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Abstract

Modern sensor environments often attempt to combine several sensors into a single
sensor network. The nodes of this network are generally heterogenous and may vary
with respect to sensor complexity, sensor operational modes, power costs and other
salient features. Optimization in this environment requires considering all possible
sensor modalities and combinations. Additionally, in many cases there may be a time
critical objective, requiring sensor plans to be developed and refined in real-time. This
research will examine and expand on previous work in multi-sensor dynamic schedul-
ing, focusing on the issue of near optimal sensor-scheduling for real-time detection in
highly heterogeneous networks.

First, the issue of minimum time inference is formulated as a constrained optimiza-
tion problem. The principles of dynamic programming are applied to the problem. A
network model is adopted in which a single “leader” node makes a sensor measure-
ment. After the measurement is made, the leader node chooses a successor (or chooses
to retain network leadership). This model leads to an index rule for leader/action
selection under which the leader is the sensor node with maximum expected rate of
information acquisition. In effect, the sensor and modality with the maximum ratio
of expected entropic decrease to measurement time is shown to be an optimal choice
for leader.

The model is then generalized to include networks with simultancously active
sensors. In this case the corresponding optimization problem becomes prohibitively
difficult to solve, and so a game theoretic approach is adopted in order to balance
the preferences of the several sensors in the network. A novel algorithm for multi-
player coordination is developed that uses iterative partial utility revelation to achieve
bounded Pareto inefficiency of the solution.
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Chapter 1

Introduction

1.1 Sensor Networks

A sensor network is any combination of two or more sensors capable of interacting
either directly through sensor-to-sensor communication or indirectly through central-
ized information sharing. Sensor networks come in many configurations and levels of
complexity. They may consist of a handful of individual sensors or several thousand
(or more). They may be homogencous (populated by identical sensors) or heteroge-
nous (populated by two or more types of sensors). The sensors themselves can range
from the simple, such as passive, single-mode magnetometers to the extremely com-
plex, such as airborne synthetic aperture radars (SARs) capable of operating in a
variety of modes and the ability to direct sensing to specific areas through beam
forming and radar steering.

But regardless of size, configuration, heterogeneity and sensor complexity, all sen-
sor networks face similar issues. All sensor networks are implemented with the goal
of observing the environment, taking measurements and infering some world state
from this information. Raw data collected by the sensor nodes must somehow be
culled and collated to form a unified estimate of the world state. A problem of con-
verting raw data into information is commonly called an inference problem. Some
examples of inference problems in sensor networks include the detection, tracking and

identification of targets of interest.
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1.1.1 General Sensor Network Issues

No network has infinite resources. All networks, whether simple or complex, must re-
alize a resource management strategy in order to accomplish the sensing goals such as
target detection, tracking and indentification. Besides limitations due to the number
of sensors available within the network, other constraints may include time, energy,
material cost, or communication. These constraints will be collectively termed costs.
Achieving sensing goals while minimizing costs requires careful planning and resource
management.

Resource management can be significantly complicated by network heterogene-
ity. If the sensor network is homogencous, meaning all sensors have essentially the
same capabilities, sensor management becomes arbitrary to a certain extent. In ho-
mogeneous networks, the network ability to achieve its goal is invariant under the
particular sensor chosen for each sensing task. In heterogeneous networks, however,
each sensor has unique abilities and limitations. This diversity disrupts the the net-
work assignment invariance. The number of possible combinations for scheduling can

quickly overwhelm the planning capabilities.

1.1.2 Examples of Sensor Networks

Sensor networks are becoming increasingly popular in military and industrial applica-
tions. Listed below are several examples of modern sensor networks, all dramatically
different in structure, but essentially similar in the purpose of trying to accurately
determine the current state of an environment of interest.

Ezample 1: Walmart recently announced that it will encourage all suppliers to
attatch RFID tags to their products. RFIDs are very simple scnsors with no power
source. They use the energy of a satellite radio wave to accomplish their task, which is
to geolocate themselves. This is an example of a homogencous sensor network, where
all sensors are essentially identical. The resources involved include the time it takes a
tag to respond to queries about its position as well as the energy cost of transmitting

the position. In this network, the inference problem is to determine where an item is
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at any given time. Using the RFID sensor network to solve this problem will result
in greater efficiency in Walmart’s supply chain, and lower overall product costs for

its consumers.

Ezample 2: The Advanced Network Technologies division of the National Institue
of Standards and Technology has ongoing research regarding the use of sensor net-
works for search and rescue operations. The networks would function in environments
unsuitable to humans, enabling search and rescue workers to penetrate hazardous en-
vironments and locate rescue candidates. Such a system was deployed by a team
from the University of South Florida following the collapse of the World Trade Cen-
ter buildings. A wirelessly connected group of moblie robots, ecach with several sensors
attatched, were used in the search the collapsed buildings for trapped victims. In this
case, the networks was small scale (5-10 robots) and mostly homogeneous (all robots
were similarly constructed and had similar sensing abilities). The goal of identify-
ing rescue candidates is time critical, since the longer the delay the less successful

eventual rescue will be. Therefore the primary cost to the network was time.

Ezample 3: The scenario of interest for this thesis, which will be described in more
depth in Section 1.3.1, is that of using sensor networks for battlefield awareness. In
this case, the set of sensors is heterogeneous and range from simple acoustic sensors to
highly complicated, satellite-based radars. Sensors in the network differ in their level
of mobility, their available modes of operation, and their ability to detect targets of
interest. The inference problems in this network include target localization, tracking,
and identification. The costs in this network are varied, including communication,
fuel expenditure, sensor detection and interference by the enemy and more. However,
as with the search and rescue example, in many cases the primary concern is one of

time, in that targets must be isolated and identified as soon as possible.

The above examples represent a small sampling of interesting sensor networks.
For a more complete discussion of areas in which sensor networks are being utilized,
see [13]. While the inference problems solved by sensor networks can vary as greatly
as the networks themselves, the fundamental issues of resource management and

achieving goals under cost constraints are relevant to all real sensor networks.
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1.2 Scheduling in Sensor Networks

Sensor networks generally must develop a sensor plan or schedule in order to achieve
sensing goals such as target detection. tracking and identification. The sensor plan
determines which resources should be used, in what order and for how long. The
sensor plan will directly determine how much time, energy and material cost the
network must use in order to achieve the sensing goals. The purpose of the scheduler
is to create a sensor plan which will minimize the cost required to solve the inference

problem. This can be represented by the equation
p" = argmin C(p) (1.1)
pernr

where C(p) is the cost (in resources) of executing plan p and /2 is the set of all plans
that result in the solution of the inference problem. A plan p consists of an ordered
set of actions, a;...ay. In the case of sensor networks, the actions are queries or
deployments of specific sensors. Each action may involve querying or deploying any
subset of the sensor network.

Despite the simplicity of the optimization equation, the job of the scheduler is
complicated by several issues, including the dynamics of the network, the stochastic
nature of sensor measurements, and the uncertainty in calculations of cost, current

knowledge state or both.

1.2.1 Static and Dynamic Scheduling

Algorithms for scheduling fall into two broad classes: static (open-loop) and dynamic
(closed-loop). Static scheduling is much simpler, but is limited in applicability because
it cannot react to unexpected changes to the system. Dynamic scheduling, while
significantly more complicated, is generally more robust due to its ability to adapt
during the course of plan execution.

In open-loop scheduling, the scheduler determines a complete plan prior to the

beginning of the plan execution. The plan cannot be modified once execution has be-
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gun. Open-loop scheduling has the benefit of simplicity and ease, and in deterministic
systems can guarantee achievement of the system goal. However, static programming
suffers from an inability to react to information obtained during the execution stage.
Additionally, in stochastic systems open-loop scheduling generally cannot guarantee
the eventual achievement of the system goal, since the results of actions are inherently
unpredictable.

Closed-loop, or dynamic, scheduling involves interleaving decisions with actions,
enabling the system to make scheduling decisions based on all information obtained
up to the current time. In this case, the scheduler can react to information obtained
during plan execution in order to ensure that appropriate actions are taken at cach
new step of execution.

Dynamic scheduling depends on the principle of optimality, first identified by
Bellman [3]. This principle states that if a path from a start state to a goal state
is optimal, then the subpath from any intermediate state to the goal state will be
optimal for the subproblem of moving from the intermediate state to the goal. Using

this principle we can modify 1.1 to read

ai = argmingea, (Cla) + C(plyy)) (1.2)
ay = argmingea, C(a)

N

and p; = {aj};o;-

C(a) is commonly refered to as the immediate cost and C(p;,,)
as the cost-to-go. Programs formulated as 1.2 are called dynamic programs and the

method of solving them is called dynamic programming.

1.2.2 Scheduling in Deterministic Systems

It can be shown (e.g. [5]) that in deterministic systems the optimal open-loop schedule
is equivalent to the optimal closed-loop schedule. In a degencrate sensor network
where all costs are known a priori and sensor measurements have no random clement,
there is no need for a scheduler to be reactive, since no unexpected information will

ever occur.
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Consider for instance a network populated by sensors, s¢y.a7). Suppose the infer-
ence problem for the network is to achieve a certain level L of confidence under some
measure. Each sensor contributes a deterministic “amount” of confidence [l; at a cost
¢; and the total confidence is Z:\;l lo, and the total cost is Z,\:1 ¢q,- This problem
can be mapped to a generalized knapsack problem which is exactly solvable prior to
the beginning of execution (although not in polynomial time). We will return to this

degenerate formulation in Section 2.4.1.

1.2.3 Scheduling in Stochastic Systems

In the case of stochastic systems, the optimal open-loop schedule will not generally
be equivalent to the optimal closed-loop schedule. In stochastic systems, total cost
can be improved by reacting to information gained during plan execution. From the
above example, if the “amount” of confidence from sensor i is non-deterministic, the
shortest path problem becomes a stochastic shortest path problem. Any static plan
in this system would suffer from an inability to react to an unexpected [,. Say, for
instance that in creating the static plan, the planner anticipated that after the first
k measurements the total level of confidence Zf__, [; would be equal to L and the
task would be complete. The optimal plan would not schedule any more actions,
since the goal would have been achieved and more actions would only increase the
total cost (assuming ¢; > 0 Vi). If, however, the actual level after & measurements
is L < L, a scenario which may occur due to the stochastic nature of /;, the optimal
static plan cannot schedule more measurements, and the sensing goal will therefore
not be achieved.

