
Virtual Networks: Implementation and Analysis

by

Keith H. Randall

Submitted to the Department of Electrical Engineering and Computer
Science

in partial fulfillment of the requirements for the degree of

Master of Science in Computer Science and Engineering

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

May 1994

© Keith H. Randall, MCMXCIV. All rights reserved.

The author hereby grants to MIT permission to reproduce and
distribute publicly paper and electronic copies of this thesis document

in whole or in part, and to grant others the right to do so.

Author ..
Department of Electrical Engineering and Computer Science

May 6, 1994
/

Certified by.....-.
Charles E. Leiserson

Professor of Computer Science and Engineering

c-, 2 I Thesis Supervisor
/A

F. R. Morgenthaler
on Graduate StudentsChair,

I !PA Q, .,-F:

A eoontpl hv

Virtual Networks: Implementation and Analysis

by

Keith H. Randall

Submitted to the Department of Electrical Engineering and Computer Science

on May 6, 1994, in partial fulfillment of the

requirements for the degree of

Master of Science in Computer Science and Engineering

Abstract
Programming conventional parallel computers can be a difficult task because intricate
measures are required to avoid deadlock. This problem exists because the network
does not make any guarantees about the order that packets get delivered. Non-
critical packets can delay critical packets by filling up all available queue space. When
writing programs for these computers it is often advantageous to assume that there
are several virtual networks connecting the processors instead of only one physical
network. This strategy makes writing deadlock-free algorithms easy because different
types of packets cannot block each other. It is not feasible to build a different physical
network for each of these virtual networks, however. In this thesis, we build what we
call a virtual router, a routing algorithm that can simulate many virtual networks on
one physical network.

The virtual router is a similar concept to virtual memory. Virtual memory simu-
lates many virtual address spaces on one physical address space. In the same manner,
the virtual router simulates many virtual networks on one physical network. The vir-
tual router guarantees that packets in one virtual network cannot adversely affect
packets in another virtual network.

The virtual routing scheme we have developed uses Ranade's routing algorithm
on a butterfly with N inputs along with a distributed algorithm to determine packet
priorities. This distributed algorithm assigns priorities to packets in a time-dependent
fashion and guarantees that each virtual network gets its fair share of network band-
width. In particular, if V virtual networks are active, we show that each virtual
network is guaranteed an Q(1/V) fraction of the network bandwidth by proving that
in each window of (V log N) time each virtual network gets exclusive use of the
physical network for (log N) time. Furthermore, we show that the virtual router
delivers the whole set of virtual networks in asymptotically optimal time.

Thesis Supervisor: Charles E. Leiserson

Title: Professor of Computer Science and Engineering

4

Contents

1 Introduction

1.1 Networks .

1.2 Avoiding Deadlock.

1.3 Previous Work.

1.4 Virtual Networks.

2 Implementation Algorithms

2.1 Simple Algorithms.

2.2 The Virtual Channel Algorithm

2.3 The Virtual Router Algorithm .

2.4 Activating Virtual Networks

2.5 Acknowledging Packets.

3 Analysis of the Virtual Router

3.1 Progress Guarantee.

3.2 Fairness Guarantee

3.3 Performance Guarantee .

4 Conclusion

5

7

. .. 7

. .. 8

. . 9

.. . 10

14

. 14

. 15

..... . 16

. 17

..... . .19
20

20

21

22

26

6

Chapter 1

Introduction

1.1 Networks

Networks for parallel computers have been improving steadily in recent years. De-

signers have been successful in improving the bandwidth and reducing the latency of

networks to satisfy application demands. These designs give few if any guarantees

about the order in which packets get delivered to their destinations, however. The

only constraint commonly imposed is FIFO (First In, First Out) ordering between

any source/destination pair. This lack of constraint allows network designers the

largest possible leeway in deciding how to deliver packets so that they may deliver

them quickly.

There is a problem with allowing any possible ordering of the packets, however.

The problem that arises is that deadlock is possible if the wrong packets are chosen to

get delivered. To illustrate this phenomenon, consider the following example. There

are two types of packets. One is a request packet, and one is a reply packet. In a

typical application, the request might be a request for the value of a memory location,

and the reply might be the value stored in that location. In our example, requests are

generated spontaneously by the processors in the network. When a processor receives

a request, it looks up the appropriate value in its memory and sends a reply back to

the requester. When the requester receives the reply, the transaction is complete.

