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Abstract
The definitions of descents and excedances in the elements of the symmetric group Sd are
generalized in two different directions.

First, descents and excedances are defined for indexed permutations, i.e. the elements
of the group Sd = Zn I Sd, where is wreath product with respect to the usual action
of Sd by permutation of [d]. It is shown, bijectively, that excedances and descents are
equidistributed, and the corresponding descent polynomials, analogous to the Eulerian
polynomials, are computed as the f-eulerian polynomials of simple polynomials. The
descent polynomial is shown to equal the h-polynomial (essentially the h-vector) of a
certain triangulation of the unit d-cube. This is proved by a bijection which exploits the
fact that the h-vector of the triangulation in question can be computed via a shelling of the
simplicial complex arising from the triangulation. The h-vector, in turn, is computed via
the Ehrhart polynomials of dilations of the unit d-cube. The famous formula Ed>o Ed =

sec x + tan x, where Ed is the number of alternating permutations in Sd, is generalized
in two different ways, one relating to recent work of V.I. Arnold on Morse theory. The
resulting formulas are then used to find, in two special cases, a relation between the
number of alternating indexed permutations and the value of the corresponding descent
polynomial at -1. The definitions of major index and inversion index are also generalized
and their equidistribution is proved.

Secondly, descents and excedances are generalized to all finite posets, the classical
case corresponding to the poset 1,2,..., d} of natural numbers in their usual ordering.
Again, descents and excedances are equidistributed, which is proved bijectively. This
bijection, which is not a generalization of the one described by Foata and Schiitzenberger
in the classical case, has the virtue of translating descents "verbatim" into excedances.
Using this, bijective proofs are given of two results concerning the chromatic polynomial
of the incomparability graph of a poset P.

Thesis Supervisor: Richard P. Stanley
Title: Professor of Applied Mathematics
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1 Introduction

There is a wealth of literature on various statistics of the elements of the symmetric
group Sd (see for example [10] and [11] for a bibliography) and some of this has
recently been generalized to the hyperoctahedral group Bd (see [161). In this thesis
we generalize the definitions of descents and excedances in two different directions.

In the classical case of the symmetric group Sd, whose elements we view as per-
mutations of the set [d] = {1,2,... ,d}, represented as words, a descent in r =
ala 2 ... ad E Sd is an i in [d] such that a > ai+l, i.e. where a letter in the word r
is larger than its successor. The descent set D(r) of r is the set of those i E [d] for
which ai > ai+l. An excedance in r is an i in [d] such that ai > i. For example,
the permutation 34521 has descents at 3 and 4 and excedances at 1, 2 and 3. We
construct the descent polynomial Dd(t) of Sd by defining its k-th coefficient to be the
number of permutations in Sd with k descents and the excedance polynomial Ed(t)
of Sd in an analogous way. It is well known that Dd(t) = Ed(t), i.e. descents and
excedances are equidistributed over Sd. Moreover, Dd(t) equals, up to a factor of t,
the d-th Eulerian polynomial Ad(t). The Eulerian polynomials have been extensively
studied in various different contexts.

Other statistics which have been much studied are the major index and the in-
version index of a permutation. The major index maj(r) of r = ala2 ... ad is the
sum of all i in the descent set of r. An inversion in r is a pair (i,j) such that i < j
and ai > aj. The inversion index of a permutation r is the number of inversions
in 7r and is denoted inv(7r). It is known that inv and maj are equidistributed, i.e.
ElrCSd tinv(r) = ITEESd tmaj(r)

Here, we first generalize the definitions of descents and excedances to the group
Sd = Z I Sd (where I is wreath product with respect to the usual action of Sd
by permutations of [d]). We show, bijectively, that excedances and descents are
still equidistributed, and we compute the corresponding descent polynomials D n(t)

as the f-eulerian polynomial of a simple polynomial. We also show that the descent
polynomial equals the h-polynomial (essentially the h-vector) of a certain triangulation
of the unit d-cube. This we prove by a bijection which exploits the fact that the h-
vector of the triangulation in question can be computed via a shelling of the simplicial
complex arising from the triangulation. The h-vector, in turn, we compute via the
Ehrhart polynomials of dilations of the unit d-cube, using a theorem of Stanley and
of Betke and McMullen.

Using the work of Brenti [7], we show that the descent polynomials Ddn(t) have
only real roots, which implies that they are unimodal.

We also generalize the famous formula Ed>0 Ed d = sec x + tan x, where Ed is
the number of alternating permutations in Sd, in two different ways, one of which
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relates to recent work of Arnold [2] on Morse theory. In each case, the resulting
formula is then used to find a relation between the number of alternating (respectivley
weakly alternating) indexed permutations and the value of the corresponding descent
polynomial at -1.

We define the length of an indexed permutation, in analogy with the corresponding
definition for Coxeter groups, and we also generalize the definitions of major index and
the number of inversions and show that these are equidistributed as in the classical
case.

Secondly, we generalize descents and excedances to all finite posets, the classical
case corresponding to the poset defined by the chain [d], i.e. the set 1, 2,..., d} of
natural numbers in their usual ordering. Again, descents and excedances are equidis-
tributed, which we prove bijectively. Our bijection is not a generalization of the one
described by Foata and Schiitzenberger in the classical case, but it has the virtue of
translating descents "verbatim" into excedances. Using this, we give bijective proofs
of two results concerning the chromatic polynomial of the incomparability graph of a
poset P. One of these results was independently obtained earlier by Buhler, Eisenbud,
Graham and Wright [8].
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2 Preliminaries

We review here some notation which will be adhered to throughout.

We denote by [n] the set 1,2,... n} which, when relevant, is assumed endowed
with its usual linear order.

The quotient Z/nZ where Z is the infinite cyclic group of integers and n E Z will
be denoted Z,. We always represent the elements of Z, by the elements of n], and
when we refer to an ordering of the elements of Z, it is the ordering induced by In].

By id we mean the identity element in a group.

We will denote by Sd the symmetric group of permutations of [d]. An element
r E Sd will usually be represented as a word r = ala 2 ... ad, where ai = 7(i).

We use the boldface letters z, w, x to denote vectors, for example z = (zl, z 2,..., zd).
In particular, 0 = (0, 0,..., 0).

If x is a real number then LxJ refers to the largest integer smaller than or equal
to x.

We shall be concerned with the elements of the wreath product Z Sd. Our
definition, which is taken almost verbatim from [13], is not the most general one, but
one which is better suited to our purpose (see [14] for the more general definitions).

Let G be any group and let H be a subgroup of the symmetric group Sd. Let
Gd := {flf: [d] - G} be the set of all maps of [d] to G. If f e Gd and r E H, define
f, E Gd by f, := f or - 1. Then, if also 7r' E H, we have (f4),, = f,,,. Define a product
on Gd in the obvious way, i.e. if f, f' E Gd and i E [d] then (ff')(i) := f(i) f'(i),
where is the product in G.

The wreath product of G by H, denoted G I H, is the group consisting of the set

H x Gd = {(r; f)l7r E H, f E Gd}

endowed with the product

(r; . (I, f) H):= (Trt'; ff)
The identity in G l H is eGIH = (eH; eGd), where eGd is the identity in Gd, i.e. the

function satisfying eGd(i) = e for all i E [d]. The inverse of an element is given by

(r; f )- = r f1)
where f-l(i) := f(i)-l.

A particular subgroup which we will be concerned with is H' := {(r; f)lf = eGd}.

Clearly H' is isomorphic to H.

Note that we can represent f: [d] - G in a canonical way as a d-tuple of elements
of G, i.e. f = (f(1), f(2), ... , f(d)).

7
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3 Indexed Permutations

3.1 Definitions and some basic results

Definition 3.1 An indexed permutation is an element of the group Sd := Zn 1 Sd

(where is wreath product with respect to the usual action of Sd by permutation of
[d]). We represent an indexed permutation as the product r x z of a permutation
word r = aa 2 ... ad E Sd and a d-tuple z = (zl, Z2 ,... ,Zd) of integers zi E Z. As a
convention, we set ad+l = d + 1 and Zd+l = 0.

Definition 3.2 A descent in p = r X z E Sdn is an integer i E [d] such that

1) zi > zi+1 OR

2) zi = zi+1 and ai > ai+l

In particular, d is a descent iff Zd > 0.

Definition 3.3 An excedance in p is an integer i E [d] such that

1) ai > i OR

2) ai = i and zi > 

As an example, let p = 321465 x (0, 0, 3, 2, 2, 1). Then p has descents at 1, 3, 5 and 6
and excedances at 1, 4 and 5.

It is convenient to think of an element of Sdn as a permutation word in which
every letter has a subscript. For example, p = 321465 x (1,0,3,2,2, 1) E S4 can
be represented by 312013426251. We call the subscripts indices. Using this, there is
an alternative definition of descent. Namely, define an ordering <e on the alphabet
{izli E [d], z E Z, by setting iz <e j.w if

i) z < w OR

ii) z = w and i < j.
Then a descent in p = al, a2z2 ... add 1 is an i such that ai+l,+ < ai,,. This

ordering of the letters induces a lexicographic ordering of the indexed permutations
in Sd.

'To make the notation a little less awkward, we write aii instead of (ai)z,, although z is a
subscript to ai rather than to just the i in ai.

8



Definition 3.4 Define an ordering <L of the elements of Sd' by setting
p = all a2, 2 ... adZd <L q = blw, b22 ... bdwd if aizi < biwi for the first i at which p
and q differ.

Definition 3.5 Let p be an element of Sd'. Let e(p) = #{ili is an excedance in p}
and let d(p) = #{ili is a descent in p}. Then Ed(t) = pESdn t(P) is the excedance

polynomial of Sd and Dd (t) = EpESd td(P) is the descent polynomial of Sd . Moreover,
let E(d, n, k) = #{p E Sdnp has k excedances} and let D(d, n, k) = #{p E Sdnp has k
descents), so that Etn(t) = ~O= E(d, n, k)tk and D(t) = =o D(d, n, k)t.

As a convention, if n > 0, we define SO to consist of one (empty) indexed permu-
tation and hence we have E(O, n, 0O) = D(O, n,O) = 1.

Note that when n = 1, Sd is essentially Sd and the definitions of descent and
excedance coincide with the classical definitions (see, for example, [21]).

Definition 3.6 Let p E Sd and let D(p)- i E [d]i is a descent in p}. Then D(p)
is the descent set of p.

We will now construct a bijection Sd - Sdn which takes an indexed permutation
with k descents to one with k excedances. First a definition which we will frequently
refer to in what follows.

Definition 3.7 Let Sz be the set of permutation words on the letters 1 , 2, ... d* .
That is, S = p = r x r(z) 7 E Sd} = {r(12 2 .. d,,) I r E Sd}-

Note that So is the subgroup {r x Olr E Sd} C Sdn and S, is the left coset (r x z)So
for any r E Sd.

Let Zd be the direct product of d copies of Zn. Clearly, Sd' is the disjoint union
of the Sz's for all z E Zd. The bijection we are about to construct will actually map
Sz to itself for each z E Zd. However, we need to do this in three steps.

Lemma 3.8 Suppose z = (zI,. .,Zd) Zd and w = (w,.. .,wd) E Zd have the
same number of positive coordinates. Then there is a bijection 90: S - Sw which
preserves the number of descents in each p E Sz. In fact, 9 preserves the descent set
of p.