Scheduling in stochastic systems can be extemely complicated and computation-
ally intensive. The formalization of DP (dynamic programming) requires the consid-
eration of all possible action sequences that result in achievement of the goal state.
This can be improved somewhat by advanced techniques, but the inherent. complexity
is invariant to such techniques. This is particularly problematic for programs where
the set of possible actions is large. For the sensor network, the number of possible

actions at each decision stage is combinatorial in the number of sensors, resulting in
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a very large action set. In complicated stochastic networks methods of approximat-
ing the optimal solution are of great importance. Some approximate methods are

suggested in Section 1.3.4.

1.3 Proposed Methodology

1.3.1 Scenario

One interesting application of sensor networks is in the area of battlefield awareness.
Battlefield awareness is the ability of a military unit to accurately model the current
field of engagement, especially as regards the detection, tracking and identification of
targets of interest. This awareness is central to the success of military campaigns.
The proliferation of possible sensors for use in battlefield awareness has dramat-
ically increased the ability of military units to accurately model the field of engage-
ment. The challenge is to determine from among all the possible sensor deployments,
which deployment will achieve awareness goals while minimizing total system costs.
To better define this problem we must define the “awareness goals” of the system as

well as the system costs.

1.3.2 Measures of Information

One of the central problems of information theory is how to measure the information
content of a model. Examples of this problem include measuring how accurately a
quantized number represets a continuous number or how well an estimated probability
function represents a true probability function. The latter example is relevant to
the question of measuring the information in a sensor network tasked with target
detection. In this case, if we let X be the set of possible target locations, the true

probability function is

1 fre X {
p(x) = . (1.3)
0 otherwise
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Knowledge of this true state is obtained through a series of observations which are

aggregated into a conditional probability function p(x

z). where z is the set of ob-
servations. Information theoretic methods, including Shannon entropy and relative

entropy, can be applied to p(x

z) to measure how well p(r

z) approximates the true

probability function in Equation 1.3.

Let z = {2}, be the set of collected sensor measurements. Then, under the as-
sumption that sensor measurements are independent of one another, we can formulate

a Bayesian estimate of p(x) as
N
p(x|z) = o * py(x) H]),(:J;r) (1.4)
i=1

where po(z) is the a priori probability that x € X, N is the number of sensor
measurements, p;(2;|z) is the conditional probability of sensor measurement, z; given

z € X and « is a scaling constant.

There are several possible measures of the information contained in p(x

z). Per-
haps the most well known is the Shannon entropy, due to Claude Shannon, the father
of information theory. Shannon postulated that the information in p(x|z) is related
to the uncertainty in p(x|z). He then showed that the uncertainty of p(x|z) can be

measured using the negative of the Boltzmann entropy, or

p(p(ala) = = [ plala)iog(pista))dr

Thus, one way of formulating the inference problem is to declare it solved once the

entropy is driven below a threshold, i.e. pu(p(zr|z)) < ~.

1.3.3 Minimum Time Formulation

In the case of battlefield awareness, there are several possible cost formulations for a

particular sensor plan. In this thesis we will focus on the time costs of the system.
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Thus, the optimization equation 1.1 can be written
pt = arg miln Eft(p)] (1.5)
peb

The expectation E[t(p)] is necessary when the exact length of time between the
deployment of a sensor and the availability of its measurement is uncertain. For
most sensors, at the time of deployment only an expected time or range of times until
measurements are available is known.

Additional uncertainty comes from the stochastic nature of the sensors themselves.
Without loss of generality we can restrict our attention to sensors for which it is not
possible to know beforehand what a particular sensor measurement will be. (Infor-
mally, if a sensor’s measurement were predetermined and it was included in a sensor
plan, the sensor plan could be improved by removing the planned measurement, since
the sensor measurement cannot decrease system uncertainty and can only increase
the total time of plan execution).

Since the system is stochastic due to uncertainties both in the cost function and in
the future knowledge states (i.c. sensor measurements), a dynamic scheduler will be
able to achiever higher levels of optimality than a static scheduler (sce Section 1.2).
We can reformulate the time minimization problem in the form of Equation 1.2

a} = argmin (E[t(a) + t(p},,)]) (1.6)

a€A,

N _and N is the total number of actions in the sensor plan. This states

_ *
and p; = {a;},

that the optimal action at any given time is the one that minimizes the time it takes
to accomplish the action plus the expected time it will take to achieve the system

goal once the action has been taken.

1.3.4 Approximate Dynamic Programming

In solving for the optimal action a], two quantities must be calculated: the imme-

diate cost and the expected cost-to-go. Solving for the optimal cost-to-go involves
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constructing an optimal plan from the time the current action completes until the
system goal is met. This subproblem can become extremely complicated. Even in
simple scenarios it can be computationally prohibitive to solve this problem exactly.
Frequently, approximate methods must be introduced in order to decrease the com-

plexity of the problem.

The simplest approximate method is to assume the cost-to-go is neglighle. This
leads to algorithms which minimize immediate costs with no thought for future ben-
efit. These algorithms are generally called greedy algorithms. In the case of the
formulation we are considering, the greedy algorithm would result in a plan accord-
ing to the equation

a; = arg ‘]lléi‘? Elt(a)]

However, if we assume the null action (i.e. no sensors deployed) is always an option,
this greedy formulation will result in a plan in which no action is ever taken! Although
other greedy formulations can mitigate this effect, they all suffer from the problem of
neglecting the contribution of future states to the total cost of a sensor plan.
Another possibility is to approximate E[t(p!)] by some easily computable heuristic
function H(p;). Heuristic methods can significantly reduce the complexity of the sen-
sor planning problem itself, but introduce the problem of choosing which heuristic to
use. In general, the closer a heuristic comes to the ideal cost-to-go the better the re-
sulting algorithm performs. Simulation based methods and neuro-dynamic program-
ming are two heuristic methods that have proven effective at finding approximatly

optimal solutions while limiting computational complexity.

1.4 Simulated Experiments

Experiments were performed to verify the theoretical developments of this thesis. As
stated in Section 1.3.1 the scenario of primary interest is one of detecting battlefield
targets. The experiments were designed to imitate features of the battlefield awareness

problem and consist of both simulated sensors and simulated environments.
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1.4.1 Simulated Environment

The experimental environments were intended to model actual battlefield environ-
ments. The simulated tasks were primarily detection and discrimination tasks, al-
though other inference problems could also be tested in the same environments. The
environments consisted of a discrete number of possible target locations. Targets
could exist in any of the locations and could be of several types. A priori prob-
abilities for each target type at each possible location were known by the sensors.
The specifications of the environments for cach simulated experiment are given in

Chapter 4.

1.4.2 Simulated Sensors

Sensors were simulated to have a variety of abilities and limitations. Both mobile and
stationary, low and high power, single and multi-modal sensors were used in the simu-
lations. The sensor differences resulted in varying abilities regarding resolution, noise
suppression, and measurement time and range. The simulated sensor configuration,
including choice of sensing location and modality, affected the sensors’ probability of
false alarms or missed detections. This is true for real sensors. For instance, if the
magnetometer from [10] is deployed to a locality high in metallic concentration, the
probability of false alarm will increase dramatically. Similarly, if the airborne, bi-
modal SAR discussed in [30] operates in HRR mode over a forest, the probability of
missed detection will be increased due to foliage occlusion. This sensor/environment
dependence was simulated by assigning to each environment locality and each sensor
and mode of operation a Signal-to-Noisc ratio (SNR). High SNRs result in better

ability to detect targets. The specific sensor model is given in Chapter 4.
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1.5 Related Work

1.5.1 Scheduling in a Sensor Network

A starting point for this Master’s Thesis is Maurice Chu's doctoral thesis [10]. In
this work, Dr. Chu develops an optimal method for distributed inference in a large
scale sensor network. Additionally, he proposes a technique for sub-optimal inference
when only local knowledge is available, as when only a subset of the network sen-
sors report measurments. This may be planned (e.g. to limit power consumption),
or unplanned (e.g. sensor failure, network jamming, message loss). He uses a com-
binatorial approach to sensor planning, creating a complete set of sensor plans for
all likely sensor readings. He then derives a system of triggering events. The main
purpose of this system is to limit the amount of unnecessary information gathered
in the sensor network. Evaluation of these triggers can be distributed among net-
work nodes, minimizing the time necessary for detection. Foundational work for Dr.
Chu’s method includes [9, 43] where the Information Driven Sensor Query (IDSQ)
method for sensor scheduling was derived. IDSQ has been critiqued and expanded

upon in [13, 41, 22].

1.5.2 Sensor Network Resource Management

A central focus of the thesis is how to extend the information theoretic principles
derived in [9, 10] to a situation in which multiple sensors can be simultancously
active. In [42) many of the issues involved in multi-sensor management are surveyed,
including issues related to the optimal placement of sensors within an area of interest,
the benefits and constraints of decentralized control, and sensor cooperation.

In addition to inter-sensor management, the optimal choice of mode for a single
sensor is also relevant to the development. In [30] an optimization involving a single,
multi-modal sensor suite was presented. Additionally the issue of sensor placement for
mobile, active sensors described in {11, 16] can be considered as attempts to optimize

over a continuous mode of operation (in this case, geographical placement) in order to
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achieve goals which may change with time. The ability to optimize over continuous

modes is essential to planning in networks involving active sensors.

1.5.3 General Optimization

Applicable research not specific to sensors and sensor networks includes the theory
of dynamic programming (cf. [5]) and the closely related work in Markov Decision
Processes [12]. The basic theory of dynamic programming extends traditional opti-
mization analysis to a set of problems which vary with time. It provides a structure for
decision feedback and sequential decision analysis. enabling information to be incor-
porated in an optimal manner while it is being gathered. This applies directly to the
thesis, in which a sensor plan may need to be modified as new sensor measurements
are made and incorporated into the likelihood function.

Dynamic programming is a powerful tool, but can be computationaly prohibitive
to implement, particularly in problems where the state space is large. To address
this issue, learning algorithms have been developed to approximate the optimal so-
lutions found through dynamic programming. Neurodyanmic programming [6], or
“reinforcement learning” as it is somectimes known, uses neural network and other
approximation architectures to adapt dynamic programming methods to complex
environments.

