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Abstract
In pulsed-imager operation of a coherent laser radar system, a range image is gen-
erated by the time-of-flight measurements between transmitted and reflected pulses
from raster-scanning a target region. Previous research work in planar-range profiling
has shown the expectation-maximization (EM) algorithm to be a computationally-
simple procedure for finding the maximum-likelihood (ML) estimates of the azimuth
and elevation range slopes and the range intercept. This thesis continues the de-
velopment by extending the planar-case fitting to a generalized parametric profiling
problem. In particular, a multiresolution wavelet basis is introduced to the ML fitting
of the range profile at a sequence of increasingly fine resolutions. The weights associ-
ated with the EM algorithm are used to determine the stopping point of progressively
coarse-to-fine estimation. Fine-scale variations in the estimated profile can be sup-
pressed, resulting in a minimal-dimensionality, wavelet-fit profile. The performance
of this estimation scheme is evaluated via computer simulations.
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Chapter 1

Introduction

Coherent laser radars are capable of collecting intensity, range, or Doppler images

by raster scanning a field of view [1, 2]. In pulsed-imager mode, the range image is

produced by measuring the time-of-flight between the transmitted pulse for each pixel

and the peak-intensity of the video-detected return waveform. These range images

are often degraded by the combined effects of laser speckle and local-oscillator shot

noise. The fact that most reflecting surfaces are rough, when measured on the scale

of a laser wavelength, causes constructive and destructive interference in the reflected

light known as speckle [3]. On the other hand, shot noise is introduced in the optical

detection process which imposes a finite carrier-to-noise ratio (CNR) on the signal

[4].

Interest in the statistics of peak-detecting coherent laser raders has stimulated

research in single-pixel statistics [5], target-detection for 2-D imagers [7-9] and 3-D

imagers [10-12]. In a recently completed doctoral thesis by T.J. Green, maximum-

likelihood (ML) estimation is used to fit a planar range profile to a frame of laser radar

range data. In particular, the expectation-maximization (EM) algorithm is employed

to obtain the ML estimate. Simulation results have confirmed this technique to be

computationally simple with good noise suppression. However, the presumption of a

planar-range profile is unduly restrictive.

This thesis will extend the planar range profiling work to a more general scheme.

In particular, a multiresolution wavelet basis is incorporated into this parametric
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range profiling approach. Starting from the single-pixel statistical model for range

measurements from a peak-detecting, pulsed-imager laser radar [5], the EM algorithm

is again employed to achieve the ML estimate. The general theory of this approach

and results on simulated range data will be presented.

This thesis will also address two of the major issues that arise from this mul-

tiresolution range profiling process. Specifically, the termination criterion for the

multiresolution process and the fine-tuning of the estimated profiles are presented.

The remainder of this thesis is organized as follows. Chapter 2 describes the single-

pixel statistical model used for the derivation of the multiresolution range profiler.

Chapter 3 discusses the range profiling estimation problem and the planar range

profiler. Chapter 4 describes the general theory of the multiresolution range profiler

and studies the performance of this estimation process through simulation. Chapter

5 provides a method of terminating the multiresolution process. Chapter 6 introduces

the piecewise-smoothing method for fine-tuning the estimated profile. It also leads

to the discussion of using maximum a posteriori probability (MAP) estimation as an

alternate smoothing scheme. In Chapter 7, the major conclusions of this work are

summarized.
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Chapter 2

Background

In this chapter, the single-pixel statistical model for the range measurements of a

pulsed-imager laser radar is presented. This model serves as the basis for the deriva-

tion of the range profiling theory to be addressed subsequently.

2.1 Single-Pixel Statistics

In the pulsed-imager mode, a laser pulse is transmitted for each pixel across the

raster. The reflected light collected then undergoes optical heterodyne detection,

intermediate-frequency filtering, video detection, and peak detection, as shown in

Fig. 2-1. Each range pixel represents the time delay between the peak of the trans-

mitted pulse and the peak intensity of the video-detected return waveform from an

optical heterodyne receiver. These range images are subject to fluctuations arising

from the combined effects of laser speckle and local-oscillator shot noise. The former

is due to the rough-surfaced nature of most reflecting surfaces measured on the scale

of a laser wavelength [3], and the latter is due to the fundamental noise encountered

in optical heterodyne detection [4].

Speckle degrades laser radar range images by creating range anomalies. An

anomaly occurs when a deep target-return fade and a strong noise peak conspire

to give a range measurement very far from the true range value [5]. Fig. 2-2 shows

the difference between anomalous and non-anomalous behavior.
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Figure 2-1: Block diagram of a monostatic, shared-optics coherent laser radar.
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Figure 2-2: Peak detection range measurement examples showing nonanomalous and
anomalous behavior. Herein, R* is the true range value, R is the measured range,
LRre is the range resolution, and AR _ Rmaz - Ri,, is the range uncertainty interval.
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Let r denote the range value of a given pixel whose true range value is r*. The

conditional probability density function (PDF) for r = R, given r* = R*, is [11]

exp (R- R*)2 (A)

p,I,.(R I R*) = [1- Pr(A)] + AR

for Rmi, < R,R* < Rmt,. (2.1)

Here, Pr(A) is the anomaly probability and SR is the local range accuracy. AR is

the width of the laser radar's range uncertainty interval, 7Z = [Rin,, Rma,], which is

assumed to be much larger than SR. The first term on the right of Eq. 2.1 represents

the local range behavior. It is the probability of a nonanomalous measurement times

a Gaussian probability density with mean equal to the true range, R*, and standard

deviation equal to the local range accuracy, SR. The second term represents the global

range behavior. It is the anomaly probability times a uniform probability density over

the entire range-uncertainty interval.

Let us assume R,,, to be the radar's range resolution - roughly cT/2 for a pulse

of duration Ts, where c is the speed of light [5]. Then in terms of the radar's carrier-

to-noise ratio,

CNR-- average radar return power
average local-oscillator shot noise power 

the range resolution Rr,,, and the number of range resolution bins N _ AR/Rr,,,

the local range accuracy and the probability of anomaly can be written as

ER Rr. (2.3)

and

Pr(A) , i (In(N) - + 0.577) (2.4)

These are valid for the interesting regime of N > 1 and CNR > 10. More exact
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Figure 2-3: Downlooking geometry for a laser radar measurement

results can be found in [5].

For the typical case of monostatic operation, the CNR can be obtained from the

resolved speckle-reflector radar equation [6],

CNR = hiBP pAR exp(-2aR*), (2.5)hvB r'R*' --

where 77 is the radar receiver's photodetector quantum efficiency; PT is the peak power

of the radar transmitter; hv is the photon energy at the radar's laser wavelength,

A = c/v; B is the radar receiver's IF bandwidth; p is the reflectivity of the pixel

under consideration; AR is the area of the radar's entrance-pupil; e is the product of

the radar's optical and heterodyne efficiencies; and a is the atmospheric extinction

coefficient, assumed to be constant along the propagation path.

2.2 Scene Geometry

The processors used in background range-plane estimation and fine-range target-

detection work [11] have assumed a downlooking geometry, i.e., the laser radar is

observing a ground-based scene from above, as shown in Fig. 2-3. This scene geometry

will be used for the multiresolution range profiler. Furthermore, there will be no

restriction on the background-profile and the existence of a spatially resolved target.

16



The measured data is a range image, r = {rjk : 1 < j < J, 1 < k K},

obtained from a single raster scan. This r is the observation vector in our case since

we are interested in range-only measurements'. The pixel spacing is assumed to be

sufficiently large so that each pixel measurement is statistically independent given the

true range profile. Hence the joint PDF of the range data is just the product of the

single pixel conditional PDFs as discussed in the next section. Our multiresolution

range profiler will be developed based on this statistical model.

'We will not consider the associated intensity image generated by the laser radar. Interested
readers may refer to [11] for work on joint range-intensity processing.
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Chapter 3

Range Profile Estimation

In this section, we describe the profile estimation problem and present a general frame-

work of the maximum-likelihood (ML) range-profile estimation with the expectation-

maximization (EM) algorithm. The planar-range profiling technique is introduced as

an example and extended to a generalized parametric profiling problem.

3.1 Range Profile Estimation Problem

Suppose we use a uniformly spaced raster scan to collect a J x K-pixel range image

of some field of view, {rjk : 1 < j < J, 1 < k < K}. We shall assume that the

pixel spacing is large enough to ensure uncorrelated speckle on each radar return, so

that the {rjk} are statistically independent, given the {Trk}. It is then convenient to

assemble the range data into a JK-D column vector,

rjl

r_- -= , where r r _ rz , where rj r , for 1 < • < J.

rj rjK

Thus the joint probability density for r = R to occur is given by

(3.1)

18



Prlr(R I R) = II [1 - Pr(A)] 2i ) Pr
:=1 k=1 V28SR 2 AR

The laser-radar range profiling problem is to find the "optimal" estimate of the

true-range vector r* given the range-data vector r. The maximum-likelihood (ML)

range estimator appears to be a reasonable approach,

rML(R) arg max(plr. (RJR*)). (33)

One advantage of using the ML estimator is that no prior knowledge of the sta-

tistical behavior of the true-range vector is necessary. It estimates the true-range

vector as the R* that maximizes the likelihood of getting the range-data vector R.

