estimated by:

Gatedelay = block delay + (Eqn2.1)
Outputdrive

However, this delay model does not take input transition time into account. To

verify this delay model and to investigate the effects of input transition time on output

delay, cells from a standard cell library were simulated. Cells were laid out with

different output loads to examine the dependence of delay on output load, as well as

with different input loads (or the load the fanin node sees), to vary the input transition

time (Fig. 2.1).

input output
load load

FIGURE 2.1 Nand gate with input load of two and output load of four.

All cells are designed in static CMOS. The output load seen at a node is the sum

of gate capacitances of all the p and n transistors it is connected to. The input load of a

gate pin is the output load seen by the fanin node connected to this pin, and it includes

the gate capacitances of the p and n transistors in the library cell that this pin leads to,

as well as the gate capacitances of the transistors in other cells that are connected to

the fanin node. All capacitive loads are measured in terms of the load of an inverter, or

the capacitive load of a p-transistor and an n-transistor. To vary the input transition

time, cells were laid out with their input nodes connected to varying numbers of

22

Delay Model

inverters, thereby varying the load of the fanins and hence varying the transition times

of the fanin output, which is the input to the current gate. The output of the gate was

also connected to varying numbers of inverters to vary the output load.

The delay values were obtained for each pin in the gate by simulating this gate

with the pin input as the one that will cause a transition at the output, other inputs

remaining constant during this transition. These cells were simulated with HSPICE

and their delay plotted against output load (Fig. 2.2). For a given input transition time,

delay is found to have a linear relation to output load, verifying the delay model used

in SIS. However, as input transition time is varied by varying the input load, delay is

seen to shift upward substantially. This shows that input transition time cannot be

ignored in the delay model.

5

4.5

4

3.5

3

X 2.5

2

1.5

1

0.5

0 1 2 3 4 5
output load (number of inverters)

6 7 8

FIGURE 2.2 Fall delay of oai21 gate versus output load with different input transition times.

23

.......
' '' '

+" --

input anout=l
+ input fanout=2
o input fanout=4
x input fanout=8

.i

_ · · · · · ~~~~

I[! I I I

I

Delay Modeling

To investigate the dependency of output delay on input transition time, delay is

plotted against the input load (Fig. 2.3). For a given output load, delay has a linear

relation with input load as well. Recognizing the effect of input slope on output delay,

a new parameter, the input drive, is added into the delay model. Delay is now

estimated by:

Gatedelay = load + blockdelay + tPload
Inputdrive Outputdrive

The SIS delay package has been modified to take input drive into account.

E
Z..0
"a

(Eqn 2.2)

input load (number of inverters)

FIGURE 2.3 Fall delay of oai21 gate versus input load with different output loads

24

Data Point

2.3 Data Point

To ensure that no overlap of delay calculations occurs between successive gates in a

circuit, delay values are taken from a point in the input transition (e.g. when it reaches

50% of its final value) to a corresponding time in the output transition (e.g. when that

output reaches 50% of its final value).

This method has been used in previous work to find delay. Brocco modelled gate

delay as the time to reach 20% of final value after the input from the previous stage has

reached 20% of its final value [12]. Kayssi used a similar method, using Vil as the data

point [27]. Weste and Eshraghian modelled the time taken for a logic transition to pass

from input to output as the time difference between the 50% level of the input

transition to the 50% output level [35].

To investigate the best data point with which to obtain delay values, voltage

transition graphs of several gates were analyzed. The input drive, block delay and

output drive were obtained with different data points. The voltage transition graph of a

node is found to be initially very dependent on the rate of change of the input. Taking

delay values from 25% (close to threshold voltage) of input transition to 25% of output

transition results in a small input drive value, comparable with that of the output drive.

As the data point is moved upwards from 25% to 50% to 70%, the input drive

increases, while the output drive decreases. This indicates that the last portion of the

transition graph is heavily dependent on the output load.

Analyzing the delay among several gates, the 50% point was found to be most

consistent. Taking fall delay from the 25% data point yields a much larger delay than

when using the 70% data point for certain gates, such as the 2-input nand gate,

whereas for rise delay the 70% data point yielded a much larger delay (Fig. 2.4). Delay

values taken with the 50% point are in between the extremes and hence more reliable.

25

Delay Modeling

i 1· .,, , ·.....·.·.·.......·..· · .

V 5 ·1_

4'' '

32·.3

2
..................................

0

24 25 26 27 28 29 30 31
nS time

FIGURE 2.4 SPICE plots for nand2 rise delay to illustrate 25%, 50% and 70% data points.

The various data points were also tested on an adder circuit and a small nine-gate

circuit. Circuit delays were obtained from SPICE outputs, using the three data points

discussed. These delays were compared to that obtained by adding the gate delays,

obtained from the corresponding data point, of all gates in the critical path. The best

agreement between the two methods of calculating circuit delay was from the delays

obtained with the 50% data point.

A problem that exists for such a data point as well as that for bigger levels, (e.g.

70%) is that for certain gates, the slope of the output transition is much steeper than

that of the input transition, which means that output may reach 50% of its final value

before input does, resulting in negative gate delay. Such negative gate delays will not

occur if the data point is close to the trigger value (20% or Vil) [27].

For the 50% value point, negative delay were found to occur only for gates with

very large input loads. Since large fanout loads cause large delays and are undesirable,

26

Capacitive Load Extraction

many mapping algorithms disallow fanout to exceed a certain value or have options

that utilize fanout optimization to improve delay. When large loads are rare, negative

delays are rare when using the 50% data point.

The 50% data point is found to be the most consistent and accurate, hence delay

values for the library cells are obtained using the 50% data point. Delay values are

taken from the time input transition reaches 50% of its final value to the time when

output transition reaches 50% of its final value.

2.4 Capacitive Load Extraction

Capacitive load has been shown by various work to be dependent on the width of

transistors [1, 4, 5]. However, parasitic and wiring capacitances contribute to the

capacitive load as well. To ensure accurate delay estimation, capacitive load values

need to be accurate, in addition to accurate block and drive values.

The dependence of capacitive load on the width of a transistor were investigated

by laying out a chain of two inverters with a sized cell at the output (Fig. 2.5). The

layouts were extracted into SPICE decks and simulated. Delay values were taken from

point A to 0.

A O

FIGURE 2.5 Capacitive load determination

The dependence of capacitive load on transistor width was found not to be

directly proportional but linear. (Fig. 2.6) The constant offset is due to wiring

capacitances, parasitic capacitances and other capacitive loads not associated with the

gate, drain or source capacitances of a transistor. Capacitive input loads of each library

27

Delay Modeling

cell are hence obtained by simulation of each sized gate with a chain of inverters as

described above, to obtain accurate load values. This process, and the process of delay

parameter extraction, are further described in section 3.4.

1.width of transistor .s er of times the minimum width)3.
width of transistors (number of times the minimum width)

FIGURE 2.6 Delay of inverter versus width of transistors (p & n)

2.5 Circuit Delay

Circuit delay is estimated in the SIS delay package by calculating all gate arrival times

(rise and fall calculated separately) using the pin delay model as described in section

2.2. The final circuit delay is obtained by the latest arriving primary output. Hence the

delay of a circuit is defined by the delay of its largest delay path form input to output.

This is the critical path. Decreasing the delay of the critical path will thus also decrease

the delay of the circuit. Hence our approach to circuit delay reduction will be based on

reducing the delay of the critical paths.

28

1

Summary

2.6 Summary

In this work, a detailed delay model that takes into account rise and fall times, varying

pin delays and input transition times is used. Accurate capacitive load measurements

are also done to ensure that delay calculations are accurate. Having a reliable delay

model, we are now ready to proceed with establishing a good cell library and an

optimization strategy to get the best power performance in a circuit for a given delay.

29

Delay Modeling

30

CHAPTER 3

The Augmented Standard Cell Library

3.1 Introduction

Standard cells are widely used in today's VLSI circuit design. The performance of

such circuits are highly dependent on the performance of the standard cells used. In

order to have low-power design with good speed performance, a standard cell library

is needed where each gate is available in different sizes to cater to different output

loads, with each version sized to give good delay response without high power

dissipation, hence catering to different speed and power requirements.

This chapter describes the process whereby such an augmented standard cell

library is developed. Cell versions of each logic function are chosen by careful

experiment and analysis of the power and delay curves for each sized version. This

involves laying out the circuit, sizing the transistors, simulating the cells, plotting the

power and delay curves for each logic function, selecting the version and finally

extracting the delay parameters (block, drive and capacitive load values) by

simulation. The gate functions of the library developed are based on previously

developed standard cell libraries.

31

The Augmented Standard Cell Library

3.2 Layouts

The layouts of standard cells require certain rules in geometry such as equal height so

that the connection of cells can easily be done, without incurring wasted area and

messy connecting wires. Since our aim is to size the transistors to achieve good delay

and power performance, the layouts of the cells should be done so that the increase in

rectangular area due to transistor sizing is minimal.

3.2.1 Standard Cell Geometry

Standard cells should be laid out in a way such that they can be easily abutted to

neighboring cells. [34, 35]. Different layers should be continuous as far as possible

when two cells are abutted. To achieve this, all cells are made the same height, with

the diffusion, p-wells and metal lines at the same heights from the bottom of the cell.

CMOS two micron technology is used in this work. The height of certain cells are

restricted by the diffusion to substrate contacts, making the minimum height

achievable by these cells 35 lambda (1 lambda = 1 micron), or 76 lambda if the Vdd

and Gnd rails are included. This height is maintained throughout the library. The Vdd

and Gnd lines run horizontally and are 20 lambda wide to provide the needed

conductivity in propagating the supply voltages throughout the circuit. The input

nodes are placed on top and at the bottom of each cell for channel routing and the

output nodes are connected by the second metal layer1. The layout cell of a 2-input

nand gate is shown in Fig. 3.1.