Dynamic programming has been previously applied to sensor networks in [39, 31].
It has also been used to analyze single sensor management [7] as well as to general
real-time environments [2].

In addition to dynamic programming, other optimization techniques may be em-
ployed, particularly in optimizing the cost-to-go subproblem. These techniques may

include nonlinear, mixed-integer, and/or constrained programming [4, 21).

1.6 Contributions

Previous research in sensor scheduling has focused primarily on improving the quality

of inference [9, 13, 39, 10]. When resource costs have been considered they have been
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limited to power consumption due to communication [22, 41]. and have generally
been treated as constraints on the set of feasible solutions rather than as elements
of the objective. This thesis formulates the problem as one in which the quality of
the inference is the constraint, while the system cost is a function of the amount of
time the schedule takes. The primary objective is not to achieve a high quality of
inference independent of how long it takes, but rather to achieve a “good enough”
estimate as quickly as possible. Time minimization is fundamentally important in
many applications, and examining this formulation will expand the usefulness of

sensor networks in both military and industrial applications.

Additionally, the minimum time formulation necessitates a consideration of sensor
interactions. In much of the previous work in sensor networks, it is assumed that a
single “leader” sensor is active at any given time and all other sensors in the network
are inactive. This assumption simplifies much of the analysis, but in the formulation
for this thesis it significantly reduces the optimality of the solution. It is essential
to consider methods for sensor scheduling when multiple sensors may be active at,
the same time. Applying elements of game theory to this problem of multiple sensor

coordination is an important contribution of this thesis.

One of the central issues facing the United States military is the efficient use
of multiple sensor platforms. The past twenty years have scen an unprecedented
number of sensors developed for military application. There are sensors in the air, on
land, on sea, underwater and even in space. Each sensor has unique capabilities that
make it more valuable in some situations and less valuable in others. The wealth of
sensors available presents two significant problems: one, how to deal with the copious
amounts of raw data produced (so much that it often overwhelms human analysts);
and two, how to enable efficient sensor cooperation. Since the sensors were developed
individually they often suffer from what’s called stove-pipe sensing, meaning it is

difficult to use sensors cooperatively.

The principles derived in this thesis. especially the cooperative architecture de-
veloped in Chapter 3, address these two problems. Through increasing the antonomy

of the sensor network, less data need be analyzed by humans. The architecture also
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provides a framework in which several sensors can efficiently cooperate in a highly
dynamic and unknown environment. The contributions of this thesis will directly and
immediately influence the future development of integrated sensing platforms for the
U.S. military through ongoing research at MIT Lincoln Laboratory in the Integrated

Sensing and Decision Support (ISDS) group.

1.7 Thesis Organization

This chapter has served as an introduction to some of the issues involved in sceduling
sensor networks. Specifically, a cannonical detection scenario based on battlefield
awareness has been presented, an objective of minimizing time to reach an acceptable
state of certainty has been stated, and a method for accomplishing the objective has
been proposed.

In Chapter 2, sensor network inference problems will be discussed in greater detail.
Then the minimum time optimization formulation from Section 1.3.3 will be developed
and analyzed using methods from dynamic programming.

Chapter 3 will discuss the need for coordination in solving certain inference prob-
lems in sensor networks. It will then present a cooperative, distributed method for
achieving the optimal sensor deployments derived in Chapter 2.

Chapter 4 will introduce simulations used to verify the algorithm proposed in
Chapter 3. The simulation will consist of general classes of environments and a suite
of available sensors. Results from the simulation will be presented along with an
analysis of the observed strengths and limitations of the algorithm.

Finally, in Chapter 5 conclusions will be drawn as to the viability of the derived

algorithm and its possible extension to new domains.
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Chapter 2

Dynamic Problem Formulation

2.1 Sensor Network Model

As discussed in Chapter 1, an important use of sensors is in improving battlefield
awareness. Sensors currently used in this type of situation are highly varied and in-
clude both active and passive, mobile and stationary, single and multi-modal sensors.
Figure 2-1 depicts a typical battlefield scenario with a network made up of highly
varied sensors.

Each sensor in a network has a set of possible measurements it may receive. For
instance, the stationary magenetometer described in [10] measures either a 0 or a 1,
depending on whether any magnetic material is detectable in its area of observation.
A mobile radar has a different set of possible measurements, based in part on its
position, velocity, pulse frequency, dwell time and other operational paramaters [34].
Using such varied assets conjointly is made possible if the network is capable of
aggregating the various measurements into a single, universally understood model.

Consider sensor s; € S, where S is set of all sensors in the network. Assume s; has a
measurement model consisting of the 2-ple (Z;, pi(z|z)), where Z; is a set of possible
measurements, and p;(z|z) is the probability of observing measurement z € Z;, condi-
tioned on the true state z. Furthermore, assume that for all s; the set of possible true
states is fixed and known and that measurements are conditionally independent given

the true state, meaning that V 4, j pi;j(21, 22|z) = pi(z1|z) * pj(22|z), 21 € Zi, 20 € Z;.

31



Figure 2-1: Sensor network in a naval battlefield scenario (courtesy of [26])

Under these assumptions the network can maintain a global probability function
m(z|z) (where z = {z})¥,) if each time sensor s; obtains a new measurement, the
global probability function 7(x|z) is updated by the sensor to be the optimal poste-
rior probability function. For detection problems this would be accomplished by s;

calculating and then broadcasting to the rest of the network the Bayesian update

N+1y _ m(z|{za}h1) * i(2n41|T)
Tt ) = 5 Gl ) * el -

where zy,; is the most recent measurement observed by s;. In other inference situ-
ations (e.g. tracking, localization, discrimination) other update rules might be used,
but the process would be the same. The sensor taking the measurement updates
the (global) posterior probability function using its (local) measurement model and

the known update rule f(m, 2, p(z|z)). In general, the posterior distribution will be
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updated after the N** measurement by 7m(z|{z}\_,) = f(n(z|{z})}), zn, p(zn|T)).
An inference problem is defined by the 3-ple (X, po(z), f(-,-,)). X is the set of
possible decisions, corresponding to the fixed and known true states of the sensor
models, po(z) is the initial probability of each of the states and f(-,-,-) is the update
rule. An inference problem is solved by a decision rule D : [(X, po(z), f(-,+,)), 2] —

X. Thus, an inference problem is solved when one of the possible states is decided

for and the rest are decided against.

2.2 Optimal Formulations of Inference Problems

As stated in Chapter 1, an inference problem is any instance of converting raw data
to information. In the case of sensor networks, inference problems include transform-
ing a set of RFID tag responses to locations, determining the location of possible
victims from search and rescue robots’ sensor responses, or localizing, tracking and
identifying an enemy target within a battlefield. Inference problems are as diverse
as the networks used to solve them, but all inference problems involve the ability to
extract information from raw sensor data.

A sensor network’s capability to solve inference problems can be formalized as an

optimization problem. The most general format of an optimization problem is

g' = argmingex f(z)

(2.2)
st. g(z) e G

The function f(z) is called the objective function, g(x) is called the constraint
function or constraint and G is the constraint set. A solution z is called feasible if
g(z) € G, and the set F' = {z : g(z) € G} is called the feasible set. A solution z*
is called optimal if it is feasible and f(z*) < f(z) Vz € F.

In sensor networks, there is some variability in how the objectives and constraints
from Equation 2.2 are chosen. This variability results in a variety of optimal for-
mulations, each providing unique insight into the operation of the sensor network.

Which formulation should be used is dependent on the specific goals and design of
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the system.

2.2.1 Objectives and Constraints

As discussed in Section 1.1.1, there are several possible costs due to resource consump-
tion in a sensor network, including costs due to communication, time, and energy.
We will refer to these collectively as consumption costs. Additionally, inaccurate
solutions to the inference problem (e.g. missed detections, bad localizations, etc.)
carry some cost. We will term these quality costs. The objective function and the
constraints for Equation 2.2 derive from combining quality and consumption costs.

Different categorizations lead to different optimization formulations.

Minimum Consumption Formulation

A sensor network must consume some amount of its resources while solving an in-
ference problem, meaning it must use some amount of time, energy, communication
and so forth. In the minimum consumption formulation, the objective function is a
measure of the resource consumption of a network. The quality costs are incorpo-
rated through the constraint function. The goal under this formulation is to consume
as little as possible of the network resources under the constraint that the resulting
inference problem solution meet some minimum quality requirement. As an example
of a minimum consumption formulation, consider the following problem statement:
minimize the energy used in a network while guaranteeing a probability of detection
no less than . In this case the objective function is the energy consumed by the
network (a consumption cost), the constraint function is the probability of detection
(quality cost) and the constraint set is the set of all solutions with probability of
detection greater than or equal to 7.

One of the challenges of using a minimum consumption formulation for systems
with diverse consumption costs is in the determination of an objective function that
balances the consumption of the various resources. For instance, which solution has

lower cost: one that satisfies the constraint in 5 minutes using 1 W of power, or one
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that satisfies the constraint in 50 minutes using 1 mW of power? The answer depends
inherently on the purpose and design of the network. Aggregating consumption costs

into a single objective function can be very challenging.

Maximum Quality Formulation

In this case, the objective is to minimize the quality costs of the solution. Quality of
the solution refers to the probability of making a wrong decision. Take for example a
localization problem. The inference problem is to determine the location of a target.
The objective function might be the expected mean square error of the estimated
location from the true location. The objective function is a measure of the quality of
the inference problem solution.

In the maximum quality formulation the consumption costs are incorporated
through constraint functions. Thus, using the localization example, one constraint
might be that total energy expenditure in the network is less than £ mW, or that a
final estimate is reached in no more than 7" seconds. This formulation is particularly
appropriate in systems with strict resource constraints, such as sensor networks with
energy lifetime limitations or hard time constraints. It has the advantage of never
comparing minutes to milliwatts, because each resource can be constrained separately.
Thus we can constrain the total time to be less than T', the total energy used to be

less than F and so forth.

Hybrid Formulations

In some situations it may be beneficial to incorporate both consumption and quality
costs into the objective function and solve an unconstrained optimization problem.
In this case, the problem of disparate costs is increased, because the quality cost must
be explicityly traded off against costs measured in seconds or communication hops.
Aggregating these into a single objective function usually requires hand-tweaking
paramaters by an involved human, who makes the decision about how valuable each
factor is in determining “optimality.”

