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Abstract— We solve the 2nd order wave equation, hyperbolic
and linear in nature, for the pressure distribution of one-
dimensional seismic problem with smooth initial pressure and
rate of pressure change. The reduced basis method, offline-online
computational procedures and a posteriori error estimation are
developed. We show that the reduced basis pressure distribution
is an accurate approximation to the finite element pressure
distribution and the offline-online computational procedures
work well. The a posteriori error estimation developed shows
that the ratio of the maximum error bound over the maximum
norm of the reduced basis error has a constant magnitude of
O(102). The inverse problem works well, giving a “possibility
region” of a set of system parameters where the actual system
parameters may reside.

Index Terms— hyperbolic equations, inverse problems, param-
eterized partial differential equations, reduced basis method.

I. INTRODUCTION

ENGINEERING analysis requires prediction of outputs
governed by partial differential equations. The reduced

basis method is a promising answer to high computational
cost which is inflexible in inverse problems. The reduced basis
method was introduced in the 1970s for nonlinear structural
analysis [1], [2], abstracted [3], [4], [5], [6] and extended [7],
[8], [9] to a larger class of parameterized partial differential
equations. Later works by Patera and co-workers [10], [11],
[12], [13], [14] propose rigorous a posteriori error estimation
and exploit the offline-online computational procedures. The
reduced basis method has not been applied to hyperbolic
problems because the nature of the solutions involve possibly
discontinuous solution, weak stability properties and hence
are more complicated. Simulations today play an important
role in seismic research. Ghattas and co-workers [15], [16],
[17], [18] aim to predict ground motion of large basins during
strong earthquakes. In this paper, we examine a simplified
one-dimensional seismic model, modified from [18].

II. MATHEMATICAL MODEL

A. Governing Equation

The pressure variation during an earthquake is governed by,

P e
o,tt(x, t;µ)− κP e

o,xx(x, t;µ) = h(x;µ)g(t;µ), (1)
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where P e
o (x, t;µ) is the exact pressure distribution and κ is the

wave propagation speed. The system parameters µ ≡ {xs, T}
are the earthquake source xs and occurring time T and we vary
them within the domain D ≡ [0.25, 0.75]× [0.25, 0.75] ⊂ R2.

In figure (1), the step function h(x;µ) and pulse function
g(t;µ) characterize the spatial and temporal region of the
earthquake source xs with their integrals normalized to 1. The
pulse function g(t;µ) are obtained based on its derivative,
the hat function g′(t;µ). Time is normalized such that time
t = 4.1 is a periodic cycle. The wave propagation speed κ is
then normalized to 1 and the spatial domain is normalized to
unit length, Ωo(xs) = [0, 1].

The occurring time T shifts the pressure P e
o (x, t;µ) in time

and only play a role in the inverse problem. Thus, it is fixed
as 0.50. The pressure is zero in the earth’s crust P e

o (x =
0, t;xs) = 0 and the pressure gradient is zero on the earth’s
surface P e

o,x(x = 1, t;xs) = 0. Both initial pressure and rate
of pressure change are zero, P e

o (x, t = 0; xs) = P e
o,t(x, t =

0;xs) = 0. Our focus is the dependence of the output,

Se
o(t;xs) =

1
0.1

∫ 1.0

0.9

P e
o (x, t;xs) dx, (2)

the average surface pressure, on the earthquake source xs.

B. Weak Form

The strong form is multiplied by a test function v and inte-
grated in the spatial domain Ωo(xs). The integrals are further
simplified using integration by parts, the divergence theorem
and imposing the boundary conditions. The exact pressure
distribution P e

o (xs) ∈ Xe
o(xs) ≡ {v ∈ H1(Ωo(xs)) | v|ΓD =

0} thus satisfies ∀ v ∈ Xe
o(xs),

m(P e
o,tt(xs), v;xs) + a(P e

o (xs), v;xs) = g(t)h̃(v), (3)

where ∀ w, v ∈ Xe
o(xs),

m(w, v;xs) ≡
∫

Ωo(xs)

vw, (4)

a(w, v;xs) ≡
∫

Ωo(xs)

vxwx, (5)

h̃(v) ≡
∫

Ωo(xs)

vh(x;xs). (6)
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Fig. 1. Step function h(x; µ) (left), pulse function g(t; µ) (center) and hat
function g′(t; µ) (right).