1. Mentor Graphics Ixcells were used as a reference in the layouts of standard cells. Automatic cell generators were
not used in this work as such cell generators could not take into account our techniques for input ordering and sizing
when deciding the geometry of the layout.

32

Layouts

FIGURE 3.1 Layout of a two-input nand gate.

3.2.2 Area Minimization

To minimize the area, all cells are designed to have as few diffusion breaks as possible.

Euler graphs and stick layout diagrams were used to find the minimally-sized layout

for each cell. All cells in the library, except the xor and xnor gates, have no diffusion

breaks.

All contacts for the cell are in the central part of the cell, and any sizing will

expand upwards (for p transistors) or downwards (for n transistors) (See Fig. 3.1),

hence giving the cell flexibility in sizing. Since metal layers are allowed to overlap

with diffusion and polysilicon layers, the outward expansion of large transistors are

done as an overlap under the bus lines (See Fig. 3.1). Since the bus lines are sized at 20

33

The Augmented Standard Cell Library

lamda, such increase in transistor sizes do not increase the rectangular area occupied

by the cells.

To further minimize the area with sizing, one method is to place the p transistors

that are sized bigger above the n transistors that are sized smaller and vice versa,

giving the layout an inverted fit, thereby reducing unnecessary white spaces.

All library cells are sized at height 76 lamda (including the bus lines) with widths

ranging from 15 lamda to 49 lamda. No increase in rectangular area resulted from

sizing of transistors in any of the gate versions.

3.2.3 Sizing Methodology with Input Ordering

When transistors are sized larger in a gate, the drive for the next stage is increased,

thereby reducing the output delay. However, the input load seen by the previous stage

is increased, thereby slowing down the input transition and hence the switching of the

current gate. This effect must be taken into account in sizing transistors.

Relative arrival times of inputs can affect the delay of a gate [37], as each pair of p

and n transistors in a gate have different input transition to output transition times. In

optimizing the delay of a gate, input ordering should be taken into account. The delay

of a gate depends on the switching of the transistor associated with the input that will

cause an output switching event. Worst case delay occurs when this input arrives

latest. Delay can be reduced if the pin delay at a transistor that has the latest arriving

input is made the fastest in the gate.

In selecting which transistor to size, the inputs are expected to be ordered such

that the latest arriving input is placed at the transistor that has the shortest delay to

output. This is, in most cases, the transistor closest to the output, due to body effect.

[37]. Taking into account that the latest arriving input will be placed at this transistor,

34

Power and Delay Curves

the transistors in the gate are sized such that the load on the latest arriving input is

minimal, but the drive for the gate output is maximal.

Transistors in series with the one that has the latest input are sized first to increase

the drive to the next stage, while not affecting the load on the latest arriving input. If

necessary, the transistor with the latest input is then sized to further increase the drive.

This process is illustrated in Fig. 3.2.

NAND3

Latest arriving input is placed at A.

Ap is enlarged to increase drive of pull-up.

Bn and Cn are sized larger than An to
increase drive of pull-down but minimize
load on previous stage of A.

FIGURE 3.2 Sizing of transistors in a three-input nand gate.

3.3 Power and Delay Curves

The layouts of different sized versions are extracted into SPICE decks for simulation.

This is done to ensure that parasitic capacitances are taken into account. To have an

accurate estimate of power versus delay, primary inputs applied to the cells take into

account input switching probabilities and output switching probability. The inputs are

assumed to have equal switching frequency (switching 50% of the time) and the

number of output high's and low's are as expected by the gate function.

35

The Augmented Standard Cell Library

The power and delay values obtained from SPICE simulation for the various sized

versions of a gate are plotted. As shown by Fig. 3.3 the shape of the curve shows that

by sizing a cell, delay can be reduced from that of the minimum sized version by a

significant amount without much increase in power.

x 104

2

_
1

0 0.5 1 1.5 2 2.5 3 3.5
delay (ns)

FIGURE 3.3 Power versus delay curve for a three-input nand gate with output loads of xl, x2 and x8.

Increased sizes mean increased capacitive loads for the inputs, which lead to

increased power. However, the power dissipated by a larger sized gate can be less than

that of the minimum sized gate when output load is large. As shown in Fig 3.3, when

the output load is eight, the sized versions actually gave a lower power dissipation than

the minimum sized one. This anomaly could be due to the fact that when output load is

large, switching is slow, and the period when both n and p transistors are on is larger.

This increase in current flow could lead to higher power dissipation. With large gates,

36

x4

* szl (min sized)

+ szp2n21

xl o szp4n42

x szp8n84

! I I I

I I

Power and Delay Curves

however, switching time is reduced, and the short circuit current flows for a shorter

period of time, thereby resulting in lower power. This reduction in power could offset

the increase caused by increased capacitive load for the inputs, thereby resulting in

lower power dissipated than that of the minimum-sized gate.

Power and delay points of several differently sized cells are plotted to obtain the

general power and delay curve for the gate. Cell versions that yield good power and

delay trade-offs such as those on the power and delay curve where the slope is

changing the fastest are chosen. Three versions of each gate, each suitable for a

different range of output load, were selected1 . The advantage of having more versions

is not apparent as computation time for the optimization algorithm would increase, and

for most mapped circuits, the three versions can cater to the range of output load.

The augmented library constructed consist of 17 gate functions, each with three or

four versions (see footnote), for a total of 54 cells.

Transistor widths were treated as continuous variables in previous work by

Berkelaar [17] and in sizing algorithms such as TILOS [1]. In this case, we want to

take into account sizing methods that also take into account relative delays of input

arrivals, input ordering and area minimization. In addition, because of our use of cells

as individual design elements, the sizes of the transistors are fixed before they are

actually mapped onto a circuit, which means that the output load they will drive is not

known at the time of sizing. Hence heuristic methods of sizing are required. Other

optimization formalizations remain to be explored.

1. Four versions were found to be useful for the inverter, 2-input nand and 2-input nor gates.

37

The Augmented Standard Cell Library

3.4 Parameter Extraction

3.4.1 Delay Parameters

Once the cell versions are chosen, each cell is laid out with different numbers of

inverters as its output load and also with different input loads (as described in section

2.2) to obtain the input drive and output drive parameters. All capacitive values of the

cell library are specified in terms of the capacitance of an inverter, hence a output load

of one means that the output load is equivalent to the capacitance of an inverter. Each

cell is laid out with input loads of 1, 4, and 8 for each input pin (keeping output load

constant at 1) and with output loads of 1, 4 and 8 (keeping input load at 1). The layouts

are extracted into SPICE decks and simulated. Delay for the gate through each pin is

measured by sensitizing the input to this pin. All other pin inputs are kept constant and

non-deterministic of the output while this pin input is changed, thereby causing the

output to switch. The pin delay is the time between the switching of this input to the

switching of the output. (E.g. In Fig. 3.4, B is kept high while A switches, and the pin

delay through A is the time that the input at A reaches 50% of its final value to the time

the output at O reaches 50% of its final value.)

input output input output
load load load load

(a) (b)

FIGURE 3.4 Delay parameters extraction. (a) Gate with input load of four and output load of one.
(b) Gate with input load of one and output load of four.

38

Parameter Extraction

Delay is plotted against input load as well as output load. The points are then

curve fitted to find the linear relations, from which the block and drive values are

derived (Fig. 3.5).

eQ

2

1.5

Ta
=0

.

0.5

'0 1 2 3 4 5 6 7 8
Input bad (number of inverters)

FIGURE 3.5 Input drive lines for both pin inputs of nand2.

The points for each pin input (rise and fall delay done separately) are line-fitted to

an equation of the form (a + b x load). In chapter 2, it was established that delay

through a gate can be modelled by the equation:

Inputload Outputload
Gate delay = + block delay + (Eqn 3.1)

InpUtdrive Outputdrive

For a plot of delay versus input load, the slope, b, is obviously the reciprocal of

input drive. Since the cells were laid out with an output load of 1, the constant offset,

a, is the sum of the block delay and the reciprocal of the output drive. Similarly, for the

plots of delay versus output load, the slope is the reciprocal of the output drive while

the constant offset is the sum of the block delay and the reciprocal of the input drive.

Therefore, block delay is obtained by averaging the two values: constant offset of

input graph - slope for output graph, and constant offset of output graph - slope of

39

x .

.""+''. ·· ···" alrise: -fall: x-..a2 rise: o: fal: x --

I

I

C

I

The Augmented Standard Cell Library

input graph. Table 3.1 shows the block and drive values of a minimum-sized 2-input

nand gate.

rising output (ns) falling output (ns)

gate input
pine 1 pin 1/ 1/pname in pin block / block /

name pin load input output input output
delay delaydrive drive drive drive

nand2 al 1.12 0.105 0.755 0.448 0.031 0.694 0.307

a2 0.99 0.094 0.700 0.415 0.068 0.799 0.316

Table 3.1: Delay parameters for minimum-sized 2-input nand gate

3.4.2 Capacitive Load

To take into account all possible sources of capacitive load (including parasitic and

wiring capacitances), the input load seen into each pin of a gate is obtained by

simulation as well. A chain of two inverters, with the output of the second inverter

connected to an input pin of a gate version, is laid out and extracted into a SPICE deck

to be simulated (Fig. 3.6). The time between a transition at A to a transition at O is

measured. This is the gate delay through Inv2.