Proof: The ordering < used in Definition 3.4 is a linear ordering of the letters
1l, 2,.., d,,, respectively of the letters 1,,, 2,,.. ., d,,~. Hence there is a unique
bijection 0: {i,,i i E [d]} - {i,i1i E [d]} such that (i,i) <t O(jj) if and only if i, <t
jz, . In particular, since z = (z 1,... , Zd) and w = (wl,..., Wd) have the same number

9
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of positive coordinates, zi > 0 if and only if wj > 0 where j,, = 0(iz,). Now, given p E
Sz, define : Sz - Sw by O(p) = 0(alZla2z2 ... ad,) := O(alz3)(a2z 2)...8(add).
Then, by definition of 0, i is a descent in p if and only if i is a descent in O(p). In
particular, since z and w have the same number of positive coordinates, d is a descent
in p if and only if d is a descent in O(p). Hence, O preserves not only the number of
descents in p but actually the descent set D(p) of p. O

Example 3.9 Let z = (1, 0,2, 1). Then < induces the following ordering of the
letters 11,20,32,41: 2o < 11 < 4 1 <t 32. Hence, if, as an example, we let p =
32204111 and w = (0,, ,1,1) , we have O(p) = 41103121.

Lemma 3.10 Let w = (wl,...,wd) E Zd,. Suppose there is a k E [d] such that
wi = 0 for all i in {1,...,k- 1} and wi = 1 for all i in {k,...,d}. Then there is a
bijection I: Sw -- Sw such that e(I(p)) = d(p).

Proof: Given p = alw, a2, 2 .. adw,, E Sw, map p to r = aa... a'+ E Sd+l
where a+ k and a = ai if ai < k, a = ai + 1 if a > k. Then i is a descent
in r if and only if i is a descent in p. Now apply the bijection q in Remark 4.7 to
r to obtain r = 4(ir), where r = bb 2 ... bd+l has an excedance b > i if and only if

... bii ... appears as a descent in r. Let m be such that b = k, and observe that, by
the definition of , m > k, so that m is not an excedance in r. Let i' = i if i < m and
i' = i + 1 if i > m. Now map r to q = clw,1 c2w,2 ... cd,,cd E Sw by setting ci = bi, and
wc = 0 if bi, < k, w,j = 1 if bi, > k. Thus, k is deleted from r and each remaining
letter of r is mapped back to what it was in p, that is, bi in r is replaced by (bi - 1)1
if bi > k, but otherwise bi is left alone. Also, some of the "place numbers" (i.e. the
indices) have to be reduced, so that a letter which was in place i with i > m is in place
i - 1 in q. We claim that i is an excedance in r if and only if i' is an excedance in q,
so that r and q have the same number of excedances, since m was not an excedance
in r. If i < m then in q we either have (bi)o or (bi - 1)1 in place i. In either case, i is
an excedance in q if and only if i is an excedance in r. If i > m then in place i - 1
in q we again have either (bi)o or (bi - 1)1. If bi 4 i then i - 1 is an excedance in q
if and only if i is an excedance in r. Suppose, then, that bi = i. Then, by Corollary
4.9, bi < k, since k is the last letter in 7r. Hence, we must have i < k < m, contrary
to assumption, so bi #: i and we are done. 0

Example 3.11 Let p = 41103121. Then p - 51432 ci 53421 412 13110, SO
@F(p) = 41213110.
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Lemma 3.12 Suppose z = (Zl,z 2,..., zd) has k > 0 for some k and zj = 0 for some
j and that w = (wl,W 2 ,...,Wd) satisfies wk = O, wj > 0 and wi = zi for i 0 {k, j}.
Then there is a bijection ' : Sz - Sw such that e(V'(p)) = e(p).

Proof: A positive coordinate z of z affects excedances in p = r x r(z) in a way
which is independent of whether zi = 1 or zi > 1. Hence we may assume, without loss
of generality, that z E {0, 1} for all i. Then, wj = k = 1 and wk = Z = 0. That is, w
is obtained from z by transposing k and z. Let p = r x r(z) where r = ala 2 ... ad.
We define ': Sz -, Sw by defining a certain bijection ' : Sd -b Sd and setting
'(7r x 7r(z)) = '(r) x 0'(ir)(w). '(7r) is defined by the following trichotomy.

(1) For all r E Sd such that r either fixes both j and k or neither, i.e. either aj = j
and ak = k or a j and ak k, we let '(ir) = r. Hence, for such p, q = '(p) is
obtained from p simply by interchanging the indices of k and j in p, i.e. k gets the
index zj and j the index Zk- Consequently, the number of excedances is preserved,
for in the first case we are moving an excedance from k to j and in the latter case
no excedances will be affected since aj j and ak # k. As an example, if k = 2 and
j = 5, we have 0'(3o214l1o5o) = 3o2o4105 and &'(514o2103)o) = 54o2olo3o. Clearly,
this is injective, for '(r) = q'(r) if and only if r = r.

(2) Suppose ak = k and aj j. We then define '(Tr) = r = blb2 ... bd in the
following way. Let bj = j. Let F be the set of fixed points of r, i.e. F = {i E [dllai =
i}. In particular, k E F and j F. Given a set S, let Si denote S \ {i} and let Si
denote SU {i}. Let D = [d] \ F. Set bj = j and set b = i for all i E Fk. By definition,
the restriction of r to D is a derangement of D, i.e. ai 4 i for all i E D. We have
already defined bi for all i E Fk by declaring such i to be fixed points of r. Hence,
for all i E Fk, i is an excedance in V'(p) if and only if i is an excedance in p, because
ai = bi and zi = wi. Moreover, k is an excedance in p and j is an excedance in V'(p).
Thus, so far, we have the same number of excedances in p and V'(p).

What remains to be defined is how r permutes the elements of D.

There is a unique order preserving bijection : D - D~, i.e. maps the smallest
element of D to the smallest element of Dk, the next smallest element of D to the
next smallest element of Dk and so on. In other words, (i) > (m) if and only if
i > m. Now, if i E D, we set bi = (a-i(i)). Note that this defines a bijection
-7 IDk: D -X DS, as required. This further guarantees that bi i for all i E D, in
particular bk # k, and, moreover, that bi > i precisely when a-l(i) > -(i). Note
also that whether i E D is an excedance in V'(p) is not dependent on zbi since bi i.
The same is true of -'(i) and p (and wo-l(i)), so i is an excedance in V'(p) if and
only if 0-(i) is an excedance in p.

Let us illustrate this by an example. Let k = 2,j = 5 and q = 312l104605070 so
that r = 3214657. Then F = {2,4,7} and D = {1,3,5,6}. Hence, r fixes 4,5 and 7.
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0 maps {1,3,5,6} to {1,2,3,6) by sending 1 to 1, 3 to 2, 5 to 3 and 6 to 6. Hence,
7 = 2164537, so (p) = 2o106041513170o.

Again, this is injective because if 0'(r) = +'(r) then r and r have the same fixed
points, and so do b'(r) and b'(r), and consequently r and r must be identical on the
remaining elements of [d], because the bijection was unique.

(3) The case when ak # k and aj = j is similar to 2). As a matter of fact, it
turns out that the similar argument results in this: If p E q = r x r(z) E SzJak k
and aj = j} then '(p) = (')-'(7r) x ()-'(r)(w), which is well defined, because
(')-l(ir) is (implicitly) defined in 2).

As an example, since we had 'V(321104160o5070o) = 2010604151317o, we have
V'(21 0 604 15 03 177o) = 3120104160517o.

It is obvious that Sz is the disjoint union of the domains described in (1), (2) and
(3) and that Sw is the disjoint union of the images in (1), (2), and (3). 0

Example 3.13 Let p = 41213 10 and let w = (1,0, 2, 1) (so w = z in Example 3.9).
Then I(p) = 11413220.

Lemma 3.14 Suppose z = (zl,,z2,...,z d) and w = (wl, W2,...,Wd) have the same
number of positive coordinates. Then there is a bijection : Sz - Sw such that
e((p)) = e(p).

Proof: Suppose that z has m positive coordinates Zk such that wk = 0. Label
these coordinates kl, k2 ,..., km and set K = {k 1 , k2 ,..., km}. Then w has m positive
coordinates wj such that zj = 0. Label these coordinates jl 2 ,... ,j m and set J =

{jlj2,... ,j }. We can clearly apply )' in Lemma 3.12 repeatedly to interchange
Zk1 with zj,, then zk2 with zj 2 , and so on, until we have "moved" each zki to the
corresponding z,. Once we have done that, we have zi > 0 if and only if wi > 0, so
we can simply replace each zi by wi since that doesn't affect excedances. However, to
simplify the description of ci, observe that we can perform the procedure described
in Lemma 3.12 simultaneously for all the ki's. Namely, if both ak, = ki and aji = ji
or neither, then we do nothing. If ak, = ki and aj, ji then we let bj, = ji, and if
ak, # ki and aj, = ji then we let bk, = ki. Now, define F and D as before and let

b = DU{k E Klak = k} \ {j E Jaj j}. Let F = [d] \D and set bi = i for all i E P.
Define the bijection : D - b as in lemma 3.12 and, similarly, let bi = O(ae-l(i)) for

all i E D. The reasoning in Lemma 3.12 now goes through without change. C

We now use these lemmas to construe' a bijection Sz - Sz which takes an indexed
permutation with k descents to one with k excedances. Suppose z has exactly m



positive coordinates. Let w be defined by wi = 0 if i < d- m and wi = 1 if i > d- m.
Then the composition

Sz > Sw Sw > Sz

is a bijection which takes a p E Sz with k descents to a q E Sz with k excedances.
There follows

Theorem 3.15 For all n > 1 and for all d > O, Ed(t) = Dn(t). o

Let Ad(t) = tDk(t). It has long been known that Ad(t) satisfies Ad(t)+

Ek>l kdtk and the polynomial Ad(t) is called the d-th Eulerian polynomial. Theo-
rem 3.17 generalizes this relation to our descent polynomials D (t).

Lemma 3.16 The coefficients of Ed(t) (and hence those of D(t)) satisfy

E(d,n,k) = (nk + 1)E(d-1,n,k) + (n(d-k)+ (n-))E(d-1, n,k- 1).

Proof: We can produce any indexed permutation in Sd by inserting d, (for the
approppriate m E Zn) in an indexed permutation in Sdn1. Also, each p E Sdn arises
only once in this way. Let Ed = {p E S' lp has k excedances}. In order to obtain a
p E E' from one in Sdnl, we can do exactly one of two things:

(1) Given p' E EL 1 let i be one of the k excedances of p'. We can pick any m E Zn,
replace the i-th indexed letter of p' by d, and append the indexed letter we removed
to the end of the resulting indexed permutation to obtain a p E Ek. This gives rise
to nkE(d- 1, n,k) indexed permutations in E. We can also append do to the end
of any p' I Edl to obtain a p E Ed. Hence, Ed_ gives rise to (nk + 1)E(d - , n, k)
indexed permutations in E k.

(2) Given p' E Ed-l, let i be one of the d - k non-excedances of p'. We can pick
any m E Zn, replace the i-th indexed letter of p' by d, and append the indexed letter
we removed to the end of the resulting indexed permutation to obtain a p E Ed, since
we are adding an excedance at i. This gives rise to n(d - k)E(d - 1, n, k - 1) indexed
permutations in Ed. We can also, given any m E {1,2,..., n- 1}, append d, to the
end of any p' E Ed_1 to obtain a p E E, since we are adding an excedance at d.
Hence, Ed _1 gives rise to (n(d - k) + (n - 1))E(d - 1, n, k - 1) indexed permutations
in Ed, which, together with 1), proves the lemma. 0
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As a generalization of the Eulerian polynomials, a polynomial P(t) which satisfies

= Ek>O f(k)tk, where f is a polynomial of degree d, is called the f-eulerian
polynomial.