It is also possible to have a mixed hybrid equation in which some subset of the
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consumption and quality costs are considered constraints, while the rest are aggre-
gated into the objective function. For every inference problem there are multiple
possible formulations of the optimization equation, each with a different definition of

what objective is being optimized and over what set of constraints.

2.2.2 Actions in Sensor Networks

A sensor’s primary purpose it to gain information about its environment. This raw
sensor data is then processed in order to extract information about the true state of
the environment. This process of gathering data and extracting information is the
inference problem referred to in Section 2.1. In this model there is no specification of
how (i.e. in what order, under what parameters, etc.) sensors obtain measurements.
The determination of these quantities is the primary goal of optimization in the sensor
network.

Sensor actions may be defined differently depending on the network model. For
instance, in [35] sensor actions include taking a measurement, entering sleep mode,
aggregating several measurements, and sending a message to other sensors in the
network. In [9, 41, 13] sensor actions consist only of choosing the next “leader” for
the network. In [30] the choice is of which mode of the sensor to operate under
while taking measurements. Each of these choices for the set of actions in a sensor
network may be appropriate depending on the network under consideration. In this
thesis we combine the latter two models and consider the actions in a sensor network
to be choosing 1) the next “leader” for the network and 2) the mode in which the
“leader” should take its next measurement. In Chapter 3 we will revisit the limitation
of choosing a specific “leader” and consider models where several sensors may make
measurements simultaneously.

By the formulation above it can be seen that an action in a sensor network can
be represented as (s;, m) where s; € S and m € M; where M; is the set of all possible
modalities under which s; can take a measurement, or operate. An element of the set
M; is sometimes called a vector of operational parameters [33]. In a heterogeneous

sensor network each sensor may have a unique M;. It may include both discrete and
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continuous elements. For instance some radars have the capability of operating in
either GMTI or HRR modes. These are discrete modes. When operating in GMTI,
a radar may have the capability of operating in a range of pulse frequencies. This
is an example of a continuous mode. For sensors with several possible operating
modes, the set M; will be a complicated, nested data structure representing all of
the valid combinations of operating parameters. For mobile sensors, as well as static
sensors with steerable capabilities, one of the important operating parameters is which
physical locations to survey when taking measurements. The choice of this location
parameter is central to much of the development of this thesis.

Using the concept of modes we can enhance the measurement model given in
Section 2.1. Recall that the measurement model for s; was (Z;, p;(z|z)). Consider
now that the set of possible measurements in one mode of operation may not be
the same as the set of measurements in a different mode. Define Z;(m) to be the
set of possible measurements for s; under mode m € M; and Z; = ,,cpy, Zi(m)-
This definition partitions the measurement space among the several modes of sensor
operation. Also, p;(z|z) will depend on m which we will denote p;(z|z;m) meaning
the probability of sensor s; deployed in mode m observing measurement z when the

true state is x.

2.3 Minimum Time Equation

In much of the liturature dealing with inference problems in sensor networks (e.g. [9,
13, 27]), the optimization formulation used has been the maximum quality formulation
described in Section 2.2. This formulation is appropriate when considering a network
in which there are hard constraints on consumption (such as the energy lifetime of
low-power sensor networks). Hybrid formulations have also been analyzed in [41, 35]
in which consumption costs were considered as part of the objective in conjunction
with quality costs. However to the knowledge of the author, at this date no study has
been made of networks with a primary goal of minimum time inference. Under the

categorization from Section 2.2 this is a minimum consumption formulation in which
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the objective function is time and the constraint function is a measure of the quality

of the solution of the inference problem.

There are many possible measures of quality of the solution, including (but cer-
tainly not limited to) the Shannon entropy, relative entropy, probability of detection
or mean-square localization error. In general, quality costs or measures will be rep-
resented by p(D) where D is a decision rule as defined in Section 2.1. Frequently
the quality costs depend only on the posterior probability function, rather than the
complete decision rule. For simplicity, such measures will be denoted p(7(z|z)) where
m(x|z) is the posterior probability function.

Some quality measures such as entropy or localization error are inversely related to
quality (i.e. quality goes up as the measure goes down). Others, such as probability of
detection are directly related to quality. If the measure pu(7(z|2z) is of the former type,
then a typical quality constraint would be u(7w(z|z)) < . For measures of the latter
type, the constraint would be u(m(z|z)) > 7. In general we will consider measures of
the former type, specifically entropy measures such as the Kullback-Liebler distance

between the posterior density and the density representing the true state.

2.3.1 Dynamic Program Formulation

As discussed in section 1.3.3, inference problems for real sensor networks are stochastic
optimization problems and can therefore benefit from dynamic analysis. Specifically,
breaking the problem into a sequence of actions followed by observations and allowing
future actions to depend on previous observations allows for better solutions. A dia-
gram of the organization of a dynamic program is shown in Figure 2-2. In the figure,
a; is the i action taken, d; is the i*" decision and z; is the i sensor measurement

received.

Our dynamic optimization equation is then

J(m) =min | Bft(@)] + D p(z) x J(f(me, 2 pilzle)))] (2.3)

ZEZ,'(m)
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Figure 2-2: Dynamic decision flow

with J(m;) = 0 if pu(m) < «, and where m, is the posterior density at time ¢, t(a) is
the time it takes to perform action a, p(z) = > .y p(x) * p;(z|z) and f(m, z,p(2|7))

is the state update function defined by the inference problem (see Section 2.1).

2.4 Solution to the Minimum Time Formulation

In most cases, solving dynamic programs like that represented in Equation 2.3 re-
quires an insupportable amount of computation, necessitating the adoption of ap-
proximate methods, such as heuristics. However, under certain assumptions optimal
solutions can be determined a priori. In Section 2.4.1 a sensor network in which
all measurements are predetermined is examined. It is shown that if only one sen-
sor can be queried or deployed at a time and when u(m) — 7 is large relative to
E.[p(m) — u(f(m, 2,pi(2|z)))], the optimal action is the one which maximizes the
expected rate of decrease of p(m).

Then, in Section 2.4.2, the solution is extended to a limited number of stochastic
sensor networks, in which measurements are not predetermined. By analyzing this

limited set of (frankly, unrealistic) sensor networks, it is hoped that a heuristic can
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be developed for the general problem of time optimal inference in a sensor network.

2.4.1 Optimal Actions in Deterministic Networks

Consider a deterministic sensor network. For each sensor and each mode of operation

(s;;m), s € S,m € M; there is a predetermined measurement z. This corresponds to

a network where

1 if 2 € Zl(m)
pi(z|lz;m) =
0 otherwise

Furthermore, let the state update equation f(m;, z, p;(z|z; m) be such that

p(ms) — p(f(m, 2, pi(zlz; m))) = C(si,m)

Thus, for a given sensor and mode of operation the quality measure decreases by a
constant amount.

As before let an action a be the 2-ple (s;,m) and consider for the moment only
discrete sensor modes. The set of all possible actions for the sensor network is A =
Us,es{(8i,™m)}mens, and the total number of possible actions is |A| = SIS M| = N,
For each action a; = (s;,m) denote p; = C(s;,m) and denote the time necessary for
action a; as t;.

Equation 2.3 can be reformulated as
J(m) = min (¢ + J(f(m, ;) (2.4)

where J(m;) = 0if u(m;) < 7 and expectations and the dependance of the state update
equation on p;(z|z;m) have been dropped because of the deterministic assumption.
A pure strategy, u;, is one in which action a; is used exclusively. The cost asso-
ciated with a pure strategy is denoted Jy, (7). Let J*(m) be the optimal cost function
for probability 7. The maximal information acquisition rate principle states that,
under certain conditions, an optimal action is the one with maximium information

acquisition rate (IAR), where the IAR is defined as p; = ’:—’
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Proposition 2.1 For large enough T, if J*(w) > T,

. Hi
i* = argmax —

iEN t,’

Proof: Assume, WLOG that actions are ordered by

Pk BN (2.5)
t ty tn

Also, let D = (u(m) — 7).

Consider the (non-existant) instantaneous action @ with IAR g, = £2 and its

associated pure strategy u,. The cost of strategy us is

Jap(m) = %2 (2.6)

Let Jj.n (m) be the cost associated with the optimal strategy among all strategies

that don’t include action a;. I will first show that

Ja, (1) < Ty () (2.7)
Then I will show that, for D large enough,

Ty, (1) < Jg, () (2.8)

Proof of Equation 2.7

I will prove Equation 2.7 inductively on the number of times and action other than
a5 is taken. For the base case consider strategy o; where action a;,1 € [2: N] is taken
once and action @ is taken otherwise.

D — p; D Wi i

+t; = —19 — —to+t; = Jﬁz(ﬂ_) + 1t — —tl2 (29)
P2 2 H2 H2

Jor () =
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where the last step was accomplished by substitution from Equation 2.6. Now, by 2.5

Pi g P2y s By, (2.10)
t;  to 123

Combining Equations 2.9 and 2.10 we get

Jor (1) > Ja, () (2.11)

For the induction step, consider strategies o; and oxy1. Under oy, k actions other

than a, are taken. By an argument similar to the base case

J0k+1 (7‘—) = Jok (77) +t; — ﬁitZ

M2

Then, from Equation 2.10 it’s obvious that

J0k+1 (W) > Jﬂk (ﬂ-)

Thus
Jo () > Jap(m) V K

For all 7, the optimal strategy among all strategies that don’t include a, is in o} for

some k. Therefore

Ja, () < J[*2;N] (m)

Proof of Equation 2.8
Repeating Equation 2.6
Ty =2, =2
H2 P2
Consider the pure strategy u; in which only action a, is taken. The cost for strategy
up is

T () = [E]tl (2.12)
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By simple algebra we have

D D
Jul (71') S —tl + tl = — + tl (213)
M P1
If 7 is such that
t D D
D>g—1=—2>—+t
2 p1 P2 P1

then, from Equations 2.6 and 2.13

Jul (ﬂ-) < Jﬁz (7T) (214)

Together, Equations 2.7 and 2.8 imply that, if u(7) — «v is large with respect to the
inverse difference of the inverse of the two greatest IARs, then the optimal action
sequence will include the action with maximum IAR. Furthermore, since all results

of actions are deterministic, action order is superflous. Therefore if

1 = arg max p;
giE[l:N]p2

then action a; is an optimal action for the network.