A O

Invl Inv2

FIGURE 3.6 Capacitive load extraction

Considering equation 3.1, the input load of Inv2, which is the load driven by Invl,

is just an inverter (which is a load of 1). The delay parameters of an inverter have been

obtained by the process described in the previous section. Hence the input drive, block

delay and output drive values of an inverter can be plugged into equation 3.1. The only

unknown left in the equation is output load, which is the input pin load of the gate

version being examined, which can be obtained by simply solving the equation.

40

Summary

3.5 Summary

The augmented standard cell library is developed by a process of detailed layout,

accurate simulation, and careful selection. All delay and capacitive parameters are also

painstakingly obtained from layout and SPICE simulations to ensure accuracy. With a

good cell library and accurate delay parameters, what remains in this low power

design method is a good selection strategy to find the best sized versions to use in a

circuit.

41

The Augmented Standard Cell Library

42

CHAPTER 4

Optimization Strategies

4.1 Introduction

In the last chapter, the development of an augmented standard cell library with cells

designed to give good delay and power performance trade-offs was described. The

effectiveness of this cell library is dependent on how the individual cells are used in a

circuit. To utilize these cells effectively, we need good optimization strategies to select

the best gate versions to use in circuits so as to achieve minimum power dissipation

while satisfying delay constraints.

This chapter first describes the basics needed for our optimization strategies,

namely critical path determination and the effects of changing a gate version. Then the

basic selection algorithm is described, followed by a discussion of its limitations and

the possible solutions.

4.2 Definitions

First, some definitions of terms that will be used throughout the chapter:

43

Optimization Strategies

previous current next
stage stage stage

fanin_fanin fanins current gate fanouts

FIGURE 4.1 Definitions of terms in describing circuit topology

11. Current node: The output node whose gate version is being examined for

optimization.

12. Current gate: The gate at the current node.

13. Current stage: All gates, including the current gate, which are at the same level

from the circuit inputs.

14. Fanins: The gates whose outputs are connected to the input pins of the current

gate.

15. Fanin_fanin: Fanins of the fanins of the current gate.

16. Fanouts: The gates which the output of the current gate is connected to.

17. Input pin load: The load at a pin of the current gate seen by a fanin.

18. Output load: The load driven by the current gate.

19. Pin delay time: The time from when the pin input switches to the time the output

switches, in the case where the switching of this input determines the output.

44

Critical Path Determination

20. Primary inputs and primary outputs: Inputs to the circuit and outputs of the

circuit, respectively.

21. Arrival time of a node: The time from the switching of the primary inputs to the

time the output of the gate at the node switches.

22. Required time of a node: The arrival time that the node has to satisfy in order for

the primary outputs of a circuit to satisfy the delay requirement.

23. Slack time of a node: The difference between the required and arrival times at a

node.

24. Required, arrival and slack times for a circuit: The delay requirement (rise and

fall) for the circuit, the actual arrival times (rise and fall) of the latest arriving

primary output of the circuit and the difference between these two, respectively.

25. Circuit arrival time: The larger of the rise and fall times of the arrival times of the

circuit.

26. Critical slope and non-critical slope: Each node has two arrival times, one for

rising, and the other for falling output transitions. For gates on the critical path, if

the rising (falling) arrival time propagates to the circuit arrival time, then the

critical slope of the node is rise (fall), and the non-critical slope is fall (rise).

4.3 Critical Path Determination

One of the aims of our optimization strategy is to satisfy a delay constraint, and in

order to do that, we need to reduce the delay through the longest delay path of the

circuit, which is the critical path.

The critical path is determined by first obtaining the latest arriving primary output

of a circuit, and propagating from this node backwards toward the primary inputs.

45

Optimization Strategies

Differences in rise and fall delays are taken into account as well as the phase and

varying pin delays of gates.

The traversal is as follows. The latest arriving output node is determined. This is

the last node on the critical path. The critical slope (rise or fall) of this node is

determined by simply finding out which delay (rise or fall) is larger. Next, we scan

through all fanins of this node, taking into account the phase or unateness of its pins.

(e.g. An inverting phase for a pin means that when the input is falling, the output

remains the same or rises, and when the input is rising, the output remains the same or

falls).

If the critical slope of the node is rise, but the pin phase is inverting, the output

arrival time due to this fanin is the sum of the fanin's falling arrival time and the rising

pin delay of this pin. The critical slope of the fanin is fall. This calculation is done for

all pins (and fanins). The critical fanin, or the fanin that causes the latest node output,

is determined (see example below). (An alternate way is to do this calculation until the

output arrival time due to a fanin is found to match the latest output of this node.) This

latest fanin is on the critical path. Knowing which fanin caused the latest node output,

we continue the traversal with this fanin, doing the same calculations as described

above. This traversal is continued until we reach a primary input, thereby finding the

first node on the critical path, and completing the determination of this path.

Information on critical slope, critical path length, critical pin numbers (or the number

of the pin that caused the latest output for the gate) are all retained for use in the

optimization routines.

46

Impact of change of gate

a
b

c

~~d P

FIGURE 4.2 Critical path determination

This process is illustrated in Fig. 4.2. The latest arriving output is determined to

be at 0, where the fall delay is larger than the rise delay. The critical slope at O is fall

and the and gate is on the critical path. Since an and gate has a non-inverting phase,

the falling outputs of its fanins are considered. The fall arrival times of the two fanins

are added to the respective fall pin delays through the and gate. The critical fanin,

which caused the later arrival at 0, is found to be the nand gate. The critical slope of

this gate is fall, since the falling output propagates to the latest arriving output at node

0. The nand gate has an inverting phase, so the rise time of its fanins are found, and

added to the respective fall pin delays through the nand gate, to find the pin that caused

the latest falling output at this gate. The highlighted inverter is found to be the critical

fanin. Since the inverter has only one input and has an inverting phase, c is on the

critical path and its critical slope is fall. Since c is a primary input, traversal is

completed. The critical path is found to start from c, through the highlighted inverter,

the nand gate and the and gate, which leads to the primary output 0.

4.4 Impact of change of gate

4.4.1 Power Dissipation

When a gate version is changed to a differently sized version, the effect it has on

power dissipation is due to two factors: the change in input load seen by its fanins, and

47

Optimization Strategies

differences in switching probabilities caused by reduced or increased glitching as a

result of the new speed of the gate.

When a transistor is sized larger in a gate, the input driving this transistor sees a

larger load than before, due to the dependence of gate capacitance on transistor width.

The drive to the next stage (dependent on the resistive component of the transistors) is

also increased, thereby leading to a faster transition at the output node of the gate

(discussed in section 1.2.1). Power is proportional to load, and not dependent on the

drive of a gate. When gate versions are changed, the change in load occurs at the

inputs, not the output. Hence the change in power is dependent on the fanin

probabilities and the input loads.

The change in power dissipation due to the change in input load can be calculated

by multiplying the switching probability of a fanin node by the change in output load

of the fanin due to the change in gate version. This change in load equals the new input

pin load seen by the fanin minus the input pin load seen with the previous gate version.

The sum of all such power changes of all fanins returns the change in power for the

gate due to changes in load. Clock frequency and supply voltage remain the same, and

need not be taken into account when comparing power dissipation among different

versions (Eqn 1.1).

switching
probabilities

4,

-] 0.50
fanin

pin
input
load

FIGURE 4.3 Changes in power dissipation due to changes in load.

48

Impact of change of gate

To keep the computation simple and hence fast, the effects of a version change on

the probability of glitching is not taken into account here. Comparison of final circuit

power dissipation (calculated by recalculating all switching probabilities) to the

original power dissipation of circuits shows that glitching effects caused by changes in

gates are not substantial, hence this omission is justified.

4.4.2 Delay

When a gate version is changed, there are three main effects on delay. The first is a

change in the pin delay through the gate, due to changes in delay parameters, which in

turn is due to the different sizing of transistors in the versions. The second is a change

in arrival times of the fanins of the gate, since each sees a different input pin load. The

third is propagated delay effects to the rest of the circuit due to changes in arrival times

of the current gate and its fanins.

To calculate the new arrival time of a node after a change in gate version, we must

take the first two effects into account. First, we need to calculate the change in arrival

times of the fanins. To do so, we need to calculate the pin-delays through the fanins,

which have changed due to the change in input pin load. For each fanin, the pin delay

through each input is calculated, and added to the arrival of the previous stage

(fanin_fanin) (Fig 4.3). The phase of each pin, as discussed in section 4.3, must be

taken into account to ensure correct delay calculations. The latest arrival time for each

fanin is then determined. These fanin arrivals are added to the corresponding pin

delays of the current gate, taking into account phase, to determine the latest arrival

times for the output (both rise and fall).

49

Optimization Strategies

faninfanin arrivals +
fanin pin delays =

fanin arrivals

-1 Fn.nrl 1
LO T

i delays =
iew node arrival

41-

fanin_fanin fanin new version

FIGURE 4.4 Impact of change of gate version on delay

When a gate version is changed, the arrival times of its fanin might increase or

decrease due to the change in input pin load. If this fanin has multiple fanouts, the

increase could be propagated to other paths. If the circuit has many long paths that

have approximately the same delay, this increase could cause a different path to be

critical and increase the delay of the circuit. However, if the critical path remains

dominant, the decrease in the arrival times of the gate output would cause a decrease in

the final arrival times of the circuit.

4.5 Basic Optimization Strategy

Since the purpose of the algorithm is to minimize power, the circuit is first mapped

with minimum-sized gates1 . Power is proportional to the load capacitance of the gate,

so by using minimum-sized gates we begin with minimal power. Delay constraints are

then satisfied by using bigger gate versions as necessary to reduce the delay.