Theorem 3.17
Ed(t) = y (ni + 1)dti,

(1 - t)d+l i>O

i.e. Edn(t) is the f-eulerian polynomial where f(i) = (ni + 1)d.

Proof: By the preceding lemma, it suffices to show that the coefficients of Fdn(t) =
(1 - t)d+ l Ei>o (ni + l)dt i satisfy the recurrence relation given in the lemma and
the same initial conditions as the numbers E(d, n, k). For any d > 0 and n > 1,
the only indexed permutation with no excedances is 102o... do, so E(d, n,O) = 1,
and E(d,n, k) = 0 if k > d. Let F(d,n, k) be the k-th coefficient of Fdn(t). It is
straightforward to check (from the expression below for Fdn(t)) that F(d, n,O) = 1
and that F(d,n, k) = 0 if k > d. Hence, it remains only to be shown that the
coefficients F(d, n, k) satisfy the recurrence relation in the lemma. We have

Fn(t) = (1 -t)d+l E (ni + l)dt' = E (-1)i(d ti E (ni + l)dt =
i>o i=o i>O

E (-1)k (ni + l)dtk,

since Fdn(t) has degree at most d (see, for example, Corollary 4.3.1 in [21]). Hence,

F(d, n, k) = e]=o (_l)ki (+)(ni + i)d, so we need to show

__ _k (ni + 1)d 1

O i -- -1+ 1

Since (d) = o if d > O and m < O, we can change the upper bound in the last
sum to k, so the equality is equivalent to

(nk + 1) (k-i (i + )A(i) 
i=o
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where

A(i) (ni) d) (nk + )k i + (n ( d - k) + (n - 1) ) d 

To prove the theorem it thus suffices to show that A(i) = 0:

(d+ (ni + 1) - (nk+1) +(n(d -k)+(n-1))(k -i) =

( 1[ ( ) ( ) ] +n(d+1)( 

n (d+ 1) d k--i ( ) 

by the straightforward binomial identity (d + 1)(k l__i) = (k - i) (d+ l) O

There is a way of proving the preceding theorem combinatorially when Edn(t) is
replaced by Dn(t). Actually, we can derive the theorem from a finer computation
of Dn(t). Namely, given z E Zd, we compute the descent polynomial Dz(t)
EpESz td(p). The proof of the following theorem is a modification of the proof of
Lemma 4.5.1 and of the proof of Theorem 4.5.14 in [21] in the special case where the
poset P is an antichain.

Theorem 3.18 Suppose z E Zd has exactly m positive coordinates and let Dz(t) :=
EPESz td(P). Then

(k + 1)d- km tk = (t)
k>O (1 - t) d + l'

Proof: By Lemma 3.8, since we will only be concerned with descent sets of indexed
permutations, we may, without loss of generality, assume that zi = 0 for i < d - m
and zi = 1 for i > d- m. Hence, i is a descent in p =a aaz,a2 ..aadza, E Sz if
ai > ai+l, and d is a descent if and only if ad > d - m. Let f : d -- [k] be a function
which satisfies f(i) > 2 if i > d - m. Then there is a unique indexed permutation
p = alz a2,,,2 ... adzd E Sz which satisfies

i. f(al) > f(a2) > ... > f(ad), and

ii. f(ai) > f(ai+l) if ai > ai+l.
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Namely, there is a unique ordered partition < B1, B2,..., Bk > of [d] such that f
is constant on each Bi and f(B1) > f(B 2 ) > ... > f(Bk). Let 7r E Sd be the
permutation obtained by ordering the elements of B 1 in increasing order, then the
elements of B2 in increasing order and so on. Then p = r x 7r(z), i.e. p is obtained
from r = ala2 ... ad by attaching the index O to ai if ai < d- m and 1 if ai > d- m.
We say that p is compatible with f. The reason for requiring f(i) > 2 for i > d - m
is that we need to have the possible descent at d force a drop in the value of f as
happens with other descents, according to ii above. Alternatively, we can think of f
as being also defined on ad+l = d + 1, with f(ad+1) = 1.

Now, a map f: [d] - [k] satisfies f(i) > 2 for i > d - m and is compatible with

p = alz.l a2za2 ... adzad E Sz if and only if

k- d(p) > f(al)- dl f(a2)-d2 * >_ f(ad)- dd 1, (1)

where di = #{jlj _ i,j is a descent in p}. Note that (1) forces f(ai) > 2 if ai > d-m
because in that case di > 1. Let Qp(k) be the number of maps satisfying (1). Then

i (k)= ((k-d(p)))= (k-d(P)+d-1) and

td(p)+l
E Q (k)tk =
k>O (1- t)d+(

Hence, if we let Q(k) = E Qp(k), we get
pESz

E td (p ) + l

k )t = PESZ +1 (2)

k>O (1 - t)d+ l (1 - t)d+ (2)

Now, Q(k) is the number of maps f: [d] - [k] such that f(i) > 2 if i > d - m, so
clearly Q(k) = kd-m(k- 1)m. Dividing both sides of (2) by t yields the theorem. 0

If we now sum over all z E Zd, then, since there are exactly () (n -m z's with
exactly m positive coordinates, we get

Dz(t)
D \(t) ·c zEZd d m

_______ ZE Z (n - 1) Z (k. + 1)d-mktk
(1 - t)d+1 (1 - t)d+1 = (n - 1)4 3 (k+ )- =

-, En+m= O k>O

Ic>O (4m (n - )m (k + 1)d-mkm tk
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((n -1)k + (k+l 1))dtk = (nk +l)dtk,
k>O k>O

as in Theorem 3.17.

From these expressions for Dz(t) and D (t), we get some further interesting results
about these polynomials. In [7], Brenti shows that if a polynomial f(n) has all its
roots in the interval [-1,0], then its f-eulerian polynomial W(t) = wo+wlt+- *+wdt d

(defined on page 13 here) has only real zeros (see Theorems 4.4.4 and 2.3.3 in [7]).
That, in turn, implies that the sequence wo, wI,...,wd of coefficients of W(t) is
unimodal, i.e. wo < l < ... < wk > wk+l > -- >_ Wd for some k with 0 _< k < d.
Thus, the following theorem is an obvious consequence of Theorems 3.17 and 3.18.

Theorem 3.19 For any d and n, the polynomial D (t) has only real zeros. In par-
ticular, there is a k E {0, 1, ... , d} such that

D(d, n, ) < D(d, n, 1) < ... < D(d, n, k) > D(d, n, k + 1) > ... > D(d, n, d).

The same is true of the polynomial D(t) for any z E Zd. 0

We will expand on Theorem 3.17 in Section 3.5. Before that we will give yet
another definition of descent (which explains why we choose to define indexed permu-
tations the way we do), compute the exponential generating functions of the descent
polynomials D~ (t) and make some comments on Sd in the special case when n = 2.

3.2 The length function

The symmetric group Sd can be defined as the group generated by the set S =
{S1,S2, - .-,Sd- l) = (12), (23),...,((d- 1)d)} where, for example, (12) denotes the
permutation which transposes the first two letters in a permutation word. The
relations among the generators are given by (sisi+l)3 = (SiSj)2 = (Si)2 = id for
1 < i,j d such that i and j differ by at least 2. Given this, one defines the length
t(7r) of a permutation r E Sd to be the least number r such that r = ssi2... si for
some multiset {si, si2,..., sir} on S. It is well known that the descent set of r can
be defined as the'set of those generators si for which e(rsi) < (7r).

Similarly, the hyperoctahedral group, which coincides with our Sd, is generated by
the set H = (S, ,...,Sdl,Sd} = (12), (23),..., ((d- 1)d), (dl)}, where d = (dl)
is the indexed permutation which adds 1 (mod 2) to the index of the last letter of
an indexed permutation word. As an example (where we use mixed notation for the
indexed permutations), 301120(31) = 301121. Here, however, we need to modify our
definition of descent.

17
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Definition 3.20 A g-descent in p = alz1a2z2 ... adZd E Sd' is an i E [d] such that one
of the following holds:

i. zi = Zi+ = 0 and ai > ai+l,

ii. zi, zj+l > 0 and ai < ai+l,

iii. zi > 0 and zi+ = 0.

It is easy to see that g-descents are equidistributed with descents. Namely, Defini-
tion 3.20 is tantamount to replacing the ordering <e by a new ordering of the letters
{aizi}, so a straightforward modification of the bijection O in Lemma 3.8 will send
an indexed permutation with k descents to one with k g-descents.

Under this definition, a g-descent in p E S coincides with a generator si such
that e(psi) < e(p). Because (Sd) has order 2 when n = 2, it is clear that both the
symmetric groups and the octahedral groups are Coxeter groups (for a definition and
further information see [12]).

For n > 2, Sdn is generated by H = {sl,s2,...,sd-1,sdl, where now Sd = (di)
is the indexed permutation which adds 1 (mod n) to the index of the last letter of
an indexed permutation word. Although the groups Sdn are not (at least not in any
obvious way) Coxeter groups when n > 3, they are what is called unitary groups
generated by reflections (see [17]). If we define length as before, then a g-descent in
p E Sdn coincides either with a generator si with i < d such that e(ps) < (p) or with
a power of Sd such that (p(Sd)k) < (p). We will sketch a proof of this, following §5
in [20].

We claim that if p = r x z = ala2...ad x (zl,z 2,...,zd) E Sd', then

t(p) = (7r) + C (2di + zi)
i

where the sum is over all i such that zi > 0 and di is the number of aj's to the right
of ai which are larger than ai. This is so, because r has to appear as the product of
some subset of the generators in any word si i2 ... si, = p, and to equip each ai with
the appropriate index, if zi > 0, ai must be moved to the end of the permutation
and then back to the i-th place. To do that, ai must be moved at least past all aj's
to the right of ai that are larger than ai and then back, and clearly p can always
be obtained by this algorithm. That is, we build up r by the minimum number of
generators required, and interrupt that process only to move each ai with zi > 0 to
the end and back (giving ai the right index while it sits at the end) precisely when ai
is as close to the end as it does get, at which point ai is separated from the end by
those aj's which are to the right of ai in r and which are larger than ai.
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With this way of writing p with a minimal number of generators, which we call
the canonical word for p, a g-descent at i < d in p is easily seen to correspond to a
generator si with i < d such that (psi) < (p). Namely, si acts on r by transposing
ai and ai+, so we know from the classical case that the length of r will either be
increased by 1 or decreased by 1. A straightforward case analysis concernig the indices
of ai and ai+l shows that the length of p will be reduced by 1 precisely when i is a
g-descent in p and increased by 1 when i is not a g-descent in p. A g-descent at d
entails that in the canonical word for p there is no occurrence of Sd-l after the last
occurrence of d, so, since Sd commutes with si for any i < d - 1, appending the
appropriate power of Sd to the canonical word for p results in reducing the length of
p by Zd.