The maximum network IAR is what is called a dynamic allocation index, or a Git-
tens index [15]. Gittens’ indices are solutions to a wide range of dynamic problems
in which time is a factor. It should be noted that the inference problems in sensor
networks do not generally satisfy the requirements for an optimal Gittens index so-
lution. Particularly, if the sensor model for the network is not known, but is being

discovered, then the index solution dervied above may be significantly suboptimal.

2.4.2 Optimal Actions in Stochastic Networks

We can extend the above analysis to include cases in which both the time required
to take each action, t;, and the subsequent decrease in uncertainty for the inference
problem, p;, are random variables. Making these values random variables allows

for a more realistic representation of a sensor network. Results similar to those from
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Section 2.4.1 can be derived as long as the random variables are assumed independent.
First, the results will be extended to stationary systems where the expected values

of the random variables remain constant, then to a set of interesting, non-stationary

systems.

Stationary Systems

In the case of stochastic systems with constant mean, the cost function 2.3 can be

written as

J(r) = min (Eft; + J(f(r, ) (2.15)

i€l:N
where J(7) = 0 if p(7) < . This is exactly equivalent to Equation 2.4 except that

the cost is now taken under an expectation on both the immediate time cost of action

1 as well as on the future cost-to-go.

Proposition 2.2 For large enough T, if J*(w) > T,

£

i

i* = argmax F|
ieN

Proof: Since E[u;] and E[t;] are assumed independent the cost of pure strategy u; is

Tou(7) = [-_,%]w[m (2.16)

Ju; () can be bounded by

D
Ju,- (ﬂ') S E_[p_j + E[tI]

where p; = £, Again, assuming Equation 2.5 and assuming that

Bl _ D D

D> > + E[t1]
E[}o—ﬂ - ﬁ Elps) ~ Elpi]
we have the result
D D
Ju < + Eft1] < = Ja,(m) 2.17
1(77) = E[Pl] [ 1] E[pz] ( )



where 1, is the instantaneous pure strategy with IAR equal to py. Consider the space
of all strategies that only include actions ajz:n) as well as action a;. The cost for

strategy o from that space is

N

ZmE[t 2 (218)

zlpl

where o; represents the number of times q; is taken (to simplify math, o, is assumed
to be the number of times action @, is taken) and D; = E[w;] * 0;. Since pa > p3 >

* > PN

:Zp’ Z )if D= ZD (2.19)

i=1 i=1

Furthermore, since action a, has instantaneous cost

Vwﬂas.t.D:(u(w)—7)=ZDi

Equations 2.17 and 2.19 together imply that, for D large enough and for constant

and independent E[u;], E[t;] Vi, an optimal action is the one that maximizes E{p;].

Non-stationary Systems

Sensor systems are, in general, non-stationary. If sensor s; is queried once, the ex-
pected decrease in uncertainty is p;. If sensor s; is queried again with the same param-
eters the expected uncertainty decrease will not generally be u;. To more acurately
model the decreasing utility of actions, the following non-stationarity assumption will

be made.

Assumption 2.1 Each time action a; is taken, the corresponding ezpectation of de-
crease in uncertainty, E[u;) contracts by a. All other random variables remain sta-

tionary.

The dynamic program is still as in 2.15

J(m) = mn}},(E[ti + J(f(m, a:))])

i€l:
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but the expected decrease in uncertainty is no longer constant.

Let o be a vector such that o; is the number of times a; is taken. Also, denote
the initial expected decrease in uncertainty due to action a; as E[u;]. If the initial

uncertainty of the system is pu(w), the expected uncertainty after taking the actions

specified by o is

Blu(r)] = wlm)— Y (Bl Y o) (220)
= ) - 3 (Bl (2.21)

The expected time under strategy o can be written as

N
Jo(ﬂ') = Z O'iE[ti]
i=1
with the understanding that Eu(m,)] < ~]. The optimal cost can be written

J*(m) = min J,(m)

L))

which can, in turn be rewritten as the program

mino " E[t]
ocED
il 1—-a%
st Y (Bl * ——)>D
i=1

where D = p(w) — . Since « is constant, the constraint can be rewritten as

(Ew]* (1 —a™)) = D(1-a)

E

I

i=1

(Elw] - Epda™)) > D(1-a)

.
Il
—

M=
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The constraint is non-linear in o. Consider instead the linearized system, where the

a% terms are linearized about the nominal point ¢ = 0. The resulting constraint is

N
Z (E(w) — Elp])(Ina)o; > D(1—a) (2.22)
—(Ina) * Z Elp)(o:) > D(1—a)— Z Elpi] (2.23)
Y Elle) 2 (Y Bl -Di-a)  (220)

where, in the final step, the inequality doesn’t change directions since —Ina > 0.
The constraint is now the same as in the stationary case, except that strategy o must
satisfy Equation 2.24 rather than Zf\;l Elu;)(o;) > D. Letting

1 N

D= E—E(Z Elp] - D(1 - a))

the analysis for the stationary case demonstrates that an optimal action for the lin-
earized system is the one that maximizes the expected IAR. Unlike the systems ana-

lyzed previously, this may not always be the same action, due to the decreasing value

of Efp).

One caveat must be made in non-stationary systems that follow the model de-
scribed above. Due to the asymptotic properties of the expected decreases in un-
certainty, it is possible that the set of feasible solutions to the dynamic program is
empty. If ¥ E[u;](s2) < D there is no action sequence that leads to a solution of
sufficient expected certainty. This can be addressed by adding the system constraint

that

D(1—a)> Z Elu

This constraint will also ensure that D> 0.
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2.5 Conclusions

We have shown that in specific types of sensor networks when the distance between
the current uncertainty and the threshold is large, the optimal action is the one that
maximizes the rate of information acquisiton. This can be compared to the results
in [41] where IDSQ is extended to include communication costs. While the above
discussion focused on costs due to time, it could be easily extended to situations
where the main cost is communication as in the networks considered in [22, 41]. In
Chapter 4 the IDSQ algorithm will be compared to the above formulation through
simulation.

The maximum IAR principle is particularly well-suited to sensor network appli-
cations because it can be implemented in a distributed fashion. Because the optimal
solution is the one with maximum IAR, if the assumption is made that a sensor’s
IAR is independent of other sensors, each sensor can calculate its own optimal IAR
among all its possible modes of operation. A distributed leader election algorithm [23]
can then be used to nominate the sensor with maximum individual IAR. Finding the
maximum IAR for a single sensor will generally involve a non-linear optimization
problem. Interior point methods [4] and randomized solution methods may need to
be used in order to find the operating mode with maximum IAR. Due to the com-
plexity of the solution methods, finding the utility of the maximum IAR method may
be limited to sensors with significant computational ability.

One assumption made in the much of the sensor network literature (e.g. [9, 27, 41])
as well as in the preceeding derivation of the maximum IAR principle, is that only one
sensor, called the leader, is active in a network at any given time. In networks where
the primary goal is to approximately solve an inference problme in minimum time
this assumption may be prohibatively limiting. Chapter 3 will show how to extend
the principle of maximum IAR to networks in which several sensors can operate

simultaneously in order to cooperatively solve the given inference problem.
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Chapter 3

Cooperation for Time Optimal

Inference

3.1 Introduction

In Chapter 2 problems of inference in a sensor network were formulated as a dynamic
program. Specifically, a minimum time optimization problem was formulated as a
dynamic program. The program was then solved for single sensor deployments in
both deterministic and stochastic networks.

The simple index rule solution presented in Chapter 2 can be complicated in
networks where sensors interact. When two sensors operate simultaneously in the
same area there is the possibility of sensor interaction. This interaction may be
constructive or destructive.

Ezample 1: Constructive Interaction Consider three ground vehicles equipped
with video sensors and tasked with locating a target of interest. By coordinating
their sensing, the three sensors are able to triangulate the target location with a
high degree of certainty. But when any one sensor doesn’t participate in the sensing,
triangulation is no longer possible and the localization is much less accurate. The
three sensors were able to use simultaneous sensing to achieve a level of certainty
greater than any of the three acting singly.

Ezample 2: Destructive Interaction Consider two sensors deployed in an effort to
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discriminate a target. The first is a ground vehicle equipped with an X-band radar.
The second is an airborne asset, also equipped with an X-band radar. The result of
both radars being active in the same place and at the same frequency is that neither
can sense the target due to in-band radar interference. Each sensor is effectively
jamming the other, resulting in a decreased ability to sense the environment. In this
case, the result of deploying multiple sensors was worse than deploying either sensor
singly.

These two examples demonstrate the need for coordinated solutions in sensor
deployments. In order to maximize the rate of information acquisition, the sensors
must cooperate both to take advantage of situations in which constructive interaction

is possible, and to mitigate situations in which negative interaction occurs.

Encouraging cooperation between autonomous agents is an area of active research
both in the areas of engineering and computer science [40], as well as in social science
and economics [20]. Much of the previous work in sensor networks has focused on
solutions in which only a single sensor can be active at any time [9, 43, 27], which
prohibits the possibility of meanigful cooperative sensing. In certain sensor network
applications, the assumption that only one sensor is active can be justified, but many
sensor networks have the capability to support the deployment and querying of several
sensors simultaneously. This will particularly be true for sensor networks for which
the main objective is to approximately solve an inference problem as quickly as pos-
sible. Such networks can sometimes significantly reduce time by deploying sensors

simultaneously in a coordinated manner.

One of the challenges of optimizing joint sensor deployments is the combinatorial
growth of the action space, resulting in a very complex global optimization problem.
In [33] this global optimization is recaste as a constrained joint optimization problem.
Unfortunately, the solution derived depends on isolating control parameters, a user-
defined process that significantly limits network autonomy. Also, the final algorithm
lacks scalability and can not be easily distributed among sensor nodes. Attempts at
solving the global optimization using evolutionary algorithms and particle swarms (35,

28] are similarly limited in application to networks with centralized information and
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computation. Other attempts at optimal joint deployments were made in {16, 11].