1. Any mapping algorithm available to the user may be used. This optimization strategy starts with a circuit that
has been mapped with minimum-sized gates. This particular mapping of gate functions is not changed in the opti-
mization routine. Only gate versions (and not their logical functions) are changed.

50

Basic Optimization Strategy

A change of gate could have effects on many other gates, since the change in

delay could propagate throughout the circuit. To update the delay of the whole circuit

at every change of gate version would be computationally intensive. To avoid such

continuous updates while keeping accurate knowledge of delay values as gate versions

are changed, the critical path is traversed sequentially and delay values on the path

updated as versions are changed. This ensures a fairly accurate update of critical delay

values needed in the optimization process. The process is described in detail below.

After mapping the circuit with minimum-sized gates, a power estimation routine

is run on the circuit to determine the switching probabilities of each node. Static

timing analysis is also performed to determine the required, arrival and slack times at

each node.

The critical path is then obtained. If the delay constraint is not satisfied, the

algorithm traverses this path from input to output. At each node, delay values which

may have changed due to previous changes in gate versions along the path are

updated. Then each sized-gate version is tested out by calculating the new delay

values, (taking into account change in arrival times of inputs due to changes in input

pin loads, as well as changes in output arrival times due to new block and drive values)

(See section 4.3.2) and the change in power from the original gate using the switching

probabilities multiplied by the change in input load seen at the pins (Refer to section

4.3.1).

If the critical slope delay (rise or fall) of the node is reduced as a result of the

change in versions, and the non-critical slope delay is not increased, the ratio of

reduction in delay to increase in power, Rdp, is calculated. The version that gives the

best ratio is selected.

To test the effectiveness of using this ratio in the determination of the best gate

version, an option that selects gates based on their ability to reduce delay is

51

Optimization Strategies

implemented. The gate that gives the best reduction in delay is chosen, regardless of

the increase in power. This is the use_delayonly option.

Once the gate version is selected, all arrival times at the node and at its fanins are

updated. The slack of the critical path is also continually updated as each gate version

is changed. The new slack value is calculated by subtracting, from the old slack, the

change in delay obtained by changing the gate version. Both rise and fall slack times

are updated. The smaller of the two slacks is taken as the new slack. Traversal of the

critical path stops when this slack becomes positive.

If traversal is allowed to continue for the whole path regardless of the slack, the

required delay may have been achieved somewhere along the path, but since traversal

continues despite that, more gates are changed, resulting in unnecessary decrease in

delay and increase in power. Furthermore, if the critical path is long, these unnecessary

computations make the optimization routine more intensive than it need be.

Note that this method of updating the slack may not return the actual slack of the

circuit. (Refer to Fig. 4.5) A and C are on the critical path. If A is sized larger, the

critical arrival time of its output is decreased. Say this decrease in delay was d, then

the slack will be updated with this value. However, this change in delay may not

propagate to the output. If the largest arrival time through C is now via B, the arrival

time of C is still less than before A was changed, but by an amount less than d. Then

circuit slack is actually less than the estimated value.

a
A

c

B
b

FIGURE 4.5 Slack determination

52

Problems and Solutions

When a traversal is stopped due to a positive slack, a static timing analysis is

redone on the whole circuit. From this analysis, the actual slack of the circuit is

obtained, and if the slack is still negative, optimization is resumed.

This traversal on critical paths is done until all paths in the circuit satisfy the delay

constraints or if all gate versions have been examined.

4.6 Problems and Solutions

In analyzing circuits optimized by the strategy described above, several interesting

problems arising from circuit topology were found.

A problem that might arise with such a traversal is that, referring to Fig. 4.6, if

gate A is first changed, followed by C, gate A was changed and selected on the basis

that C is minimum-sized. When C is also changed, the input pin load seen by A has

changed, and the version selected for A may no longer be the best version.

d

FIGURE 4.6 Propagation of effects of change of gate

Furthermore, the fanin of a current gate (D) may come from gates which feed into

earlier gates on the critical path too (Gates A and B in fig.4.6) The increase in delay of

these fanins due to the change in input pin load of the current node was not taken into

account in analyzing the previous gate affected (gate C) and hence the arrival time of

C previously calculated may not be accurate, which in turn means that we may not

have the correct information when analyzing D.

53

Optimization Strategies

However, in the next run, if the critical path is still the same path, then A could be

changed again to reflect the right choice, and so could C. The number of changes is

limited by the number of versions of a gate and the fact that a gate will not be changed

unless the new version is faster, hence cyclical optimization will not occur, and in

these special cases the best solution can still be achieved after several traversals.

Another problem is shifts in critical paths. A and C are on the critical path. After

analyzing A and changing the version, the arrival time of A is reduced. The latest

output at C is now through pin b, rather than a. The critical path has changed. B could

be made faster to make C even faster.

To solve this problem, a new option, check_criticalpath is employed to stop a

traversal on a critical path once the path has changed, and resume optimization on the

new critical path. This option is described in the next chapter.

4.7 Limitations

The critical path is traversed sequentially so that delay values can be accurately

updated on the critical path. Hence gates are optimized in the order of their occurrence

in the critical path from input to output. However, certain gates are better candidates

than others for optimization, mainly those nodes with large loads but small switching

probabilities, as these could give a large reduction in delay, given the large load, and

have low power dissipation increase, due to the small probabilities. These gates should

be optimized first to obtain better power and delay trade-offs.

Furthermore, the condition that a gate version is accepted only if the critical slope

delay is decreased while the non-critical slope delay remains the same or decreases

might be too restrictive. Certain gate versions might reduce critical slope delay

significantly while increasing non-critical slope delay slightly. To give the circuit

flexibility, the non-critical slope could be allowed to increase.

54

Summary

These two limitations are resolved in the options threshold and maxtime which are

described in chapter 5.

4.8 Summary

Each node in a circuit is connected to others and effects of a change in version for a

gate can be felt elsewhere in the circuit. To select the best version of each gate to use in

a circuit without continuous circuit delay updates, only the critical path is traversed

and updated. The selection of cells are based on their ability to give reductions in delay

with little increase in power. While this optimization strategy provides a simple

method of cell selection, it is nonetheless limited by the sequential traversal and by the

possible effects on gates off the critical path. These limitations are explored in the next

chapter.

55

Optimization Strategies

56

CHAPTER 5

Enhancements to the Basic Strategy

5.1 Introduction

As discussed in the last chapter, while the basic optimization strategy makes use of all

available information at a given node to make its decisions, it is nonetheless limited by

the sequential scan of gates on the path, by the limited information of the circuit at

each node, and by the rigidity in selection of gates in return for a guaranteed reduction

in circuit delay.

This chapter describes three options that are implemented to overcome these

shortcomings of the basic routine and hence enhance the capabilities of our selection

process. These are the threshold, check_critical_path and maxtime options.

5.2 Threshold

Nodes with low input switching probabilities but large output loads have good

potential for delay reduction, and given the low switching probability, increased

transistor sizes may not increase power by much. To reduce computation complexity,

the circuit is traversed sequentially along the critical path. Sequential traversal means

57

Enhancements to the Basic Strategy

that gates are optimized according to their order on the critical path. However, this

does not make use of the fact that certain gates are better candidates than others for

optimization, namely those with large ratio of load to switching probability, Rip.

In the threshold option, the ratio of load to switching probability of a node, Rip, is

used to determine the priority with which the gate will be optimized. A threshold value

of this ratio is used to determine which gates to change first. The threshold is

determined by an estimated percentage of gates on the critical path that will need to be

changed in order to achieve the delay constraint. When the critical path is traversed

from input to output, only nodes with ratios higher than this threshold will be analyzed

and changed. Other nodes will just have their delay values updated. If the delay

constraint is still not satisfied after completing the traversal of the critical path, the

threshold is lowered to allow more gates to be changed. If, however, the critical path

has changed, then this threshold value is recalculated as before.

The threshold value is determined as follows:

First, the load to switching probability, Rip, of all nodes on the critical path is

determined and sorted in ascending order into an array. The load is the output load of a

node, and the switching probability is the sum of all switching probabilities of its fanin

nodes. As discussed in section 3.4.1, the change in power dissipation due to a change

in gate version is mainly due to the change in input pin loads of the gate. Hence this

change in power is obtained by summing, for all fanins, the product of the switching

probability of each fanin node and the change in input pin load looking into the current

gate. However, when determining the threshold, we have no knowledge of which gates

and which transistors in the gates will be sized, so the sum of all input probabilities is

used. By summing the switching probabilities, we are assuming that the change in load

seen by each transistor in a gate is the same, which means that the change in power is

the sum of the probabilities multiplied by some constant value, which is the change in

58

Threshold

load. When comparing gates, this constant value can be dropped since it has no effect

on the relative magnitude of two gates. This assumes that all transistors will be sized

equally and by the same amount for all cells in the library. While this is not the case,

with the limited information on the change of load available when the threshold is

determined, (which is before the traversal of the critical path begins), this method

provides a simple and general gauge of the change in power dissipation in changing a

gate version. At first glance it might seem as if the output switching probability should

be used, but the load change in changing a gate version is not at the output but at the

inputs. Another argument would be to use the switching probability of the critical

fanin node, but the transistor that is sized may not be the one on the critical path (Refer

to section 3.2.3). Furthermore, using the sum of all fanin switching probabilities

reflects the fact that a gate with more inputs (e.g. a four-input nand compared to a two-

input nand) would result in greater power dissipation as more transistors need to be

sized (namely those in series in the pull-down) to reduce delay. Using the sum of

probabilities of all fanins ensures that all input nodes are taken into account.

