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Abstract

"Nlodern sensor environnlents often attelllpt to ('()ll1hine several sensors into a single
sensor network. The nodes of this network are generally heterogenous and llWYvary
with respect to sensor cOluplexity, sensor operational llHHles, power costs and other
salient features. Optilllization in this enVirOll1lH~ntrequires considering all possible
sensor lllodalities and cOlubinations. Additionally, in nlany cases there 111(1)'be a tillle
critical objective, requiring sensor plans to be developed and refined in real-tillle. This
research will exalnine and expand on previous work in 11l1llti-sensor dyncu11icschedul-
ing, focusing on the issue of near optilllal sensor-scheduling for real-tinle detection ill
highly heterogeneous networks.

First, the issue of 11linil1111111tinle inference is fOrIllulated as a constrained optillliza-
tion probleln. The principles of dynaillic progral11111ingare applied to the problclll. A
network lllodel is adopted in which a single "leader" noele nlakes a sensor llleaSUre-
11lent. After the 111eaSUreIuentis lllade, the leader node chooses a successor (or chooses
to retain network leadership). This lllodel leads to an index rule for leader/action
selection under which the leader is the sensor node with lllaxillHlll1 expected rate of
infonnation acquisition. In effect, the sensor and lllodality with the lllaxillllllll ratio
of expected entropic decrease to nleasurelllent tillle is shown to he an optilllal choice
for leader.

The 1110delis then generalized to include networks \vith sirllllltal1eously active
sensors. In this case the corresponding optilllization proble111becoilles prohibitively
difficult to solve, and so a gallle theoretic approach is adopted in order to balance
the preferences of the several sensors in the network. A novel algoritlllll for Illlllti-
player coordination is developed that uses iterative partial utility revelation to achieve
bounded Pareto inefficiency of the solution.

Thesis Supervisor: Sanjoy ~litter
Title: Professor
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Chapter 1

Introduction

1.1 Sensor Networks

A sensor nctwork is any c()lnbination of two or nlorc sensors capablc of intcractin~

eithcr directly through scnsor-to-scnsor COIlllllllnication or indircctly through ccntral-

ized infonnation sharing. Scnsor nctworks COl11ein nlany configurations and levels of

cOlllplexity. They Inay consist of a handful of individual scnsors or sevcral thousand

(or lllore). They Inay be hOlnogcncous (popula tcd by idcntical sensors) or hctcro~(~-

nous (populated by two or lllore types of sensors). Thc sensors thclllsclves can range

froln the silnple, such as passive, singlc-lllode nlagnetol11eters to the cxtrclllcly ('0111-

plex, such as airborne synthetic aperture radars (SAR,s) capable of operating in a

variety of lllodes and the ability to direct sensing to specific area.'" throngh bealll

forming and radar steering.

But regardless of size, configuratioll, heterogeneity and sensor cOlnplexity, all sen-

sor networks face silnilar issnes. All sensor networks are inlplenlented with the goal

of observing the environlnent, taking IneasurClllcnts and infcring sonle \vorlcl state

froin this infonnation. Raw data collected by the sensor nodes lllust SOIllChowbe

culled and collated to fOrIn a unified estilnate of the world state. A problcnl of con-

verting ra\v data into infonnation is conllnonly called an inference problem. SonIC

exanlples of inference problenls in sensor networks include the detection, tracking and

identification of targets of interest.
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1.1.1 General Sensor Network Issues

No network has infinite resources. All networks. whether silllple or conlplex. nlust re-

alize a resource lnanagenlent strategy in order to acc()lllplish the sensinp; p;oals such as

target detection, tracking and indentification. I3esides lilllitations due to the nUlnber

of sensors available within the network, other constraints nlaY include tinH~, eIH~rp;y,

lnaterial cost, or conllnunication. These constraints will he collectively ternl<'d costs.

Achieving sensing goals while lninilllizing costs requires careful planning and resource

lnanagelnent.

Resource lnanagenlent can be significantly conlplicated by network heterop;el}(\-

ity. If the sensor network is hOlllogcneolls, nH\Cl.ninp;all sensors have essentially tlw

saIne capabilities, sensor InanagenlCllt beconws arhitrary to a certain extent. In ho-

lllogeneous networks, the network ability to achieve its goal is invariant lIndeI' the

particular sensor chosen for each sensing task. In IH'tcrogcncous networks, howcver,

each sensor has unique abilities and lilllitations. This diversity disrupts the the net-

work assignlnent invariance. The lltllllber of possible cOlllbinations for scheduling can

quickly overwhehn the planning capabilities.

1.1.2 Examples of Sensor Networks

Sensor networks are becolning increasingly popular in lnilitary and industrial applica-

tions. Listed belo\v are several exanlples of lnodern sensor networks, all drcllnatically

different in structure, but essentially silnilar in the purpose of trying to accurately

detennine the current state of an envirOlllnent of interest.

Example 1: Walrnart recently announced that it will encourage all suppliers to

attatch RFID tags to their products. RFIDs are very silnple sensors with no power

source. They use the energy of a satellite radio wave to acconlplish their task, which is

to geolocate themselves. This is an exanlple of a hOlnogeneous sensor network, where

all sensors are essentially identical. The resources involved include the tilne it takes a

tag to respond to queries about its position as well as the energy cost of translnitting

the position. In this network, the inference problenl is to deteflnine where an itenl is

16



at any given tinle. Using the RFID sensor network to solve this probl(,111will result

in greater efficiency in vVahnart's supply chain, and lower overall product costs for

its conSUlners.

Exarnple 2: The Advanced Network Technologit's division of the National Institue

of Standards and Technology has ongoing research regarding the use of se11sor net-

\vorks for search and rescue operations. The networks would function in (\nVirOnnlents

unsuitable to lnllnans, enabling search and rescue workers to penetrate hazardous en-

vironlnents and locate rescue candidates. Such a systelll was deployed by a t(\anl

froln the University of South Florida following the collapse of the \\Torld Trade C(\n-

ter buildings. A wirelessly connected group of llloblie robots, each with several sensors

attatched, \vere used in the search the collapsed buildings for trapped victi111s. In this

case, the networks was slnall scale (5-10 robots) and lllostly hOlllogeneous (all robots

\vere silnilarly constructed and had silllilar sensing abilities). The goal of identify-

ing rescue candidates is tillle critical, since the longer the delay the less successful

eventual rescue will be. Therefore the prilllary cost to the network was tillle.

Example 3: The scenario of interest for this thesis, which will be described in 1110re

depth in Section 1.3.1, is that of using sensor networks for battlefield awareness. In

this case, the set of sensors is heterogeneous and range froln silllple acoustic sensors to

highly cOlnplicated, satellite-based radars. Sensors in the network differ in their level

of lnobility, their available lnodes of operation, and their ability to detect targets of

interest. The inference problelns in this network include target localization, tracking,

and identification. The costs in this network are varied, including c0111111unication,

fuel expenditure, sensor detection and interference by the enenlY and l11orc. However,

as with the search and rescue exalllple, in lnany cases the prilllary concern is one of

tinle, in that targets lnust be isolated and identified as soon as possible.

The above exalnples represent a slnall sall1pling of interesting sensor networks.

For a more conlplete discussion of areas in which sensor networks are being utilized,

see [13]. \\Thile the inference problell1s solved by sensor networks can vary as greatly

as the networks thell1selves, the fundalllental issnes of resonrce lnanagclnent and

achieving goals under cost constraints are relevant to all real sensor networks.
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1.2 Scheduling in Sensor Networks

Sensor net\vorks generally nlust develop a sensor plan or schedule in order to achieve

sensing goals such as target detection, tracking and identification. The sensor plan

detennines \vhich resources should be used, in what order and for how long. The

sensor plan will directly detennine how n1\1ch tinlC, energy and nlat<~rial cost the

net\vork Inust use in order to achieve the sensing goals. The purpose of the scheduler

is to create a sensor plan which willlninilnize the cost required to solve tll<' inference

problelll. This can be represented by the equation

p* = arg Inin C (p)
pEP

(1.1)

where C(p) is the cost (in resources) of executing plan p and P is the set of all plans

that result in the solution of the inference probleln. A plan p consists of an onlered

set of actions, 0,1...aN. In the case of sensor networks, the actions are queries or

deploynlents of specific sensors. Each action Inay involve querying or deploying any

subset of the sensor network.

Despite the Silllplicity of the optilnization equation, tIle job of the sclleduler is

cOlnplicated by several issues, including the dynalnics of the network, tIle stocha~tic

nature of sensor Ineasurelnents, and the uncertainty in calculations of cost, current

knowledge state or both.

1.2.1 Static and Dynamic Scheduling

Algoritluns for scheduling fall into two broad cla.sses: static (open-loop) and dynalnic

(closed-loop). Static scheduling is Inuch silnpler, but is lilnited in applicability because

it cannot react to unexpected changes to the systeln. Dynalnic scheduling, while

significantly Inore cOlnplicated, is generally Inore robust due to its ability to adapt

during the course of plan execution.

In open-loop scheduling, the scheduler detennines a cOlnplete plan pnor to the

beginning of the plan execution. The plan cannot be 1110clifiedonce execution ha.s be-
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gun. Open-loop scheduling has the benefit of silnplicity and case, and in detenninistic

systen1s can guarantee achievenlCnt of the systenl goal. However, static progralllllling

suffers fron1 an inability to react to infonnation obtained during the execution stage.

Additionally, in stochastic systellls open-loop scheduling generally cannot guarantee

the eventual achieveluent of the systelll goal, since the results of actions are inhercntly

unpredictable.

Closed-loop, or dynaluic, scheduling involves interleaving decisions with actions,

enabling the systell1 to lllake scheduling decisions based Oll all infonnation obtaincd

up to the current till1e. In this case, the scheduler can rcact to infonnation obtained

during plan execution in order to ensure that appropriate actions are taken at each

new step of execution.

Dynaluic scheduling depends on the principle of optillw.lity, first identified by

Belhnan [3]. This principle states that if a path frolll a start state to a goal state

is optilual, then the subpath frOlll any intennediate stat(~ to the goal state will be

optilual for the subproblelll of llloving frolll the intenncdiate state to the goal. Using

this principle we can 1110dify 1.1 to read

a*1

a*N

argllllllnEA, (C1(a) + C}(P7+1))

arg IIlillnE,'\JVC1(a)
(1.2)

and pT = {aj}f=i' C(a) is COllllllonly refcrcd to as the ilnll1ediate cost and C}(P7+1)

as the cost-to-go. Progralns fonl1ulated as 1.2 arc called dyncunic prograIns and the

lnethod of solving thelu is called dynaluic progralllluing.

1.2.2 Scheduling in Deterministic Systems

It can be shown (e.g. [5]) that in detenuinistic systelns the optill1al open-loop schedule

is equivalent to the optinlal closed-loop schedule. In a degenerate sensor network

\vhere all costs are known a priori ancl sensor 11leasurcnlcnts have no ranclolIl clclllCnt,

there is no need for a scheduler to be reactive, since no unexpected infonnation will

ever occur.
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Consider for instance a network populated by sensors, 8{1:M}' Suppose the infer-

ence problenl for the network is to achieve a certain level L of confidence under son1e

Ineasure. Each sensor contributes a detenllinistic "alllounf~ of confidence Ii at a cost

Ci and the total confidence is L~~1 1(11 and the total cost is L;: 1 ('(II' This prohlenl

can be ll1apped to a generalized knapsack problelll \vhich is exactly solvable prior to

the beginning of execution (although not in polynonlial til11e). \Ve will return to this

degenerate fonnulation in Section 2.4.1.

1.2.3 Scheduling in Stochastic SystenlS

In the case of stochastic systel11s, the optilnal open-loop schedule will not generally

be equivalent to the optilllal closed-loop schedule. In stochastic systen1s, total cost

can be inlproved by reacting to infonnation gained during plan execution. Fron1 the

above exaluple, if the "aI110unt" of confidence frOI11sensor i is non-detenllinistic, the

shortest path probleln becolnes a stochastic shortest path problel11. Any static plan

in this systeln would suffer fronl an inability to react to an unexpected it. Say, for

instance that in creating the static plan, the planner anticipated that after the first

k Ineasurenlents the total level of confidence L~~1 Ii would be equal to L and the

task would be cOlllplete. The optilllal plan \vould not schedule any nlore actions,

since the goal would have been achieved and 1110rcactions \vonld oIlly incrcw..;c the

total cost (assullling Ci > 0 Vi). If, however, the actnal level after k n1easurClncnts

is L < L, a scenario which Inay occur due to the stochastic nature of Ii, the optilllal

static plan cannot schedule 1110reInea..'3Ure111ents,and the sensing goal will therefore

not be achieved.

Scheduling in stochastic systel11s can be extelllcly cOlllplicated and COlllputation-

ally intensive. The fonllalization of DP (dynall1ic progra1111l1ing)requires the consid-

eration of all possible action sequences that result in achieven1ent of the goal state.

This can be illlproved sOlllewhat by advanced techniques, but the inherent cOll1plexity

is invariant to such techniques. This is particularly problelnatic for prograllls where

the set of possible actions is large. For the sensor lletwork~ the nlllnber of possihle

actions at each decision stage is cOlnbinatorial in the nUlllber of sensors~ resulting in

20



a very large action set. In COlllplicated stochastic networks lllethods of approxilllat-

ing the optirnal solution are of great irllportance. SOlne approxilllate lllethods are

suggested in Section 1.3.4.

1.3 Proposed Methodology

1.3.1 Scenario

One interesting application of sensor networks is in the area of battlefield aware}}('ss.

Battlefield awareness is the ability of a lnilitary unit to accurately lnodcl the curn~nt

field of engageInent, especially as regards the detection1 tracking alld identificatioll of

targets of interest. This awareness is central to the success of lllilitary call1paigns.

The proliferation of possible sensors for use in battlefield awarencss has dralllat-

ically increased the ability of lnilitary ullits to accuratdy lllodel the field of engage-

lnent. The challenge is to detennine froln alllong all the possible sensor deploYll}(~ntsl

which deploynlent ,viII achieve awareness goals while }ninilnizing total SYStclll costs.

To better define this problenl we llluSt define the "awareness goals" of the Systclll a~

well as the systern costs.

1.3.2 Measures of Information

One of the central problenls of infornlation theory is how to lneasnre the infonnation

content of a rnodel. Exalnples of this problelll include lneasuring how accurntely a

quantized number represets a continuous nurnber or how well an estilnated probability

function represents a true probability function. The latter exalllple is relevant to

the question of rneasuring the infonnation in a sensor network tasked with target

detection. In this case, if we let X be the set of possible target locations, the true

probability function is

{

I if.TE)(
p(x) = 0

otherwise

21
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Knowledge of this true state is obtained through a series of observations \vhich are

aggregated into a conditional probability function ]J(:rlz). where z is the set of ob-

servations. Infonnation theoretic nlethods, including Shannon entropy and relative

entropy, can be applied to p( ~rIz) to nlcasure how well p(.r Iz) approxinla tes the true

probability function in Equation 1.3.

Let z = {Zd~l be the set of collected seIlsor llH1ClSllrellH1Ilts.TheIl, uIlder the ClS-

slunption that sensor IlleaSUrenlellts are independent of OIl<'ClIlotll<'r.we can fOrIllltlate

a Bayesian estilnate of p( ~r) as

N

p(:rlz) = n * ]Jo(;l:) IIpi(zil:r)
i=]

(1.4)

\vhere po(x) is the a priori probability that :r E ~Y, N is the nUlllbcr of sellsor

IneasureIllents, Pi (Zi I:[) is the conditional probability of sensor IlleaSUrenl<'nt Zi g;lven

x E X and ex is a scaling constant.

There are several possible l11easurcs of the inforIllation contained in ]J(:r Iz). Per-

haps the Inost well known is the Shannon entropy, due to Claude Shannon, the father

of inforInation theory. Shannon postulated that the inforllw tion in p(:r Iz) is related

to the uncertainty in p(xlz). He then showed that the uncertainty of p(:rlz) can be

111easured using the negative of the BoltzInann entropy, or

tl(p(xlz)) = - J p(.rlz)log(p(xlz))d:r

Thus, one \vay of fonnulating the inference probleIll is to declare it solved once the

entropy is driven below a threshold, i.e. IL(p(xlz)) :::; ,.