One possible solution to the global optimization problem is to apply the principles
of welfare economics and game theory to sensor networks. The applicability of game
theoretic solutions to problems of measurement acquisition, aggregation and routing
in sensor networks has been demonstrated in [24, 17, 8]. Game theoretic models are
attractive in that they are highly distributable and often require only limited global
information, making them well-suited for solving complicated problems of distributed
optimization, such as those found in sensor networks.

The coopertive algorithm described in this chapter uses individual agents IARs
as utilities for actions in the joint action space. First, in Section 3.2, the principle
of maximum JAR is extended to the space of multiple sensor deployments. Then, in
Section 3.3, a method of encouraging cooperation through the use of side payments is
set forth. The method allows sensors to increase the desirability of actions for other
sensors that are advantageous to itself. In Section 3.4 the side payment principle
will be demonstrated using a cannonical, two-sensor system with inherent conflict.
Finally, in Section 3.5 limitations and possible extensions of the algorithm will be

proposed.

3.1.1 Planning Paradigms

As was pointed out in Section 1.2 due to the stochastic nature of the inference prob-
lems they attempt to solve, real sensor systems can benefit from dynamic feedback. In
Chapter 2 dynamic programming was used to find an optimal solution for networks
in which no two sensors were simultaneously deployed. Even with the simplifying
non-simultaneous assumption the computational load of complete dynamic program-
ming was prohibitive. Therefore an index rule that maximizes the rate of information
acquisition was adopted as an approximate solution that is computationally feasible.

In networks when multiple sensors are simultaneously active the computational
problems of dynamic programming are exacerbated. Although simplifying assump-
tions analagous to the non-simultaneous assumption can be made (see Section 3.2.1),

the dimensionality curse makes exact dynamic programming infeasible. However,
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even though exact solutions can not be formulated, the principle of dynamic feedback
can still improve system performance.

In [5) a method for scheduling called Open-Loop Feedback Control is suggested
as a suboptimal alternative to exact dynamic programming. In OLFC a control is
applied (i.e. actions are chosen) without consideration for future information. This is
the Open-Loop portion of the planning method. Then, each time future information
becomes available, the control creates a new plan based on all available information
(including the information that just became available). This is the Feedback portion
of the method. Thus in OLFC, as with exact dynamic programming, actions are
dependent on observations and the system is reactive to received information; but
the computational burden is significantly reduced from exact dynamic programming
because of the simplicity of open-loop planning.

We have adopted a solution method similar to OLFC. At each iteration of the
planning algorithm a joint action is chosen for the sensor network. Then, when
new information becomes available through sensor measurements a new action is
chosen. The mechanism for choosing actions is not, however, the exact solution of
an optimization problem (as in OLFC). Instead the principles of game theory are
employed. The reasons for this choice are discussed in Section 3.2.2.

To summarize: a type of open-loop feedback control will be used in which each
time new sensor measurements become available the sensors in the network choose a
new deployment configuration by playing a game. The rules of the game are defined
in Section 3.2.2. This game will be replayed every time the (global) posterior density
function is updated (i.e. each time new sensor measurements become available). This

approach is a compromise between optimality and computability.

3.1.2 A Note on Terminology

In the sequel, the terms sensor, agent, and player will be used somewhat inter-
changably. I've attempted to use “sensor” when referring to the physical realities
of the sensor network, “player” when referring to game theoretic principles relating

to the network, and “agent” when referring to general principles of autonomy within
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the network. These terms all refer to the same physical quantity, which is a single
sensor that can operate in one of several modes. Also, the term “configuration” is
meant to imply the selected mode of operation for a sensor or group of sensors. It is

not limited to the physical placement of the sensors, but can include any variable of

operation present in the sensor(s).

3.2 Extending Maximum IAR to Multi-Sensor De-

ployments

When more than one sensor can be active within a network, the question arises of how
to formulate the dynamic program in a meaningful way. From a general standpoint,

the dynamic equation from Chapter 2 can be recaste in terms of available assets.

Ji(ms, Dy) = mingeq, (Eft(a) + Jes1(mer1, Det)))

(3.1)
JINn = minaGAN E[t(a)]

where D, represents the set of deployable sensors and is updated according to the

equation

Dy = {D\as} U {s..,,}

As in Chapter 2, the state variable 7, is the (global) posterior probability distribution

for the inference problem and is updated by equation

T4l = f(7rta Zap(zlx))

where f(m;, z, p(z|z)) is a given update function such as Bayes rule.

The action space in Equation 3.1, A, is no longer limited to the various modes of
each individual sensor, but is now the set of all combinations of deployable sensors,
with each sensor possibly configured in any of its modes. One of the difficulties in
deploying sensor groups is the high dimensionality of the action space [35].

On of the difficulties in analyzing Equation 3.1 is in understanding the cost-to-
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go. For singly-deployed sensor networks, the cost-to-go (E[Jy11(m41)]) was just the
expected time from when the chosen sensor reported its measurement until the infer-
ence problem was complete. It was shown in Chapter 2 that, given enough distance
from the goal, the sensor and mode with maximum IAR would be the optimal one to
deploy or query. However, the analysis depended implicitly on the assumption that
sensor measurements were “monolithic” (i.e. that all measurements from a single
action were received simultaneously). This meant that all the effects of each action

would be known prior to the next decision period.

3.2.1 Monolithic Joint Deployments

One solution concept to the problem of multiple, simultaneous sensor deployment
is to require that all sensors deployed at a given time must complete their sensing
prior to redeployment of any new sensor. This solution preserves the “monolithic”
measurement model of the single sensor case. In this scenario, each sensor/modality
group could be considered as a single super sensor, and (unsurprisingly) results similar
to those found in Chapter 2 can be derived. Specifically, given a group of sensors G

and a set of deployment parameters M, define the group IAR to be:

(G, M) = ELEMT)

maXieg li

where u(G, M, ) is the decrease in the uncertainty measure due to deploying group
G in mode M with probability function w. Then, given the same assumptions as were
made in Section 2.4.2, an optimal action is the one that maximizes p(G, M).
However, the “monolithic” assumption may be quite limiting in some sensor net-
works. For example, imagine the cooperative deployment of two sensors s; and sz
with expected measurement times ¢; and t, with ¢; << ;. Under the monolithic as-
sumption, s; would have to sit idle while s, completed its measurements. Only after
so had finished could s; be redeployed in a new configuration. Since time minimiza-
tion is the network goal, having a valuable sensor sitting idle represents a significant

problem.
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Another limitation of the “monolithic” index rule is that it requires global informa-
tion. Specifically, the global uncertainty measure decrease due to the several sensors
in the group must be calculated as well as the maximum expected deployment time
of all the sensors in the group. Such global computations fail to utilize the parallel
computational ability of sensor networks. Additionally, knowledge in sensor networks
is usually distributed, so computations involving global knowledge require a large
amount of inter-sensor communication which may severely impact the network power
consumption, as well as time productivity due to communication latency. Another
problem is that the action space is the set of all possible joint sensor deployments,

resulting in the difficult global optimization problem identified in both [33] and [35].

3.2.2 A Game Theoretic Approach to Maximizing Group
IAR

A possible solution to the problem of balancing competing sensor utilities is to employ
the principles of game theory. Much of the vocabulary for dynamic programming and
game theory is similar, although the two fields have very different lineages, including
the concepts of actions, strategies and costs or payoffs. While dynamic program-
ming was developed as a method for optimizing sequential decisions [37, 3], game
theory was developed to explain economic phenomena [36]. Dynamic programming
has found most of its application in engineering, while game theory has been used in
macroeconomics and political science. But, as mentioned in Section 3.1, due to its
distributed nature and usefulness in analyzing complicated systems, game theory is
finding new relevence in the area of autonomous networks.

Game theory posits that interactions between autonomous agents, called players,
can be formulated as a mathematical game. Each player has a set of possible actions
and a utility that results from taking each action. A player’s utility is also a function
of the actions of the other players in the game. For a game with NN players, a joint
action, is an N dimensional vector of individual agent actions. The joint action

space A C NV, is the set of all possible joint actions. The utility function for player
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i, Uj(a) : A — R. For the developments in this thesis it is assumed that the joint

action space is finite.

In the case of sensor networks, the players represent individual sensors. The ac-
tions are the various choices of modalities in which the sensors can be deployed and
the utility is the benefit to the sensor when deployed under the specified conditions.
A natural choice for utility function, considering the development in Chapter 2, is
the sensor’s IAR. Notice that while s;’s IAR was previously solely a function of its
own mode of operation, now there will be a family of IAR’s for each mode, corre-
sponding to each of the modalities of all the other sensors. While this represents a
significant calculation, it should be observed that it is only necessary to calculate the
modified IARs for those sensors and modes that interact with s;, since only they will
cause a variation to its IAR. This can significantly decrease the amount of necessary

computation.

Once the utilities have been computed, there are many possibile solution methods
for the derived game. These can be broadly grouped into coordinated and uncoordi-
nated solution methods. Uncoordinated methods involve no revelation of any players
preferences to any other player, while coordinated methods involve some meaningful

inter-player comparison of preferences prior to the execution of the game.

3.2.3 TUncoordinated Solution Methods

Uncoordinated solution methods are simpler than coordinated methods due to the
fact that they do not rely on player ¢ having any knowledge of player j’s intended
action. The two most popular uncoordinated solution methods are minimax and
Nash Equilibrium. Other uncordinated solution methods, including methods based

on internal models of other players, are covered in [14].

Minimaz In this solution method, player ’s action is chosen to maximize its

guaranteed payoff, or received utility. If Ui(a) is the utility to player ¢ of joint action
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defined by
a1
a2

a=| (3.2)

an

L -

where a; represents the action taken by player ¢, then the minimax solution for player
1 1s

a; = arg max|min[U;(a)]] (3.3)

@i Ay
The minimax solution method is attractive because it avoids situations where other
players could adversely affect player i’s payoff, and it provides a lower bound on the
actual payoff player ¢ will receive. Also, it only makes use of local knowledge: it is
unnecessary for player 7 to know anything about player j’s utilities. In a distributed

setting where communication is costly, minimax represents an attractive solution.

One critical point concerning minimax is its inability to encourage meaningful
cooperation. Since agents take no consideration of other players actions except to
minimize the negative effects of those actions, minimax solutions are generally good

at avoiding conflict, but fail to encourage constructive cooperation.