Our output is then evaluated as

Se
o(t;xs) = ˜̀(P e

o (xs)), (7)

where ∀ v ∈ Xe
o(xs),

˜̀(v) =
1

0.1

∫ 1.0

0.9

v. (8)

C. Reference Domain Formulation

We decompose the original x-domain Ωo(xs)

Ω̄o(xs) = Ω̄1
o(xs) ∪ Ω̄2

o(xs) ∪ Ω̄3
o(xs) ∪ Ω̄4

o(xs), (9)

into the left zone Ω1
o(xs), forcing zone Ω2

o(xs), right zone
Ω3

o(xs) and output zone Ω4
o(xs). We introduce the standard

y-domain Ω in figure (2) as reference and decompose into

Ω̄ = Ω̄1 ∪ Ω̄2 ∪ Ω̄3 ∪ Ω̄4. (10)

We now consider a piecewise affine mapping F from the
standard y-domain Ω to the original x-domain Ωo(xs): x =
2.5xsy from Ω1 to Ω1

o(xs); x = y + xs − 0.4 from Ω2 to
Ω2

o(xs); x = 10
3 (0.7−xs)y+3xs−1.2 from Ω3 to Ω3

o(xs); and
the identity mapping from Ω4 to Ω4

o(xs). Our exact pressure
distribution P e

o (x, t;xs) in the original x-domain Ωo(xs) can
be expressed in the standard y-domain Ω as P e

o (x, t;xs) =
P e(F−1(x), t;xs).

Therefore, the exact pressure distribution P e(y, t;xs) ∈
Xe ≡ {v ∈ H1(Ω) | v|ΓD = 0} in the standard y-domain Ω
satisfies ∀ v ∈ Xe,

m(P e
tt(xs), v;xs) + a(P e(xs), v;xs) = g(t)h̃(v). (11)

The output is then evaluated in terms of P e(y, t;xs) as

Se(t;xs) = ˜̀(P e(xs)). (12)

D. Semi-Discretization for Time Marching

We use the unconditionally stable Newmark scheme and
the weak form become ∀ v ∈ Xe,

m

(
P e,k(xs)− 2P e,k−1(xs) + P e,k−2(xs)

∆t2
, v;xs

)
+a

(
P e,k(xs) + P e,k−2(xs)

2
, v;xs

)
=

gk + gk−2

2
h̃(v), (13)

Se,k(xs) = ˜̀(P e,k(xs)), (14)

where the pressure distribution for the zero and first time steps
are zero, P e,0(xs) = P e,1(xs) = 0.

III. FINITE ELEMENT METHOD

A. Triangulation

We solve equation (13) using the Galerkin approach. With
n triangles Th, we define a “truth” P1 finite element ap-
proximation space X(≡ Xh) ⊂ Xe : {v ∈ Xe | v|Th

∈
P1(Th), ∀ Th ∈ Th}. This finite element space X (of
dimension N ) is a sufficiently rich approximation subspace
such that the different between the exact and finite element
pressure distribution is small.

P k(xs) ∈ X is denoted as the fully discrete finite element
approximation at time tk = k∆t, where ∆t is the time step
size. Using the bilinear and linear properties of the various
functions, the nodal coefficients P k

j (xs) are solved from

{
1

∆t2
M(xs) +

1
2

A(xs)
}

Pk(xs)

=
{

1
∆t2

M(xs)
[
2Pk−1(xs)− Pk−2(xs)

]
− 1

2
A(xs)Pk−2(xs) +

gk + gk−2

2
H

}
, (15)

where M(xs) is the mass matrix, A(xs) is the stiffness matrix,
H is the load vector and L is the output vector. The output is
subsequently evaluated as

Sk(xs) = Pk(xs)T L. (16)

B. Truth Approximation

The numerical parameters φ ≡ {N ,∆t} is taken to give the
“truth” pressure distribution P T ,k(xs) and output ST ,k(xs),
upon which we develop our reduced basis method and a
posteriori error estimation.

We now introduce the inner product (·, ·) ≡ (·, ·)X,

(w, v) ≡ a(w, v;xs = 0.50), (17)

and the associated norm ‖ · ‖ ≡ ‖ · ‖X,

‖w‖ ≡
√

(w,w). (18)

xs = 0.50 is used because it corresponds to identity mapping
across the physical x-domain Ωo(xs) and standard y-domain
Ω. From convergence analysis, the numerical parameters used
are φ = {N = 200,∆t = 0.01}.



Fig. 2. Piecewise affine mapping F between the original x-domain Ωo(xs)
and standard y-domain Ω.