However, this also implies that the best ML estimate that can be obtained is the raw

data itself!

rML(R) = R. (3.4)

So ML estimation without a "regulant" condition does not suppress anomalies at all.

This can be disastrous because the range anomalies can occur on more than 10% of

the pixels even at reasonable CNR. We will show later how the EM algorithm can

solve this anomaly problem.

3.2 Planar Range Profiling

In the recent planar range-profiling work [12], the background is modeled as an un-

known range plane whose true range values are,

r = Xlj + x2k + X3, for 1<j<J,1<k<K. (3.5)
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Defining a parameter vector,

Xl

x - x2 (3.6)

X3

and using the implied PDF,

Prlx(RIX) = Prlr(x)(RIR*(X)) (3.7)

we have

iML(R) arg max(prlx(RIX)). (3.8)

Here, x is treated as an unknown, non-random parameter vector which is to be

estimated give the range image r. To achieve that, we employ maximum-likelihood

estimation via the expectation-maximization (EM) algorithm.

The EM algorithm is used to develop an iterative procedure that produces a

sequence of tentative estimates with monotonically increasing likelihoods. With a

sufficiently good initial estimate, the EM algorithm will climb the highest hill of the

likelihood surface, yielding the desired ML estimate. Furthermore, it has been shown

that the performance of this procedure is satisfactory with anomaly probability as

high as 0.5.

This algorithm works well because if the background profile is approximately

planar, we are only fitting three parameters with a large number of pixels. The

fact that 10% of the total pixels are anomalous does not have a significant effect on

degrading the performance of the estimate. The same idea of anomaly-suppression in

a multiresolution range profiler will be discussed in the next section.

3.3 Parametric Range Profiling

There is no reason to confine the ML profiling approach described above to planar

cases only. In this section, a more general parametric ML profiler with the EM

algorithm will be discussed.
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Suppose we define {q : 1 < q < Q - JK} to be an arbitrary orthonormal

column-vector basis for Q-D vector space, and we let

H-_-[t r ma ... ma O] (3.9)

be the Q x Q coordinate-transformation matrix generated by this basis. Let

be the Q-D parameter vector so that the

(3.10)

X1

X2

XQ

true-range vector can be written as

x - HTr*. (3.11)

Since {q} forms an orthonormal basis, H is invertible and H - = HT is its

inverse. Thus estimating r* from R is equivalent to estimating x from R, and we

have

irL(R) = HiML(R) (3.12)

and

iML(R) = HTiM'L(R). (3.13)

Suppose, for a particular H, we know that only the first P dimensions of x are

nonzero, i.e., the true range profile can be characterized by a P-D vector,

xp Hr*, (3.14)

where

HpE--[ 1 02 ... P ] (3.15)
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It will be convenient to introduce

(3.16)

so that

(3.17)

and

xpXp 1 [H r* 1HcT r*
(3.18)

where

0

0
(3.19)

As in the planar case, we are now set up for the ML range profiler. The joint

conditional probability density for r = R given that xp = Xp is then

Q I
prlxp(R I Xp) = II [1 - Pr(A)]

q=1 

exp ((Rq - (HpXp)q)2

x/21r 6 R

Pr(A) 
-+ AR (3.20)

where Rq is the qth component of R from Eq. 3.1.

From the results of the planar profiling problem [12], we can expect to achieve

a substantial amount of anomaly suppression by choosing P < Q. The fact that

only 10% of 1000 pixels are anomalous will not affect the estimation result if a small

number of parameters is used. The disadvantage to this is the loss of resolution and

22
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detail which may be essential for target recognition. The assumption of a planar

background profile is removed in this generalized range profiler, meaning that both

the background and the target can be estimated at the same time.

3.4 Maximum-Likelihood Estimation

The maximum-likelihood estimate iPML, by definition, is the Xp that maximizes

Prlxp(R I Xp), given a particular range-data vector R. Since probability densities

are always non-negative, it is often easier to maximize the logarithm of the likelihood

function. Thus the ML estimate satisfies

ax [Prx(R IxX I = 0, i1 q < P. (3.21)

This is the necessary condition for an extremum to occur at Xp = XPML. Performing

the indicated differentiation on the density from Eq. 3.20 leads to the same necessary

condition as that of nonlinear weighted least-squares estimation, namely,

HTWp(Xp)(R - HPXP)xpipML = 0 (3.22)

where the P x P weight matrix is given by

Wp(Xp) _ diag[w,(Xp)]. (3.23)

Here, for 1 < q < P, the qth weight is

exp( [Rq -(HpXp)q 2

[1 - Pr(A)]q2
wJ(Xp) =[Rq - (HpXp 

exp k 2SR 2 Pr(A)
[1- Pr(A)] I

Note that all the weights are proper fractions, 0 < wq < 1 if Pr(A) < 1.

weight is the conditional probability that the associated pixel is not anoi

(3.24)

In fact, each

malous given
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that the parameter vector is Xp. Moreover, if the anomaly probability is very small

so that wq - 1 for all q, then Eq. 3.22 becomes linear and its solution is easily shown

to be

iPML = (HTHp)-1HTR, (3.25)

which, due to the orthogonal nature of the H basis, can be further reduced to become

XpML = HTR. (3.26)

Unfortunately, laser radars often operate in a regime where the number of anoma-

lies is substantial and thus the nonlinear nature of the range estimation problem

cannot be ignored. The expectation-maximization (EM) algorithm provides an itera-

tive approach to solving this nonlinear problem and will be discussed in the following

section.

3.5 Expectation-Maximization Algorithm

The EM algorithm is very well-suited to ML estimation problems whose observation

vectors constitute incomplete data [16]. This includes situations where there is some

unobserved data vector of which only a part is the observation vector available for

processing. In the context of our ML range profiling, the natural complete data vector

is

Y [ r ] (3.27)
a

where r is the range-measurement vector - our observations - and
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al

a 2

aJ

ajl

aj2, with aj - , for i j < J, (3.28)

aj K

is the anomaly data - the missing part of the complete data. Here,

aj k = J 0 if rjk is anomalous, (3.29)

1 if rjk is not anomalous.

If the complete data y were available for estimating x, we could identify and

suppress the anomalous pixels and reduce the ML estimation problem to a linear

task involving only the nonanomalous pixels. Since a is not directly observed, this

convenient way of eliminating the anomalous data is impossible. Instead of having

the anomaly data vector, the ML estimate of x based on r deals with the possibility

of anomalous pixels in a statistical manner, inevitably making it a nonlinear task.

However, the linearity of the complete data estimation task makes the EM algorithm

computationally simple.

Starting from any initial estimate of the parameter ip(O), the EM algorithm for

solving Eq. 3.22 will produce a sequence of estimates, {*p(n): n = 0, 1, 2,...} through

a series of iterative expectation and maximization steps. The associated likelihood

sequence, {pr1 xp(R:*p(n)): n = 0,1,2,...}, is monotonically increasing. Hence the

EM algorithm will climb a hill on the surface prlxp(R I Xp) :Xp E X, where X is

the set of possible parameter vectors.

A good initial estimate will place the EM algorithm somewhere on the highest

hill so that the global maixmum can be achieved. A linear least-squares initial esti-

mate should be sufficient for scenarios with low anomaly probabilities, Pr(A) < 0.1.

Unfortunately, for most general cases, such initialization is often not reliable to lo-

cate the global maximum. The recursive EM algorithm is suggested as an alternative

initialization process [12] as discussed later in Sec. 4.4.

Initialization

25

a -



An arbitrary initialization can be used in the EM algorithm, though whether or not

it converges to the correct likelihood maximum depends on the quality of the initial

estimate [12]. To be explicit, we assume the least-squares initialization,

Xp(O) (HTWp(O)Hp)- 1 HWp(O)R, (3.30)

where Wp(O) is the initial P x P matrix,

Wp(O) diag[wq(O)], with wq(0)= 1, for 1 < q < P.

Here, we have assumed that none of the range data is anomalous and the solution is

the same as the one given in Eq. 3.26.

Update Procedure

After the nth step of the EM algorithm, for n = 1,2,3,..., we have available the

current estimate, ip(n), and its associated weight matrix, Wp(n) = diag[wq(n)].

The EM algorithm then updates this estimate to ip(n + 1) by the following two

steps:

The epectation step updates the weights according to

wq(n + 1) =

exp [Rq - (H[p(n))j] 2q

[1 - Pr(A)] 

exp ([Rq - (Hpp(n))q] 2 ) 

[1- Pr(A)] 26R2 + Pr(A)
for n = 0,1,2,..., AR

for n = 0,1,2,..., and i q P. (3.32)

The maximization step then updates the estimate according to

:*p(n + 1) = (HTWp(n + 1)Hp)-1HTWp(n + 1)R, for n = 0,1,2,... (3.33)
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Theoretically speaking, the inverse of the matrix HTpWp(n + 1)Hp should always

exist, but numerical issues may arise in its evaluation (see Appendix A).

In essence, the EM algorithm uses the latest estimate to update the weight ma-

trix and uses the new weight matrix to evaluate a new estimate. The likelihood

sequence associated with these estimates is monotonically increasing (see Appendix

B). Therefore, it is natural to terminate this iterative procedure when the difference

of successive likelihoods lies within an acceptable tolerence interval.