Next, the percentage of gates that need to be changed is determined. This is done

by dividing the magnitude of the slack of the circuit (difference between the required

arrival time and the actual arrival time) by the expected reduction in delay by changing

a cell version. This gives us an estimate of the number of gates that need to be

changed. The percentage of gates on the critical path that need to be changed is then

obtained from dividing this number by the number of gates on the critical path.

Since the Rp ratios of each node are already sorted into an indexed array in

ascending order, the Rip ratio that is the required percentage from the end of the array

is chosen as the threshold. Only gates with Rip ratios above this value will be allowed

to be changed. With this calculation, the percentage of gates that satisfy this criterion

is the parentage of gates that need to be changed.

59

Enhancements to the Basic Strategy

The threshold value enables us to just look at the needed number of gates on the

critical path, instead of traversing the whole path. Gates with the best potential for

power and delay trade-offs are also picked out to be optimized first, thereby giving us

better results compared to a sequential traversal from input to output.

5.3 Check Critical Path

When the gate version at a node is changed, the delay of the next stage could be caused

by a different input than before. Referring to Fig. 5.1, the critical path is originally

from node a to c. When a faster cell version of gate A is used, the arrival time at a is

reduced, and the critical path may have shifted from node a to b. This means that the

delay at output c could be further reduced if the arrival time at b is made smaller. This

option checks if such a shift in critical path has occurred. It does so by simply

checking if the current node causes the latest output at the next stage on the critical

path. If so, critical path has not been changed by the change in gate version. Else,

critical path has changed, and static timing analysis is redone on the whole circuit to

update delay values and find the new critical path. Optimization is then continued by

traversing the new critical path.

a
A

c
B

b

FIGURE 5.1 Change in critical path

This option detects shifts in the critical path so that all possible avenues for delay

reduction are found and used. When this option is used, static timing analysis on all

nodes is done more often, thereby updating all delay information more frequently,

60

Maxtime

though at the expense of computation time. If the change in gate has reduced the delay

of the critical path such that another path elsewhere in the circuit is now critical, this

change would be also be detected whenever timing analysis is done on all nodes and

the critical path determined.

5.4 Maxtime

To ensure a reduction in delay when a gate version is changed, a version is

accepted only if the critical slope delay (rise or fall) decreases while the other slope

delay remains the same or decreases. While this guarantees a reduction in final delay,

there could be gate versions where the critical slope delay could be reduced further,

but the delay of the non-critical slope would increase. Since the non-critical slope

delay is invariably equal or less than the critical slope delay, the positive slack in the

non-critical slope may be able to absorb the increases in non-critical slope delay

caused by these gates and still result in smaller circuit delay.

To increase the flexibility in choosing gate versions, the non-critical slope could

be allowed to increase. However, this might lead to increased circuit delay if the slack

of the non-critical slope is not large enough to absorb the increases in delay. To

compromise between the two effects, a gate is accepted if the critical slope delay is

reduced, and the maximum of rise and fall critical path delay is reduced. This means

that if the non-critical slope delay is larger than the critical slope delay at a node, it will

not be allowed to increase. (Note that the critical path delay is the sum of all critical

slope delays through the critical path, and at certain nodes, the critical slope delay

could be larger than the non-critical slope delay, and smaller at other nodes, but the

sum of all critical slope delays is larger than the sum of all non-critical slope delays on

the critical path.)

61

Enhancements to the Basic Strategy

While this method does not guarantee a reduction in circuit delay, it increases

flexibility in the selection of gates for better results, while preventing large increases in

non-critical path delay to reduce the possibility of increased circuit delay.

5.5 Summary

The three options described in this chapter, threshold, check_criticalpath and

maxtime, offer enhancements to the basic optimization routine by making use of node

switching probabilities, critical path updates and non-critical slope slacks respectively.

These options offer a larger number of tools in selecting the best gate versions for a

circuit. The effectiveness of each of these options will be discussed and analyzed in

chapter 7.

62

CHAPTER 6

Input Ordering

6.1 Introduction

Inputs to multiple input gates usually have different arrival times. Pin delays through a

gate also differ among pins. Since delay is dependent on both input arrival times and

pin delays through a gate, for input pins that have the same logical function, the inputs

can be ordered such that the resultant arrival time of the gate output is minimal. Since

the gate version is not changed, the delay of the gate can be reduced without any

increase in power dissipation. This makes input ordering an attractive option.

6.2 Dual Process

In this work, input ordering is implemented in two ways. Firstly, it is done on the cell

level. To increase the effectiveness of input ordering, the transistors of each cell are

sized so that the fastest pin in the gate is made even faster, sometimes at the expense of

the other pins. This is because circuits often have a dominant critical path, and to

decrease the delay through this path, we make the pin delays of gates on this path as

small as possible. The process whereby the transistors are sized assuming inputs are

63

Input Ordering

ordered is described in section 3.2.3. This process binds the optimal arrangement of

inputs when the cells are laid out, and increases the potential gains in delay

performance by input ordering at the circuit level.

In order to capitalize on such transistor sizing, the inputs of the gates should be

ordered correspondingly. Input ordering on the circuit level takes into account the

function of each pin, input arrival times and input load changes in reordering inputs,

among other things. This dual process of input ordering binds the optimal order of

inputs at two very different time frames. The first is done when the cells are laid out,

and the second during the run time of the optimization routine, when the circuit is

already mapped and the actual arrival times of the inputs are known. The dual process

on both cell and circuit levels maximizes the effect of input ordering.

6.3 Input Ordering at a Gate

First, the inputs of the gate that are logically the same (e.g. the inputs to nand and nor

gates), and hence can be reshuffled, are identified.

At first glance, the next step is just to sort these inputs such that the latest arriving

one is matched with the fastest pin of the gate. If so, input ordering is just a matter of

sorting the inputs according to their arrival times, and placing the latest one at the

fastest pin and the second latest on the second fastest pin and so on, with the fastest

input at the slowest pin. The delay of the critical fanin is minimized, and the gaps

between the arrival times due to other fanins are lessened too.

However, this simplistic method overlooks the changes in drive and load values

for each pin and fanin, when the inputs are reordered. Several effects are felt when

inputs are changed. Firstly, for a fanin, when the pin it is attached to is changed, the

load it sees into the pin has changed too, causing fanin arrival times to change.

Secondly, pin delay through a gate is dependent on the load that the previous stage

64

Input Ordering Options

drives (input load in Eqn 2.2), since this load determines the input transition time.

When the fanin connected to a pin is changed, so is the load of the pin (which is the

output load of the fanin). This causes the pin delay through a gate to vary according to

the fanin it is connected to.

To cater to such varying fanin arrival times and pin delays, all possible

permutations of input ordering are tried out and the arrival times of the output

calculated for each. For n inputs, there are n! possible permutations, but since the

largest number of permutable pins for a gate in a library is four (in the case of 4-input

nand and 4-input nor gates), the maximum number of permutations is 4!=24. Hence

the complexity of testing out each permutation is not excessive. The permutation of

gate inputs that gives the fastest arrival times at a gate is used. In the case where two

solutions give the same optimal result, the one where the arrival times of the next latest

pin output (caused by a different fanin) is smaller is chosen, so that the general circuit

delay is reduced, as well as the worst case delay.

6.4 Input Ordering Options

6.4.1 Input Ordering at All Nodes

Input ordering can be done at all nodes before the other optimization routines are run

to reduce the general delay of all nodes in the paths. Input ordering of all nodes has the

advantage of firstly, reducing the circuit delay (or critical path delay), and secondly,

reducing the general delays of non critical paths, thereby giving more space for

possible implementations of path relaxation for further power reduction. (A sized gate

on a non-critical path can be sized smaller to reduce power. The increase in delay

through this gate can be absorbed by the positive slack at the node.)

After input ordering is done on all nodes, the critical path is found, and input

ordering is again done on the critical path, this time taking into account the critical

65

Input Ordering

slope. When input ordering is done on all nodes, the permutation of inputs that gave

the minimum delay (in terms of the larger of rise and fall delay) is chosen. In ordering

the gates on the critical path, the pin that gives the minimum critical slope delay (rise

or fall) is chosen. This should further reduce the delay on the critical path.

6.4.2 Input Ordering at each stage

As gate versions are changed along the critical path, delay values are changed. When a

gate is changed to a faster version, the output delay is decreased, hence for the next

stage, input ordering can be done again to achieve the minimal delay for this new set

of fanins. This option allows input ordering to be carried out at each stage as gate

versions are changed. The slack of the circuit is also updated as input ordering is done

by subtracting, from the old slack, the change in critical delay caused by the

reordering, taking into account both rise and fall times.

In this option, the permutation that gives the fastest critical slope arrival time, on

the condition that the non-critical slope delay is not increased, is chosen. This is to

ensure that the reordering of inputs will decrease the final circuit delay.

6.5 Summary

The use of input ordering in sizing the individual cells and in the optimization

algorithm enables us to make full use of the effectiveness of reordering inputs. Input

ordering on the circuit level takes into account load and drive value changes in both

pin and fanin delays. The implementation of two options for input ordering offers a

variety of choices in optimizing the circuit. The results from utilizing this option are

shown in the next chapter.

66

CHAPTER 7

Implementation and Results

7.1 Introduction

The basic optimization strategy and all options, as well as the augmented standard cell

library, were implemented and tested on several test circuits. This chapter first

describes the implementation of the design process, and then presents the results of the

tests, followed by an analysis and discussion of the efficiency and effectiveness of the

cell library, the basic optimization strategy, each of the options, as well as input

ordering.