3.3 Generating functions for the descent polynomials

It was known already to Euler that the polynomials Ad(t) = tD1(t) satisfied

td (1 - t)ex(1- t)

AdO(t) d! 1 - te(-t)

This can be derived in a way way which trivially generalizes to the derivation for D (t),
any n (the author is grateful to Victor Reiner for pointing out this derivation):

>o (1-t)l d F (nk + 1)dtk -- : E tk E (nk + ) d ((1 ~t)d+i d! =/ /k>Ok d d! ed>O d>O k4>0 *d>O *>

Now, multiply both sides by (1 - t) and replace k by d in the RHS to get

D_(t) X 1E ( t) d! = (1 t) tde(nd+l) = (1 - t)e 1 te
d>O (1 - t)dd!d>O

Finally, replace x by x(1 - t) to obtain

Theorem 3.21
xd (1 - t)e'(' - t)

D(t) d! 1 - tenx(1-t)
d>O

3.4 The hyperoctahedral group

The hyperoctahedral group is the group of permutations and sign changes of the
coordinates in Rd, i.e. the group of automorphisms : Rd -- Rd which send each
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standard basis vector ei to ±ej for some ej. Requiring that be an autmorphism
ensures that either ej or -ej is the image of exactly one of the ei's, so an element
of the group can be represented by a word al,a2. 2 ... aded, where ei = ±1, indicating
that the standard basis vector ei goes to eieai. The hyperoctahedral group can also be
described as the group of symmetries of the d-hyperoctahedron, whence the name of
the group. This group is isomorphic to our Sd. Descents have been defined previously
for this group (but not excedances), in a way which is equidistributed with ours (see,
for example, [16]), and it is known that the polynomial Dd(t) is symmetric, i.e. the
coefficients D(d, 2, k) satisfy D(d, 2, k) = D(d, 2, d-k). This is also true in the case of
the symmetric group Sd, where we have D(d, 1, k) = D(d, 1, d-l-k). It is also known
that D2(t) equals the h-polynomial h(Od, t) of the first barycentric subdivision of the
d-hyperoctahedron Od. We will generalize this relationship in section 3.6, although we
have to replace the d-hyperoctahedron by a certain triangulation of the unit d-cube.

The symmetry of Dd(t) = h(Od, t) is a consequence of the fact that the hyper-
octahedron is a simplicial polytope, but it is easy to show directly that the descent
polynomial D (t) is symmetric. Namely, if p = az 1a2z2 ... adZd has k descents, then
p' = bwl b2w2 . .. bawd defined by bi = d + 1- ai and wi = 1 - zi has d - k descents,
because i is a descent in p' if and only if i is not a descent in p.

For n > 3, Dd(t) is not symmetric. For example, there is always only one indexed
permutation with no excedances, namely 1020... do, but there are (n - 1)d with d
excedances, namely 1, 2

z2 ... dzd for any (zl, z2,..., Zd) with all zi > 0, of which there
are (n- 1)d.

3.5 The connection to Ehrhart polynomials

What is perhaps most interesting about Theorem 3.17 is that it suggests a connection
between our descent polynomials and the Ehrhart polynomials of certain integral
polytopes. In order to develop that we need to make a digression here and review
some basic facts about Ehrhart polynomials.

Let P be a lattice d-polytope, i.e. a convex d-polytope in Rm with integral (or
lattice) vertices, i.e. vi E Zm for all vertices vi of P. For n E N let nP = {nx I x E PI},
i.e. nP is the (lattice) polytope obtained by dilating P by a factor of n.

For n E N define the function

i(P, n) = #{X E Rm I E np n Z}).

Thus, i(P, n) is the number of lattice points contained in nP. By Cor. 4.6.28 in [21],
i(P, n) is a polynomial in n of degree d, called the Ehrhart polynomial of P. Now
define the generating function
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E(P,A)= Zi(P, n)AX
n>O

By Thm. 2.1 in [19], we have

E(P, A) = h (P, A)

where h*(P, A) is a polynomial of degree at most d with non-negative integer coeffi-
cients, called the Ehrhart h*-polynomial ofP.

Now, it is easy to compute the Ehrhart polynomial i(Cd, k) of a d-dimensional unit
cube Cd . Namely, as the lattice points in Cd consist of all d-tuples (zl, z2, ... , Zd) with
each zi E {0, 1}, the cube contains 2d lattice points, 2Cd contains 3d lattice points,
and so on. In general, the dilation of Cd by k contains (k + 1)d lattice points, so
the Ehrhart polynomial of Cd is i(Cd, k) = (k + 1)d. Likewise, if we start with the
dilation nCd of Cd by n, we see that its Ehrhart polynomial is i(nCd, k) = (nk + 1)d.

But this is the same polynomial as the one appearing in Theorem 3.17, which leads
us to the following observation:

Theorem 3.22 Dn(t) = h*(nCd, t), where nCd is the dilation of the unit d-cube by
n. 0

This, of course, leads one to speculate whether it might be possible to find some
sort of a "natural" connection between descents in indexed permutations and the
structure of the dilated cubes in question, i.e. a bijective proof of Theorem 3.22.
Unfortunately, although there is a nice geometric interpretation of the coefficients of
h*(?,t) when is a lattice simplex (see [3]), no such interpretation is known for
polytopes in general. However, there is an alternative approach...

First some definitions. A simplicial complex K is pure if all its maximal faces
have the same dimension d = dim(K). If K is a pure simplicial complex of dimension
d, then a facet of K is a d-face, i.e. a d-dimensional face, of K. The h-vector
h(K) = (ho, hi,..., hd) of a simplicial complex K of dimension d-1 is defined as
follows: Let fi = fi(K) be the number of i-dimensional faces in K, where we set
f = 1 (corresponding to the empty set), and define h(K) = (ho, hi,...,hd) by
setting

d d

Zfi l(x l)d-i = Zhixd-i
i=O i=O

We define the h-polynomial h(K, t) of K by h(K, t) = ho + ht + ... + hdtd . For further
information about h-vectors, see [22].
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Let K be a pure simplicial lattice complex of dimension d. If all facets of K have
volume l/d! (which is the least volume a lattice d-simplex can have) then we say
that K is primitively triangulated. (What is primitively triangulated is of course the
geometric realization IKI of K, but we will allow ourselves this abuse of notation). The
following theorem is essentially a consequence of Cor. 2.5 in [19], whose conclusion is
expressed in greater generality in Thm. 2 in [3].

Theorem 3.23 Suppose K is a primitively triangulated simplicial lattice complex.
Then h*(K, t) = h(K, t). O

It is easy to see that if nCd is triangulated in such a way that all the maximal simplices
have volume 1/d! then the triangulation must consist of d! nd maximal simplices.
But d! nd is also the cardinality of Sdn, hence the sum of the coefficients of Dd (t).
Moreover, it is known that for certain pure simplicial complexes K the coefficients of
h(K, t) can be interpreted in a way that partitions the facets of K according to how
they intersect other facets. We will briefly review this now. For further information
see [4] and [5].

Definition 3.24 Let K be a finite pure simplicial complex of dimension d. If F is
a face of K, let P be the complex consisting of F and all its faces. An ordering
F1, F2,... , F of the facets of K is called a shelling if, for all k with 1 < k < n,

k-i
Fk n U Fi is a pure complex of dimension (d-1). A complex K is said to be shellable

i=l
if there exists a shelling of K.

That is, a complex is shellable if it can be built up by adding one facet at a time
in such a way that, for k > 1, the intersection of each Fk with the complex generated
by the previous F's is a nonempty union of (d-l)-faces of Fk.

If F1, F2 ,..., F, is a shelling of K, then for each Fk there is a unique minimal
face Gk of Fk which is not contained in Fk n Uk=- u i, and the cardinality of Gi (=
dim(G) + 1) equals the number of (d - 1)-faces in Fk n Ui Fi. For example, if
FPkn U i= Fi consists of a single (d - 1)-face of Pk, then there is a unique vertex v of
Fk which is not contained in that (d - 1)-face and thus not contained in Uk-1 Fi.

As it turns out, the h-vector of a shellable complex can be computed from the
shelling. The following theorem is essentially due to McMullen [15].

Theorem 3.25 Let F1, F2,..., Fn be a shelling of K and let, for k with 1 < k < n
Gk be the minmal face of Pk which is not contained in Ui=l i. Let c(k) be the
cardinality of Gk. Then we have the following formula for the h-polynomial of K:
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n

h(K, t) = ().
i=l

Thus, given a shelling F1, F2 ,..., Fn of a simplicial complex K, we can compute
the h-polynomial h(K, t) of K via Theorem 3.25. In doing that, we say that a facet
Fi of K contributes to the k-th coefficient of h(K, t) if c(i) = k.

So, if we could find a shellable primitive triangulation T of nCd , we would have, via
Theorem 3.23, a topological interpretation of the coefficients of h*(T, t). On the other
hand, we know how to interpret these coefficients in terms of indexed permutations,
partitioned by number of descents, since h*(T,t) = Dn(t). We might therefore hope
to be able to construct a bijection between the facets of T and the elements of Sd that
sent an indexed permutation with k descents to a facet of T which (in an appropriate
shelling) contributed to the k-th coordinate of h(K). The problem is, of course, to find
the right triangulation of nCd and then to find the right shelling of that triangulation.

It is not clear, a priori, whether it is easier to find the bijection desired by looking
at descents or excedances. There is, however, a reason to believe that descents are
the way to go. That reason can be be explained by Lemma 3.29.

Let a be a simplex. In what follows we will, by abuse of notation, also let a denote
the complex consisting of o and all its faces and, in case o has a geometric realization
in the euclidean space Rd, the subspace of Rd realizing oa.

Definition 3.26 Let Cd be the standard unit d-cube. For each permutation word r =
ala2...ad in Sd, let ar = {x = (Xl,X2,...,Xd) E Cd X > .. > Xa > O0}.
We call a, the path simnplex defined by r.

The reason for calling them path-simplices is that if Xr = ala2 ... ad then a, can
be defined as the convex hull of the path traveling through vertices 0, eal, eal + ea2,

e ., e + ..e + ead, where ei is the i-th standard basis vector in Rd.
The collection {a,jr E Sd} of path-simplices induces a simplicial subdivision of

the unit d-cube Cd . Namely, their union covers Cd and the intersection of any two of
the path-simplices is a face of each one, as we point out now.

Remark 3.27 Let r = aa 2... ad, so that a, = {x = (xl, x2,...,d) E Cd1 >
Xa, Xa2z > ... > Xad > O} is a path-simplex. A k-dimensional face of a, is defined
by replacing d - k of the > 's by = 's, i.e. by replacing d - k of the linear inequalities
defining oar by their boundary equalities.

For example, the 2-faces of a213 = (x = ( 1,x 2,x 3 ) E C311 > X2 > x1 > x3 > 0} are
defined by
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{x E C3 I 1 = x 2 > Xl > X3 > 0},
{x E C3 I 1 > X2 = X1 > X3 > 0},
{X E C3 I 1 > x2 > x1 = x3 > 0},
{x E C3 _ 1 > X2 > X L> 3 = 0}.

The following lemma is a straightforward consequence of Remark 3.27.

