
A Reactive/Deliberative Planner Using Genetic

Algorithms on Tactical Primitives

by

Stephen William Thrasher, Jr.

B.S. Engineering and Applied Science
California Institute of Technology, 2002

Submitted to the Department of Aeronautics and Astronautics
in partial fulfillment of the requirements for the degree of

Master of Science in Aeronautics and Astronautics

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June 2006

c©2006 Stephen Thrasher. All rights reserved.

The author hereby grants to MIT permission to reproduce and to
distribute publicly paper and electronic copies of this thesis document
in whole or in part in any medium now known or hereafter created.

Author .
Department of Aeronautics and Astronautics

May 29, 2006

Certified by. .
Christopher Dever

Senior Member, Technical Staff, C.S. Draper Laboratory
Thesis Supervisor

Certified by. .
John Deyst

Professor of Aeronautics and Astronautics
Thesis Supervisor

Accepted by .
Jaime Peraire

Professor of Aeronautics and Astronautics
Chair, Committee on Graduate Students

2

A Reactive/Deliberative Planner Using Genetic Algorithms
on Tactical Primitives

by
Stephen William Thrasher, Jr.

Submitted to the Department of Aeronautics and Astronautics
on May 29, 2006, in partial fulfillment of the

requirements for the degree of
Master of Science in Aeronautics and Astronautics

Abstract

Unmanned aerial systems are increasingly assisting and replacing humans on so-called
dull, dirty, and dangerous missions. In the future such systems will require higher
levels of autonomy to effectively use their agile maneuvering capabilities and high-
performance weapons and sensors in rapidly evolving, limited-communication combat
situations. Most existing vehicle planning methods perform poorly on such realistic
scenarios because they do not consider both continuous nonlinear system dynam-
ics and discrete actions and choices. This thesis proposes a flexible framework for
forming dynamically realistic, hybrid system plans composed of parametrized tac-
tical primitives using genetic algorithms, which implicitly accommodate hybrid dy-
namics through a nonlinear fitness function. The framework combines deliberative
planning with specially chosen tactical primitives to react to fast changes in the en-
vironment, such as pop-up threats. Tactical primitives encapsulate continuous and
discrete elements together, using discrete switchings to define the primitive type and
both discrete and continuous parameters to capture stylistic variations. This thesis
demonstrates the combined reactive/deliberative framework on a problem involving
two-dimensional navigation through a field of threats while firing weapons and de-
ploying countermeasures. It also explores the planner’s performance with respect
to computational resources, problem dimensionality, primitive design, and planner
initialization. These explorations can guide further algorithm design and future au-
tonomous tactics research.

Thesis Supervisor: Christopher Dever
Title: Senior Member, Technical Staff, C.S. Draper Laboratory

Thesis Supervisor: John Deyst
Title: Professor of Aeronautics and Astronautics

3

4

Acknowledgments

Blessed be the God and Father of our Lord Jesus Christ! According to his great mercy,
he has caused us to be born again to a living hope through the resurrection of Jesus
Christ from the dead, to an inheritance that is imperishable, undefiled, and unfading,
kept in heaven for you, who by God’s power are being guarded through faith for a
salvation ready to be revealed in the last time. — St. Peter

This work is dedicated to the memory of my mother, Marilyn. I pray that I am
always at the ready to care for the helpless, the poor, the sick, and the hungry.

Thank you, Chris Dever, for your patience, your ideas, and your close supervision.
Thank you, John Deyst, for willingly advising me on this thesis. Thank you, Jeff
Miller, for your time and insight into all things machine learning. Thank you, Brent
Appleby, for late-evening conversations about life, work, and MIT DLF history.

Thanks to Drew Barker for gymnastics, friendship, and being an all-around quality
guy; to Jon Beaton for the encouragement to keep going; to Tom Krenzke for being a
good sport of a classmate, a good friend, a steadfast workout partner, and a cohort in
shenanigans, like the flipbook in the lower right-hand corner of your master’s thesis;
to Pete Lommel for your discussions about autonomy and whatever else; to Brian
Mihok for your big smile and honest friendship.

Thanks to Jeff Blackburne for chili and cornbread, and to Ali Hadiashar for making
me things. You are both great roommates and brothers in Christ.

Thanks to Greg Glassman for helping me retain my sanity through short bursts
of varied, intense physical effort.

Thank you, Stephen W. Thrasher, Sr., for being a loving and supportive dad.
And to Jimmy and Thomas, who are excellent brothers.

Secondmost of all, thanks to Rachel Edsall, who is awesome. I look forward to
learning more about you and the many ways in which you are awesome.

Finally, thank you readers. I recommend skimming through Chapters 1 through 3.
The material in Chapters 4 and 5 should interest you the most. Flying dots are so
much better than details and pseudocode.

Amen. Come Lord Jesus.

This thesis was prepared at The Charles Stark Draper Laboratory, Inc., under Inde-
pendent Research and Development Project Number 20325, Tactics Generation for
Autonomous Vehicles.

Publication of this thesis does not constitute approval by Draper Laboratory of the
findings or conclusions contained therein. It is published for the exchange and stim-
ulation of ideas.

5

6

Contents

1 Tactical Decision Making 13
1.1 Description of Tactics . 14
1.2 Tactics Problem Statement . 16
1.3 Incorporating Expert Knowledge . 17
1.4 Literature Review . 19
1.5 Contribution . 20
1.6 Thesis Organization . 21

2 Algorithm Design Elements 23
2.1 Tactical Primitives . 23

2.1.1 Choice of Primitive Set . 24
2.1.2 Primitive Parameters . 24

2.2 Reactive Tactics . 25
2.3 Genetic Algorithms and Deliberative Tactics 26

2.3.1 Initial Solution Candidates . 27
2.3.2 Modeling Uncertainty . 28
2.3.3 Competing Optimization Methods 28

3 A Reactive/Deliberative Planner 31
3.1 Deliberative Planning . 31
3.2 Reactive Planning . 33
3.3 Combined Planner . 34

4 Threats Problem 37
4.1 Problem Description . 37

4.1.1 Vehicle Model . 37
4.1.2 Threat Model . 38
4.1.3 Firing on a Threat . 40
4.1.4 Countermeasures . 41
4.1.5 No-Fly-Zone . 41
4.1.6 Fitness Function . 42

4.2 Tactical Building Blocks . 43
4.2.1 Maneuvers . 44
4.2.2 Discrete Actions . 47

4.3 Deliberative Planning . 48

7

4.4 Reactive Planning . 51
4.5 MATLAB and the Genetic Algorithm Optimization Toolbox 51
4.6 Simulations . 53

4.6.1 Example Scenario . 53
4.6.2 Crossing a Field of Threats 56
4.6.3 Attack Mission . 62
4.6.4 Urban Canyon . 65

4.7 Discussion . 67

5 Algorithm Performance 71
5.1 Computation and Performance . 71
5.2 Effects of Dimensionality . 72
5.3 GA and Nonlinear Programming . 74
5.4 Primitive Types . 76
5.5 Vehicle Characteristics . 77
5.6 Initialization with Candidate Solutions 79
5.7 Lessons Learned . 81

6 Conclusion 83
6.1 Immediate Extensions . 84
6.2 Future Work . 86

A Genetic Algorithms 89
A.1 Overview . 89

A.1.1 Chromosomes and Problem Encoding 90
A.1.2 Recombination . 91
A.1.3 Mutation . 92
A.1.4 Fitness Evaluation and Selection 92
A.1.5 Performance Metrics . 92
A.1.6 Variations . 93

A.2 Primitive Selection and GA Design Issues 93
A.2.1 Problem Representation . 94
A.2.2 Population Initialization . 95
A.2.3 Fitness Function Design . 95
A.2.4 Problem Space Constraints . 96
A.2.5 Termination Condition . 96

A.3 Conclusion . 97

8

List of Figures

1.1 Representation of a military vehicle planning hierarchy. 15
1.2 Two phases of human-inspired autonomy. 18

3.1 Vehicle architecture. 32
3.2 Pseudocode for generateReactivePlan. 33
3.3 Pseudocode for the combined planner. 34

4.1 Overview of the threats problem. 38
4.2 Exposure calculation for a trajectory among threats. 40
4.3 Probability of disabling a threat . 41
4.4 Effect of a countermeasure on threat exposure. 42
4.5 Tactical primitives for the threats problem. 45
4.6 Different cases of the evade maneuver. 46
4.7 Fixing the threat label parameter. 50
4.8 Reactive plan library. 52
4.9 A field of threats and the combined planner. 54
4.10 A field with unknown threats and the combined planner. 55
4.11 First scenario: crossing a field of threats. 56
4.12 Trajectories for field-crossing scenario with threats known. 57
4.13 Fitness histogram for field-crossing scenario with threats known. . . . 57
4.14 Selected trajectories for field-crossing scenario with threats known. . . 59
4.15 Fitness over time for field-crossing scenario. 60
4.16 Trajectories for field-crossing scenario with three unknown threats. . . 61
4.17 Fitness histogram for field-crossing scenario with unknown threats. . 61
4.18 Fitness over time for field-crossing scenario with unknown threats. . . 62
4.19 Setup for one-target attack scenario. 63
4.20 Trajectories for one-target attack scenario. 64
4.21 Setup for two-target attack scenario. 65
4.22 Trajectories for two-target attack scenario. 66
4.23 Setup for urban canyon scenario. 67
4.24 Trajectories for urban canyon scenario. 68

5.1 Fitness histograms for different computation times. 72
5.2 Dimensionality study setup. 73
5.3 Results of the dimensionality study. 73
5.4 Results of GA alone and GA mixed with nonlinear programming. . . 75

9

5.5 Trajectories from using a body-frame primitive library. 78
5.6 Histogram of body-frame primitive library. 79
5.7 Trajectories of vehicles with different parameter sets. 80
5.8 Attack scenario GA initialization study. 82

A.1 Pseudocode for a typical genetic algorithm. 90
A.2 Typical bitstring recombination methods. 91

10

List of Tables

4.1 Simulation parameters used in Chapter 4. 39
4.2 Chromosome representation for the threats problem. 49
4.3 GAOT parameters for threat problem simulations. 52

5.1 GA-NLP comparison runtimes and fitnesses. 76
5.2 Four different vehicle parameter sets. 79

A.1 Multi-objective fitness functions. 96
A.2 Advantages and disadvantages of genetic algorithms. 97

11

12

Chapter 1

Tactical Decision Making

People become bored and error-prone when they perform dull, repetitive actions.
They must take costly precautions when working in dirty environments that are con-
taminated with chemical, biological, or nuclear waste. Dangerous jobs such as mining
or combat put people’s lives at risk. Autonomous systems offer a means of assisting
or replacing humans on tasks that fall into these well known “three D’s”—dull, dirty,
and dangerous.

In some ways, the capabilities of autonomous vehicles (AV) far exceed those of
manned vehicles. AVs accelerate and turn sharply without causing pilot blackouts.
Engineers design smaller and smaller AVs because no human needs to fit inside. They
remain aloft for days without requiring pilots to take sleep shifts or performance-
enhancing drugs.

At the time of this writing, however, unmanned aerial vehicles (UAVs) used in
combat require large supervisory teams and fly mostly high-altitude surveillance mis-
sions. Their high-performance flight envelopes go unexplored, and they always remain
on a communication tether to a remote human operator. Modern UAVs do not per-
form terrain-following flight or win dogfights against fighter pilots. With improved
autonomy, however, a single operator could control several UAVs at once, UAVs
could evade new threats even after losing their communication link, and AVs could
operate in the complex theaters of air-to-air combat, urban warfare, and underwater
reconnaissance.

Thus far, AVs perform well in highly regulated environments on well defined tasks,
but they perform poorly on many tasks that human pilots do well, such as formation
flight, planning in novel situations, and executing coordinated, agile maneuvers in
highly constrained environments. Algorithms for controlling AVs have not caught up
with AV capabilities. Agile flight of these high-performance systems simultaneously
requires the control of a nonlinear, continuous flight path, decisions about how to
accomplish multiple objectives, and effective use of sensors and weapons. Optimally
and reliably satisfying these requirements in real time is an open research effort of
the controls engineering community.

This thesis contributes to that effort with a nonlinear, hybrid system method for
maneuvering a vehicle and controlling its discrete actions. This method incorporates
human input in several forms, closing the performance gap between humans and AVs.

13

Its building blocks can mimic human behaviors while allowing for stylistic variations,
giving an AV some flexibility during planning. Engineers can also directly design
these building blocks using trial-and-error and intuition. The optimization algorithm
can start from scratch, but it also accepts human-inspired and computer-generated
candidate solutions. The method is flexible and general enough to work on any system
whose necessary behaviors can be condensed into a small library of building blocks
and which can evaluate its cost function quickly. This approach does not guarantee
optimality or reliability, but several means of increasing the likelihood of near-optimal
solutions exist.

Planning in adversarial scenarios can be called “tactical decision making.” The
next two sections define this term intuitively and mathematically, and the following
sections present the background behind incorporating human knowledge into planning
algorithms and give a review of the vehicle planning literature.

1.1 Description of Tactics

Merriam-Webster’s Collegiate Dictionary defines tactics as “the art or skill of employ-
ing available means to accomplish an end” [34]. Common applications that require
tactics include the deployment of military forces and the execution of plays in a sports
game. In such situations commanders and coaches take their knowledge of past ap-
proaches and innovatively use them to defeat their opponent. Every battle or play
requires specificity and creativity to handle the complexity of the engagement and to
overcome the opponent’s tactics.

One way to approach AV planning is to separate it into layers. Figure 1.1 shows
a possible breakdown of a military force into planning layers. Each layer abstracts
its internal workings to present higher layers with a condensed set of capabilities and
constraints and lower layers with a condensed set of requirements and commands. For
example, the trajectory generation layer at the bottom of the figure could condense
the full AV flight envelope into several packaged agile maneuvers [18]. The “Tactics,
Maneuvering” layer is the topic of this thesis: given waypoints and abstracted low-
level vehicle capabilities, how should the vehicle interact with its environment between
waypoints?

The generation and execution of AV tactics requires specificity and creativity. An
AV must choose its actions based on a complex context involving resource constraints,
threats, limited knowledge, environmental features, and mission goals. Complexity
and uncertainty prevent an AV tactics designer from figuring out an optimal response
to every possible situation offline, and complexity and computation time also prevent
an AV from solving a near-optimal control problem online from scratch. A combina-
tion of offline and online optimization can give an AV better behavior than using just
one or the other, just as previous experience and knowledge combined with creativity
can give a coach a winning strategy.

Many algorithms exist to control an AV in a specific situation with very good
performance, where performance is defined as some measure of efficiency in time and
resources or effectiveness in some objective such as disabling threats or remaining

14

?

RESTRICTED

REGION

Mission
Objectives

Threat
Regions

Start

Route Points

Trajectory Generation, Obstacle Avoidance

Resource and Task Allocation

Mission Planning

Route Planning

Tactics, Maneuvering
C

A

Bγ(ρ)

α

α
β

β

UAV 1

UAV 2

Figure 1.1: Representation of a military vehicle planning hierarchy.

15

undetected. Example situations from past research include terrain-following flight,
evasive maneuvers for pop-up threats, and high-performance maneuvering around
obstacles [16, 30, 38]. The existence of many tailored algorithms turns the tactics
problem into the question of how to choose between each behavior depending on
context.

The research in this thesis considers the tactics of a single UAV in an environment
that demands different behaviors in different situations in order to achieve good per-
formance. To leverage past experience and specialized algorithms while maintaining
computational feasibility, the UAV restricts its behavior to selections from a finite
but rich set of pre-designed modes. The method of restricting behavior to a small
set of useful maneuvers has been shown to decrease computation time while retaining
maneuverability on the path planning level [16, 18]. Based on its state and model
of the environment, the UAV selects a mode and assigns values to its parameters.
Example modes and associated parameters include a firing attack with variable alti-
tude, distance to target, and weapon type; an evasive maneuver with turn direction,
turn radius, and altitude change; and tracking a target with standoff distance, angle
to target, and relative altitude.

When encountering an unexpected situation such as a pop-up threat, an AV has
limited time to react. The threat could attack the AV in the time it takes to generate a
plan from scratch. If the AV executes a pre-programmed reaction, it could increase its
chances of survival. Pre-programmed reactive tactics leverage large offline computing
resources to give good performance in a limited range of cases. On the other hand,
while reactive tactics give good short-term behavior and take advantage of offline
computing, a limited set of rules often cannot give good performance across a very
wide range of possibilities. Online planning takes advantage of specific knowledge of
the situation, but has to use limited online resources effectively.

Using reactive and planned tactics together has the potential to give better be-
havior than using just one or the other. High-performance control often involves a
predictive element and a reactive element. Many modern high-performance control
methods contain a feed-forward plan generator for predictive planning and a feedback
controller for regulating errors [35]. The planner in this thesis incorporates both delib-
erative and reactive elements to leverage the specificity of online planning algorithms
and the speed of rule-based reactions.

1.2 Tactics Problem Statement

This section builds on the intuitive definition of tactics with a mathematical represen-
tation to precisely define the problem faced in this thesis. Represented as an optimal
control problem, a system’s state x evolves according to its dynamics when controlled
by u. Following is a conceptual simplification of a controlled hybrid system model,
which is given in [10], but a fully rigorous definition is not within the scope of this
work.

16

The goal is to choose an input u based on x to minimize a cost function,

min
u(t)

J(x(t), u(t)) s.t. x(t) ∈ X, u(t) ∈ U, (1.1)

where X represents the set of possible ways a particular scenario can proceed given ve-
hicle and environment dynamics and constraints, and U represent the sets of possible
controls. The function J maps these possible values to a cost value: J : X×U→ R.

In this research, the goal is to choose u by choosing control modes from a set
M = {m1(x(·)), . . . ,mn(x(·))}. Thus, the problem becomes determining a sequence
and duration of modes

M(x(t), t) =


mi1(x(t), t) t ∈ [t0, t1)

mi2(x(t), t) t ∈ [t1, t2)
...

miq(x(t), t) t ∈ [tq−1, tq]

(1.2)

to minimize J(x(t), M(x(t), t)). Each mode is a mapping from the system state and
time to a control. Modes must be chosen so that x(t) ∈ X and u(t) ∈ U hold. In
addition, the modes can be parametrized, and the choice of parameters must be made:
choose mk(x(·), t; ~pk) and associated parameters ~pk, with an admissible set ~pk ∈ Pk.
In this case, letM denote the set of modes and parameters.

In many cases, mode choices are made with only partial knowledge of the problem
constraints or the cost function. For example, an environmental element might be
detected halfway through a scenario. This is consistent with the above formulations
if x, the system state, includes information about what is known and unknown about
the scenario, and the control choices are made in a consistent causal manner.

1.3 Incorporating Expert Knowledge

Compared to most computer algorithms, humans are better at varied, intuitive, high-
level reasoning. If an algorithm incorporates human knowledge in its execution, it
can often perform better than without that knowledge. For example, Deeper Blue,
the chess computer that defeated the reigning world chess champion, Gary Kasparov,
used machine learning on example games from several grandmasters. As another
example, researchers have found that human-computer collaboration on helicopter
mission planning increases performance over planning with just the human or just
the computer [17].

Expert knowledge that is useful for AV algorithms comes in several forms. A
designer can specify bounds on a system’s parameters to keep an algorithm from
searching a region of the problem space that will yield no solution. Restrictions could
also be applied to the form of search elements, allowing only elements that a designer
knows are useful. An educated guess of where to start a search could decrease search
time, especially in cases with large problem spaces of high dimension. Experts can
provide example maneuvers and decisions. The skills and methods of a human pilot

17

scenario simulation
(vehicle dynamics & battle environment)

human-in-
the-loop
mode

fully
autonomous

mode

vehicle tactics

SME inputs validated tactics

human-
perception

AV
sensing

Phase 1:
knowledge
elicitation

Phase 2:
performance
optimization/
evaluation

Phase 1:
decision
variables

identification

Phase 2:
decision

parameters
tuned

iterative testinghuman factors-based
experiment design

Figure 1.2: Two phases of human-inspired autonomy.

can help define AV algorithms either through intuitive observation and design or by
measurement and analysis [7].

The methods in this thesis can work in concert with methods for designing the
structure of an AV’s modes and tactics through studying the choices and performance
of a human operator. Figure 1.2 shows a two-phase method of gathering useful
information from subject matter experts (SME) in human-in-the-loop experiments
for the design of tactics. For example, a pilot could explain what to do in a particular
situation, fly and record the scenario in a simulator using the AV’s dynamics, and
critique the AV’s resulting human-inspired behavior [7]. As an example of learning
from pilot input, trajectory primitives can be generated directly from flight data [19].

