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ABSTRACT

An optical phase locked loop was studied, designed, and partially
built and tested. The experiment used semiconductor laser diodes at
1300 nm, polarization preserving optical fibers and couplers, a Fabry-
Perot interferometer, and low frequency and wideband receivers. It was
confirmed that the white frequency noise of the lasers, as well as their
frequency modulation response, were critical factors in the phase locked
loop. In addition, a feedback loop involving a electro-optic phase
modulator and serrodyne frequency shifting was presented.
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CHAPTER 1

INTRODUCTION AND MOTIVATION

1.1 Motivation

Communication systems of the future will undoubtedly involve

fiber optics, since optical communications have intrinsically wide band-

widths, and offer increased security, electromagnetic interference

rejection, low loss, and lightweight cables. The first lightwave commu-

nication systems relied upon amplitude modulation for encoding the

signal on the optical carrier. For digital systems, this was analogous

to the telegraph systems of old: the light was just turned on and off

for ones and zeros. These systems used light emitting diodes or laser

diodes as light sources, and they worked well for this purpose. The

incoherence of the optical source is not critical in on-off keying and

direct detection. As with radio frequencies, though, it is more effi-

cient in terms of the received signal power required to achieve a given

bit error rate to use frequency or phase modulation, and thus coherent

detection, which requires that frequency or phase of the carrier be

known in the receiver in order to demodulate the signal. The basic

demodulation scheme is to multiply the transmitted signal with a local

oscillator whose frequency is fixed with respect to the carrier. The

result of this multiplication of two sinusoids is a difference phase

term (the sum term is filtered out). The data can then be recovered

from this difference term.

When the frequency difference between the carrier and the local

oscillator is zero, the receiver performs homodyne demodulation. This

is opposed to heterodyne demodulation, which uses nonzero frequency
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difference. Homodyne receivers are more desirable because all of the

electronics work at baseband, or the bandwidth of the data. This re-

duces both the complexity of the electronics. More importantly, the

noise is 3 dB less than in the heterodyne case because no image noise is

generated. The difficulty here is that when phase modulation is em-

ployed, the receiver has to track and match not just the frequency of

the carrier, but also the phase. The scheme for phase locking to a

signal is called a phase locked loop, or PLL for short.

Figure 1.1 shows a Costas loop, a scheme for homodyne demodula-

tion of biphase modulation. This is a type of phase modulation for

digital transmission. The phase of the carrier is either zero or 180

degrees, which corresponds to plus or minus one times the carrier (see

Figure 1.2). One half of the loop mixes the transmitted signal with the

local oscillator and outputs the demodulated data. The other half of

the loop mixes the same two signals, but with a 90 degree phase shift

introduced in the local oscillator signal. The resulting signal is then

multiplied by the recovered data from the first half, which for biphase

modulation strips off the data. This signal is then fed back to the

local oscillator. The feedback loop is designed to force the local

oscillator to track the phase of the carrier. This part of the Costas

loop is the phase locked loop.

1.2 Thesis Objective

As alluded to earlier, LEDs are not good light sources for

coherent communications because their spectral linewidths are much

greater than the bandwidth of the data, typically hundreds of gigahertz

wide. The solution is to use single mode laser diodes, which have much

narrower linewidths. Since the instantaneous frequency of the laser

diodes does not vary greatly from the center frequency, it is possible

to track an optical carrier frequency with another laser diode.

The purpose of this project is to study the problems involved in

designing and building an optical phase locked loop. An actual system

was built which demonstrated many of the important issues. The system

9
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attempted to phase lock two semiconductor lasers using electrical feed-

back in the absence of any data modulation. This is the first step in

realizing a homodyne communication system for lightwave communications.

1.3 Outline of Report

Chapter 2 of this report contains a discussion of control theory

and stochastic analysis as they pertain to the phase locked loop.

Chapter 3 describes the components that make up the experimental system.

In Chapter 4, several tests and data measurements are explained, and the

limitations of the system are identified. Chapter 5 describes how work

would continue with a new system and components. Finally, Chapter 6

summarizes the conclusions and presents some additional recommendations

for further work in the area.
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CHAPTER 2

BASIC PHASE LOCKED LOOP - CONTROL THEORY

2.1 Classical Electrical PLL Block Diagram and Explanation

Figure 2.1 shows a block diagram of a classical phase locked

loop. The signal y(t) is the unmodulated carrier to which the local

oscillator signal x(t) will be locked. The phase detector puts out a

signal e(t) proportional to the phase difference between x(t) and y(t).

This signal is then filtered by some sort of low pass filter and then

sent to the voltage controlled oscillator (VCO). The VCO outputs a

signal whose frequency is proportional to the input voltage. This

output is x(t), and is phase locked to the input y(t).

The PLL can best be understood by imagining that the signals x(t)

and y(t) are initially phase locked, that their frequencies and

phases are exactly t. e same. In this case, the error signal e(t) is

zero, and the filter output is whatever is necessary to match the fre-

quencies. Now imagine that y(t) takes a step in phase, so that e(t)

becomes positive. The VCO is therefore driven to a higher frequency,

and x(t) begins to advance in phase with respect to y(t) since its fre-

quency is higher. As this phase increases, though, e(t) will decrease

as the phase of x(t) approaches the phase of y(t). This will, in turn,

force the VCO to put out a gradually lower frequency, until e(t) is

nulled again. Thus the loop will force x(t) to stay phase locked to

y(t).

12



PHASE
DETECTOR

LOOP
FILTER

LOCAL
OSCILLATOR

Figure 2.1. PLL block diagram.