Lemma 3.28 Let r = ala2 ... ad and r = blb2 ... bd. The intersection oa, n r of
the path simplices ao and o,. can be described as follows: Let ii be the least positive
integer such that ai, # bi,. Let i be the least integer greater than il such that
T = ai, ai+l,...,ai,} = {b, bi+l,..., bi,} . Let i2 be the least integer greater than i'
such that a 2 # bi2 and define T2 similarly. Continue this way until we have come to
the end of or and r and have a collection of sets T1, T2,... ,Tk obtained in the process.
Then a, n Oa, = a, n X where X = {(xIx, = Xa, if ai,aj E Tm for some m}. In
particular, two path-simplices intersect maximally if and only if their corresponding
permutations differ by a single transposition ... aai+l ... -- ... ai+lai ... of adjacent
letters. 0

In other words, a, n a, can be obtained by converting to = those >'s in {x =
(xl,x 2,...Xd) E Cdll ) >Xa, > xa2 > .. >xad > 0} that stand between Xai and
xa where ai and aj belong to the same Tm. For example, let r = 24375168 and
r = 24537186. Then a, fl a = {x E C811 >_ X2 X4 > X3 = 7 = 5 > x 1 > x6 =
x8 > 0).

Lemma 3.29 Let Kd be the collection (arlr E Sd} of path-simplices which triangu-
late the unit d-cube. Order the simplices in Kd by the lexicographic ordering of their
corresponding permutation words. This ordering is a shelling of the unit d-cube.

Proof: Let Bd be the Boolean algebra on d elements. Then Kd is the order
complex of Bd and the lemma is just a special case of lexicographic shellability (see
[4]). However, for the sake of completeness, we will prove the lemma directly.

The case when d = 1 is trivial, since then there is only one facet. So we may assume
d > 2. Suppose r and r are two permutation words with r > r in the lexicographic
ordering. Let i be the first place in which r and r differ and set r = ala 2 ... ad
and r = ala2 ... ailbi... bd. Since r > r we must have ai > bi. Let j be the first
place after i such that a;, ai+l,..., aj} = bi, bi+,..., bj}. Then, by Lemma 3.28,
we know that xai = xai+l = ... = xj for all x = (xl,x 2,...,xd) E a n . Let k
be the least integer in i,i + 1,...,j - 1} such that k is a descent in 7r. Such a k
must exist, for otherwise we would have ai < ai+1 < ... < aj and we couldn't have
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r > r. Define r' by r' = ala 2 ... ak-ak+akak+2... ad. Then 7r' < r and we claim
that a,, n a, C a, n ar,,. To see that, observe that a, n a,, is the (d-1)-face of r
defined by setting x,k = Xak+l and clearly a, n a, is contained in this face of r, since
Xak = Xak+l for all x E r, n a,. Thus, for any r < , a, n a, is contained in some
(d-1)-face of a, n U a,,, which completes the proof. 0

r' <7r

3.6 The triangulation and shelling of nCd

We will now construct a triangulation nCd of nCd and then shell that triangulation.
The shelling will give rise to a bijection associating an indexed permutation in Sd
with k descents to a facet of nCd that contributes to the k-th coordinate of h(nCd)
when the h-vector is computed from the shelling.

Embed nCd in Rd so that the coordinates of its vertices are all d-tuples which
consist of only O's and n's. That is, nCd is the image of the standard unit d-cube
under the map f : Rd -- Rd defined by f(x) = nx. Subdivide nCd into nd cubes
of volume 1 in the obvious way, i.e. given any vector v = (v1 , v2,... , vd) such that
vi E {O, 1,..., n - 1}, we obtain a unique d-cube contained in nCd by translating
the standard unit d-cube by this vector. We label each of these cubes with the
corresponding vector, so that the standard unit cube is co and cv = co + v. Subdivide
co into the path-simplices defined in 3.26. This induces a simplicial subdivision of
co. The other cubes are subdivided in an analogous way, so that a triangulation of a
cube labeled with v coincides with the translation by v of the triangulated standard
unit cube. This induces a simplicial subdivision of nCd which we call nCd.

To order the simplices of nCd we proceed as follows: A facet a of the cube co
is labeled by r x 0 where r is the permutation defining a (cf. 3.26). For z 0, if
a is a facet in the cube cz and a- = a, xo + z (i.e. a is the translation by z of the
path-simplex defined by r), then a is labeled by r x r(z). Note that by permuting
the coordinates of z in this way, so that the i-th coordinate of z follows i, we are
actually labeling the facets of the cube cz by all the permutation words on the letters
11, 2z,... ,dz, that is, by the elements of Sz defined in 3.7.

Let < denote the lexicographic ordering of vectors of the same length. That is, if
z = (Z1,z2,...,zd) and w = (w1,w2,...,wd), then z < w if and only if zi < wi for
the first i at which z and w differ. We now order the facets of nCd in the following
way:

Definition 3.30 Let 0 be the following ordering <o of the facets of nCd:

01) If z < w then a,,,(z) <o ca-TXT() for all r and r.
02) If X x ir(z) <L r x T(z) then a,,(z) <o ax-(z), where <L is as in 3.4.
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Thus, a facet in c comes before any facet in cw if z < w. The ordering of the
facets in a single cube cz is a permutation of the shelling order described in 3.29.
Moreover, it is induced by permuting the coordinate axes in Rd. Let us illustrate
that by an example. Let d = 4, let z = (2,0,1,0). Then the first few indexed
permutations in Sz (in the ordering <L) are 20403112, 20401231, 20o314012, 2o311240,
20124031 .... Let r = 2431.

Then the first one of these indexed permutations is r x r(z) = r(id) x r(z).
The second one is r(1243) x r(0, 0,2, 1). In general, the n-th one of these indexed
permutations is simply r applied to the n-th permutation in S4 crossed with an
appropriate permutation of (2, 0, 1, 0) (namely the permutation of (2, 0, 1,0) by r(rn),
where 7r is the n-th permutation in S4 ).

Now, to simplify the notation, let us translate the cube cz by -z, so that it is
embedded in R4 as the standard unit cube. Then the first facets in our ordering
would be defined thus:

{X E C 4 I 1 > 2 > 4 > 3 X1},
{X E C 4 I 1 > X 2 > X4 > X1 > X3 },

{X E C4 I 1 > 22 > X3 > X4 > X1},

{x E C 4 I 1 > X2 > X3 > Xl > X4},
{X E C 4 I 1 > X2 > X1 > X4 > X3 }-

If we now map R4 -+ R4 by sending the ordered basis < el, e2, e3, e4 > to the ordered
basis < e2, e4 , e3 , el >, then the above list becomes

{X E C 4 I 1 > Z1 > X2 > X3 > X4},

{x E C4 I1 > Xi > X2 > X4 X3},

{X E C 4 I 1 > xl > X3 > X2 > X4},

{x E C4 I 1 > x > X3 > X4 > x 2},
{X E C 4 I 1 > xl > X4 > 2 > 3},

which corresponds to the permutations 1234,1243,1324,1243,1324, which are just
the first five permutations in S4 in the lexicographic ordering. In general, under
this mapping, the triangulation of C4 by path-simplices is mapped to itself in such
a way that a path-simplex which is number n in the shelling order originally defined
in Definition 3.29 is sent to a path-simplex which is number n in our current order.
That is, by permuting the coordinate axes in R4 , we turn the original ordering of
the facets into our current ordering. The permutation which does this is, of course,
determined solely by z. Since z = (2,0, 1,0), the permutation must be 2431, i.e. the
permutation which takes 12203140 to the lexicographically least indexed permutation
in Sz. In short, if we relabel the coordinate axes in R4 , we turn the original ordering
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of the facets of C4 into the ordering of the facets of cz. Hence, this ordering must also
be a shelling of the cube in question, because the shelling in Definition 3.29 is clearly
independent of how the coordinate axes are labeled. There was, naturally, nothing
special about d = 4; the argument generalizes in an obvious way and we have proved:

Lemma 3.31 The restriction of the ordering 0 to the facets of a cube c in nC is
a shelling of that cube. 0

For the next lemma, we need the following remark.

Remark 3.32 Let ir = ala 2 ... ad and let z = (z, z2 ,... , Zd). The translation a, + z
of by z satisfies

a, + z = {x E Rd1l > X.1 - z 1 > x - . .Z > .d - Zad > 0.

Lemma 3.33 Let ap be a facet of cz in nCd and let p = rx r(z) where 7r = ala2 ... ad
Then ap has two (d-1)-faces which lie on the boundary of cz. These faces are defined
by :{x E CdIl > Xa > 2 >_"' *_ = 0} + z and a1 := {x E Cdl = Xal by 11o a= a a facet

Xa2 > .. > Xad > O)} + z, respectively. If Zad > 1 then or is a (d-1)-face of a facet
of the cube cz-ea = cz - ead' If Za n -2 then I is a (d-1)-face of a facet of the
cube cz+el = cz + ea,.

Moreover, the intersection of ap with any cube cw cz is contained in the union
of cp and a. More specifically, if w < z then ap n Cw C o and if w > z then
crp C, C p

Proof: Clearly, oar and oa are (d-1)-faces of a,. Since each lies in a hyperplane
supporting the cube cz, they must lie on the boundary of cz. Now, if Za, > 1 then

a = {x E Rl1 X - Za Xa - Za >Za2 .> - Zad = 0 } =

{x E Rd l = ad - Zad+l 1 . 1- X 2 Z > .. Xd-lZad- > O} = Ir'xIr'(Z')

where r' = adala2... ad-1 and z' = z - ead, so ar,x,(z,) C cz,. Similar reasoning
shows that if za < n - 2 then a aO where r = r" x 7r"(z + eal) and " =
a2a3 . . .adal. To show that n cw C o U ap for any w k z, observe that a point
Xo = (X1, x2,. . Xd) E ap n cw must lie on the boundary of cz and must have xi = zi
(if w < z) or xi = z + 1 (if w > z ), where i is the first coordinate in which w and z
differ. Suppose aj = i. Then, if w < z, xo must belong to the set

{X E Rdl Ž XaZal > X- 2 -Za > " _> Xa -Za = Xaj+ Zaj+ = Xa-Zad = O} C '
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and, if w > z, xo must belong to the set

{x E Ril- = a Z 2= =.-= > Xaj+l-Zaj+l > '> sad-Zad > 0} c a

as claimed. 0

Proposition 3.34 The ordering O defines a shelling of nCd.

Proof: Let ap be a facet of the cube cz in nCd with p = r x r(z) = ala 2 ... ad x
(zal, za2 ... , zad). If z = 0 then we are done, by Lemma 3.29. So assume z f 0.

We need to show that Ip := ap n Uq<p a is a nonempty union of (d-1)-faces of
ap (where, by abuse of notation, q < p means q <o p). By the preceding lemma,
since the restriction of 0 to the cube cz is a shelling of cz, the intersection Iz of p,
with those facets in cz which are prior to ap must be a union (possibly empty) of
(d-1)-faces of ap. If this union is empty, p must be the least indexed permutation in
SZ, so Zd > since z # O. Hence, ap0 belongs to a facet of the cube cz, = cz-ead, so

Ip = , a (d-1)-face of au as desired.

If Iz # 0, then, by Lemma 3.31, Iz is a nonempty union of (d-l)-faces of ap, so
what remains to be taken into account is how op, intersects other small cubes than
its own. Obviously, we need only check those cubes cw for which w < z. By Lemma
3.33, we need only check how o0 intersects such small cubes. Now, if Zad # 0 then,
by Lemma 3.33, ao = 0 for some q < p, so I is a union of (d- 1)-faces of ap, viz.
I = I U, .