When incorporating expert knowledge, it is difficult to extract exhaustive plans
from pilots, who control vehicles by intuition built through training. Also, to con-
struct behaviors that are meaningful in many situations, a pilot would have to spend
many hours in a simulator, and even then the pilot would have explored only a finite
sample of the problem space. Though expert knowledge aids in the construction of
tactics, it must be carefully incorporated into a framework that handles situations
that do not arise in the knowledge extraction process.

18

1.4 Literature Review

The problem of making decisions for continuous systems in the presence of static
or dynamic costs is well-studied. Approaches mentioned here are differential games,
Markov decision processes, different path planning algorithms, and reactive systems.

The field of differential games is concerned with the precise mathematical modeling
of conflict and its outcomes. Classic example problems include air-to-air combat
between vehicles of different capabilities and the Homicidal Chauffeur, who seeks to
drive a car into a pedestrian [26]. Differential gaming is akin to optimal control in
that it seeks to find mathematically optimal solutions. Existing methods for solving
differential games are tailored to specific problems that involve linear, continuous
dynamics and smooth costs, so they are not suited for problems involving nonlinear,
mixed continuous-discrete dynamics and costs.

Markov decision processes (MDP) are discrete-time stochastic processes with dis-
crete states, actions, and transition probabilities [41]. Transition decisions and tran-
sition probabilities between states depend on a history of only the current state.
Though they are discrete, they are effective for modeling continuous processes that
are discretizable to a sufficient fidelity. The problem of using a history of one state
can be overcome by letting each state be an ordered tuple of previous states. This
approach multiplies the number of states, however, and along with high-fidelity dis-
cretization makes graph generation and solution times infeasible. MDPs can be solved
using dynamic programming or machine learning.

Path planning is a major focus of AV control research and an important part of AV
tactics. The path planning problem involves generating a trajectory in the presence
of environmental and vehicle constraints to optimize a cost function. Schouwenaars,
et al., wrote a path planning problem in the form of a mixed-integer linear pro-
gram (MILP) and were able to solve it using commercial optimization software [42].
Bellingham, et al, used MILP with approximate long-range cost estimates in receding
horizon control [8]. Frazzoli applied rapidly-exploring random trees (RRT) to his ma-
neuver library to navigate static and deterministic dynamic environments [18]. Pettit
used GA to generate evasive maneuvers for unexpected threats [38].

Receding horizon control reduces computation of an optimal control problem by
choosing inputs that are optimal for a reduced horizon plus an estimated cost for
system behavior in the remaining time. For AV control, it is often necessary to plan
using short horizons to avoid computation problems in a complex environment [8].
Also, when the environment is only known within a short horizon, it makes sense
not to spend computation time planning in an unknown region. The disadvantage of
receding horizon control is that behavior beyond the horizon must be captured in a
cost-to-go estimate which might not model the future accurately enough, leading to
sub-optimal behavior.

Reactive systems are systems whose actions depend only on their immediate state.
Brooks’s subsumption architecture is the classic example of reactive control, where
robots learned complex motions, such as walking, from simple rules [11]. Arkin cre-
ated the motor-schema concept, which calculates a weighted sum of competing ac-
tions, such as reactions to nearby obstacles or propulsion toward a goal [37]. GA or

19

other machine learning algorithms tuned these motor-schema weights. Grefenstette
and Schultz evolved if-then rules mapping sensor ranges to action sets to approach
air-to-air combat, autonomous underwater vehicle navigation through minefields, and
missile evasion [44, 45]. GA also evolved numerical parameters associated with sensors
or actions, such as turn left with radius 5. One disadvantage is that reactive systems
are deterministic, and deterministic programming might not perform well in previ-
ously unencountered situations. Many approaches seek to overcome this limitation,
with varying scope and success.

Reactive and deliberative planning can work in concert to handle a diversity
of situations that require rapid response. Arkin’s Autonomous Robot Architecture
(AuRA) uses a planner to choose an appropriate reactive behavior for each situa-
tion [4]. Several planners use a combination of activity planning and reactive con-
trol [39]. Some RoboCup teams use similar architectures to plan and act at a rapid
pace in the complex environment of a robot soccer match [12].

One way of handling decisions in a complex environment is to choose actions
from a discrete or parametrized set of maneuvers. This idea is pursued in computer
graphics as “motion primitives” and in MDP research as “macro-actions” [2, 28]. In
AV research, Frazzoli developed the maneuver automaton, an optimization frame-
work which chooses maneuvers from a library to complete some task [18]. These
maneuvers included turns, barrel rolls, and loops. Dever extended this research to
include continuously parametrized maneuvers [15, 16]. For example, a loop could be
parametrized by its size, or a dashing stop could be parametrized by its displacement.
Adding parameters increases the richness of a maneuver library without greatly in-
creasing its size, thus allowing for better performance with often only a small increase
in computation.

In the modeling of tactics, Hickie interviewed helicopter pilots about particular
scenarios, such as running fire attacks, wrote them in statechart form for ease of
communication, and simulated the tactics in a force-on-force simulation [23]. State-
charts are frameworks for describing reactive systems [22]. They represent finite state
automata (FSA) that are modified to include hierarchy, concurrency, and communi-
cation. Statecharts work well for linking specific actions and algorithms to specific
contexts, and deliberative algorithms can fit in the statechart paradigm because of
its generality. However, Hickie’s work considered reactive tactics alone.

1.5 Contribution

The planner introduced in this thesis offers a novel approach to vehicle planning in-
volving both continuous dynamics and discrete actions through complex, parametrized
action primitives. This approach can capture probabilistic problem elements and in-
corporate initial solution guesses. This thesis also explores several aspects of the
planner, such as effects of computation, dimensionality, primitive design, and initial-
ization on performance, as well as comparing two types of optimization algorithms,
giving guidance on how to use the planner in practice.

Taking these factors together, the main contribution of this thesis is that the

20

proposed planning method handles a diversity of problems and a large variety of
problem elements, such as nonlinearities, stochastic outcomes, hybrid dynamics, rapid
environmental changes, and human-inspired candidate solutions, with the possibility
of running in realtime.

1.6 Thesis Organization

Proceeding forward, Chapter 2 discusses design elements involved in the construction
of tactical primitives, deliberative planning, and reactive planning. This includes
methods of parametrizing primitives and encoding plans composed of primitives into
a form appropriate for GA optimization. Chapter 3 presents the combined planner
framework independent of any specific problem and includes pseudocode. Chapter
4 gives a statement of the threats problem, a two-dimensional UAV problem that
exhibits complex behaviors due to its hybrid nature, and delivers results on three
threats-problem variations, showing the planner’s flexibility and generality. Chapter
5 explores the planner’s performance with different computational resources, problem
dimensionality, primitive libraries, optimization algorithms, and planner initializa-
tion. Chapter 6 summarizes the thesis results and points the way for future work.
Appendix A gives a brief overview of GA to support the explanation of the delibera-
tive planner.

21

22

Chapter 2

Algorithm Design Elements

The intent of this thesis is to develop a combined reactive/deliberative architecture
for a single unmanned aerial vehicle (UAV) operating in a hostile environment. This
chapter defines tactical primitives, walks through several design decisions, presents
background on methods of creating rules for reactive tactics, and presents the reason-
ing behind choosing genetic algorithms (GAs) for the selection of tactical primitives.

A general tactics mathematical problem description was given in Section 1.2, but
here the details and background of specific design elements are discussed as they
relate to UAV tactical primitives and optimization. These elements are important
for constructing the reactive/deliberative planning algorithm which is given in the
following chapters.

2.1 Tactical Primitives

Vehicle path planning algorithms can be classified according to whether or not the
low-level maneuvers consider the state of environmental features. For example, a
Voronoi diagram for threats defines line segments that are equidistant to threats,
keeping a vehicle as far away from threats as possible, and a visibility graph considers
the edges of objects as nodes for path planning [41]. On the other hand, Frazzoli’s
motion primitives are considered in the vehicle frame of motion, and his use of rapidly-
exploring random trees (RRTs) does not leverage features of the environment when
carrying out motion planning aside from a cost-to-go evaluation [18].

The disadvantage of Voronoi diagrams and visibility graphs is that they are net-
works of discrete lines segments, and paths on line segments are not consistent with
the dynamics of a UAV past a certain level of resolution. Frazzoli’s maneuver library
consists of motion primitives that are consistent with the dynamics of the vehicle so
that any path formed by an appropriate sequence of primitives and trim conditions
is a dynamically feasible path for the vehicle.

This thesis proposes the use of tactical primitives, which are system-feasible ac-
tions that are based on environmental features. The phrase “system-feasible” signifies
both maneuvers that are dynamically feasible and other actions that a system can
perform, such as targeting, arming a missile, and firing a weapon.

23

Tactical primitives can be built from of body-frame primitives, but they may offer
an advantage over body-frame primitives because they are tied to the environment.
This distinction may make a difference when they are paired with a stochastic search
algorithm. If a maneuver library contains only right and left turns in the body frame,
an algorithm like GA or RRT will test many trajectories that steer an autonomous
vehicle (AV) into an obstacle. If the maneuver library contains primitives like follow
wall #3, skirt threat #6 on the left, or go to the goal, the search algorithm will
concentrate its search on useful trajectories and avoid many infeasible or undesireable
trajectories.

2.1.1 Choice of Primitive Set

Choosing what tactical primitives to include in a primitives library is a matter of
engineering judgment and testing. No method exists for the automatic generation
of maneuver primitives or the evaluation of their performance. Frazzoli defines the
controllability of a maneuver set as the ability to reach any desired goal state in finite
time [18]. Thus, the library should be rich enough to accomplish all desired behaviors,
and it should contain maneuvers for navigating possible constrained situations and
actions for accomplishing problem objectives. In addition, the library should be as
small as possible to reduce the size of the problem search space. A trade-off exists
between richness and compactness.

Grouping linked actions into single primitives makes the primitive library more
compact. Hickie’s work centered on packaging simple actions together into coherent
maneuvers using statecharts [23]. A helicopter attack tactic consisted of coordinated
positioning, altitude changes, firing, and egress. For instance, when firing on a target,
a vehicle must first reach the target, so the approach maneuver and firing action can
be paired into one primitive. When deploying countermeasures, the vehicle must
keep the flare or chaff between itself and the threat, so the countermeasures action
and egress maneuver can be linked into one primitive. Grouping linked actions into
single tactical primitives preserves a library’s small size while including tactics that
encompass a wide variety of desired behaviors.

Within a particular tactic, there may be variations. One way to include these
variations is to include a primitive for each variation, as Frazzoli does. In Frazzoli’s
framework, a right turn with one radius was a separate maneuver from a right turn
with another radius, even though the two actions are similar. Another method for
creating and classifying maneuvers is to introduce continuous parameters that define
the variations, as Dever does [16].

2.1.2 Primitive Parameters

Dever’s extension of Frazzoli’s maneuvers supports the idea of using continuous vari-
ables to parametrize tactical primitives. The result of parametrization is a richer
set of possible behaviors with the addition of few new dimensions or even no new
dimensions. For example, Frazzoli created transition maneuvers between steady trim
conditions [18]. Among others, a rotorcraft has trim states at hover and at forward

24

flight. A possible parameter in a transition from hover to forward flight is the final
velocity value. In Frazzoli’s framework, a discrete set of final velocities would de-
fine a set of separate maneuvers, but with continuous parametrization, the discrete
parameter is replaced with a continuous variable representing final forward velocity,
creating a maneuver class with a single continuous parameter, expanding the set of
achievable final velocities and adding hierarchical organization.

One disadvantage of continuous parametrization is that many optimization algo-
rithms cannot handle both discrete and continuous variables. The tactical primitives
problem is a hybrid problem, having a discrete set of possible actions, both discrete
and continuous action parameters, discrete events, and continuous dynamics. In
graph search and RRT algorithms, continuous parameters must be discretized by reg-
ular or random discretization. Nonlinear programming (NLP), simplex search, and
gradient methods do not handle discontinuities well, and discrete variables do not
fit into their frameworks. Algorithms that handle both discrete and continuous pa-
rameters include stochastic algorithms such as GA or simulated annealing and mixed
continuous-discrete algorithms such as mixed-integer linear programming (MILP).
Schouwenaars used MILP to generate optimal trajectories for constraints and objec-
tives that could be written in linear terms [42]. Further discussion on optimization
methods follows in Section 2.3.3.

2.2 Reactive Tactics

When encountering a new event such as a pop-up threat, a fast AV reaction time
could greatly improve performance, preserve health, and sustain the ability to achieve
mission objectives. Some online planning algorithms have small enough solution times
to generate online trajectories from scratch, but it is unknown how their performance
scales with problem complexity or how well they find the global optimum in the
presence of many local optima [35]. With offline design of tactical primitives for
evasive situations, algorithms for responding to pop-up threats reduce to a means of
selecting an appropriate primitive and its parameters.

Choosing what tactic to execute in response to an unexpected event can be done in
several ways. The most straightforward method is to reduce the number of possible
actions to a small, pre-determined set that can be evaluated online. For example,
when a threat is detected, a UAV can evade the threat by dodging behind one of the
nearest obstacles, fire on the threat as a target of opportunity, or even disregard the
threat and continue as planned. Each action will have variations, such as whether to
go left or right, or how closely to approach the threat before firing the first shot. If
there are few enough possible actions, each one can be evaluated online in the vehicle’s
environmental model according to some scoring function, and the best performing
action can be chosen for execution. If many options must be considered, determining
certain relationships beforehand will reduce the number of scenarios that must be
evaluated online. For example, it could be determined that a threat with a particular
effective weapons range rthreat typically should be fired on at distance d(rthreat) or
within some small range of distances for maximum payoff. This information could

25

reduce the number of online evaluations and therefore the amount of necessary online
computation.

Another method is to use a classifier system to reduce the dimensionality of on-
line optimization. In this method, the optimal primitive and parameter choices are
computed offline for many points in the problem space, such as distance to threat,
fuel level, distance to goal, etc. This sampling of the problem space can be done in a
Monte Carlo fashion, at regular spacings, or in some adaptive way. Once the mapping
of states to primitives and parameters is done, the state space can be partitioned with
a classifier system, such as a support vector machine (SVM). An SVM takes labeled
data and creates a partition matrix describing the boundaries between data of differ-
ent labels [14]. When an SVM is trained to map states to the optimal action choice,
an AV can query the SVM with its current state to discover what action to execute
in the event of a pop-up threat.

A third possible method is the use of learning classifier systems (LCSs). These
are algorithms for evolving rules that map states to actions. Each rule has the form
IF (...) THEN (...), where each IF statement involves whether the sensed state
is in a particular set, and each THEN statement involves an action or set of possible
actions.

Combinations of the above methods are possible. For example, near a partition
boundary of an SVM, it might not be clear which tactical primitive to choose because
Monte Carlo evaluations do not test every point in the state space. In this case, the
AV can evaluate the two nearest actions in an online simulation before executing.
With an LCS, if there are several rules that tie, the action associated with each rule
could be evaluated and compared before execution.

2.3 Genetic Algorithms and Deliberative Tactics

GAs stochastically search a problem space for optimal solutions using a very general
multi-point method that mimics natural evolution. For many problems that give
analytical methods difficulty due to high dimensionality, nonlinearity, or multiple
local optima, GAs find near-optimal solutions in little time. They are well-suited for
planning using tactical primitives because they can handle hybrid problems implicitly
through a fitness function. An overview of GAs and a description of design issues
in using GAs with tactical primitives is given in Appendix A. The following are
additional points to consider when applying GAs to planning using tactical primitives.

Because tactical primitives are sequential actions, it makes sense to encode them
into the GA chromosome as a list. Between primitives, the number of parameters
can vary, and some can be discrete while others are continuous, making them difficult
to encode into a chromosome that can be used with an off-the-shelf GA software
program. In addition, sequences will be of different lengths, whereas most off-the-
shelf GA libraries use chromosomes of fixed length.

Two encoding methods can solve these problems. The first is to only encode a
fixed number of variables into the chromosome. To do this, actions can have their
number of parameters reduced by careful design, segments for actions involving few

26

parameters can be padded, or fewer parameters than are necessary can be encoded
for each action, and then, when evaluating an action, remaining variables can be
optimized on a small scale.

The second approach is to use a null action. This way, the length of the chromo-
some can be fixed at a certain number of actions, and fewer actions can be encoded
by padding the chromosome with null actions. The null action along with a method
for fixing the number of parameters mentioned above allows the problem to be fit
into a standard GA optimization program.

Because tactical primitives operate on environmental features, and GA selects
which features to interact with on the fly, a means of choosing features must exist.
One idea is to label each feature with a unique identification number. Labeling must
be tailored to the application. For discrete items such as threats and obstacles,
labeling is straightforward; each element receives a unique number. However, in some
problems, labeling features is not straightforward. For example, for threat evasion in
the presence of terrain, features could be waypoints at low-altitude positions. These
waypoints must be chosen to yield trajectories that achieve terrain masking, and
evasion maneuver primitives and waypoints together must be capable of forming
trajectories that yield good fitness. All of these principles are a matter of careful
design.

To leverage the power of GA mutation, nearby features should have identification
numbers that are similar to each other so that when using small mutations, changes
in trajectories and actions remain small. GA can yield good solutions without such
labeling, but solution times could be longer and final fitness values lower. One way
to accomplish this is to connect features in a graph and apply a special mutation
operator that mutates a feature number by one step in the graph. Mutations would
then yield minor path changes and the fitness landscape would be smoother.

2.3.1 Initial Solution Candidates

GAs have been found to achieve higher fitnesses faster when seeded with good initial
solution guesses [1, 44]. For deliberative tactics, fast initial guesses can be constructed
using tailored algorithms operating on full or reduced environmental models. For
instance, for navigating among circular threats, one solution is to seek the shortest
path that incurs no threat exposure [5]. This solution will not be optimal when
nonlinear exposure, multiple tactical primitives, pop-up threats, varying velocity,
and extra objective function elements are introduced, but it can give a good initial
candidate from which a GA can evolve a better solution.

In addition to overall chromosome initialization, initialization can occur on a
smaller scale. Generally good initial primitive parameter values can be chosen off-line.
A single primitive can be optimized for a variety of situations, and the mean value
can be used as the starting value whenever the primitive is initialized.

27

2.3.2 Modeling Uncertainty

Uncertainty exists in almost every real environment. It comes in several forms: esti-
mation uncertainty, parameter uncertainty, hidden states, noise, etc. There are many
methods for estimating or bounding uncertainty in control systems, such as Kalman
filtering or robust control.

To handle hidden states and probabilistic events in the objective function, one
can use Monte Carlo simulation [40], or if the number of outcomes is few enough, one
can model every outcome and weight the objective function by each corresponding
probability. For example, if a UAV fires on a threat, there is a certain probability
of a miss. In a scenario where a single shot is taken, the outcome is a hit or a miss.
Simulating the scenario twice, one with each outcome, and taking a sum of the ob-
jective function values of the two outcomes weighted by their respective probabilities
will give the expected value of the fitness. This probability splitting can be continued
each time a probabilistic event occurs. This method is preferable to Monte Carlo be-
cause it gives a directly calculated probability, though if there are many probabilistic
events or many outcomes to each event, high dimensionality increases computation
time to make direct calculation impractical.

This idea can be extended to include more than two outcomes per event. For
example, if an objective function includes a time element, and the duration of an
enemy engagement varies, the probability density function (PDF) can be used in
the final time calculation. If two such events occur sequentially, then their sum is
a random variable whose PDF is the convolution of the PDFs of the two individual
variables.

2.3.3 Competing Optimization Methods

Hybrid optimization is an area of active research, and no optimization method clearly
outperforms all others. Many optimization algorithms can be tailored to operate on
hybrid problems, with varying success. Below is a description and comparison of
optimization methods as they would apply to the deliberative tactical primitives
problem.

Simulated annealing mimics a metallurgical process where a material’s microstruc-
ture is altered by a controlled heating and cooling process [27]. In this algorithm, a
starting point is chosen and its fitness is evaluated. A random nearby point is chosen
according to a user-defined function, and its fitness is evaluated. The probability of
accepting the new point is a function of the fitness improvement and of a global “tem-
perature” value. As iterations progress, the temperature decreases. The result is that
near the beginning of an optimization run, movement in the search space is almost
random, and as the temperature decreases, the algorithm increasingly accepts higher
fitness values and rejects lower fitness values. The idea behind simulated annealing
is that more random jumps at the beginning will help avoid local optima, and later
improvement-only search will mimic hillclimbing to find the global optimum.

GA and simulated annealing are similar in that they are both stochastic search
algorithms that can operate in hybrid search spaces. Annealing algorithms consider a

28

single point at a time, as opposed to GA, which operates on a population and therefore
benefits from considering a much larger portion of the problem space at once. The
temperature idea can be incorporated in GA if convergence to local optima occurs
often for a particular problem. Overall, unless a problem benefits greatly from GA’s
crossover operator, simulated annealing is competitive with GA.