3.6 Error Performance

Following the general measures of performance of any unknown estimate, we shall

evaluate the bias and the error covariance matrix of our ML parameter-vector esti-

mate, XPML-

The error vector associated with xPML is defined by

ePML = XP - PML, (3.34)

The bias of xPML is then the average error of this estimate,

bPML(XP) = E(ePMLIXP = Xp), (3.35)

where E(. I xp = Xp) denotes the expectation with respect to prlxp(R Xp). In

general, this value may depend on the true value, Xp, of the parameter vector. Ideally,

we would like to have an unbiased estimate which satistifies,

bpML(Xp) = 0, for all Xp. (3.36)

If there are no anomalies, i.e., Pr(A) = 0, the range data vector can be written as

r = Hpxp + v, (3.37)

where v is a Q-D column vector of independent, identically distributed, Gaussian
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random variables each with zero mean and variance R2 . In this case, using Eq. 3.26

and Eq. 3.38, it can easily be shown that bPML = 0. However, with Pr(A) > 0,

the bias cannot be evaluated so explicitly, alhough it has be shown in planar range

profiling that there will be a useful CNR regime wherein *PML will be approximately

unbiased [12].

The error covariance matrix of the estimate is given by

ApML(Xp) - E ([eML- bpML(Xp)][eML - bpML(Xp)]TIxp = Xp). (3.38)

The diagonal elements are the estimation variances for the components of xPML,

which become the mean-squared estimation errors when the estimate is unbiased,

g2(Xp) E[(xq - qML) 2 1Xp = Xp], for 1 < q < P. (3.39)

For any unbiased estimate, Sop, the Cramer-Rao inequality states that the error

covariance matrix should satisfy

Ap(Xp) > Ir(Xp) - ', (3.40)

where

Ir(Xp) E { [E ln[Prlxp(R I xP)]] ln[prl(R Xp)] = Xp =

(3.41)

is the Fisher information matrix for estimating xp from r. In Eq. 3.41, - operates

on a scalar operand producing a P-D column vector whose qth element is the partial

derivative of the argument with respect to Xq. The inequality in Eq. 3.40 implies

that Ap(Xp) - Ir(Xp) -1 is a positive semidefinite matrix. Therefore, the diagonal

elements of Ir(Xp) -1 are lower bounds for the corresponding elements of Ap(Xp),

i.e., for the mean-squared errors, {(2}, of the unbiased estimator *p. Whenever there

is an unbiased estimator whose error covariance matrix equals the inverse of the Fisher
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information matrix for all Xp, we call that estimator efficient.

In general, for nonlinear estimation problems such as our range profiling case,

efficient estimators do not exist. But if there is one, it is always the ML estimator

[17]. An estimator is unbiased and efficient if and only if [18]

Xp(R) = Xp + Ir-l(Xp)a ln[prlxp(R I xp)]- (3.42)

It should be worth noting that the right-hand side of Eq. 3.42 must be independent

of Xp for equality to hold. This allows us to determine the existence of an efficient,

unbiased estimator as in our range profiling problem by directly computing the right-

hand side of Eq. 3.42. If the result is not independent of Xp, we can be certain that

an unbiased, efficient estimator cannot exist.

If Pr(A) = 0, the estimation problem is reduced to a Gaussian problem with the

ML solution given in Eq. 3.26. This estimate is both unbiased and efficient with an

error covariance of

Ap(Xp) = Ir(Xp)-1 = 6R2 (HTHp)-1 = R2Ip. (3.43)

With Pr(A) > 0, it is difficult to evaluate the Fisher information matrix due to the

log-likelihood's nonlinear dependence on R. Therefore, we will use a weaker, but

explicit lower bound for Ir(Xp) - l using the complete data vector y given in Eq. 3.27

[11]. It is easier to calculate the Fisher information for estimating xp from y since

in that case, we are back to a linear problem. Furthermore, any unbiased estimate

of xp based on r is also an unbiased estimate of xp based on y. Thus we find the

following complete-data (CD) bound,

SR 2

Ap(X) > Ir(Xp) - l > Iy(Xp)-l = P- P(A)I for all Xp. (3.44)

Note that this CD bound becomes the CR bound when Pr(A) = 0. It has been

shown in planar case profiling that the ML estimation performance can approach the
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CD bound, even for Pr(A) > 0 [11, 12].

3.7 Underresolving the Parameter Vector

Up to this point, our analysis has been based on the assumption that only the first

P-dimensions of the parameter vector are nonzero, and that it is these dimensions

which we are estimating. In a general range-imaging scenario, we may not know,

for a given {0q} basis, how many dimensions of X are nonzero. Indeed, to suppress

anomalies, we may underresolve the parameter vector, i.e., estimate Xp when more

than P dimensions of X are actually nonzero. Consider the case where Pr(A) = 0.

The ML estimation problem is reduced to a linear Gaussian problem in which the ML

estimate is just the least-squares solution given by Eq. 3.26. If all the components of

the full parameter vector are nonzero, their ML estimate is

*ML(R) = HTR. (3.45)

Because H is an orthogonal matrix, the ML estimate of Xp is just the first P dimen-

sions of this result, viz., we have that

:IML(R) = xPML=(R) HcT ]R. (3.46)

With Pr(A) > 0, however, the situation is a bit more complicated. Owing to the

orthogonality of the transformation basis and the diagonality of the weight matrix,

we can perform EM iterations separately on the P dimensions that we are interested

in. Unlike the case with Pr(A) = 0, estimating with P dimensions will not give the

same P components as we would get from the full-parameter estimation due to the

presence of anomalies. This will be problematic if P is too small, because a lot of the

pixels will be treated as anomalous and discarded by the EM algorithm, resulting in

a loss of fine-scale features that might be of interest. These underresolved estimates

tend to be biased with significant RMS errors. Examples of underresolved profiles

will be shown later in Sec. 4.5.
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Chapter 4

Multiresolution Range Profiling

The purpose of employing a parametric ML range profiler is to impose regularity

conditions to ensure a degree of anomaly suppression. In general scenarios, the choice

of a parametric model, i.e., an {H, P} pair is not very clear.

Suppose we arrange the {q}) such that increasing q corresponds to increasingly

fine scale behavior of some sort. It follows naturally that we would want to extract the

coarse-to-fine features of the range-data by successively increasing the value of P at

each stage of the estimation process. The estimation process should terminate when

we reach the finest scale of interest or when P become so large that we are unsure

if the anomaly suppression is sufficient to warrant any finer-scale estimate. This is

where the use of wavelet basis [15] and multiresolution signal processing [13, 14] can

be incorporated.

The main focus of this thesis is to develop a multiresolution approach for laser

radar range profiling. We will use a Haar wavelet as our orthonormal basis for the dis-

cussion and simulation from here onwards, although the general construct we develop

is applicable to any orthonormal wavelet basis.
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4.1 Multiresolution Wavelet Basis

4.1.1 One-dimensional Haar Wavelets

To obtain some initial understanding of the behavior of the algorithm, the range-

estimation problem is reduced to fitting a 1-D profile to a single elevation row of a

2-D range image. Thus we assume Q = K and {rq rjq, : 1 < q < Q}, for some

particular j. Furthermore, we assume Q = 2M, where M is an integer, and we have

4bq -

(tql

qbq2

bqQ

for 1 q < Q, (4.1)

where

1
for 1 <n < Q, (4.2)

and

_qn - p[n[2-(P-l)(q - 1) - 1]Q]

for 1 < n<Q and 1 2P- 1 < q 2 p < Q. (4.3)

for 1 <n < Q, (4.4)

where
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In Eq. 4.3,

inp[n] - 2(p-1)/2 [2P-ln],



0 : n<O,

1 : 1_n<Q/2,

-1 : Q/2<n Q,

0 : n> Q.

To illustrate the nature

Eqs. 4.2 - 4.5, we have

oT

T

OT

2

oT

3

of the Haar wavelet, below is an example for Q = 8. Using

(4.6)

(4.7)

(4.8)

(4.9)

(4.10)

= [1 11 1 -1 -1 -1 -

= 1 i -1 -1 0 0 0 0],

= 0[° 0 0 0 1 -1 -1 ,
[ -1 0 0 0 0 ,

= [ 0 0 1 -1 0 0 0

= O0 0 O 1 -1 0 0 0],

= [0 0 0 0 0 0 1 -1 ]·

(4.11)

(4.12)

(4.13)

The wavelets are shown in Fig. 4-1.

It is not difficult to verify that the {q} basis constructed is orthonormal. More

importantly, the self-similar nature of the wavelets demonstrates a progression of

finer-scale behavior as q increases. Thus q, : 1 < q < P - 2P < Q} spans a set of 1-

D range profiles, {rq: 1 q < Q}, for which rq is piecewise constant over Q/P-length

intervals.

Using a {H, P} pair in the ML estimation scheme, where P < Q, we should be able

to fit a piecewise constant profile to the range data with strong anomaly suppression.

The multiresolution nature of the Haar-wavelet basis allows us to sequence through a

progression of increasing values of P which corresponds to increasingly fine piecewise-
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Figure 4-1: A Haar-wavelet { )q} for Q = 8.
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approximations to the true-range profile.