2.2 Control Theory - Transfer Functions

Figure 2.2 shows the PLL block diagram in terms of control

theory. The signals are now considered to be the phases of x(t) and

y(t). The phase detector is therefore just a subtraction block, creat-

ing e(t) = y(t) - x(t). The loop filter is

Ka(s + W1) (1lti N
\J-!

s

This will create a type 2 system (see Section 2.4). The VCO is now a

perfect integrator with gain Kb, represented by Kb/s. Thus, for a con-

stant input, the VCO outputs a frequency, which in turn is just a ramp

in phase.

x (t)

Figure 2.2. PLL block diagram - control theory.

2.3 G(s) : Forward Transfer Function

The blocks combine in series to form a forward transfer function

X(s) K(s + wl)
G(s) - 2

Y(s) s
(2)

13



where

K - KaKb

Figure 2.3 shows the bode plot of G(s). For stability, the crossover

frequency of the magnitude must occur before the phase crosses through

180 degrees. The zero at wl causes the phase to be -90 degrees for fre-

quencies well above l. The gain K controls the crossover point by

shifting the magnitude graph up or down. In this case, the loop will be

stable for any value of gain, but for a safe phase margin, the crossover

frequency should be above wl. For crossover frequencies greater than

about three times the loop gain K equals the crossover frequency. In

reality, though, high frequency rolloff of actual components and nonzero

time delay around the feedback loop will cause the phase the drop below

-180 degrees at higher frequencies. The time delay of a signal travell-

ing around the loop merely adds a linear phase to the transfer function.

This phase increases linearly with frequency, and is:

4delay - (2 rf)(time delay) (3)

For instance, for a delay of 5 ns (1 meter of electrical length), the

additional phase delay is 90 degrees at 50 MHz. Thus, a crossover fre-

quency above 50 MHz would cause the system to be unstable.

2.4 H(s) and E(s) - Closed Loop Transfer Functions

The next step in analyzing the feedback loop is to examine the

responses due to various deterministic inputs. For this, the closed

loop error transfer function is used.

e(t) - y(t) - x(t)

E(s) - Y(s) - X(s)

- Y(s)*(1 - X(s)/Y(s))

- Y(s) 1 + G(s)2- Y(sY(s) 
s 2 + Ks + Kw1 (4)

14
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The steady state errors can then be found by applying Equation (5), the

final value theorem for Laplace transforms.

e(t - infinity) - lim sE(s) (5)
s-0

These steady state errors for three important input signals are sum-

marized in Figure 2.4. This system is considered a type 2 system

because of the s2 in the denominator of G(s). The importance of a type

2 system is that it has zero steady state error for both step and ramp

inputs. This is necessary i a phase locked loop because a ramp in

phase is the same as a step in frequency, and the loop needs to be able

to track the frequency. Also, the loop tracks linear frequency

variations, or phase parabolas. The final, or average, value of the

phase error for a frequency ramp is shown in the figure. Thus, for

large K, the loop will have a very small, but not zero, phase error due

to frequency shifts.

Figure 2.4. Steady state errors.

2.5 Time Dependent Error

The denominator of E(s) is important in determining the natural

frequency and damping of the loop. If E(s) is rewritten

16
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s2
E(s) = Y(s) 2

s + 2wns + n
(6)

Wn is the natural frequency of the loop and is the damping ratio.

meaning of these two parameters is seen in the step error response.

Instead of looking at the steady state value, consider the time

response. This is easily found by inverse transforming E(s) for a

input.

re n [[cosh (wn jf2 _1 t) - j2_ sinh (wn Jf2_l t)],

e(t) - e nt (1 - nt)

[cosh ([cosh (n Jf2 t) - Jl sinh (n /l'f2 t)],

The

step

f >1

<1

Figure 2.5 shows the response for several values of . Clearly, de-

termines the amount of overshoot, if any, of the response. The natural

frequency and together determine how quickly the system responds: a

+0.5

e (t)

0

-0.4

0 1 2 3 4 5 6 7 8 9 10
cont

Figure 2.5. Step response of PLL (from Reference 3).

11 12
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higher n will cause a faster response. A good compromise between over-

shoot and response time is I - 0.707, but higher values are certainly

acceptable.

2.6 Pull-In Range and Acquisition

Until now, the analysis has assumed that the PLL was initially

locked. In reality, though, there will be some frequency difference

between the LO and the carrier when the loop is first turned on. By

analyzing the nonlinear differential equations which describe the

unlocked feedback loop, Blanchard [Ref. 3] has shown that any second

order PLL will eventually lock for any initial frequency difference.

The time for such acquisition is

Tac q - 0no
acq X 3

where o0 is the initial frequency error

This assumes, though, that the loop is exactly described by the

second order model. In the present case, the loop cannot be considered

properly modelled for frequencies larger than the G(s) crossover fre-

quency, mainly because of the time delay described earlier. For this

reason, the loop probably will not be able to acquire phase lock if the

initial difference frequency is much greater than the crossover fre-

quency. The solution to this problem is to force the LO frequency to

increase or decrease until the loop can lock on its own. This frequency

sweep must be slower than 1/Kwl (see Figure 2.4), or else the loop will

be unable to acquire lock.

2.7 Noises - RMS Values

The final and most important aspect of the analysis is the de-

termination of the RMS phase error. In the physical system, there will

be various noise sources that prevent the loop from exactly tracking the

input phase at every instant. The steady state analysis showed that on

18



average the tracking will be almost exact, but in reality the square of

the phase error will have a distribution as shown in Figure 2.6. Since

most of the noise sources are considered to be white noise, the curve is

approximately gaussian, described by Equation (7).

1 -X 2

f(x) - e -2
J2J o 2a

f (x)

x

(7)

Figure 2.6. Gaussian distribution.