Graph search methods can be used on tactical primitives problems by forming a
search tree that branches at choices of individual parameters [41]. For instance, the
first choice could be which environmental feature to visit first, then which primitive
to execute, then which primitive parameter to use, chosen from a discretized set. In
order to reach a goal with good fitness and low computation time, an informed search
method with heuristics should be used. Methods like A∗ and branch-and-bound re-
turn optimal solutions if they use a cost-to-go heuristic that is admissible, that is, it
never overestimates the true cost-to-go. If the heuristic greatly underestimates the
cost-to-go, however, the algorithm searches more nodes and requires more compu-
tation time. Construction of a good admissible heuristic might be very difficult for
some problems. In addition, in problems with many maneuver types, environmental
features, and continuous parameters, the search tree can be large, making compu-
tation times very large. These search algorithms have exponential time complexity
when used with poor heuristics, whereas GA uses a fixed number of iterations. One
similarity between search methods and GA is that both can return suboptimal solu-
tions before optimization is completed. Overall, GA is much more general than tree
search. It can handle continuous parameters directly, and it returns its best solution
in less time. On the other hand, tree search algorithms are guaranteed optimal under
certain conditions.

Frazzoli used RRTs to plan paths using maneuver primitives [18]. The original
RRT algorithm forms a tree of possible trajectories by repeatedly choosing a random
configuration and expanding the nearest node in the tree towards that configuration
in a dynamically feasible manner. RRTs work well for maneuvering in problems where
cost involves distance only. When costs are path-dependent, such as in the case of
navigating threats whose exposures vary with distance, it is unclear how to expand
the tree, as a tailored distance metric involving integral costs is necessary. Addi-
tionally, because RRTs build on existing tree nodes, if the first path to a particular
configuration has low fitness, it can be difficult to improve the path to that configura-
tion. Finally, RRTs would need to be tailored to handle the continuous and discrete
variable mix of tactical primitives, whereas GAs commonly fit more naturally.

If the continuous part of a tactical primitives problem can be represented or ap-
proximated as having linear costs and constraints, MILP algorithms might be appro-
priate methods. MILP can be used for real-time, optimal, online planning for some
hybrid problems [16, 42]. However, many problems cannot be well-approximated in
linear form. Mixed-integer nonlinear programming (MINLP) involves the global op-
timization of nonlinear functions with nonlinear constraints and both discrete and
continuous variables. For larger problems, however, computation time is infeasible
for real-time applications.

Several methods that work only on continuous variables can be combined with
methods for discrete variables to solve hybrid problems. For example, nonlinear sim-

29

plex search, also known as the amoeba algorithm, places a simplex of points around
a specified region and contracts the simplex around the optimal value until its size is
within a specified tolerance [36]. The amoeba algorithm works even in the presence
of some discontinuities, but it is very expensive to evaluate. To mitigate computa-
tional expense, the accuracy of the final solution can be sacrificed, as the simplex
method converges rapidly in its first few iterations [29]. Another continuous opti-
mization method is gradient search [9]. Gradient search can be faster than simplex,
but it cannot optimize in the presence of discontinuities. For hybrid optimization,
algorithms such as GA or tree search can choose values for discrete variables, and
once the discrete variables are fixed, amoeba or gradient search can optimize over
continuous variables.

Optimization algorithms other than GAs might be more suitable in certain cases,
but in general, GAs work well for more problems with less tailoring. GAs provide no
guarantee of an optimal solution, but no other nonlinear, hybrid optimization provides
this guarantee, either. For online tactics generation, a good solution in short time is
better than an optimal solution in longer time.

This chapter discussed several aspects of approaching AV tactics as a hybrid op-
timization problem. It considered two pieces: planning using GAs on tactical prim-
itives and reacting to pop-up events. The next chapter will synthesize the elements
discussed in this chapter into an algorithm for both deliberative and reactive planning.

30

Chapter 3

A Reactive/Deliberative Planner

The last chapter discussed several design factors for the formulation of a combined
reactive/deliberative planner. This chapter synthesizes these factors, beginning with
separate reactive and deliberative modules, putting them together into a combined
algorithm, and outlining how an autonomous vehicle (AV) would use the algorithm
with tactical primitives. The goal of this chapter is to present and explain pseudocode
for the combined planner.

To set the stage for the planner, Figure 3.1 shows the architecture of an AV
and its interaction with the environment. The vehicle senses the environment and
updates its internal environmental model. The environmental model contains data
relevant for planning and executing plans, such as data about other vehicles, terrain,
weather, etc. The planner uses this model and knowledge about the vehicle’s state to
create a plan composed of a sequence of tactical primitives. The executor takes the
primitive sequence and combines it with the environmental model to form actuator
commands, which both modify the vehicle’s state and affect the environment. Internal
to the executor are the vehicle model and feedback controller to steer continuously
varying states as well as controllers for the vehicle’s discrete actions, such as targeting,
weapons, and countermeasures subsystems.

The planner exists to solve the problem stated in Section 1.2, that is, to maxi-
mize a user-defined fitness function in an environment with unknown features. The
deliberative planner uses available computation time to generate high-performance
plans using the vehicle’s knowledge of the environment, while the reactive planner
quickly modifies the vehicle’s plan when its environmental model changes in a way
that affects the plan’s fitness.

3.1 Deliberative Planning

The deliberative planner uses a genetic algorithm (GA) to choose a sequence of primi-
tives and their corresponding parameters based on the AV’s initial condition, environ-
mental model, and fitness function. Once initialized with a population of candidate
solutions, GA will attempt to continuously improve the plan with each generation.
As a result, the deliberative planner can run the GA as a side process indefinitely,

31

Figure 3.1: Vehicle architecture.

and the vehicle controller can request a plan from the deliberative planner at any
time.

When the AV updates its environmental model using new sensor data or external
communications, the existing plan becomes out of date and might not perform well
on the new model. This would be the case for a pop-up threat or the detection of a
new target of opportunity. The deliberative planner must restart and evolve a new
plan with the new model. Often, the new data will change the model only slightly
so that when using the previous plan as a seed, the GA can evolve a new plan with
an appropriate fitness level within a small number of generations. In other cases, the
model might change in a way that allows the deliberative planner enough time to
create a new plan that performs well. When there is not enough time to replan using
GA, a faster method is necessary, and the reactive planner given below seeks to fill
this gap.

When viewed as a side process, the deliberative planner can be represented by
two functions: startDeliberativePlanner, which requires the environmental model, an
initial state, a previous plan, and a previous GA population of plans, and returns
nothing; and getDeliberativePlan, which takes no arguments and returns the best plan
found since the start of the GA run and the latest population of plans. After the GA
is started with startDeliberativePlanner, the GA runs until it is restarted or stopped.

Details about problem representation and GA chromosomes for tactical primi-
tives are given in Sections 2.3 and A.2.1. GA is not necessarily the only method
that will work with the deliberative planner; several other methods are discussed in
Sections 2.3.3 and 5.3.

32

input : environmental model model, AV state state, previous plan plan
output: modified plan plan

candidateList ← generateCandidateList(model,state,plan);1

bestfitness ← evaluateFitness(plan);2

foreach candidate in candidateList do3

fitness ← evaluateFitness(candidate);4

if fitness > bestfitness then5

plan ← candidate ;6

bestfitness ← fitness ;7

end8

end9

Figure 3.2: Pseudocode for generateReactivePlan.

3.2 Reactive Planning

A sudden, unforeseen event might cause a drop in the fitness of the AV’s plan or
create the opportunity for an increase in fitness, but the deliberative planner’s GA
might not find a new plan fast enough to avoid or exploit the situation. The reactive
planner’s purpose is to mitigate against this poor performance by modifying the plan
faster than the deliberative planner. It works by evaluating a very small set of plan
modifications and choosing the modified plan with the best fitness according to the
user-defined fitness function.

The pseudocode in Figure 3.2 illustrates the operation of the generateReactivePlan
function. Line 1 includes a subfunction for generating a list of modified plans. This
subfunction is user-designed and tailored to the specific problem. The generateReac-
tivePlan function then calculates the fitness of each plan in the list and returns the
candidate plan with the highest fitness.

Because there are few options to evaluate, the reactive planner is much faster
than the deliberative planner, but the reactive planner offers no advantage unless its
candidate list contains modified plan elements that increase the deliberative plan’s
fitness. The generateCandidateList should modify plans in ways that are appropriate
for the situation. For example, the candidates for reacting to a pop-up threat would
be different from those for discovering a target of opportunity. In addition, offline
computation and logic can be used to generate fast rules that narrow the choice of
primitive parameters according to the environmental model and vehicle state. Sec-
tion 2.2 discusses two possible rule generation methods, support vector machines
and learning classifier systems, which can narrow the candidate list to contain plan
modifications that are likely to increase fitness.

33

input : environmental model model, AV state state, previous plan plan,
GA population of plans pop =NULL, planning period T

output: new plan plan, new population pop

plan ← initializePlan(model,state);1

event ← NULL;2

while event is not a terminationevent do3

nextstate ← predictNextState(model,state,plan,T);4

startDeliberativePlanner(model,nextstate,pop,plan);5

event ← waitForEvent(T);6

if event is a reactiveevent then7

state ← getCurrentState();8

model ← getCurrentWorldModel();9

plan ← generateReactivePlan(model,state,plan);10

else if event is a planrequest then11

(plan,pop) ← getDeliberativePlan();12

end13

end14

Figure 3.3: Pseudocode for the combined planner.

3.3 Combined Planner

The deliberative module generates tailored plans according to the AV’s environmental
model, and the reactive module quickly modifies plans using user-designed candidates.
The combined reactive/deliberative planner uses both modules together for better
performance in a nonlinear, varying environment.

Figure 3.3 gives the pseudocode for the combined planner. First, initializePlan
generates a plan using the deliberative module or some other means. Then, the
deliberative planner runs iteratively. The deliberative planner needs an initial vehicle
state, but because the GA takes time to run, the vehicle’s state will change between
the time that the GA is started and the time that the combined planner requests
a plan. The initial state given to the GA must be a future state. The function
predictNextState takes the AV’s current plan and calculates where the AV will be after
a certain period, and when that period has ended, the planner calls getDeliberativePlan
and retrieves it.

The function waitForEvent illustrates how the AV executes the plan until an event
occurs. This event could be an environmental model update, a plan request from the
executor, or a statement that the goal has been reached. The waitForEvent function
returns a planRequest event when the vehicle reaches nextState after a planning period
of T seconds.

The duration of the planning period T is a design choice and a trade-off between
time to improve the GA result and how quickly new plans are implemented. If the
period is long, the GA has more time to improve the plan proceding from nextState,

34

but an unexpected event is more likely to interrupt the planner before the plan can
be retrieved and implemented. If the period is short, the planner is less likely to be
interrupted, but the GA must be restarted frequently with slightly different starting
states, possibly preventing the GA from converging to a good plan.

When the event is a reactiveEvent, the planner calls generateReactivePlan and goes
back to the top of the while loop to restart the deliberative planner. When the reactive
event comes from something that will affect the AV within a short time horizon, the
reactive modification might improve the plan fitness while the GA does not have
enough time to do so. When the event is an environmental model update that does
not immediately affect the AV, the reactive event essentially restarts the deliberative
planner with the new environmental model.

If the environment contains many unknown features, and the AV discovers them
in rapid succession, the vehicle will never request a deliberative plan, and the plan
will only be modified by generateReactivePlan. Because of the limited nature of gen-
erateReactivePlan’s candidate list and the complexity of the environment, the planner
has the potential to perform very poorly. This is a shortcoming of the architecture.
Shortening the planning period in the presence of many reactive events or limiting the
vehicle’s planning horizon to a small area around the vehicle and disabling reactive
events might improve performance. With a smaller horizon, the GA might run faster
and return plans at a rate that will preserve the vehicle’s fitness.

In the next chapter, this combined reactive/deliberative planner is applied to a
simulated vehicle navigating regions with threats and obstacles. This simulated ve-
hicle has the option of firing on threats or deploying countermeasures to prevent the
threats from causing harm, making the problem hybrid in nature. Several properties
of the planner are discussed at the end of the next chapter and in the chapter follow-
ing, including performance of the GA algorithm in several scenarios, computational
properties of the algorithm, using nonlinear programming mixed with GA or as an
alternative to GA for optimization, the use of alternative primitives libraries on the
same problem, and comparison of the planner on different vehicles.

35

36

Chapter 4

Threats Problem

The threats problem is a kinematic, single-vehicle simulation in two dimensions for
testing and validating the algorithm presented in the previous chapter. It contains a
nonlinear, hybrid fitness function, unexpected events for testing the reactive portion
of the planner, path planning for a vehicle with continuous dynamics, and discrete
events. This chapter presents a detailed description of the simulation and several sim-
ulation results for three different unmanned aerial vehicle (UAV) scenarios: crossing
a field of threats, attacking targets while avoiding a no-fly zone, and navigating an
urban canyon. The first scenario generally tests the algorithm using threats alone.
The second adds an obstacle and a different fitness function. The third stresses the
algorithm by not giving the UAV any clear paths and forcing it to interact with
the threats. Together, they demonstrate the ability to plan in complex, nonlinear
environment with constraints and varying costs.

4.1 Problem Description

Figure 4.1 shows an overview of the threats problem. A single UAV must fly to a
goal position as quickly as possible while minimizing exposure to threats. The UAV
can fire a weapon to attempt to disable threats, or it can deploy countermeasures to
decrease its exposure to nearby threats. To incorporate the planner from the previous
chapter, a genetic algorithm (GA) selects tactical primitives to control both the UAV’s
maneuvers and the discrete actions. The following pages contain descriptions of the
simulation, the tactical primitives, the use of GA for planning using primitives, and
the design and implementation of reactive maneuvers.

4.1.1 Vehicle Model

The UAV moves in two dimensions and has a simple kinematic model. The UAV’s mo-
tion consists of a sequence of circular arcs and line segments. The UAV’s velocity can
vary between a specified minimum and maximum, and a maximum acceleration value
bounds both acceleration and deceleration. A minimum turning radius parameter
constrains the turning radius. This model ignores aerodynamic effects and actuator

37

5. UAV detects unknown
threats at the detection
radius and is exposed to
threats within the maximum
effective radius (MER).

3. Threats survive or
are disabled according
to a probability that
depends on threat
bearing and distance.

6. Goal is a landing
zone or a waypoint

2. UAV can include firing
on threats in its plan.

4. UAV can deploy
countermeasures
to decrease exposure.

1. UAV plans its course
around known threats.

Figure 4.1: In the threats problem, the UAV navigates to reach the goal quickly while
minimizing exposure to threats. It also can fire on threats and deploy countermea-
sures.

and sensor noise. Table 4.1 defines the constants used in this chapter’s simulations.
The exclusion of significant dynamic effects and sources of noise from the vehi-

cle model is a drawback, but the threats problem remains an effective test for the
planner. Though a high-fidelity simulation would validate the planner’s performance
to a greater extent, Frazzoli and Dever have already demonstrated that kinematic
planning with pre-selected, dynamically feasible maneuver primitives yields trajecto-
ries that function well in both high-fidelity simulation and actual experiment [16, 18].
The methods of this thesis are general enough to accommodate a different parameter
set than the one in Table 4.1 or even a library of primitives that uses dynamics of
higher fidelity. Also, though the UAV’s minimum turning radius is not a function of
its instantaneous velocity, the variable velocity nonetheless adds extra dimensions to
the problem that test the deliberative planner’s ability to handle more dimensions.
One advantage of the kinematic nature of the simulation is that it allows for very
fast computation of entire plans and their fitnesses, which is necessary for the many
evaluations that GA requires.

4.1.2 Threat Model

In this thesis, threats are stationary entities that decrease the UAV’s fitness when
the UAV passes within a certain distance. Each threat begins a simulation as either
known or unknown, and each one has a position, a maximum effective radius (MER),
and, if unknown, a detection radius. When the UAV enters the circle defined by

38

Vehicle Fitness
Minimum velocity (m/s) 0.3 Time weighting 1
Maximum velocity (m/s) 3 Exposure weighting 10
Velocity threshold (m/s) 1.5 Target bonus weighting 100
Acceleration limit (m/s2) 1 Weapon cost weighting 2
Minimum turning radius (m) 1 CM cost weighting 2
Countermeasure (CM) range (m) 5 Velocity penalty weighting 0.33
CM max exposure reduction factor 0.8 No-fly zone penalty weighting 10
Firing maximum range (m) 9 Point spacing (s) 0.3
Firing probability peak 0.95 Deliberative Planner
Firing time (s) 0.5 Primitives in chromosome 6
Threats Population size 80
Exposure function peak 1 Planning period (s) 2.5
Evasion circle size constant 1.9

Table 4.1: Simulation parameters used in Chapter 4.

an unknown threat’s detection radius, the threat becomes known. The simulation
assigns each threat a random integer label.

In simulation, detection of a threat occurs when the UAV’s trajectory intersects
a threat’s detection circle. For a particular segment of the trajectory, intersections
of a circular arc or a line segment with each threat’s detection circle are calculated
analytically [47, 48].

A threat decreases the UAV’s fitness by exposure. Exposure is defined as the
integral of a risk function along the UAV’s trajectory within the threat radius. This
expression simulates the probability of a threat detecting and firing on the UAV,
because the more time the UAV spends within the threat region, the more probable
it is that a threat would detect and attack it. The exposure function used throughout
the simulations in this thesis is given by

e(t) =

∫
I
emax

(
1−

(r(τ)
rMER,t

)2)
dτ (4.1)

where e(t) is the total exposure for a single threat, emax is a constant defining the
peak value of the differential exposure function, r(t) is the UAV’s distance to the
threat as a function of time, and rMER,t is the threat’s MER. The symbol I denotes
the time interval up to time t where r(t) < rMER,t, that is, where the UAV is within
the threat’s MER, and where t < td, that is, for points in time before the threat is
disabled, if the threat is disabled. The integrand of Equation 4.1 can be thought of as
the incremental threat exposure. The UAV’s total exposure is a sum of the exposures
of each threat. Figure 4.2 illustrates the exposure calculation.

In simulation, as the UAV flies a trajectory, it records its position at regularly
spaced points. To calculate the exposure to a threat, the UAV calculates the incre-
mental exposure at each trajectory point and integrates it using Simpson’s Rule [3].

This simulation unrealistically models unknown threats whose detection radii are

39

Start

1

2

Goal

(a)

0 10 20 30
0

0.2

0.4

0.6

Time (s)

In
cr

em
en

ta
l
E
xp

os
u
re

(b)

Figure 4.2: Exposure calculation for a trajectory through two adjacent threat re-
gions. The black line represents the vehicle trajectory. As the UAV traverses the
threat regions (a), it accumulates exposure. The total exposure is the integral of the
incremental exposure, and is therefore equal to the area in grey (b).

smaller than their MERs. In reality, if a threat has a longer detection and strike
range than a UAV, then the threat might detect the UAV before the UAV detects the
threat. If the threat attacks the UAV, the UAV will then detect the threat. However,
in this simulation, the UAV can fly through a threat region without ever detecting the
threat, which only leads to high exposure. The UAV does not detect this exposure
during flight, but it nevertheless enters the final fitness score.

4.1.3 Firing on a Threat

The UAV can fire a weapon to attempt to disable a threat, thus eliminating future
exposure to the threat. In this simulation, there is no partial damage; either the
threat is disabled completely, or the UAV misses completely. In addition, there is a
fixed cost for each use of a weapon, and there are a limited number of uses. When the
UAV fires on a threat, the probability of disabling the threat depends on the UAV’s
distance to the threat and the bearing, meaning the relative angle between the UAV’s
heading and the direction from the UAV to the threat. This probability is given by

phit(d, θ) =

{
pmax

(
1− d

rMER,UAV

)
cos θ d < rMER,UAV, |θ| < π/2

0 otherwise
(4.2)

where phit is the probability that a particular shot disables a threat, d is the distance to
the threat, rMER,UAV is the UAV’s MER, and θ is the bearing to the threat. This model
simply represents a forward-firing weapon whose accuracy depends on distance. It is
not derived from a real system. Figure 4.3 shows the probability function graphically.

40

0.
05

0.05 0.05

0.05

0.0
5

0.05

0.05

0.
1

0.1

0.1

0.1

0.1

0.1

0.
2

0.2

0.2

0.2

0.2

0.
3

0.3

0.
3

0.3

0.4

0.4

0.
4 0.
5

0.
5

0.5

0.
6

0.6 0.
70.8

x−pos of threat in vehicle body frame (m)

y−
p
os

 o
f
th

re
at

 i
n
 v

eh
ic

le
 b

o
d
y

fr
am

e
(m

)

−5 0 5
−1

0

1

2

3

4

5

Figure 4.3: Probability of disabling a threat. Distance and bearing determine the
probability function, but here contours are shown in Cartesian coordinates. The
positive y axis corresponds to the UAV’s forward direction.