IV. REDUCED BASIS METHOD

A. Formulation

We define the reduced basis space WN (of dimension
N ) as the span of N finite element pressure distribution
{P k1(xs1), . . . , P kN (xsN

)}, selected within the training space
Ξtrain = Ξxs

train × Ξk
train: an earthquake source-time space

containing γ different values of the earthquake source xs and
all time steps. To prevent ill-conditioning, they are further
orthogonalized using the modified Gram-Schmidt orthogonal-
ization [19] to obtain

WN = span{ζ1, . . . , ζN}. (19)

The reduced basis pressure distribution P k
N (xs) ∈ WN ⊂ X

is given by simple Galerkin projection where the reduced
basis pressure distribution P k

N (xs) and test function v are now
expressed in terms of the N orthogonalized finite element
pressure distribution {ζ1, . . . , ζN}. Again using the bilinear
and linear properties of the various functions, the reduced basis
coefficients P k

N,j(xs) are solved from

{
1

∆t2
MN (xs) +

1
2

AN (xs)
}

Pk
N (xs)

=
{

1
∆t2

MN (xs)
[
2Pk−1

N (xs)− Pk−2
N (xs)

]
− 1

2
AN (xs)Pk−2

N (xs) +
gk + gk−2

2
HN

}
, (20)

where MN (xs) is the reduced mass matrix, AN (xs) is the
reduced stiffness matrix, HN is the reduced load vector and
LN is the reduced output vector. The reduced basis output
Sk

N (xs) can then be evaluated as

Sk
N (xs) = Pk

N (xs)T LN . (21)

B. Offline-Online Computational Procedures

The affine parametric structure of

MN (xs)ij = m(ζj , ζi;xs) =
Qm∑
q=1

Θq
m(xs)mq(ζj , ζi), (22)

AN (xs)ij = a(ζj , ζi;xs) =
Qa∑
q=1

Θq
a(xs)aq(ζj , ζi), (23)

can now be exploited to design effective offline-online com-
putational procedures.

In the offline stage, the basis vectors {ζ1, . . . , ζN} are first
solved. Next, mq(ζj , ζi) and aq(ζj , ζi) are formed and stored
for 1 ≤ i, j ≤ N, 1 ≤ q ≤ Qm, Qa. In the online stage, for
each new value of the earthquake source xs, the reduced mass
matrix MN (xs) and the reduced stiffness matrix AN (xs) are
first assembled from equations (22) and (23). Next, reduced
basis output Sk

N (xs) is solved from equations (20) and (21).
It is important to note that the offline stage is performed only
once while the online stage is performed for different values of
the earthquake source xs. Since the online stage is independent
of the dimension of the finite element space N which is large
but rather dependent on the dimension of the reduced basis
space N which is much smaller N � N , significant reduction
in computational cost is often expected.

C. Norms

The reduced basis error ek(xs) = P k(xs) − P k
N (xs) is

defined as the difference between the finite element P k(xs)
and reduced basis P k

N (xs) pressure distribution with the cor-
responding norm as

‖ek(xs)‖ = ‖P k(xs)− P k
N (xs)‖. (24)

The maximum norm of the reduced basis error in the training
space Ξtrain,

‖e‖tr,max = max
xs∈Ξxs

train,k∈Ξk
train

‖ek(xs)‖, (25)

is then the maximum value of the norm of the reduced basis
error ‖ek(xs)‖ throughout the training space Ξtrain.

Similarly, the maximum norm of the reduced basis error in
the test space Ξtest,

‖e‖te,max = max
xs∈Ξxs

test,k∈Ξk
test

‖ek(xs)‖, (26)

is the maximum value of the norm of the reduced basis
error ‖ek(xs)‖ throughout the test space Ξtest. The test space
Ξtest = Ξxs

test × Ξk
test is an earthquake source-time space

containing ρ different values of the earthquake source xs and
all time steps, where we perform the online stage.

Next, the projected pressure distribution Π(P k(xs)) is de-
fined as the argument that minimizes the norm of the difference
between vectors in the reduced basis space WN and the finite
element pressure distribution P k(xs),

Π(P k(xs)) = arg min
w∈WN

‖w − P k(xs)‖. (27)

The projection error ek
Π(xs) = P k(xs) − Π(P k(xs)) is

then defined as the difference between the finite element
P k(xs) and projected Π(P k(xs)) pressure distribution with
the corresponding norm as



‖ek
Π(xs)‖ = ‖P k(xs)−Π(P k(xs))‖. (28)

Similarly, the maximum norm of the projection error

‖eΠ‖max = max
xs∈Ξxs

train,k∈Ξk
train

‖ek
Π(xs)‖, (29)

is the maximum value of the norm of the projection error
‖ek

Π(xs)‖ throughout the training space Ξtrain.

D. Greedy Algorithm

The greedy algorithm selects basis vectors within the train-
ing space Ξtrain and the procedure is as followed:

Step 1. The first basis vector P k1(xs1) is fixed as the finite
element pressure distribution P k(xs) at the last time step t =
K∆t, corresponding to the earthquake source xs = 0.50.

Step 2. Modified Gram-Schmidt orthogonalization is per-
formed.

Step 3. Equation (20) is solved in the training space Ξtrain to
yield the reduced basis pressure distribution Pk

N (xs).