The probability of the phase error being within some range is determined

by the area under the curve in that range. The distribution is charac-

terized by its variance, a, which is determined by the loop transfer

functions. Figure 2.6 also lists the probabilities for several values

of x. As seen in the figure, the probability of the phase error being

within 3a is 0.997. For the PLL, if the variance is 0.01 rad2, then

there will be a 0.997 probability that the phase error will be less than

0.3 rad (about 17 degrees). This is a reasonable if somewhat optimistic

number for phase lock. A variance of 0.1 rad2 leads to the phase error

being within 1 rad of zero. The phase detectors to be used in the

experiment actually have sinusiodal characteristics,

signal - sin(phase error)

19



This will result in a phase error signal which is not exactly propor-

tional to the phase error. At phase error - 1 rad, however, sin(l rad)

- 0.84, and thus it can still be considered approximately proportional.

The actual variance of the system is determined through

stochastic analysis. First the noise sources are included in the block

diagram as in Figure 2.7. Essentially, each component will have noise

associated with it, and it is also necessary to include the system

response to a noisy input signal y(t). The sources are considered to be

statistically independent, so the principle of superposition can be used

to find the transfer function relating each source to the error signal.

n1 (t) n3 (t)

x (t)

K1K2 K3(s + 1 ) K(s + w 1 )

s2 s 2

Figure 2.7. PLL block diagram including noise sources.

Equations (8a) through (8d) show these relations:

E(s) 1 K(s + 1)

N1(S) K1 s2 + Ks + Kw

E(s) 1 Ks

N2(s) K1K2 s2 + Ks + Kw1

(8a)

(8b)

20
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E(s) s2 (8c)

N3(s) s2 + Ks + Kw1

E(s) s2
E(s) 2 (8d)
Y(s) s2 + Ks + Kw1

The expected squared value, or variance, of the phase error is

then given by Equation (9):

o2 ~ 1 +j o9)
= 7 2j jf S(s)IF(s) 2 ds (9)

2irj

where S(s) is the two-sided spectral density of the noise, and F(s) is

the corresponding transfer function for the noise.

The noises nl(t) and n2(t) will be white, characterized by a con-

stant spectral density, Ni. The noise on the input, as well as n3(t)

will be white frequency noise, which converts to a Nia/s2 phase noise

spectrum, and a statistically independent 1/f frequency noise term,

which converts to a INib/s3 1 phase noise spectrum. Equations (10a)

through (10d) show the results from applying Equation (9) for each noise

source.

2 N1 K+ 1 K + 1
a1 = - (2 ( ) = 2KN1 (a)

K1 2 1K

a2 K N (10b)
2 2(K1K 2)

2 2

2 LN+ rN (10c)3 2 K 
N 3a + - N 3b

2 _ 1
y 2K ya 2K2 Nyb (d)

21



Appendix A shows the derivation of these expressions. Finally, the

total variance is:

2 r 1 K N1 N2a2 - 2(Nyb + N3b) + (Nya + N3a) + ( + K2 ) (11)

This equation shows that increasing the loop gain K, which is also the

open loop crossover frequency, will decrease the noise from some sources

while increasing the noise from others.

22



CHAPTER 3

OPTICAL PLL - COMPONENTS

3.1 Block Diagram

This chapter describes most of the components that make up the

optical phase locked loop. Figure 3.1 is a block diagram that includes

all of the physical components of the system. The transmitter laser

provides the source to which the local laser will be locked. Polariza-

tion maintaining optical fibers connect the optical components, and are

shown in the figure as double lines. The optical coupler combines the

optical signals, and the detectors convert the light into electrical

signals. Finally, the detectors serve as the phase detectors in the

PLL.

3.2 Lasers and Drive Circuitry

The lasers used in the PLL are Toshiba DFB semiconductor laser

diodes at wavelengths near 1300 nm. Their light producing qualities are

examined in Chapter 4. Electrically, the devices are merely diodes. By

controlling the forward current and temperature of the laser diode, the

output power, lasing frequency, and noise statistics can be controlled.

Figure 3.2 shows a simplified circuit that controlled the laser

diodes. A set of batteries and a potentiometer provided an adjustable

bias current for the laser. Figure 3.3 shows the output power depen-

dence on current, and indicates a minimum, or threshold, current of

around 30 mA. The potentiometer allowed the current to be adjusted from

around 50 mA to around 100 mA. The bias current was measured by an in-

line ammeter.
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SET POINT

- 48 V

DIODE

-V

-V

L

LOW FREQUENCY CURRENT CONTROL BIAS POINT SELECTION

Figure 3.2. Current control circuit.
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4

2

0

FORWARD CURRENT IF (mA)

Figure 3.3. Power vs. injection current.
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The low-frequency current control allowed an additional zero to

ten mA to be added to the bias current. It consisted of a voltage con-

trolled current source with a transfer constant of 0.5 mA/V. A test

point in the circuit allowed the current source to be tested, and its

response was flat at to 100 kHz.

An additional section of the laser drive circuit, that was not

used in this experiment, was a high fequency current source. This

source allowed the laser current to be controlled from 10 kHz to near

500 MHz. The two current sources, then, would allow the current to be

controlled in the DC to 500 MHz frequency band.

The entire laser circuit was enclosed in a temperature controlled

environment. The temperature was held to a 10-5°C/s drift by a tempera-

ture control loop which used thermistors and thermoelectric coolers.

This degree of control was necessary due to the sensitivity of the laser

to temperature, as discussed in Chapter 4. The set point of the

temperature control loop was adjustable by a control voltage, which was

selectable through a computer controlled digital-to-analog converter.

3.3. Optical Components. Fiber. Polarization. Coupler

The light exits the laser diode in a diverging cone that is col-

limated by a lens placed close to the laser. The light is then sent

through an optical isolator, which linearly polarizes it, and only

allows light to pass in one direction. Figure 3.4 shows how the isola-

tor works. The first polarizer linearly polarizes the light. Next, the

Faraday rotator rotates this linear polarization by 45 degrees clock-

wise. The output polarizer is aligned to allow all the light to pass.