4.1.4 Countermeasures

A countermeasure is “a military system or device intended to thwart a sensing mech-
anism” [34]. In this simulation, the UAV deploys countermeasures that remain in one
place and are effective until the simulation ends. Each countermeasure has a fixed
cost, and there are a limited number of countermeasures. Countermeasures reduce
the exposure functions of nearby threats by a multiplicative factor that depends on
the threat distance to the countermeasure. This factor is given by

fcm(rcm, t) =

{
1− fmax,cm(1− rcm

rmax,cm

2) rcm < rmax,cm, t > tcm

1 otherwise
(4.3)

where fmax,cm is the maximum exposure reduction, rcm is the distance to the counter-
measure, rmax,cm is the maximum range at which the countermeasure has an effect,
and tcm is the time at which the UAV deploys the countermeasure. Figure 4.4 shows
the effect of a countermeasure on threat exposure.

4.1.5 No-Fly-Zone

In two of the scenarios at the end of this chapter, polygons represent no-fly zones that
the UAV must avoid. Section A.2.4 presents several options for enforcing constraints
within the GA framework. Problem space mapping or chromosome repair to avoid
violating constraints would be very difficult because limiting trajectories to certain
sequences of primitives is a large hybrid and nonlinear problem in itself. Chromosome

41

0.1

0
.10

.1

0.3

0.
3

0
.3

0.
5

0
.5

0
.5

0.
7

0.7

0.9

(a)

0
.1

0.1

0.1

0
.3

0.3

0.3

0.5

0.5

0.7

0
.7

0.9

Countermeasure

(b)

Figure 4.4: Effect of a countermeasure on threat exposure. Subfigure (a) shows a
threat’s incremental exposure function, and subfigure (b) shows the same threat with
a countermeasure added.

deletion would require modifications of the GA algorithm.

The most straightforward method of including no-fly zone constraints is to heavily
penalize trajectories that violate them. The advantage of penalizing trajectories
instead of modifying them is that the penalty can capture “how badly” the trajectory
violates the constraint, and the GA can use these fitness gradations to move solutions
outside of constraint regions during search. Accordingly, the penalty for a trajectory
entering a no-fly zone polygon is equal to a penalty constant plus the number of points
inside the polygon, given by

Pnfz =

Nnfz∑
i=1

(Pnfz,min + ni) (4.4)

where Nnfz is the number of no-fly zones, i iterates over each no-fly zone, Pnfz,min is
the minimum penalty for entering a no-fly zone, and ni is the number of trajectory
points inside no-fly zone i. In the simulation, these trajectory points are the same as
in Section 4.1.2, which explains how the UAV uses them to calculate threat exposure.

4.1.6 Fitness Function

The fitness function must reflect the vehicle’s objective to reach a goal position in
the least amount of time while incurring the least exposure from threats. To achieve
all desired objectives using an off-the-shelf GA, they must be combined into a single
scalar fitness value. The method chosen to handle multi-objective optimization in

42

this simulation is a weighted sum, given by

fitness =
∑

i

wiJi (4.5)

where wi represents the weight for the i-th objective, Ji.

In addition to time and exposure, the fitness function includes several other com-
ponents: a bonus for disabling specific threats that are labeled as targets, costs for us-
ing weapons and countermeasures, and a penalty on high velocity to simulate greater
fuel consumption. The bonus is a fixed value times the number of targets disabled.
Weapons and countermeasures cost a fixed amount for each usage. A penalty for
exceeding a specified velocity threshold forces the UAV to make a trade-off between
conserving fuel and moving quickly to decrease total time and exposure. This velocity
penalty is given by

Pv =

∫ tf

ti

max{v(t)− vthreshold, 0}dt (4.6)

where ti and tf are the initial and final time, v(t) is the velocity magnitude, and
vthreshold is the threshold above which excess velocity is penalized. Because the penalty
is integral, short bursts of high velocity above the threshold incur little penalty. In
the simulation, the trajectory vector is differenced to yield a vector of velocities, and
the integral is implemented as a simple sum of points in the vector.

Altogether, the fitness function is given by

fitness = −wttf − wee + wdnd − wnfzPnfz − wwnw − wcnc − wvPv (4.7)

where the components represent the fitnesses of time, exposure, targets disabled,
no-fly zone penalty, cost of weapons, cost of countermeasures, and velocity penalty,
respectively. The variables nd, nw, and nc represent the number of targets disabled,
the number of weapons used, and the number of countermeasures used.

4.2 Tactical Building Blocks

Tactical primitives for the threats problem involve basic maneuvering, firing weapons,
and deploying countermeasures. Each one has a collection of parameters that com-
pletely specify the behavior of the UAV during execution of the primitive. Each
primitive is interruptible, meaning that complete execution of a primitive and a se-
ries of interrupted executions of the same primitive will have the same behavior. This
is important because the deliberative planner interrupts primitives when updating
the active plan. Primitives for the threats problem were designed intuitively, but
they could have been extracted from observation in human-in-the-loop experiments.
See Figure 4.5 for a graphical depiction of each primitive in the threats problem.

43

4.2.1 Maneuvers

Maneuvers/trajectories constitute the continuous part of the vehicle’s behavior, though
by using a library of motions with continuous and discrete parameters, maneuvering
becomes a hybrid problem. This approach is similar to Frazzoli, who hybridized his
problem to turn a purely continuous dynamical problem into a discrete kinematic
problem using motion primitives so that he could use rapidly-exploring random trees
(RRT) for path planning [18]. Here, each maneuver consists of circular arc segments
and line segments, and each maneuver can be interrupted when the UAV detects a
new threat or the vehicle’s planner interrupts after a certain time period has passed
in order to begin execution of a new plan.

During each maneuver, the UAV moves with constant acceleration to a specified
velocity parameter. Because acceleration is bounded by a constant, the UAV might
not actually achieve the specified velocity by the end of the maneuver. Each primitive
has a single velocity parameter for the entire maneuver.

Go to Point

The gotopoint primitive is a building block for other primitives and is not executed
alone except at the end of every primitive sequence in order to command the UAV
to go to the goal position. The gotopoint primitive defines its trajectory using four
parameters: an (x, y) point, a turning radius, and a velocity value. First the UAV
turns toward the point using the specified turning radius, accelerating toward the
velocity value. If the UAV’s turning radius is large enough to encircle the point, the
UAV turns away from the point and circles around until it faces the point. After
the turn is completed, the UAV goes forward until it reaches the point, continuing to
accelerate to the specified velocity value.

Go to Threat

Navigating with respect to the threats themselves has the potential to create trajec-
tories that tightly skirt threat regions, reducing total travel time while still achieving
low exposure. The gotothreat primitive defines a trajectory using five parameters: an
integer label denoting a particular threat, an angle with respect to a threat, a distance
to the threat, an initial turning radius, and a velocity parameter. The angle and the
distance define a point with respect to the threat, and the gotothreat primitive calls
the gotopoint primitive, passing it the point, turning radius, and velocity parameters.

Threat Evasion

The final maneuver primitive is the evade primitive, which steers a vehicle away
from a particular threat, around the threat, and towards a designated point. The
evade primitive is used only for reactive planning and does not enter the deliberative
planner’s GA unless the deliberative planner interrupts it in order to begin execution
of a new plan. The parameters given are a label denoting the threat, the point, a
turning radius, and a desired final velocity. The UAV determines its turn direction

44

Point

(a) gotopoint

Threat

r

θ

(b) gotothreat

Threat Point

(c) evade

Threat

d

(d) fireonthreat

Figure 4.5: Tactical primitives for the threats problem. (a) In gotopoint, if the closer
turning direction encircles the point, the UAV turns in the opposite direction. (b) In
gotothreat, the UAV flies to a point defined by r, θ, and a threat label using gotopoint.
(c) In the evade primitive, the UAV circles the threat and faces the point. (d) In
fireonthreat, the UAV fires on the threat when it is within the distance defined by the
parameter d, then drifts straight for a small time. The deploycm primitive involves
the same maneuver as the gotothreat primitive and deploys a countermeasure at the
endpoint.

45

Threat Point

(a) Case 1

Threat Point

(b) Case 2

Threat Point

(c) Case 3

Threat Point

(d) Case 4

Figure 4.6: Different cases of the evade maneuver.

based on the sign of the turning radius—a positive radius signifies a turn purely away
from the threat, and a negative radius signifies a turn that steers initially toward and
then past and away from the threat.

UAV behavior during the evade maneuver is determined by the relative position
and direction of the threat at the beginning of the maneuver and by the size of the
threat region. See Figure 4.6 for a graphical representation of the following cases.

Case 1 If the UAV begins the maneuver outside the threat MER, and a turn at
the specified turning radius and direction would not make the trajectory intersect the
circle defined by the threat’s MER, then the UAV skirts the threat circle by traveling
along the line segment defined by the tangent line between the turning circle and the
threat circle. In the latter case, the UAV then orbits the threat until it faces the
point.

Case 2 If the UAV evades a threat whose MER is greater than or equal to some
specified constant (the circlesizefactor constant) times the magnitude of the turning
radius, and if the turn will intersect the threat circle, then the UAV turns just far

46

enough so that a second turn in the opposite direction at the same radius will put
the UAV in position to orbit the threat along the threat circle. The UAV then orbits
the threat until it faces the point. The circlesizefactor constant defines a boundary
between small and large threats, dividing behavior into cases and preventing the UAV
from trying to orbit a threat whose MER is less than the vehicle’s turning radius.

Case 3 If the UAV evades a threat whose MER is greater or equal to circlesizefactor
times the turning radius, and if the UAV is far enough inside the threat region so
that a turn will not intersect the threat circle, the UAV turns away from the threat
and travels radially outward until a second turn with the given turn radius will put
the UAV in orbit along the threat circle. If the turning direction is such that the
threat position is encircled, then the UAV cannot face along an outward radial. This
case is tested before the beginning of the maneuver, and when it occurs, the turning
direction is changed, and the maneuver is restarted. If the point is inside the threat
circle, the maneuver exits after the straight segment. If there is a second turn, the
UAV turns in the closer direction of the point and then orbits the threat until facing
the point.

Case 4 If the UAV evades a threat whose MER is less than circlesizefactor times
the turning radius, and the turn will intersect the threat circle, the UAV turns until
it intersects the threat circle on its way out of the threat region. If the turning radius
is too small to intersect the threat, the turning radius is enlarged until the turn will
intersect the threat region. The UAV then turns towards the point and, if necessary,
orbits the threat until it faces the point.

4.2.2 Discrete Actions

In the threats problem, the UAV can both fire on threats and deploy countermeasures.
Executing these actions from an arbitrary position is ineffective at increasing vehicle
fitness; the vehicle must be near threats in both cases, and in the case of firing, the
vehicle must be in a position whose probability of disabling the threat is high. Com-
bining these two actions with preceding maneuvers can increase their effectiveness,
and the following two tactical primitives combine these actions with maneuvers to
increase their effectiveness.

Fire weapon

In the fireonthreat primitive, the UAV approaches a threat and fires a weapon. This
primitive takes four parameters: a label identifying the target threat, a distance at
which to take the shot, a final velocity value, and a flag that determines whether to
execute an evade maneuver in the case of a miss. In the case where the UAV starts a
firing primitive with no weapons, the primitive exits without any change in the state
of the vehicle. If the UAV still has weapons remaining, the UAV executes a gotopoint
maneuver toward the threat position using the minimum turning radius. When the
UAV reaches the specified distance to the threat, it fires on the threat. If the UAV’s

47

starting position is within that distance, then the UAV immediately fires. To simulate
the UAV taking time to fire a weapon, the UAV drifts forward for a specified time,
remaining at the same velocity as when it fired.

The outcome of firing on a threat is probabilistic. When the UAV plans using
GA, the fireonthreat primitive must model the possibilities of both success and failure.
When the UAV fires on a threat during planning, the trajectory branches into two
offspring trajectories: one where the threat is disabled, and one where the UAV misses
the threat. The first branch is assigned the probability phit and the second (1− phit),
where phit is determined by Equation 4.2, and each of these probabilities is multiplied
by the probability of the parent trajectory. This branching with probabilities models
the cost of an uncertain event. Each branch continues until the UAV reaches the
goal position, and the final fitness is weighted by the probability associated with the
branch. In the second branch, if the evasion flag is set, the UAV executes an evade
maneuver.

During execution of a plan, if the UAV successfully disables a threat, the primitive
ends. If the UAV misses, this triggers the UAV to go into reactive planning mode.

Deploy countermeasures

Countermeasures are only effective if they are placed near a region of non-zero ex-
posure (see Figure 4.4. Thus, deploying a countermeasure is linked with a gotothreat
maneuver. The deploycm primitive takes all the parameters of the gotothreat primi-
tive. It executes gotothreat and deploys a countermeasure at the end of the maneuver.
If there are no countermeasures left, deploycm is equivalent to gotothreat.

4.3 Deliberative Planning

In this thesis, planning is performed using an off-the-shelf GA [25]. In order to plan
using GA, a chromosome must be designed to represent a sequence of primitives
with their associated parameters, a sequence which defines an entire trajectory. Sec-
tions 2.3 and A.2.1 discuss some details about chromosome design, such as padding
with null values.

The remaining difficulty in representing primitives with a chromosome lies in dif-
ferences between parameter ranges and types, whether they are discrete or continuous.
For example, if a gotothreat primitive’s fourth parameter is the final distance to the
threat, and the fireonthreat primitive’s fourth parameter is the true/false evasion flag,
then when one replaces the other, the fourth position in the chromosome must either
be able to represent both continuous and discrete parameters, or it must change the
nature of the chromosome depending on the primitive. Because the threat problem
uses an off-the-shelf GA, changing the nature of the chromosome is difficult.

Instead, each element in the chromosome is a random number on the interval (0, 1],
and the element is interpreted differently based on the primitive. Each primitive is
represented by a list of six floating-point numbers. Table 4.2 gives the meaning of
each number based on the primitive. The first number represents which primitive to

48

1
:

ty
p
e

2
:

th
re

a
t

la
b
e
l

3
4

5
6

n
u
ll

(0
,0

.2
5]

–
–

–
–

–
go

to
th

re
at

(0
.2

5,
0.

75
]

ev
en

ly
sp

ac
ed

in
te

rv
al

s
m

ap
to

th
re

at
s

fi
n
al

d
is

ta
n
ce

to
th

re
at

(0
,7

]

in
it

ia
l
tu

rn
ra

d
iu

s
(r

m
in
,r

m
in

+
6]

fi
n
al

an
gl

e
fr

om
th

re
at

(−
π
,π

]

d
es

ir
ed

fi
n
al

ve
lo

ci
ty

(v
m

in
,v

m
a
x
]

de
pl

oy
cm

(0
.7

5,
0.

87
5]

sa
m

e
fi
re

on
th

re
at

(0
.8

75
,1

]
sa

m
e

fi
ri

n
g

d
is

ta
n
ce

(0
,m

ax
ra

n
ge

]
ev

ad
efl

ag
(0

,0
.5

]:
fa

ls
e,

(0
.5

,1
]:

tr
u
e

–
sa

m
e

T
ab

le
4.

2:
T

h
e

ch
ro

m
os

om
e

re
p
re

se
n
ts

ea
ch

p
ri
m

it
iv

e
w

it
h

si
x

n
u
m

b
er

s.
T

h
e

fi
rs

t
tw

o
n
u
m

b
er

s
re

p
re

se
n
t

p
ri

m
it

iv
e

ty
p
e

an
d

th
re

at
.

T
h
e

p
ri
m

it
iv

e
ty

p
e

is
d
et

er
m

in
ed

b
y

w
h
ic

h
ra

n
ge

th
e

fi
rs

t
n
u
m

b
er

o
cc

u
p
ie

s.
F
or

ex
am

p
le

,
a

fi
rs

t
n
u
m

b
er

of
0.

1
w

ou
ld

m
ea

n
a

n
u
ll

p
ri

m
it

iv
e,

an
d

0.
87

5
w

ou
ld

m
ea

n
de

pl
oy

cm
.

T
h
e

th
re

at
is

d
et

er
m

in
ed

b
y

d
iv

id
in

g
th

e
in

te
rv

al
(0

,1
]

ev
en

ly
b
y

th
e

n
u
m

b
er

of
k
n
ow

n
,
ac

ti
ve

th
re

at
s

an
d

se
ei

n
g

w
h
ic

h
ra

n
ge

th
e

se
co

n
d

n
u
m

b
er

o
cc

u
p
ie

s
(s

ee
F
ig

u
re

4.
7.

T
h
e

p
ri

m
it

iv
e

ty
p
e

d
et

er
m

in
es

th
e

m
ea

n
in

g
of

th
e

la
st

fo
u
r

n
u
m

b
er

s
in

th
is

p
ri

m
it

iv
e’

s
se

ct
io

n
of

th
e

ch
ro

m
os

om
e.

49

(0 1]

1 2 4 76

1 2 76

1 2 4 763

a

a

b

b

a b

Figure 4.7: Fixing the threat label parameter. Markers a and b represent two floating-
point numbers on the interval (0, 1] which represent threats 2 and 6, respectively.
The UAV discovers threat 3 between the top line and the second, and then the UAV
disables threats 3 and 4 between the second and the third. In each case, the numbers
a and b must be scaled to stay in the same position relative to the threats they
represent.

execute. Each primitive type has an assigned range, and which range contains the
number determines which primitive is executed. For example, if the first element is
less than 0.25, then the primitive is a null action. The size of each primitives range is
equal to the probability of selecting that primitive with a random uniform mutation.

The second number denotes which threat the primitive interacts with. The num-
ber’s range is divided into equal-sized partitions, with as many partitions as there are
known, non-disabled threats. Each partition represents a particular threat, and that
threat is represented when the number falls into its partition. As threats are added
or disabled, the partitions shift, and each number that represents a threat must be
shifted to its appropriate partition in order to preserve the meaning of subsequent
primitives in the plan (see Figure 4.7).

The remaining numbers in each primitive have meanings that depend on what
kind of primitive it is. Continuous parameters map linearly from (0, 1] to a specified
range, and discrete parameters map intervals to discrete values. Putting similar-
meaning parameters in the same position for different primitives is important, because
switching primitives changes the meanings of the parameters, and having similar
meanings can help GA search the problem space. For example, the parameters for
gotothreat and deploycm have the same meaning, and the same parameter is used to
denote desired final velocity in all primitives.

One or more primitives in a row define a trajectory from the vehicle’s position to
a specified goal position. As the UAV completes a non-null primitive, the planner
trims it off from the chromosome and adds null primitives to the end of the plan to
preserve the length of the overall chromosome. If the plan is composed entirely of
null’s, the vehicle executes the gotopoint primitive to go to the goal position.

50

4.4 Reactive Planning

During the execution of plans, new threat detections or missed shots trigger the
reactive planning mode. In this mode, the plan is modified in several ways, the
modified plans are tested, and the plan with the best fitness is chosen as the new
plan. The following list gives the reactive plan modifications for the threats problem.
Certain modifications require the plan to contain at least one primitive; if the original
plan is empty, the modification is not performed.

• No plan modification.

• Trim off the first primitive, if the plan is at least one primitive long.

• Add evasion to the near side of the threat to the beginning of the plan.

• Replace first primitive with evasion to the near side.

• Add evasion to the far side.

• Replace first with evasion to the far side.

• Add firing at various distances with evasion on miss.

• Replace first with firing at various distances with evasion on miss.

• Add firing at various distances without evasion on miss.

• Replace first with firing at various distances without evasion on miss.

• Add going straight for various distances and deploying countermeasures.

• Replace first with going straight for various distances and deploying counter-
measures.

The reactive planner creates a list of these plans, evaluates each one on the en-
vironmental model, and chooses the plan with the highest fitness. Figure 4.8 shows
a plot of the plans in this list with the highest-fitness plan in bold. The number of
plans in this list is small compared to the number of plans evaluated during a period
of deliberative planning, taking much less time to compute. Whereas the deliberative
planner completes on the order of one thousand evaluations, this list has about twenty
plans total. Plans that involve firing or countermeasures are removed from the list
when weapons or countermeasures are exhausted, respectively.