4.1.2 Two-dimensional Haar Wavelets

The extension of the one-dimensional Haar wavelet basis to a two-dimensional setting

is quite straightforward. A simple way of initial extension is to employ the separable

Haar basis generated by the product of two 1-D bases.

Suppose we let HJ and HK be the two initial 1-D bases, that is

HJ[ = 1 *-- . oj '"

Oj2

OjQ

HK - [ 1 .' k ... K ]

where

'o ] for 1 < j J, (4.14)

(4.15), for 1 < j < J,

for 1 < k < K, (4.16)

Okl

kk2

[ kQ 

, for 1 < k < K. (4.17)

be the Q x J and Q x K 1-D Haar-wavelet coordinate transformations. For consistency

with the 1-D basis described in the previous section, we shall assume that J = 2M

and K - 2N where M and N are both integers.

Let (jk : 1 < j < J, 1 < k < K, Q _ JK} be the separable column-vector basis

for the Q-D vector space, and let

HJxK- [ C11 12 ... CJK] (4.18)
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be the Q x Q coordinate transformation matrix constructed from the 1-D bases {j :

1 < j < J} and {Ok : 1 < k < K} where

Cjk =

Cjkl

Cjk2

CjkQ

Oj~ki

O j~k2

. j~kQ

(4.19)

Notice that we can associate a different value of P for the two independent 1-D

bases. This means that we can estimate the range data using different resolutions

for the J and K directions. For notational clarity, let us define Pj = 2 to be the

number of nonzero parameters to be estimated in the J direction and Pk = 2k to be

the number in the K direction. Thus we have

HPiP, [ 11 12 '... CPP, ] (4.20)

The structure of the 2-D separable Haar wavelet basis so constructed is the same

as the 1-D basis except for the increase in dimensionality and the extra freedom in

the choice of Pj and Pk. Therefore, using the same algorithm as discussed in the

previous chapter, we shall be able to obtain an ML estimate for the range profile.

In general, there is no need to restrict the 2-D basis to be separable. In many

scenarios, nonseparable wavelet bases may be more useful. The best choice of a mul-

tiresolution basis may be application-dependent and is still an open research problem.

4.2 Simulated Range Data

Computer-simulated range images are generated based on the statistical model pre-

sented in Sec. 2.1. An arbitrary range truth is chosen which resembles a "Manhattan

skyline". Fig. 4-2 shows the 1-D 512-pixel range truth used in the testing of the

ML estimation algorithm. The horizontal scale represents the pixels and the vertical

scales is in meters. The range uncertainty interval (AR) assumed for the laser radar
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Figure 4-2: A range truth of 512 pixels.
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Figure 4-3: Typical simulated range data with anomaly probability of 0.2.

is 1000 m and the local range accuracy (R) is 1 m. Fig. 4-3 shows typical range data

with Pr(A) = 0.2. The data points close to the solid line are the correct data points

while the anomalous data points are scattered all over the uncertainty interval.

For 2-D range images, the simplest approach is to use the product of two range

truths of length N to generate a N x N true range. However, the image thus con-

structed will only contain features that are aligned with the azimuth and the elevation

coordinates, as shown in Fig. 4-4.
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Figure 4-4: A 2-D range truth of 32 x 32 pixels.
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4.3 Initialization Methods

As discussed earlier in Sec. 3.5, the EM algorithm will converge to a local likelihood

maximum through generating a sequence of estimates with increasing likelihoods. In

theory, an arbitrary initialization can be used, although whether or not the EM al-

gorithm converges to the global likelihood maximum depends on the quality of this

initial estimate. We will discuss two initialization methods in the following subsec-

tions: their resulting estimation performances will be compared in Sec. 4.5.

4.3.1 Range-Truth Initialization

With simulated data, the true parameter vector, Xp, is available for a given range

truth. Thus we can approximate the ML estimate via the EM algorithm by setting

ip(O) = Xp and iterate until a stationary point is reached. Initializing the EM

algorithm with the true parameter will result in an estimate whose likelihood is even

higher that of the true parameter. Thus we can expect this estimate to be very

near to CPML. However, there is a problem of underresolving the range-truth when

fewer parameters are estimated than are implied by the original profile, as discussed

in Sec. 3.7. Moreover, this initialization scheme is not possible for real laser radar

range profiles as the range-truth is unknown. In that case, more robust initialization

techniques are needed [12].

Using the range truth, we obtain our initialization:

*p(O) = HTr*. (4.21)

For notational simplicity, we will use the value of P to denote resolution from here

onwards such that for a particular P, the smallest piecewise-constant interval that

can be represented is of length Q/P. In other words, higher P corresponds to higher

resolution.

Figs. 4-5 - 4-8 show the initial estimates supplied to the EM algorithm at different

resolutions, where the dash-dotted line is the range truth. These seeds are just the

Haar-wavelet representations of the range truth for different values of P. Notice that
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Figure 4-5: Haar-fitted profile
dotted line is the range-truth.
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Figure 4-6: Haar
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-fitted profile at P = 32 for initializing the EM algorithm; dash-
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Figure 4-7: Haar-fitted profile at P = 64 for initializing the EM algorithm; the range
truth is identical to the P - 64 Haar fit.
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Figure 4-8: Haar-fitted profile at P = 128 for initializing the EM algorithm; the range
truth is identical to the P = 128 Haar fit.

at low resolution the Haar-fitted profiles tend to average the effects of finer details like

narrow peaks and jumps. As the resolution increases, the fitted profiles more closely

resemble the range truth. The true parameter vector X for this range truth has 25

nonzero parameters, which require 64 Haar-wavelets for a perfect representation.

Figs. 4-9 - 4-12 shows the estimated profiles obtained from the EM algorithm at

different resolutions. Again, the dash-dotted line is the range truth. It is obvious that

at low resolution the finer peaks are treated as anomalous pixels, and are rejected by

the EM algorithm (Figs. 4-9 - 4-10). As the resolution increases, more details are

captured by the EM algorithm, resulting in an estimated profile that better resembles

the range-truth (Fig. 4-11 - 4-12). Due to the nature of the Haar-wavelets, the finer

features may be shifted or widened. In addition, the finer-scale estimate also picks

up the local noise at the "wide-flat" areas. These undesirable fine details lead to the

suggestion of a smoothing scheme for the final estimate which will be discussed in

Chap. 6.

4.3.2 Least-Squares Initialization

When the true parameter vector Xp is not available, as in the case of real laser

radar images, a more realistic initialization approach would be the least-squares (LS)

initialization as described by Eq. 3.30.
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Figure 4-9: Estimated profile seeded with range-truth at P = 16; dash-dotted line is
the range-truth.
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q

Figure 4-10: Estimated profile seeded with range-truth at P = 32; dash-dotted line
is the range-truth.
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Figure 4-11: Estimated profile seeded with range-truth at P = 64; dash-dotted line
is the range-truth.
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Figure 4-12: Estimated profile seeded with range-truth at P = 128; dash-dotted line
is the range-truth.

In planar-range profiling case, the LS-initialized EM algorithm finds the ML esti-

mate reliably for large images and low Pr(A) [12]. The fact that only three parameters

- the azimuth and the elevation angles, and the range-intercept - are fitted with a

large number of pixels makes the impact of anomalies on the estimate relatively weak.

However, as SR/AR decreases, only a few anomalous pixels are needed to place the

estimated plane far away from the truth and least-squares may not reliably place the

initial estimate on the slope where the global maximum resides.

Unfortunately, in our case of multiresolution range profiling, this simple initializa-

tion method is in general not sufficient to start the EM algorithm. For small values

of P, we again encounter the problem of underresolution where the initial estimated

profile is placed many R away from the true profile. Initial LS estimates at dif-

ferent resolutions for a particular range data are shown in Figs. 4-13 - 4-16, where

the dash-dotted line is again the range truth. Due to the nature of the least-squares

method, these initial estimates average all the pixels. As a result, a large portion of

the nonanomalous pixels are treated as anomalies and are thus discarded in the EM

iterations. The final estimates thus obtained (which are not shown) will not be very

good approximations of the ML estimates. Indeed, quite often, the weights in Eq. 3.33

are so small, when LS initialization is employed, that the matrix HTWp(n + 1)Hp

becomes too singular to invert numerically.
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Figure 4-13:
range-truth.

Initial least-squares estimated profile at P = 16; dash-dotted line is the

q

Figure 4-14: Initial least-squares estimated profile at P = 32; dash-dotted line is the
range-truth.
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Figure 4-15: Initial least-squares estimated profile at P = 64; dash-dotted line is the
range-truth.
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Figure 4-16: Least-squares initial estimated profile at P = 128; dash-dotted line is
the range-truth.

An alternative initialization approach, the recursive EM (REM) [11] will be de-

scribed in the next section.

4.4 Recursive EM Algorithm

The REM algorithm is an extension of the least-squares initialized EM estimation. It

has been demonstrated in the planar profiling work that the REM algorithm obtains

a more reliable ML estimate than the LS-initiated EM algorithm [12].