At any point in time, the network may have several request packets and several

7

reply packets pending. Suppose that the network decides to deliver only the request

packets to their destinations. Then for each request packet that gets delivered, a

reply packet gets generated. As long as no reply packet gets delivered, the number of

packets in the network can only increase. Eventually, assuming requests continue to

be generated, the network's queueing capacity fills up, and it cannot accept any more

packets. Consequently, the processors must start queueing request packets at their

destinations because they cannot be serviced. Eventually this queue space fills up as

well, and processors can no longer accept packets from the network. In the end, the

network is waiting for the processors to accept packets and the processors are waiting

for the network to accept packets. No progress is made, and the machine is said to

deadlock.

The fundamental problem in the above scheme is that the network was not re-

quired to deliver any of the reply packets as long as there was a request packet to

deliver instead. In effect, the network is acting as an adversary and forcing the receiver

to process packets in an order different from the order it would like to process them.

If the receiver could choose which packets it would like to process, then deadlock is

easy to avoid.

1.2 Avoiding Deadlock

There have been several proposed solutions to the problem of deadlock. Unfortu-

nately, none of these solutions adequately address the fundamental problem discussed

above. I will outline two of these solutions.

* Make the network and/or processor queues infinite. This solves the deadlock

problem by "brute force", making sure that there is always room to send one

more message. This scheme is used in many commercial parallel machines.

Unfortunately, this approach has two problems. The first is that one can't build

an infinite queue, only a very large one. Designers must implement mechanisms

to store large amounts of pending packets so that critical packets (ones not

generating further messages) can get through. The second problem is that

8

because the queues are not infinite, there is no guarantee of deadlock freedom,

it is just very unlikely. These two problems show that this solution is not

desirable because it is very memory intensive and not guaranteed to work.

Build more than one network in the machine. This solves the problem by

allowing the receiving processor to select which network it wants to service.

For instance, if we put request packets in one network and reply packets in

another, the receiver can always service the reply packets first. This solution

works well but it requires a large hardware investment and is not expandable

to the situation where more types of packets need to be sent.

1.3 Previous Work

A great deal of work has been done in making routing algorithms deadlock-free within

the routing network itself. Some schemes use simple rules to constrain routing choices

so that the routing is deadlock-free, for example dimension order packet routing on

meshes. Modifications for wormhole routing have been suggested by Dally and Seitz

using virtual channels [2]. More modern schemes modify the virtual channel idea to

allow adaptive routing, as in Linder and Harden's scheme [7] that builds an acyclic

virtual network out of virtual channels, Chien and Kim's planar routing scheme [1]

that restricts adaptivity to bound queue requirements, and Su and Shin's 3P scheme

[8] that is fully adaptive and uses small queues. All of these schemes, however, assume

that destination processors are infinite sinks, i.e. each processor has an effectively

infinite queue. Although these algorithms are very good for preventing deadlock

within the routing network, they do not address the problem of deadlock between the

routing network and the processors.

Thinking Machine's CM5 [6] has solved the deadlock problem for a limited case.

In this machine there are two networks. One is called the request network and one is

called the reply network. Request packets are sent on the request network and reply

packets are sent on the reply network. Because replies generate no additional message

traffic, they can be processed with no additional resource requirements and therefore

9

the reply network always makes progress. Therefore, the reply network eventually

empties and requests can continue to be processed, thereby emptying out the request

network. This strategy enables the CM5 to avoid deadlock.

There are two problems with this scheme. First, dedicating each network to a

specific type of traffic can have the effect of underutilizing the available resources. For

instance, if the request packets are large and the reply packets are small, the request

network is saturated but the reply network is underutilized. If the difference in sizes

is large, the combined networks will only be 50 percent utilized. The second problem

is that this scheme only allows a two-way protocol. Three-way or more complicated

protocols can't be done this way because you need one network per packet type to

insure deadlock freedom.

A related problem has been studied in relation to wide area networks. The problem

in WANs is that the network wants to give a fair amount of bandwidth to each

conversation passing over a link. Many algorithms for routing traffic fairly have been

proposed for use in these wide area networks [3, 4]. These algorithms are able to

support an arbitrary number of virtual networks (called conversations), but they

require queues at each switch whose size is linear in the number of virtual networks.

This bound is feasible for wide-area networks because conversations are typically

persistent, point-to-point, circuit-switched paths, as opposed to transient, packet-

switched broadcasts or many-1 routings, so buffer space is only needed on the switches

that the conversation crosses. Furthermore, it is more feasible to implement large

queues in wide area networks because the latency and compactness requirements for

a switch are not as stringent.