4.5 MATLAB and the Genetic Algorithm Opti-

mization Toolbox

The threats problem is written in the MATLAB R© programming language, and GA op-
timization is performed using the Genetic Algorithm Optimization Toolbox (GAOT)
[25, 32]. GAOT is used to optimize an array of floating-point numbers on the interval
(0, 1], which represents a chromosome of a fixed number of primitives. The entire
chromosome is composed of six numbers for each primitive and its parameters, times

51

Threat Goal

Figure 4.8: Candidate reactive plans. The plan with the highest fitness is shown in
bold. Magenta circles denote positions from which the UAV fires, and magenta stars
denote countermeasures.

population size 80
termination test terminate after 30 generations
selection method geometric with r = 0.08 (see Section A.1.4)
crossover methods arith, heuristic, simple
mutation methods multiNonUnif, nonUnif, unif

Table 4.3: GAOT parameters for threat problem simulations.

the number of primitives, which is typically six, plus one number at the end to repre-
sent the final turning radius to go to the goal position. The choice for the number of
primitives was determined by taking the typical number of non-null primitives used
in the simulations of the scenarios in this thesis and adding several more. For longer
distances or more threats, more primitives could prove useful, but keeping the num-
ber of primitives low and using a receding horizon approach would preserve a lower
problem dimensionality, which might aid the GA in finding solutions.

The runtime parameters for GAOT that were used in simulations for the threats
problem are given in Table 4.3. Most of these parameters are the default GAOT
parameters. Various mutation operators might favor certain regions of the interval,
leading to undesireable bias in discrete parameter selection. For mutation of an un-
structured list of discrete numbers, non-uniform random replacement mutations have
no phenotypic proximity to leverage. However, because the chromosome contains
both discrete and continuous parameters, and GAOT does not change mutation type
for different parameters, a balance between effectiveness on discrete and continuous
parameters must be found. To this end, boundary mutation for floating-point num-
bers was disabled because it would cause the GA to favor the first and last primitives
and threats in their respective lists.

GAOT returns the best solution found during the course of the GA run, the final
population, a trace of the best population, and a matrix of the best and mean fitnesses
for each generation. The best solution is the plan that the vehicle executes. The final
population of a run is used to seed following runs of the GA; see Figure 3.3. The last

52

two outputs are useful for analyzing GA behaviors such as convergence and rate of
improvement.

Though the simulation does not run like an actual real-time system, where the
GA optimizes a new plan while the vehicle executes the current plan, the GA planner
and kinematic vehicle simulator mimic real-time execution by running the GA when
an event occurs and scaling the number of GA generations by the ratio of available
time to the length of the planning period. For example, if the GA usually takes 2.5
seconds to run 100 generations, and a primitive is exited 1.25 seconds after the last
event, then the GA runs for only 50 generations.

4.6 Simulations

The rest of Chapter 4 contains simulations of the threats problem for various scenarios
and presents data about GA convergence, performance against a simple baseline
algorithm, consistency in finding solutions, and best and worst case runs for each
scenario. First, an example run of the combined planner on simple threat arrangments
is given to familiarize the reader with the simulation and plotting conventions.

4.6.1 Example Scenario

Figure 4.9 shows a scenario with several threats, a start position, and a goal position.
Each threat is labeled with an integer, and the circle defined by each threat’s MER
is shown. All of the threats in this scenario are known, which is denoted by plotting
the threat circles in red. The UAV is initially at the start position facing right with
a velocity of 1 meter per second. The deliberative planner initializes the trajectory
plan by running the GA with twice as many generations as normal. This plan is
shown in magenta in the top subfigure of Figure 4.9. The planner then predicts
where the vehicle will be after 2.5 seconds and runs the GA to find a trajectory
from that position. After 2.5 seconds, the planner returns the GA plan, which is the
second magenta line in the second subfigure. The planner continues these predict-
plan-update iterations, shown as black circles along the trajectory in the bottom
subfigure, but the GA does not improve the plan beyond the second iteration because
the second plan was a very good one. The UAV follows the line of the second plan
to the goal.

To continue the example, Figure 4.10 shows the same scenario with two threats
added. These threats are initially unknown to the UAV, a fact denoted by plotting
the threats in cyan. For this scenario’s unknown figures, the detection radius equals
the MER, but if it did not, the detection radius would be dotted cyan, and the MER
would be solid cyan.

The vehicle planner generated the initial plan, shown in magenta in the top sub-
figure, without knowledge of the two cyan threats. When the vehicle crosses threat
7’s MER, the threat becomes known, and the UAV generates a reactive plan. The
highest fitness option is to fire on the threat, so it executes the option and is successful
in disabling the threat. Disabled threats are shown in yellow. The reason that firing

53

Start

Goal1

2

3

4

5

6

Start

Goal1

2

3

4

5

6

Start

Goal1

2

3

4

5

6

Figure 4.9: A field of threats and the combined planner.

54

1

2

3

4

5

67

8

Start

Goal

1

2

3

4

5

67

8

Start

Goal

1

2

3

4

5

67

8

Start

Goal

Figure 4.10: A field with unknown threats and the combined planner.

55

1

2

3

4

5

6 7

8

9

10

11

12

13

14

15

Start

Goal

Figure 4.11: First scenario: crossing a field of threats.

on the threat might have higher fitness than circling the threat on the side is that
threats 5 and 6 border threat 1 on either side so that trajectories that skirt threat 1’s
circle would accumulate exposure from these two threats. The UAV continues with
its predict-plan-update iterations until it detects threat 8, changing the threat circle
color to red. The reactive option with the highest fitness is to evade to the near side,
which it executes. The UAV completes the scenario by going to the goal position.

4.6.2 Crossing a Field of Threats

The first scenario involves crossing a field of randomly placed threats of random
radii as shown in Figure 4.11. This scenario is meant to generally test the planner
with enough threats to create many local optima. The vehicle starts facing the goal
position, which lies 30 meters away. Fifteen threats occupy a rectangle that is 40
meters wide and 16 meters long, centered between the start and goal positions, and
their radii vary between 2 and 7 meters.

Figure 4.12 shows the results of 100 runs with different random numbers seeding
the GA. Greyscale lines show the trajectories of the UAV, where a black line corre-
sponds to a trajectory with the highest fitness out of the 100 runs, and a 10% grey
line corresponds to a trajectory with the lowest fitness. Magenta asterisks denote
countermeasures, magenta circles denote positions from which the UAV hit a threat,
and cyan circles denote positions from which the UAV missed a threat.

For these 100 runs, the deliberative planner generated paths that largely went
between threats, never double back, go through areas of low exposure accumulation,
and often use weapons and countermeasures where they would be most effective.
Because GA is a stochastic search algorithm, and the initial population was random,

56

Start

Goal

1

2

3

4

5

6 7

8

9

10
11

12

13

14

15

Figure 4.12: Trajectories for field-crossing scenario with threats known.

−80 −70 −60 −50 −40 −30
0

5

10

15

20

25

30

35

40

45

Fitness

N
u
m

b
e
r

o
f
ru

n
s

Figure 4.13: Fitness histogram for field-crossing scenario with threats known.

57

there is no guarantee that the GA would find a solution with these characteristics.

Most trajectories cluster around two paths: skirting threat 14 on the left and
skirting threat 5 on the right. Each of these clusters has variations due to the random
nature of the GA search, the lack of time for convergence to a uniform local optimum,
and the use of different primitives in constructing the trajectories. Given more time
to converge, the GA algorithm would likely choose the path around 14, but because
of the stochastic nature of GAs, it could take many generations to do so.

Though not as good as the path around threat 14, the path around the right of
threat 5 is a local optimum, since making slight alterations to the primitive parameters
would carry the trajectory into the regions of threats 5 and 12. In these cases, the
GA could not find a better solution, and the GA population likely converged to the
local optimum at the right of threat 5, preventing exploration of other regions of the
problem space.

The GA runs for only 60 generations to generate the initial plan, and this initial
plan determines what path the vehicle takes for the first 2.5 seconds. Because the
deliberative planner attempts to continuously improve the plan, it is possible that the
UAV’s plan could begin in one local minimum and then change its plan to a better
local minimum during flight. For example, one path in Figure 4.12 initially plans to
go around threat 6 to the left, but it then changes its plan to go between threats 1
and 14. However, no path changed from skirting threat 5 on the right to the better
path between 1 and 14 because after 2.5 seconds, the UAV was well inside the region
of threat 3, and turning to skirt threat 14 would have been worse than continuing to
skirt threat 5. Thus, in many cases the initial plan generation largely determines the
overall path that the UAV takes.

Figure 4.13 shows a histogram of the fitness of the 100 trajectories. There are
two main clusters in the histogram, one on the right between -40 and -25 and one in
the middle between -60 and -40. In general, the cluster on the right corresponds to
the paths between threats 1 and 14, and the cluster in the middle corresponds to the
paths to the right of threat 5.

Two plans from Figure 4.12 appear in Figure 4.14. The path in thick black
achieved the highest fitness out of the 100 runs. The path in thin black achieved
the lowest fitness. The dotted line shows the shortest path that does not enter
any threat regions. This third path is a manually generated solution similar to the
circular threat navigation algorithm of Asseo [5]. Asseo’s algorithm has no ability
to handle discrete events. The three paths have fitnesses of -25.4, -76.5, and -36.1,
respectively. The best-performing run involved disabling threat 14 from outside its
threat region and then taking the shortest path intersecting no threats. The worst-
performing run missed several shots, incurring the cost of three weapons without
lessening exposure. Most plans outperformed the dotted plan, though if threats 1
and 14 had a gap between them, the algorithm in [5] would have outperformed most
of the paths generated by the planner.

Figure 4.15 shows the fitness over time for the deliberative planner’s GA popula-
tion throughout the entire run for the runs with the highest and lowest fitnesses. The
time axis begins at -5 seconds to show the fitness during the initial plan generation.

58

1

2

3

4

5

6 7

8

9

10

11

12

13

14

15

Start

Goal

Figure 4.14: Selected trajectories for field-crossing scenario with threats known.

The UAV begins its flight at time zero. The blue line denotes the best expected
fitness up to that point in time, and the red line denotes the average fitness of each
generation. Because missing a shot triggers a reactive event, and because the sim-
ulation does not run GA when a reactive event would interrupt planning due to its
simulated real-time implementation, the plot for the lowest-fitness run contains gaps
in the period before and during the three missed shots.

The highest-fitness run rapidly increased its fitness during its initial 5 second
planning stage and then gradually increased its fitness over the course of several
planning iterations, each of which lasted 2.5 seconds. During a run, dips in the GA
population’s average fitness occur with certain changes in the environment or the
plan. For example, these occur where the UAV disables a threat or completes a
primitive. When the UAV disables a threat, the mapping of the primitive parameter
denoting threat labels changes according to Figure 4.7, but in this implementation,
the planner only repairs the UAV’s plan, not every plan in the GA population. The
threat labels change, and primitives shift to other threats in ways that might decrease
fitness. Similarly, when the UAV completes a primitive, the planner removes it from
the plan, but no change is made to the GA population, causing a possible change
in the population’s average fitness. This phenomenon might occur because the plans
in the GA population contain primitives that the vehicle has already completed that
would cause the vehicle to backtrack unnecessarily. Also, because the vehicle plans
from its position after one iteration, members of the GA population that were created
for the last iteration might cause backtracking. Dips in average fitness for the highest-
fitness run occurred at t ≈ 5 seconds, when the UAV disabled threat 14, and at t ≈ 13

59

−5 0 5 10 15 20
−120

−100

−80

−60

−40

−20

Time

F
it

n
e
s
s

(a)

−5 0 5 10 15
−120

−100

−80

−60

−40

−20

Time

F
it

n
e
s
s

(b)

Figure 4.15: Fitness over time for (a) the run with highest fitness and (b) the run
with lowest fitness. The blue line denotes the best expected fitness up to that point
in time, and the red line denotes the average fitness of each generation. Gaps in
deliberative planning appear as flat lines.

seconds, when the UAV reached threat 2 and exited a primitive.

The lowest-fitness run fired a weapon and missed three times. When planning,
expected fitness is a weighted average between the fitness of the successful and un-
successful outcomes. When the UAV missed, the outcome became known, and the
fitness decreased accordingly.

Unknown Threats

Figure 4.16 shows results for the same scenario except with three threats made un-
known and assigned random detection radii, shown with cyan dotted lines. In many
runs, the UAV takes the right-hand path because it does not know about threat 12,
which leads to lower fitness and a greater spread in the histogram of Figure 4.17
toward lower fitness. When reacting to threat 12, the UAV either deployed counter-
measures or fired a weapon. Evasion would have resulted in higher exposure due to
neighboring threats.

The planner uses primitives creatively, such as by calling for a shot on threat 6 just
to maneuver the vehicle around threat 14 and between threats 2 and 15. The UAV
often takes these shots from distances that make disabling the threat improbable.
This shows that the UAV’s goal is not to disable the threat, but simply to maneuver
using the fireonthreat primitive.

Though it might appear as though a bug caused the figure-eight near threat 10,
this is not the case. The planner first decided to fire on threat 10 in order to have
the UAV make a left turn and pass between threats 2 and 15. While running its GA,
the planner found a better plan that went around the outside of threats 10 and 11.

Figure 4.18 shows fitness over time for the relatively low-fitness run shown in the
subplot on the right. The fitness increased at t ≈ 5 seconds when the UAV disabled

60

Start

Goal

1

2

3

4

5

6 7

8

9

10

11

12

13

14

15

Figure 4.16: Trajectories for field-crossing scenario with three unknown threats.

−80 −70 −60 −50 −40 −30
0

5

10

15

20

25

Fitness

N
u
m

b
e
r

o
f
ru

n
s

Figure 4.17: Fitness histogram for field-crossing scenario with some threats unknown.

61

−5 0 5 10 15 20
−120

−100

−80

−60

−40

−20

Time

F
it

n
e
s
s

1

2

3

4

5

6 7

8

9

10

11

12

13

14

15

1

2

3

4

5

6 7

8

9

10

11

12

13

14

15

Start

Goal

Figure 4.18: (a) Fitness over time for the field-crossing run shown in (b). In (a), the
blue line denotes the best expected fitness up to that point in time, and the red line
denotes the average fitness of each generation. Gaps in deliberative planning appear
as flat lines.

threat 4, and it dropped at t ≈ 8 seconds when the UAV detected threat 12. Gaps
began around t = 5 seconds and t = 15 seconds due to reactions to threats 12 and 13,
respectively. The interaction with threat 13 produced no change in fitness because
the UAV’s trajectory intersected the threat’s detection radius but did not enter the
threat region.

4.6.3 Attack Mission

The second threats scenario for Chapter 4 appears in Figure 4.19. In this scenario,
threat 7 is a target, and the UAV receives a fitness bonus of 100 for disabling it. The
shaded pentagon is a no-fly zone, and the UAV receives a penalty for entering the
pentagon according to Section 4.1.5. The UAV is supplied with six weapons instead
of three.

The proximity of the no-fly zone to the target decreases the probability that the
planner would discover the optimal plan, which involves firing on threat 7 at a close
distance while avoiding the no-fly zone. To help the planner find that optimum, the
initial population included a single plan (out of 80 total) containing a fireonthreat
primitive with null primitives on either side, then three more null primitives. The
GA could then use this plan to explore the region of the optimal plan. Section 5.6
presents more results related to seeding the GA.

Figure 4.20 shows the results of 100 runs with different random seeds to seed the
deliberative planner’s GA. Though many runs did fire on threat 7, many did not and
instead opted to circle the field of threats entirely or pass through the local optimum
to the right of threat 5. The reason for this behavior is the quality of the initial seed
plan. The initial seed plan took the UAV through the no-fly zone and achieved a low
fitness. The GA then assigned that chromosome a probability of reproducing that
was proportional to its fitness rank. In some cases, the seed plan would have been

62

1

2

3

4

5

6

7

Start

Goal

Figure 4.19: Setup for one-target attack scenario. The UAV receives a bonus for
disabling threat 7, which is a target, shown here in a blue square. The UAV is
heavily penalized for entering the grey no-fly zone. Note: threats 1 and 3 overlap so
that their labels look like 13.

discarded in the first several generations. Sometimes the GA mutated the seed to
find a plan involving firing on threat 7 that did not enter the no-fly zone, sometimes
it settled the population into the local optimum of flying around all threats, and in
a few cases, the UAV entered just the corner of the no-fly zone, and the penalty of
entering the no-fly zone offset the fitness gains from disabling targets.

One reason that the planner had difficulty finding plans for firing on the target is
that the fireonthreat primitive involves turning toward its target threat at the tightest
radius. In the seed plan, after firing on threat 7, the UAV would turn sharply to the
left and cut across the no-fly zone to go to the goal. If the fireonthreat primitive
included a variable turning radius parameter, the UAV might have found optimal
plans for a higher percentage of the 100 runs.

In at least two cases, the UAV’s trajectory intersected a corner of the no-fly
zone, but the equally spaced trajectory points used to calculate the no-fly-zone fit-
ness penalty did not actually enter the polygon, and the UAV received no penalty.
This could be repaired by a closer trajectory point spacing or a different method of
calculating the fitness penalty.

Two-Target Attack Scenario

Another case of the attack scenario involves unknown threats and two targets, threats
1 and 2, shown in Figure 4.21. Both targets lie very close to corners of the polygon,
requiring tight maneuvering to achieve both an effective shot and a feasible trajectory.

63

Start

Goal

1

2

3

4

5

6

7

Figure 4.20: Trajectories for one-target attack scenario.

64

1

2 34

5

6
7

Start

Goal

Figure 4.21: Setup for two-target attack scenario. The UAV receives bonuses for
disabling threats 1 and 2, which are targets, shown here in blue squares.

Figure 4.22 presents the results of 100 runs.

Two interesting features mark this simulation. First, many but not all of the
trajectories enter the no-fly zone on one or two corners. Though trajectories exist for
firing on the threats successfully without entering the polygon, not all runs found one.
In addition, the target bonus begins to offset the penalty so that the UAV prefers to
clip the polygon to get a good shot. Second, the UAV often turns around on missed
shots for a second approach. The loops near threat 1 in the upper left make this
apparent. The deliberative planner found the target again through GA and gained
another opportunity for the target bonus.

4.6.4 Urban Canyon

The final scenario of Chapter 4 is the urban canyon scenario, shown in Figure 4.23.
This scenario stresses the algorithm because it gives the UAV no easy path and
demonstrates the planner’s flexibility. The UAV cannot go around the field of threats
but must find ways to deal with the threats it encounters. Because there is no open
path to the goal, Asseo’s method would not even find a path within the canyon [5].
The two walls are implemented as no-fly zones, and the UAV is prevented from
entering the canyon walls through the fitness penalty described in Section 4.1.5.

Figure 4.24 shows the results from 100 runs through the canyon. The best-
performing runs involve flying between threats 2 and 7, disabling threat 9 or threat
10 or flying between them, and skirting threat 11. Unlike the attack scenario, trajec-
tories remain outside of the no-fly zones. This scenario contains no tight constraints
like the attack scenario, where targets lay near the corners of the no-fly zone and
forced several trajectories inside. The UAV fired more times than in the scenario of

65

Start

Goal

1

2 34

5

6
7

Figure 4.22: Trajectories for two-target attack scenario.

66

1

2

3

4

5

6

7

8
9

10

11

12

Start

Goal

Figure 4.23: Setup for urban canyon scenario.

Figure 4.12 (78 vs. 47), it had a higher percentage of successful shots (56% vs. 28%),
and it used more countermeasures (67 vs. 33). In the field-crossing scenario, the UAV
could take shots from a distance then go around the threats if they missed. The
UAV needed shots and countermeasures to be effective in the urban canyon scenario
because there was no path around the threats. Though shots cost the same, the UAV
had six weapons in this scenario and only three in the field-crossing scenario.

4.7 Discussion

The previous section presented results from the application of the combined reac-
tive/deliberative planner to three different scenarios of the threats problem. In each
case, the planner improved a population of random plans into plans that performed
well, using the available tactical primitives to their fullest advantage and generat-
ing many plans that rapidly reached the goal without incurring large exposure. The
fact that the method worked on three different scenarios shows the versatility of the
planner, a fact that the next chapter will continue to explore.

It is remarkable that the planner performs well with both continuous dynamics
and discrete events without any tailoring beyond the design of tactical primitives.
One notable example is the thick black trajectory of Figure 4.14, where the UAV
disables a threat and takes advantage of the new shortest exposure-free path to the
goal. In many cases the deliberative planner places countermeasures near positions
along the trajectory where the exposure is greatest.

Though the GA generated many plans with high fitness, many others achieved
much lower fitness. The discussion below and in Chapter 5 will present suggestions
for overcoming GA’s inconsistency and lack of guaranteed solution quality. Also,

67

Start

Goal

1

2

3

4

5

6

7

8
9

10

11

12

Figure 4.24: Trajectories for urban canyon scenario.

68

alternative methods that guarantee optimal solutions, if they exist, would probably
have runtimes that scale exponentially with a particular dimension of the problem
space, due to numerical calculations of gradients, etc. On the other hand, GA’s
runtime scales only with the calculation time of the fitness function, the population
size, and the number of generations, with these last two elements chosen by a designer.