Suppose, then, that zad = 0 and that intersects cw where w < z. Then, for
each i E [d], wi can differ by at most 1 from zi. Let i be the first coordinate in which
w and z differ. Then, since w < z, we must have wi = zi - 1. Hence, any point xo
in aO n Cw must belong to the set

-{x E Rd 1 > _ Xa -Za > a2 2 > > - Zi = Xi+ - Zi+l = - - a = 0}.

Let j be such that z,j > 0 and zak = 0 for all k > j. Such a j must exist, since z # 0
and zad = O0. Also, aj > i, since zi =wi + 1 > 1. But then

{x E Rdll > Xa - Za >_ Xa - Z 2 > ''' Xi- Zi = Xi+ -- Z+ = ''' = Xa - Zad = O} C

{x E R dl > Xa - z a> Xa2 - a 2 > > Xaj - Zaj = z jai+ - Zaj+l >_ '"Ž d} --Za = 0}.

This last set is a (d-1)-face of op and of aq = "ax(z) where r = ala 2 ... aj+la ... ad,
so r(z) = (za,,za 2,... ,zaj+l,,za,... ,za). Hence, since zaj > 0 and Zaj+l = 0, q is
prior to p in 0, so the (d-1)-face Up n aq of ap is contained in Ip and we have shown
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that any xo e ao n cw lies in this face. Hence, I is a union of (d-i)-faces of ap and
the proof is complete. o

Recall that by Theorem 3.25 we can compute the h-vector of a simplicial complex
K from a shelling of K. Namely, if F1, F2 ,..., F, is a shelling of K and c(i) is as
in Theorem 3.25, then hk = #{ilc(i) = k}, where hk is the k-th coordinate of the
h-vector of K. That is, hk equals the number of facets Fi such that Fi intersects
U.-= F in k distinct faces of dimension (d- 1). Now, in the shelling of nCd the
facets in a single cube Cz were ordered so that aq = arxr(z) was prior to ap = a,,r(z)
if and only if q <L p in the lexicographic ordering of indexed permutations. Also,
by Lemma 3.28, ap intersects arq maximally if and only if r and r (hence p and q)
differ by a single transposition. Suppose now that ap and aq intersect maximally.
Then, if p = alza2z2...adzd, we must have q = aa2z 2 ... ak+1zk+lakzk ... adzd for
some k E [d - 11. If aq is prior to ap then we must have that ak+lzk+l <e akzk and
hence that k constituted a descent in p. Conversely, every internal descent k (i.e.
k E [d - 1]) in p corresponds to a facet ao in cz which intersects ap maximally and
for which s <L p. That is, there is a one-to-one correspondence between internal
descents in p and facets in cz which are prior to ap and which intersect ap maximally.
The only other facets of nCd which ap intersects maximally are those which contain

0 and 1 A facet containing must come after ap. A facet containing 0o must be

prior to a, and belong to the cube cz-e.ad, which exists in nCd if and only if zad > 0,
i.e. if and only if d is a descent in p. Hence, the number of descents in p equals
the number of facets in nCd which are prior to ap and which intersect ap maximally.
This number must equal the number of (d- 1)-faces in ap n Uq<p aq, because nCd is a
manifold with boundary, so a (d - 1)-face can belong to at most two facets. We have
proved (what we already knew):

Theorem 3.35 For all d > 0 and for all n > 1, D n(t) = h(nCd, t). 0

3.7 Alternating permutations

In the classical case of the symmetric group, a permutation r = ala 2 ... ad E Sd is said
to be alternating if it has descent set D(r) = {1, 3, 5,..., d-1} for d even and D(r) =
{1,3,5,..., d - 2} for d odd, so that al > a 2 < a3 > .... A permutation is reverse
alternating if al < a2 > a3 < .... There is a one-to-one correspondence between
alternating and reverse alternating permutations, viz. aa 2 ... ad - bb 2 ... bd where
bi = d 1 - ai. The number Ed of alternating permutations in Sd is called an Euler
number and there is a remarkable formula, due to Andre [1], related to these. Namely,

d
we have Zd>O Ed' = tan(x) + sec(x).
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It seems that to generalize the definition of alternating permutation to our S,
one ought to consider the descent/ascent at d, and we will do this later. However,
such a definition isn't altogether satisfying, beause it means that in the case of Sd,

i.e. essentially the symmetric group Sd, there would be alternating permutations only
for even d and reverse alternating only for odd d. Moreover, there is something to
be gained from the definition which ignores the descent/ascent at d and thus has the
classical case as a specialization.

Definition 3.36 An indexed permutation p E Sdn is weakly alternating if, for
i E [d-1], i is a descent if and only if i is odd.

Thus, 21304211 and2 1304 210 are both weakly alternating, because we are ignoring
the descent/ascent at d = 4.

This definition allows us to generalize the mysterious formula of Andre in a very
simple way.

Theorem 3.37 Let E n be the number of weakly alternating permutations in Sd.

Then Ed>o Edn d = tan(nx) + sec(nx).

Proof: In the classical case, i.e. when n = 1, this is well known (see, e.g., page
149 in [21] or page 89 in [10]). When n > 1 we proceed as follows. Fix z E Zn
and let Sz be as in Definition 3.7. We claim that the number of weakly alternating
permutations in Sz equals Ed, the number of weakly alternating permutations in Sd
(i.e. alternating in the classical sense). To show that, let 0: Az = {(1_, 2, dd, - [d]
be the map which takes the k-th element of Az (in the ordering <e used in Definition
3.4) to k. Then, (aiz,.) < (aja ) if and only if ai, < a.ai. Define O: Sz - Sd

by O(p) = O(al, a2z2 .. adzd) = (alz,)O(a2z 2)... (adZd). Thus i is a descent in p if
and only if i is a descent in O(p), and conversely, except when i = d. Hence, since
we are ignoring the descent/ascent at d, p is weakly alternating if and only if O(p)
is weakly alternating, which proves our claim. Now, Sdn is the disjoint union of Sz's
for all z E Zd. There are nd such z 's, so the number of weakly alternating indexed
permutations in S is E = ndEd. Consequently, Ed>O End d>On ddO d =

Ed>O Ed ()d = tan(nx) + sec(nx). 0

In light of Andr6's theorem, the Euler number Ed is called a tangent number
or a secant number, according as d is odd or even. An interesting formula relating
Euler numbers to the Eulerian polynomials states that E2d+l = (-l)d+lA 2d+l(-1)
(where Ad(t) is the d-th Eulerian polynomial) or, in terms of our descent polynomials,
E2d+1 (= (1)dD2d+l(-1). We can generalize this to the hyperoctahedral group, i.e.
the case n = 2.
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Theorem 3.38 Let Ed be the number of weakly alternating permutations in Sd. Then
E2d = (-l)dD 2d(-1)

Proof: By Theorem 3.21, D(t) = - t)ex(t) Substitute -1 for t toEd> d! - 1 - te2x(1t) Sd>0
get

xd 2e 2x
E Dd4(-1)d! = 1 + 4x: Hence, if i = ACT, we have
d>O d! 

__ 1(iX)d 2e2 ix _ 2 1

d>O d! l + e4ix e- 2ix + e2ix = cos(2x) - sec(2x).

But, since D2(t) is symmetric, with D(d, 2, 2, k) = D(d, 2, d-k), we have D2d+l(-1) = 0,
so d>O0 (-1)dD2d(-1)2, = sec(2x). Comparing this with Theorem 3.37 (and the
Taylor expansion of sec x and tan x at 0) yields the theorem. o

We now turn to a new definition of alternating indexed permutations.

Definition 3.39 An indexed permutation p E Sd is alternating if, for i E [cd, i is a
descent if and only if i is even. p is reverse alternating if, for i E [d], i is a descent
if and only if i is odd.

Note that this actually interchanges the definitions from the classical case. The
reason for doing so is aesthetic (or else due to the quirkiness of the author). Namely,
alternating and reverse alternating indexed permutations are not in general equinu-
merous (although they do satisfy a certain duality property) and the generating func-
tion for alternating indexed permutations is simpler than the one for reverse alter-
nating ones. Whence it seems that we are justified in doing this and we might say,
if we didn't care to disguise our immodesty, that we are simply correcting an error
caused by a historical accident.

In the hyperoctahedral group, alternating and reverse alternating permutations
are in a bijective correspondence. Namely, if alza2z 2 ... adzd E Sd is alternating
then blwl b2U 2 . .. bdwd E S defined by bi = d + 1 - ai and zi = 1 - wi is reverse
alternating. For alternating permutations in this group, Reiner [16] has computed
the generating function Ed>O E2 d - s + sin. However, he defines the descent set
to be {d - 1,d - 3,...}. This makes no difference for the hyperoctahedral group,
but for n > 2 there are aesthetic reasons to prefer our Definition 3.39. Before this
will be evident, we need to make a detour in order to understand the distribution
of alternating indexed permutations on a finer scale. That is, we will compute the
number of alternating indexed permutations in Sz for any z E Zd.
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Consider the following triangle, defined by setting a = 1 and, in general, a =
d-1 k Ek-1 ' kad - for d even and ad = k- a_ 1 for d odd. The first line is number 0 and a~Li=k a~-1 for d e ve n and ad -- i--

is the entry number k from the right in line d, where the rightmost entry in line d is
ad.

1

1 0

0 1 1

2 2 1 0

0 2 4 5 5

16 16 14 10 5 0

0 16 32 46 56 61 61

272 272 256 224 178 122 61 0

This triangle appears in [2], where it is called the Bernoulli-Euler triangle. We
will show shortly that the numbers on the diagonal edges of the triangle are the
Euler numbers. In [2], Arnold states that each line in the triangle defines finite mass
distributions and he shows, among other things, that the Euler number Ed is the
number of maximal morsifications of the function xd+l .

Theorem 3.40 Suppose z E Z d has d - k positive coordinates. Then a is the
number of alternating indexed permutations in Sz and ad- k is the number of reverse
alternating indexed permutations in Sz.

Proof: It is easy to prove, by induction on d and k, that a is the number of zig-
zag paths from a to a, i.e. the number of sequences a, a1 , a2 ,..., a = ad such
that ki < ki+l if i is even and ki > ki+l if i is odd. We claim that each such path
corresponds to a unique weakly alternating permutation r = ala2 ... ad in Sd such
that ad > k + 1 if d is even and ad < k + 1 if d is odd. 2 Namely, given such a path,
define r recursively by setting ad = kd-1 + 1 (so ad > k + 1 = kd + 1 if d is even and
ad < k + 1 if d is odd) and, in general, let ai+l be the (ki + 1) - th largest element
in the set [d] \ {ad, ad1,... , ai+l}. As an example, the path a, a', aa, a , a2 gives rise
to the permutation 2413. What remains is to show that a zig-zag path gives rise to
an alternating permutation and vice versa. Assume that d is even. Then kd-1 > kd-2

so clearly ad > ad-1, as desired. In general, suppose i is even with 1 < i < d.
Then k t i because that would force ki- < ki, contrary to assumption. Hence, the
(ki + 1) - th element of [d] \ {ad, ad-1,..., ai+l} is not the largest element of the set.
Thus, since ki-1 is at least ki, we have ad > ad+1 as claimed, because the (ki + 1) - th

2 This is actually proved in [2], but in an indirect way.
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element of [d] \ {ad, ad_l,..., ai+l, ai} must be larger than the (ki + 1)- th element of
[d] \ {ad, adl,.. ., ai+l}. If i is odd then ki-1 < ki, so ai < ai+l since the (ki-1 + 1)-th
element of [d] \ {ad, adl,., ai+l, ai} must be smaller than the (ki + 1) - th element
of [d] \ {ad, ad-1,... , ai+l }. Reversing the above procedure to obtain a zig-zag path
given an alternating permutation is straightforward and will be omitted.