1.4 Virtual Networks

The solution we propose for the deadlock problem is to allow the processors to act as

if they have an infinite (or at least a very large) number of independent networks at

their disposal. We will call this set of networks the virtual networks of the machine.

Instead of actually building these networks in hardware, we will simulate all of them

10

on a single physical network (see Figure 1-1). This idea is very similar to the idea of

virtual memory where many virtual address spaces are simulated on a single physical

address space.

programmer's

model

Figure 1-1: We will show how to
physical network (PN)

hardware

resources

simulate several virtual networks (VNs) on one

The rest of my thesis describes how to implement this simulation and proves some

properties about it. The algorithm we will describe is called the virtual router, since

it routes the virtual networks over a physical network.

In order to facilitate the description of our new virtual router we need to decide on

the topology of the physical network. In order to separate the issues of deadlock within

the network and deadlock between the network and the processors, we will choose a

deadlock-free network. In particular, we will use a network called the butterfly [51 (see

figure 1-2). The butterfly network is popular because it has a large bandwidth (N

packets per step) and low latency (log N steps). The results obtained in this paper

11

naturally generalize to any levelled network of depth d. Also, additional virtual

channels allow these results to be extended to non-levelled networks such as meshes

and tori.

Inputs Outputs

Figure 1-2: A N = 8 butterfly

In order to make the virtual router achieve its goal of avoiding deadlock in a

machine, we must prove the following claim.

Claim 1 (Progress) If a virtual network has at least one packet to deliver, and all

12

of that virtual network's packet's recipients are able to accept those packets, then

eventually the virtual router delivers one of those packets.

Note that the progress of one virtual network can't depend on the status of any

other virtual network. In other words, progress in one virtual network must be

independent of progress in any other virtual network.

We will actually prove some stronger claims than this claim (see Claim 2), but

Claim 1 is sufficient to allow a programmer to write trivially deadlock-free algorithms.

All the programmer need do is to allocate one virtual network for each type of packet

that he/she wants to send and make sure that there are no cyclical dependencies

among these types of packets.

In addition to giving each virtual network a guarantee of progress, we would also

like to guarantee that each virtual network gets a fair share of the total network

bandwidth. Even though deadlock freedom is guaranteed by the Progress claim, a

machine can slow down dramatically when the network is congested if one packet

type is only given a small portion of the network bandwidth.

Claim 2 (Fairness) If there are currently V active virtual networks, then the virtual

router gives each network an Q(1/V) fraction of the total network bandwidth.

Finally, we would like to guarantee that our scheme does not impose too much of

a performance penalty over using the raw network under normal network operation.

This claim shows that the virtual router is practical and does not compromise on the

performance of other deadlock avoidance schemes.

Claim 3 (Performance) The virtual router routes a set of packets within a constant

factor of the time it takes on the raw physical network.

In order to show that a particular algorithm is acceptable, we must prove the

above three claims for it. In the next chapter, we develop the algorithm for the

virtual router, and in chapter 3 we prove the above three claims.

13

Chapter 2

Implementation Algorithms

This chapter first describes several implementation algorithms for virtual networks

and analyzes each of them. Flaws found in early algorithms will lead to our final

virtual router algorithm in section 2.3. We assume for simplicity that our physical

network is an N-input, log N-depth butterfly.

2.1 Simple Algorithms

We present here two simple algorithms for simulating V virtual networks on one

physical network. These algorithms are based on time sharing the physical network

at various time slice quanta.

1. Time sharing the whole network: This algorithm gives each virtual network a

time slice of E(log N) steps during which it has exclusive access to the network.

Each virtual network is given its time slice in round-robin fashion.

This algorithm works well when all virtual networks are heavily loaded. When

this assumption is not satisfied, however, it has many drawbacks.

* If some virtual network has no packets to send, the network is idle for

E(log N) steps. This problem could be solved by detecting an empty net-

work, but this is costly because it involves a global accumulation.

14

* If a virtual network has only a few packets to send, the network is mostly

unused during its time slice. Even with an end-of-route detector most

edges are unused, especially at the tail of the route when only a few packets

remain to be delivered.

* The latency of a packet transmission is large because if a packet just missed

its scheduled time slice, it has to wait O(V log N) time steps before it gets

another chance.