1.3.3 Minimum Time Formulation

In the case of battlefield awareness, there are several possible cost fOrInulations for a

particular sensor plan. In this thesis we will focus on the tilne costs of the systeln.
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Thus, the optilnization equation 1.1 can be written

p* = arg Iuin E[ f, (p)]
pEP

(1.5)

The expectation E[t(p)] is necessary when the exact length of tinH' bd,w('('n the

deploYlnent of a sensor and the availability of its nH'aSUrenH'llt is unc<'rtain. For

nlost sensors, at the tinle of deploYInent only an expected tiine or range of tillH'S until

nleasurenlents are available is known.

Additional uncertainty conICSfroin the stochast.ic nature of the scnsors UH'nlse}vcs.

Without loss of generality we can restrict our attention to sensors for which it is not

possible to know beforehand what a particular sensor llH'(lSUrenH'nt.will be. (Infor-

InaUy, if a sensor's IneaSnrenlent were predet.enllincd and it was included in a sensor

plan, the sensor plan could be iIllprovcd by renloving the planncd nH'a.surclllcnt, sincc

the sensor Ineasurelllent cannot decrease systelll uncertainty and can only increase

the total tinle of plan execution).

Since the systelll is stochastic dne to uncertainties both in the cost function and in

the future knowledge states (i.e. sensor IneasurClnents), a dYllaIllic scheduler will be

able to achiever higher levels of optilllality than a static scheduler (see Section 1.2).

We can reformulate the tiIne Ininiinization probicill in the forlll of Equation 1.2

(1.6)

and p; = {aj}j:i and JV is the total nUlllber of actions in the sensor plan. This states

that the optilnal action at any given tilne is the one that lniniluizcs the tinlC it takes

to accolnplish the action plus the expected tilllC it will take to achieve the systelll

goal once the action has been taken.

1.3.4 Approximate Dynamic Programming

In solving for the optilnal action a;, two quantities Blllst be calculated: the inllne-

diate cost and the expected cost-to-go. Solving for the optilnal cost-to-go involves
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constructing an optiInal plan froIn the tinle thc current action cOIllpletes until the

systeIll goal is Inet. This subproblcnl can hcconlc extrcnldy conlplicated. Even in

sinlple scenarios it can be cOInputationally prohibitive to sol\'(~ this probleIll exactly.

Frequently, approxiInatc Inethods IllllSt be introduced in order to decH'ase the conl-

plexity of the problenl.

The siIllplest approxiIllatc lllCthod is to aSSUIlH' the cost-to-go is negligbl('. This

leads to algoritluns which l11iniIllize inlIllCdiate costs with llO thought for future heIl-

efit. These algoritluns are generally called greedy algoritllllls. In tl}(~case of tll<'

fonnulation we are considering, the greedy algoritlllll would result in a plan ac('ord-

ing to the equation

iii = arg Illin E(l(a)]
(IE A,

However, if we aSSUI11ethe null action (i.c. 110se11sors deplo.yecl) is always all option,

this greedy fonnulation will result in a plan in which no action is ever taken! Although

other greedy fonnulations can 11litigate this effect, they all suffer fronl tlw problelll of

neglecting the contribution of future states to the total cost of a sensor plan.

Another possibility is to approxilllate E[t.(pn] by SOIIlCeasily COIllputahle heuristic

function H (Pi). Heuristic nlethods can significantly reduce the (,olllplexity of the scn-

SOl'planning problenl itself, but introduce the problclll of choosing which heuristic to

use. In general, the closer a heuristic COl11esto the ideal cost-to-go the better tl}(' re-

sulting algoritlun perfonns. SinuIlation based Illethods and ncuro-dYllclll1ic progrmn-

nling are two heuristic nlethods that have proven effective at finding approxinHltly

optinlal solutions \vhile lilniting cOlnplltational cOIllplexity.

1.4 Simulated Experiments

ExperiInents were perfonned to verify the theoretical developIllents of this thesis. As

stated in Section 1.3.1 the scenario of priInary interest is one of detecting battlefield

targets. The eXperiIl1ents were designed to iIllitate features of the battlefield awareness

problClll and consist of both siInulated sensors and siInulated environIIlents.
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1.4.1 Simulated Environnlellt

The experilnental environnlCnts were intended to 1110dd actual battlefield enVlron-

lnents. The siInulated tasks were prilllarily detectioll and discrilliinatioll tasks. al-

though other inference problenls could also be tested in the Sa111('enVirOnllH'nts. The

envirOlunents consisted of a discrete lllunber of possible target locatiolls. T'argets

could exist in any of the locations and could be of sev<,ral tY1><'s.A priori prob-

abilities for each target type at each possible location were known by tl1<'s<,nsors.

The specifications of the environnlCnts for each sillllllat<,d <,xperillH'llt are giv(~ll ill

Chapter 4.

1.4.2 Simulated Sensors

Sensors \vere sinlulated to have a variety of abilities and lilllitatiolls. Both 1110bilealld

stationary, low and high power, single and llluiti-lliodal sensors were used ill the SillIU-

lations. The sensor differences resulted in varying abilities regarding resolution, noise

suppression, and lneasurelnent tinle and range. The silllulated sensor configuration,

including choice of sensing location and lllodality, affected the sensors' probability of

false alanns or lnissed detections. This is true for real sensors. For instance, if the

Inagnetolneter froln [10] is deployed to a locality high in llletallic concentration, the

probability of false alann \vill increase draIllatically. Silllilarly, if the airborne, bi-

Illodal SAR discussed in [30] operates in HRR, lllode over a forest, the probability of

nlissed detection \vill be increased due to foliage occlusion. This sensor / environnlent

dependence was sinullated by assigning to each cnvirOIlIllent locality and each sensor

and 1110deof operation a Signal-to-i\oise ratio (SNR). High SNRs result in better

ability to detect targets. The specific sensor nlodel is given in Chapter 4.
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1.5 Related Work

1.5.1 Scheduling in a Sensor Network

A starting point for this t\Iaster's Thesis is ?\Iaurice ehu's doctoral thesis [10]. In

this \vork, Dr. Chu develops an optilnal nwthod for distributed inference in a lar~e

scale sensor net\vork. Additionally, he proposes a technique for sub-opti11lal inference

when only local knowledge is available, as when only a subset of the network sen-

sors report Ineasunnents. This Inay be plaIl1wd (e.~. to linlit power conSU111ption),

or unplanned (e.g. sensor failure, network .ia11l1nin~, 11leSSa~eloss). He uses a COlll-

binatorial approach to sensor planning, creatin~ a cOlllplete set of sensor plans for

all likely sensor readings. He then derives a syste111 of trig~ering events. The nlain

purpose of this systeln is to lilnit the aillount of llllJle('(\SSary infoflnat.ion ga tlH'l"('d

in the sensor network. Evaluation of these triggers can be dist.ribut.ed aillon~ net.-

work nodes, Ininirnizing the tillle necessary for detect.ion. Foundational work for Dr.

Chu's method includes [9, 43] where the Infoflllation Driven Sensor (~uery (IDSQ)

Inethod for sensor scheduling was derived. IDS(~ ha.s been crit.iqued and expanded

upon in [13, 41, 22].

1.5.2 Sensor Network Resource Management

A central focus of the thesis is how to extend the infoflnation theoretic principles

derived in [9, 10] to a situation in which llluitiple sensors can be sillllIltaneously

active. In [42] lllany of the issues involved in rllulti-sensor lllallagelllent arc surveyed,

including issues related to the optinlal placelllent of sensors within an area of interest,

the benefits and constraints of decentralized control, and sensor cooperation.

In addition to inter-sensor Illanageillent, the optinlal choice of 11lOdcfor a single

sensor is also relevant to the developnlent. In [30] an optilllization involving a single,

rllulti-rllodal sensor suite was presented. Additionally the issue of sensor placeillent for

1110bile,active sensors described in (11, 16] can be considered as atteIllpts to optilnize

over a continuous lllode of operation (in this case, geographical placenlent) in order to
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achieve goals which lnay change with tilllC. The ability to optilllizc over continuous

lnodes is essential to planning in nctworks involving active sensors.

1.5.3 General Optimization

Applicable research not specific to scnsors and sensor networks includes the theory

of dynalnic progranllning (cf. [5]) and the closely relatt'd work in l\larkov Decision

Processes [12]. The basic theory of dYllaIllic progralllllling extends traditional opti-

lnization analysis to a set of problclllS which vary with tin}('. It provides a structure for

decision feedback and sequcntial decision analysis. enabling inforInation to l)(' incor-

porated in an optiInal nlanncr while it is being gathered. This appli(~s din'ctly to tlH'

thesis, in \vhich a sensor plan lnay need to be nHHlificd as new sensor nH'aSnn'lllellt.s

are lllade and incorporated into the likelihood functioll.

Dynalllic prograllllning is a powerful tool, but call l)(~COlllputationaly prohibitiv(~

to inlplenlent, particularly in problellls where the state space is large. To address

this issue, learning algoritillns have been developed to approxinlate the optilllal so-

lutions found through dynalnic prograllllning. NcurodYalllllic progralllllling [G), or

"reinforcelllent learning" as it is sOlnctinles known, uses neural network and other

approxinlation architectures to adapt dynaIllic progranllning llH'thods to cOInplex

environnlents.

Dynanlic progranlllling has becn previously applied to scnsor networks in [:39,:31].

It has also been used to analyze single sensor InanagcIllent [7] as wcll as to general

real-time environments [2].
In addition to dynaIllic prograIlllning, othcr optiIl1ization tcchniques Illay bc CIll-

ployed, particularly in optilnizing the cost-to-go sllbprohleIll. These techniques Illay

include nonlinear, nlixed-integer, and/or constrained progranlIlling [4, 21].

1.6 Contributions

Previous research in sensor schcduling has focused priInarily on iInproving the quality

of inference [9, 13, 39, 10]. \Vhen rcsource costs havc becn considered they have been
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linlited to power constunption due to cOlllnHlllication [22, 41]. and have generally

been treated as constraints on the set of feasible solutions rather than as elcnlents

of the objective. This thesis fOrIllulates the prohlclll as one in which the quality of

the inference is the constraint, while the systenl cost is a fund ion of the anloullt of

tilne the schedule takes. The prinlary objective is not to achi(l\'(' a hi!!;h quality of

inference independent of how long it takes, hut rather to achievc a "good cnough"

estinlate as quickly as possible. TilHe nliniIllizatioll is fUlldaIIH'ntally import.ant. In

Inany applications, and exalnining this fOrIllulation will (~xpalld tlH' usefulncss of

sensor net\vorks in both Inilitary and industrial applications.

Additionally, the InininHllll tillle fOrIlllllation I}(lcessitates a considcration of spnsor

interactions. In n1uch of the previous work in spnsor lletworks, it is assuIlH'd that a

single "leader" sensor is active at any given tilllC alld all other sensors ill tlH' lld,work

are inactive. This assulnption sinlplifies IllllChof the analysis, but in the fOrIllulatioll

for this thesis it significantly reduces the optiIllality of tl)(~solution. It is essential

to consider Inethods for sensor schedulillg whcll nllIltiple sensors IlUlYhe active at

the sanle tilne. Applying clelnellts of gaIlle theory to this prohlenl of IlllIltiple sensor

coordination is an ilnportant contribution of this thesis.

One of the central issues facing the United States Illilitary is the efficient use

of 11lultiple sensor platfonns. The past twenty years have seen an unpn'cedentcd

nUlnber of sensors developed for Inilitary application. There are sensors in the air, on

land, on sea, underwater and even in space. Each sensor has unique capabilities that

Inake it nlore valuable in S01l1esituations and less valuable in others. The wealth of

sensors available presents two significant problellls: one, how to deal with the copious

alnounts of raw data produced (so Inuch that it often overwhehns IHllnan analysts):

and two, how to enable efficient sensor cooperation. Since the sensors were developed

individually they often suffer frolll what's called stove-pipe sensing, Illcaning it is

difficult to use sensors cooperatively.

The principles derived in this thesis, especially the cooperative architecture de-

veloped in Chapter 3, address these two problenls. Through increasing the HutollOlny

of the sensor network, less data need be analyzed by 11l1l1lans.The architecture also

28



provides a fraluework in which several sensors can efficiently cooperate in a highly

dynaluic and unknown environluent. The contributions of this thl'sis will dirl'ctly and

innnediately influence the future devclopnlCnt of intcgratt'd sl'nsing platfonlls for the

U.S. luilitary through ongoing research at l\IIT Lincoln Laboratory in the Int('grated

Sensing and Decision Support (ISDS) group.

1.7 Thesis Organization

This chapter has served as an iutroduction to SOlllCof the issues involved in s('eduling

sensor networks. Specifically, a cHnnollical deU'ction scenario ba.sed on ba ttldield

awareness has been presented, an objective of nlinilllizing tin}(~to n~ach an acceptabk

state of certainty has been stated, and a lllCthod for accoillplishing the objective ha.s

been proposed.

In Chapter 2, sensor network inferellce probleills will be discussed ill gn~ater detail.

Then the lnininnuu tillle optiluization fOrIllUlatioll frol11Section 1.:3.:3will he developed

and analyzed using lllethods frolu dynalllic progranlllling.

Chapter 3 will discuss the need for coordination in solving ccrtain inference prob-

lenls in sensor networks. It will then present a cooperative, distributed Incthod for

achieving the optiIual sensor deploYlllCnts derived in Chapter 2.

Chapter 4 will introduce sinl1llations used to verify the algoritlllll proposed in

Chapter 3. The silnulation will consist of general classes of environnlcnts and a suite

of available sensors. Results froIn the sillullation will he presented along with an

analysis of the observed strengths and lilllit at ions of the algorit1lln.

Finally, in Chapter 5 conclusions will he drawn as to the viability of the derived

algoritlnn and its possible extension to new dOlnains.
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Chapter 2

Dynamic Problem Formulation

2.1 Sensor Network Model

As discussed in Chapter 1, an important use of sensors is in improving battlefield

awareness. Sensors currently used in this type of situation are highly varied and in-

clude both active and passive, mobile and stationary, single and multi-modal sensors.

Figure 2-1 depicts a typical battlefield scenario with a network made up of highly

varied sensors.

Each sensor in a network has a set of possible measurements it may receive. For

instance, the stationary magenetometer described in [10] measures either a 0 or a 1,

depending on whether any magnetic material is detectable in its area of observation.

A mobile radar has a different set of possible measurements, based in part on its

position, velocity, pulse frequency, dwell time and other operational paramaters [34].

Using such varied assets conjointly is Inade possible if the network is capable of

aggregating the various measurements into a single, universally understood model.

Consider sensor Si E S, where S is set of all sensors in the network. Assume Si has a

measurement model consisting of the 2-ple (Zi,Pi(zlx)), where Zi is a set of possible

measurements, and Pi(zlx) is the probability of observing measurement z E Zi, condi-

tioned on the true state x. Furthermore, assume that for all Si the set of possible true

states is fixed and known and that measurements are conditionally independent given

the true state, meaning that Y i,j Pij(Zl, Z2!X) = Pi(Zllx) * pj(z2Ix), Zl E Zi, Z2 E Zj.
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Figure 2-1: Sensor network in a naval battlefield scenario (courtesy of [26])

Under these assumptions the network can rnaintain a global probability function

7r(xlz) (where z = {Zi}~l) if each tinle sensor Si obtains a new rneasurernent, the

global probability function 7r(xlz) is updated by the sensor to be the optimal poste-

rior probability function. For detection problems this would be accornplished by Si

calculating and then broadcasting to the rest of the network the Bayesian update

(2.1)

where ZN+l is the most recent measurement observed by Si. In other inference situ-

ations (e.g. tracking, localization, discrimination) other update rules might be used,

but the process would be the same. The sensor taking the measurement updates

the (global) posterior probability function using its (local) rneasurernent lllodel and

the known update rule f(7r, z,p(zlx)). In general, the posterior distribution will be
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updated after the Nth measurement by 7r(xl{Z}:;=I) = f(7r(xl{z}::::i1), ZN,P(ZNlx)).

An inference problem is defined by the 3-pIe (X, Po (x), f (.,.,.)). X is the set of

possible decisions, corresponding to the fixed and known true states of the sensor

models, po(x) is the initial probability of each of the states and f(.,.,.) is the update

rule. An inference problem is solved by a decision rule D : [(X,Po(x), f(.,., .)), z] 1---7

X. Thus, an inference problem is solved when one of the possible states is decided

for and the rest are decided against.

