
 
 

  
Abstract—In this paper, the smoothed finite element method 

(SFEM) is proposed for 2D elastic problems by incorporation 
of the cell-wise strain smoothing operation into the 
conventional finite elements. When a constant smoothing 
function is chosen, area integration becomes line integration 
along cell boundaries and no derivative of shape functions is 
needed in computing the field gradients. Both static and 
dynamic numerical examples are analyzed in the paper. 
Compared with the conventional FEM, the SFEM achieves 
more accurate results and generally higher convergence rate 
in energy without increasing computational cost. In addition, 
as no mapping or coordinate transformation is performed in 
the SFEM, the element is allowed to be of arbitrary shape. 
Hence the well-known issue of the shape distortion of 
isoparametric elements can be resolved. 
 

Index Terms —finite element method (FEM), Gauss 
quadrature, isoparametric element, smoothed finite element 
method (SFEM), strain smoothing.  
 

I. INTRODUCTION 
fter more than half a century of development, finite 
element method (FEM) has become a very powerful 

technique for numerical simulations in engineering and 
science. Mapped elements, such as the well-known 
isoparametric elements, play a very important role in FEM. 
When using a mapped element, a basic requirement is that 
the element has to be convex and a violent distortion is not 
permitted so that a one-to-one coordinate correspondence 
between the physical and natural coordinates associated 
with an element can be guaranteed. In numerical 
implementation, the determinant of the Jacobian matrix 
should be always checked for its positivity to avoid severely 
distorted elements [1, 2].  

Recently, a stabilized conforming nodal integration has 
been proposed using a strain smoothing technique for a 
Galerkin mesh-free method which shows higher efficiency, 
desired accuracy and convergent properties [3]. In addition, 
a linear exactness can be guaranteed in the solution of 
Galerkin weak-form based mesh-free methods. In this 
paper, we implement the strain projection idea to formulate 
and code a novel method, smoothed finite element method 
(SFEM) [4, 5], which combines the existing FEM 
technology with the strain smoothing technique. We will 
demonstrate through intensive case studies the significant 
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benefits arising from this novel combination. 
 

II. STRIAN SMOOTHING 
A 2D static elasticity problem can be described by 
equilibrium equation in the domain Ω  bounded by Γ   

Ω=+ in0, ijij bσ  (1) 

which subject to the boundary conditions: ijij tn =σ  on tΓ  
and ii uu =  on uΓ , where ijσ  is the component of stress 

tensor and ib  the component of body force; in  is the unit 
outward normal. Its variational weak form is derived as  
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δδ  (2) 

In the SFEM, elements are used as in the FEM. Galerkin 
weak form given in Eq. (2) is applied and integration is 
performed on the basis of element. Depending on the 
requirement of stability, an element may be further 
subdivided into several smoothing cells (SC) [4]. A 
smoothing operation is performed for each smoothing cell 
within an element, as expressed by 
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where Φ  is a smoothing function. For simplicity, a 
piecewise constant function is applied here, as given by 
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where the area of the cell ∫

Ω

Ω=
C
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occupied by the smoothing cell (see Fig. 1). Substituting Φ  
into Eq. (3), one can get the smoothed gradient of 
displacement 
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The displacement field in an element can be approximated 
as in the FEM by 
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Similarly the smoothed strain in discrete form can be 
obtained as follows 
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where IB~  is the smoothed strain matrix. For a 2D case 
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smoothed element stiffness matrix can be obtained by 
assembly of all the smoothing cells associated with the 
element, i.e., 
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III. SFEM SHAPE FUNCTIONS AND STABILITY 
CONDITION  

In the SFEM, as only the shape function itself is involved 
in calculating the gradient matrix, very simple shape 
functions can be utilized at Gauss points on the edges of a 

cell. The SFEM shape functions should possess the 
following criteria: (1) Delta function: ijjiN δ=)(x ; (2) 

Partition of unity: ∑
=

=
n

i
iN

1
1)(x ; (3) Linear compatibility: 
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satisfying the four conditions can be used in the SFEM.  
 

Let’s take a quadrilateral element for example. For any point 
on its side, e.g., the midpoints #5, #6, #7 and #8 shown in 
Fig. 1(b), the values of the shape functions are calculated 
linearly using shape functions of two related nodes on the 
side. The values of the shape functions at point #9, the 
intersection of two bimedians, are the average of those at the 
four midpoints. If this point happens to coincide with one 
field node, its shape functions should adopt the values of 
this node accordingly. Shape functions for other interior 
points needed in line integrations can be easily obtained in a 
similar way [4]. 