We show next that if d is even then the number of weakly alternating permutations
in Sd whose last letter is greater than or equal to k + 1 is equal to the number of alter-
nating indexed permutations in Sz if z has exactly d - k positive coordinates. Apply
the bijection r in Lemma 3.8 to map Sz to Sw where w = (0,0,.. .,0, 1,1,...,1)
has its last d- k coordinates equal to 1 and the first k equal to 0. Then, if
7r = ala 2 ... ad E Sd is alternating and ad > k, p = a, a2l,,2 ... adw.d must be
alternating because wi > wi-1 for all i E [dl so aiw.i <e ai+lai+l if and only if
ai < ai+1 and, since ad > k + 1, Wad = 1, so d is a descent in p as required. When d
is odd, a similar argument shows that p is alternating if and only if r is.

The case for reverse alternating permutations is similar, but it can also be proved
by noting that if p = alwal a2wa2 ... adw,,d E Sw is alternating with w as before, then
p = bl, b2b 2 ... bdvbd E S defined by bi = d + 1- ai and vi = 1 -wi is reverse
alternating and v has exactly k positive coordinates. 0

Porism 3.41 If d is even then a Ed and if d is odd then a = Ed and if , is odd then a = Ed, where Ed is
the d-th Euler number. 0

One can derive several recurrence relations between the entries in the BEtriangle,
but there is a particular one which we will need. If we cut off the first d + 1 lines
of the triangle and turn this initial segment upside down, then we can express the
entries ak in the top line as a in the top line as a polynomial in k. Let us say that we take the first 5
lines and turn them upside down. If we then change the sign of every entry in lines
3 and 4 from the top, we get the following triangle

5 5 4 2 0
0 1 2 2

-1 -1 0

0 -1

1

which constitutes a difference table, i.e. each entry is the difference between the entries

just above it. More precisely, if we have c then c = b - a. This ields a formula for
the entries ak now sitting in the top line: ak = 5+0() -1 ( ) -0() +1 (k). In general
(see, e.g., [21], Proposition 1.4.2), the entries on the far left diagonal constitute the
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coefficients of a polynomial in k in the basis { () i E N}. Making use of the fact that
every other entry on this diagonal is 0 we get the following result.

Lemma 3.42

a2d = (-1)i (2i a2d-2i
i--0

and ai + a2d+1 = Z (-1) 2 1 2d-2i'
i=O 

Note that this expresses a' in terms of the Euler numbers, since a2d = E2d by Porism
3.41.

Theorem 3.43 Let An be the number of alternating indexed permutations in Sd and
Rn the number of reverse alternating such. Then

d cos x + sin x
A d! = cos(n:x)-
d>O

d cos((n-1)x) + sin((n-1)x)
and Rd cos(nx)d>O dd o z

Proof: Because has only terms of even degree, the theorem claims, among
2d

other things, that d>o A co We will prove this. The other three cases
are similar.

By the proof of Theorem 3.37 and Porism 3.41, sec(nx) = Ed>O n2 da0 2d2d(-),s
co__ _ o(1-d d-k(2d n2ko x2d

cos(nx) -L>o.,=O ( 1) (2k) a2k, (2d)!'

Also, A2d k= d k (n 1)2d a2d, because a2d is the number of alternating
permutations in Sz C 2nd if z has exactly 2d - k positive coordinates, and there are
exactly (d)(n - 1)2d- k such z. Hence, we need to show

eat ( Ul I

k=O k (n 1 a2d

d (2d

= D n2k n a2k.k=o 2

Let m = n - 1 and use Lemma 3.42 to obtain

d 1)d k 2d k 2ko i

Ic=O 2k i=O 
(3)

Clearly, each side of (3) is a polynomial in m, so it suffices to show that the co-
efficient to mi is the same on both sides for each j. Let Lj be the coefficient
to mi in the LHS and let Rj be the coefficient to mi in the RHS. Then we have
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L2d-k = (k) 0 (1)i( 2 )a d_2 SO Lj -= (2dj) i=O(-)i 2dTi)ad-2i Now, using
the identity (a) (b) = (:) (-c) we get

2i 2d j - 2i a2d-2 = ( \i -2d=2i ) = d ~ 2i) 7 2d-2i
(4)

As for the right hand side we have

d (4)
Rj E (-1)d-k (1) 2kk ( a2d2k a

kc=O ~ 2kj k j 2k (_012k a$d-2~k=Q~ k= \/ \ =O

which agrees with (4) as desired. 0

Theorem 3.43 yields the following result, akin to Theorem 3.38:

Theorem 3.44 (-1)LdJD3(-1) = A .

d (1 - t)ex(- t)
Proof: By Theorem 3.21, y D3(t)d! - 1 - te3x(-t) Substitute-1 for t and

d>O

let i = /=-f. Then we have

D3( )(iz) d 2e_2i 2e- ix cos x - i sin x
d>O d! 1 + e6i' = e- 3ix + e3i cos(3x)

By Theorem 3.43,

3(ix)d cos(ix) + sin(ix)
d d! - cos(3ix)

so, since cos x has only even degree terms and sin x only odd degree terms, our claim
is equivalent to saying that the Taylor series of cos- differs from that of cos(ix) only

cos(3x) cos(3ixr)

by the sign changes afforded by (-l)L12J and that the same is true of the series for
-isinx and sin(ix)
cos(3x) cos(3ix)

Since co() has only even degree terms, we can write co(3) d>Oad(yi2d so
cos(ix) = d> d = d>O (-)dad ( d>O 1) 2 ad(2d, as claimed. The
cos(3ix) do ad(2d)! d). _ 
other case is similar. O

It is clear why the approach employed in the preceding theorem can't yield any
similar results for n Z 3. Why no such results are true, or what modifications might
yield similar results, remains a mystery, which perhaps could be solved by finding a
"bijective" proof of Theorem 3.44.
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3.8 Major index and inversions

Apart from descents and excedances, there are two other statistics of the elements of
the symmetric group Sd that have been extensively studied. These are the inversion
index and the major index of r E Sd. An inversion in r = ala 2 ... ad is a pair
(i,j) such that i < j and ai > aj. The inversion index inv(r) of r is the number
of inversions in 7r. The major index maj(7r) of r is the sum of the elements of the
descent set D(r) of r.

Foata [9] has constructed a bijection : Sd -* Sd such that maj(r) = inv((r)),
which shows that maj and inv are equidistributed over Sd. A nice description of b
can be found in [6].

By definition, Foata's bijection has the property that if 7r = ala 2 ... ad and
q(ir) = b1b2 ... bd, then ad = bd. Hence the following.

Remark 3.45 Let k E [d] and let Ad,k = {r = ala 2 ... ad E Sdlad = k}. Then

E tma(r)= inv(r)
r(EAd,k lrEAd,k

Definition 3.46 For p e Sdn, the major index of p is maj(p) = j.
jED(p)

Definition 3.47 Forp = a,,a2 2 ... adzd E Sd, an inversion in p is a pair (i,j) such
that 1 < i < j d + 1 and ajz, < aiz,. Let I(p) = {(i,j)l(i,j) is an inversion in p}.
Then inv(p) = #I(p) is the inversion index of p.

Note that this differs from the classical definition in that we consider an indexed
permutation in Sd to have ad+l = d+ 1 so (i, d + 1) is an inversion for any i such that
zi > 0. For example, 203,10 has three inversions, namely (1,3), (2,3), and (2,4).

In the symmetric group Sd, the number of inversions in r E Sd equals the length
t(r) as defined in section 3.2. This is not the case in Sdn for n > 2, where length is
generally larger than inv. Reiner [16] has obtained a certain relation between maj
and length in Sd (via Sd). There is, however, a much more elegant relation between
maj and inv.

Theorem 3.48 For any z E Zd,

E tmaj(P) = tinv(p)
pESz pESz
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Proof: Suppose z has zi = 0 for exactly k - 1 values of i. Let 8: {iz,li E [d]} -
{1,2,...,k - 1, k + 1,...,d + 1 be the bijection which takes the i-th element of
{iz ii E [d]} (in the ordering <e) to the i-th element of {1, 2,..., k-1, k+ 1,..., d+ 1}.
That is, the i-th element of iili [d]} goes to i if i < k and to i + 1 if i > k.
Let Ad,k be as in Remark 3.45 and define 0 Sz - Ad+l,k by 0(al,,a2z ... ad,,d) =

0(al, )0(a2 ) ... O(adz,,). It follows that i is a descent in p iffi is a descent in O(p) and
that (i,j) is an inversion in p iff(i,j) is an inversion in O(p). Hence, pE S tmaj(P) =
FZrEAd+l,k tmaj(7r) and EpESz tinv(P) = -EAd+l k tinv( r). By Remark 3.45, this implies the
desired result. o

Corollary 3.49 inv and maj are equidistributed over Sd, i.e.

Z tmaJ(P)= E tinv()'
pESd pESd O0
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4 Poset permutations

4.1 Descents and excedances in self-bijections of posets

In the classical case of the symmetric group Sn, one refers to the order relations among
the positive integers 1,2,..., n when defining excedances and descents. It is natural
to ask what happens if we remove some of these relations, that is if we replace the
chain 1 < 2 < ... < n with an arbitrary poset (partially ordered set) on n elements.

Definition 4.1 Let P be a finite poset with n elements. Label the elements of P by
the integers in [n]. As a convention, require that if xi > xj in P then i > j, i.e. the
labeling represents a linear extension of P. Let : P - P be a bijection of P to
itself represented by a permutation word r E S,, i.e. 0,(xi) = x(i).

A P-excedance in r is an i E [n] such that X,(i) > xi.

A P-descent in r is an i E [n] such that x,(i) > x,(i+l).

When no confusion can arise as to which poset P we are referring to, we will
simply talk about excedances and descents. Note that when P is a chain, P-descents
and P-excedances coincide-with the classical definitions of excedances and descents
in Sn.

Definition 4.2 Let 7r = ala 2 ... an be a permutation in S,. The reverse of Ir, denoted
O7rev is defined by 7rev = aanl... al.

Remark 4.3 Define a P-ascent to be the "complement" of a P-descent, i.e. a P-
ascent in r is an i such that i is not a P-descent in r. Clearly, if i is a P-descent
in 7r then i is a P-ascent in .rev, so P-ascents and P-descents are equidistributed for
any poset P, since r -, r'ev defines a bijection Sn Sn.

Definition 4.4 Let P be a finite poset with n elements and let r E S,. Let dp(7r) =
#{ili is a descent in r} and let ep(7r) = #{ili is an excedance in 7r). Then Dp(t) =
A t dP (") is the descent polynomial of P and Ep(t) = E teP( ) is the excedance

IrESn irESn
polynomial of P.