Step 4. Determine the norm of the reduced basis error
‖ek(xs)‖ and projection error ‖ek

Π(xs)‖ from equations (24)
and (28) respectively; obtain the maximum norm of the
reduced basis error ‖e‖tr,max and projection error ‖eΠ‖max.

Step 5. If the maximum norm of the reduced basis error
‖e‖tr,max is less than the tolerance ε specified, the greedy
algorithm terminates. Else, the finite element pressure distri-
bution P k(xs) that corresponds to the maximum norm of the
projection error ‖eΠ‖max will be the next basis vector and
steps 2 to 4 are repeated.

In step 5, the maximum norm of the reduced basis error
‖e‖tr,max is used as the terminating criteria because it gives
the maximum error norm if the finite element method is used
instead. Similarly, if the maximum norm of the reduced basis
error ‖e‖tr,max is used to select the next basis vector, the
greedy algorithm will break down. This is because during
time marching, a high value of the maximum norm of the
reduced basis error ‖e‖tr,max may be cause by an inaccurate
reduced basis pressure distribution P k

N (xs) at a previous time
step. Hence, unless that previous time step is chosen as a
basis vector, the maximum norm of the reduced basis error
‖e‖tr,max will not drop. Selecting the next basis vector based
on the maximum norm of the projection error ‖eΠ‖max instead
overcome this problem as the projection error ek

Π(xs) does not
have this time marching effect. However, this will lead to an
increase in computational cost.
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Fig. 3. Convergence rate of maximum norm of the projection error ‖eΠ‖max

in training space Ξtrain as well as maximum norm of the reduced basis error
‖e‖te,max in test spaces Ξtest.

E. Convergence Rate

14 different values of the earthquake source xs, selected
in equal logarithmic interval, are used to determine the
performance of the greedy algorithm. From figure (3), the
convergence rate can be separated into 3 stages. In stage 1,
there is a period of rapid convergence where the maximum
norm of the projection error ‖eΠ‖max drops 3 orders of
magnitude after 50 basis vectors are selected. This is followed
by stage 2, a period of slow convergence where an addition of
about 100 basis vectors are needed to have the same decrease
in magnitude. Finally, stage 3 again has a fast convergence
rate where an addition of roughly 30 basis vectors result in a
drop of 4 orders of magnitude.

It is observed that the first 50 basis vectors are “general”
such that other finite element pressure distribution P k(xs) can
be accurately expressed as a combination of them. Hence,
the norm of the projection error ‖ek

Π(xs)‖ drops rapidly and
uniformly across the training space Ξtrain as in figure (4).

After these “general” basis vectors are added, the norm
of the projection error ‖ek

Π(xs)‖ becomes a U-shaped trough
extending along the time-domain, with high “peaks” in the 2
extreme ends of the earthquake source space and a flat “basin”
around the middle as in figure (5). The basis vectors selected
are now mostly “specialize” and have little effect on the rest of
the norm of the projection error ‖ek

Π(xs)‖ in the training space
Ξtrain. The greedy algorithm selects basis vectors alternately
from these 2 extreme regions, eliminating the various “peaks”
one by one, resulting in the slow convergence rate. After
eliminating most of the “peaks”, the norm of the projection
error ‖ek

Π(xs)‖ across the training space Ξtrain is now mostly
uniform. Together with the additional basis vectors selected,
the norm of the projection error ‖ek

Π(xs)‖ drops rapidly.

Furthermore, it is observed that increasing the size of the
training space γ or the dimension of the finite element space
N or decreasing the time step size ∆t result in an increase in
the dimension of the reduced basis space N , which eventually
tapped to roughly a constant value [19]. Lastly, increaseing
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the size of the test space ρ results in the same convergence
rate.

F. Computational Cost

Due to the complexity of the offline stage, the operation
counts are evaluated accordingly to the selection of the last
basis vector ζN . Assuming that the operation counts for the
finite element pressure distribution P k(xs) scales as CN σ for
some σ presumably close to unity, we require O(γCKN σ)
operations. Obtaining the reduced basis pressure distribution
P k

N (xs) requires another O(γKNN ) operations. Hence, the
offline stage for the selection of the last basis vector ζN will
require O(γCKN σ + γKNN ) operations.

After the completion of the offline stage, the decomposed
reduced matrices and vectors are stored, with a storage counts
of O((Qm + Qa)N2). For the online stage, the left-hand-
side matrix of equation (20) is first decomposed into an
upper and lower triangular matrices using LU decomposition.
Hence, for every time step, equation (20) is solved using
forward and backward substitution, giving an operation counts
of O(KN2).