Nash Equilibrium The Nash Equilibrium [25] is perhaps the most popular and
well-known result in game theory. It states that for certain game formulations there
exists a strategy for each player from which no player has an incentive to deviate.
It is a self-enforcing solution, where players can act with confidence that opposing

(rational) players have no interest in playing a different strategy.

While very powerful as a solution concept, there are limitations to the effectiveness
of the Nash Equilibrium in cooperative games. The traditional example of this is the
so-called Prisoner’s Dilemma. In this two player game, player’s must choose one of
two actions: cooperate or defect. If both choose to cooperate they are rewarded. If
both choose to defect, they are punished. If one player chooses to cooperate while the
other defects, the defecting player receives a reward greater than if it had cooperated,

and the cooperating player receives a harsher punishment than if it had defected. In
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this game the Nash Equilibrium is for both players to defect, even though there ezists
a solution with greater utility for both players. Another example where playing the
Nash Equilibrium leads to system suboptimality is described in Section 3.4.

A further obstacle to implementation of Nash Equilibrium in the sensor network
context is that it requires full knowledge of all players utility functions. The commu-
nication required for each sensor to transmit a multi-dimensional function to every

other player may be prohibitive.

3.2.4 Coordinated Solutions

The process of players collaborating in order to make decisions about what actions
to play is called bargaining or negotiation. Two main divisions of bargaining can be
made: axiomatic bargaining and strategic bargaining.

Aziomatic Bargaining In axiomatic bargaining [29] a solution is sought that is
“most fair” for all players. The definition of fairness in this context can be seen as
an attempt to balance the sacrifices and gains of each player in an effort to improve
the social welfare of the group. Axiomatic bargaining solutions include the Nash
Bargaining solution, the Kalai- Smorodinsky solution, the Egalitarian solution and
the Utilitarian solution. To find these solutions, players (or a central arbitrator) must
have knowledge of the full utility space. As with the Nash Equilibrium, this level of
global knowledge is prohibitive in many sensor networks where the knowledge and
computation should be distributed across the sensor nodes.

Strategic Bargaining Strategic bargaining, sometimes called non-cooperative bar-
gaining, is an attempt by players to increase their payoffs through collaboration. The
players intent in participating in the bargaining is not to achieve a “fair” solution,
but to maximize its own payoff through encouraging other players to take actions
that will benefit it. The market-based solutions examined in [24, 38| fall into this
category of bargaining, with the collaboration taking the form of common knowledge
of “prices” of goods or information. Strategic bargaining includes auctions as well as
other market based mechanisms for resource allocation.

Strategic bargaining in distributed settings will generally use less communication
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than axiomatic bargaining, because it is not necessary to communicate the entirety of
the utility functions for all players. However, players must still reveal sufficient infor-
mormation in order to coordinate their chosen action with that of the other players.
Strategic bargaining can be seen as a compromise between the communication re-

quirements of uncoordinated solutions and axiomatic bargaining.

The basic element of strategic bargaining is the contract. In most of the literature
contracts are made between “buyers” and “sellers.” The contract involves the seller
allocating goods to the buyer in exchange for some payment. Defining what goods are

being allocated and how payment is made are the central issues of strategic bargaining.

3.3 Increasing Sensor Utility through Side Pay-

ments

In the time minimization situation explored in Chapter 2 each agent is trying to
maximize its rate of information acquisition. In networks where multiple sensors are
simultaneously active, a sensor’s IAR may depend on the action of other sensors,
either because they are configured in a way that decreases the IAR or because if they
were configured differently the sensor’s IAR would increase. Either way, the sensor
needs some method of persuading the other sensor(s) to reconfigure. Examined from
a strategic bargaining perspective, the goods in this situation are agreements by some
sensor to reconfigure, meaning to change its intended mode of operation in some way.
A sensor that chooses to reconfigure is the “seller” in the bargain. In exchange for
agreeing to “sell” its choice of mode to accomodate another sensor, the seller must
receive some payment from the “buyer” (i.e. the sensor that wants it to reconfigure).
This payment takes the form of a credit that can be used in future negotiations. The
payment should be at least as much as the difference in the IAR of the seller under
its current configuration and its IAR under the reconfiguration. This exchange of
credit will be called a “side payment.” Some of the benefits and limitations of side

payments in contract formation are discussed in [1].
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In developing a method of side payments for a general sensor network, we will
proceed in steps. First we will consider a simple two-player, two action game. Then

we will extend the analysis to two-players with multiple actions and finally multi-

player, multi-action games.

3.3.1 Two-Player, Two-Action Game

Two-player, two action games are often analyzed using the payoff matrix. A general

payoff matrix for a cannonical game is shown in Table 3.1. where af denotes action j

al 2
2 a3
ai [Ul (aiv a%) (al’ a2)] ’Ul (a'}v a%) (a’lv a?)]
a’% [Ul (a% a%) (ala a2)] {Ul (afv a%) (al’ az)]

Table 3.1: Cannonical payoff matrix

taken by player ¢ and Uj(-, -) represents the utility to player ¢ under some joint action.
The purpose of player 7 making a side payment to player j is to increase player j’s
utility for taking some action. For instance, if player one’s preferred joint action was
(a}, a?), it might offer player two a side payment &; in order to make this option more

attractive to player two. The resulting enhanced payoft matrix is

aj a3
a% [Ul (a‘i’ a%)u U2(a%7 a%) + 61] [Ul (ah a%)v U2(aiv a%)]
ay | [Ui(al,a),Us(a3,a})] | [Ur(a3, a3), Uz(a3, a3)]

By increasing the utility for this joint action, player one increases the likelihood of
player two choosing action a?. The source of the “extra” utility player one used to

make the side payment will be addressed shortly.

Let a’ be the ideal joint action for player ¢. That is

a} = arg max[U;(a)]
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The principle of the ideal joint action is: if player ; were able to choose the individual
actions of all N players, what joint action would she choose in order to maximize
her utility. The use of ideal points in axiomatic bargaining was suggested in [19].
Consider the game defined by the payoff matrix 3.1 with ideal (joint) actions a} and
a;. If a] = aj then the players are in agreement and no further coordintation is
necessary. If not, the players must attempt to persuade each other to change actions.
This persuasion takes the form of side payments. If player i offers a side payment to

player 5 such that
Uj(af) + & > Uj(aj)

then player j will have sufficient incentive to switch actions and a coordinated strategy
results.

If side payments are offered blindly it could result in a situation where both players
offer large enough side payments to induce the other player to switch actions. To avoid

such situations we adopt the following convention.

Convention 3.1 When two players are offering simultaneous side payments, only

the side payment that mazimizes Uj(a}) + & — Uj(a}) will be valid.

Furthermore, in order to defeat players that attempt to inflate side payments a second

convention will be adopted.
Convention 3.2 Player i cannot receive utility greater than Uj(a})

Under this convention, the maximum side payment paid by player ¢ will be equal to

Uj(a}) — Uj(af). And since no side payment less than Uj(a}) — Uj(aj

: 1) is sufficient

to induce player j to switch actions, player ¢ will either make a side payment of
Uj(a3) — Uj(a) or 0. (In this discussion, making a side payment is different than
offering a side payment, or making a side payment offer. Offers may be as large as
a player’s credit allows, but the actual amount levied against a player is limited to
the actual utility differential for the other player.) These two conventions increase

the level of coordination between the players, resulting in increased communication

requirements, but they also provide safeguards on the system to prevent suboptimal
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action choices. They approximately correspond to the rules for a Vickrey auction [40)

for control of the other player’s action.

In using side payments for coordination an important issue is the source of the

utility that is being offered as a side payment. There must be some method of accruing

credit that can be offered as a side payment.

One possibility is to distribute utility that would be gained as a result of successful

coordination. In this case, the enhanced payoff matrix looks like

aj a3
ai [Ul(aiv a%) - 617 U2(aiv a%) + 51] [Ul(a%’ a%)v U2(aia ag)]
a% [Ul (aéa a%)) U2(a%’ a?)] [Ul (a%) a%), U2(aé7 CL%)]

where &, has been subtracted from player one’s utility for the joint action (al,a?).
In [32] an axiomatic method of utility division, called the Shapley value, is derived.
So one method would be to divide utility according to the Shapley value among the

players. In general, however, this would require a large amount of communication.

In our development utility accrues in a credit account that can be used to make
future side payments. When player i receives a side payment, the side payment
amount goes into account B; and can be used by player 7 to make a side payment
offer in a later game. Thus, in the above example, if after receiving payment offer &;

player two decides to take action a2, its account B, increases by &;.

This method of side payment generation results in a net conservation of credit
within the system. New credit is injected into the system when current credit levels
are insufficient to establish coordination. If, for instance, £; was insufficient to induce
player two to choose a2, and if player two were similarly unable to persuade player
one to its preferred joint action, then the conflict would be solved randomly. No side
payment would be made, but credit would accrue to the account of the player whose
joint action was chosen against. In this way the system ensures there will be enough

credit to coordinate actions between the players.
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Pareto Efficiency of Side Payment method

One of the optimality measures used frequently in game theory is Pareto efficiency.
Simply stated, a strategy is Pareto efficient (PE) if there does not exist a strategy
such that some player’s (expected) utility can be increased without decreasing at least
one other player’s (expected) utility.

The principle of dominance is related to Pareto efficiency. An action a strongly
dominates action a if

Ui(a) > Ul(é), Vi

Action a weakly dominates action a if
U,-(a) > Ul(é), V1

and

J1is.t. Ui(a) > Uz(é)

We will focus primarily on strong dominance, and will sometimes refer to it simply

as dominance.

It can be shown that for a repeated play game with stationary payoff matrix the
side payment method described in Section 3.3 corresponds to a mixed strategy in
the joint action space. Specifically, for the two- player game it corresponds to the

strategy of choosing joint action a} with probability p; equal to

Ui(a}) — Us(3})

1 = * * (34)
Pi= Uhay) — Us(as) + Un(a) — Us(a})
where
i} 1 ifi=2
1 =
2 ifi=1

This mixed strategy will be called the negotiated mixed strategy and will be
denoted a*. Determining whether the negotiated mixed strategy is Pareto efficient

provides some insight into the optimality of the side payment method.
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Consider the two-player, two action game with ideal actions at and a%. Assume
a] # a3 since if a] = aj no negotiation occurs. The expected per game utility to

player ¢ of the side payment method or the equivalent negotiated mixed strategy is
Ui(a®) = pi * Us(a}) + (1 — p;) * Ui(a}) (3.5)

with p; as defined in Equation 3.4.