Suppose we let M be an integer satisfying

M log 2 (n). (4.22)

The REM algorithm begins by setting the local range accuracy, R, in Eq. 2.1 to be

6rO = AR. The LS-initialization is then employed on the resulting density to obtain

an initial estimate *REM(O) via the EM iterations. The REM algorithm then resets

the local range accuracy in Eq. 2.1 to rl = 6ro/2 = AR/2. The EM algorithm is

initiated again using REM(O) as the seed to obtain the first-order REM estimate,

*REM(1). This recursive process will repeat until XREM(M - 1) is used to initiate the

EM iterations with rM -= rMM-1/2 = 2- M AR = R used as the local range accuracy.

The output of this step is the final REM estimate REM = REM(M)-
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The REM process described above has significant improvements over the LS-

initialized EM algorithm. Starting from a very large value (the range uncertainty

interval AR), the local range accuracy in Eq. 2.1 is reduced by a factor of 2 during

each round of the EM-iterations. As a result, only a few pixels are treated as anomalies

and discarded at each round. In contrast to the LS-initialized EM algorithm, the REM

reduces the chance that a lot of the nonanomalous pixels are disqualified from the

estimate because of the quality of the LS initial estimate. Therefore, it is more likely

that the REM estimate will be closer to the ML estimate that we desire. Figs. 4-17

- 4-19 show the estimated profiles obtained using the REM algorithm for different

resolutions.

4.5 Performance

In this section, we will examine the estimation performance of the multiresolution

range profiler via its normalized bias and RMS error. All simulations assumed the

same range truth shown in Fig. 4-2. The original profile is best-fitted at a resolution

of P = 64, in which 25 of the true parameters are nonzero. In the simulation figures,

each data point is the sample mean, and the associated error bars are plus-minus one

sample standard deviation, of 500 trials.

Figs. 4-20 - 4-22 show the normalized bias of icPML, i. e. (bPML(XP))q/6R vs. q,

0 50 100 150 200 250 300 350 400 450 500
q

Figure 4-17: REM estimated profile at P = 16; dash-dotted line is the range-truth.
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Figure 4-18: REM estimated profile P = 32; dash-dotted line is the range-truth.
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q

Figure 4-19: REM estimated profile P = 64; dash-dotted line is the range-truth.
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Figure 4-20: Normalized bias of the EM parameter estimates at P = 16

where 1 < q < P, for different resolutions. We can see that at low resolutions, say

P = 16, the ML estimate seems to be quite biased. This can be easily understood

since we are only using a small number of parameters in the estimation and in that

case we are underresolving the range truth. This results in a loss of fine-scale features

and we should well-expect the estimate to be biased. As the value of P increases, the

estimate becomes less biased. The stopping rule for the estimation process, which

will be discussed later in Chap. 5, indicated that the best estimate is at P = 64. This

corresponds to the resolution of the original profile used, and we can see that our ML

estimate is approximately unbiased at that resolution.

Apart from the bias, we are also interested in the RMS estimation error in com-

paring the ML estimation with the complete-data bound. Figs. 4-23 - 4-25 show the

normalized RMS errors, PML(X)I/CD(X) vs. q, at different resolutions. Similar

to the behavior of the normalized bias, the RMS errors decrease as more parameters
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Figure 4-21: Normalized bias of the EM parameter estimates at P = 32

are being used in the estimation. In particular, we have fpML(X) m fCD,(X) at the

terminating resolution. Thus for this particular range truth, initializing with the true

parameter vector does ensure convergence to the ML estimate at Pr(A) = 0.2.

In general, we do not want to use resolutions higher than a quarter of the full

resolution. One reason is that it is numerically difficult to solve Eq. 3.33 due to

matrix singularity. Furthermore, the anomaly suppression is weaker as resolution

increases; with overly high resolution, anomalous pixels may masquerade as high-

resolution features.

As discussed in Sec. 4.3.2, initializing the EM algorithm using the least-squares

estimate is seldom reliable. Therefore, we resort to using the REM algorithm as a

practical realization of finding the ML estimate. Figs. 4-26 - 4-26 plot the normalized

bias of the iPML estimates at different resolutions. The corresponding normalized

RMS errors are shown in Figs. 4-29 - 4-31. Here we see behavior similar to that
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Figure 4-22: Normalized bias of the EM parameter estimates at P = 64

seen earlier with the range-truth initialized estimate, with one exception. At high

resolution, the RMS errors of the REM algorithm is much worse. This is primarily

due to the inclusion of anomalous data points in the first few cycles of the recursive

process when the algorithm's local range accuracy is still very coarse, resulting in the

inclusion of "false" fine-scale features.

For the 2-D simulations, samples of the estimated profile at different resolutions are

shown in Figs. 4-32 - 4-34. The range truth itself, as shown in Fig. 4-4, is separable,

making the separable 2-D Haar basis a potentially good coordinate transformation.

Basically, the behavior of the system in 2-D profiling is very similar to the 1-D case,

despite the fact that the computational time goes up as n2. However, for images that

contain features that are not oriented along the axes, the Haar basis may not be as

suitable.
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Figure 4-23: Normalized RMS errors of the EM parameter estimates at P = 16
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Figure 4-24: Normalized RMS errors of the EM parameter estimates at P = 32
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Figure 4-25: Normalized RMS errors of the EM parameter estimates at P = 64
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Normalized bias of the REM parameter estimates at P = 16
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Figure 4-27: Normalized bias of the REM parameter estimates at P = 32
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Figure 4-28: Normalized bias of the REM parameter estimates at P = 64

56

&O

CT
I-

3



tsL

70

60

50

40

30

20

10

0

-10

2 4 6 8 10 12 14 16 18

q

Figure 4-29: Normalized RMS errors of the REM parameter estimates at P = 16
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Figure 4-30: Normalized RMS errors of the REM parameter estimates at P = 32
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Figure 4-31: Normalized RMS errors of the REM parameter estimates at P = 64
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Figure 4-32: 2-D estimated profile with Pj = 4, Pk = 4 of a 32 x 32 range image and
Pr(A) = 0.2
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Figure 4-33: 2-D estimated profile with Pj = 4, Pk = 8 of a 32 x 32 range image and
Pr(A) = 0.2
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Figure 4-34: 2-D estimated profile with Pj = 8, Pk = 16 of a 32 x 32 range image and

Pr(A)= 0.2
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Chapter 5

Process Termination

The multiresolution, wavelet-based ML profiling scheme allows us to sequence through

a progression of estimates of increasingly-fine resolutions. The associated likelihoods

also increase with increasing resolution, achieving their maximum at P = Q. This

means that the full-resolution estimate is the best possible ML estimate, if likelihood

is the only performance criterion. However, as noted at the outset of this thesis,

anomaly suppression is a critical component of range-image processing. Thus, there

is going to be an inevitable trade-off between increasing the resolution (to capture finer

scale range-truth details in our ML estimate) and minimizing resolution (to better

suppress anomalous pixels). This leads to the question of determining at what scale

should this progression terminate to yield an estimate with sufficient dimensionality

and satisfactory anomaly suppression.

In the expectation step of the EM algoritm, a weight is computed for each pixel,

which determines whether the pixel should be discarded when updating the next esti-

mate. In other words, these weights are indicators of whether of not the corresponding

pixel is anomalous, thus providing us a way to measure the quality of the estimate at

that particular resolution and Pr(A). It also suggests a method of terminating this

coarse-to-fine ML estimation process. We will begin by studying the statistics of the

weights.
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5.1 Zero-Weight Statistics

Consider the anomaly data vector given in Eqs. 3.28 - 3.29. Each data point can

be interpreted as an independent, identically-distributed Bernoulli random variable

with a probability of success of 1 - Pr(A) [19]. Suppose we let Na be the sum of

anomalies that occur in the corresponding Q-D range-data vector. It is not difficult

to show that the probability mass function (PMF) of this random variable Na is the

binomial, viz.,

Pr(N = n) = (Q) Pr(A)n(l - Pr(A)))-n, n = 0,1,., Q, (5.1)

where

= (Q ! (5.2)

From this PMF, we can easily compute the mean,

E(Na) = Q Pr(A), (5.3)

and the standard deviation,

o = Q Pr(A)(1 - Pr(A)), (5.4)

of N.. The anomaly data is actually the missing part of the complete data vector

and is not available to us. However, the weights in the EM iterations provides us an

indirect estimate of the anomalies present.

At each expectation step of the EM algorithm, a weight matrix, Wp(Xp)

diag[wq(Xp)], is produced using Eqs. 3.23-3.24. Each of these weights, Wq, is the

conditional probability that the associated pixel is not anomalous given that the

parameter vector is XpML. In other words, the smaller wq is, the more likely the pixel

is anomalous and is thus discarded. In general, all these weights are either very close

to zero or one. This behavior is illustrated in Figs. 5-1 - 5-6, which show the weight

distributions associated with the EM and REM estimates from Figs. 4-9 - 4-11 and
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Figure 5-1: Weight distribution Wq vs.
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q for an EM estimated profile at P = 16.
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Figure 5-2: Weight distribution Wq vs. q for an EM estimated profile at P = 32.

Figs. 4-17 - 4-19, respectively.
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Figure 5-3: Weight distribution Wq vs. q for an EM estimated profile at P = 64.
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Figure 5-4: Weight distribution Wq vs. q for an REM estimated profile at P = 16.
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Figure 5-5: Weight distribution Wq vs. q for an REM estimated profile at P = 32.
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Figure 5-6: Weight distribution wq vs. q for an REM estimated profile at P = 64.