The time taken for the finite element method and the online
stage is compared. Their operation counts are O(CKN σ)
and O(KN2) respectively. For the one-dimensional seismic
problem, the dimension of the finite element space N used
is 200 while the dimension of the reduced basis space N is

175 for a tolerance ε of 10−6. Hence, the online stage will
take a longer time compared to the finite element method.
The efficiency of the offline-online computational procedure
should be more evident when applied to the two-dimensional
seismic problem where the dimension of the finite element
space N is the square of its present value and the dimension
of the reduced basis space N is expected to increase but still
has the same order of magnitude.

V. A Posteriori ERROR ESTIMATION

A. Formulation

We now develop rigorous and sharp a posteriori bounds to
ensure a rigorously certified accuracy of the results. The a
posteriori error estimation produces an error bound ∆k

N (xs)
and output error bound ∆k

S,N (xs),

‖ek(xs)‖ ≡ ‖P k(xs)− P k
N (xs)‖ ≤ ∆k

N (xs), (30)

ek
S(xs) ≡ |Sk(xs)− Sk

N (xs)| ≤ ∆k
S,N (xs), (31)

where the reduced basis output error ek
S(xs) is the absolute

difference between the finite element Sk(xs) and reduced
basis Sk

N (xs) output. The maximum reduced basis output error

eS,max = max
xs∈Ξxs

test,k∈Ξk
test

ek
S(xs), (32)

is the maximum value of the reduced basis output error ek
S(xs)

throughout the test space Ξtest.

From the reduced basis approximation, we derived the resid-
ual rk(v;xs) and simplified it to the error-residual equation
using the definition of the reduced basis error ek(xs),

Error-Residual: ek(xs) = P k(xs)− P k
N (xs), k = 2, · · · ,K,

e0(xs) = e1(xs) = 0,

m

(
ek(xs)− 2ek−1(xs) + 2ek−2(xs)

∆t2
, v;xs

)
+ a

(
ek(xs) + ek−2(xs)

2
, v;xs

)
= rk(v;xs). (33)

Next, we simplified the summation of the mass, stiffness
and residual functions from the 2nd to K time steps,

Lemma 1.1: for any zj , j = 0, · · · , n, z0 = z1 = 0,

n∑
j=2

m

(
zj − 2zj−1 + zj−2

∆t2
,
zj − zj−2

2
;xs

)
=

1
2
m

(
zn − zn−1

∆t
,
zn − zn−1

∆t
;xs

)
, (34)

Lemma 1.2: for any zj , j = 0, · · · , n, z0 = z1 = 0,



n∑
j=2

a

(
zj + zj−2

2
,
zj − zj−2

2
;xs

)
=

1
4

[
a(zn, zn;xs) + a(zn−1, zn−1;xs)

]
, (35)

Lemma 1.3: for any zj satisfying the residual equation,
j = 0, · · · , n, z0 = z1 = 0,

n∑
j=2

rj

(
zj − zj−2

2
;xs

)
=

1
2

[
rn(zn;xs)+rn−1(zn−1;xs)

]

−
n∑

j=2

1
2
(rj − rj−2)(zj−2;xs). (36)

Proof : From the left-hand-side of the 3 lemmas, use the
bilinear and linear properties of the functions to separate the
single function into several simpler functions. Cancelling of
the same terms across different time step proved the lemmas.

Now we show that the stiffness function is coercive

a(w,w;xs) ≥ α(xs)‖w‖2, (37)

α(xs) ≡ inf
w∈X

a(w,w;xs)
‖w‖2

= min
q

Θq
a(xs), (38)

and the coercivity constant α(xs) takes the minimum of the
system parameters-dependent function of the stiffness function
Θq

a(xs), 1 ≤ q ≤ Qa. The dual norm ‖ · ‖X′ is defined as

‖g‖X′ ≡ sup
v∈X

g(v)
‖v‖

, (39)

for any function v in the “truth” finite element space X.

Lemma 2: n = 2, · · · ,K, ‖e0(xs)‖ = ‖e1(xs)‖ = 0,

‖en(xs)‖2 ≤
{

4
α(xs)2

(
‖rn(xs)‖2X′ + ‖rn−1(xs)‖2X′

)
+

8
α(xs)

∆t
n∑

j=2

(∥∥∥∥ (rj − rj−2)(xs)
2∆t

∥∥∥∥
X′
‖ej−2(xs)‖

)}
. (40)

Proof : We sum the error-residual formula of equation (33)
with v = 1

2 (ek(xs) − ek−2(xs)) from the 2nd to the K time
step and substitute in lemmas 1.1, 1.2 and 1.3. This equation
is further subsituted into the coercivity property of equation
(38) with w = en(xs) and en−1(xs) and the symmetric
positive definite terms is dropped. Next, we substitute the
dual norm of equation (39) with g(v) = rn(en(xs);xs) and
rn−1(en−1(xs);xs) into the equation, take the norm and apply
the inequality ‖b − c‖ ≤ ‖b‖ + ‖c‖ followed by another
inequality 2|c||d| ≤ q|c|2 + 1

q |d|
2 with c = ‖rn(xs)‖X′

and d = ‖en(xs)‖ as well as c = ‖rn−1(xs)‖X′ and d =
‖en−1(xs)‖ together with q = 2

α(xs) . Finally, grouping the

similar terms together and dropping the ‖en−1(xs)‖2 term
which is always positive proved the lemma [19].