2. Time sharing the network cycle-by-cycle. Each network gets one cycle of routing

every V cycles. This solves the problem of underutilized wires because we can

always send another virtual network's packet on a wire if the currently active

virtual network can't use that wire. It may turn out that when a virtual network

gets its turn to route, however, all the queues into which it wants to put a packet

are full, and it cannot make any progress. This phenomenon keeps us from

satisfying the Progress claim, and therefore this algorithm is not acceptable.

2.2 The Virtual Channel Algorithm

We would like to design an algorithm that has the good properties of both of the

algorithms 1 and 2 above. In particular, we want to have the guaranteed deadlock

freedom of the first combined with the efficient utilization of the second. A solution

to this problem is to use the second algorithm but reserve some queue space in each

switch for each virtual network. For instance, we could reserve one queue entry for

each virtual network and have some additional unreserved queue entries. Therefore,

when a packet wants to move from switch to switch it can always go to its reserved

queue spot. The only packets that can block its movement are other packets from

its own virtual network, but this is acceptable because some packet from that vir-

tual network will make progress if all output nodes have an empty queue for that

virtual network. This is enough of a guarantee to satisfy the Progress claim. The

extra unreserved queue entries can be used by any virtual network and are useful for

maintaining full utilization of the wires when only a few virtual networks are active.

15

This algorithm is called the virtual channel algorithm because it resembles Daily

and Seitz's virtual channel router in [2]. The only limitation of this algorithm is

that the number of virtual networks is limited by the queue space at a switch. In

order to support V virtual networks each switch must have a Q(V) size queue. This

scheme has much the same drawback as building a separate physical network for each

virtual network because the number of virtual networks is fixed when the machine

is built. In the next section we will develop an algorithm that requires only 0(1)

queue space per switch to simulate an arbitrary number of virtual networks. This

will allow a programmer to allocate virtual networks as his communication needs

warrant without worrying about a hard limit on the number of networks that can be

allocated.

2.3 The Virtual Router Algorithm

We now describe the algorithm for our virtual router. This algorithm must satisfy the

three claims given in the introduction - Progress, Fairness, and Performance - and

use constant queues to do so. In order to satisfy these requirements, our algorithm

must have certain properties. The first is that we must allow for packets to be dropped.

We require this property because if a queue is filled and a packet that wants to enter

that queue which is from a different virtual network than all the queued packets,

we must make room for the new packet to assure progress for that virtual network.

Therefore, we must drop one of the packets currently queued at the node.

Second, we must use a Randade-like routing scheme [5]. Ranade's algorithm allows

us to get good bounds on the routing time when constant-sized queues are used.

This property will allow us to prove some statements about both the performance of

individual virtual networks and the performance of the system as a whole.

The approach of our virtual router algorithm is to combine two networks into

one. Our first network, called N1, is a constant-queue, Ranade-routing network. This

network routes packets using Ranade's algorithm and randomly selected keys. At any

one time, most of the virtual networks will be routing in N1.

16

Unfortunately, this physical network gives no performance guarantees to any vir-

tual network. To remedy this, we add another network N2 to our system that routes

only one virtual network at a time. Like N1, N2 is also a constant-queue, Ranade-

routing network. Each virtual network gets to use N2 for a block of E(log N) routing

steps every O(V log N) steps. The virtual network that is currently being routed on

N2 is called the active virtual network.

Both N and N2 have their own queues at each network switch and share wires.

Priority for use of a wire is given to the network that has used that wire least recently.

This rule guarantees that each network is allowed to use a wire on every other cycle.

An exception to this rule is that ghost packets from both networks must be allowed

to cross a wire every cycle. In any case, the worst traffic burden that a wire has to

carry in any cycle is one real packet and one ghost packet.

Routing is performed in rounds. In each round, the following actions are per-

formed.

1. An active virtual network is selected. See the next section for details.

2. Each packet is given a random key.

3. The active virtual network is routed on N2 and all other virtual networks are

routed on N1. Routing proceeds for O(log N) cycles.

4. Undelivered packets are dropped and acknowledgements, both positive and neg-

ative, are returned to the packet senders.

Note that step 4 of one round can be easily overlapped with step 1 of the next

round, because they are transmitting packets in opposite directions.