2.2 Optimal Formulations of Inference Problems

As stated in Chapter 1, an inference problem is any instance of converting raw data

to information. In the case of sensor networks, inference problems include transform-

ing a set of RFID tag responses to locations, determining the location of possible

victims from search and rescue robots' sensor responses, or localizing, tracking and

identifying an enemy target within a battlefield. Inference problems are as diverse

as the networks used to solve them, but all inference problems involve the ability to

extract information from raw sensor data.

A sensor network's capability to solve inference problems can be formalized as an

optimization problem. The most general format of an optimization problem is

x* = argminxEx f(x)

s.t. g(x) E G
(2.2)

The function f(x) is called the objective function, g(x) is called the constraint

function or constraint and G is the constraint set. A solution x is called feasible if

g(x) E G, and the set F = {x : g(x) E G} is called the feasible set. A solution x*

is called optimal if it is feasible and f (x*) ::; f (x) Vx E F.

In sensor networks, there is some variability in how the objectives and constraints

from Equation 2.2 are chosen. This variability results in a variety of optimal for-

mulations, each providing unique insight into the operation of the sensor network.

Which formulation should be used is dependent on the specific goals and design of
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the system.

2.2.1 Objectives and Constraints

As discussed in Section 1.1.1, there are several possible costs due to resource consump-

tion in a sensor network, including costs due to communication, time, and energy.

We will refer to these collectively as consumption costs. Additionally, inaccurate

solutions to the inference problem (e.g. missed detections, bad localizations, etc.)

carry some cost. We will term these quality costs. The objective function and the

constraints for Equation 2.2 derive from combining quality and consumption costs.

Different categorizations lead to different optimization formulations.

Minimum Consumption Formulation

A sensor network must consume some amount of its resources while solving an in-

ference problem, meaning it must use some amount of time, energy, communication

and so forth. In the minimum consumption formulation, the objective function is a

measure of the resource consumption of a network. The quality costs are incorpo-

rated through the constraint function. The goal under this formulation is to consume

as little as possible of the network resources under the constraint that the resulting

inference problem solution meet some minimum quality requirement. As an example

of a minimum consumption formulation, consider the following problem statement:

minimize the energy used in a network while guaranteeing a probability of detection

no less than,. In this case the objective function is the energy consumed by the

network (a consumption cost), the constraint function is the probability of detection

(quality cost) and the constraint set is the set of all solutions with probability of

detection greater than or equal to ,.

One of the challenges of using a minimum consumption formulation for systems

with diverse consumption costs is in the determination of an objective function that

balances the consumption of the various resources. For instance, which solution has

lower cost: one that satisfies the constraint in 5 minutes using 1 W of power, or one
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that satisfies the constraint in 50 minutes using 1 mW of power? The answer depends

inherently on the purpose and design of the network. Aggregating consumption costs

into a single objective function can be very challenging.

Maximum Quality Formulation

In this case, the objective is to minimize the quality costs of the solution. Quality of

the solution refers to the probability of making a wrong decision. Take for example a

localization problem. The inference problem is to determine the location of a target.

The objective function might be the expected mean square error of the estimated

location from the true location. The objective function is a measure of the quality of

the inference problem solution.

In the maximum quality formulation the consumption costs are incorporated

through constraint functions. Thus, using the localization example, one constraint

might be that total energy expenditure in the network is less than E mW, or that a

final estimate is reached in no more than T seconds. This formulation is particularly

appropriate in systems with strict resource constraints, such as sensor networks with

energy lifetime limitations or hard time constraints. It has the advantage of never

comparing minutes to milliwatts, because each resource can be constrained separately.

Thus we can constrain the total time to be less than T, the total energy used to be

less than E and so forth.

Hybrid Formulations

In some situations it may be beneficial to incorporate both consumption and quality

costs into the objective function and solve an unconstrained optimization problem.

In this case, the problem of disparate costs is increased, because the quality cost must

be explicityly traded off against costs measured in seconds or communication hops.

Aggregating these into a single objective function usually requires hand-tweaking

paramaters by an involved human, who makes the decision about how valuable each

factor is in determining "optimality."

It is also possible to have a mixed hybrid equation in which some subset of the
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consumption and quality costs are considered constraints, while the rest are aggre-

gated into the objective function. For every inference problem there are multiple

possible formulations of the optimization equation, each with a different definition of

what objective is being optimized and over what set of constraints.

2.2.2 Actions in Sensor Networks

A sensor's primary purpose it to gain information about its environment. This raw

sensor data is then processed in order to extract information about the true state of

the environment. This process of gathering data and extracting information is the

inference problem referred to in Section 2.1. In this model there is no specification of

how (Le. in what order, under what parameters, etc.) sensors obtain measurements.

The determination of these quantities is the primary goal of optimization in the sensor

network.

Sensor actions may be defined differently depending on the network model. For

instance, in [35] sensor actions include taking a measurement, entering sleep mode,

aggregating several measurements, and sending a message to other sensors in the

network. In [9, 41, 13] sensor actions consist only of choosing the next "leader" for

the network. In [30] the choice is of which mode of the sensor to operate under

while taking measurements. Each of these choices for the set of actions in a sensor

network may be appropriate depending on the network under consideration. In this

thesis we combine the latter two models and consider the actions in a sensor network

to be choosing 1) the next "leader" for the network and 2) the mode in which the

"leader" should take its next measurement. In Chapter 3 we will revisit the limitation

of choosing a specific "leader" and consider models where several sensors may make

measurements simultaneously.

By the formulation above it can be seen that an action in a sensor network can

be represented as (Si, m) where Si E Sand m E Mi where Mi is the set of all possible

modalities under which Si can take a measurement, or operate. An element of the set

Mi is sometimes called a vector of operational parameters [33]. In a heterogeneous

sensor network each sensor may have a unique Mi' It may include both discrete and

36



continuous elements. For instance some radars have the capability of operating in

either GMTI or HRR modes. These are discrete modes. When operating in GMTI,

a radar may have the capability of operating in a range of pulse frequencies. This

is an example of a continuous mode. For sensors with several possible operating

modes, the set Mi will be a complicated, nested data structure representing all of

the valid combinations of operating parameters. For mobile sensors, as well as static

sensors with steerable capabilities, one of the important operating parameters is which

physical locations to survey when taking measurements. The choice of this location

parameter is central to much of the development of this thesis.

Using the concept of modes we can enhance the measurement model given in

Section 2.1. Recall that the measurement model for Si was (Zi,Pi(zlx)). Consider

now that the set of possible measurements in one mode of operation may not be

the same as the set of measurements in a different mode. Define Zi (m) to be the

set of possible measurements for Si under mode m E Mi and Zi = UmEMi Zi (m).

This definition partitions the measurement space among the several modes of sensor

operation. Also, Pi(zlx) will depend on m which we will denote Pi(zlx; m) meaning

the probability of sensor Si deployed in mode m observing measurement z when the

true state is x.

2.3 Minimum Time Equation

In much of the liturature dealing with inference problems in sensor networks (e.g. [9,

13, 27]), the optimization formulation used has been the maximum quality formulation

described in Section 2.2. This formulation is appropriate when considering a network

in which there are hard constraints on consumption (such as the energy lifetime of

low-power sensor networks). Hybrid formulations have also been analyzed in [41, 35]

in which consumption costs were considered as part of the objective in conjunction

with quality costs. However to the knowledge of the author, at this date no study has

been made of networks with a primary goal of minimum time inference. Under the

categorization from Section 2.2 this is a minimum consumption formulation in which
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the objective function is time and the constraint function is a measure of the quality

of the solution of the inference problem.

There are many possible measures of quality of the solution, including (but cer-

tainly not limited to) the Shannon entropy, relative entropy, probability of detection

or mean-square localization error. In general, quality costs or measures will be rep-

resented by J.-L(D) where D is a decision rule as defined in Section 2.1. Frequently

the quality costs depend only on the posterior probability function, rather than the

complete decision rule. For simplicity, such measures will be denoted J.-L(7r(x\z)) where

7r(xlz) is the posterior probability function.

Some quality measures such as entropy or localization error are inversely related to

quality (i.e. quality goes up as the measure goes down). Others, such as probability of

detection are directly related to quality. If the measure J.-L(7r(xlz) is of the former type,

then a typical quality constraint would be J.-L(7r(xlz)) ::;,. For measures of the latter

type, the constraint would be J.-L( 7r (x Iz)) > ,. In general we will consider measures of

the former type, specifically entropy measures such as the Kullback-Liebler distance

between the posterior density and the density representing the true state.

2.3.1 Dynamic Program Formulation

As discussed in section 1.3.3, inference problems for real sensor networks are stochastic

optimization problems and can therefore benefit from dynamic analysis. Specifically,

breaking the problem into a sequence of actions followed by observations and allowing

future actions to depend on previous observations allows for better solutions. A dia-

gram of the organization of a dynamic program is shown in Figure 2-2. In the figure,

ai is the ith action taken, di is the ith decision and Zi is the ith sensor measurement

received.

Our dynamic optimization equation is then

J(7rt) = min (E[t(a)] + L p(z) * J(f(7rt, Z,Pi(Z\X)))]) (2.3)
aEAt

zEZi(m)
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Figure 2-2: Dynamic decision flow

with J(7rt) = 0 if J-L(7rt) ::; 1, and where 7rt is the posterior density at time t, t(a) is

the time it takes to perform action a, p(z) = L:xEX p(x) * Pi(zlx) and f(7r, z,p(zlx))

is the state update function defined by the inference problem (see Section 2.1).

2.4 Solution to the Minimum Time Formulation

In most cases, solving dynamic programs like that represented in Equation 2.3 re-

quires an insupportable amount of computation, necessitating the adoption of ap-

proximate methods, such as heuristics. However, under certain assumptions optimal

solutions can be determined a priori. In Section 2.4.1 a sensor network in which

all measurements are predetermined is examined. It is shown that if only one sen-

sor can be queried or deployed at a time and when J-L(7rt) - 1 is large relative to

Ez[J-L(7rt) - J-L(f(7rt,Z,Pi(zlx)))]' the optimal action is the one which maximizes the

expected rate of decrease of J-L(7rt).

Then, in Section 2.4.2, the solution is extended to a limited number of stochastic

sensor networks, in which measurements are not predetermined. By analyzing this

limited set of (frankly, unrealistic) sensor networks, it is hoped that a heuristic can
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be developed for the general problem of time optimal inference in a sensor network.

2.4.1 Optimal Actions in Deterministic Networks

Consider a deterministic sensor network. For each sensor and each mode of operation

(Si, m), S E S,m E Mi there is a predetermined measurement z. This corresponds to

a network where

{
I if z E Zi (m)

Pi(zlx; m) =
o otherwise

Furthermore, let the state update equation f(7rt, z,pi(zlx; m) be such that

Thus, for a given sensor and mode of operation the quality measure decreases by a

constant amount.

As before let an action a be the 2-pIe (Si, m) and consider for the moment only

discrete sensor modes. The set of all possible actions for the sensor network is A =

USiES{(Si, m)}mEMi and the total number of possible actions is IAI = I::1~1IMil= N.

For each action ai = (Sj, m) denote /Li = C(Sj, m) and denote the time necessary for

action ai as ti.

Equation 2.3 can be reformulated as

(2.4)

where J(7rt) = 0 if /L(7rt) ::; 'Y and expectations and the dependance of the state update

equation on Pi(zlx; m) have been dropped because of the deterministic assumption.

A pure strategy, Ui, is one in which action ai is used exclusively. The cost asso-

ciated with a pure strategy is denoted JUi (7rt). Let J* (7r) be the optimal cost function

for probability 7r. The maximal information acquisition rate principle states that,

under certain conditions, an optimal action is the one with maximium information

acquisition rate (JAR), where the JAR is defined as Pi = 'i:-
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Proposition 2.1 For large enough T, if J*(-rr) > T,

.* /1i~ = argmax-
iEN ti

Proof: Assume, WLOG that actions are ordered by

(2.5)

Also, let D = (/1(1f) -')').

Consider the (non-existant) instantaneous action a2 with IAR ih = 'g and its

associated pure strategy U2. The cost of strategy U2 is

(2.6)

Let J~:N] (1f) be the cost associated with the optimal strategy among all strategies

that don't include action al' I will first show that

(2.7)

Then I will show that, for D large enough,

(2.8)

Proof of Equation 2.7

I will prove Equation 2.7 inductively on the number of times and action other than

a2 is taken. For the base case consider strategy al where action ai, i E [2 : N] is taken

once and action a2 is taken otherwise.

41



where the last step was accomplished by substitution from Equation 2.6. Now, by 2.5

(2.10)

Combining Equations 2.9 and 2.10 we get

(2.11)

For the induction step, consider strategies O'k and O'k+l. Under O'k, k actions other

than 0,2 are taken. By an argument similar to the base case

Then, from Equation 2.10 it's obvious that

Thus

For a1l1r, the optimal strategy among all strategies that don't include al is in O'k for

some k. Therefore

Proof of Equation 2.8

Repeating Equation 2.6
D D

JU2(1f) = -t2 = -
J.L2 P2

Consider the pure strategy Ul in which only action al is taken. The cost for strategy

(2.12)
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By simple algebra we have

(2.13)

If 7r is such that

then, from Equations 2.6 and 2.13

(2.14)

Together, Equations 2.7 and 2.8 imply that, if J-l(7r) - / is large with respect to the

inverse difference of the inverse of the two greatest lARs, then the optimal action

sequence will include the action with maximum IAR. Furthermore, since all results

of actions are deterministic, action order is superflous. Therefore if

'l = arg max Pi
iE[l:N]

then action ai is an optimal action for the network.

The maximum network IAR is what is called a dynamic allocation index, or a Git-

tens index [15]. Gittens' indices are solutions to a wide range of dynamic problems

in which time is a factor. It should be noted that the inference problems in sensor

networks do not generally satisfy the requirements for an optimal Gittens index so-

lution. Particularly, if the sensor model for the network is not known, but is being

discovered, then the index solution dervied above may be significantly suboptimal.

2.4.2 Optimal Actions in Stochastic Networks

We can extend the above analysis to include cases in which both the time required

to take each action, ti, and the subsequent decrease in uncertainty for the inference

problem, J-li, are random variables. Making these values random variables allows

for a more realistic representation of a sensor network. Results similar to those from
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Section 2.4.1 can be derived as long as the random variables are assumed independent.

First, the results will be extended to stationary systems where the expected values

of the random variables remain constant, then to a set of interesting, non-stationary

systems.

Stationary Systems

In the case of stochastic systems with constant mean, the cost function 2.3 can be

written as

(2.15)

where J(7r) = 0 if J-L(7r) ::; ,. This is exactly equivalent to Equation 2.4 except that

the cost is now taken under an expectation on both the immediate time cost of action

i as well as on the future cost-to-go.

Proposition 2.2 For large enough T, if J*(7r) > T,

i* = arg ~ax E[ J-Li]
tEN ti

Proal Since E[J-Li] and E[ti] are assumed independent the cost of pure strategy Ui is

(2.16)

JUi (7r) can be bounded by

where Pi = 71-. Again, assuming Equation 2.5 and assuming that

we have the result

(2.17)
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where U2 is the instantaneous pure strategy with IAR equal to P2. Consider the space

of all strategies that only include actions a[2:N] as well as action a2. The cost for

strategy a from that space is

(2.18)

where ai represents the number of times ai is taken (to simplify math, al is assumed

to be the number of times action a2 is taken) and Di = E[/Li] * ai. Since P2 > P3 >
... > PN

(2.19)

Furthermore, since action a2 has instantaneous cost

N

V Jr 3 a s.t. D = (/L(Jr) -,) = L:Di
i=l

Equations 2.17 and 2.19 together imply that, for D large enough and for constant

and independent E[/Li], E[ti] Vi, an optimal action is the one that maximizes E[Pi].

Non-stationary Systems

Sensor systems are, in general, non-stationary. If sensor Si is queried once, the ex-

pected decrease in uncertainty is /Li. If sensor Si is queried again with the same param-

eters the expected uncertainty decrease will not generally be /Li. To more acurately

model the decreasing utility of actions, the following non-stationarity assumption will

be made.