Therefore, the proposition for the a posteriori error estima-
tion of the error bound ∆k

N (xs) is developed as the following,

Proposition: for n = 0, · · · ,K, ‖en(xs)‖ ≤ ∆n
N (xs),

∆0
N (xs) = ∆1

N (xs) = 0,

∆2
N (xs) ≡ 2

α(xs)
‖r2(xs)‖X′ , (41)

∆3
N (xs) ≡ 2

α(xs)
(
‖r2(xs)‖X′ + ‖r3(xs)‖X′

) 1
2 , (42)

and for n = 4, · · · ,K,

∆n
N (xs) ≡

{
4

α(xs)2

(
‖rn(xs)‖2X′ + ‖rn−1(xs)‖2X′

)
+

8∆t

α(xs)

n∑
j=2

(∥∥∥∥ (rj − rj−2)(xs)
2∆t

∥∥∥∥
X′
‖ej−2(xs)‖

)} 1
2

. (43)

Now, a bound for the reduced basis output error ek
S(xs),

Lemma 3: n = 2, · · · ,K, e0
S(xs) = e1

S(xs) = 0,

en
S(xs) ≤ ‖˜̀‖X′‖en(xs)‖. (44)

Proof : From the definition of the reduced basis output error
ek
S(xs), we use the linear property of the output function and

the dual norm of equation (39) to prove lemma 3.

Hence, the proposition for the a posteriori error estimation
of the output error bound ∆k

S,N (xs) is,

Proposition: for n = 0, · · · ,K, en
S(xs) ≤ ∆n

S,N (xs),
∆0
S,N (xs) = ∆1

S,N (xs) = 0,

∆n
S,N (xs) ≡ ‖˜̀‖X′∆n

N (xs), n = 2, · · · ,K. (45)

B. Offline-Online Computational Procedures

In order to determine the error bound ∆k
N (xs) and the

output error bound ∆k
S,N (xs), the dual norm of the residuals

‖rj(xs)‖X′ and ‖ (rj−rj−2)(xs)
2∆t ‖X′ and output function ‖˜̀‖X′

must be solved. From standard duality argument, the residual
can be expressed as

rk(v;xs) = (êk(xs), v), êk(xs) ∈ X, (46)

and substituting into the dual norm of equation (39) and
applying the Cauchy-Schwarz inequality, we obtain

‖rk(xs)‖X′ ≤ ‖êk(xs)‖‖v‖
‖v‖

= ‖êk(xs)‖. (47)



However, if v = êk(xs), ‖rk(xs)‖X′ = ‖êk(xs)‖ and it is
possible for v = êk(xs) since êk(xs) ∈ X,

‖rk(xs)‖X′ = ‖êk(xs)‖, (48)

∥∥∥∥ (rk − rk−2)(xs)
2∆t

∥∥∥∥
X′

=
1

2∆t
‖êk

r (xs)‖. (49)

In a similar fashion, the output function is expressed as

‖˜̀‖X′ = ‖êS‖. (50)

Similarly, the a posteriori error estimation can be decom-
posed into offline-online stages [19]. Making use of the affine
parametric structure, equation (46) is simplifed into

(êk(xs), v) = g̃kh̃(v)−
Qm+Qa∑

q=1

N∑
n=1

Θq(xs)λk
q,n(xs)Bq(ζn, v). (51)

When 1 ≤ q ≤ Qm, λk
q,n(xs) = λk

m,n(xs) and Bq(ζn, v) =
mq(ζn, v). When Qm + 1 ≤ q ≤ Qm + Qa, λk

q,n(xs) =
λk

a,n(xs) and Bq(ζn, v) = aq(ζn, v). Furthermore

g̃k =
gk + gk−2

2
,

λk
m,n(xs) =

P k
N,n(xs)− 2P k−1

N,n (xs) + P k−2
N,n (xs)

∆t2
,

λk
a,n(xs) =

P k
N,n(xs) + P k−2

N,n (xs)
2

.