2.4 Activating Virtual Networks

A fundamental problem in any virtual network scheme is that there may be many

more virtual networks allocated than are actually in use at any one time. To highlight

this distinction, let V be the set of allocated virtual networks, and let V be the set

17

of virtual networks that actually have packets to route. In our scheme we would like

to allow V to be large, say lIV = 232, while V may contain only a few of the elements

of V. In the final analysis we want to guarantee a Q(1/V) fraction of the physical

network bandwidth to each virtual network.

When we cycle through the set of virtual networks we only want to activate those

virtual networks that are in V. Giving a (log N) time slice to a virtual network in

V - V would only waste N2 for that time slice because that virtual network would

have no packets in it. Unfortunately, there is no easy way for a particular processor

to know what V is because some distant processor might have started routing some

virtual network that it doesn't know about. Therefore, we need to have a distributed

algorithm for deciding which virtual networks should be given a time slice of N2.

Our algorithm to solve this problem routes tokens through the network to "claim"

parts of the network for a particular virtual network. Each of these tokens is labeled

by an integer equal to the number of the virtual network that it represents. Tokens

are routed in circuit-switched fashion, but they also use the following routing rules:

1. Contention among tokens is resolved by sending the next token which is labeled

in round-robin order after the currently active virtual network. i.e, if x is the

currently active virtual network, then token (x + 1) mod IVI has highest priority

in the token round, (x + 2) mod IVI has the next highest priority, and so on.

2. Whenever a token is sent from a switch, it is sent on both outputs.

3. Tokens are only given one routing wave every round.

Every time a new active network needs to be chosen, processors send tokens

representing the next virtual network for which they have an outstanding packet.

Processors with no outstanding packets send a dummy token that has lower priority

than all other tokens. Tokens then route through the network according to the above

rules. After log N steps, exactly one token exits the network at each output. Because

we send tokens on both outputs at each switch, all tokens that exit the network at

some round identify the same virtual network. This virtual network then becomes

18

the active virtual network and gets to route exclusively on N2 for O(log N) cycles

before another token round is performed.

2.5 Acknowledging Packets

In order for an input to know whether its packets need to be resent or not, it must re-

ceive an acknowledgment that its packets were either delivered correctly or dropped.

If the longest packet lifetime is T, then there is a simple scheme to get all acknowl-

edgments (both positive and negative) back in time 2T. This scheme is to simply

route the packet acknowledgements back through the network in the order opposite

to which they traversed the network. In other words, a packet that traversed wire w

at time t traverses that same wire at time 2T - t in the opposite direction. Therefore,

the latest return time of any packet is at most 2T. Furthermore, acknowledgments are

often smaller than their corresponding packets, so we can run the acknowledgement

routing at a higher speed (less time per routing cycle).

19

Chapter 3

Analysis of the Virtual Router

In this chapter we will prove that the virtual router scheme achieves the goals set

out in section 1.4. These goals are to guarantee progress and fairness to each of the

virtual networks, and to guarantee the overall performance of the system.

3.1 Progress Guarantee

The progress guarantee is fairly trivial to prove.

Theorem 1 If a virtual network has at least one packet to deliver, and all of that

virtual network's packet's recipients are able to accept those packets, then eventually

the virtual router will deliver one of those packets.

Proof: Suppose that at some time t a virtual network has some packets to deliver.

Assume for contradiction that none of these packets ever get delivered. Because all

of the virtual network's recipients can accept a packet, it must be the case that no

packet ever makes it to an output. Since no packet ever makes it to an output, the

virtual network cannot ever win a token round, because if it did then some packet

would make it to an output log N time steps after the virtual network won the token

round. But the virtual network must win a token round eventually because it always

has an outstanding packet to send and its token must eventually become highest

priority. Therefore, we have a contradiction and the theorem is proved. ·

20

3.2 Fairness Guarantee

The next theorem we would like to prove is that the virtual router is fair to each virtual

network. In particular, we would like to prove that the virtual router guarantees that

each virtual network gets an Q(1/V) fraction of the network bandwidth.

In order to prove this statement, we must be precise about what we mean by V.

Since this is a distributed algorithm, defining V as the set of virtual networks active

at any one instant is of little use because no switch can be sure of what V is at any

one instant. Therefore, we will define V as the set of virtual networks that are active

somewhere within a window W of time that is sufficiently large.

Also, we must be precise about what we mean by "getting a Q(1/V) fraction of the

network bandwidth". The raw bandwidth of the butterfly is N packets per time step,

so an Q(1/V) fraction of that is Q(N/V) packets per time step. Unfortunately, many

routing problems can't achieve O(N) packets per time step on a dedicated network,

so we certainly can't guarantee Q(N/V) packets regardless of the routing pattern.