Suppose we binarize the weights by a simple threshold test, i.e., we define

0 if w <0.5, (55)

1 if wq > 0.5,

which is equivalent to saying

J0 if pixel is presumed anomalous, (5.6)
Zq= (5)

1 if pixel is presumed not anomalous.

Thus we can see that {zq; 1 < q < Q} is also a series of Bernoulli trials. In analogy

with N,, we define Nz to be the number of zq that are zero, for 1 < q < Q. At the

appropriate scale P, where we want to terminate the estimation process, we expect

to be rejecting approximately the correct number of anomalous pixels by setting their

weights to zero. Thus the distribution of Nz would be very similar to that of N,,

Pr(Nz = n) = Q Pr(A)n(1 - Pr(A))Q, = 0,1,.., Q. (5.7)

Based on the central limit theorem, we can approximate the binomial distribution of

N. with a Gaussian distribution with mean Q Pr(A) and variance Q Pr(A)(1 - Pr(A))

for 0 < Q Pr(A)(1 - Pr(A)) < Q[19].

With the multiresolution approach, we expect N, to be a decreasing function of

P, since we are rejecting fewer pixels as resolution increases. Eventually, Nz will be
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zero when the full-scale is reached since we already know that the best ML estimate

is the raw data in which none of the pixels are presumed anomalous.

5.2 Termination Criterion

Based on the value of the mean and standard deviation of the zero-weights, a termi-

nating criterion can be established. The estimation process begins with the coarsest

scale and proceeds down to increasingly finer scales. The number of zero-weights

of the weight matrix is computed after the last iteration of the EM algorithm at

each resolution. Depending how close this value is compared with the theoretical one

obtained in Eq. 5.3, we can decide whether we should stop or go to a finer resolution.

Figs. 5-7 - 5-9 show the zero-weight distributions at different resolutions for 500

trials of our the 1-D range profiles. We see that the distributions of Nz are approx-

imately Gaussian in all cases. Both the mean and the standard deviation approach

their theoretical values of Q Pr(A) and Q Pr(A)(1 - Pr(A)), respectively. Similar

performances are obtained using the REM algorithm, as shown in Figs. 5-10 - 5-12.

The mean values calculated are similar to those of the range-truth initialized ones.

The above results suggest a measure for our termination criterion. Assuming

we know Pr(A), the theoretical mean and standard deviation of Na are available.

Note that both values are independent of the resolution P. The value of N is

evaluated at each resolution as we progress along the coarse-to-fine estimation process,

terminating at the coarsest scale where N_ is within one standard deviation of E(Na).

The termination resolution for the set of range-data profiles in our simulations is at

P = 64, agreeing with the number of parameters in the range truth.

Similar performances are obtained using the REM algorithm, as shown in Figs. 5-

10 - 5-12. The mean values calculated are similar to those of the range-truth initial-

ized ones.

The behavior of the weights in our 2-D simulations are slightly different. In gen-

eral, the zero-weights exhibit similar statistical behavior. The mean and the standard

deviation approach the theoretical values as the resolution increases. Thus the same
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Figure 5-7: Zero-weights distribution with number of occurrences of Nz in 500 trials
vs. Nz for an EM estimated profile at P = 16 where E(Nz) = 156.86 and o-,N = 8.90.
The dotted line is the theoretical Gaussian distribution for Na, with Pr(A) = 0.2,
mean E(N,) = 102.4 and standard deviation N, = 9.05.
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Figure 5-8: Zero-weights distribution with number. of occurrences of Nz in 500 trials
vs. Nz for an EM estimated profile at P = 16 where E(N2 ) = 115.80 and avN = 8.49.
The dotted line is the theoretical Gaussian distribution for Na, with Pr(A) = 0.2,
mean E(Na) = 102.4 and standard deviation aN, = 9.05.
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Figure 5-9: Zero-weights distribution with number of occurrences of N. in 500 trials
vs. Nz for an EM estimated profile at P = 16 where E(Nz) = 101.48 and Nrz = 8.66.
The dotted line is the theoretical Gaussian distribution for Na, with Pr(A) = 0.2,
mean E(Na) = 102.4 and standard deviation aN. = 9.05.
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Figure 5-10: Zero-weights distribution with number of occurrences of Nz in 500 trials
vs. N. for an EM estimated profile at P = 16 where E(N,) = 153.71 and c7N = 8.18.
The dash-dotted line is the theoretical Gaussian distribution for N,, with Pr(A) = 0.2,
mean E(Na) = 102.4 and standard deviation AN, = 9.05.
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Figure 5-11: Zero-weights distribution with number of occurrences of Nz in 500 trials
vs. Nz for an EM estimated profile at P = 16 where E(Nz) = 114.78 and aN = 8.50.
The dash-dotted line is the theoretical Gaussian distribution for Na, with Pr(A) = 0.2,
mean E(N,) = 102.4 and standard deviation Na = 9.05.

a)
O

O

O
O
O

0
z

Nz

Figure 5-12: Zero-weights distribution with number of occurrences of Nz in 500 trials
vs. Nz for an EM estimated profile at P = 16 where E(Nz) = 101.53 and N = 8.70.
The dash-dotted line is the theoretical Gaussian distribution for N, with Pr(A) = 0.2,
mean E(N,) = 102.4 and standard deviation N = 9.05.
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termination criterion should be applicable to the 2-D profiles. However, the decision-

making is not as straigthtforward as in the 1-D case owing for the following two

reasons.

The resolutions of the two 1-D wavelet basese used for the construction of the 2-D

bases are independent. Using the notation from Sec. 4.1.2, a given P = PjPk can be

achieved with a variety of Pj and Pk values. This adds another degree of freedom to

the choice of the optimal scale and thus complicates the problem of terminating the

estimation process. A few combinations of Pj and Pk may be necessary to determine

the appropriate resolution.

The Haar-wavelet basis used in the 2D simulations is a separable basis constructed

from two 1D bases. Thus it is best-suited for profiles which have rectangular block

features that are aligned with the two axes. In that case, the stopping criterion

described above would have the best performance. However, for features of other

shapes and alignments, the Haar basis is not intrinsically a good representation and

therefore we should not be surprised to see the stopping criterion fail. An example

of the worst case would be a diagonal ridge running across the range image. To

accurately represent the ridge with the Haar-wavelets, we need to over-resolve the

ridge itself, because of its diagonal orientation. In that case, the weight-determined

stopping method may not be effective.

In general, the weights generated in the EM algorithm provide a reasonably direct

method of determining the quality of the estimate at a particular resolution. The

weight-based termination method is applicable to all wavelet bases. However, more

sophisticated termination methods can be established for other wavelet-bases and

image scenarios.
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Chapter 6

Smoothing and Refinement

The ultimate goal of the multiresolution ML estimation process is to obtain a wavelet-

fit profile of minimal dimensionality comprising the maximum resolution capability

implied by the original image's single-pixel statistics. The final estimate obtained

using the termination criterion described in the previous section should have a suffi-

ciently high likelihood and anomaly rejection. Due to the restriction imposed on P,

where P =_ 2P < Q for any integer p, small range-profile variations (of the order of

5R) that are introduced by shot noise are also captured by the fine-scale parameters.

These insignificant details can very well be suppressed in most circumstances with-

out affecting the quality of the estimate. Two such techniques are discussed in this

chapter.

We assume that the ML estimation process has been successfully terminated by

the weight-based stopping criterion developed in the previous chapter. We now have

an ML estimate that includes some extraneous fine-scale parameters that should be

suppressed. We begin by looking at a piecewise smoothing method in the following

section.

6.1 Piecewise Smoothing

The piecewise smoothing method is a simple, straightforward way of suppressing ex-

traneous fine-scale variations. For the moment, let us consider the 1-D case. Basically,
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the estimated profiles is divided into several piecewise linear segments along the sharp

discontinuities, or edges as we call them, that occur in the profile. We can use the

backward difference of the 1-D profile,

' -rq-q-, q = 2, 3, , Q. (6.1)

to locate the I points on the estimated profile where 1Slq[ > t for 1 < q < Q and t is

around one or two times the local range accuracy. Let the set of these edgepoints be

{di 0 < i < I} where do = 1 and dl < d2 < ... < di. Upon locating all the edges,

the original values of the pixels in each segment are replaced by the respective local

means,

1 di+l

¢°(q) = d+l d< q < d. (6.2)
di+ - di + j=d/

This resulting profile is again fitted with the wavelet basis.

*p = HTi'. (6.3)

Parameters that represent the extraneous detail variations are forced to zero at this

point, leaving behind the more significant ones that represent the major features in

the original range profile. For 2-D profiles, a similar method can be employed. In

2-D, a pixel is grown into a rectangular region, where extraneous fine-scale variations

are suppressed. In the following, we will illustrate the piecewise-smoothing process

in the simpler, linear-region growing of 1-D data.

Fig. 6-1 shows an estimated profile at resolution 64 which is smoothed with this

method. The dimension of the resulting nonzero components of the estimated X

parameter is reduced to 31 by this procedure. Comparing with the true parameter

vector, there are only 6 additional nonzero components. In terms of computation

and operation complexity, the piecewise smoothing method is very efficient. This is

desirable when scale can be traded off for dimensionality.