The field-crossing scenario of Figure 4.11 had a null primitive and three types
of primitives that were linked to threats. With fifteen threats, there were forty-six
different combinations of those two discrete parameters in one primitive. With six
primitives, 466 ≈ 10 billion plans with different discrete parameters exist for one
GA run. This count does not include continuous parameters or iterations in the
deliberative planner. Even with this many possible solutions, the planner was able
to find plans that make intuitive sense.

With many more than 10 billion possible plans, the planner could benefit from
more directed search, such as an improved initial population or improved mutation
operators. The attack scenario demonstrated the effectiveness of seeding the popu-
lation with an initial plan, but the GA often rejected the initial plan because it was
too constrained. By including several versions of the seed plan with variations in
primitive parameters, the GA would be able to explore that region of the problem
space near the seed plan and find a useful modification. Asseo’s fast circular threats
navigation algorithm could be modified to generate multiple useful initial plans dur-
ing each iteration of the deliberative planner [5]. For example, seeding the GA with
several plans that thread multiple paths from start to goal would give the GA access
to several local optima in the search space and cause the GA to converge to a higher
fitness faster.

These scenarios use the supplied tactical primitives effectively, showing that the
primitives encapsulated relevant behavior and were generally conducive to GA search.
In some cases the GA chose a primitive that made less sense, such as using fireonthreat
with an ineffective shot for maneuvering instead of gotothreat. In this case the GA
population likely converged to a local optimum. Because the UAV expends a weapon
and incurs a weapon’s cost, it could be advantageous to include a primitive that
mimics the motion during fireonthreat without actually firing on the threat, though
this would increase the size of the problem space and make the GA search more
difficult.

In the attack scenario, the no-fly zone’s proximity to the targets constrained the
physical space, and the fireonthreat’s turning radius constrained allowable motion dur-
ing firing. These constraints caused difficulties in finding parameters for fireonthreat
that allowed the vehicle to accomplish its mission. This factor should be considered
during primitive design. For example, a different maneuver could be paired with
firing a weapon, or more parameters to create variations could be added.

Mutation operators that are tailored to the threat layout could help the GA search
the problem space more effectively. Small changes in the primitive parameter denoting
which threat to approach can create large changes in the UAV’s trajectory because
threats that have neighboring integer labels might be separated in space, generating
chromosomes with low fitness that could immediately be discarded. To make small
mutations more effective, nearby threats could be labeled with adjacent integers, or

69

a graph could connect nearby threats, and a custom mutation operator could move
primitives between neighboring threats.

Initial GA solutions appear to determine the performance of an entire run to a
large extent. If the GA gets trapped at a local optimum, it can take many genera-
tions to find a better local optimum. The GA population converges, and productive
mutations become rare. Because the number of local optima is high, local optima
are often separated in the problem space, and very few local optima produce “good”
plans, modifications to the baseline GA algorithm might be necessary to avoid con-
vergence. Section A.1.6 gives several methods of avoiding convergence, which are
replacement, similarity penalty, and annealing.

In conclusion, this chapter has presented the threats problem setup and a basic ap-
plication of the combined reactive/deliberative planner. The next chapter will discuss
specific details about the planner, such as the effect of computation power, applica-
tion to different vehicles, the application of nonlinear programming, and comparing
different primitive libraries. These give a clear picture of several design elements’
effects on the planner’s performance.

70

Chapter 5

Algorithm Performance

The previous chapter defined the threats problem and established the planner’s ba-
sic performance. This chapter explores further aspects of the planner including the
relationship of plan fitness to computation time, dimensionality of the environmen-
tal model, comparison with a different optimization algorithm, comparison between
different primitive libraries, and exploring the generality of the algorithm using differ-
ent vehicle models. This knowledge can help guide algorithm implementation, further
algorithm design, and future planning research.

5.1 Computation and Performance

With genetic algorithms (GA), more computation generally yields better performance.
The GA attempts to continuously improve the solution, and running for more gener-
ations allows the GA to search more of the solution space [20]. This is a consequence
of the stochastic nature of GAs—given infinite time, the probability of exploring
the entire problem space is one. However, the progress of GA usually slows due to
convergence of the population to some local optimum. Running GA for different
numbers of generations shows how often the algorithm converges to a near-optimal
solution, how often it becomes trapped, whether the GA continues to improve with
more computation, and therefore how well it works on a particular problem.

To study computation and performance, the GA searched for plans for the field-
crossing problem in Figure 4.11 with varying numbers of generations per deliberative
planning iteration. From Chapter 3, a deliberative planning iteration lasts for a fixed
amount of time, on the order of seconds, and involves an entire GA optimization run
to update the plan, whereas a GA generation is internal to the GA algorithm and
lasts on the order of tenths of seconds. The scenario ran for 100 runs at each number
of generations, with each run’s random number generator seeded by its run number,
from 1 to 100. The legend of Figure 5.1 shows eight different numbers of generations,
for a total of 800 runs. These numbers follow a logarithmic scale because the GA
slows its improvement over time, and they range from 5 to 300 generations to capture
GA behavior from “barely improved over random initialization” to “most solutions
lie in the region of the global optimum.”

71

−100 −70 −65 −60 −55 −50 −45 −40 −35 −30 −25 −20
0

20

40

60

80

Fitness bins

N
u
m

b
e
r

o
f
ru

n
s

 5

 9

 16

 29

 50

 93

167

300

Figure 5.1: Fitness histograms for different amounts of computation. Each color
shows a histogram of 100 runs of the threat problem with a different number of GA
generations per deliberative planning iteration. The histogram bins are shown by the
dotted lines. The left-most bin captures all runs with fitness lower than -70.

Figure 5.1 shows eight histograms with similar bins side-by-side. Each histogram
bin spans five fitness points, and the dotted lines show the bin edges. The most
notable feature is the nature of the -30 to -25 bin. It contains no 5-generation runs
and 75 of the 300-generation runs, and in between, the number of runs with fitness
above -30 steadily increases with more generations. The number of runs in this bin
are, from 5 generations to 300 generations in order, 0, 7, 17, 42, 58, 62, 72, and 75.
The increase between 5, 9, and 16 generations is small at gains of 7 and 10 runs,
the increase between 16, 29, and 50 generations is larger at 25 and 16 runs, and
the gains between 50, 93, 167, and 300 generations tapers off at 4, 10, and 3 runs.
The fitness improvement rate is greatest around 29 generations and slows even with
respect to the logarithmic arrangment of the generation numbers after 50 generations.
In order to use GA with tactical primitives on a particular system, a designer should
find this point of diminishing returns and ensure that the system has the appropriate
computation resources.

5.2 Effects of Dimensionality

The threats problem has many dimensions, including primitive type, threat label, and
three or four continuous parameters per primitive for each primitive in a plan. GA is
able to find solutions even as problem dimensionality increases, but finding solutions
of desireable fitness in a larger space takes more generations on average. This section
presents a study to demonstrate this effect.

Figure 5.2 contains three threat arrangements, (a) one with five threats and (b,c)
two with sixteen threats. The optimal plan is the same for all three arrangments

72

1 2 3 4 5

Start

Goal

(a) 5 threats.

1 2 3 4 5

678 9101112 131415 16

Start

Goal

(b) 16 threats ordered.

12

3

4 5

6

78

9

10 11

12

1314

15

16

Start

Goal

(c) 16 threats jumbled.

Figure 5.2: Dimensionality study setup.

−105 −45 −40 −35 −30 −25 −20
0

20

40

60

80

Fitness bins

N
u
m

b
er

 o
f
ru

n
s

16 threats jumbled

16 threats ordered

5 threats

Figure 5.3: Histograms of fitness for the two setups. Dotted lines show bin edges.
The left-most bin captures fitnesses between -105 and -45.

because the five foreground threats are the same: fly through the gap between threats
3 and 4 in (a) and (b), which is equivalent to between threats 9 and 12 in (c). In
(a) and (b), adjacent threats have consecutive labels so that small mutations of the
threat label parameter produce small changes in the resulting trajectory. In (a), the
five threats fill the (0, 1] interval of the threat label parameter, but in (b) and (c), they
only occupy 5/16 of that interval. Behind the goal in (b) and (c) sit eleven threats
to distract the GA. Additionally in (c), the eleven threats have labels between the
labels of the five threats, separating the five threats in the chromosome.

To compare the GA performance between the three arrangments, 100 initial GA
plans ran with a population size of 16 for 30 generations, compared to the full run
with deliberative planner iterations, a population size of 80, and an initial run of 60
generations for the scenarios of Chapter 4. With so few threats in a simple arrang-
ment, the GA would likely find good solutions for both arrangments if allowed to run
just a few more generations.

73

Figure 5.3 shows a fitness histogram for each run of 100 plan generations. Case
(a) outperforms (b), and (b) outperforms (c). This result shows that GA perfor-
mance depends on both the dimensionality of the problem space and the proximity
of adjacent threats in the chromosome. Thus, reducing dimensionality and adding
structure to bring phenotypic proximity into the chromosome improves GA perfor-
mance. This result suggests that a preprocessor for sorting labels would be an ef-
fective algorithm. Many methods exist for reducing dimensionality, such as system
approximation through some sort of model reduction, receding horizon control, and
intelligent search. Model reduction takes many forms, but a simple method for this
problem would be to encapsulate overlapping threats into one convex shape. Reced-
ing horizon control would simply ignore elements outside a certain range. An element
of intelligent search could ignore much of the space and find notable gaps and isolated
threats. All of these methods can lessen the cost of high dimensionality by focusing
GA on certain parts of the problem space.

5.3 GA and Nonlinear Programming

The threats problem is nonlinear and hybrid, and no current solution method is the
clear choice for solving it. In an attempt to create a new algorithm for comparison with
GA on the threats problem, GA was combined with nonlinear programming (NLP).
MATLAB’s NLP function fmincon works by solving a quadratic program at each
iteration and then performing a line search for the optimum [9, 33]. NLP works on
continuous parameters, though not well in the presence of discontinuities because the
gradient becomes undefined, and it does not guarantee an optimal solution because it
might become trapped in local optima. In this combined hybrid method, GA chooses
and freezes the primitive type and the threat label parameter for each primitive,
GA chooses initial continuous parameters, and then NLP optimizes the continuous
parameters using the GA-chosen initial solution guesses.

The test scenario was the same as the one in Figure 4.11. As in the section above,
only initial plans were considered, as opposed to full runs with multiple deliberative
planner iterations. Comparing GA alone and GA-NLP at two different computation
times allows for the study of short-term and long-term optimization behavior. In all
cases, the plan consisted of only two primitives. In the short-term case, GA alone
ran with a population size of 80 for 100 generations with computation lasting for 28
seconds on average, and GA-NLP ran with a population size of 8 for 2 generations for
an average computation time of 34 seconds. Long-term runs used the same population
size, but the number of generations increased to 700 and 10. In addition, fmincon
by default exits when tolerances in the function and the solution shrink to 10−6, but
this number was increased to 0.01, sacrificing accuracy to decrease computation time.
Figure 5.4 shows the trajectories from both runs.

Table 5.1 shows statistics for the four 100-run simulations. For the short runs, GA
alone outperformed GA with NLP. GA-NLP had only two generations to choose its
discrete parameters, and even for individual subproblems involving a specific, frozen
set of discrete parameters, NLP might have converged to a relatively low-fitness local

74

Start

Goal

1

2

3

4

5

6 7

8

9

10
11

12

13

14

15

(a) GA-alone short run.

Start

Goal

1

2

3

4

5

6 7

8

9

10
11

12

13

14

15

(b) GA-NLP short run.

Start

Goal

1

2

3

4

5

6 7

8

9

10
11

12

13

14

15

(c) GA-alone long run.

Start

Goal

1

2

3

4

5

6 7

8

9

10

11

12

13

14

15

(d) GA-NLP long run.

Figure 5.4: Results of GA alone (a,c) and GA mixed with nonlinear programming
(b,d). Short and long refer to computation time. Greyscaling of trajectories to denote
fitness is independent between the two figures.

75

Mean computation
time (sec)

Min fitness Mean fitness Max fitness

GA-alone short 28 -53.5 -28.8 -25.4
GA-NLP short 34 -57.5 -38.3 -25.3
GA-alone long 71 -49.3 -28.1 -25.3
GA-NLP long 203 -37.0 -26.7 -25.2

Table 5.1: GA-NLP comparison runtimes and fitnesses.

optimum. For the long runs, GA alone improved very little over the short run despite
running for seven times longer. GA-NLP greatly improved its minimum and its
average while running for just 10 generations with a population of 8.

Though the long GA runs contain seven times the number of generations as the
short runs, their computation does not last seven times longer. The GA population
likely converges to local optima whose fitness values are fast to compute because they
correspond to short trajectories. Without a means of maintaining diversity in the
population, progress with GA alone stagnates. The long GA-NLP run performs bet-
ter than any other field-crossing scenario run, with the highest minimum, maximum,
and mean fitnesses. An optimized gradient search method might deliver higher fit-
ness than GA in realtime. However, the dimensionality of the problem matters more
with NLP than it does with GA in terms of computation time, since GA’s computa-
tion time depends only on the fitness function and the number of generations, while
NLP’s numerical gradient calculation does not scale as well. On problems with few
continuous dimensions, GA-NLP could be a competitive solution method.

5.4 Primitive Types

Section 2.1 claimed that tactical primitives that are linked to environmental features
might outperform primitives that are defined in the body frame. This scenario takes
the setup in Figure 4.11 and tests this idea. The primitive library used in Chapter 4
can be said to operate in the “threats frame,” since each primitive is linked to a partic-
ular known threat. In contrast, the body-frame primitives in this scenario include the
turn and straight maneuvers. The turn maneuver is parametrized by radius, on the
interval (1, 11], and length, defined by an angle on the interval (−π, π] radians, where
positive and negative angle correspond to left and right turns, respectively. Angles
less than 0.1 radians are lengthened to 0.1 radians to prevent turn from looking too
much like null. The straight maneuver is parametrized by a length on the interval
(0, 10]. Firing and countermeasure deployment have no associated maneuvers, though
firing does include the same drift described in Section 4.2.2. Velocity parameters also
remain the same as for threats-frame primitives, as described in Section 4.2.1. When
the deliberative planner returns all null primitives, the vehicle executes gotopoint to
go to the goal.

Figure 5.5 shows a comparison of the 100 runs for both primitive libraries, and
Figure 5.6 shows fitness histograms. The threats-frame library results in tighter

76

trajectories with higher fitness. The body-frame runs spread out over a large area
that often intersects threat regions before going to the goal. In many cases, the best
plan found involves going straight to the goal and deploying countermeasures along
the way, as evidenced by the straight line of magenta asterisks between the start and
the goal.

In the body frame, the vehicle fires more, but it disables threats proportionately
less often. The UAV accomplishes 13 hits out of 283 shots with body-frame primitives
(5%) and 13 out of 47 shots with threats-frame primitives (30%). The reason the UAV
takes so many shots in the body frame is likely related to the GA’s difficulty in finding
good trajectories. If the GA finds an improved plan in its last few generations, and
that plan happens to contain a firing action, then the GA might not have time to
find a mutated version of that plan that removes the firing action and therefore the
cost of firing. The accuracy is in part low because there is no maneuver paired with
firing to move the UAV into a high-probability position (see Figure 4.3). As the GA
tries to steer the vehicle between threats, it is unlikely that the vehicle will ever point
directly at a threat at close range. The two objectives compete, and the UAV rarely
positions itself effectively for a shot.

Mutation is a key factor in using GA to search for solutions. With body-frame
maneuvers, a mutation in an early maneuver changes the trajectory drastically. With
the threats frame, a small mutation in an early primitive does not drastically change
the entire plan. For example, if a plan calls for skirting threat 14 then threat 15,
changing the primitive parameters for skirting threat 14 will not greatly alter the
UAV’s skirting of threat 15, except for approach direction and speed. On the other
hand, threat-linked primitives make small mutations between threats difficult because
neighboring threats often have non-neighboring labels. Creating a custom mutation
parameter that links neighboring threats in a graph could prevent this phenomenon,
as could linking only the firing action to threats and using a waypoint-based library
for maneuvering.

5.5 Vehicle Characteristics

The flexibility of the combined reactive/deliberative planner stems from the flexibility
of GA, which works to optimize whatever fitness function it is given. The purpose of
this section is to demonstrate that the algorithm can easily accept different vehicle
parameters with no structural changes. The data in this section consist of 100 full
runs of the combined planner on four vehicles with different turning radii, velocity
thresholds, and weapon probability functions. The four vehicles have the parameters
shown in Table 5.2. Vehicles 1, 2, 3, and 4 can be characterized by the titles “slow,
bad shot,” “slow, good shot,” “fast, bad shot,” and “fast, good shot,” respectively.

Three trajectory characteristics are notable. First, the vehicles that have greater
weapons range and accuracy fire weapons more often than the vehicles with poorer
weapons properties. Second, the vehicles that are slower with better turning radius
make use of the turning radius to steer more precisely between threats. Third, though
feasible trajectories between threats 1 and 14 exist for the fast vehicles, they do not

77

Start

Goal

1

2

3

4

5

6 7

8

9

10
11

12

13

14

15

(a) Body frame.

Start

Goal

1

2

3

4

5

6 7

8

9

10
11

12

13

14

15

(b) Threats frame.

Figure 5.5: Comparison of trajectories between using (a) a body-frame primitives
library and (b) a threats-frame primitives library. The figure in (b) is the same as
Figure 4.12. Greyscaling of trajectories to denote fitness is independent between the
two figures.

78

−80 −75 −70 −65 −60 −55 −50 −45 −40 −35 −30 −25
0

10

20

30

40

50

Fitness bins

N
u
m

b
er

 o
f
ru

n
s

Threats Frame

Body Frame

Figure 5.6: Histogram comparing fitnesses between the body-frame run of Figure 5.5a
and the threats-frame run of Figure 5.5b.

Property 1 2 3 4
Minimum turning radius (m) 1 1 5 5
Maximum hit probability 0.7 0.95 0.7 0.95
Maximum weapons range (m) 4 10 4 10
Velocity threshold (m/s) 1.5 1.5 2.5 2.5

Table 5.2: Four different vehicle parameter sets. Vehicles 1, 2, 3, and 4 can be
characterized by the titles “slow, bad shot,” “slow, good shot,” “fast, bad shot,” and
“fast, good shot,” respectively.

find them as often as the slow vehicles because the fast vehicles travel farther before
replanning.

5.6 Initialization with Candidate Solutions

Schultz and Grefenstette evolved IF-THEN rules for directly mapping sensor values
to actuator values in an evasive maneuvers problem, where a UAV attempted to
evade a missile in a two-dimensional environment [44]. At first they initialized their
evolutionary algorithm with empty plans. They then found that starting with a
human-generated ruleset led to faster fitness increases and higher fitness values. Thus,
they showed that seeding an evolutionary algorithm with human-inspired candidate
solutions can lead to better performance.

In the attack scenario of Chapter 4, the initial GA population of 80 plans included
a single seed plan and 79 random plans, but the GA often tossed out the seed plan
because it passed through the no-fly zone, which resulted in low fitness. One seed
plan did not give the GA sufficient opportunity to explore that highly constrained
region of the problem space. Several seed plans with random variations could provide
enough genetic material for the GA to find a good plan of the same form as the seed
plan.

Figure 5.8 shows both the single-target, single-seed attack scenario from Chapter 4
and the same scenario with ten seeds. Like the single-seed case, the ten seed plans

79

Start

Goal

1

2

3

4

5

6 7

8

9

10
11

12

13

14

15

(a) Slow, bad shot.

Start

Goal

1

2

3

4

5

6 7

8

9

10
11

12

13

14

15

(b) Slow, good shot.

Start

Goal

1

2

3

4

5

6 7

8

9

10
11

12

13

14

15

(c) Fast, bad shot.

Start

Goal

1

2

3

4

5

6 7

8

9

10
11

12

13

14

15

(d) Fast, good shot.

Figure 5.7: Trajectories of vehicles with different parameter sets. Note: the figures
do not have quite the same scale, though the scenarios are the same.

80

have a null primitive, a firing primitive, and four more null primitives. The firing
primitive is initialized for threat 7 with a random firing distance, random evade flag,
and velocity parameter at the velocity threshold.

With ten varied seeds, the planner found plans involving a shot on threat 7 much
more often than before. Initial shots on threat 7 were often much closer to the threat,
and fewer trajectories entered the no-fly zone, though two trajectories still clipped
the no-fly zone during a second pass at threat 7. Only five out of 100 trajectories
did not shoot at threat 7 at all. For those 5 trajectories, all of the ten varied seeds
must have resulted in poorly performing plans which the GA discarded. Thus, even
multiple seeds can lack the genetic material to guarantee that a form of their plan
will be chosen unless an initial plan is known to have high fitness.