Next, from linear superposition, we write êk(xs) ∈ X as

êk(xs) = g̃kC +
Qm+Qa∑

q=1

N∑
n=1

Θq(xs)λk
q,n(xs)Lq

n, (52)

for C ∈ X satisfying (C, v) = h̃(v), ∀ v ∈ X and Lq
n ∈ X

satisfying (Lq
n, v) = −Bq(ζn, v), ∀ v ∈ X, 1 ≤ n ≤ N ,

1 ≤ q ≤ Qm + Qa. It thus follows that

‖êk(xs)‖2 =

{
(g̃k)2(C, C) +

Qm+Qa∑
q=1

N∑
n=1

Θq(xs)λk
q,n(xs)

{
2g̃k(C,Lq

n) +

Qm+Qa∑
q′=1

N∑
n′=1

Θq′(xs)λk
q,n′(xs)(Lq

n,Lq′

n′)
}}

. (53)

The offline-online computational procedures are now clear.
In the offline stage, C and Lq

n, 1 ≤ n ≤ N , 1 ≤ q ≤ Qm +
Qa as well as êS , 1 ≤ n ≤ N , are first solved. Next, the

system parameters-independent inner products (C, C), (C,Lq
n),

(Lq
n,Lq′

n′), 1 ≤ n, n′ ≤ N , 1 ≤ q, q′ ≤ Qm+Qa and (êS , êS),
1 ≤ n ≤ N , are evaluated and saved. In the online stage,
equation (53) is evaluated by summing the system parameters-
dependent terms g̃k, Θq(xs) and λk

q,n(xs) with the stored inner
products. Next, the error bound ∆k

N (xs) and the output error
bound ∆k

S,N (xs) are solved.

The operation counts for the a posteriori error estimation in
the offline stage is O((Qm + Qa)2N2N ), insignificant com-
pared to the reduced basis operation counts. Similarly, the ad-
ditional storage counts amount to O((Qm +Qa)N2), which is
equal to the existing reduced basis storage counts. The online
stage requires O(K(Qm+Qa)2N2) operation counts, coming
from evaluating the last term of equation (53), is slightly
more computational expensive than the existing reduced basis
operation counts. Hence, the whole reduced basis method and
a posteriori error estimation requires O(γCKN σ + γKNN )
operation counts for offline stage, O((Qm + Qa)N2) storage
counts and O(K(Qm + Qa)2N2) operation counts for online
stage.

C. Effectivity

We define the maximum error bound

∆N,max = max
xs∈Ξxs

test,k∈Ξk
test

∆k
N (xs), (54)

as the maximum value of the error bound ∆k
N (xs) throughout

the test space Ξtest. The effectivity ηk
N (xs) is defined as the

ratio of the error bound ∆k
N (xs) over the norm of the reduced

basis error ‖ek(xs)‖,

ηk
N (xs) =

∆k
N (xs)

‖ek(xs)‖
, (55)

while the maximum effectivity

ηN,max = max
xs∈Ξxs

test,k∈Ξk
test

ηk
N (xs), (56)

is the maximum value of the effectivity ηk
N (xs) throughout

the test space Ξtest.

Furthermore, the maximum bound-maximum error ratio

ξN,max =
∆N,max

‖e‖te,max
, (57)

is defined as the ratio of the maximum error bound ∆N,max

over the maximum norm of the reduced basis error ‖e‖te,max

in the test space Ξtest.

The maximum effectivity ηN,max remain constant at a
magnitude of O(103). However, at later stage, the maximum
effectivity ηN,max increases rapidly. It is observed that at
somewhere in the test space Ξtest, “peaks” of exceptionally
high effectivity ηk

N (xs) is present. These “peaks” correspond
to a time step where the norm of the reduced basis error
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Fig. 6. Convergence rate of the maximum effectivity ηN,max and maximum
bound-maximum error ratio ξN,max (right) in test space Ξtest.

‖ek(xs)‖ is exceptionally low due to the greedy algorithm
selecting a basis vector near that region. However, this is not
a concern because this means that the reduced basis pressure
distribution P k

N (xs) is closer to the finite element pressure
distribution P k(xs).

From figure (6), it can be seen that the maximum bound-
maximum error ratio ξN,max has roughly a constant value of
400, which correspond to the 2 orders of magnitude difference
between the maximum error bound ∆N,max and the maximum
norm of the reduced basis error ‖e‖te,max. This implies that
the effectivity ηk

N (xs) does not blow up when the norm of the
reduced basis error ‖ek(xs)‖ is large.