Instead, we shall guarantee that each virtual network can route at least as many

packets as it can route on a dedicated network in (log N) time in the virtual router

in O(V log N) time. Therefore, the bandwidth reduction from a dedicated physical

network is Q(1/V).

Theorem 2 Let the time between rounds be A log N where A is a constant. Consider

a time window W. Let S be the set of virtual networks that have outstanding packets at

the beginning of W, and let V be the number of virtual networks that have outstanding

packets during any part of W. For any W such that IWI > (V+1)A log N, each virtual

network in S gets at least as many of its packets delivered as it could deliver on a

dedicated physical network in (A/4) log N time.

Proof: We show that each virtual network in S either gets all of its packets through

on network N1, or it gets a time slice of (A/2) log N in W during which it has exclusive

access to the network N2 .

Suppose that at the start of W, a virtual network v belonging to S wants to send

a routing pattern Rv. Then one of the following three things may happen:

21

1. By the time virtual network v gets a chance to become active in 11V, all of the

packets in R. have been delivered.

2. Virtual network v still has packets to route when it gets a chance to become

active in W. Then, it wills the token round and gets one round of routing on

N2. One round of routing corresponds to (A/2) log N cycles of routing because

half of each round is spent routing forward. Furthermore, N2 is guaranteed to

get at least one of every two cycles on each wire, so it can simulate at least

(A/4) log N rounds of routing R, on a dedicated physical network.

3. Virtual network v never gets a chance to become active in W, but still has

packets in R. to deliver at the end of W. Fortunately, this situation cannot

happen because a new token round is started every A log N rounds, and there

are only V virtual networks competing for the use of N 2. Since priority is given

in round-robin fashion, v must win a token round within VA log N time of the

start of W. Therefore, if IWI > (V +)AlogN, then v becomes active and

completes its route before W ends.

Thus, in every window W of (V + 1)A log N time, each virtual network in S can

get at least as many packets delivered as it could deliver on a dedicated physical

network in (A/4) log N time.

This theorem shows that each virtual network receives at least an Q(1/V) fraction

of the network bandwidth.

3.3 Performance Guarantee

Our last task is to show that the virtual router has a good performance guarantee. In

other words, we would like to show that the virtual router does as well as any other

routing algorithm on the overall routing problem.

Theorem 3 The virtual router routes a set of packets within a constant factor of the

optimal time, with high probability.

22

Proof: Let R be the set of packets that the network has to route, and let C be the

congestion of this route. We will prove that the total routing time is O(C + log N)

with high probability. Clearly C + log N is a lower bound on the routing time, so this

will prove our theorem.

We start by showing that the congestion is reduced by Q(log N) on every round

of the routing. Let the keys for the packets be chosen randomly from the interval

[1, I], where 1 is high priority and K is low priority. Define a small packet as one

whose key is smaller than (aK log N)/C, where a is a constant to be determined. We

expect that since the small packets have high priority, they are likely to get through

the network, as the following lemma shows.

Lemma 1 All small packets in a round get delivered to their destinations, with high

probability.

Proof: Let Rs be the subset of the routing problem R that contains all of the small

packets. The congestion C, of R8 can be bounded as follows. The probability that at

least C, small packets pass through a particular switch is bounded by

(C) (alogN)c < CeC (a log N)C.

< (aelogN)c

By choosing C = 2aelogN and a > 1, we know that the probability of at least

2ae log N small packets passing through a switch is at most

1 2ae log N
()2)eIo < N-2e

< N- 5

Therefore, over all switches, the probability that C, is greater than 2ae log N is at

most N -3.

Thus, the congestion of the small packets is at most 2aelogN, with high prob-

ability. In particular, the congestion of the small packets in both N1 and N2 is at

23

most 2aelog N. Using a delay sequence argument, we can prove that a congestion

O(log N) route can be finished in O(log N) time with high probability using Ranade's

algorithm [5]. Therefore, if we choose the length of the round to be O(log N), the

small packet routing completes by the end of the round, with high probability. ·

Next, we need to show that the congestion of the routing problem will go down

by Q(log N) on every round. There are two cases:

C < alogN. Because the congestion is this small, all packets are small and

therefore they all get routed in one round.