Any light reflected back toward the isolator from anywhere in the system

then undergoes the reverse process. The output polarizer allows only a

certain polarization to pass. The faraday rotator then rotates the

light clockwise by 45 degrees clockwise, but since the light is travell-

ing in the opposite direction, it meets the input polarizer oriented in

exactly the wrong direction. Thus the light will not pass through the

26
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Figure 3.4. Optical isolator.

input polarizer and interact with the laser. With real polarizers,

though, the isolation is not perfect, and in this case is on the order

of 30 dB. In general this is not enough since very little optical feed-

back is sufficient to disrupt the coherence of the laser. Further iso-

lation is obtained by tilting optical faces wherever possible and using

antireflection coated surfaces.

In the optical path after the isolator is a half-wave plate.

This device is capable of rotating linearly polarized light to any

orientation. It works on the principle of birefringence. Birefringence

occurs in a substance when the index of refraction is different for dif-

ferent polarizations of light. The effect is to have light travelling

through the substance at different speeds for different polarizations

(see Figure 3.5). The half-wave plate is made of such a substance whose

length is precisely controlled to cause light polarized on one axis to

be delayed by 180 degrees with respect to the other axis. By orienting

the linearly polarized light at some angle with respect to these axes,

it will emerge linearly polarized, but with a different orientation.
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OPTIC

Figure 3.5. Half-wave plate.

Light emerges from the polarizer and is focused down to a point

by a lens. The point coincides with the end of an optical fiber, and

thus the light is launched into the fiber. Once inside, the light

maintains its linear polarization due to the makeup of the fiber. The

polarization is important when the optical signals pass through the

phase modulator and also when they are summed.

The optical coupler adds the two input optical signals and

outputs the sum at the two outputs. The light is a travelling elec-

tromagnetic wave which can be described by the time varying function

E(t) - TP sin(wt + )

where P is the optical power in watts, w is the frequency of the light

and is the phase. The lasers used had a wavelength of about 1289 nm

(infrared), which makes w = 2rf - 2c/A - 3.7 x 1013 rad/s. The power

gets split evenly between the two output ports, resulting in the the

signals
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El, out - 2 sin(wlt + 1)+ - sin(w2t + 2) (12a)

E2,out - sin(wlt + 1) 2 - sin(w2t + 2) (12b)

Of course, this assumes that the light waves are lined up in space,

which requires that they be linearly polarized with the same orienta-

tion. As mentioned before, the fiber used in this experiment is capable

of maintaining the desired polarization.

3.4 Phase Detector

The optical receivers are relatively straightforward devices.

They consist of a photodetector, and an avalanche photodiode which

drives a transimpedence amplifier, as in Figure 3.6. The photodetectors

act as square law detectors, converting light power into electrical

current. Equation (13) describes this conversion.

i - R Eight (13)

where R is the responsivity of the diode, measured in A/W.

Using the expression for the light signals coming from the coupler,

i P P2 sin 2

e- - sin2(lt + 1) +2 sin-2(w 2 t + 2) + P1P2 sin(wlt + 1) sin(w2t + 2)
R 2 2

P1 P2
[1 - cos(2wlt + 21)] + [1 - cos(2w2t + 202)]

4 4

+ 1 P2 [cos((wl + w2 )t + (1 + 2)) cos((wl - 2)t + (1 - 2))]

(14a)
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Since the sum of the frequencies is around 1.5 x 1014 Hz, these terms

are zero in an electrical realization, leaving

i P1 P2 1--+ - + - P1P2 cos((wl - w2)t + (1 - 2))
R 4 4 2

(14.b)

The amplifier then converts this current into a voltage.

R

LIGHT f-

Vout

Figure 3.6. Optical receiver.

The two types of receivers used in the experiment cover the spec-

trum from DC to 200 kHz, and 10 kHz to 1 GHz. For the low frequency

detector, the electrical output is 5 x 105 V/W, while the high-frequency

receiver outputs 1 millivolt across 50 n for each microwatt of optical

power.

The receivers also exhibit two types of noise. The thermal noise

is due to random electron motions within the components, and is a band-

limited white noise. It is measured by examining the output of the

receiver on a spectrum analyzer with no light incident upon the detec-

tor. Values for the thermal noise are

Low frequency:

Sth(s) - -118 dBm (1 Hz)

High frequency:

Sth(S) 137 dBm (1 Hz)

as seen in the photos in Figure 3.7.
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Figure 3.7a. Low frequency receiver noise.

Figure 3.7b. High frequency receiver noise.
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The other noise is shot noise, which comes from the discrete nature of

light. The photons which hit the photodetector each cause a current

spike, as illustrated in Figure 3.8. The current will therefore have an

average value dependent upon the number of photons (light power), around

which the current varies. The variation is the shot noise, and

theoretically should be

Sshot(s) = 2qKP (15)

where q is an electron charge, K is the receiver gain, and P is the

light power. A measurement of this noise is made by shining a known

light power on the receiver and examining the noise at the output. In

this case, the shot noise is

Sshot(S) < -137 dBm (1 Hz)

CURRENT

AVERAG E-

PHOTON HITS ELECTRON

NOISE _I
I IIVI- - _~~~ I VI

Figure 3.8. Shot noise.