VI. INVERSE PROBLEM

A. Formulation

As the occurring time T has a role to play in the inverse
problem, the system parameters µ ≡ {xs, T} is used. We as-
sume that, for the one-dimensional seismic problem, the actual
system parameters µ∗ ∈ D (though fixed) is unknown and
must be determined in real-time by appropriate comparison
of field measurements and the reduced basis output Sk

N (µ).
We assume that the output Sk(µ) is recorded at a total of K
different time steps and conclude from these field data,

Ski(µ) ∈ Eki , 1 ≤ i ≤ K. (58)

Ski(µ) denotes the output Sk(µ) at the particular ki time
step and Eki ≡ [Eki

− , Eki
+ ] denotes the measured field error

where Eki
− and Eki

+ are the lower and upper measured field
error respectively. We thus provide a “possibility region”
P which corresponds to all possible system parameters µ
consistent with the field data. Each ki time step will provide its
own “individual possibility region” Pi and their intersection
will give the “possibility region” P . Hence, it is easy to deduce
that the “possibility region” P can be expressed as

P =
⋂

1≤i≤K

Pi, (59)

Pi = {µ ∈ D | Ski(µ) ∈ Eki}, 1 ≤ i ≤ K. (60)

The output bound gap Sk
∆(µ) ≡ [Sk

∆,−(µ),Sk
∆,+(µ)] con-

sists of the lower output bound

Sk
∆,−(µ) = Sk(µ)−∆k

S,N (µ), (61)

and the upper output bound

Sk
∆,+(µ) = Sk(µ) + ∆k

S,N (µ). (62)

Lastly, we define an inverse space Ξinverse = Ξxs
inverse ×

ΞT
inverse: a system parameters space containing τ different

system parameters µ.

The procedure is as follow:

Step 1. Perform the online stage in the inverse space Ξinverse.

Step 2. Obtain the reduced basis output Ski

N (µ) as well as its
output error bound ∆ki

S,N (µ) for all ki time steps, 1 ≤ i ≤ K
and calculate the output bound gap Ski

∆ (µ).

Step 3. Compare the output bound gap Ski

∆ (µ) with the
measured field error Eki ; if the output bound gap Ski

∆ (µ) is
outside the measured field error Eki ,

Ski

∆,−(µ) > Eki
+ , or Ski

∆,+(µ) < Eki
− , (63)

that corresponding system parameters µ is not the actual
system parameters µ∗. Taking the complement will give us
the “individual possibility region” Pi for the ki time step.

Step 4. The intersection of the K different “individual possi-
bility region” Pi from the various ki time steps will give the
“possibility region” P .

As our “possibility region” are based on rigorous output
bounds, the fast approximation of the actual system parameters
is guaranteed to be conservative and accurate.

B. Results

By considering an “unknown” (to the code but known
to us) actual system parameters µ∗, we observed that the
time step used affects the “individual possibility region” Pi.
When the particular ki time step selected correspond to the
distinct characteristic of the reduced basis output Sk

N (µ), the
“individual possibility region” Pi is small, as seen in figure
(7). Hence, we fixed the total number of time steps used for
comparison as K = 9, equally spaced to ensure sampling of
at least 1 time step in the distinct characteristic region. Lastly,
the measured field error Eki is created from the reduced basis
output Sk

N (µ) by specifying an arbitrary Ef% field error range,
Eki
± = Ski

N (µ)± Ef %
2 .
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VII. CONCLUSION

We developed the reduced basis method, offline-online
computational procedures and corresponding a posteriori error
estimation for the one-dimensional seismic problem, governed
by the second order wave equation which is hyperbolic, linear
in nature, with smooth initial pressure and rate of pressure
change with time. Next, we performed the inverse problem.

We have shown that the reduced basis pressure distribution
P k

N (xs) is an accurate approximation to the finite element
pressure distribution P k(xs) and the accuracy increases as
the dimension of the reduced basis space N increases. The
offline-online computational procedures work well although
the convergence rate is slow. This may be due to the nature
of the finite element pressure solution P k(xs), which is not
smooth enough across the earthquake source-time space.

As the dimension of the finite element space N is compa-
rable with the dimension of the reduced basis space N for the
one-dimensional seismic problem, the saving in computational
cost when applying the online stage instead of the finite
element method is not experienced. We should expect the
saving in computational cost to be experienced in the two-
dimensional seismic problem.

We developed the a posteriori error estimation for the error
bound ∆k

N (xs) and output error bound ∆k
S,N (xs). Results

show that the maximum effectivity ηN,max has a magnitude of
O(103) which increases rapidly when the tolerance ε is lower.
However, this is due to a low value for the norm of the reduced
basis error ‖ek(xs)‖. The maximum bound-maximum error
ratio ξN,max gives a constant magnitude of O(102), showing
that effectivity ηk

N (xs) does not blow up during a high value
for the norm of the reduced basis error ‖ek(xs)‖.

Finally, the inverse problem works well, giving a “possibil-
ity region” P of system parameters µ where the actual system
parameters µ∗ may be in. We further observed that the ki time
steps selected for comparison should correspond to the distinct
characteristic of the reduced basis output Sk

N (µ) in order to
have a small “possibility region” P .
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