Assumption 2.1 Each time action ai is taken, the corresponding expectation of de-

crease in uncertainty, E[/Li] contracts by a. All other random variables remain sta-

tionary.

The dynamic program is still as in 2.15
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but the expected decrease in uncertainty is no longer constant.

Let U be a vector such that Ui is the number of times ai is taken. Also, denote

the initial expected decrease in uncertainty due to action ai as E[J.li]. If the initial

uncertainty of the system is J.l( 7r), the expected uncertainty after taking the actions

specified by U is

N ai-1

J.l( 7r) - 2: (E[J.li] 2:0/)
i=l j=O

N 1 a.

- J.l(7r) - 2: (E[J.li] * 1~ aa
l

)

i=l

(2.20)

(2.21)

The expected time under strategy U can be written as

N

Ja(7r) = 2: UiE[ti]
i=l

with the understanding that E[J.lClra)] ::; ,]. The optimal cost can be written

which can, in turn be rewritten as the program

where D = J.l( 7r) - ,. Since a is constant, the constraint can be rewritten as

N2: (E[J.li] * (1 - aai
)) > D(l - a)

i=l
N2: (E[J.ld - E[J.li]aai

)) > D(l - a)
i=l
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N

D(l - a) ~ I: E[/li]
i=l

The constraint is non-linear in 0". Consider instead the linearized system, where the

aO"i terms are linearized about the nominal point O"? = O. The resulting constraint is

N

I: (E[/ld - E[/li] (Ina )O"i > D(l- a) (2.22)
i=l

N N

-(lna) * I:E[/li](O"i) > D(l - a) - I: E[/li] (2.23)
i=l i=l
N 1 N

I:E[/li]( O"i) > -(I: E[/li] - D(l- a)) (2.24)
lnai=l i=l

where, in the final step, the inequality doesn't change directions since - In a > O.

The constraint is now the same as in the stationary case, except that strategy 0" must

satisfy Equation 2.24 rather than 2:[:1 E[/li] (O"i)~ D. Letting

_ 1 N

D = In a (I: E[/li] - D(l - a))
i=l

the analysis for the stationary case demonstrates that an optimal action for the lin-

earized system is the one that maximizes the expected IAR. Unlike the systems ana-

lyzed previously, this may not always be the same action, due to the decreasing value

One caveat must be made in non-stationary systems that follow the model de-

scribed above. Due to the asymptotic properties of the expected decreases in un-

certainty, it is possible that the set of feasible solutions to the dynamic program is

empty. If 2:[:1 E[/li] (l~a) ::; D there is no action sequence that leads to a solution of

sufficient expected certainty. This can be addressed by adding the system constraint

that

This constraint will also ensure that D > O.
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2.5 Conclusions

We have shown that in specific types of sensor networks when the distance between

the current uncertainty and the threshold is large, the optimal action is the one that

maximizes the rate of information acquisiton. This can be compared to the results

in [41] where IDSQ is extended to include communication costs. While the above

discussion focused on costs due to time, it could be easily extended to situations

where the main cost is communication as in the networks considered in [22, 41]. In

Chapter 4 the IDSQ algorithm will be compared to the above formulation through

simulation.

The maximum IAR principle is particularly well-suited to sensor network appli-

cations because it can be implemented in a distributed fashion. Because the optimal

solution is the one with maximum IAR, if the assumption is made that a sensor's

IAR is independent of other sensors, each sensor can calculate its own optimal IAR

among all its possible modes of operation. A distributed leader election algorithm [23]

can then be used to nominate the sensor with maximum individual JAR. Finding the

maximum IAR for a single sensor will generally involve a non-linear optimization

problem. Interior point methods [4] and randomized solution methods may need to

be used in order to find the operating mode with maximum JAR. Due to the com-

plexity of the solution methods, finding the utility of the maximum IAR method may

be limited to sensors with significant computational ability.

One assumption made in the much of the sensor network literature (e.g. [9,27,41])

as well as in the preceeding derivation of the maximum IAR principle, is that only one

sensor, called the leader, is active in a network at any given time. In networks where

the primary goal is to approximately solve an inference problme in minimum time

this assumption may be prohibatively limiting. Chapter 3 will show how to extend

the principle of maximum IAR to networks in which several sensors can operate

simultaneously in order to cooperatively solve the given inference problem.
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Chapter 3

Cooperation for Time Optimal

Inference

3.1 Introduction

In Chapter 2 problems of inference in a sensor network were formulated as a dynamic

program. Specifically, a minimum time optimization problem was formulated as a

dynamic program. The program was then solved for single sensor deployments in

both deterministic and stochastic networks.

The simple index rule solution presented in Chapter 2 can be complicated in

networks where sensors interact. When two sensors operate simultaneously in the

same area there is the possibility of sensor interaction. This interaction may be

constructive or destructive.

Example 1: Constructive Interaction Consider three ground vehicles equipped

with video sensors and tasked with locating a target of interest. By coordinating

their sensing, the three sensors are able to triangulate the target location with a

high degree of certainty. But when anyone sensor doesn't participate in the sensing,

triangulation is no longer possible and the localization is much less accurate. The

three sensors were able to use simultaneous sensing to achieve a level of certainty

greater than any of the three acting singly.

Example 2: Destructive Interaction Consider two sensors deployed in an effort to
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discriminate a target. The first is a ground vehicle equipped with an X-band radar.

The second is an airborne asset, also equipped with an X-band radar. The result of

both radars being active in the same place and at the same frequency is that neither

can sense the target due to in-band radar interference. Each sensor is effectively

jamming the other, resulting in a decreased ability to sense the environment. In this

case, the result of deploying multiple sensors was worse than deploying either sensor

singly.

These two examples demonstrate the need for coordinated solutions in sensor

deployments. In order to maximize the rate of information acquisition, the sensors

must cooperate both to take advantage of situations in which constructive interaction

is possible, and to mitigate situations in which negative interaction occurs.

Encouraging cooperation between autonomous agents is an area of active research

both in the areas of engineering and computer science [40], as well as in social science

and economics [20]. Much of the previous work in sensor networks has focused on

solutions in which only a single sensor can be active at any time [9, 43, 27], which

prohibits the possibility of meanigful cooperative sensing. In certain sensor network

applications, the assumption that only one sensor is active can be justified, but many

sensor networks have the capability to support the deployment and querying of several

sensors simultaneously. This will particularly be true for sensor networks for which

the main objective is to approximately solve an inference problem as quickly as pos-

sible. Such networks can sometimes significantly reduce time by deploying sensors

simultaneously in a coordinated manner.

One of the challenges of optimizing joint sensor deployments is the combinatorial

growth of the action space, resulting in a very complex global optimization problem.

In [33] this global optimization is recaste as a constrained joint optimization problem.

Unfortunately, the solution derived depends on isolating control parameters, a user-

defined process that significantly limits network autonomy. Also, the final algorithm

lacks scalability and can not be easily distributed among sensor nodes. Attempts at

solving the global optimization using evolutionary algorithms and particle swarms [35,

28] are similarly limited in application to networks with centralized information and
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computation. Other attempts at optimal joint deployments were made in [16, 11].

One possible solution to the global optimization problem is to apply the principles

of welfare economics and game theory to sensor networks. The applicability of game

theoretic solutions to problems of measurement acquisition, aggregation and routing

in sensor networks has been demonstrated in [24, 17, 8]. Game theoretic models are

attractive in that they are highly distributable and often require only limited global

information, making them well-suited for solving complicated problems of distributed

optimization, such as those found in sensor networks.

The coopertive algorithm described in this chapter uses individual agents IARs

as utilities for actions in the joint action space. First, in Section 3.2, the principle

of maximum IAR is extended to the space of multiple sensor deployments. Then, in

Section 3.3, a method of encouraging cooperation through the use of side payments is

set forth. The method allows sensors to increase the desirability of actions for other

sensors that are advantageous to itself. In Section 3.4 the side payment principle

will be demonstrated using a cannonical, two-sensor system with inherent conflict.

Finally, in Section 3.5 limitations and possible extensions of the algorithm will be

proposed.

3.1.1 Planning Paradigms

As was pointed out in Section 1.2 due to the stochastic nature of the inference prob-

lems they attempt to solve, real sensor systems can benefit from dynamic feedback. In

Chapter 2 dynamic programming was used to find an optimal solution for networks

in which no two sensors were simultaneously deployed. Even with the simplifying

non-simultaneous assumption the computational load of complete dynamic program-

ming was prohibitive. Therefore an index rule that maximizes the rate of information

acquisition was adopted as an approximate solution that is computationally feasible.

In networks when multiple sensors are simultaneously active the computational

problems of dynamic programming are exacerbated. Although simplifying assump-

tions analagous to the non-simultaneous assumption can be made (see Section 3.2.1),

the dimensionality curse makes exact dynamic programming infeasible. However,
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even though exact solutions can not be formulated, the principle of dynamic feedback

can still improve system performance.

In [5] a method for scheduling called Open-Loop Feedback Control is suggested

as a suboptimal alternative to exact dynamic programming. In 0 LFC a control is

applied (Le. actions are chosen) without consideration for future information. This is

the Open-Loop portion of the planning method. Then, each time future information

becomes available, the control creates a new plan based on all available information

(including the information that just became available). This is the Feedback portion

of the method. Thus in OLFC, as with exact dynamic programming, actions are

dependent on observations and the system is reactive to received information; but

the computational burden is significantly reduced from exact dynamic programming

because of the simplicity of open-loop planning.

We have adopted a solution method similar to OLFC. At each iteration of the

planning algorithm a joint action is chosen for the sensor network. Then, when

new information becomes available through sensor measurements a new action is

chosen. The mechanism for choosing actions is not, however, the exact solution of

an optimization problem (as in OLFC). Instead the principles of game theory are

employed. The reasons for this choice are discussed in Section 3.2.2.

To summarize: a type of open-loop feedback control will be used in which each

time new sensor measurements become available the sensors in the network choose a

new deployment configuration by playing a game. The rules of the game are defined

in Section 3.2.2. This game will be replayed every time the (global) posterior density

function is updated (Le. each time new sensor measurements beconle available). This

approach is a compromise between optimality and computability.

3.1.2 A Note on Terminology

In the sequel, the terms sensor, agent, and player will be used somewhat inter-

changably. I've attempted to use "sensor" when referring to the physical realities

of the sensor network, "player" when referring to game theoretic principles relating

to the network, and "agent" when referring to general principles of autonomy within
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the network. These terms all refer to the same physical quantity, which is a single

sensor that can operate in one of several modes. Also, the term "configuration" is

meant to imply the selected mode of operation for a sensor or group of sensors. It is

not limited to the physical placement of the sensors, but can include any variable of

operation present in the sensor(s).

3.2 Extending Maximum JAR to Multi-Sensor De-

ployments

When more than one sensor can be active within a network, the question arises of how

to formulate the dynamic program in a meaningful way. From a general standpoint,

the dynamic equation from Chapter 2 can be recaste in terms of available assets.

Jt(1rt, Dt) - minaEAt (E[t(a) + Jt+1(1rt+l, Dt+dD

IN minaEAN E[t(a)]
(3.1)

where Dt represents the set of deployable sensors and is updated according to the

equation

As in Chapter 2, the state variable 1rt is the (global) posterior probability distribution

for the inference problem and is updated by equation

1rt+l = f( 1rt, z, p(zlx))

where f(1rt, z,p(zlx)) is a given update function such as Bayes rule.

The action space in Equation 3.1, At, is no longer limited to the various modes of

each individual sensor, but is now the set of all combinations of deployable sensors,

with each sensor possibly configured in any of its modes. One of the difficulties in

deploying sensor groups is the high dimensionality of the action space [35].

On of the difficulties in analyzing Equation 3.1 is in understanding the cost-to-
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go. For singly-deployed sensor networks, the cost-to-go (E(Jt+1(7rt+r)]) was just the

expected time from when the chosen sensor reported its measurement until the infer-

ence problem was complete. It was shown in Chapter 2 that, given enough distance

from the goal, the sensor and mode with maximum JAR would be the optimal one to

deploy or query. However, the analysis depended implicitly on the assumption that

sensor measurements were "monolithic" (i.e. that all measurements from a single

action were received simultaneously). This meant that all the effects of each action

would be known prior to the next decision period.

3.2.1 Monolithic Joint Deployments

One solution concept to the problem of multiple, simultaneous sensor deployment

is to require that all sensors deployed at a given time must complete their sensing

prior to redeployment of any new sensor. This solution preserves the "monolithic"

measurement model of the single sensor case. In this scenario, each sensor/modality

group could be considered as a single super sensor, and (unsurprisingly) results similar

to those found in Chapter 2 can be derived. Specifically, given a group of sensors G

and a set of deployment parameters M, define the group JAR to be:

where J-l( G, M, 7r) is the decrease in the uncertainty measure due to deploying group

G in mode M with probability function 7r. Then, given the same assumptions as were

made in Section 2.4.2, an optimal action is the one that maximizes p(G, M).

However, the "monolithic" assumption may be quite limiting in some sensor net-

works. For example, imagine the cooperative deployment of two sensors 31 and 32

with expected measurement times t1 and t2 with t1 < < t2• Under the monolithic as-

sumption, 31 would have to sit idle while 32 completed its measuren1ents. Only after

32 had finished could 31 be redeployed in a new configuration. Since time minimiza-

tion is the network goal, having a valuable sensor sitting idle represents a significant

problem.
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Another limitation of the "monolithic" index rule is that it requires global informa-

tion. Specifically, the global uncertainty measure decrease due to the several sensors

in the group must be calculated as well as the maximum expected deployment time

of all the sensors in the group. Such global computations fail to utilize the parallel

computational ability of sensor networks. Additionally, knowledge in sensor networks

is usually distributed, so computations involving global knowledge require a large

amount of inter-sensor communication which may severely impact the network power

consumption, as well as time productivity due to communication latency. Another

problem is that the action space is the set of all possible joint sensor deployments,

resulting in the difficult global optimization problem identified in both [33] and [35].

3.2.2 A Game Theoretic Approach to Maximizing Group

JAR

A possible solution to the problem of balancing competing sensor utilities is to employ

the principles of game theory. Much of the vocabulary for dynalnic programming and

game theory is similar, although the two fields have very different lineages, including

the concepts of actions, strategies and costs or payoffs. While dynamic program-

ming was developed as a method for optimizing sequential decisions [37, 3], game

theory was developed to explain economic phenomena [36]. Dynamic programming

has found most of its application in engineering, while game theory has been used in

macroeconomics and political science. But, as mentioned in Section 3.1, due to its

distributed nature and usefulness in analyzing complicated systems, game theory is

finding new relevence in the area of autonomous networks.

Game theory posits that interactions between autonomous agents, called players,

can be formulated as a mathematical game. Each player has a set of possible actions

and a utility that results from taking each action. A player's utility is also a function

of the actions of the other players in the game. For a game with N players, a joint

action is an N dimensional vector of individual agent actions. The joint action,
space A C NN, is the set of all possible joint actions. The utility function for player
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i, Ui (a) : A 1--7 JR. For the developments in this thesis it is assumed that the joint

action space is finite.

In the case of sensor networks, the players represent individual sensors. The ac-

tions are the various choices of modalities in which the sensors can be deployed and

the utility is the benefit to the sensor when deployed under the specified conditions.

A natural choice for utility function, considering the development in Chapter 2, is

the sensor's IAR. Notice that while s/s IAR was previously solely a function of its

own mode of operation, now there will be a family of IAR's for each mode, corre-

sponding to each of the modalities of all the other sensors. While this represents a

significant calculation, it should be observed that it is only necessary to calculate the

modified IARs for those sensors and modes that interact with Si, since only they will

cause a variation to its IAR. This can significantly decrease the amount of necessary

computation.

Once the utilities have been computed, there are many possibile solution methods

for the derived game. These can be broadly grouped into coordinated and uncoordi-

nated solution methods. Uncoordinated methods involve no revelation of any players

preferences to any other player, while coordinated methods involve some meaningful

inter-player comparison of preferences prior to the execution of the game.

3.2.3 Uncoordinated Solution Methods

Uncoordinated solution methods are simpler than coordinated methods due to the

fact that they do not rely on player i having any knowledge of player j's intended

action. The two most popular uncoordinated solution methods are minimax and

Nash Equilibrium. Other uncordinated solution methods, including methods based

on internal models of other players, are covered in [14].