3.5 Amplifiers and Filters

In the two paths between the low frequency receiver and the laser

are integrators. A circuit plan for the low frequency integrator uses

an op-amp, a resistor, and a capacitor, as shown in Figure 3.9. The

transfer function of the filter is

1
Fl(s) - sRC (16)

Thus, the gain is 1/RC, and the circuit is an integrator.
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Figure 3.9. Low-frequency integrator.
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CHAPTER 4

EXPERIMENTAL RESULTS

4.1 Experimental Apparatus

Figures 4.1 through 4.5 are photographs of the experimental appa-

ratus. Figure 4.1 shows the launch system. The components, from left

to right, are the laser and lens in the temperature controlled box, the

isolator, the half-wave plate, and the lens and fiber. Figure 4.2

shows the launch system, a coupler, and the Fabry-Perot interferometer.

Figure 4.3 shows the high and low frequency receivers, an optical power

meter, and the compensation circuit. Figure 4.4 shows the entire setup

with both lasers. Finally, Figure 4.5 is a closeup of the laser drive

circuit. The laser itself is on the other side of the board.

4.2 Semiconductor Lasers

The lasers used in the PLL are Toshiba DFB semiconductor laser

diodes. Their advantages are the small size, mechanical ruggedness,

and small electrical power requirements as opposed to gas lasers, and a

simple modulation technique. These diode lasers, however, have two dis-

advantages. First, they typically have much broader spectral

linewidths than gas lasers. A gas laser, for instance, might have a

full width half maximum (FWHM) linewidth of 1 kHz, while a DFB laser

diode has a FWHM of 30 MHz. This wide linewidth manifests itself as

white frequency noise, and therefore introduces phase noise that the PLL

must take care of. The other main disadvantage of present laser diodes

is a 180° phase shift in the frequency response, as explained below.

Because of their size, and potential power, cost advantages, though,

laser diodes are the light source of choice for optical communication

systems.
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Figure 4.5. Laser drive circuit.
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The two lasers used in this experiment had factory measured

wavelengths of 1288 nm and 1289 nm, corresponding to frequencies of

2.3292 x 1014 Hz and 2.3274 x 1014. This frequency difference of

180 GHz is much larger than any realizable control loop bandwidth, and

thus, some forced frequency sweeping would be necessary for acquisition.

The rest of this chapter describes how the lasers were tested and an

attempt at phase lock was made.

4.3 Linewidth Measurement

The linewidth of the lasers was measured with a fiber inter-

ferometer. This interferometer, shown in Figure 4.6, split the light

from one laser with an optical coupler. The light then travelled

through two different lengths, which decorrelated the noise, and was

recombined by another coupler and detected with a wideband receiver. In

order to get sufficient decorrelation, the differential fiber length had

to be more than five coherence lengths (c) of the laser, since the cor-

relation falls off as eAL/)c. The coherence length is directly related

to the linewidth by

Ic = c
nAf

For the 70-m differential length used, the linewidth can be accurately

measured if it is greater than 15 MHz.

The electrical signal from the receiver was observed on a spec-

trum analyzer. Since the receiver effectively multiplies the two

optical signals, the spectrum is the convolution of the spectra of the

two signals. The lineshape of the laser spectrum is Lorentzian, with

the FWHM defined as the linewidth. Convolving two identical Lorentzians

will yield a Lorentzian with a FWHM of twice the individual FWHM. The

linewidth of the laser, therefore, is the frequency of the -3 dB point

in the convolved spectrum. The photograph in Figure 4.7 show the

linewidth of one laser to be 20 MHz.
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Figure 4.7. Laser linewidth.

The linewidth was found to be very sensitive to injection current

and temperature. The 20-MHz linewidth was measured after testing a

range of currents and temperatures. In general, a higher current will

yield a narrower linewidth for a given temperature. Tuning by current

and temperature, though, are subject to mode hopping. This phenomenon,

shown in Figure 4.8, is due to the relationship between the cavity

resonance modes of the laser, and the gain curve of the medium. As the

two are changed by changing the temperature and current, the cavity mode

with the highest gain will change in frequency, thus changing the lasing

frequency. At some points, though, the lasing frequency will jump from

one cavity mode to the next as the gain curve and cavity modes shift by

each other. This mode hopping results in discontinuous frequency

tuning, shown in the figure. When the lasing frequency is near a dis-

continuity, the laser begins to mode hop, and the linewidth becomes wide
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and unstable. The various continuous parts of the curve are desired

operating points, and offer different stable linewidths. The linewidth

varied from 20 MHz to 40 MHz for various points.

A Fabry-Perot interferometer was used to gather data on the

lasers. The interferometer had a mirror spacing of 1.24 cm, and thus a

free spectral range (FSR) of c/2L, or 12.1 GHz. The expected finesse

was about 30, for parallel mirrors. Figure 4.9 shows the experimental

setup and result of sweeping the Fabry-Perot mirrors past the laser

center frequency. The oscilloscope plot shows the finesse to be

F = FSR/(FWHM) - 19.5

where FWHM is the full width of the resonance peak at half the maximum

value.

The next step in calibrating the laser was to hold the Fabry-

Perot mirror spacing still while sweeping the laser center frequency

past it. The experimental setup and results are shown in Figure 4.10.

The low-frequency current control was driven with a 20-V peak-to-peak,

50-Hz triangular wave, which in turn changed the laser injection current

by 1 mA/ms. For such a low frequency, the laser is well-behaved (see

below). The Fabry-Perot was then adjusted manually until a peak

appeared, to form the oscilloscope plot in the figure. Also in the plot

is the triangular drive signal. The width of the resonance at half

maximum was known to be FSR/F, or 620 MHz. The scope plot shows that

the time to sweep the FWHM was 960 s, which corresponds to a current

change of 0.96 mA. Therefore, the tuning of the laser is 640 MHz/mA for

low-frequency modulation.