Figs. 6-2 and 6-3 show the performance of this smoothing algorithm over 500 trials
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Figure 6-1: Piecewise-smoothed estimated profile at P = 64; dash-dotted line is the
range-truth.

of range data originating from the range truth shown above. The smoothed estimate

actually performs better than the original estimate and the RMS errors go well below

the CD bound. Since the CD bound requires that the estimate be unbiased for all X,

the result leads us to the conclusion that this "ad-hoc" smoothing technique is biased

for the type of profiles with wide features and large discontinuities. This is not hard

to understand since the effect of local averaging is more apparent in wide, flat areas

with large distinct features. For profiles with slow varying features, this smoothing

technique does not have much effect.

Consider an intuitive worst case for our piecewise smoother in which the range-

truth resembles a staircase, as shown in Fig. 6-4. All the features are 8 pixels in

width and increase in stepsize of 0.758R. Using the piecewise smoothing method, the

smoothed range truth (or a range data without noise) will be a constant profile with a

single nonzero parameter. With Pr(A) > 0, certain parts of the smoothed profile will

be wider, depending on the distribution of local noise and the anomalies. A typical

smoothed profile can be seen in Fig. 6-5 for Pr(A) = 0.2. For this type of profile, the

performance of the smoothing method is worse than the original estimate. The bias

and the RMS errors of this estimate can be found in Figures 6-6 and 6-7.
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Figure 6-3: Normalized RMS errors of the parameters of the piecewise-smoothed
profiles at P = 64
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Figure 6-4: A staircase profile with steps 8 pixels wide and 0.758R high.
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Figure 6-5: Staircase profile estimate after smoothing; dash-dotted line is the range-
truth.
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Figure 6-6: Normalized bias of the parameters of the piecewise-smoothed staircase
profile at P = 64 for 100 trials.
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Normalized RMS errors of the parameters of the piecewise-smoothed
staircase profiles at P = 64 for 100 trials.
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Figure 6-8: Typical profile obtained from estimating only the non-zero parameters of
the range truth; dash-dotted line is the range-truth.

6.2 Non-zero Parametric Profiling

In essence, the piecewise smoothing method smoothes the estimated profile by replac-

ing the pixels with the local mean over a segment, thus forcing the smallest fine-scale

parameter estimates to zero. In other words, we only want to estimate the parameters

that are implied by the true profile. Since the range truth is known in our simulations,

it is possible to examine the performance obtainable if we only estimate the nonzero

parameters at a specific resolution. In that case, the estimated profile is already at

its minimal dimension and no further smoothing process is needed.

Fig. 6-8 shows a ML estimated profile for Pr(A) = 0.2 obtained from the EM

algorithm seeded with the range truth. Only the 25 nonzero parameters of the range-

truth are estimated. We can see that the resulting profile is already smoother than

the one in Fig. 4-11. No additional refinement is necessary since the ML estimation

already yields the estimate that has the minimal dimensionality embedded in the

range truth.

The performance of this estimation approach is shown in Figures 6-9 and 6-10.

The final estimate is both unbiased and efficient, as indicated by the plots. In fact,

it even performs better than the ML estimate at our terminal resolution. This is the

optimal ML estimate we can get with good anomaly suppression.
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Figure 6-9: Normalized bias of 500 trials of the non-zero parameters estimation.
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Figure 6-10: Normalized RMS error of 500 trials of the non-zero parameters estima-
tion.
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When the true range is not available, as in the case of real laser radar data,

the above approach is not feasible as we have no means of knowing which of the

parameters are non-zero. However, Figs. 6-8 - fig:nz-rms demonstrate the value of

having some prior knowledge of the parameters that we are estimating in reducing the

dimensionality of the estimate profile. This leads us logically to the development of a

more practical smoothing scheme via maximum a posteriori probability estimation.

6.3 Maximum A Posteriori Probability Estima-

tion

The maximimum a posteriori probability (MAP) estimate i:PMAP is the Xp that

maximizes the conditional density pxpl,(X'P I R):

iPMAP = arg maxpxpr(Xp I R)xP

prlxp(R Xp)px(Xp)= arg max p)p Xp (6.4)

Again, it is often easier to maximize the logarithm of the likelihood function. Taking

the logarithm and differentiating with respect to Xp, we find that the MAP estimate

satisfies

X ln[prlxp(R I Xp)pxp(Xp)] IXP=PMAP= 0, 1 < q P (6.5)

This is the same as saying

0 1
[a In Prlxp(R I Xp) + aq In pxp(Xp)X IXP=*PMAP= 0 (6.6)

Suppose we know that Xp is Gaussian with N(mxp, Axp). Following Eqs. 3.22, 3.23

and 6.7, our MAP equation can be reduced to
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RHTpWp(Xp)[R - HpXp] - (Xp - mxp)TA` = 0. (6.7)6R 2 XP

Note that this is very similar to the ML equation we have in Eq. 3.22, except for an

additional second term that involves the prior statistics of Xp. Next we need to show

that the EM algorithm can be used for the MAP estimation.

Suppose we assume a least-square initial estimate, XpMAp(O). Following the defi-

nition of Q(X'p I Xp) in [11], let us define the function

Q'(X'p I Xp)

- Q(X'p Xp) + lnpxp(X'p)

= Pr(a= A r = R, xp = Xp)
A

x ln[Pr(a = A r = R,xp = X'p)prxp(R I X'p)] + lnpx(X'p), (6.8)

where the vector A is summed over all possible anomaly combinations, viz.,

A1

A2
A A . . (6.9)

AQ

Here, Q'(X'p Xp) is essentially the conditional expectation of the complete data log-

a-posteriori probability density function evaluated at xp = X'p, given the incomplete

data vector is r = R and the true parameter vector is xp = Xp.

As described in Sec. 3.5, the EM algorithm updates the estimate *p(n) in two

steps. In the expectation step, the conditional expectation Q'(X'p I Xp) is computed.

With reference to the results in [11], we find that the expectation step can again be

done analytically,
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Q'(X'p I Xp) [AR I+ln [ Pr(A) ] ( q=l P)

-, (p)[Rq - (HXp)q]2 (X'p -mx)TAx(X'p-m)
x=1 28R 2 2

-ln[(2r)P/2 det Ax,' 2]. (6.10)

For the maximization step, we want to set the ip(n + 1) equal to the X'p that

maximizes Q'(X'p I Xp). By differentiating Eq. 6.11, we find that ip(n + 1) must

satisfy

1 Wp(n)[R - Hpip(n)] - (ip(n + 1) - mxp)TA = 0 (6.11)
8 R2

where Wp(n) is the weight matrix calculated based on the previous estimate. Con-

sider the linear Gaussian problem in which we observe

r = Hpx'p + v (6.12)

where x'p N(mx, Ax) and v - N(O,6R 2Wp(n)). In this case, the Bayes Least

Squares Estimate is also the MAP estimate. Specifically, a form of this estimate can

be written as [18]

xiPMAP(n + 1) = mx + AB(n)HT Wp(n)[R - HiMAp(n)], (6.13)

where

A-1(n) = A` + HTWp(n)Hp for n = 0,1,2,-... (6.14)

This Bayes LS estimate obeys the same necessary condition given by Eq. 6.11, so it

provides the solution to the EM algorithm's MAP maximization step. Comparing

with Eq. 3.33, we see that Eq. 6.15 differs in its additional information contributed

by the prior knowledge of the statistics of x. Note that as Ax - oo, meaning that
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Figure 6-11: Mean range-truth generated by the given mx and A,.

there is almost no prior information about xp, we have

AB - (HWp(n)Hp) - 1 , (6.15)

and

XpMAp(R) - :PML(R). (6.16)

With some prior knowledge about the relative importance of each element in the

parameter-vector xp, MAP estimation provides us a way to suppress extraneous fine-

scale variations and obtain a smoother final estimate. More importantly, the EM

algorithm can be used with minimal alterations in the implementation. Figs. 6-13

- 6-15 show the resulting profiles developed from a common range-data using the

various estimation processes. The range truth used here is generated using a known

mx and Ax with Pr(A) = 0.2 and AR = 1000m as in the previous cases. m is

actually obtained from the mean values of PML for P = 64 from the 500 trials

of EM iteration used for evaluating the performance in Sec. 4.5. Fig. 6-11 plots

rq = (Hpmx)q vs. q. The covariance Ax used is a diagonal matrix with the first

32 components ranging from 1-6 and the last 32 components very small. Fig. 6-12

shows the mean and standard deviation r, = diag[HpAxHT]q.

Both the piecewise-smoothed ML and the MAP estimated profiles are better ap-

87

CT



UVV 

0 50 100 150 200 250 300 350 400 450 500
q

Figure 6-12: Mean range-truth rq = (Hpmx)q plotted with i one standard deviation
'arq bounds.
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Figure 6-13: ML estimated profile at P = 64; dash-dotted line is the range-truth.

proximations of the original range profile than the ML estimate. However, the MAP

estimate provides the closest approximation to the range-truth.
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Figure 6-14: NIL estimated profile after smoothing; dash-dotted line is the range-
truth.
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Figure 6-15: MAP estimated profile at P = 64; dash-dotted line is the range-truth.
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Figure 6-16: Normalized bias of the MAP estimate for P = 64.