What one might hope to show is that Dp(t) = Ep(t), in other words, that ex-
cedances and descents are equidistributed for any finite poset P. In that case, a
bijective proof would of course be desirable. In [10], Foata and Schiitzenberger give a
bijective proof of the equidistribution of excedances and ascents in the classical case.
Looking at this proof, one quickly sees that it will not work for an arbitrary poset.
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An example will explain this. Let r = 641253 and let : S - Sn be Foata and
Schiitzenberger's bijection in Theorem 1.15 in [10]. Then (ir) = 632145 and the
excedances in r, namely 6 > 1 and 4 > 2, are "translated" into the ascents 1 < 4 and
4 < 5 in (7r). Hence, this cannot work for an arbitrary poset and our definition of
P-excedances and P-descents/ascents, because we could have, for example, a poset
P in which the only order relations were 6 > x1 and 4 > 2, so that r had two
P-excedances but (7r) had no P-ascents. This suggests that for a bijection to
work for an arbitrary poset, it would have to translate excedances "verbatim" into
descents. That is, if ab > b is an excedance in r, then ... ab... must appear as a
descent in S(ir) and conversely.

We will now describe such a bijection.

Let 7r = 7r = ala 2 ... an be a permutation word in Sn. Remove the largest letter,
n, from rn to obtain rn_l. Continue this process until reaching .rm = 12...m = id.
Set Tm = 7rm. If rm+l is obtained from Tm by inserting (m+l) at the end of rm then
insert (m+1) at the end of Tm to obtain rm+l. Otherwise, if m,+l is obtained from rm
by inserting (m+1) before k in Tm then put (m+1) in the k-th place in rm and move
what was in that place to the end of rm to obtain rm+l. Continue this process until
reaching r = r, and define : Sn - Sn by (r) = r. It's easy to see that the number
of excedances in Tk equals the number of descents in rk for each k, in particular for
k = n. It is obvious how to reverse this procedure to go from rn to rn. Hence, this
describes a bijection : Sn -+ Sn such that e(q(7r)) = d(ir).

Example 4.5 Let r = 35142. Then we reach r in the following way:

35142 - 3142 - 312 - 12

54123 - 3412 - 321 - 12

In this case, the descents in r consist of ... 54... and ... 63, and, consequently, the
excedances in r occur at 3 and 4, with 6 in the third place and 5 in the fourth place.

It is clear from the definition of b that b translates descents "verbatim" into
excedances, i.e. if ... ab... is a descent in r, so a > b, then a is in the b-th place in -

and thus constitutes an excedance in r. Conversely, an excedance in r derives from
a descent in r. Therefore, if ... ab... constitutes a P-descent in r for some poset P,
a being in the b-th place in r constitutes a P-excedance in r and conversely. Thus,
we have dp(ir) = ep(o(ir)) for any finite poset P and we have shown:

Theorem 4.6 For any finite poset P, Dp(t) = Ep(t). 0
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If we examine the process by which we built r = (7r) from r, we discover the
following alternative description of q:

Remark 4.7 Let r = ala2... a, be a permutation word in Sn and let 4: S - Sn
be as above. Then r = 4(7r) can be constructed from r as follows: Define ao := 0 and
let k E [n]. If a number less than ak appears after ak in r then ak is in place number
ak+l in r. Otherwise, find the first (rightmost) number in 7r which is left of ak and
which is less than ak. If this number is ai then ak is in place number ai+l in r. In
particular, this means that if ... ab... is a descent in r then a is in the b-th place in
r and hence constitutes an excedance in r.

Example 4.8 (35142) = 54123. 5 goes to the first place and 4 to the second because
51 and 42 are descents in 35142. To place 1, since no number less than 1 appears
after 1 we trace back until we hit 0. The successor of 0 is 3 so 1 goes to the third
place. 2; trace back to 1, whose successor is 4 so 2 goes to the fourth place. 3 has
smaller numbers to its right so 3 goes to the fifth place, 5 being the successor of 3.

The following is a straightforward consequence of Remark 4.7.

Corollary 4.9 Let r = ala2 ... an and let r = +(r) = blb2 ... bd. Suppose that r
fixes i, i.e. bi = i, and let k be such that ak = i. Then am > ak for any m > k and
ak-1 < ak. In particular, if ad = i then am Z m for any m > i. 0

4.2 P-descents and the incomparability graph of P

Let P be a finite poset with d elements and let IN(P) be the incomparability graph
of P, i.e. IN(P) is the graph whose vertices are the elements {x 1,x 2 ,...,xd} of
P and whose edges are those pairs (xi, xj) which are incomparable, i.e. for which
neither xi < xj nor xj < xi holds. Recall that the chromatic polynomial of a graph
G is defined by X(G, n) := number of n-colorings of G, where an n-coloring is a map
c: G [n] such that c(x,) # c(xj) if (xi, xj) is an edge in G.

The following theorem, with a proof similar to ours, was independently obtained
earlier by Buhler, Eisenbud, Graham and Wright [8].

Theorem 4.10 Let P be a finite poset on d elements, let X(P,n) be the chromatic
polynomial of the incomparability graph IN(P) of P and let Cp(t) be the X - eulerian
polynomial. Let Dk be the k-th coefficient of Dp(t) and let DpV(t) = Dd + Ddlt +
Dd_2t2 + ... Dotd . Then Drpv(t) = Cp(t).
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Proof: Throughout the proof, a descent will mean a P-descent.

The conclusion of the theorem is that

D-V(t)
X(p n)t- _ d )

n>O (1 - t)d+

which is equivalent to X(P, n) = Sk=d (nk)Dk. This is equivalent to saying that the

number of ways of coloring IN(P) with n colors equals Ek=d (n+ )Dk where Dk is
the number of permutations in Sd with k descents.

We give a coloring scheme which associates to each permutation with k descents
(nk) Dk distinct colorings of IN(P) with n colors. We also show that each coloring
of IN(P) gives rise to exactly one permutation together with certain markers which
show that this is a bijective correspondence.

Given n colors, order them linearly once and for all. For example, call them
a, b, c, ...

Given a permutation r E Sd with k descents, pick i of the k descents in r and
pick d - k + i of the n colors . This can be done in (k) (d;+i) ways. The descents
picked will be ignored when we now assign colors to the letters of ar. Associate one of
the colors chosen to each of the letters of ir as follows: The first letter of 7r gets the
smallest of the colors chosen (a if a was picked), the second gets the next smallest
of the colors chosen (b if both a and b were picked) and so on, except that whenever
there is an unignored descent in 7r, say ... rs... where x, > x, in P, r and s get
the same color. Hence, if there are k descents and i of them are ignored, we will use
exactly d - k + i colors. It is clear that if two vertices xi and xj of IN(P) receive
the same color, then xi and xj are comparable in P and hence are not connected
by an edge in IN(P). This describes (k) (d +i) distinct colorings of IN(P) if the
vertex xi in IN(P) is colored by the color assigned to the letter i in r. Hence, each
permutation in Sd with k descents gives rise to i= () (d-+i) distinct colorings of

IN(P) so all the permutations in Sd give rise to k=O - (t) (d+) Dk distinct
colorings of IN(P).

Example: P is described by the cover relations x1 < X2, X3 < X4 and x2 < X5 . Then
r = 52431 has two descents, namely 52... and ... 43.... Given colors a, b, c, d, and
e, suppose we pick a, c and d and suppose that we ignore the descent 52.... Then
7r gives rise to the coloring sequence abccd, so vertex xl in IN(P) is colored with d,
vertex x2 with b, 4 and X3 with c and 5 with a.

Conversely, given a coloring of IN(P), that coloring describes a permutation r,
which colors have been chosen and which descents in ir have been ignored, in the
following way: Order the letters 1,..., d so that all the letters whose vertices were
colored a come first, next come those whose vertices were colored b and so on, and
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so that the letters corresponding to each set of like-colored vertices are in decreasing
order (as integers). This describes a permutation 7 E Sd. Obviously the coloring
indicates which colors have been used, and a descent ... ajai+l ... in 7r was ignored if
and only if xa, and xai+l received different colors.

Example: Let P be as in the above example and suppose that the vertices
1 ,x 2, 3 , X4, X5 of IN(P) were colored with b,d,a,a,c, respectively. Then, since

X3 and x4 received the least of the colors, r = 43.... Since x1 was colored with b,
r = 431.... Finally, x5 was colored with c and x2 with d, so r = 43152 and there is
precisely one descent ignored, namely ... 52.

We have shown that there is a bijectiive correspondence between the set of color-
ings of IN(P) on one hand and the set of permutations with a choice of descents to
ignore and a choice of the colors used on the other hand.

To prove the theorem it remains only to show that (=k (d +) = (n+k). This
is done in the following lemma. 0

Lemma 4.11 i k (k dn+) = (n+k)

Proof: The equality is equivalent to =o () (n-d+k-i) = ( n+kd) Let m = k + n,

so we need to show i=_k (k)( mk) = (m-d) The right hand side counts the number
of ways to choose m - d elements from a set of m elements. The left hand side counts
the same, by partitioning the set into two sets, one of size k and the other of size
m - k and then counting, for each i, the number of ways of first choosing i of the k
elements and then choosing m - d - i of the remaining m - k elements. 0

Let Cp(t) be as in Theorem 4.10. It is well known (see, for example, [18]) that
the leading coefficient of Cp(t) equals the number of acyclic orientations of IN(P).
We now give a bijective proof of this special case of Theorem 4.10.

Theorem 4.12 Let P be a poset on d elements and let Do be the number of permu-
tations in Sd with no P-descents. Then Do equals the number of acyclic orientations
of IN(P).

Proof: Every permutation word r E Sd defines an orientation of IN(P) (actually
of any graph on d vertices) by orienting z - zXb if a appears before b in r. Clearly
such an orientation of IN(P) is acyclic, although two permutations can give rise to
the same orientation (unless P is an antichain). Conversely, an acyclic orientation of
IN(P) gives rise to a permutation word xr(perhaps more than one) by requiring that
a precede b in r if there is an edge between x, and xb in IN(P) which is oriented
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Xa - Xb. Define an equivalence relation ,- on the set of permutation words in Sd by
declaring r ~ r if and only if r and give rise to the same orientation of IN(P).

We claim that each equivalence class contains exactly one permutation with no
descents. Suppose ... ab... is a descent in ir. Then a, > zb in P so there is no edge
between x, and Xb in IN(P). Hence, transposing ab to get ... ba ... induces the same
orientation of IN(P) as 7r does. Thus we can eliminate the descents in r, one by
one, without affecting the orientation induced by the resulting permutation. Since
transposing a descent results in a permutation which is smaller (in the lexicographic
ordering), this process must come to an end, at which point the resulting permutation
has no descents. So each equivalence class contains at least one permutation with no
descents.

To complete the proof, we need only show that two distinct permutations with
no descents cannot induce the same orientation. Suppose r = ala 2 ... ad and r =

b1b2 ... bd induce the same orientation of IN(P) and that r and r have no descents.
Assume ad # bd. Then ad = bk for some k < d. Hence, xbk is comparable to Xbk+l for
otherwise r would induce the orientation Xbk+l -- bk = Xad while r would induce the
orientation Xbk -- Zxbk+, contrary to assumption. Similarly, Xbk is comparable to bk+2,
so Xbk < Xbk+2 since otherwise Xbk+2 < Xbk < Xbk+l, SO ... bk+lbk+2 ... would constitute
a descent in r. Clearly, similar reasoning leads to xzb < Xbk+3 and, eventually, xbz <
Xbd. Hence, Xad < xbd. By symmetry, we can also show zbd < Xad, a contradiction, so
we must have xad = xbd and thus ad = bd. But now we can apply the same reasoning
to r' = aa 2 ... ad_ and r' = bb 2 ... bdI (and the poset P' = P \ {Xad}) to show
that ad_l = bd-_ and so on, so that r = r. 0
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