The temperature tuning of the lasers was also observed by using

the Fabry-Perot. Utilizing the computer controlled temperature control-

ler, the temperature was swept over its full range of 10°C to 30°C. The

Fabry-Perot peaks were observed periodically, indicating a temperature

tuning of the lasing frequency of 25 GHz/°C.
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FABRY-PEROT
LOW FREQUENCY RECEIVER

ING SWEEP

1.00000 S

- 1.000 Volts/div
- 1.00 ms/div
= 1.00376 s
- -2.280 Volts Stop - 1.00412 s

Vmorker2 - 0.000 Volts

Offset
Deloy
Delta T
Delta V

- -2.000 Volts
- 1.00000 s
- 360.012 us
- 2.280 Volts

Figure 4.9. Fabry-Perot test setup and results.
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FABRY-PEROT

LOW FREQUENCY RECEIVER

SWEEP

10.0000 ms 20.0000 ms

Ch. 1 - 5.000 Volts/div Offset - 10.00 Volts
Ch. 2 - 1.000 Volts/div Offset - -4.000 Volts
Timebose - 2.00 ms/div Deloy - 0.0000 s
Start - 8.92000 ms Stop - 9.88000 ms Delta T - 960.000 us
Vmarkerl - -100.0 mVolts Vmaorkr2 -2.260 Volts Delto V - -2.160 Volts

Figure 4.10. Current sweep test setup and results.
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One final calibration step was used to determine the slope of the

Fabry-Perot at the half-maximum point. Around this point the Fabry-

Perot acts as a frequency modulation (FM) to intensity modulation (IM)

converter. A receiver could then detect the IM optical signal, and

would output an electrical signal at the FM frequency, whose amplitude

is proportional to the frequency deviation. The setup in Figure 4.11

was used, only the current modulation was much smaller than for the pre-

vious test. After manually adjusting the Fabry-Perot to put the center

frequency at the half-maximum point, the low-level modulation was used

to determine the slope. For a 0.5-mA amplitude sinewave, the receiver

output a 1 V amplitude sinewave. The receiver was known to have a

response of 5 x 105 V/W, and thus the Fabry-Perot slope was 6.25 x 10-15

W/Hz.

FABRY-PEROT
EIVER

TO OSCILLOSCOPE

SMALL CURRENT MODULATION

Figure 4.11. Fabry-Perot slope determination.

4.4 Laser Transfer Function

As alluded to earlier, higher frequency modulation of the laser

is different from the low-frequency modulation. There are two main

effects that determine the center frequency of the laser. One is the

size of its resonant cavity, which is very sensitive to temperature.

When the temperature rises, the cavity expands, and the lasing frequency

decreases. The other effect is the carrier density within the laser,

which is directly proportional to the injection current. An increase in
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injection current will increase the current density, which will in turn

increase the lasing frequency. Unfortunately, increasing the injection

current will increase the temperature of the lasing cavity. The result

is that at low frequency current modulation the temperature effect domi-

nates, while at high frequencies the carrier density effect dominates.

At some point, the frequency response of the laser crosses over from one

effect to the other, and the result is the frequency response as shown

in Figure 4.12. This response was measured with the setup in Figure

4.13 A low-frequency network analyzer was used to drive the low-

frequency current control with a variable frequency, low-level signal,

which allowed operation on the Fabry-Perot slope. The Fabry-Perot was

continually adjusted by an observer to keep the output signal near the

half-maximum point. The network analyzer then compared the output to

the input to produce the plots in Figure 4.12. Clearly, the laser phase

response crosses over around 300 Hz. Also, it is seen that the

amplitude response stays constant for the 0 to 100 kHz range. This odd

behavior of the laser is modelled by the transfer function for phase

K 1(wo - s)

G(s) = S(w + s)

where

w - 2 * 300 Hz, the phase crossover frequency

K1 - 640 MHz/mA

4.5 Frequency Lock to the Fabry-Perot

The first feedback loop attempted was to frequency lock a laser

to the half-power point on the Fabry-Perot resonance curve. The setup

is shown in Figure 4.14 with the control block diagram. The Fabry-Perot
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FABRY-PEROT
LOW FREQUENCY RECEIVER

Figure 4.13. Frequency response test setup.

and receiver acted as a frequency comparator, yielding a signal propor-

tional to the frequency deviation from a set point. An op-amp

integrator was the loop filter, and the laser frequency was controlled

by the low frequency current control.

The loop compensation was adjusted by varying the gain of the op-

amp integrator circuit. By adding an input into the loop at the op-amp,

the closed loop response was observed at the output of the receiver.

First, a slow square wave was used, in order to observe the step re-

sponse. The loop gain was then adjusted until the response shown in

Figure 4.15 was achieved. The small bump in the response that goes in

the wrong direction is due to the 180" phase shift of the laser fre-

quency response for high frequencies. Next, by using the low frequency

network analyzer, the closed loop transfer function was measured, as

shown in Figure 4.16. The loop bandwidth was about 100 Hz. This was

expected since the extra phase shift from the laser was 90° at 300 Hz,
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FABRY-PEROT

K
G(s) Ks LASER

Figure 4.14. Frequency-locked loop.
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-209.040 ms

Ch. I - 500.0 mVolts/div Offset
Ch. 2 - 500.0 mVolts/div Offset
T:a.aSose = 10.0 ms/div Deloy
Chonnl 1 ParomGtQrs Rise Time - 811.756 us
Star-t = -248. 640 ms Stop - -247.828 ms Delta T
Vmrkerl - -320.0 mVolts Vmorher2 - 280.0 mVolts Delta V

Figure 4.15.
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Figure 4.16. Closed loop transfer function of frequency lock.
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and this would be about 20° at 100 Hz. For a crossover frequency of

G(s) of 100 Hz, the phase of G(s) would therefore be -90° - 200, or

-110°. This leaves a phase margin of 70°, which corresponds to the

observed step response.