* C > alog N. Consider a switch with a congestion of at least C/2. We show

that at least blog N of these C/2 packets are small, where b is a constant to

be determined. Let X be a random variable that denotes the number of small

packets that go through a switch with a congestion of at least C/2. Then X

is a binomial random variable with p = (a log N)/C being the probability of a

packet being small, and n > C/2 being the number of packets. From probability

theory we have that

Pr{Y < -a} < e-"2/2pn

for any zero mean binomial random variable Y with probability of success p

and number of trials n. Therefore, we have

Pr{X < blogN} = Pr{X -pn < blogN -pm}

< e-(Pn-blogN)2/2pn

< e-(a/2-b)2 log N/a

Choosing b = a/4, we have

Pr{X < blogN} < e- al° gN/16

24

and choosing a = 32 we have

Pr{X < blogN} < N- 210g2e

< N-2. 8

Therefore, the probability that some switch in the network with at least C/2

congestion does not deliver at least 8 log N packets is less than 1/N.

Therefore, the congestion after one round of routing is either 0 or it has gone down

by at least 8 log N. As a result, we have shown that a route R with congestion C can

lower its congestion by at least 8 log N in O(log N) time, so all of R can be routed in

O(C + log N) total time using the virtual router.

This theorem proves that the virtual router can deliver a routing problem within

a constant factor of the optimal time.

25

Chapter 4

Conclusion

In this thesis, we constructed a routing algorithm called the virtual router. Its purpose

is to simulate several virtual networks on one physical network, in much the same

way as virtual memory simulates many virtual address spaces on one physical address

space. It guarantees that each virtual network is able to make progress, that each

virtual network receives a fair share of the network bandwidth, and that the overall

routing scheme has good performance. The virtual router is useful for programmers

of parallel machines who are worried about deadlock and are looking for a clean

and easy way to reason about the deadlock-freedom of their algorithms. The virtual

router is also useful for builders of parallel machines who are looking for alternatives

to conventional methods of avoiding deadlock.

We proved that the virtual router will deliver packets in one virtual network inde-

pendently of the progress of packets in any of the other virtual networks. This let us

show that deadlock-freedom in a program is easy to achieve by simply choosing packet

types so that there is no cyclical dependency among those types. We also proved that

the virtual router guarantees an Q(1/V) fraction of the network bandwidth to each

virtual network, ensuring that near-deadlock situations cannot occur. Finally, we

proved under modest assumptions that the overall performance of the virtual router

was close to that of the original physical network.

26

Bibliography

[1] Andrew A. Chien and Jae H. Kim. Planar-adaptive routing: Low-cost adap-

tive networks for multiprocessors. The 19th Annual International Symposium on

Computer Architecture, 20(2):268-277, May 1992.

[21 William J. Dally and Charles L. Seitz. Deadlock-free message routing in multipro-

cessor interconnection networks. IEEE Transactions on Computers, C-36(5):547-

553, May 1987.

[31 Srinivasan Keshav. Congestion Control in Computer Networks. PhD thesis, Uni-

versity of California at Berkeley, September 1991. Available as Tech Report

UCB/CSD 91-649.

[4] Srinivasan Keshav, Ashok K. Agrawala, and Samar Singh. Design and analysis of

a flow control algorithm for a network of rate allocating servers. Technical Report

CS-TR-2492, University of Maryland, July 1990.

[5] F. T. Leighton. Introduction to Parallel Algorithms and Architectures: Arrays,

Trees and Hypercubes. Morgan Kaufman, 1992.

[6] Charles E. Leiserson, Zahi S. Abuhamdeh, David C. Douglas, Carl R. Feynman,

Mahesh N. Ganmukhi, Jeffery V. Hill, W. Daniel Hillis, Bradley C. Kuszmaul,

Margaret A. St. Pierre, David S. Wells, Monica C. Wong, Shaw-Wen Yang, and

Robert Zak. The network architecture of the connection machine CM5. 4th Annual

A CM Symposium on Parallel Algorithms and Architectures, pages 272-285, June

1992.

27

[71 Daniel H. Linder and Jim C. Harden. Adaptive and fault tolerant wormhole

routing strategy for k-ary n-cubes. IEEE Transactions on Computers, C-40(1):2-

12, January 1991.

[8J Chien-Chun Su and Kang G. Shin. Adaptive deadlock-free routing in multicom-

puters using only one extra virtual channel. In Proc. of the 1993 International

Conference on Parallel Processing, volume 1, pages 227-231, August 1993.

28

- - ___ I - - -