Minimax In this solution method, player i's action is chosen to maXImIze its

guaranteed payoff, or received utility. If Ui(a) is the utility to player i of joint action
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defined by

a= (3.2)

where ai represents the action taken by player i, then the minimax solution for player

~ IS

a: = argmax[min[Ui(a)]]
ai aji:i

(3.3)

The minimax solution method is attractive because it avoids situations where other

players could adversely affect player i's payoff, and it provides a lower bound on the

actual payoff player i will receive. Also, it only makes use of local knowledge: it is

unnecessary for player i to know anything about player j's utilities. In a distributed

setting where communication is costly, minimax represents an attractive solution.

One critical point concerning minimax is its inability to encourage meaningful

cooperation. Since agents take no consideration of other players actions except to

minimize the negative effects of those actions, minimax solutions are generally good

at avoiding conflict, but fail to encourage constructive cooperation.

Nash Equilibrium The Nash Equilibrium [25] is perhaps the most popular and

well-known result in game theory. It states that for certain game formulations there

exists a strategy for each player from which no player has an incentive to deviate.

It is a self-enforcing solution, where players can act with confidence that opposing

(rational) players have no interest in playing a different strategy.

While very powerful as a solution concept, there are limitations to the effectiveness

of the Nash Equilibrium in cooperative games. The traditional example of this is the

so-called Prisoner's Dilemma. In this two player game, player's must choose one of

two actions: cooperate or defect. If both choose to cooperate they are rewarded. If

both choose to defect, they are punished. If one player chooses to cooperate while the

other defects, the defecting player receives a reward greater than if it had cooperated,

and the cooperating player receives a harsher punishment than if it had defected. In
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this game the Nash Equilibrium is for both players to defect, even tho'ugh there exists

a solution with greater utility for both players. Another example where playing the

Nash Equilibrium leads to system suboptimality is described in Section 3.4.

A further obstacle to implementation of Nash Equilibrium in the sensor network

context is that it requires full knowledge of all players utility functions. The commu-

nication required for each sensor to transmit a multi-dimensional function to every

other player may be prohibitive.

3.2.4 Coordinated Solutions

The process of players collaborating in order to make decisions about what actions

to play is called bargaining or negotiation. Two main divisions of bargaining can be

made: axiomatic bargaining and strategic bargaining.

Axiomatic Bargaining In axiomatic bargaining [29] a solution is sought that is

"most fair" for all players. The definition of fairness in this context can be seen as

an attempt to balance the sacrifices and gains of each player in an effort to improve

the social welfare of the group. Axiomatic bargaining solutions include the Nash

Bargaining solution, the Kalai- Smorodinsky solution, the Egalitarian solution and

the Utilitarian solution. To find these solutions, players (or a central arbitrator) must

have knowledge of the full utility space. As with the Nash Equilibrium, this level of

global knowledge is prohibitive in many sensor networks where the knowledge and

computation should be distributed across the sensor nodes.

Strategic Bargaining Strategic bargaining, sometimes called non-cooperative bar-

gaining, is an attempt by players to increase their payoffs through collaboration. The

players intent in participating in the bargaining is not to achieve a "fair" solution,

but to maximize its own payoff through encouraging other players to take actions

that will benefit it. The market-based solutions examined in [24, 38] fall into this

category of bargaining, with the collaboration taking the form of common knowledge

of "prices" of goods or information. Strategic bargaining includes auctions as well as

other market based mechanisms for resource allocation.

Strategic bargaining in distributed settings will generally use less communication
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than axiomatic bargaining, because it is not necessary to communicate the entirety of

the utility functions for all players. However, players must still reveal sufficient infor-

mormation in order to coordinate their chosen action with that of the other players.

Strategic bargaining can be seen as a compromise between the communication re-

quirements of uncoordinated solutions and axiomatic bargaining.

The basic element of strategic bargaining is the contract. In most of the literature

contracts are made between "buyers" and "sellers." The contract involves the seller

allocating goods to the buyer in exchange for some payment. Defining what goods are

being allocated and how payment is made are the central issues of strategic bargaining.

3.3 Increasing Sensor Utility through Side Pay-

ments

In the time minimization situation explored in Chapter 2 each agent is trying to

maximize its rate of information acquisition. In networks where multiple sensors are

simultaneously active, a sensor's IAR may depend on the action of other sensors,

either because they are configured in a way that decreases the IAR or because if they

were configured differently the sensor's IAR would increase. Either way, the sensor

needs some method of persuading the other sensor(s) to reconfigure. Examined from

a strategic bargaining perspective, the goods in this situation are agreements by some

sensor to reconfigure, meaning to change its intended mode of operation in some way.

A sensor that chooses to reconfigure is the "seller" in the bargain. In exchange for

agreeing to "sell" its choice of mode to accomodate another sensor, the seller must

receive some payment from the "buyer" (i.e. the sensor that wants it to reconfigure).

This payment takes the form of a credit that can be used in future negotiations. The

payment should be at least as much as the difference in the IAR of the seller under

its current configuration and its IAR under the reconfiguration. This exchange of

credit will be called a "side payment." Some of the benefits and limitations of side

payments in contract formation are discussed in [1].
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In developing a method of side payments for a general sensor network, we will

proceed in steps. First we will consider a simple two-player, two action game. Then

we will extend the analysis to two-players with multiple actions and finally multi-

player, multi-action games.

3.3.1 Two-Player, Two-Action Game

Two-player, two action games are often analyzed using the payoff matrix. A general

payoff matrix for a cannonical game is shown in Table 3.1. where a{ denotes action j

Table 3.1: Cannonical payoff matrix

taken by player i and Ui (., .) represents the utility to player i under some joint action.

The purpose of player i nlaking a side payment to player j is to increase player j's

utility for taking some action. For instance, if player one's preferred joint action was

(a~, ai), it might offer player two a side payment ~l in order to make this option more

attractive to player two. The resulting enhanced payoff matrix is

a~ [U1(aL ai), U2(aL ai) + ~l] [U1(aL a~), U2(aL a~)]

a~ [Ul(a~, ai), U2(a~, ai)] [Ul(a~, a~), U2(a~, a~)]

By increasing the utility for this joint action, player one increases the likelihood of

player two choosing action ai. The source of the "extra" utility player one used to

make the side payment will be addressed shortly.

Let at be the ideal joint action for player i. That is

a; = argmax[Ui(a)]
aEA
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The principle of the ideal joint action is: if player i were able to choose the individual

actions of all N players, what joint action would she choose in order to maximize

her utility. The use of ideal points in axiomatic bargaining was suggested in [19].

Consider the game defined by the payoff matrix 3.1 with ideal (joint) actions ar and

a;. If ar = a; then the players are in agreement and no further coordintation is

necessary. If not, the players must attempt to persuade each other to change actions.

This persuasion takes the form of side payments. If player i offers a side payment to

player j such that

then player j will have sufficient incentive to switch actions and a coordinated strategy

results.

If side payments are offered blindly it could result in a situation where both players

offer large enough side payments to induce the other player to switch actions. To avoid

such situations we adopt the following convention.

Convention 3.1 When two players are offering simultaneous side payments, only

the side payment that maximizes Uj(ai) + ~i - Uj(aj) will be valid.

Furthermore, in order to defeat players that attempt to inflate side payments a second

convention will be adopted.

Convention 3.2 Player i cannot receive utility greater than Ui (an

Under this convention, the maximum side payment paid by player i will be equal to

Uj(aj) - Uj(ai). And since no side payment less than Uj(aj) - Uj(ai) is sufficient

to induce player j to switch actions, player i will either make a side payment of

Uj (aj) - Uj (ai) or O. (In this discussion, making a side payment is different than

offering a side payment, or making a side payment offer. Offers may be as large as

a player's credit allows, but the actual amount levied against a player is limited to

the actual utility differential for the other player.) These two conventions increase

the level of coordination between the players, resulting in increased communication

requirements, but they also provide safeguards on the system to prevent suboptimal

61



action choices. They approximately correspond to the rules for a Vickrey auction [40]

for control of the other player's action.

In using side payments for coordination an important issue is the source of the

utility that is being offered as a side payment. There must be some method of accruing

credit that can be offered as a side payment.

One possibility is to distribute utility that would be gained as a result of successful

coordination. In this case, the enhanced payoff matrix looks like

ai a~

a~ [U1(aL aD - ~I, U2(aL aD + ~1] [U1(aL aD, U2(aL a~)]

a~ [Ul(a~, aD, U2(a~, ai)] [Ul(a~, a~), U2(a~, a~))

where ~1 has been subtracted from player one's utility for the joint action (aL aD.
In [32] an axiomatic method of utility division, called the Shapley value, is derived.

So one method would be to divide utility according to the Shapley value among the

players. In general, however, this would require a large amount of communication.

In our development utility accrues in a credit account that can be used to make

future side payments. When player i receives a side payment, the side payment

amount goes into account Bi and can be used by player i to make a side payment

offer in a later game. Thus, in the above example, if after receiving payment offer ~1

player two decides to take action ai, its account B2 increases by ~1.

This method of side payment generation results in a net conservation of credit

within the system. New credit is injected into the system when current credit levels

are insufficient to establish coordination. If, for instance, ~1 was insufficient to induce

player two to choose ai, and if player two were similarly unable to persuade player

one to its preferred joint action, then the conflict would be solved randomly. No side

payment would be made, but credit would accrue to the account of the player whose

joint action was chosen against. In this way the system ensures there will be enough

credit to coordinate actions between the players.

62



Pareto Efficiency of Side Payment method

One of the optimality measures used frequently in game theory is Pareto efficiency.

Simply stated, a strategy is Pareto efficient (PE) if there does not exist a strategy

such that some player's (expected) utility can be increased without decreasing at least

one other player's (expected) utility.

The principle of dominance is related to Pareto efficiency. An action a strongly

dominates action a if

Action a weakly dominates action a if

and

We will focus primarily on strong dominance, and will sometimes refer to it simply

as dominance.

It can be shown that for a repeated play game with stationary payoff matrix the

side payment method described in Section 3.3 corresponds to a mixed strategy in

the joint action space. Specifically, for the two- player game it corresponds to the

strategy of choosing joint action aT with probability Pi equal to

where

Ui(ar) - Ui(aI)
Pi = U1(ai) - U1(a2) + U2(a2) - U2(ai)

-: {I ifi=2~=
2 if i = 1

(3.4)

This mixed strategy will be called the negotiated mixed strategy and will be

denoted a*. Determining whether the negotiated mixed strategy is Pareto efficient

provides some insight into the optimality of the side payment method.
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Consider the two-player, two action game with ideal actions ai and a;. Assume

ai =1= a; since if ai = a; no negotiation occurs. The expected per game utility to

player i of the side payment method or the equivalent negotiated mixed strategy is

(3.5)

with Pi as defined in Equation 3.4.

Without further assumption the distance from the negotatied mixed strategy to

the Pareto frontier can be bounded. Specifically, let d(a, a*) denote the Euclidean

distance in utility space

Since aT is the pure strategy that maximizes Ui(a), no action can result in utility

greater than [U1(ai), U2(a;)]. Let a[ be the (possibly) fictional action with utility

[U1(ai), U2(a;)]. Define d1 = (U1(ai) - U1(a*) and d2 = (U1(a;) - U1(a*) Then the

minimum distance from a* to the Pareto frontier

min d(a, a*) ~ d(a[, a*) = Vd12 + d22
aEAp

This principle is shown geometrically in Figure 3-1(a).

If there is no pure strategy solution that strongly dominates the negotiated mixed

strategy, then a tighter bound can be shown. Specifically, since no pure strategy

dominates the negotiated mixed strategy, for all PE pure strategies api' U1 (api) ~

U1(a*) or U2(apJ ~ U2(a*). Thus the maximum posssible PE pure strategy utilities

will be [U1(ai), U2(a*)] and [U1(a*), U2(a2)]. These are shown as points A and B in

Figure 3-1 (b). The minimum distance to the Pareto frontier is

where a[ is now the action defined by the projection of the negotiated mixed strategy
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Figure 3-1: (a) Loose bound on Pareto suboptimality of the negotiated solution (b)
Tighter bound on Pareto suboptimality when the negotiated solution is undominated

into the line defined by the points [U1(ai), U2(a*)], [U1(a*),U2(a;)). This is shown in

Figure 3-1(b). The bound is improved by at least a factor of 2.

Furthermore, if there exists a pure strategy that lieson or above the line defined

by [U1(ai),U2(a*)],[U1(a*),U2(a;)) then 1) it is a PE strategy and 2) it dominates

the negotiated mixed strategy.

The issue of dominance leads to an iterative solution method for the two-player,

two-action game.

1. Choose ai and a;

2. Determine negotiated mixed strategy a* using Equation 3.4

3. If undominated, negotiate; otherwise, limit action set to dominating actions and

~1.

Notice that since there are a total of four possible joint actions, and since aT can

not dominate a* for any i, the above algorithm will iterate at most twice. If in

step 3 there are dominating pure strategies, these correspond to actions that will

be mutually beneficial to both players in the long run. Therefore no side payments

should be necessary to induce the players to move from the negotiated mixed strategy
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to any of the dominating joint actions. Also, it is important to note that just because

a strategy dominates the negotiated mixed strategy does not imply that it is Pareto

optimal. The iterative algorithm will improve the solution suboptimality, but does

not guarantee a Pareto optimal solution.

From a distributed computation perspective, an important point is that it is not

necessary for player i to know the exact utility of player j for actions other than the

ideal actions ai and a;. This fact limits the amount of global computation and com-

munication necessary. In determining the set of actions that dominate the negotiated

mixed strategy, it is sufficient for each player i to broadcast the set of actions Ai such

that Va E Ai, Ui(a) > Ui(a*). The intersection of all such broadcast sets is exactly

the set of dominating actions. No communication of utilities is necessary.

3.3.2 Two-Player, Multi-Action Games

In light of the algorithm derived at the end of Section 3.3.1, extending the enhanced

side payment method to two-player scenarios with multiple actions is elementary.

The only difference is that it now may take several iterations of the algorithm before

final negotiation occurs. In fact, if the number of actions for player i is Ni then the

number of joint actions is N1 * N2. Each iteration of the algorithm elimiates at least

two actions from the feasible set (the two "ideal" actions). Therefore, in the worst

case there will be Nl ;N2 iterations.

As will be shown in section 3.3.3, the negotiated mixed strategy of each round

dominates the negotiated mixed strategy of the previous round (see Equation 3.7).

This fact can be used to further limit the amount of communication necessary to de-

termine the set of dominating actions (step 2-3). Because the utility of the negotiated

mixed strategy is improving, the set of dominating actions at round k will be a strict

subset of the set of dominating actions at round k - 1. This means that when agent i

broadcasts the set of actions with Ui(a) > Ui(a*) at round k, it need only broadcast

those that were in the previous round's dominating set.
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Generalized Pareto Bound

In the case of the two-player, multi-action game, there may be several rounds of the

algorithm before a non-dominated mixed strategy is found. When only one round of

negotiation occurs, the bound developed is Section 3.3.1 still applies, but the bound

must be modified to be generally applicable. We will delay extending the Pareto

bound until after the discussion of multi- player games (Section 3.3.3).

3.3.3 Multi-Player, Multi-Action Games

Generalizing the side payment solution method to games with more than two players,

each with an indeterminate number of actions enables application to realistic sensor

networks. In this case, at each iteration of the algorithm there are N bargaining

agents, each with an ideal joint action ai. Player i offers side payments to all the

other players in order to increase the attractiveness of ai. Generalizing Convention 3.1

to the multi-player case,

Convention 3.3 When N players are offering simultaneous side payments, only the

side payment that maximizes Lj#i Uj (aj) - Uj (an + ~i will be valid.

As in the two-player case, this convention prevents situations where two players are

induced to abandon their ideal actions by each other. Convention 3.2 need not be

generalized.