In eigenvalue analysis of a free element using SFEM, if an 
entire element is used as one smoothing cell (SC=1) as 
shown in Fig. 1(a), five spurious zero-energy modes are 
found, which is similar to the case of FEM using one Gauss 
point. Later on it is found that one SC is equivalent to three 
independent relations ( 3=σn ). The difference between the 

displacement freedoms un  and the constraints is the 
number of spurious modes, and thus 5=− σnnu . The one 
cell smoothed integration cannot suppress the well-know 
hourglass modes. This means that the use of smoothed 
integration can still give rise to instabilities. Then we 
subdivide the element into four cells (SC=4) and now 

0<− σnnu . Comparing the results with those of FEM 
using 2×2 quadrature, Once again the modes of the two 
methods coincide with each other. It is also found that, 
except three rigid-body-movement modes, no zero-energy 
modes exist in them, which demonstrates the stable 
integration. Therefore, SC=4 is recommended in 4-node 
SFEM in this paper. 

Further study of more general polygonal elements, we can 
conclude that to ensure stiffness stability, the number of 
constraints arising from SC should not be less than that of 
the free displacement freedoms [6], i.e, σnnu ≤ . A 
dodecagonal element is investigated to verify this point. The 
element is divided into 2, 4, 6 and 12 cells. For the first three 
the rank of the stiffness matrix is the same as σn , which is 
smaller than the un  and accordingly standard patch test 
fails. For the last case (SC=12), the patch test is well passed. 

 

IV. DYNAMIC ANALYSIS 
When inertia and damping effects are considered, the 

discrete governing equations can be obtained as in FEM [7] 
extffdCdM =++ int&&&  (8) 

where d  is the vector of general nodal displacements and  
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Fig 1. Division of SC and Construction of shape functions 



 
 

∫∫
ΓΩ

Γ+Ω=
t

dd TText tNbNf  (9) 

∫
Ω

Ω= dTρNNM  (10) 

∫
Ω

Ω= dT cNNC  (11) 

Now in SFEM the internal nodal force is expressed as 

∫
Ω

Ω=
C
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If no damping or forcing terms exists in Eq. (8), after 
introducing the smoothed versions of strain and stress, for 
linear problems it reduces to  

0dKdM =+
~&&  (13) 

where the smoothed stiffness matrix is given as  
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A general solution of such an equation can be written as 
)exp( tiωdd = . Then on its substitution into Eq. (13), the 

frequency ω  can be found from 
0dKM =+− )~( 2ω  (15) 

Total Lagrange formulation is used when geometrical 
nonlinear behavior is considered. The initial position of a 
material point in a body is given by X in a fixed reference 
configuration and the total displacement at time nt  is 
denoted as nu  then the current deformed configuration is 
described by 

nn uXx +=  (16) 
The current deformation is measured by the deformation 
gradient matrix relative to X given by 

X
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∂
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In a similar way as used for strain, deformation gradient in 
Eq. (17) needs to be smoothed in SFEM as 
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where ∫
Ω

Ω=
X
L

dAX
C  is the initial area of the smoothing cell in 

study and 
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V. NUMERICAL EXAMPLES 

A. Standard Patch Test 
In the standard patch test, linear displacements are 

imposed along the boundaries of a square patch with at least 

one interior node. Satisfaction of the patch test requires that 
the displacements of all the interior nodes follow “exactly” 
(to machine precision) the same function of the prescribed 
displacements. Two types of discretization are used, as 
shown in Fig. 2: one with 10×10 regular elements and the 
other with irregular interior nodes. It is found that the SFEM 
can pass the patch test within machine precision regardless 
of the number of SC used and the shape of elements. 

 
 

 
 
 

 
Fig. 2. Meshes for standard patch test. 