7.2 Implementation

The low-power design process developed in this thesis is implemented using C

language and utilizes various packages in the Sequential Interactive Synthesis (SIS)

system. SIS is an interactive tool for synthesis and optimization of combinational and

sequential circuits developed at the University of California at Berkeley [32]. Power

estimation routines developed in [13] and [39] are also used. Such routines have been

implemented in SIS.

67

Implementation and Results

The mapping of circuits were done using the mapping package in SIS. Network

and node packages in SIS were used to define the circuit. Power estimation routines

were used to obtain the switching probabilities of nodes. The routines for static timing

analysis (the delay package) in SIS were modified to take into account input transition

times.

The augmented standard cell library was designed using Mentor Graphics GDT

layout tool. Simulation of cells were done with HSPICE. The extracted parameters of

the augmented library (PAL) are written in pal.genlib in the genlib format described in

[32]. This format is accepted by the various routines in SIS.

The optimization strategies developed in this thesis were implemented in the

optimization program for power and delay using sizing (OPPADUS). This program

was written in C. OPPADUS optimizes circuits to satisfy a delay constraint with

minimal power. The program includes routines of critical path determination, input

ordering, threshold determination, check_critical_path; routines for calculating the

effects of a change of gate version on power and delay; a brute force routine that finds

all possible combinations of versions that will satisfy the delay constraint; the

optimizedelay routine which implements the basic optimization strategy with

maxtime, and calls the various routines for other options; and the main routine that

puts all these routines together. The total length of the program is 2557 lines.

OPPADUS is implemented in SIS, and can be called interactively with the

command opy. The various options implemented in OPPADUS can be called using

flags: "-a" for use delay only, "-t" for threshold, "-m" for maxtime, "-p" for input

ordering at all nodes, "-e" for input ordering at each stage, "-c" for check critical path

and "-b" for the brute force routine. The brute force routine is a recursive program that

tries out all combinations of gate versions possible in a circuit to find the optimal

solution (least power) under the delay constraint. It is obviously very computationally

68

Test Set

intensive. Small circuits like exl took hours to complete. This further supports the

need for a heuristic routine.

OPPADUS outputs the final arrival time of the circuit, the average power

dissipation and a list of the nodes and the gate versions used.

OPPADUS was compiled and ran on a DEC Alpha machine (DEC AXP 3000/

500, running at 150MHz, with 256kB of RAM).

7.3 Test Set

A test set of five circuits were used to test the optimization program. These circuits

include a simple circuit with just 11 gates (exl), another combinational circuit

consisting of 101 gates (ex2), a four-bit adder, a multiplexer and x4, a large circuit

with 503 nodes. These circuits were chosen to reflect different circuit configurations.

For example, the four-bit adder has just one dominant critical path, while the

multiplexer and x4 circuits have a number of dominant paths.

The circuits were optimized under a delay constraint using the basic algorithm

and one or more options. The delay constraints are chosen to be in the mid-range

between the initial delay using minimum-sized gates and the minimum delay

achievable using the augmented library. This gives the algorithm sufficient flexibility

for optimization. If the constraints are too close to either of the end values mentioned

above, then the number of possible combinations of the circuits that have delay values

close to the constraint becomes limited and hence the effectiveness of the routines will

not be apparent. The sensitivity of the constraint value on the results is high when the

constraint is close to the two extreme values. As the constraint value move towards the

center of the two extremes, sensitivity is lessened, since the solution set enlarges. The

effectiveness of the algorithm in selecting the best solution from this set can then be

better tested.

69

Implementation and Results

7.4 Results

The basic algorithm, combined with one or more of the options, was tested on the six

circuits. While each option can be used independently, a combination of options often

yields better results. For example, threshold and input ordering each proved to be

effective options, but when used together, the final power and delay trade-offs were

even more significant. Input ordering at each stage is a good supplement to input

ordering for all nodes, and hence is tested with the latter. The results of running the

algorithm and its options on the five circuits are shown in Tables 7.1 to 7.5.

Table 7.1 shows the number of gates in each circuit and the delay and power

dissipation of the circuits when initially mapped with minimum-sized versions. Table

7.2 shows the results from running the basic algorithm, first using only the reduction

in delay as a guideline for the selection of versions (the use delay only option,

discussed in section 4.5), and secondly utilizing the switching probabilities by using

Rdp, the ratio of decrease in delay to rise in power.

Table 7.3 shows the results from running the algorithm with the threshold option,

and then with maxtime and threshold. Table 7.4 shows the results of running input

ordering at all nodes in addition to threshold, and again using maxtime as well. Finally

Table 7.5 shows the results of running input ordering at each stage and at all nodes,

with threshold, and then running check critical path in addition to threshold and input

ordering at all nodes.

The best results obtained from the various combinations of options are

summarized in Table 7.6 under the section "Overall Effectiveness" (section 7.6).

70

Results

initial mapping with

number minimum-sized gates

C t of gates delay power
(ns) (uW)

exl 11 9.13 25.2

ex2 101 21.06 218.5

adder4 55 17.98 155.0

mux 93 22.40 279.4

x4 503 18.19 1469.5

Table 7.1: Results for minimum-sized mapping

a) Basic algorithm using delay b) basic algorithm using switching
required only probabilities

circuit time
(ns) delay power cpu time delay power cpu time

(ns) (uW) (s) (ns) (uW) (s)

exl 7.8 7.71 25.9 < 0.1 7.71 25.9 < 0.1

ex2 16.8 16.58 237.5 0.1 16.62 232.0 0.1

adder4 14.0 13.92 185.8 0.1 14.11 180.1 0.2

mux 15.7 15.66 390.2 0.3 15.91 357.9 0.6

x4 14.6 14.67 1597.8 6.4 14.59 1548.6 5.9

Table 7.2: Results for basic algorithm

required a) threshold b) threshold, maxtimerequired

circuit time delay power cpu time delay power cpu time

(ns) (uW) (s) (ns) (uW) (s)

exl 7.8 7.71 25.9 < 0.1 7.71 25.9 < 0.1

ex2 16.8 16.74 225.5 0.2 16.74 225.5 0.2

adder4 14.0 14.11 180.1 0.2 13.98 180.8 0.1

mux 15.7 15.91 357.7 0.9 15.68 342.6 0.5

x4 14.6 14.58 1545.8 9.1 14.59 1528.6 7.0

Table 7.3: Results for using threshold with and without maxtime

71

Implementation and Results

a) threshold, input ordering at all b) threshold, maxtime, input
required nodes ordering at all nodes

circuit time
(ns) delay power cpu time delay power cpu time

(ns) (uW) (s) (ns) (uW) (s)

exl 7.8 7.57 25.9 < 0.1 7.57 25.9 < 0.1

ex2 16.8 16.63 221.4 0.2 16.63 221.4 0.2

adder4 14.0 13.81 181.9 0.2 13.98 170.3 0.2

mux 15.7 15.68 343.2 1.2 15.62 334.3 0.8

x4 14.6 14.60 1515.5 5.9 14.60 1506.8 4.9

Table 7.4: Results for using input ordering and threshold with and without maxtime

a) threshold, input ordering at all b) threshold, input ordering at alla) threshold, input ordering at all
nodes and at each stage, check

required nodes and at each stage critia path
circuit time

(ns) delay power cpu time delay power cpu time
(ns) (uW) (s) (ns) (uW) (s)

exl 7.8 7.47 25.9 < 0.1 7A7 25.9 < 0.1

ex2 16.8 16.70 222.5 0.2 15.90 230.6 0.5

adder4 14.0 13.82 172.9 0.3 14.10 167.1 0.3

mux 15.7 15.70 304.8 0.6 15.53 325.0 1.2

x4 14.6 14.59 1538.3 8.2 14.92 1520.3 6.2

Table 7.5: Results for using threshold, input ordering at all nodes and at each stage with and without
check critical path.

7.5 Effectiveness of the optimization tools

7.5.1 The Augmented Standard Cell Library

A circuit is first mapped with minimum sized cells. Cells are then replaced by larger

versions as needed by our optimization program to satisfy a delay constraint. The main

purpose of the augmented cell library is to provide cells that give good delay and

power trade-offs so that the increase in power from the minimum-sized mapping will

72

Effectiveness of the optimization tools

not be large. From the results in Tables 1 to 5 (and summarized in Table 7.6 in section

7.6), it can be seen that delay has been reduced by 22% to 43% with only 1% to 8%

increase in power using the basic algorithm with various options (see Fig. 7.1). This

indicates that the cells in the augmented cell library are very effective in providing

good power and delay trade-offs.

45

40

35

30

125

15

105

r

xU ~ ~ ~

lx~~~~~~~ exl
+ ex2
x adder4
o mux

x4
I I I . . . I . I

_0 1 2 3 4 5 6 7 8 9
power increase (%)

FIGURE 7.1 Plot of power and delay trade-offs achieved

7.5.2 The Basic Algorithm

The basic algorithm makes use of the ratio of change in delay to change in power, Rdp,

to determine the best gate version to use for delay reduction with minimal power

increase. The change in power is estimated with the switching probability estimates.

The version that gives the best Rdp ratio is chosen. The effectiveness of utilizing this

criterion is tested by comparing this method to that where the gate version that gives

the best reduction in delay, regardless of increase in power, is chosen. From Tables

7.2a and 7.2b, power dissipation reduces by up to 9% by using power estimation with

switching probabilities. Hence this method is effective in minimizing power increase.

73

Implementation and Results

7.5.3 Threshold

Since the basic algorithm traverses the critical path sequentially, gates were optimized

according to their order on the critical path. The threshold routine avoids this

sequential traversal to select gate versions according to their potential in giving good

delay and power trade-offs. The threshold routine worked well in giving better power

values when compared to just using the basic algorithm.