The negotiated mixed strategy (Le. the mixed strategy equivalent in expected

utility to the repeated play using side payments) plays action ai with probability Pi

(3.6)
Li#j Ui(ai) - Ui(aj)

Pi = Li Lj#i Ui(ai) - Ui(aj)

Now the algorithm proceeds as before. We now prove the following useful Lemma.

where Pi is given by

Lemma 3.1 At each iteration the Pareto suboptimality of the negotiated solution

decreases

Consider the negotiated mixed strategy at iteration k, ah. This mixed strategy is a

convex combination of the ideal pure strategies of all N players at round k. Let af*
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be the ideal action for player i at round k. Since only actions that dominated the

k - 1 round negotiated mixed strategy are considered in round k,

Therefore,

Ui(ak*) = LPj * Ui(aj*) > LPj * Ui(a(k-l)*) = Ui(a(k-l)*) (3.7)
j j

Since the expected utility for all players increases with each iteration, the actual

distance to the Pareto frontier must be decreasing. This proves Lemma 3.1.

At each round of bargaining, each player chooses an optimal joint action at. These

choices lead to a negotiated mixed strategy a*. Let the ideal actions at round k be

denoted a:* and the negotiated mixed strategy ah. Because only actions dominating

ak-1 are considered at round k,

(3.8)

where >- denotes dominance. Equation 3.8 implies

Furthermore since the set of actions considered in round k is a strict subset of the,
actions considered in round k - 1,

meaning each player's ideal utility is decreasing in the iterations of the algorithm.
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Let U(ah) be the vector of utilities of the kth round negotiated mixed strategy,

Ui (ak*), and define

Ul(a~*)

U2(a~*)

- k (3.9)U.=t
Ui(ak*)

UN (a'j;)

That is, U~ is the vector of ideal utilities, except with the ith entry replaced by the

utility to player i of the negotiated mixed strategy. Also, define Ak to be the set of

actions considered in round k (Le. the set of all actions such that U(a) > U(a(k-l)*)).

o
U(at*)

•

•• U2(a2*)
U(a2*)

U(a~)

•

o
U(a~*)

Figure 3-2: Two-player, multi-action utility space

The set {U~h defines an (N - 1) dimensional hyperplane, which intersects the

N-dimensional hypercube defined by the origin and the vector of ideal utilities at
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. U- kpOInts i.

We would like to show that the Pareto frontier lies within the set defined by

{U~}i,k and the positive orthant. We can then bound the pareto suboptimality by the

minimum distance between the final negotiated mixed strategy and the hypersurface

defined by the boundary of {U~h,k and the positive orthant.

Consider the set

where conv(.) denotes the convex hull and

UI (a(k-I)*)

U2(a(k-I)*)

(3.10)

with Ui(ao*) Do O. Uk is essentially an N-dimensional hypercube with its dominant

corner cut off by the hyperplane defined by {U~}~I.

Lemma 3.2 If a E Ak and does not dominate ak* then U(a) E Uk

Pf: Assume U (a) rt Uk. Since a E Ak,

by the definition of a~*, and

U(a) 2: U(a(k-I)*)

U(a) E H(U(a(k-l)*), U~)
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where H(x, y) is the hypercube with vertices defined by x and y. But

Therefore

But then a dominates ah, which is a contradication.

Using Lemma 3.2 and a backwards induction on the rounds of iteration, we can

show that all solutions lie within {Uk}. Therefore the Pareto frontier lies within {Uk}

which is equivalent to the space defined by the boundary of the convex hull of {U~h,k
and the positive orthant, establishing our result.

Theorem 3.1 For all a E A, U(a) E {Uk}.

Pf. Let K denote the final iteration of the algorithm. By definition,

Therefore, Va E AK, a E UK. Since UK C {Uk}

For general k, consider a E Ak. If a dominates ak* then a E Ak+l and by induction

a E {Uk}.
If a does not dominate ah then, by Lemma 3.2 a E Uk. Since Uk C {Uk},

and the induction holds.

We have proved a bound in utility space on the set of all actions. The distance

from a chosen action to the Pareto frontier is therefore bounded by the distance

from the action to the hypersurface derived in Theorem 3.1. Let P(U(a), F) be the
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orthogonal projection of U(a*) onto face F of the hypersurface. The distance to the

Pareto frontier of action a * is

min D (a, a*) ~ min D (P (a*, F), a *)
aEAp FEF

3.4 A Simple Demonstration of Side Payments

Consider a simple network consisting of two non-mobile, active sensors, shown in

Figure 3-3. Each sensor can choose to direct its sensing toward one of two locations.

Two areas are unique to the individual sensors, while a third is common between

the two. If the sensors choose to sense the common area they block each other and

neither is able to acquire a good measurement. If the sensors are not directed to the

same area they acquire normal measurements. All measurements take exactly one

time period, regardless of which area is being sensed, therefore maximizing the rate

of information acquisition corresponds to maximizing information gain.

C C

Figure 3-3: Simple cooperative sensor situation

This scenario, although contrived, represents a common situation in sensor net-

works (and in autonomous networks in general). Often, in order to meet system goals

such as quality state estimates or time or energy efficiency, sensors must work both
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cooperatively and competitively. In the case described above, sensors may be able

to increase their JARs if they are able to persuade the other sensor not to sense the

common area. By cooperating both sensors can accomplish their goals with greater

efficiency.

The payoff matrix for the scenario just described is shown in Table 3.2. Action

C represents directing sensing to the common area while action C corresponds to

directing sensing to the isolated area associated with the sensor. The rows are the

actions (or modes of operation) for 81 and the columns to 82 and the matrix entries

are (U1(a), U2(a)).

C C
C (a1,,8d (a1,,82)
C (a2,,81) (0,0)

Table 3.2: Simple game payoff matrix

The choice of action for this game depends on the relative quantities of aI, a2,,81

and ,82.

Case 1: a1 2: a2,,81 2: ,82 In this case the individually rational solution is (C, C).

This represents no conflict and so there is no incentive for either player to make side

payments. Each player chooses its maximum JAR. This is somewhat myopic since it

may result in a situation where conflict evetually arises. This is a limitation of the

single game with side payments method of solution.

Case 2: a1 < a2,,81 2: ,82 In this case the individually rational solution is (C, C).

There is no conflict in this situation, and both agents choose their maximum IAR.

Case 3: a1 2: a2,,81 < ,82 In this case the individually rational solution is (C, C).

Again, no conflict needs to be resolved, and both agents are able to choose their

maximum JAR action.

Case 4: a1 < a2,,81 < ,82 This case represents a conflict and hence can demon-

strate how the side payment structure from Section 3.3 resolves conflict in sensor

networks. For both agents, the maximum utility action is to choose C, but if both

agents choose that action neither receives any information and they effectively block
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each other.

There are multiple Nash Equilibria for this case. Two are the pure strategy equi-

libria: (C,C) and (C,C). These are what's known as unstable equilibria, because any

random perturbation of either player's strategy results in convergence to a different

equilibrium. This equilibrium, the stable equilibrium, is a mixed strategy, meaning

each action is taken with a certain probability. Let p be player one's strategy with P1

the probability of taking action C and P2 = 1 - P1 the probability of taking action C.

Similarly let q be player two's strategy with q1 the probability of taking action C and

q2 = 1 - q1 the probability of taking action C. It can be shown that the stable Nash

equilibrium is P1 = {3{31 and q1 = 01• (If 0:2 = 0, 0:1 < 0:2 => 0:1 = 0:2 = o. Therefore
2 02

player one has no utility for taking any action and it is a degenerate game. Similarly

for {32 = 0.)

Notice that if 0:1 = {31 = 0, meaning neither player has any utility for taking action

C, the stable Nash Equilibrium is P1 = q1 = 0 which corresponds to the pure strategy

solution (C,C). In this case playing the stable Nash Equilibrium prevents both players

from gaining any utility, play becomes deadlocked and the inference problem is never

solved. Obviously a strategy that plays the Nash Equilibrium will be significantly

suboptimal from a system perspective.

Consider the side payment method derived in Section 3.3.1. Since conflict exists

in Case 4 above, under the bargaining method each player will attempt to offer the

other a side payment in order to encourage it to switch actions. The revised payoff

matrix becomes
c C

C (0:1 + c;2, {31 + c;d (0:1 + c;2, {32)

C (0:2, {31 + c;1) (0,0)

where c;i is the side payment offered by sensor i. If offers are unconstrained, the bar-

gaining could result in a situation in which both sensors would choose to reconfigure

(if 0:1 + c;2 > 0:2 and {31+ c;1 > {32). However, generally if offers proceed incrementally,

one of the two will exceed the threshold before the other. If not, the two agents have

identical preferences and the choice can be made randomly. This payment method can
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also be seen as a Vickrey auction in which the winning bidder receives the privilege of

unimpeded access to the common area. The losing bidder also receives credit equal to

the difference between its two utilities. This credit can be applied to resolving future

conflicts.

3.4.1 Solution Performance

To demonstrate the effectiveness of the side payment method the cannonical problem

described in Section 3.4 was implemented in simulation.

In the simulation the "decrease in uncertainty" for each sensing modality is de-

terministic but not static. Let n; be the number of times player i takes action C,

and let n; be the number of times player i takes action C and successfully receives a

measurement. To model the fact that each successive measurement has less informa-

tion content (since it is more likely to include information that was part of a previous

measurement) we contract the decrease in unc,ertainty by Od with each measurement.

This implies that if the expected decrease in uncertainty prior to the first measure-

ment is 8J-Lo, the expected decrease after n measurements is 8J-Lo * ~=~~.Additionally,

we assume there is some joint information in the measurement area that is common to

both sensors, so when one player successfully measures the common area it contracts

the possible decrease in uncertainty for the other player by OJ. Let J-L be the current

level of uncertainty for each area, with J-Ll corresponding to the area unique to player

one, J-L2 the area unique to player two and J-L3 the common area. The system goal can

be written as the optimization equation

a* arg minaEAT (a)

s.t. max(J-L(a)) ::; 'Y
(3.11)

Using the principle of maximum IAR, and preserving the assumption that every

action takes exactly one time step, the individual agents attempt to maximize the
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information gain at each step. The change in information can be denoted

This leads to the payoff matrix for the single stage game of

(3.12)

(3.13)

1 2

1 (8tLL8tL~) (8tLL8tL~)

2 (8tLi,8tL~) (0,0)

One reason this scenario was examined was because an optimal solution can be derived

without resorting to combinatorial methods, enabling the computation of a subop-

timality ratio for each simulated environment. To simulate different environments,

the initial uncertainty of each of the three locations was randomly assigned. In all

simulations the rates of information contraction were constant (Od = .9, OJ = .99).

The results of over 300 monte carlo simulations are shown in Figure 3-4.

3

,2

~ 2
~
(ij

,~

c.
,g 1.5
:J

Cf)

-e- Side Payments
-e-Random
-e-Nash
-e-Minimax

0.5
2 4 6 8 10 12 14

# sensortime steps (optimal)
16 18 20

Figure 3-4: Suboptimalities for four algorithms
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As is evident from the Figure 3-4, the side payment solution method outperformed

the uncoordinated solution methods (random, minimax, and Nash Equilibrium). Ad-

ditionally, it should be noted that the Nash Equilibrium solution did not result in a

feasible solution in 8.9% of simulations due to deadlock, compared with 7.2% for the

random algorithm and 2.2% for the minimax algorithm. The side payments solution

method found a feasible solution in all of the simulations.

The mean and standard deviation of the suboptimality ratios for the various so-

lution methods are summarized in Table 3.3. Not only was the side payment method

closest to the optimal, it also performed the most consistently.

Side Payments Random Nash Minimax
Mean 1.0733 1.848 1.3363 1.6522
0"0 0.0839 0.6139 0.2228 0.4971

Table 3.3: Statistical comparison of solution methods

The Nash Equilibrium, minimax and random methods evaluated in Figure 3-4 and

Table 3.3 are all uncoordinated methods, so it is perhaps unsurprising that the method

of coordination through side payments outperformed them. Further comparison is

made in Table 3.4 of the side payment method versus other coordinated methods. In

the case of coordinated solution methods, conflicts are resolved through arbitration.

The method of arbitration varies with the various solution methods. In NBS the

Nash Bargaining Solution (a classical axiomatic bargaining solution) is found. The

NBS is a mixed strategy in the dual action space that satisfies specific axioms of

"fairness." In the Swap solution method, conflicts are resolved through turn taking.

If at the time of the Nth conflict player one prevails, player two will receive the

advantage in the (N + l)th conflict. This type of solution method takes no account of

individual utilities, and so will be of limited use in non- symmetric situations. Again,

the algorithms were run on approximately 350 monte carlo simulations with original

uncertainties distributed randomly.

The performance differential in this case was much less than with the uncoordi-

nated methods, but the side payment method still outperformed other coordinated
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Side Payments NBS Swap
Mean 1.0710 1.0992 1.09462
0"0 0.0910 0.1210 0.1205

Table 3.4: Statistical comparison of coordinated solution methods

strategies, despite requiring less communication than the Nash Bargaining solution
and being more generally applicable than the Swap solution.

3.5 Limitations and Possible Extensions
The above discussion and analysis has focused on the advantages of coordinating
sensor measurements through side payments, but there are significant limitations to
the method. It does require significant amounts of inter-sensor communication, which
may be problematic in networks where power consumption is an issue. The amount
of necessary communication can also potentially increase exponentially with the size
of the network, since conflicts may arise between any subset of two or more sensors
within the network.

The issue of agreement also has not been addressed, specifically as it applies
to distributed decision making. It was assumed that sensors did not begin taking
measurements until all conflicts have been resolved, all bargains have been made and
the network has entered a stable state. Knowing when such a state has been reached
is an issue of great practical importance in distributed systems [23].

In extending the above techniques, it may be fruitfulto consider strategic players.
In the above analysis, sensors took side payments only when the resulting enhanced
utility exceeded its currently expected utility. This is what's called a "price taking"
technique in the market-based literature. However, in non-stationary networks there
may be some benefit to planning when to take on credit based on a network model.
The results of [18] may be useful in analyzing such a situation.

The methods developed in this chapter have focused on strategic bargaining to
extend the maximum IAR principle derived in Chapter 2 to a setting in which mul-
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tiple sensors may be active at once. A strategic bargaining soultion was adopted

because of its ability to avoid conflict and encourage cooperation without massive

communication and computational overhead. The performance of the strategic bar-

gaining method was verified using monte carlo simulation on a cannonical problem of

sensor cooperation. In Chapter 4 results will be presented from more varied and re-

alistic sensor situations that will further support the use of side payments for conflict

resolution in sensor networks.
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Chapter 4

Simulated Implementation and

Results

4.1 Simulation Setup

To examine the effectiveness of the MIAR method of choosing sensor parameters de-

veloped in Chapter 2 and the multi-agent negotiation protocol described in Chapter 3

several simulations were developed. These experiments and their results are described

in this chapter. First the MIAR principle for parameter selection was tested for two

different single sensor problems described in Section 4.2, then the application of the

negotiation protocol was tested in two sensor network problems described in Sec-

tion 4.3.

4.2 Single Sensor Simulation

Both simulations described in this section utilize the same basic sensor model and

environment, described in the following sections.
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4.2.1 Simulated Environment

The simulated environment for these experiments consisted of a 2-D world in which

possible target locations were chosen randomly. In a battlefield scenario such "hotspots"

can often be determined using pre-deployment intelligence, taking into account such

factors as terrain type, road locations, foliage density, river paths and other environ-

mental considerations. Each location may be accompanied by a priori probabilities

for each target type. Thus targets corresponding to boats are much more likely to be

found in rivers than thick forests. This information is reflected in an initial probability

vector for each target location.

Figure 4-1 shows a sample problem space for the simulation. In this case, there

are ten possible target locations and one target. The target locations are shown as

circles while the target itself is shown by a star.
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Figure 4-1: Example of a simulated battlefield

4.2.2 Sensor Model

The sensor model consisted of two components: the measurement model and the

time model. Deployments of the sensor were assumed to consist of a center point and

a sensing radius r. Measurements were received for all locations within distance r
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of the center point according to the measurement model described in Section 4.2.2.

Also, as described in Section 4.2.2, all measurements for a single deployment become

available simultaneously upon completion of the deployment. The total time for the

deployment is modeled to depend on the chosen sensing radius r (but not the chosen

center point).