Good candidate solutions can improve performance if they supply the GA with
enough genetic material to search the local problem space for a high-fitness solution.
Though Schultz and Grefenstette seeded their algorithm with a human-generated
plan, the seed plans in the attack scenario were generated with a simple rule involv-
ing the fireonthreat primitive and the target labels. Thus, pre-processor algorithm is
also a valid means of generating candidate solutions. Humans and algorithms both
should generate good candidate solutions, as bad candidate solutions could decrease
performance by focusing the GA’s search in one low-fitness area and causing unde-
sireable convergence.

5.7 Lessons Learned

These simulations give many useful insights into the details of GA and the reac-
tive/deliberative planner. This knowledge can help an engineer make critical design
choices. When deciding the number of GA generations, a designer should test im-
provement and find the “sweet spot” that balances final fitness and the cost of com-
putation. Low dimensionality and the adjacency of physical problem elements in the
chromosome does lead to better GA performance, so that model reduction of some
form and careful chromosome representation can be worth the effort. An optimized
gradient search algorthm could give the best combination of speed and performance,
though results with GA would still be comparable. Each tactical problem needs
appropriately designed primitives that group linked actions and mutate in a sensi-
ble way. A designer can trust the generality of the planner when applying similar
primitives to different vehicles. Finally, initializing the GA with a variety of sensible
solutions leads to better performance, so that using variations of human-generated
solutions or creating a pre-processor algorithm to find approximate solutions are both
worthwhile. The next chapter summarizes the findings on the combined planner and
describes future research directions.

81

Start

Goal

1

2

3

4

5

6

7

(a) Single seed.

Start

Goal

1

2

3

4

5

6

7

(b) Ten seeds.

Figure 5.8: Attack scenario with (a) a single seed for firing on threat 7 at a distance
of 3 meters and (b) ten seeds for firing on threat 7 at various distances. Subfigure
(a) is the same as Figure 4.20. Note: threats 1 and 3 overlap so that their labels look
like 13. Greyscaling of trajectories to denote fitness is independent between the two
figures.

82

Chapter 6

Conclusion

Unmanned aerial vehicles (UAV) and other autonomous vehicles (AV) have and will
continue to assist and replace people in repetitive or dangerous missions, and they
must be able to generate high-performance plans in rapidly changing environments
with little-to-no human input. Planning in the presence of hybrid dynamics, that is,
including both continuous and discrete system dynamics, requires specialized opti-
mization algorithms to search among problem space discontinuities and avoid local
optima.

This thesis presents a framework for hybrid-system planning for systems whose rel-
evant behaviors can be encapsulated into high-performance, packaged, parametrized
actions called tactical primitives. Tactical primitives contain continuous behaviors
such as flexible maneuvering, discrete switching between these continuous maneu-
vers, and discrete actions such as firing a weapon or deploying countermeasures. In
this framework, planning involves choosing a sequence of primitives and their asso-
ciated parameters. The choice and design of tactical primitives affects optimization
performance, as shown in Section 5.4, and the design of tactical primitives offers a
means of capturing complex human-inspired input for a UAV’s use.

Through processes that reflect concepts from biological evolution, a genetic al-
gorithm (GA) attempts to improve a fitness function depending on the primitives’
discrete and continuous parameters. GAs can find good primitive sequences in rel-
atively few fitness function evaluations. GA outperforms the mixed GA/nonlinear-
programming (NLP) algorithm of Section 5.3 in terms of fitness gain for short com-
putation time. Given its speed, GA is a promising algorithm for real-time planning
in cases where the fitness function itself requires very little computation time. GA
with NLP outperforms GA alone for long computation times, and with an optimized
gradient search, it could be a viable solution method. However, GA tailored to avoid
convergence to local minima could outperform GA with NLP. Both variations in GA
and GA with NLP need more investigation as they relate to planning with tactical
primitives.

The fitness function can capture complex problem elements such as probabilistic
outcomes and constraints. Trajectories can branch on uncertain events, and probabil-
ity distributions can weight the fitness of multiple outcomes to produce an expected
fitness value. However, many branches result in a large increase in computation

83

time. Fitness penalties or chromosome manipulation effectively enforce problem con-
straints, though fitness penalties must be applied carefully to avoid having rewards
offset penalties in tightly constrained situations.

GA offers few solution guarantees, but several methods can increase the probabil-
ity of finding a good solution, such as problem abstraction, receding horizon control,
and initializing the GA with good plans. Section 5.2 showed a decrease in GA per-
formance even for extra options along a single discrete-parameter dimension, giving
evidence that problem abstraction and receding horizon control could result in higher
fitness by reducing problem dimensionality. Section 5.6 successfully demonstrated
that the latter method is effective. With multiple seeds, most plans successfully find
a high-fitness solution. These methods show promising ways to overcome local optima
and high dimensionality, which work together to make the globally optimal solution
very difficult to find.

Some rapid environmental changes, such as the presence of a new threat, require
rapid vehicle response to ensure survival. With deliberative planning alone, GA
might evaluate the fitness function several thousand times before it finds a suitable
response. The reactive planner modifies the vehicle’s plan with one of several can-
didate modifications. These modifications involve inserting or changing primitives
that are designed offline to capture behaviors that can boost fitness quickly. With
few enough candidates, an AV can quickly test each modification and execute the
best one. Because reactive plan modifications are designed offline for certain scenar-
ios, reactive planning might not produce good plans when faced with scenarios with
frequent rapid change.

The combined reactive/deliberative planner produces plans for some nonlinear,
hybrid, probabilistic, changing environments. It is flexible and general enough to
work on any system whose necessary behaviors can be captured in a small primitives
library and whose fitness function requires little computation. The ideas of tactical
primitives, GA optimization, and rule-based reactions have much room for improve-
ment and can extend to other hybrid problems. The next sections discuss future
directions for related research.

6.1 Immediate Extensions

The following paragraphs present clear extensions to the combined planner. Some
ideas have already been discussed in previous chapters, such as tailored mutation of
primitives in the GA, better plan representation in the chromosome through lists,
pre-selection of reactive plans using rules, methods of avoiding GA population con-
vergence, and optimized gradient search. Their details are not reproduced here.

Trajectories branch on probabilistic events during planning, but plans remain
the same “downstream” of an event. In certain cases, it makes sense to condition
future primitives on the outcomes of events. For example, if shooting and disabling a
threat opened an exploitable corridor, but missing that shot meant that the best path
involved turning around and circling a group of threats, then the plan itself should
branch on the shot. Fitting this approach into the GA framework would require

84

either a creative use of the standard fixed-length array or a tailored chromosome
representation like a tree structure.

Section 5.2 showed that GA performance decreases with increasing numbers of
environmental features and suggested that receding-horizon planning could mitigate
this effect. In receding-horizon planning, the planner considers only a neighborhood
around the vehicle with full planner fidelity, and outside that neighborhood, i.e.,
beyond that horizon, the planner approximates the trajectory cost. The design of the
horizon and the cost-to-go function determines to a large part whether the planner
successfully finds high-fitness trajectories. The horizon could be different for different
features such as threats versus no-fly zones or targets. Cost-to-go determination could
be a fast trajectory generation algorithm such as Asseo’s circular-threat navigation
algorithm [5].

Another method of reducing dimensionality is the abstraction of environmental
features, which is a form of model reduction. For example, the convex hull of a
group of threats could replace the individual threats. In addition to high number of
environmental features, Section 5.2 showed that increasing disjointedness of those fea-
tures in the problem space decreases performance. A sorting algorithm for arranging
environmental feature labels could restore that performance. Development of these
pre-processor algorithms could lead to an increase in planner performance.

Because GA searches stochastically, there is no guarantee that it will find a “good-
enough” solution, though Section 5.6 showed that seeding the GA with good candidate
solutions effectively improves the possibility. Along other lines, the “safe trajectory”
idea would provide the planner with time to optimize its plan and provide a safe
loiter area for the vehicle to return to should it need more time to plan [43]. The
planner could identify safe loiter zones through GA or through a tailored algorithm.
The loiter could itself be a primitive that enters the GA like other primitives, or it
could be a candidate reactive plan modification. Safe loiter zones would provide the
planner with the time it needs to find good solutions.

Guaranteeing good performance under different types of uncertainty is an integral
part of trajectory planning. The fitness function in the threats problem modeled the
uncertain outcome of firing a weapon on a threat, and Frazzoli and Dever’s maneuver
primitives each have bounded trajectory errors for bounded disturbances [16, 18].
Replanning helps lessen the effect of errors on system performance. In a real system,
many other states and sources of error exist, such as vehicle health, partial threat
damage, and sensor error. Generating all possible outcomes and weighting them by
a probability distribution can quickly become computationally infeasible. Studying
which sources of error can be ignored and how to incorporate greater dimensions of
error without incurring too much computation can make the planner feasible for more
realistic scenarios.

Tactical primitives so far have been limited to simple kinematic trajectories com-
bined with simple discrete actions. Firing a missile in reality requires communication,
targeting, arming the missile, firing, and target damage assessment. In theory, tacti-
cal primitives can capture even complicated human behaviors [7, 23]. However, online
optimization with complex primitives poses the unanswered challenge of rapidly cal-
culating fitness on a high-fidelity model with limited computational resources while

85

preserving robustness. Extending the methods of this thesis to apply them to a re-
alistic problem would expose the method’s weaknesses and bring it closer to actual
implementation.

Along these lines, the urban warfare and surveillance scenario poses many chal-
lenges that would test the tactical primitive framework. In this environment covered
with various buildings and possible threat types and locations, complex events evolve
rapidly, giving the vehicle little time to react, requiring a strong library of reactive
tactics and a focused GA search of the problem space. Tactical primitives offer the
potential to perform agile maneuvers while simultaneously executing discrete actions,
such as taking surveillance photographs and using specific sensors.

Another system that would stress environmental modeling is the autonomous
underwater vehicle (AUV). Though AUV scenarios often evolve at a slower tempo
than UAV scenarios, the complex acoustic environment would make fitness function
evaluation expensive, and limited sensing would make many errors and probabilities
enter the model.

6.2 Future Work

Many extensions to the idea of planning using tactical primitives would require ex-
tensive research beyond what has been done. This section describes such extensions
whose nature diverges from the focus of this thesis.

Graph search is a well-studied problem, and many variations exist to accommodate
different time and space constraints. In cases where a heuristic estimate of the cost
from a graph node to the goal node exists and meets certain criteria, algorithms
such as A∗, Dijkstra’s algorithm, and branch-and-bound can exploit the heuristic
and graph structure in their search for a solution [41]. GA, on the other hand, does
not use any problem information except the fitness function. Much like the mixed
GA/NLP algorithm of Section 5.3, graph search could choose discrete parameters
while some version of NLP optimizes continuous parameters. Heuristic design for
this arrangment would offer difficulties, as the cost of a particular sequence of discrete
parameters would depend highly on the optimized continuous parameters so that a
heuristic is ineffective when building a trajectory node by node. A simple greedy
depth-first search that continues to explore the graph after finding a solution could
still offer an advantage over GA by directing its search.

No general method exists for the automatic generation of a primitives library, a
fact first noted by Frazzoli [18]. Using a linear systems analogy, primitives should be
orthogonal and span the problem space, but no such concepts have been developed for
maneuver primitives. Some progress has been made in classifying and constructing
primitives based on discussion with human subject matter experts and observation
and deconstruction of their approaches to different situations [7, 23].

In the future, UAVs might work alongside pilots as scouts or wingmen. Because
GA is stochastic, its proposed solutions are unpredictable, but pilots and the military
in general value predictable behavior and the chain of command. In order to achieve
predictable behavior with tactical primitives, plans could be generated entirely from

86

rules, or they must have certain properties. Reactive tactics currently works on the
low level of sensor to actuator mappings and has had few successes beyond con-
trol’s lowest levels [44]. Integrating tactical primitives with a rule-based or other
straightforward algorithm would offer the possibility of high-performance behavior
and predictability, which may be desireable over optimality in some situations.

Finally, incorporating other vehicles both cooperatively and competitively offers
a major challenge. The coordinated control of multiple vehicles is an active area
of controls research [13]. Tactical primitives offer an excellent means of reducing
the action spaces of each vehicle for high-performance coordinated control in rapidly
evolving environments. Though GA would not be able to handle rapid evolution, it
has been applied to multi-vehicle path planning [46]. The many aspects of coordinated
control, such as concurrent actions and probabilistic dependencies, dynamic networks,
multi-vehicle surveillance, and guaranteeing safe trajectories, potentially all benefit
from the tactical primitives concept.

87

88

Appendix A

Genetic Algorithms

A genetic algorithm (GA) is a stochastic technique for searching a problem space
for an optimal solution. Holland originated the idea of GAs in the 1960s, and since
then they have been widely used because of their flexibility and straightforward na-
ture [24]. GAs are members of a broad family of evolutionary computation methods,
which involve iterative, random, population-based searches. The term genetic refers
to similarities between GAs and the concepts of mutation and recombination from
evolutionary biology. Many references discuss the underlying theory of GAs and the
details of applying GAs to various problem domains [6, 20, 24]. This appendix offers a
summary of those references and details about tailoring GA to planning with tactical
primitives.

A.1 Overview

GAs consider several solution candidates in each algorithm iteration. As a group,
these candidates are called a population, and the population of a specific iteration
is called a generation. At each iteration, every individual is assessed by a fitness
function, which is user-designed according to the problem. The GA evolves the pop-
ulation into the next generation based on that fitness. The GA keeps track of the
overall best-performing individual, and when a termination condition is met, that
individual is returned.

Natural selection is the evolutionary idea behind GAs. If an individual is more fit
for its environment than the peers in its generation, information from its genes is more
likely to survive and be passed on to the next generation. Inversely, if an individual
has worse fitness than its peers, its genetic material has less chance of survival.

Evolutionary concepts found in most GAs include chromosomes, recombination,
mutation, fitness, and selection. Briefly, selection chooses the best solution candidates
of a particular iteration, and recombination and mutation evolve those candidates
from one iteration to the next, preserving good solution characteristics. Pseudocode
for a typical GA is found in Figure A.1.

89

population P0 = initialize(pop-size);1

best-individual B, best-fitness fB;2

generation number g;3

while NOT termination-condition(P0,fB =NULL,g = 1) do4

Pg = recombine-and-mutate(Pg−1);5

fg = calc-fitness(Pg);6

[B′,fB′] = get-best-individual(Pg,fg);7

if fB′ > fB then8

B = B′;9

fB = fB′ ;10

end11

Pg ← select(Pg,fg);12

g = g + 1;13

end14

Figure A.1: Pseudocode for a typical genetic algorithm.

A.1.1 Chromosomes and Problem Encoding

In order for a parameter optimization problem to fit into the GA framework, its
parameters must be encoded into a chromosome. Many options exist for how to
encode a problem into a chromosome. The encoding chosen for a particular problem
affects how well the GA performs, i.e., how fast the GA improves the fitness of the
best individual and what final fitness is achieved.

For a typical GA, the chromosome is a bitstring or vector of floating-point num-
bers. In the case of floating-point numbers, each element in the vector is a parameter.
In the case of a bitstring, the first n1 bits could represent the first parameter, the
second n2 the second, etc., allowing the resolution of each parameter to be set inde-
pendently. A simple continuous parameter encoding could be a linear mapping of its
bit range to the desired parameter range, [pmin, pmax]. A simple discrete parameter
encoding could be a one-to-one mapping between bitstring values and the parame-
ter domain. Other possible encodings include nonlinear mappings or piecewise-linear
mappings onto disjoint sets.

For high-level GAs, the chromosome can be a more complex data structure. Ex-
amples include trees, arrays, robotic lifeforms, and rules for reactive behaviors [21, 31].
Typical GA functions that are designed for bitstrings or other numerical representa-
tions might not work on these data structures, but however the problem is encoded,
the mutation, recombination, selection, and fitness functions of a GA must be tailored
to carry out their respective purposes.

A chromosome represents the form of an element in the problem space, e.g., three
real numbers in the set [0, 1), or a tree up to five levels deep with zero to three branches
at each node. An individual solution candidate has the form of the chromosome and
specific values. The basic encoding in bitstrings or floating-point numbers is called the
genotype, and the genotype decoded into a set of parameters used in the calculation

90

0110001011010

1001111010101

0110011010101

1001101011010

Generation n

Generation n+1

Crossover point

(a) Single-point crossover.

0110101011101

1001011010010

0110011010101

1001101011010

Generation n

Generation n+1

Crossover points

(b) Multi-point crossover.

Figure A.2: Typical bitstring recombination methods.

of an individual’s fitness is called the phenotype.

A.1.2 Recombination

Recombination or crossover is the first part of the process of creating a new gener-
ation from a previous generation. It involves combining two or more genotypes of
one generation (the parents) to form the new genotypes of the next generation (the
children). The hope is that children will receive a combination of the good qualities
of each parent. Besides combining the good properties of multiple parents into one
child, recombination also provides a means of making large jumps in the search space.

A typical recombination is a single-point or multiple-point crossover. In the
crossover, genetic material from two parent genotypes is divided into pieces, and
material is exchanged to form two children. Bitstring recombination is illustrated in
Figure A.2.

Recombination for non-bitstring representations involves swapping material in
some other way. For an array, selecting a single row and column and swapping sub-
arrays defined by that row and column constitutes a valid recombination. For a list,
elements could be clustered before swapping. Some evolutionary computation prob-
lems with high-level representations have no obvious or meaningful way to exchange
material, and they ignore recombination altogether.

91

A.1.3 Mutation

Mutation seeks to push individuals into new areas of the problem space by making
random changes to individuals. Without mutation, a GA’s search is limited to the
genetic material it begins with. With mutation, any point in the search space is
theoretically reachable. Compared to recombination, mutation typically makes small
changes. This helps to explore problem space regions that have large variations of
fitness in a small area.

Many options exist for how to perform mutation. For bitstring representations,
a mutation operator could flip each bit with a certain probability, or it could flip a
random bit with a certain probability. For floating-point representations, a parameter
could be set to a uniform random number, replaced with its maximum or minimum
value, or changed by a small amount, all with some specified probability. Mutation
methods are chosen for a particular problem according to their appropriateness and
effectiveness.

A.1.4 Fitness Evaluation and Selection

A GA will gradually find the fittest individual in a search space, where fitness is a
user-defined function from problem variables to a scalar value. In the case of func-
tion optimization, the fitness is simply the value of the function. However, many
problems involve optimization of multiple competing quantities. In an autonomous
vehicle mission, time, fuel spent, health, risk, and targets destroyed must be opti-
mized simultaneously. Design of the fitness function is heavily problem-dependent.
Sometimes a simple sum will suffice, and sometimes physics or economics must be
considered.

After calculating fitness, individuals must be selected for reproduction. A fittest
fraction could be chosen. In this scenario, the population could quickly lose genetic
diversity by not preserving at least some poor performers. The probability of selec-
tion could be weighted by the fitness. This is called roulette wheel selection, and
it was one of the first selection methods of GAs. This way, fitter individuals are
more likely to go on, but some poor-performing individuals still pass through and
add diversity, which can help avoid the problem of convergence to a local optimum.
Instead of fitness, the probability of selection could be a function of fitness rank. This
could be done with a geometric distribution, where the first individual is chosen with
probability p, the second with p · r, the third with p · r2, and so on, with p and r
chosen to normalize the distribution. The disadvantage of selecting by probability
is that dominant genotypes can be selected multiple times, diminishing the genetic
diversity of following generations. All of the above are useful selection methods.

A.1.5 Performance Metrics

A GA’s performance is measured using fitness over time. The fitness of the best
individual found so far versus generation number reflects what the GA would return
at a particular point. Other performance measures include the fitness of the best

92

individual in each generation, which is not necessarily the best found so far because
of random selection, recombination, and mutation, and the mean fitness versus gen-
eration. These give greater insight into the behavior of the GA, such as whether the
mutation rate is too high or the population too similar.

Another important metric is the rate of fitness increase versus fitness value. The
higher this rate, the better the material the GA has to work with. If a GA im-
proves slowly at a relatively low fitness, the population has likely converged on a
local minimum.

A.1.6 Variations

Algorithm modifications often increase GA performance. One example is a local
simplex search with every iteration or at regular iteration intervals. GAs are very good
at escaping regions of local optima and finding the region of the global optimum, but
they are not very good at finding the exact optimum. Without explicit hill climbing,
GAs rely on stochastic jumps to find the solution, and the probability of selecting
a single element in a continuous space by random search, even with the selection
pressure of GAs, is negligible. If a simplex or hill-climbing search is paired with a
GA, it can converge much faster and much more accurately.