After locking the laser to the Fabry-Perot, it became obvious

that the power supplies used for the electronics were contributing a

120-Hz buzz to all of the signals. The evidence was a strong 120-Hz

signal on the output of the receiver when the loop was locked. To deal

with this problem, all possible circuits were run off ±12-V batteries

instead of the usual power supplies. This considerably reduced the 120-

Hz buzz. There was still some, however, since the Fabry-Perot mirrors

and the temperature control circuits were still supplied from the 60-Hz

laboratory supply.

4.6 Laser Freauency Noise

The frequency noise of the laser diodes has a theoretical spec-

tral density as shown in Figure 4.17. The 1/f corner frequency was

measured by the setup in Figure 4.18. The laser was locked to the

Fabry-Perot slope by a narrow (0 to 100 Hz) feedback loop, and the

output of the receiver was examined on a spectrum analyzer. The photo

in Figure 4.19 shows the 1/f corner to be at 67 kHz, and the white noise

continuing afterwards. The white noise drops off starting around 200

MHz because the Fabry-Perot acts like a low-pass filter with a cutoff of

250 MHz. It is assumed, though, that the white noise continues as

theory predicts. The transfer constant for the wideband (10 kHz to 1

GHz) receiver used in the high-frequency picture was 1 mV/pW electrical

power to light power. Thus, the white frequency noise had a strength of

1.02 MHz2/Hz. In terms of the laser linewidth, this converts to a 32

MHz linewidth.

4.7 Laser Frequency Overlap

The next step toward phase lock was to tune the laser frequencies

with temperature in order to get them to overlap. Figure 4.20 shows the

experimental setup. The light from the two lasers was combined with a

coupler, then detected using the high frequency receiver. The result
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FABRY-PEROT
HIGH FREQUENCY RECEIVER

TO
SPECTRUM

X < " ANALYZER

POWER
METER

MANUAL CONTROL

Figure 4.18. Frequency noise measurement.

Figure 4.19. Frequency noise.

was the convolution of the spectra of the two lasers, as in the line-

width measurement, but offset from zero by the difference in frequencies

between the two lasers. Since the lasers were about 180 GHz apart at

25°C (from the data sheets), and then tuned approximately 25 GHz/°C, a

temperature difference of around 7C should have tuned the frequencies

to the same value.
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HIGH FREQUENCY RECEIVER

Figure 4.20. Laser frequency overlap setup.

Using the computer control of temperature, a 14°C difference was

found to produce a difference frequency, or beat note, of less than 1

GHz. Figure 4.21 shows the spectrum when the difference is 700 MHz.

The mutual linewidth was measured to be 140 MHz, which meant that the

individual linewidths were 70 MHz if they were equal. This picture was

taken before the 120-Hz buzz was removed from the circuitry, so the beat

note actually was jittering around at 120 Hz. Also, no attempt was made

at this time to optimize the linewidths of the lasers through fine

current adjustments as was done before.

Figure 4.21. Laser frequency overlap.
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Another frequency locked loop was attempted in order to remove

the 120-Hz jitter in the difference frequency. The output of the high

frequency receiver was sent through an electrical delay line dis-

criminator. The discriminator worked like the Fabry-Perot in that it

converted frequency deviations to intensity deviations, only it operated

on an electrical signal instead of an optical signal. This signal was

then filtered as before with an op-amp integrator. The filtered signal

then drove the low frequency current control of the laser. Unfor-

tunately, the 180° phase shift of the laser prevented the loop from

tracking the 120 Hz, since the loop was limited to less than 100 Hz.

After the 120-Hz problem was solved by using batteries as power

supplies, frequency overlap was attempted again. Due to an unfortunate

accident involving turning the power to the laser on and off, one of the

lasers had an order of magnitude increase in its linewidth, shown in

Figure 4.22. The spectrum of the beat note then looked like wideband

white noise with a small bulge at the beat note. No amount of linewidth

reduction through current adjustment could improve the beat note. One

week later, the laser had degraded even more, and the beat note was no

longer distinguishable on a 0 to 1.5-GHz scale.

Figure 4.22. Poor laser linewidth.
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CHAPTER 5

PHASE LOCK RECOMMENDATIONS

5.1 Loon Bandwidth and Noise

The experiments in Chapter 4 allow Equation (11) from Chapter 2

to be evaluated. This equation, reproduced here, relates the phase

error variance to the noises in the loop.

2 7 1 K N 1 N 2
a2 = 2- (Nyb + N3b) + 2K (Nya + N3a) + 2- ( +) (11)

I2 2

The laser noises were measured in Chapter 4. For simplicity, the noise

statistics for the better laser are used. The white frequency noise was

measured to be Nya - N3a - 3.2 x 107. Since the 1/f laser noise

equalled the white noise at 67 kHz, Nyb = N3b = 1.3 x 1012. The noise

from the detector, N1 was measured to be N 8 x 10-11. Finally, the

electrical noise N2 was not measured, but would be about N2 10'1l

Two of the three gains were measured, and the third, K2, would be

varied in order to control the total loop gain K - K1K2K3. The laser

gain was measured to be K3 - (640 MHz/mA)(0.5 mA/V) - 3.2 x 108 Hz/V.

The detector gain was measured to be K 1 - 1/2 P1P2 (5 x 105) - 5 x 106.

Substituting these values into Equation (11) yields

2 4 x 1012 3.2 x 107 x 10-24 4 1025
6 x1025]ax2 + ' + K 3 x 102 + (17)K K K2
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where K is the loop gain, and also the open loop crossover frequency.