The performance of the MAP estimate can be seen in Figs. 6-16 and 6-17. The

bias of the coarse-scale parameters are larger than those for the ML and smoothed ML

estimates. This is what we expected from the MAP estimation since the bias depends

on the prior statistics of Xp and the actual value of the parameter itself. However,

the MAP estimate has lower RMS errors than both the ML and the smoothed ML

estimates due to the fact that we have additional information available from the prior

statistics of Xp. Based on this MAP approach, we can improve the performance of

our system by directing the multiresolution range-profiler to target the specific kind

of features we are interested in.
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Figure 6-17: Normalized RMS error of the MAP estimate for P = 64.
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Chapter 7

Conclusion

Coherent laser radar systems are capable of generating range images by raster scan-

ning a field of view. These range images are subject to fluctuations arising from the

combined effects of the laser speckle and local-oscillator shot noise. Because of this,

a statistical approach to laser radar image processing seems most appropriate. Nu-

merous research efforts have spun off ranging from the fundamentals of single-pixel

statistics to 3-D object recognition and detection. The objective of this thesis is

to continue this development by introducing the notion of multiresolution (wavelet)

signal processing into the range profiling arena.

Building on previous work on planar-range profiling, we derived a more general

theory of parametric maximum-likelihood range-profile estimation. Due to the pres-

ence of range anomalies, this estimation problem is inherently nonlinear in nature.

We found that the expectation-maximization algorithm provided a computationally

simple procedure for finding the ML estimate. The reliability of the ML estimate de-

pended heavily on the quality of the initial estimate used to seed the EM algorithm.

Satisfactory results were obtained using the wavelet-fitted range truth as the seed

in the simulations. However, for practical realization of this estimation scheme, the

recursive EM algorithm was an extremely effective approach despite its computional

intensity.

Using the Haar-wavelet as an orthonormal basis, we developed a framework of

multiresolution range profiling. Arranging the wavelets in some increasing fine-scale
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behavior, we obtained a sequence of estimates with successively coarse-to-fine fea-

tures extracted from the original range profile. The weights associated with the EM

iterations are shown to provide a reliable indicator for terminating the coarse-to-fine

estimation progression. Moreover, at the weight-determined stopping point, the ML

estimate was approximately unbiased and had an error-covariance matrix approaching

the complete-data bound.

For range profiles that comprise features at a variety of scales, proceeding to a

higher resolution meant incorporating some extraneous fine-scale variations along the

piecewise-constant areas. Extra parameters were used to represent these variations

due to the fixed increments in resolution. Thus we needed a smoothing routine to

suppress these variations in a spatially-varying manner in order to yield a minimal-

dimensionality wavelet-fitted profile comprising the maximum resolution capability

implied by the original image's single-pixel statistics. We found that an ad hoc

process, which we called the piecewise smoothing method, was straightforward and

extremely efficient in smoothing the estimated profile. However, this method is also

shown to be biased towards a class of profiles with wide features and sharp disconti-

nuities and against those with slowly-varying trends.

Another smoothing approach was to perform the ML estimation based only on

the nonzero parameters implied by the wavelet-fitted range truth. The performance

of this scheme was actually better than the ML estimate at the "optimal" resolution,

since we were estimating the exact dimensions of the profile. We found that the avail-

ability of some prior knowledge of the parameter-vector can improve the smoothness

of the estimated profile. This led to the development of the maximum a posteri-

ori probability (MAP) estimation. Assuming the parameter-vector to be Gaussian,

the MAP estimator was derived and implemented by slightly modifying the EM al-

gorithm. Simulation results showed that the MAP indeed have better performance

than the ML estimate if the prior statistics of the parameter-vector were relevant.

This thesis presented the basic framework of the multiresolution range-profiler for

laser radars. There are certainly many directions in which future research work can

pursue. The Haar-wavelet basis was chosen to provide an initial understanding of
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the system. For more general and complicated scenarios, other wavelet-bases, both

separable and non-separable, can be used. The Fourier series may have some interest-

ing applications for certain models. In addition, the weight-determined termination

criterion can be replaced with more sophisticated methods for specific applications.

Real laser radar images can be used to test the estimation derived and implemented

in this thesis. Finally, this method of multiresolution image processing can be applied

to other sensors, such as peak-detecting Doppler imagers, FLIR models, and SAR and

ISAR models.

94



Appendix A

Invertibility of HTWpHp

Here we will discuss the invertibility of the matrix HTWpHp in Eq. 3.33 when P < Q.

For Pr(A) < 1, we have wq > 0 for 1 < q < P and so the matrix Wp will be positive

definite. Thus the required inverse exists if and only if rank(Hp) = P. But this

condition is guaranteed by the orthogonal matrix structure of H.

In theory, the inverse of the matrix should always exist. In practice, computational

underflow of wq(n) occurs when the range measurement is many SR away from the

current estimated range value, i.e., the pixel appears to be anomalous based on the

current estimated profile. From our termination criterion, we must have

Wp(n) = diag[wq(n)], (A.1)

where

n) if pixel is presumed anomalous,
wq(n) _ Zq = (A.2)

1 if pixel is presumed not anomalous.

Since we know Hp has full rank by construction, we only need Zp(n) = diag[zq(n)] to

span the range space of HTp for HTpWpHp to be numerically invertible. In essence, if

Rq _ Rqzq, we need (HpR)q to be nonzero for 1 < q < P to ensure numerical invert-

ibility of HTWpHp. The REM algorithm is relavitively immune to such numerical

difficulties because only a few pixels are treated as anomalous at each iteration.
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Appendix B

Monotonicity of the EM Sequence

In the following we will prove an essential property of the EM algorithm: it produces

a sequence of parameter-vector estimates, {i(n) : n = 0,1, 2,.. .}, whose associated

likelihood sequence, {prlxp(R I Xp(n)) : n = 0,1,2, .. }, is monotonically increasing.

First, we define a companion function to Q(X'p I Xp) [16],

H(X'p I Xp)= Pr(a = A I r = R,xp = Xp) x ln[Pr(a = A r = R,xp = X'p)].
A

(B.1)

It is then not difficult to verify that the incomplete data log-likelihood can be written

as

L(X'p)= lnp,lxp(R I X'p) = Q(X' Xp) - H(X'p I Xp). (B.2)

Since a sequence of increasing likelihoods is the equivalent to a sequence of increasing

log-likelihoods, we only need to show that

L[*p(n + 1)] - L[ip(n)] > 0, for n = 0,1,2,--... (B.3)

Following Eq. B.2, we have

96



L[ip(n + 1)] - L[ip(n)] = {Q[ip(n + 1) ip(n)] - Q[ip(n) I p(n)]} -

{H[*p(n + 1) I ip(n)] - H[ip(n) I p(n)]}. (B.4)

The maximization step in the EM update procedure makes {Q[*p(n + 1) icp(n) :

n = 0,1,2,...} a non-decreasing sequence by construction, making the first term

on the right of Eq. A.4 always positive. Thus our proof will be complete with the

following simple lemma,

H(X'p I Xp) < H(Xp I Xp). (B.5)

Moreover, establishing the above equation is straightforward:

H(X'p I Xp) - H(Xp I Xp) =

~~A \ ~Pr(a= A r = R, xp = Xp)
Pr(a = A Ir = R,xp = Xp)ln Pr(a = A r = R,xp = Xp) 

A ( Pr(a = A ir = R,xp =Xp) 1

=0, (B.6)

where the inequality follows from ln(z) < z- 1 for z > 0.
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Appendix C

Notes on Implementation

Below are some notes on the implementation of the multiresolution range-profiling

simulation program.

C.1 Environments and Languages

The simulation code was implemented using C++, according to the AT&T 2.0 spec-

ification. It has been tested and built on both MS-DOS and UNIX environments.

Microsoft Visual C++ was used to build the code on MS-DOS. Gnu C++ (g++) and

AT&T C-fronts were used to build the code on UNIX. The actual simulations were

carried out on DEC MIPS station and Cray Supercomputer.

C.2 Structures

There are two parts to the simulation program. The first part is a matrix manipulation

package. The second part consists of the actual simulation routines. The Matrix

classes have been heavily optimized to reduce the computational time. It is hoped

that future projects could find some use in these optimized codes.
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C.3 Optimizations

Many operations on Matrix have been heavily optimized. In particular, 'multiply',

'transpose' and 'solve' were made much faster by flattening out the abstract objects

to direct pointers. Much fine-tuning was done to take advantage of the underlying

architecture of both DEC MIPS and the Cray. Besides, the Matrix package was also

designed with a constrained system in mind. In particular, it runs also on 16-bit

MS-DOS environment. A DOS-extender (such as those by Phar Laps) is still needed

for larger simulations though.

C.4 Performance

It takes 140 seconds to perform one trial of ML (REM) estimation with profile length

512 and resolution 32 on a DEC 5000/133. If the resolution is raised up to 64, the

time requirement goes up to 400 seconds. The simulation runs around 25 times faster

on a Cray X-MP EA/464.

C.5 Further optimizations

Any improvements in solving or multiplying matrices will lead to great gain in per-

formance because these two operations were shown to be the bottlenecks of all com-

putations. Their influence are even more drastic for larger matrices since these two

operations take N-square time to perform.
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