Measurement Model

Sensors were simulated to receive power measurements according to the equation

(4.1)

where for each sensor i, SN~(l) maps the set of target locations to lR+and'rJ is a zero-

mean, unit variance random variable. SNR was chosen to be a function of the survey

location l in order to model the effects of target occlusion and obfuscation on sensor

management. For instance, most sensors' SNRs are higher for targets in the open than

occluded targets (i.e. under camoflage, behind trees, etc.) For stationary sensors, the

effect of location on the target SNR may have less to do with occlusion than distance

from the sensor. The SNR in this case is assumed to decrease proportionally to the

inverse of the square of the distance of the target from the sensor. For each simulation

that uses this sensor model the SNRs will be specifically stated.

This measurment model was chosen for two reasons. First, it captures essential

sensor differences in a simple, one parameter equation. Second, it is a rough approx-

imation of the actual measurements of several types of active power sensors.

Time Model

The time for a single deployment of the sensor was modeled as the sum of two in-

dependent factors: preparation time and sensing time. The preparation time was

assumed constant (i.e. identical for each sequential deployment) and independent of

the deployment parameters (center point and radius). The sensing time was modeled

as a constant times the sensing radius r. For example, if a sensor surveyed locations
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(3.2,5.1) and (7.8,6.2), the minimum possible deployment radius covering these lo-

cations would be 0(3.2 - 7.8)2 + (5.1- 6.2)2)/2 = 2.37. The minimum deployment

time to acquire sensor measurements for these two locations would be a + b * 2.37.

For sensors that require significant amounts of pre- and post-processing, a will be

generally be large. Varying b can model different velocities in mobile sensors or the

rate of signal propagation for stationary sensors.

Single-mode Simulation

First, the MIAR principle was applied to the problem of choosing the center point

and radius for successive deployments of a sensor with a single mode of operation.

The perfomance of the MIAR algorithm was compared to two other algorithms: the

"random" algorithm, which chose randomly among a set of center points and radii,

and the "all in" algorithm which surveyed all locations with each deployment. The

problem was to correctly classify each of the randomly selected target locations de-

scribed in Section 4.2.1 as either being occupied by a target or not. The chosen

measure for this problem was the Shannon entropy of each possible target location.

Figure 4-2 shows sample trajectories of the decrease in entropy versus time for the

three different assignment algorithms.
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Figure 4-2: Sample entropy trajectories vs. time
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Algorithm Mean Time ao Time Max Run Time Min Run Time
Random 11944 3460 20978 6282
All in 4519 1195 8066 2259
MAIR 2519 479 3964 1766

Table 4.1: Statistics for 100 runs of single sensor, single mode simulation

The discrete jumps in Figure 4-2 correspond to the ending of one deployment time
and the beginning of the next. Each time new measurements became available they
were integrated into the probability mass functions with a corresponding change in
entropy at the survey locations.

Statistics for the different algorithms over 100 runs of the simulation are summa-
rized in Table 4.1.

The MIAR algorithm shows dramatic improvement compared to the "all in" al-
gorithm. This demonstrates that, in choosing how to deploy a single, mobile sensor,
the maximum IAR principle can improve the time efficiency of solving the inference
problem.

Of interest is how the time constants affect the performance of the algorithm.
Figure 4-3 shows how the difference between the "allin" and MIAR algorithms depend
on the ratio ~. The plots represent the average performance of the "allin" and random
algorithms relative to the MIAR algorithm. The error bars delineate two standard
deviations.

For values of ~ near zero, total time cost is dominated by sensing time. In this
case the difference between MIAR and both alternative algorithms is large. As the
ratio increases, the difference decreases. In the limit as ~ ~ 00 the diffence goes to
zero. This makes sense, since when a » b, the increase in E[t] due to adding a new
location is small compared to the increase in E[J.L(7r)], so the deployment chosen by
the MIAR algorithm will approximately correspond to the "all in" deployment. It
is interesting that the difference with the random algorithm also goes to zero. This
suggests that as the amount of time dedicated to non-transit activities increases,
the utility of any planning decreases. An algorithm that chooses which locations
to survey randomly performs as well as either the "all in" algorithm or the MIAR
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algorithm. The MIAR appears to be most relevant when the majority of time is spent

in surveying and measuring, not in preparation or post-processing.

Multi-mode Simulation

A second single sensor simulation was run to determine the MIAR algorithm's effec-

tiveness for managing modes in a multi-mode sensor. In this case, the single sensor

was modeled to have two modes: a wide area mode and a high resolution mode. In

the wide area mode, the SNR was lower, but so were the time constants a and b. This

represents a fast survey mode that can get measurements quickly, but with limited

quality. The high resolution mode, by contrast, takes a long time to get measure-

ments, but the measurements are of a higher quality. Table 4.2 summarizes statistics

from this simulation. The MIAR algorithm uses the MIAR principle to choose which

mode to use for each successive deployment, as well as which locations to survey.

The "high resolution" always chooses the high resolution mode, but uses MIAR to

determine the locations to survey. Similarly, the "wide area" always uses the wide

area mode, but chooses locations according to the MIAR principle.

Notice that, on average, the MIAR algorithm outperforms each of the modes
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Mode Mean Time (Jo Time Min Run Time Max Run Time
MIAR 5429 775 3957 7870
high resolution 5667 759 4280 7258
wide area 6529 1174 4583 10511

Table 4.2: Statistics for 50 runs of single sensor, muliple mode simulation

individually. This demonstrates that MIAR is effective at balancing the benefits of
multiple modes in a single sensor. Also, note that on at least one run the MIAR
was outperformed by the high resolution only algorithm. The optimality of MIAR is
dependent on several factors which were not necessarily satisfied in this experiment,
thus it can only be said to be approximately optimal in this case. The trial-by-trial
difference between MIAR and the two single mode algorithms is shown in Figure 4-4.
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Figure 4-4: Trial-by-trial difference in deployment times

4.3 Multisensor Simulation
Two experiments were run using the negotiation protocol described in Chapter 3. The
firstwas a simulation based on the problem formulation described in Section 3.4 and
used two stationary, homogenous sensors. The second was a difficultdiscrimination
problem using a group of heterogenous mobile sensors. The experiments and results
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Algorithm Mean Time 0'0 Time Max Run Time Min Run Time
Random 238.79 65.33 439 112
Nash Equilibrium 243.24 230.28 1858 65
Minimax 242.37 71.82 525 111
Exponential Appr. 153.38 41.17 368 61
Nash Bargaining 150.27 38.83 295 57
Multi-agent MIAR 149.57 40.82 367 55

Table 4.3: Statistics for 300 runs of homogeneous, multi-sensor simulation

are described in the following sections.

4.3.1 Homogeneous Multi-Sensor Experiment

The situation described in Section 3.4 was implemented in simulation. Rather than

the deterministic, abstract values given previously, the sensors were modeled using

Equation 4.1. The task was to determine whether a target existed at each of the

three locations. The sensors had an SNR of zero if no target existed and one other-

wise. Following the optimization formulation from Chapter 2 the task was declared

complete when the entropy of all locations was below a prespecified threshold. Sev-

eral of the schemes described previously were tested on this environment with results

summarized in Table 4.3

The "Exponential Approximation" algorithm in Table 4.3 approximates the opti-

mal algorithm described in Section 3.4. It uses a decaying exponential approximation

of the entropy as a function of the number of measurements thus far, and then es-

timates the remaining number of measurements necessary for each location. It then

coordinates the actions for the two sensors based on these estimates.

As pointed out in Section 3.4, the Nash equilibrium solution for this problem can

lead to deadlock. Of the 300 simulation runs, 28 (or 8%) resulted in deadlock under

the Nash equilibrium assignment. These deadlocks were not included in the results

summarized in Table 4.3.

As can be seen from the table, the negotation protocol described in Chapter 3

effectively coordinates the actions of the two sensors. It performs as well as the

other two negotiation schemes (Nash Bargaining Solution and Exponential Approx-
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imation) with less communication than the NBS and wider applicability than the

Exponential Approximation. The performance of the non-coordinated deployment

strategies (Random, Minimax, Nash equilibrium) was significantly poorer than that

of the coordinated strategies.

An additional experiment was run on the same environment using a variety of

target SNRs in order to determine how algorithm effectiveness varied with difficulty

of detection (lowering the target SNR increases the difficulty of detecting the target).

The mean times for each algorithm on 50 runs each of 16 different SNRs are plotted

as a function of increasing SNR in Figure 4-5.
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Figure 4-5: Algorithm effectiveness under increasing SNR

The effectiveness of MIAR negotiation appears to be independent of problem dif-

ficulty. The most striking feature of the figure is the tight grouping of coordinated

and uncoordinated algorithms. The three coordinated schemes were able to signifi-

cantly improve system performance over the three uncoordinated schemes. In fact, it

appears that for this environment, the minimax and Nash equilibrium methods were

little better than choosing random deployments, regardless of target SNR. In effect

the only real system improvement came through coordination by using a negotiation

protocol.
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4.3.2 Heterogeneous Multi-Sensor Experiment

To verify the effectiveness of the multi-agent extension of MIAR described in Chap-

ter 3, a discrimination simulation was designed and run. The simulation included

five heterogeneous, mobile sensors, each modeled using the sensor model in Equa-

tion 4.1. The world was a 5x5 grid consisting of zero to three point targets of type

1,2, or 3 randomly placed. The goal of the sensor group was to correctly detect and

discriminate all of the targets as quickly as possible. The uncertainty measure in this

case was the conditional Shannon entropy. The task was declared complete when the

entropy of each location was below a predetermined threshold.

The five sensors fell into two broad categories: two detectors and three discrim-

inators. The first detector was constrained to only survey all the possible locations;

this could model, for instance, a high-altitude or space-based sensor. The sensing

occured quickly (three standard time steps, or a rate of 8.3 locations per time step),

but the SNR was low (one if target existed, regardless of taget type, zero otherwise).

Additionally, if any of the other sensors were active during the sensing period the SNR

decreased to zero, even if a target existed. The second detector could choose any of

the nine 3x3 subgrids to survey. Its SNR was higher (three if target existed, zero

otherwise) but took two standard time steps to sense nine locations, or 4.5 locations

per time step. Despite being slower, this detector had the advantage that there was

no destructive interference from other sensors.

There were three discriminators, one for each target type. For its specific type

the SNR was five, while it was one for other two target types and zero if no target

existed. The discriminators could only survey one location per standard time step (as

opposed to 4.5 for the medium detector and 8.3 for the fast detector). Additionally,

if two discriminators were simultaneously deployed to the same location the SNRs

of each decreased so all targets had value one, and no target had value zero. If all

three discriminators measured the same location at the same time, the SNRs for all

sensors and all targets was zero. The statistics for this experiment are summarized

in Table 4.4
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Algorithm Mean Time (J'o Time Max Run Time Min Run Time
Random 874.06 146.76 1327 567
Utilitarian 94.74 6.6812 115 81
Multi-agent MIAR 124.52 10.96 165 107

Table 4.4: Statistics for 100 runs of heterogeneous, multi-sensor simulation

The Utilitarian strategy is a standard solution strategy in which the action that
maximizes the sum of agent utilitiesis chosen. Although it outperformed the multi-
agent MIAR strategy, it requires the same complete knowledge of the utility space
as other negotiation strategies. The relative inefficiency of multi-agent MIAR is the
tradeoff for it'ssignificant decrease in communication complexity.

4.4 Results Summary
The four experiments described in this Chapter demonstrate that 1) maximizing the
expected rate of information acquisition is a good method for choosing sensor deploy-
ment parameters and 2) the iterative negotiation protocol is effective from a system
perspective at coordinating the actions of sensors within a group without requiring
a large amount of inter-sensor knowledge. Future experiments should develop more
involved sensor models and more specific environments in order to determine the
applicability of these principles to specific problems of interest such as battlefield
awareness in specific environments. Hardware implementation could also help gauge
the feasibilityof the computational requirements of the algorithms.
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Chapter 5

Conclusion

5.1 Summary

The current proliferation of available sensors in military, commercial and industrial

environments provides great possibilities and also significant challenges. Sensors act-

ing together in a network can increase the probability of detecting rescue candidates

in autonomous search and rescue systems, tracking targets of interest in a battlefield

scenario, or discriminating between threatening and non-threatening individuals in

a security system. Such applications demonstrate the promise of networked sensing,

but the promise comes at a price. As sensors increase in complexity, integrating

multiple modes of operation into a single sensor suite, and especially as multiple, het-

erogeneous sensors are combined into a single network for solving a single inference

problem, a method of choosing the best possible modes for individual sensors and

combinations of modes for multiple sensors must be devised.

One of the first steps in deriving such a method must be to formalize the network's

objectives and constraints, resulting in an optimization problem. Three possible for-

mulations were suggested in Chapter 2: first, those that maximize some inference

metric such as negative Shannon entropy or probability of detection while achiev-

ing the constraints of limited network resources such as energy, bandwidth or time;

second those that seek to minimize resource consumption given a minimimum con-,
straint on some quality metric; and third, those that combine the quality metric and
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resource usage in a hybrid formulation. While much of the previous work in us-

ing sensor networks to solve inference problems has focused on the first and third of

these formulations, this thesis focuses on minimizing resource usage given a minimum

quality metric constraint. Specifically, the problem of achieving an inference metric

above some threshold in a minimum amount of time is proposed. It was then shown

that, under certain simplifying assumptions on the nature of inference metric and

the environment, and that no two sensors are simultaneously active, that the optimal

configuration is the one that maximizes the information acquisition rate (IAR). This

is a problem of immediate applicability in military and commercial security systems,

where decisions must be made rapidly and resources deployed to find a solution as

soon as possible.

Then, in Chapter 3 the principle of maximizing IAR was generalized to networks

in which multiple sensors can be simultaneously active. A game theoretic approach

was proposed under which each sensor is a player in the game, with possible actions

corresponding to the set of sensor deployment parameters. The problem becomes

that of determining an optimal joint action. A coordination protocol was derived

using a side payment technique to determine a negotiated mixed strategy based on

each players locally determined ideal joint action. The coordination method was then

enhanced to include an iterative refinment of the set of possible joint actions. It was

proven that for a general class of multi-player, multi-action, non-zero sum games, the

pareto suboptimaly (defined by Euclidean distance from the final negotiated mixed

strategy to the Pareto frontier) can be bounded.

Finally, the theoretical methods derived in Chapters 2 and 3 were applied in a

variety of simulated environments. The results of these simulations were presented

in Chapter 4, where it was verified by simulation that the maximum IAR principle,

combined with the game theoretic extension to multiple active sensors, is effective at

coordinating the sensing efforts of multiple sensors in a variety of situations.

The contributions of this thesis are of theoretical and practical importance. Sensor

networks are proliferating, but tools for efficiently using these networks are often

lacking. Network usage is often ad hoc and operator driven, necessitating human
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intervention at a rudimentary level of network operation. The proven ability of the

MIAR to quickly and efficiently utilize heterogenous groups of sensors to accomplish

an inference task is intended to relieve the burden on sensor network operators through

automating the control of sensing. The treatment has been systematic and directed,

but is in not complete, as is discussed in Section 5.2.

5.2 Future Work

This thesis leaves several avenues of research open for future work. Finding inference

metrics and environments that satisfy the independence assumptions from Chapter 2

is probably not possible. However, it may be possible to find metrics and environ-

ments that approximately satisfy the assumptions. Preliminary empirical results for

a detection problem with Gaussian noise indicate that the conditional entropy metric

adopted for the simulations in Chapter 4 can be approximated by a decaying expo-

nential in the number of sensor measurements given a constant mode of operation.

This corresponds to the non-stationary system analyzed in Section 2.4.2.

Another interesting area of further research is in analyzing the suggested solu-

tion to the constructed network game. Comparisons, both theoretical and empirical,

between the proposed method and other negotiation strategies could be made. Ad-

ditionally, further analysis could lead to refinements that integrate more complex

conditions on the pricing of actions, resulting in different negotiated mixed strate-

gies. Also, it may be interesting to examine how relaxing Conventions 3.1 and 3.2

affect the optimality of the final solution. For instance, if an agent is not constrained

to accept an offer that exceeds the difference between its ideal utility and its utility

under the offerer's ideal joint action, can the pareto suboptimality still be bounded?

This may relate to the ~ bound on strategic pricers derived in [17].

Finally, one of the best methods of furthering the research proposed in this thesis

will be in analyzing its effectiveness in real-world sensor networks. This includes

finding platforms that can support the computational requirements of the method,

defining problem situations that benefit from time minimal analysis, implementing
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the suggested algorithms and methods, and analyzing the resulting data to verify the

effectiveness of the group MIAR principle in directing coordinated sensing in sensor

networks. MIT Lincoln Laboratory has dedicated significant resources to this project

in its ISDS group. The principles developed here were developed with the intent of

future integration into real systems for automatic control of sensor networks. The

results of this integration should be significant.