If a GA designer chooses a high mutation rate, this might offset natural selection
by always pushing solutions to random positions. If the mutation rate is too low,
the population may converge to some local optimum because of the lack of new
random genetic material to try points outside the local optimum region. Some ways
of dealing with this tradeoff are simulated annealing, replacement, and similarity
fitness penalty [6]. In simulated annealing, the mutation rate starts out at a high
value and then decreases with each iteration. This allows for early exploration and
later convergence. In replacement, randomly generated genotypes replace individuals
that are the most similar to the rest of the population. Similarly, fitness penalties for
similarity to the rest of the population promote diversity.

A.2 Primitive Selection and GA Design Issues

GAs are flexible search algorithms that are able to take high-dimensional, hybrid, non-
linear, discontinuous, multiobjective optimization problems and return near-optimal
solutions. Because of their rapid, broad stochastic search, they are well-suited for
the selection of tactical primitives and their associated parameters, which is a hy-
brid, nonlinear problem with a high-dimensional, complex fitness landscape. GA
performance on these problems depends on many design factors, including problem
representation, initialization, fitness, and constraints. GAs are very sensitive to each
of these factors, and careful choices must be made to ensure that the GA will improve
system performance.

93

A.2.1 Problem Representation

When treating tactical decision making as a parameter optimization problem, careful
selection of the chromosome representation is required. A problem can be encoded
into a chromosome in many different ways, and only some of them will yield effective
GA performance.

One principle for selecting problem representation is the limitation of system be-
havior to a small set of rich behaviors that are known to contain “good solutions.”
One example in the literature is the generation of low-altitude, evasive UAV maneu-
vers in the presence of a pop-up threat [38]. If the GA parameter set includes a
change in pitch at frequent time intervals, then random mutations in the GA will
lead to many solution candidates that involve pitching into terrain. However, if one
parameter is simply the change between several pre-defined levels of altitude, no solu-
tion will lead to terrain collisions. Thus, the problem space includes valuable altitude
variations but avoids many solution candidates that are obviously worthless.

Another principle is the adjacency of phenotypes in the solution space [6]. One
reason to cluster phenotypes is that GAs are good at searching for solution regions
but not specific points. This approach is also important for effective recombination.
If a problem encoding puts parameters that are phenotypically similar close together,
then meaningful clusters can be exchanged between individuals. For example, in the
above evasion problem, an initial quick turn combined with a drop in altitude might
be a consistent feature of a good solution. If those two parameters are clustered in
the chromosome, they are more likely to be preserved as a group.

When parameters are chosen, their set of possible values must be chosen. They
can be discrete, continuous, or mixed, and their range and scaling should be chosen
to reflect problem-specific preferences in selection. The fidelity of the parameters is
important; too many possible values creates a larger search space, and too few reduces
problem fidelity. In terms of mapping, a bitstring of three bits could represent the
numbers zero through seven or some function of that array, such as 20 through 27.
Even though this range stretches from 1 to 128, the probability of selecting values of
16 or below is 4

7
. Because all problems have their own natural scaling, the design of

parameter domains is an important consideration.

Another important design factor is the form of the chromosome. As mentioned
above, the simplest GA encoding is the binary string, but many other encodings
exist. In the problem of selecting sequential tactical primitives, it may be necessary
to vary the number of primitives in the chromosome, especially if the primitives are
of different lengths in time, and a fixed time horizon is employed. Some options for
variable length encoding include using a fixed-length list of actions and padding with
a null action, with a fitness penalty for too many null actions; using a fixed length
and weighting the fitness calculation by a time envelope, thus diminishing the effect
of actions beyond a certain time; and using a true variable-length representation such
as a linked list.

The methods of padding a chromosome and applying a time envelope can be fit
into a standard GA optimization library, but they have extra genetic material that is
discounted and is therefore allowed to drift without selection pressure. For example,

94

if a chromosome involved one parameter that determined the maneuver type, and one
parameter that represented an optional maneuver parameter, assigning the maneuver
to null would leave the parameter without purpose, and it would be allowed to drift
until reactivation by the selection of another maneuver type. The advantage of the
third method is that no genetic material is ignored, but a GA algorithm would require
a tailored approach.

A.2.2 Population Initialization

Most GA program libraries come with a function that initializes a population to a set
of random chromosomes [25]. This gives the GA a large diversity of genetic material
to explore. However, this approach is not the only option. It has been shown that
GAs are more effective if they are seeded with good candidate solutions. In [44],
the authors showed that good initial candidates increase both the final fitness of the
solution and the rate of fitness improvement at a particular fitness. Though sim-
ply incorporating known good genotypes into a population of random candidates will
work, the good genotypes would dominate a roulette or geometric selection technique.
Another proposed method is to initialize the population with several mutated ver-
sions of the good candidate, where the mutation rate is inversely proportional to the
candidate’s confidence [1].

A.2.3 Fitness Function Design

Selection and scaling of a GA fitness function can be a large factor in determining GA
performance. For example, in roulette-wheel selection, the probability of selection is
weighted by fitness. If a high fitness value is orders of magnitude above a low fitness,
the diversity of low-fitness candidates will be lost because low-fitness candidates have
negligible probability of being selected. On the other hand, if fitness varies over a
small positive range, such as [10, 11], high-fitness candidates will have little selection
advantages over low-fitness candidates with roulette selection.

Several methods overcome these selection problems. One method is fitness scaling
or remapping, which involves subtracting an estimated minimum fitness and dividing
by an estimated mean fitness. Estimating the mean and minimum fitness can be
done by taking a Monte Carlo histogram of the fitness function, or by looking at the
statistics of several preceding generations during a GA run, in which case the scaling
is adaptive and is called fitness windowing [6]. One method that avoids the need to
estimate fitness function bounds is fitness ranking, as described in Section A.1.4.

If a problem has multiple objectives, it is important to appropriately combine
them into one fitness value so that no objective unexpectedly dominates or is ignored.
Table A.1 shows a list of possible objective combinations.

Often a problem will involve a probabilistic element, such as the probability of
hitting a target. This element can incorporated into the fitness. One way of modeling
probabilistic events is to use Monte Carlo sampling and take the average fitness value
to represent the fitness. This approach requires more evaluations and therefore more
time. Another method is to enumerate every outcome and weight each by probability.

95

Weighted average (
∑m

i=1 wixi)/(
∑m

i=1 wi)
Maxi-min min(~x)
Exponential inverse 1/(xγ1

1 xγ2

2),
∑

γi = 1
Pareto optimal {~x : (@~x′ ∈ (feasible ~x) : ~x′ > ~x)}

Table A.1: Options for combining multiple objectives into one fitness [20]. The
symbols x and w correspond to objective values and weights, respectively.

For example, if an AV fires on a threat, then the simulation could continue with two
branches, one for success and one for a miss, and the resulting fitness would be the
fitness of each branch times its associated probability.

A.2.4 Problem Space Constraints

If a problem space is non-convex, the GA must handle infeasible genotypes that ap-
pear. These infeasibilities can arise from environmental constraints, such as obstacles
in a motion planning problem, or they can be imposed by a designer who knows that
certain feasible regions have no possibility of producing a useful solution. Feasible
candidates can be enforced in several ways [38].

First, it is preferable to have a problem space mapping that avoids such regions,
but this mapping and the prevention of infeasible candidates can be difficult.

Second, the GA can test for feasibility and delete infeasible candidates, replacing
them with some other genotype, such as a random genotype. This is straightforward,
but it may take more time than is desired, especially when the problem space is
mostly infeasible, such as in a problem whose goal is to find a feasible solution.

Third, infeasible candidates can be repaired. This can be done by repositioning
them to the nearest feasible region of the problem space, which has the problem
of increasing the density of candidates at the edges of infeasible regions. Also, a
specialized repair function might be difficult to construct for certain problems.

Finally, a fitness penalty can be imposed on infeasible candidates. This avoids
candidate clustering and keeps the diversity of genetic material from infeasible regions.
The fitness penalty is most useful when it captures the distance to feasibility, not just
the fact of infeasibility or the number of constraints violated. If infeasible solutions are
allowed, however, there is no guarantee that the GA will return a feasible solution.
This can be handled by repairing genotypes before they are compared to the best
individual.

A.2.5 Termination Condition

The termination condition for a GA is very flexible. One method is to have the GA
return the best individual found at a regular interval, and to keep the GA running
indefinitely. Though this method works for offline optimization, online optimization
can be run either for a certain number of generations or for a fixed time. The best
individual can then be returned.

96

Advantages Disadvantages

• Straightforward and robust.

• Handles high-dimensional, hybrid,
nonlinear problems with many local
optima.

• Handles mixed parameter type and
resolution.

• Easily parallelized for distributed
computation.

• Operates on a group.

• Allows example solutions in initial
population.

• Objective function design difficult.

• Chromosome representation difficult.

• Stochastic; solution not guaranteed
optimal.

• Must be fast enough to run many
times.

• For complex problems, must approx-
imate to get good run times.

• Does not leverage problem specifics
unless specifically designed.

Table A.2: Advantages and disadvantages of genetic algorithms.

The default termination option for many GA programs is to terminate after a fixed
number of generations. However, certain population and fitness metrics can signal
that a GA is unlikely to find a better solution, shortening an optimization run. If a
theoretical optimum can be calculated, one termination metric is the proximity of the
fitness to this optimum. Another metric is the level of population convergence. When
a population converges, it has either found the region of the global optimum, or it has
found a local optimum that it is unlikely to escape. Measures of population similarity
include number of similar bits and weighted r.m.s. on the difference of parameters.

A.3 Conclusion

GA works well on nonlinear, hybrid problems on which other methods easily get
trapped in local optima. It manages hybrid characteristics through the fitness func-
tion, which maps both continuous and discrete inputs to a single fitness value. GA
rapidly explores large problem spaces through crossover and random mutations to
avoid local optima. In addition, a designer has a host of options when implementing
GA on a particular problem. These options often grant sufficient flexibility to find
a version of GA that works very well. Careful design of the problem representation
and the fitness function are the two most important elements. Table A.2 contains a
list of advantages and disadvantages of the GA algorithm.

97

98

Bibliography

[1] Mohammad-Reza Akbarzadeh-Totonchi and Mohammad Jamshidi. Incorporat-
ing A-Priori Expert Knowledge in Genetic Algorithms. 1997 IEEE International
Symposium on Computational Intelligence in Robotics and Automation (CIRA
’97), pages 300–305, 1997.

[2] Ramesh Amit and Maja J. Matarić. Learning Movement Sequences from Demon-
stration. In Proceedings of the International Conference on Development and
Learning (ICDL-2002), volume 8, pages 302–306, June 2002.

[3] Tom M. Apostol. Calculus Volume II. Wiley, second edition, 1969.

[4] Ronald C. Arkin. Integrating Behavioral, Perceptual, and World Knowledge in
Reactive Navigation. Robotics and Autonomous Systems, 6:105–122, 1990.

[5] Sabi J. Asseo. In-Flight Replanning of Penetration Routes to Avoid Threat
Zones of Circular Shapes. In Proceedings of the IEEE 1998 National Aerospace
and Electronics Conference, pages 383–391, 1998.

[6] David Beasley, David R. Bull, and Ralph R. Martin. An Overview of Genetic
Algorithms: Part 1, Fundamentals. University Computing, 15(2):58–69, 1993.

[7] Jonathan S. Beaton. Human Inspiration of Autonomous Vehicle Tactics. Master’s
thesis, MIT, 2006.

[8] John S. Bellingham, Arthur G. Richards, and Jonathan P. How. Receding Hori-
zon Control of Autonomous Aerial Vehicles. In Proceedings of the American
Control Conference, volume 5, pages 3741–3746, 2002.

[9] Dimitri P. Bertsekas. Nonlinear Programming. Athena Scientific, second edition,
1999.

[10] Michael S. Branicky, Vivek S. Borkar, and Sanjoy K. Mitter. A Unified Frame-
work for Hybrid Control: Model and Optimal Control Theory. IEEE Transac-
tions on Automatic Control, 43(1):31–45, 1998.

[11] Rodney Brooks. A Robust Layered Control System for a Mobile Robot. IEEE
Journal of Robotics and Automation, 2:14–23, 1986.

99

[12] Brett Browning, James Bruce, Michael Bowling, and Manuela Veloso. STP:
Skills, Tactics and Plays for Multi-Robot Control in Adversarial Environments.
In Proceedings of the Institution of Mechanical Engineers I, Journal of Systems
and Control Engineering, volume 219, pages 33–52, 2005.

[13] Sergiy Butenko, Robert Murphey, and Panos M. Pardalos, editors. Recent De-
velopments in Cooperative Control and Optimization. Springer, 2004.

[14] Nello Cristianini and John Shawe-Taylor. An Introduction to Support Vector
Machines and Other Kernel-Based Learning Methods. Cambridge University
Press, 2000.

[15] Chris Dever, Bernard Mettler, Eric Feron, Jovan Popović, and Marc McConley.
Nonlinear Trajectory Generation for Autonomous Vehicles Via Parametrized Ma-
neuver Classes. Journal of Guidance, Control, and Dynamics, 29(2):289–302,
2006.

[16] Christopher W. Dever. Parametrized Maneuvers for Autonomous Vehicles. Ph.D.
thesis, MIT, 2004.

[17] Laura Major Forest, Susannah Hoch, Alexander C. Kahn, and Marshall Shapiro.
Effective Design of Planning Systems to Support Human-Machine Collaborative
Decision Making. In 2006 Proceedings for the Human Factors and Ergonomics
Conference, 2006.

[18] Emilio Frazzoli. Robust Hybrid Control for Autonomous Vehicle Motion Plan-
ning. Ph.D. thesis, MIT, 1994.

[19] Vladislav Gavrilets, Emilio Frazzoli, Bernard Mettler, Michael Piedmonte,
and Eric Feron. Aggressive Maneuvering of Small Autonomous Helicopters:
A Human-Centered Approach. International Journal of Robotics Research,
20(10):795–807, 2001.

[20] David E. Goldberg. Genetic Algorithms in Search, Optimization, and Machine
Learning. Addison-Wesley Professional, 1989.

[21] John J. Grefenstette, Connie L. Ramsey, and Alan C. Schultz. Learning Se-
quential Decision Rules Using Simulation Models and Competition. Machine
Learning, 5(4):355–381, 1990.

[22] David Harel. Statecharts: A Visual Formalism for Complex Systems. Science of
Computer Programming, 8:231–274, 1987.

[23] Mark Hickie. Behavioral Representation of Military Tactics for Single-Vehicle
Autonomous Rotorcraft via Statecharts. Master’s thesis, MIT, 2005.

[24] John H. Holland. Adaptation in Natural and Artificial Systems. The University
of Michigan Press, 1975.

100

[25] Christopher R. Houck, Jeffery A. Joines, and Michael G. Kay. A Genetic Algo-
rithm for Function Optimization: A Matlab Implementation. Technical report,
North Carolina State University, 1995.

[26] Rufus Isaacs. Differential Games: A Mathematical Theory with Applications to
Warfare and Pursuit, Control and Optimization. Dover Publications, 1965.

[27] Scott Kirkpatrick, C. Daniel Gelatt, and Mario P. Vecchi. Optimization by
Simulated Annealing. Science, 220(4598):671–680, 1983.

[28] Richard E. Korf. Macro-Operators: A Weak Method for Learning. Artificial
Intelligence, 26(1):35–77, 1985.

[29] Jeffrey C. Lagarias, James A. Reeds, Margaret H. Wright, and Paul E. Wright.
Convergence Properties of the Nelder-Mead Simplex Method in Low Dimensions.
SIAM Journal of Optimization, 9(1):112–147, 1998.

[30] Tiffany R. Lapp. Guidance and Control Using Model Predictive Control for Low
Altitude Real-Time Terrain Following Flight. Master’s thesis, MIT, 2004.

[31] Hod Lipson and Jordan Pollack. Automatic Design and Manufacture of Robotic
Lifeforms. Nature, 406:974–978, 2000.

[32] The MathWorks, Natick, MA. Getting Started with MATLAB R© Version 7, 2006.

[33] The MathWorks, Natick, MA. Optimization Toolbox User’s Guide, 2006.

[34] Merriam-Webster’s Collegiate Dictionary. Merriam-Webster, eleventh edition,
2003.

[35] Mark B. Milam, Kudah Mushambi, and Richard M. Murray. A New Computa-
tional Approach to Real-Time Trajectory Generation for Constrained Mechanical
Systems. In 2000 IEEE Conference on Decision and Control, 2000.

[36] John A. Nelder and Roger Mead. A Simplex Method for Function Minimization.
Computer Journal, 7:308–313, 1965.

[37] Michael Pearce, Ronald C. Arkin, and Ashwin Ram. The Learning of Reactive
Control Parameters Through Genetic Algorithms. In Proc. IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems, volume 1, pages 130–137,
July 1992.

[38] Ryan L. Pettit. Low-Altitude Threat Evasive Trajectory Generation for Au-
tonomous Aerial Vehicles. Master’s thesis, MIT, 2004.

[39] Faisal Qureshi, Demetri Terzopoulos, and Ross Gillett. The Cognitive Controller:
A Hybrid, Deliberative/Reactive Control Architecture for Autonomous Robots.
Lecture Notes in Computer Science, 3029:1102–1111, 2004.

101

[40] Christian P. Robert and George Casella. Monte Carlo Statistical Methods.
Springer, second edition, 2005.

[41] Stuart Russell and Peter Norvig. Artificial Intelligence, A Modern Approach.
Pearson, second edition, 2003.

[42] Tom Schouwenaars, Bart De Moor, Eric Feron, and Jonathan How. Mixed Integer
Programming for Multi-Vehicle Path Planning. In Proceedings of the European
Control Conference, pages 2603–2608, 2001.

[43] Tom Schouwenaars, Bart De Moor, Eric Feron, and Jonathan How. Decentralized
Cooperative Trajectory Planning of Multiple Aircraft with Hard Safety Guaran-
tees. In Proceedings of the AIAA Guidance, Navigation, and Control Conference
and Exhibit, August 2004.

[44] Alan C. Schultz and John J. Grefenstette. Improving Tactical Plans with Genetic
Algorithms. 1990 Proceedings of the 2nd International IEEE Conference on Tools
for Artificial Intelligence, pages 328–334, 1990.

[45] Alan C. Schultz and John J. Grefenstette. Using a Genetic Algorithm to Learn
Behaviors for Autonomous Vehicles. AIAA Guidance, Navigation and Control
Conference, pages 328–334, 1992.

[46] Takanori Shibata and Toshio Fukuda. Coordinative Behavior by Genetic Algo-
rithm and Fuzzy in Evolutionary Multi-Agent System. Proceedings of the 1993
IEEE International Conference on Robotics and Automation, 1:760–765, 1993.

[47] Eric W. Weisstein. Circle-Circle Intersection. From MathWorld—A Wolfram
Web Resource, May 2006.
http://mathworld.wolfram.com/Circle-CircleIntersection.html.

[48] Eric W. Weisstein. Circle-Line Intersection. From MathWorld—A Wolfram Web
Resource, May 2006.
http://mathworld.wolfram.com/Circle-LineIntersection.html.

102

	Tactical Decision Making
	Description of Tactics
	Tactics Problem Statement
	Incorporating Expert Knowledge
	Literature Review
	Contribution
	Thesis Organization

	Algorithm Design Elements
	Tactical Primitives
	Choice of Primitive Set
	Primitive Parameters

	Reactive Tactics
	Genetic Algorithms and Deliberative Tactics
	Initial Solution Candidates
	Modeling Uncertainty
	Competing Optimization Methods

	A Reactive/Deliberative Planner
	Deliberative Planning
	Reactive Planning
	Combined Planner

	Threats Problem
	Problem Description
	Vehicle Model
	Threat Model
	Firing on a Threat
	Countermeasures
	No-Fly-Zone
	Fitness Function

	Tactical Building Blocks
	Maneuvers
	Discrete Actions

	Deliberative Planning
	Reactive Planning
	MATLAB and the Genetic Algorithm Optimization Toolbox
	Simulations
	Example Scenario
	Crossing a Field of Threats
	Attack Mission
	Urban Canyon

	Discussion

	Algorithm Performance
	Computation and Performance
	Effects of Dimensionality
	GA and Nonlinear Programming
	Primitive Types
	Vehicle Characteristics
	Initialization with Candidate Solutions
	Lessons Learned

	Conclusion
	Immediate Extensions
	Future Work

	Genetic Algorithms
	Overview
	Chromosomes and Problem Encoding
	Recombination
	Mutation
	Fitness Evaluation and Selection
	Performance Metrics
	Variations

	Primitive Selection and GA Design Issues
	Problem Representation
	Population Initialization
	Fitness Function Design
	Problem Space Constraints
	Termination Condition

	Conclusion