In most circuits, power dissipation was reduced by this option, though the effects

of using this option are not as significant in cases where the required arrival time of the

circuit is a lot less than the arrival time of the circuit with minimum-sized gates. This

is because in calculating the initial threshold, the percentage of gates on the critical

path that need to be changed to satisfy the delay constraint is large, perhaps 100%, due

to the large negative circuit slack. If this percentage is 100%, then using the threshold

option is redundant, as all gates are allowed to change. The effect of using a threshold

is felt only as the magnitude of the circuit slack reduces with iterations of the

algorithm. However, if part of the critical path had been traversed before, (i.e. it

overlaps with a previous critical path), many gates on the current critical path have

already been changed to the most preferred version, and less gates can be changed to

reduce delay further, thereby reducing the effectiveness of using a threshold value.

In general, the threshold routine worked well in reducing power, though the

degree of effectiveness varied between circuits.

7.5.4 Maxtime

The maxtime option allows more flexibility in the selection of versions by allowing

versions that decrease the critical slope delay but increase the non-critical slope delay

to be used. This increased flexibility enabled the power dissipation in the adder4, mux

and x4 circuits to be less than if this option was not used (Tables 7.3a and 7.3b and

Tables 7.4a and 7.4b). Reductions of up to 7% were achieved. For the adder circuit

74

Effectiveness of the optimization tools

(Tables 7.3a and 7.3b without input ordering), power dissipation increased slightly.

This could be due to two factors. Firstly, the delay constraint was not satisfied when

just using the threshold option. In using the maxtime option over the threshold option,

the delay constraint was satisfied, and in order for this reduction in delay to occur,

certain gates could have been sized bigger, others smaller, but the overall effect was an

increase in power, which is expected given the reduction in delay. The second possible

reason for this slight increase may be that the final circuit delay might have been

increased in an iteration, and hence to bring down the circuit delay, more gates could

have been changed, or larger versions used, leading to the increase in power.

Overall, maxtime proved to be effective in reducing power dissipation. (Referring

to Table 7.3 and Table 7.4, power dissipation was less when maxtime is used for most

circuits except exl and ex2. The only increase occurred with adder4 without input

ordering, but this increase was less than 0.4%.)

7.5.5 Input Ordering at all Nodes

In input ordering, pin inputs of a gate are ordered such that the latest gate output

arrival time is reduced as far as possible. Reordering inputs does not change the gate

version, hence the reduction in delay is achieved without any increase in power.

Therefore, input ordering is expected to be very effective in minimizing power

dissipation. Comparing Tables 7.3a with 7.4a and Tables 7.3b with 7.4b, it can be seen

that input ordering reduced power is almost all cases. The reduction in delay due to

input ordering meant fewer gates needed to be changed for the constraint to be

satisfied and hence the power dissipation decreased. Hence input ordering at all nodes

is definitely a useful option.

75

Implementation and Results

7.5.6 Input Ordering at each stage

As gate versions are changed, the arrival times of the output nodes are changed, and

hence the inputs previously ordered may no longer be the optimal permutation. Input

ordering at each stage ensures that the optimal permutation is always used. From the

results in Table 7.5a, the dual use of input ordering at all nodes and at each stage

reduced power dissipation by as much as 17%, (in the case of the mux circuit), when

compared to not using the input ordering options (Table 3a). Comparing Tables 7.4a

and 7.5a, it can be seen that input ordering at each stage is effective in further

reducing power dissipation after input ordering is done at each node. While this option

reduced the power dissipation in adder4 and mux significantly, and reduced the delay

in exl, the power for ex2 and x4 was increased slightly (less than 2%). This could be

due to the constraint that both rise and fall times of the gate output must decrease for a

permutation to be accepted (as opposed to the constraints in input ordering at all

nodes, where either the maximum of the rise and fall times must decrease or the

critical slope delay must decrease) (discussed in 6.4). This disallows some gates that

might have given better power and delay trade-offs from being used. Nonetheless, this

increase in power is small compared to the decrease in power obtained in the other

circuits. Hence input ordering at each stage is another useful option in the

optimization process.

7.5.7 Check Critical Path

The option check_criticalpath checks for any changes in the critical path as gate

versions are optimized, and searches for all possible avenues for delay reduction in a

circuit. A new critical path is found whenever the original path is no longer critical,

and traversal is resumed on the new path. The results from check_critical_path were

somewhat varied. While this continuous update method reduced power dissipation for

the adder4 and x4 circuit, delay went up (comparing Tables 7.5a and 7.5b). For the

mux and ex2 circuits, this option reduced the delay but increased the power.

76

Overall Effectiveness

Continuous updates of critical paths meant that more gates would be changed as each

new path is found. This might lead to a decrease in final delay. On the other hand,

these gates might not be in the final critical path, hence their optimization might have

been redundant, leading to increased power. For example, in Fig. 7.1, gate A was sized

to be the largest version to reduce the delay, and in doing so, the gate is off the critical

path and gate B is now on the critical path. If at the end of the optimization gate B is

still on the critical path, a smaller version of gate A could have been used without

changing the delay of gate C.

A

FIGURE 7.1 Redundant Optimization

Furthermore, each of the critical paths found may be interlaced with each other, or

have inter-dependencies. A larger version used in one path might be a fanout gate to

gates on the final critical path, thereby leading to increased delay.

7.6 Overall Effectiveness

The results showed that the effectiveness of each of the options depended on the

topology of the circuit being optimized and on the delay constraint. For example, the

simplicity of exl, with a dominant critical path where each gate fans out to only one

gate in the next stage, meant that the minimum sized versions might be the best

versions to use, given the small output loads. Hence few gates were changed by the

algorithm, and the options did not make much of a difference in this case. However,

delay for this circuit was still reduced by 22% with only an increase in power

dissipation of 3%.

77

Implementation and Results

Comparing the minimum-sized mapping with the best solution from the different

combinations of options (Tables 7.6a and 7.6b), delay was reduced by up to 43% with

less than 8% increase in power. For ex2, delay was reduced by 27% with only a 1%

increase in power, while the delay of x4 was reduced by 25% with only a 2% increase

in power.

a) initial mapping b) Summary of best results
c) Basic algorithm using delay

with minimum- from combinations of
sized gates optionsly

circuit

delay power delay power CPU delay power Cpu
(ns) (uW) (ns) (uW) (me (ns) (uW) time (s)

(S)

exl 9.13 25.2 7.47 25.9 < 0.1 7.71 25.9 < 0.1

ex2 21.06 218.5 16.63 221.4 0.2 16.58 237.5 0.1

adder4 17.98 155.0 14.10 167.1 0.3 13.92 185.8 0.1

mux 22.40 279.4 15.70 304.8 0.6 15.66 390.2 0.3

x4 18.19 1469.5 14.60 1506.8 4.9 14.67 1597.8 6.4

Table 7.6: Summary and comparisons of best results

Combinations of options produced up to a 28% decrease in power dissipation

when compared to the basic algorithm which did not take into account switching

probabilities (Tables 7.6b and 7.6c). Each option had its own unique contributions, and

the effectiveness of each routine also depended on other options. For example, input

ordering reduced the arrival times at gate outputs, and due to this change in delay

values, different gate versions might be chosen by the basic algorithm or other options,

thereby leading to further changes in delay or power dissipation of the circuit as a

whole.

All routines took little computation time to run. The worst case scenario in

traversing a critical path is to change all gates on the path, and the complexity is

simply the number of gates on the critical path multiplied by the number of versions of

each gate.

78

Summary

7.7 Summary

The tests from utilizing the augmented library and running the various algorithms

developed for cell selection on five circuits returned good results in terms of delay

reduction with minimal power increase. Circuit delays were reduced by up to 43%

with up to 8% increase in power, while the options were able to reduce 28% of power

dissipation when compared to using the basic algorithm. All options turn out to be

beneficial to reducing power in one way or another.

In conclusion, the basic algorithm with the various options provided a

computationally simple method of selecting cell versions for optimal performance.

Coupled with a library with cells sized to give good power and delay trade-offs, the

whole optimization process returned results that indicate that this design process is

indeed effective and efficient.

79

Implementation and Results

80

CHAPTER 8

Conclusion

8.1 Introduction

In view of the increasing importance of low-power design, a fast and efficient low

power design method is developed in this thesis. This chapter summarizes the unique

contributions of this work and possible future work that could be done.

8.2 Unique Contributions

This work combines several optimization tools that have been previously studied

separately along with new ideas to produce a low power design method that is both

effective and efficient.

First of all, cell library design is used, for efficiency and ease in circuit design. An

augmented cell library is developed with each cell designed to give good power and

delay trade-offs. Transistor sizing and input ordering are used in the design of such

cells. In addition, area minimization is also taken into account. Transistors in each cell

are sized so as to provide a large reduction in delay with little increase in power for the

cell.

81

Conclusion

An accurate delay model that takes into account input transition time is

developed, and delay parameters for each cell are carefully obtained from layout

extraction and SPICE simulations to ensure accuracy.

Algorithms that select the best cell versions to use in a circuit are developed.

Circuits are first mapped with minimum-sized versions to ensure low power, and then

gate versions are replaced by larger versions as necessary to satisfy the delay

constraint with minimal power increase. Statistical power estimation methods are used

to accurately estimate power in a circuit, and the switching probabilities of each node

in the circuit, obtained from such an analysis, are used to make decisions regarding the

use of sized cell versions at a local level.