 
 

B. Infinite Plate with a Circular Hole 

A plate with a central circular hole (as shown in Fig. 3) is 
investigated that subjected to a unidirectional tensile load 
of 1.0 N/m at infinity in the x-direction [8]. Plane strain 
condition is considered and E= 23 /100.1 mN× , 3.0=v . 
Each element is divided into four smoothing cells. The 
computed displacement and stress are selectively 
demonstrated in Fig. 4 and compared with the exact 
solutions. When calculating the energy three schemes are 
adopted. In S44, SC/GP=4 is used for calculation of both 
displacement and stress (or energy). Likewise in S11, 
SC/GP=1 is employed all the time. Instead in S41, 
SC/GP=4 is used only for displacement while reduced 
integration SC/GP=1 is used for post-processing of stress 
and energy. From our results it is observed that the 



 
 

computed displacements and stresses are in good 
agreement with the analytical solutions. The convergence 
rates in displacement and energy are demonstrated in Fig. 
5. It is observed that a comparable convergence speeds in 
displacement and energy have been obtained but those of 
SFEM are once again more accurate than of FEM. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 

 
Fig. 3. Infinite plate with a circular hole and its meshes. 
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Fig. 4. The exact and computed displacements and stresses. 

 

 

 
Fig. 5. The convergence rates in displacement and energy. 
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C. Free Vibration Analysis of a Variable Cross-Section 
Beam 
A cantilever beam with variable cross-section is examined 

as shown in Fig. 6. The following parameters are used: 
L=10; H(0)=5, H(L)=3, t=1.0, 7100.3 ×=E , v=0.3, and 
ρ =1.0. The first four natural frequencies are computed 
using FEM/SFEM as given in Table I. It can be observed 
that the SFEM gives better results than FEM when using the 
same mesh. 

 
 
 
 
 
 
 
 
 
 
 
 

 
 
Fig. 6. A cantilever beam with variable cross-section and its meshes. 
 
 

TABLE I 
First four natural frequencies ( 310×  rad/s) of a variable 

cross-section cantilever beam using FEM/SFEM 
No. of 

elements 
No. of 
nodes SFEM FEM 

(4-node) 
FEM 

(8-node) 
10×4 55 

(4-node 
ele.) 
149 
(8-nodes 
ele.) 

0.26114 
0.91563 
0.95127 
1.82958 

0.26514 
0.94891 
0.95401 
1.95759 

0.26177 
0.91881 
0.95219 
1.85568 

20×10 231 (4-node 
ele.) 
661 
(8-nodes 
ele.) 

0.26166 
0.91758 
0.95184 
1.84773 

0.26246 
0.92490 
0.95251 
1.87744 

0.26162 
0.91783 
0.95201 
1.85261 

40×20 861 (4-node 
ele.) 
 

0.26160 
0.91767 
0.95193 
1.85118 

0.26181 
0.91952 
0.95211 
1.85867 

 

 
 
 

D. Explicit forced vibration of a spherical shell 
To clearly demonstrate the effect of geometrical 

nonlinearity if compared with the linear elastic analysis, we 
use the following material properties as well as the 
geometric parameters of the spherical shell in this example: 
R = 12.1 cm in, t = 0.04 cm, o9.10=φ , P = 445 N, E = 68.9 

GPa, v = 0.3. 33 kg/m1082.2 ×=ρ . A central difference 
procedure is used to integrate the kinematics explicitly 
through time. As the method is conditionally stable a very 
small time step is permitted that solely depends on the 
computational model. In this example, 810−=Δt sec is used. 
Fig. 7(a) shows the comparison of dynamic responses 
between linear and nonlinear elastic solutions. It is observed 
that both the period and amplitude of nonlinear response are 
about two times of those of linear case. In Fig. 7(b) dynamic 
relaxation is introduced with 410=α  and 0=β . We 
notice that the response is damping out gradually and static 
deflection can be approximately retrieved. The static linear 
deflection is located roughly at the middle part of the curves 
whereas the static nonlinear deflection is very close to the 
peak amplitude, which is agreeable with those using static 
nonlinear analysis of Newton-Raphson procedure [9]. 

 

 

 
 

Fig. 7. Linear and nonlinear elastic dynamic responses of a spherical 
shell under concentrated loading. 
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VI. CONCLUSION 
In this work, the smoothed finite element method (SFEM) 

is presented based on the framework of FEM by 
incorporating a strain-smoothing technique. In SFEM, field 
gradients are computed directly only using shape functions 
itself. As no coordinate transformation or mapping is 
performed in SFEM, restriction placed on the shape of 
elements in FEM can be removed. Its convergence rates in 
both displacement and energy of SFEM are comparable as 
compared with its counterpart of 4-node isoparametric finite 
elements but the numerical results of SFEM are generally 
more accurate than FEM solutions. The conclusion is also 
verified by the free vibration analysis. The energy rate 
obtained using S41 is two times higher as compared with 
that using S44. Numerical experiments also show that the 
SFEM is generally more efficient than FEM especially for a 
mesh divided with very large number of elements.   
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