For values of K less than 1 GHz, the variance is dominated by the laser

frequency noise, and Equation (17) reduces to

a2 s N 3.2 x 10 (18)
K K (18)

Thus, the loop bandwidth K must be greater than the laser linewidth N

for phase lock to take effect. To achieve this wideband loop, both the

low and high frequency receivers and the low and high frequency current

sources for the laser diode would be used. Unfortunately, the 180°

phase shift measured in Chapter 4 cannot be compensated out and still

leave the desired loop filter. This phase shift is typical of most

semiconductor lasers. It is often observed at much greater frequencies,

up to 10 MHz, but a 20-MHz linewidth would require it to be more than

100 MHz for phase lock. There are new lasers, however, that do not

exhibit this troublesome phase shift. As reported in References 9 and

10, the new devices rely upon multi-electrode diodes and a more compli-

cated drive circuit. The use of these lasers might allow a semi-

conductor laser phase locked loop.

An alternative scheme is described in Section 5.3, but first the

expected results of a phase lock experiment are discussed in Section

5.2.

5.2 PLL Results

Figure 5.1 shows the expected spectrum of the error signal as the

PLL is improved. First, Figure 5.1a shows the Lorentzian mutual

linewidth of the two lasers at an arbitrary offset frequency. Figure

5.lb shows the spectrum at a zero offset frequency, when the lasers are

frequency locked. As the gain of the loop is measured, more frequency

noise is removed by the loop, since the bandwidth is increased. Figure

5.1c shows how the spectrum changes as the loop gain is increased. At

some point, the phase error variance becomes small enough so that the
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Figure 5.1. Spectra of PLL error signal.
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sinusoidal phase detector can be considered linear. This point also

corresponds to successful phase lock. The spectrum here is shown in

Figure 5.1d. The area under this curve is the phase error variance.

5.3 Phase Modulator in the PLL

Figure 5.2 shows a scheme for realizing a PLL by incorporating an

electro-optic phase modulator into the previous setup. The phase

modulator can function as a frequency shifter, as described below. By

using the phase modulator instead of the laser current as the wideband

feedback path, any problems with the laser frequency response can be

avoided.

The phase modulator consists of a substance with a controllable

index of refraction. Applying a voltage across the substance, a

titanium diffused lithium niobate waveguide, achieves this change.

Since the speed of the light depends upon the index of refraction, the

time to travel the length of the waveguide is controlled, and thus the

phase is controlled. By applying a ramping voltage to the phase

modulator, a frequency shift is attained, since a linearly increasing

phase is equivalent to a frequency shift. One problem is that it is not

feasible to ramp the voltage forever. The solution is to take advantage

of the fact that an instantaneous 2 phase shift of a sinusoid cor-

responds to no change in phase. Therefore, a sawtooth waveform, as

shown in Figure 5.3, will cause the desired frequency shift. This tech-

nique is called serrodyning.

The difficulty in using serrodyning in the PLL is the creation of

the serrodyne waveform. High frequency, fast 2 flyback serrodyne

waveform generators are currently under development at Draper

Laboratory, and would be ideal for use in the PLL.

5.4 Simplified PLL Test

Figure 5.4 shows a way to use only one laser to test the PLL,

which includes phase modulators. The laser light is split into two

paths which are treated as the two independent oscillators. One path is
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Figure 5.3. Serrodyne waveform.

AA A

LOW FREQUENCY RECEIVER

DELAY LENGTH HIGH FREQUENCY
RECEIVER

Figure 5.4. Simple phase lock test.

frequency shifted by the serrodyne technique. The other path is first

delayed in order to decorrelate the noise from the first path, then fre-

quency shifted by the same amount by a controllable serrodyner. The

signals are then-combined and detected as before. The feedback is

through the same compensation as before, and drives the controllable

serrodyner. The two paths are frequency shifted because it is simpler
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to create an adjustable sawtooth wave that only ramps up or down, but

not both. One advantage to using only a single laser is that frequency

lock is no longer a dynamic range issue. Also, the delay length can be

adjusted in order to control the amount of noise decorrelation, and thus

the apparent noise bandwidth that the loop must track out.
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CHAPTER 6

CONCLUSIONS

This thesis has presented the major design issues involved in an

optical phase locked loop. The main source of error in the phase lock

was identified as the white frequency noise of the lasers, which is pro-

portional to the laser linewidth. Other concerns are the tunability and

frequency response of the lasers, the linewidth stability with respect

to current and temperature, and the propagation time of an error signal

travelling around the loop. All of these issues are critical in achiev-

ing true phase lock.

Future research will now be directed toward utilizing better

behaved laser diodes and phase modulators with serrodyne waveform gener-

ators. The eventual goal is to build an optical Costas type loop, which

would then allow the practical use of coherent optical communications.

65



APPENDIX A

TABULATED VALUES OF THE INTEGRAL FORM

j con 2c(s)fI + +

C(s) = Cn-lSn1 + ... + c o

2
-

2dod1

s c(s)c (-s)
d(s)d(-s)

d(s) = d sn+ + dn 0

2 2
2 2dOdld 2

13
c2

2 dd + (c 1
2 - 2CC 2)dd3+ c0

2d2d32 2dod 0c 2 ) d 3 2 3
2d0d3 (-dod3 + dld 2)

C32(-d2d3 + ddld2)+(c22 - 2ClC3)ddld4+( C12 - 2c0c2)dod3d4+C0 (-dld4
2 +d2d3d4)

2d- -+dd2dod4 (-d2d 3 - d 4 2 d3 )

15 2 [ m 0 + 3 -2 2c 4 )m2 + ( c1
2 -2c0c2)m3 + c0

2 m ]

where

mO d5- (d3m - dm 2) m = -dod3 +d 1 d2- d5 12 

m3 -w (d2m2- d 4ml )

m2 = -dod 5 + dld 4

1
m4= - (d2 m3 - d4mm2)0 23 42

5 d0 (dlm4 - d3 m3 + d5m2 )
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