In addition to accurate power estimation, input ordering is also used in the

algorithm to further optimize the circuit. The effectiveness of input ordering is fully

utilized by applying this technique in sizing the transistors in each library cell, as well

as on the circuit level by reordering gate inputs for optimal delay performance.

Several unique circuit traversal algorithms are developed, each utilizing different

aspects of circuit topology and node characteristics. Switching probabilities, output

load, different rise and fall times, and critical path analysis are all used in several

different options to the main algorithm for further enhancement of the selection

process. The heuristic methods developed have produced an optimization routine that

takes little computation time, but produces circuits with desirable delay and power

performance.

8.3 Future directions

Possible extensions to the algorithm include a similar but separate algorithm to

optimize delay under a power constraint. Given a power constraint that is above the

power dissipation of a minimum-sized mapping, power could be increased until the

82

Summary

constraint is reached while reducing delay significantly. Other possible improvements

include developing a technique to relax the delay of the cells that are not on the critical

path, and not in the dependency chains for that path, by changing the versions at these

nodes to smaller versions, so as to reduce power further. This can also eliminate

redundant optimization. Critical path analysis could also include false path detection.

Theoretical characterization of the algorithm so that some provable results may

be derived could also be investigated, though it may be difficult to characterize such

heuristic methods. Possible non-heuristic methods of gate selection could also be

attempted, though it is not clear at this stage how this can be achieved, given all the

factors involved.

Other possible future research could involve establishing a more extensive library

to include latches for sequential circuits, and finding other optimization formalizations

for determining the sizes of the cells. Circuit forms other than static CMOS could also

be examined and the influence of circuit styles could also be studied.

8.4 Summary

The low power design method developed in this thesis has utilized a number of

tools, including statistical power estimation, transistor sizing, and input ordering.

Further work could be done to enhance the usefulness of this design method in

allowing different constraints, or in extending the types of circuits that can be designed

with this method.

In conclusion, the basic algorithm, with the various options, provided a fast and

efficient way to determine the best combination of gate versions to use. Together with

the usage of mainly minimum-sized cell versions coupled with cells sized to give good

delay and power trade-offs, this package provides a fast and convenient way to design

standard cell circuits for low-power.

83

Conclusion

84

Bibliography

Bibliography

[1] J.P. Fishburn and A.E. Dunlop, "TILOS: A Posynomial Programming Approach to

Transistor Sizing," in IEEE International Conference on Computer Aided Design, pg.

326-328, November 1985.

[2] D. Marple, "Transistor Size Optimization in the Tailor Layout System," in IEEE

Design Automation Conference, Pg. 43-48, 1989.

[3] D. Marple, "Performance Optimization of Digital VLSI Circuits", Technical report:

CSL-TR-86-308, Stanford University, 1985.

[4] J. Yuen and C. Svenson, "CMOS Circuit Speed Optimization based on Switch Level

Simulation," LSI Design Center, Linkoping University, Sweden.

[5] K. Hedlund, "Models and Algorithms for Transistor Sizing in MOS Circuits," in IEEE

International Conference on Computer Aided Design, pages 12-14, October, 1984.

[6] K. Hedlund, "Aesop: A Tool for Automated Transistor Sizing," in Proceedings of the

24th Design Automation Conference, pg. 114-120, June, 1987.

[7] H. Hsieh and D. Ostapko, "Size Optimization for CMOS Basic Cells of VLSI",

ISCAS, 1992.

[8] M. Crit, "Transistor Sizing in CMOS Circuits," in Proceedings of the 24th Design

Automation Conference, pg. 121-123, June, 1987.

[9] M. Shoji, "FET Scaling in Domino CMOS Gates," IEEE Journal of Solid-State

Circuits, vol. sc-20, No. 5, October 1985.

[10] M. Matson and L. Glasser, "Macromodeling and Optimization of Digital MOS VLSI

Circuits," IEEE Transactions on Computer-Aided Design, Vol. CAD-5, No. 4,

October 1986.

[11] M. Matson, "Macromodeling and Optimization of Digital MOS VLSI Circuits," Ph.D.

85

Bibliography

dissertation, Massachusetts Institute of Technology, Feb. 1985.

[12] L. Brocco, S. McCormick and J. Allen, "Macromodeling CMOS Circuits for Timing

Simulation", IEEE Transactions on Computer-Aided Design, Vol. 7, No. 12,

December 1988.

[13] A. Ghosh, S. Devadas, K. Keutzer and J. White, "Estimation of Average Switching

Activity in Combinational and Sequential Circuits," Proceedings of the 29th Design

Automation Conference, pg. 253-259, 1992.

[14] S. Devadas, K. Keutzer and J. White, "Estimation of Power Dissipation in CMOS

Combinational Circuits Using Boolean Function Manipulation,", IEEE Transactions

on Computer-Aided Design, Vol. 11, No. 3, March 1992.

[15] A. Shen, A. Ghosh, S. Devadas, k. Keutzer, "On Average Power Dissipation and

Random Testability of CMOS Combinational Logic Networks," in IEEE International

Conference on Computer-Aided Design, pg. 402-407, November 1992.

[16] A. Chandrakasan, S. Sheng and R. Brodersen, "Low-Power CMOS Digital Design,"

IEEE Journal of Solid-State Circuits, Vol. 27, No. 4, April 1992.

[17] M. Berkelaar and J. Jess, "Gate Sizing in MOS Digital Circuits with Linear

Programming," Proceedings of the European Design Automation Conference 1990,

pg. 217-221.

[18] M. Berkelaar, "Area-Power-Delay Trade-off in Logic Synthesis," Ph.D. dissertation,

Technische Universiteit Eindhoven, September 1992.

[19] V. Tiwari, P. Ashar, S. Malik, "Technology Mapping for Low Power," in Proceedings

of the 30th Design Automation Conference, pg. 74-79, 1993.

[20] C. Tsui, M. Pedram, A. Despain, "Technology Decomposition and Mapping Targeting

Low Power Dissipation," in Proceedings of the 30th Design Automation Conference,

pg. 68-73, 1993.

[21] E. Detjeus, G. Gannot, "Technology Mapping in MIS," IEEE International

Conference on Computer Aided Design, pg. 116-119, 1987.

[22] K. Keutzer, K. Kolwicz, M.Lega, "Impact of LIbrary SIze on the Quality of

Automated Synthesis," IEEE International Conference on Computer Aided Design,

pg. 120-123, 1987.

86

Bibliography

[23] K. Keutzer, "DAGON: Technology Binding and Local Optimization by DAG

Matching," in Proceedings of the 24th Design Automation Conference, pg. 341-347,

1987.

[24] F. Obermeier and R. Katz, "An Electrical Optimizer that Considers Physical Layout,"

in Proceedings of the 25th Design Automation Conference, pg. 453-459, 1988.

[25] B. Carlson and C. Chen, "Performance Enhancement of CMOS VLSI Circuits by

Transistor Reordering," Design Automation Conference, pg. 361-366, 1993.

[26] H. Veendrick, "Short-Circuit Dissipation of Static CMOS Circuitry and Its Impact on

the Design of Buffer Circuits," IEEE Journal of Solid-State Circuits, Vol. sc-19, No.

4, August 1984.

[27] A. Kayssi, K. Sakallah and T. Mudge, "The Impact of Signal Transition Time on Path

Delay Computation," IEEE Transactions on Circuits and Systems II: Analog and

Digital Signal Processing, Vol. 40, No. 5, May 1993.

[28] J. Silva, K.Sakallah, L. Vidigal, "FPD - An Environment for Exact Timing Analysis,"

IEEE International Conference on Computer Aided Design, pg. 212-215, 1991.

[29] S. Huang, T. Parng, J. Shyu, "A New Approach to Solving False Path Problem in

Timing Analysis," IEEE International Conference on Computer Aided Design, pg.

216-219, 1991.

[130] P. McGeer and R. Brayton, "Efficient Algorithms for Computing the Longest Viable

Path in a Combinational Network," in Proceedings of the 26th Design Automation

Conference, pg. 561-567, 1989.

[31] H. Chen and D. Du, "Path Sensitization in Critical Path Problem," IEEE International

Conference on Computer Aided Design, pg. 208-211, 1991.

[32] E. Sentovich, K. Sing, L. Lavagno, C. Moon, R. Murgai, "SIS: A System for

Sequential Circuit Synthesis," Electronics Research Laboratory Memorandum No.

UCB/ERL M92/41, University of California at Berkeley, 1992.

[33] D. Hill, D. Shugrad, J. Fishburn and K. Keutzer, Algorithms and Techniques for VLSI

Layout Synthesis, Kluwer Academic Publishers, 1989.

[34] R. Mazaiasz and J. Hayes, Layout Minimization of CMOS Cells, Kluwer Academic

Publishers, 1992.

87

Bibliography

[35] N. Weste and K. Eshraghian, Principles of CMOS VLSI Design, Addison-Wesley,

1985.

[36] V. Chvatal, Linear Programming, W.H. Freeman and Company, 1983.

[37] C. T. Gray, W. Liu and R. Cavin, Wave Pipelining: Theory and CMOS

Implementation, Kluwer Academic Publishers, 1993. Section 4.2.2, "Delay Models",

pg. 65ff.

[38] C.H. Tan, "Speed Optimization of a Four-Bit CMOS Full-Adder by Transistor

Sizing," final project report for 6.371: Introduction to VLSI Systems, MIT, Dec 1992.

[39] J. Monteiro, S. Devadas and B. Lin, "A Methodology for Efficient Estimation of

Switching Activity in Sequential Logic Circuits", Design Automation Conference,

1994.

88

~-1 . - L4 *'