96



Bibliography

[1] M. Andersson and T. Sandholm. Contract type sequencing for reallocative ne-

gotiation. In 20th International Conference on Distributed Computing Systems,

pages 154-160. IEEE, 2000.

[2] A.G. Barto, S.J. Bradtke, and S.P. Singh. Learning to act using real-time dyan-

mic programming. Artificial Intelligence, 72(1) :81-138, 1995.

[3] Ronald E. Bellman. Dynamic Programming. Princeton University Press, Prince-

ton, NJ, 1957.

[4] Dmitri P. Bertsekas. Nonlinear Programming. Athena Scientific, Belmont, Mas-

sachusetts, second edition, 1999.

[5] Dmitri P. Bertsekas. Dynamic Programming and Optimal Control. Athena Sci-

entific, Belmont, Massachusetts, second edition, 2000.

[6] Dmitri P. Bertsekas and John N. Tsitsiklis. Neuro-Dynamic Programming, vol-

ume 3 of Optimization and Neural Computation. Athena Scientific, Belmont,

Massachusetts, first edition, 1996.

[7] D.A. Castanon. Approximate dynamic programming for sensor management.

In 36th Conference on Decision & Control, pages 1202-1207. IEEE, December

1997.

[8] J .H. Chen, R. Anane, K.M Chao, and N. Godwin. Architecture of an agent-

based negotiation mechanism. In 22nd International Confernce on Distributed

Computing Systmes Workshops. IEEE, 2002.

97



[9] M. Chu, H. Haussecker, and F. Zhao. Scalable information-driven sensor querying

and routing for ad hoc heterogeneous sensor networks. Int'l J. of High Perfor-

mance Computing Applications, 16(3):90-110, 2002.

[10] Maurice Chu. A Hierarchical Framework for Constructing Computationally Ef-

ficient Algorithms for Distributed Inference Problems. PhD dissertation, Mas-

sachusetts Institute of Technology, Department of Electrical Engineering and

Computer Science, February 2003.

[11] D.J. Cook, P. Gmytrasiewicz, and L.B. Holder. Decision-theoretic cooperative

sensor planning. IEEE Transactions on Pattern Analysis and Machine Intelli-

gence, 18(10):1013-1023, October 1996.

[12] T. Dean, L.P. Kaelbling, J. Kirman, and A. Nicholson. Planning under time

constraints in stochastic domains. Artificial Intelligence, 76(1-2):35-74, 1995.

[13] E. Ertin, J.W. Fisher, and L.C. Potter. Maximum mutual information prin-

ciple for dynamic sensor query problems. In 2nd International Workshop on

Information Processing in Sensor Networks. IEEE, April 2003.

[14] Drew Fudenberg and David K. Levine. The Theory of Learning in Games. The

MIT Press, Cambridge, MA, May 1998.

[15] John C. Gittens. Multi-armed Bandit Allocation Indices. John Wiley & Sons,

Chichester, England, first edition, 1989.

[16] B. Grocholsky, A. Makarenko, and H. Durrant-Whyte. Information-theoretic

coordinated control of multiple sensor platforms. In Proceedings of the Inter-

national Conference of Robotics and Automation, volume 1, pages 1521-1526.

IEEE, September 2003.

[17] R. Johari and J.N. Tsitsiklis. Efficiency loss in a network resource allocation

game. Mathematics of Operations Research, to appear 2004.

98



[18] Ramesh Johari. Efficiency Loss in Market Mechanisms for Resource Allocation.

PhD dissertation, Massachusetts Institute of Technology, Department of Electri-

cal Engineering and Computer Science, May 2004.

[19] E. Kalai and M. Smorodinsky. Other solutions to nash's bargaining problem".

Econometrica, 43:513-518, 1975.

[20] Ehud Kalai. Solutions to the bargaining problem. In Leonid Hurwicz, David

Schmeidler, and Hugo Sonnonschein, editors, Social Goals and Social Organiza-

tion: Essays in Memory of Elisha Pazner, chapter 3, pages 77-107. Cambridge

University Press, Cambridge, first edition, 1985.

[21] Bernhard Korte and Jens Vygen. Combinatorial Optimization: Theory and Al-

gorithms, volume 21 of Algorithms and Combinatorics. Springer-Verlag, Berlin,

Germany, second edition, 2002.

[22] J. Liu, D. Petrovic, and F. Zhao. Multi-step information-directed sensor querying

in distributed sensor networks. In International Conference on Acoustics, Speech

and Signal Processing, pages 145-148, April 2003.

[23] Nancy Lynch. Distributed Algorithms. Morgan Kaufmann Publishers, Inc., San

Francisco, CA, first edition, 1996.

[24] G. Mainland, L. Kang, S Lathaie, D.C. Parkes, and M. Welsh. Using virtual

markets to program global behavior in sensor networks. In Proceedings of the

11th ACM SIGOPS European Workshop. ACM, September 2004.

[25] John F. Nash. Equilibrium points in n-person games. In Proceedings of the

National Academy of Sciences, 1950.

[26] R. O'Rourke. Transform and roll out: The usn's approach to change. Janes

Navy International, April 2004.

[27] Y. Oshman. Optimal sensor selection strategy for discrete-time state estimators.

IEEE Transactions on Aerospace and Electronic Systems, 30:307-314, April 1994.

99



[28] D. Penny and M. Williams. A sequential approach to multi-sensor resource

management using particle filters. In Proceedings of the SP IE International Con-

ference on Signal and Data Processing of Small Targets, pages 598-609. SPIE,

2000.

[29] Hans J .M. Peters. Axiomatic Bargaining Game Theory. Kluwer Academic, Dor-

drecht, Netherlands, first edition, 1992.

[30] R.L. Popp, A.W. Bailey, and J.N. Tsitsiklis. Dynamic airborne sensor resource

management for ground moving target tracking and calssification. In IEEE

Aerospace Conference, Vol. 3, pages 405-415. IEEE, 2000.

[31] M.K. Schneider, G.L Mealy, and F.M. Pait. Closing the loop in sensor fusion

systems: Stochastic dynamic programming approaches. In Proceedings of the

American Control Conference, 2004.

[32] Lloyd S Shapley. A value for n-person games. In H.W. Kuhn and A.W. 'lUcker,

editors, Contributions to the Theory of Games, volume 28 of Annals of Mathe-

matics Studies, pages 307-317. Princeton University Press, Princeton, NJ, 1952.

[33] D. Sinno and D. Kreithen. A constrained joint optimization approach to dy-

namic sensor configuration. In 36th Asilomar Conference on Signals, Systems

and Computers, pages 1179-1183. IEEE, November 2002.

[34] Merrill I. Skolnik. Introduction to Radar Systems. McGraw-Hill, New York, NY,

1982.

[35] K. Veeramachaneni and L.A. Osadciw. Dynamic sensor management using multi

objective particle swarm optimizer. In Belur V. Dasarathy, editor, Multisensor,

Multisource Information Fusion: Architectures, Algorithms, and Applications,

volume 5434, pages 205-216, Orlando, FL, USA, 2004. SPIE.

[36] John von Neumann and Oskar Morgenstern. Theory of Games and Economic

Behavior. Princeton University Press, Princeton, NJ, first edition, 1944.

100



[37] Abraham Waldo Sequential Analysis. Wiley, New York, NY, 1947.

[38] W.E. Walsh, M.P. Wellman, P.R. Wurman, and J.K. MacKie-Mason. Some eco-

nomics of market-based distributed scheduling. In 18th International Conference

on Distributed Computing Systems, pages 612-621. IEEE, May 1998.

[39] R.B. Washburn, M.K Schneider, and J.J. Fox. Stochastic dynamic programming

based approaches to sensor resource management. In Proceedings of the 5th

International Conference on Information Fusion, pages 608-615, July 2002.

[40] Gerhard Weiss, editor. Multiagent Systems: A Modern Approach to Distributed

Artificial Intelligence. The MIT Press, Cambridge, MA, first edition, 1999.

[41] J.L. Williams, J.W. Fisher III, and A.S. WilIsky. An approximate dynamic pro-

gramming approach to a communication constrained sensor management prob-

lem. In Proceedings of the Eighth International Conference on Information Fu-

sion, July 2005.

[42] N. Xiong and P. Svensson. Sensor management for information fusion - issues

and approaches. In Information Fusion, volume 3, pages 163-186, 2002.

[43] F. Zhao, J. Liu, L Guibas, and J. Reich. Collaborative signal and informa-

tion processing: An information directed approach. Proceedings of the IEEE,

91(8):1199-1209, August 2003.

101


	page1
	titles
	~I ~-- 
	IJVr~ 
	Accepted by .(._ '; .. '>~':'L'" ~~; .. \: .. " -./ .. -' .. : .. C . 

	images
	image1
	image2


	page2
	page3
	titles
	Dynamic Sensor Tasking in Heterogeneous, Mobile Sensor 
	Networks 
	by 
	Peter .Jones 
	Abstract 


	page4
	page5
	titles
	Acknowledgments 
	5 


	page6
	page7
	titles
	Contents 
	is 
	18 


	page8
	titles
	5G 
	GO 

	images
	image1


	page9
	page10
	page11
	titles
	List of Figures 


	page12
	page13
	titles
	List of Tables 


	page14
	page15
	titles
	Chapter 1 
	Introduction 
	1.1 Sensor Networks 


	page16
	titles
	1.1.1 
	General Sensor Network Issues 
	1.1.2 
	Examples of Sensor Networks 


	page17
	page18
	titles
	1.2 Scheduling in Sensor Networks 
	(1.1) 
	1.2.1 
	Static and Dynamic Scheduling 


	page19
	titles
	1.2.2 
	Scheduling in Deterministic Systems 


	page20
	titles
	1.2.3 
	Scheduling in Stochastic SystenlS 


	page21
	titles
	1.3 Proposed Methodology 
	1.3.1 Scenario 
	1.3.2 
	Measures of Information 
	p(x) = 0 


	page22
	titles
	(1.4) 
	tl(p(xlz)) = - J p(.rlz)log(p(xlz))d:r 
	1.3.3 Minimum Time Formulation 


	page23
	titles
	1.3.4 
	Approximate Dynamic Programming 

	images
	image1


	page24
	titles
	1.4 
	Simulated Experiments 


	page25
	titles
	1.4.1 
	Simulated Environnlellt 
	1.4.2 
	Simulated Sensors 


	page26
	titles
	1.5 Related Work 
	1.5.1 Scheduling in a Sensor Network 
	1.5.2 
	Sensor Network Resource Management 


	page27
	titles
	1.5.3 
	General Optimization 
	1.6 
	Contributions 


	page28
	page29
	titles
	1.7 
	Thesis Organization 


	page30
	page31
	titles
	Chapter 2 
	Dynamic Problem Formulation 
	2.1 Sensor Network Model 


	page32
	images
	image1
	image2


	page33
	titles
	2.2 Optimal Formulations of Inference Problems 


	page34
	titles
	2.2.1 Objectives and Constraints 
	34 


	page35
	page36
	titles
	2.2.2 Actions in Sensor Networks 


	page37
	titles
	2.3 Minimum Time Equation 


	page38
	titles
	2.3.1 Dynamic Program Formulation 
	J(7rt) = min (E[t(a)] + L p(z) * J(f(7rt, Z,Pi(Z\X)))]) (2.3) 


	page39
	titles
	Decision Space 
	Environment 
	2.4 Solution to the Minimum Time Formulation 

	images
	image1
	image2


	page40
	titles
	2.4.1 Optimal Actions in Deterministic Networks 

	images
	image1
	image2


	page41
	titles
	Also, let D = (/1(1f) -')'). 

	images
	image1
	image2
	image3
	image4
	image5


	page42
	titles
	JU2(1f) = -t2 = - 

	images
	image1
	image2
	image3
	image4
	image5
	image6
	image7


	page43
	titles
	2.4.2 Optimal Actions in Stochastic Networks 

	images
	image1
	image2
	image3


	page44
	images
	image1
	image2
	image3
	image4
	image5


	page45
	titles
	V Jr 3 a s.t. D = (/L(Jr) -,) = L:Di 

	images
	image1
	image2
	image3


	page46
	images
	image1
	image2
	image3
	image4


	page47
	images
	image1

	tables
	table1


	page48
	titles
	2.5 Conclusions 


	page49
	titles
	Chapter 3 
	Cooperation for Time Optimal 
	3.1 Introduction 


	page50
	page51
	titles
	3.1.1 Planning Paradigms 


	page52
	titles
	3.1.2 A Note on Terminology 


	page53
	titles
	3.2 Extending Maximum JAR to Multi-Sensor De­ 
	IN minaEAN E[t(a)] 

	images
	image1


	page54
	titles
	3.2.1 Monolithic Joint Deployments 

	images
	image1


	page55
	titles
	3.2.2 A Game Theoretic Approach to Maximizing Group 
	JAR 
	, 


	page56
	titles
	3.2.3 Uncoordinated Solution Methods 


	page57
	titles
	(3.2) 
	(3.3) 


	page58
	titles
	3.2.4 Coordinated Solutions 


	page59
	titles
	3.3 Increasing Sensor Utility through Side Pay­ 
	59 


	page60
	titles
	3.3.1 Two-Player, Two-Action Game 
	a~ [U1(aL ai), U2(aL ai) + ~l] [U1(aL a~), U2(aL a~)] 

	images
	image1


	page61
	images
	image1


	page62
	page63
	titles
	Ui(ar) - Ui(aI) 
	Pi = U1(ai) - U1(a2) + U2(a2) - U2(ai) 
	-: {I ifi=2 
	~= 
	63 

	images
	image1
	image2
	image3


	page64
	images
	image1
	image2
	image3


	page65
	tables
	table1


	page66
	titles
	3.3.2 Two-Player, Multi-Action Games 


	page67
	titles
	3.3.3 Multi-Player, Multi-Action Games 
	(3.6) 


	page68
	titles
	Ui(ak*) = LPj * Ui(aj*) > LPj * Ui(a(k-l)*) = Ui(a(k-l)*) (3.7) 
	(3.8) 
	, 

	images
	image1
	image2
	image3
	image4


	page69
	titles
	• 
	• 

	images
	image1
	image2
	image3
	image4

	tables
	table1


	page70
	images
	image1
	image2
	image3
	image4
	image5


	page71
	images
	image1
	image2
	image3
	image4
	image5


	page72
	titles
	3.4 A Simple Demonstration of Side Payments 
	C 
	C 

	images
	image1


	page73
	titles
	C C 


	page74
	titles
	c C 


	page75
	titles
	3.4.1 Solution Performance 


	page76
	titles
	1 (8tLL8tL~) (8tLL8tL~) 
	2 (8tLi,8tL~) (0,0) 

	images
	image1
	image2


	page77
	titles
	77 

	tables
	table1


	page78
	titles
	3.5 Limitations and Possible Extensions 

	tables
	table1


	page79
	page80
	page81
	titles
	Chapter 4 
	Simulated Implementation and 
	4.1 Simulation Setup 
	4.2 Single Sensor Simulation 


	page82
	titles
	4.2.1 Simulated Environment 
	4.2.2 Sensor Model 


	page83
	images
	image1


	page84
	images
	image1
	image2
	image3


	page85
	tables
	table1


	page86
	titles
	T 
	I 

	images
	image1
	image2


	page87
	titles
	4.3 Multisensor Simulation 

	images
	image1
	image2

	tables
	table1


	page88
	titles
	4.3.1 Homogeneous Multi-Sensor Experiment 

	tables
	table1


	page89
	titles
	o 
	's .. 
	.. ':g:.:.'I1 ..... 0 ..• 'k!li i ,8:': ::.: 'll'" 

	images
	image1


	page90
	titles
	4.3.2 Heterogeneous Multi-Sensor Experiment 


	page91
	titles
	4.4 Results Summary 

	tables
	table1


	page92
	page93
	titles
	Chapter 5 
	Conclusion 
	5.1 Summary 
	, 


	page94
	page95
	titles
	5.2 Future Work 


	page96
	page97
	titles
	Bibliography 


	page98
	page99
	page100
	page101