Without further assumption the distance from the negotatied mixed strategy to

the Pareto frontier can be bounded. Specifically, let d(a,a*) denote the Euclidean

distance in utility space

d(a,a") = /(Ui(a) — U1(a*))? + (Ua(a) — Us(a"))?

Since af is the pure strategy that maximizes U;(a), no action can result in utility
greater than [U;(a}), Us(a})]. Let aj be the (possibly) fictional action with utility
[U1(a}), Ux(a3)]. Define d1 = (Uy(a}) — Uy(a*) and d2 = (Uy(a3) — Ui(a*) Then the
minimum distance from a* to the Pareto frontier

min d(a, a*) < d(aj,a”) = Vd1? + d2?

acA,
This principle is shown geometrically in Figure 3-1(a).

If there is no pure strategy solution that strongly dominates the negotiated mixed
strategy, then a tighter bound can be shown. Specifically, since no pure strategy
dominates the negotiated mixed strategy, for all PE pure strategies a,,, Ui(a,,) <
U,(a*) or Uy(ap,) < Us(a*). Thus the maximum posssible PE pure strategy utilities
will be [U;(a?), Ux(a*)] and [Uy(a*), Uz(a3)]. These are shown as points A and B in

Figure 3-1(b). The minimum distance to the Pareto frontier is

N dl xd2
min d(a, a*) < d(aj,a*) =

acAp v d12 + d2?

where a; is now the action defined by the projection of the negotiated mixed strategy
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Figure 3-1: (a) Loose bound on Pareto suboptimality of the negotiated solution (b)
Tighter bound on Pareto suboptimality when the negotiated solution is undominated

into the line defined by the points [U;(a}), Us(a*)], [U1(a*), Uz(a})]. This is shown in
Figure 3-1(b). The bound is improved by at least a factor of 2.

Furthermore, if there exists a pure strategy that lies on or above the line defined
by [Ur(a}), Us(a*)], [Ui(a*), Us(a})] then 1) it is a PE strategy and 2) it dominates
the negotiated mixed strategy.

The issue of dominance leads to an iterative solution method for the two-player,

two-action game.
1. Choose aj and aj
2. Determine negotiated mixed strategy a* using Equation 3.4

3. If undominated, negotiate; otherwise, limit action set to dominating actions and

— 1.

Notice that since there are a total of four possible joint actions, and since a} can
not dominate a* for any 4, the above algorithm will iterate at most twice. If in
step 3 there are dominating pure strategies, these correspond to actions that will
be mutually beneficial to both players in the long run. Therefore no side payments

should be necessary to induce the players to move from the negotiated mixed strategy
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to any of the dominating joint actions. Also, it is important to note that just because
a strategy dominates the negotiated mixed strategy does not imply that it is Pareto

optimal. The iterative algorithm will improve the solution suboptimality, but does

not guarantee a Pareto optimal solution.

From a distributed computation perspective, an important point is that it is not
necessary for player 4 to know the exact utility of player j for actions other than the
ideal actions aj and a3. This fact limits the amount of global computation and com-
munication necessary. In determining the set of actions that dominate the negotiated
mixed strategy, it is sufficient for each player i to broadcast the set of actions A; such
that Va € A;, U;(a) > U;(a*). The intersection of all such broadcast sets is exactly

the set of dominating actions. No communication of utilities is necessary.

3.3.2 Two-Player, Multi-Action Games

In light of the algorithm derived at the end of Section 3.3.1, extending the enhanced
side payment method to two-player scenarios with multiple actions is elementary.
The only difference is that it now may take several iterations of the algorithm before
final negotiation occurs. In fact, if the number of actions for player ¢ is IV; then the
number of joint actions is N} x Np. Each iteration of the algorithm elimiates at least
two actions from the feasible set (the two “ideal” actions). Therefore, in the worst

iterations.

case there will be wl

As will be shown in section 3.3.3, the negotiated mixed strategy of each round
dominates the negotiated mixed strategy of the previous round (see Equation 3.7).
This fact can be used to further limit the amount of communication necessary to de-
termine the set of dominating actions (step 2-3). Because the utility of the negotiated
mixed strategy is improving, the set of dominating actions at round k will be a strict
subset of the set of dominating actions at round k£ — 1. This means that when agent ¢
broadcasts the set of actions with U;(a) > U;(a*) at round k, it need only broadcast

those that were in the previous round’s dominating set.
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Generalized Pareto Bound

In the case of the two-player, multi-action game, there may be several rounds of the
algorithm before a non-dominated mixed strategy is found. When only one round of
negotiation occurs, the bound developed is Section 3.3.1 still applies, but the bound
must be modified to be generally applicable. We will delay extending the Pareto

bound until after the discussion of multi- player games (Section 3.3.3).

3.3.3 Multi-Player, Multi-Action Games

Generalizing the side payment solution method to games with more than two players,
each with an indeterminate number of actions enables application to realistic sensor
networks. In this case, at each iteration of the algorithm there are N bargaining
agents, each with an ideal joint action a’. Player i offers side payments to all the
other players in order to increase the attractiveness of af. Generalizing Convention 3.1

to the multi-player case,

Convention 3.3 When N players are offering simultaneous side payments, only the

side payment that mazimizes ), ,; U;(a;) — U;(a}) + & will be valid.

As in the two-player case, this convention prevents situations where two players are
induced to abandon their ideal actions by each other. Convention 3.2 need not be
generalized.

The negotiated mixed strategy (i.e. the mixed strategy equivalent in expected
utility to the repeated play using side payments) plays action aj with probability p;

where p; is given by
Ei;&j Ui(aj) — Ui(a;)
T Y Ula]) - Uida))

Now the algorithm proceeds as before. We now prove the following useful Lemma.

(3.6)

Lemma 3.1 At each iteration the Pareto suboptimality of the negotiated solution

decreases

Consider the negotiated mixed strategy at iteration &, a**. This mixed strategy is a

convex combination of the ideal pure strategies of all N players at round k. Let al*
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be the ideal action for player ¢ at round k. Since only actions that dominated the

k — 1 round negotiated mixed strategy are considered in round k,
Vi,j Ui(a*) > U;(a®~ %)

Therefore,

J

Ui@") = Y oy x Us(af") > " pj + Uia®™0%) = Uy(a®* ") (3.7)
j

Since the expected utility for all players increases with each iteration, the actual

distance to the Pareto frontier must be decreasing. This proves Lemma 3.1.

At each round of bargaining, each player chooses an optimal joint action aj. These
choices lead to a negotiated mixed strategy a*. Let the ideal actions at round % be

denoted a¥* and the negotiated mixed strategy a**. Because only actions dominating

a*~1 are considered at round k,

Vial* - alk-br (3.8)
where > denotes dominance. Equation 3.8 implies
Vi, j Ui(af") > Ui(a*™")

Furthermore, since the set of actions considered in round k is a strict subset of the

actions considered in round k — 1,
Vi Uy(a®) < Us(@®™")

meaning each player’s ideal utility is decreasing in the iterations of the algorithm.
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Let U(a**) be the vector of utilities of the k% round negotiated mixed strategy,

U;(a**), and define

Un(ak}

That is, fJf is the vector of ideal utilities, except with the i entry replaced by the

utility to player i of the negotiated mixed strategy. Also, define Aj to be the set of

actions considered in round k (i.e. the set of all actions such that U(a) > U(ak—1*)).

—+ o

U(ay)

Ul(al*)
o Ui(a?
U 1@
° < Uz2(a%")
U(aZ*)
Ua$)
[ ] °
U(al*) Ug(al*)
(]
U(a3")

U,

Figure 3-2: Two-player, multi-action utility space

The set {fjf}i defines an (N — 1) dimensional hyperplane, which intersects the

N-dimensional hypercube defined by the origin and the vector of ideal utilities at
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points fJf .

We would like to show that the Pareto frontier lies within the set defined by
{U*},; » and the positive orthant. We can then bound the pareto suboptimality by the
minimum distance between the final negotiated mixed strategy and the hypersurface
defined by the boundary of {U¥};, and the positive orthant.

Consider the set

Uy, = conv({UF}; UEF U U(a*—D7))

where conv(-) denotes the convex hull and

Ul (a(k—l)*)
U2 (a(k—l)*)

Ef = : (3.10)

Ug(a(k_l)*)

with U;(a®) £ 0. Uy, is essentially an N-dimensional hypercube with its dominant

corner cut off by the hyperplane defined by {U*}Y,.
Lemma 3.2 Ifa € A and does not dominate a** then U(a) € U,

Pf: Assume U(a) ¢ Uj. Since a € Ay,

by the definition of af*, and

If 3i s.t. U;(a) < U;(a**) then

U(a) € H(U(a*"D),T7)
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where H(z,y) is the hypercube with vertices defined by x and y. But
H(U@@% D), Uf)  th
Therefore
Ui(a) > Ui(ak*) Vi

But then a dominates a**, which is a contradication.

Using Lemma 3.2 and a backwards induction on the rounds of iteration, we can
show that all solutions lie within {If}. Therefore the Pareto frontier lies within {4}
which is equivalent to the space defined by the boundary of the convex hull of {U¥}; ,

and the positive orthant, establishing our result.
Theorem 3.1 For alla € A, U(a) € {U}.

Pf. Let K denote the final iteration of the algorithm. By definition,
P a € Ak s.t. U(a) > U(a®*)
Therefore, Va € Ak, a € Uy. Since Ux C {Us}
Va € Ax,a € {I;Ik}

For general k, consider a € Ay. If a dominates a** then a € Ay and by induction
ac {Z:{k}
If a does not dominate a** then, by Lemma 3.2 a € U,.. Since U, C {Z:{k},

Va € Ai,a € {Z)k}

and the induction holds.
We have proved a bound in utility space on the set of all actions. The distance
from a chosen action to the Pareto frontier is therefore bounded by the distance

from the action to the hypersurface derived in Theorem 3.1. Let P(U(a), F') be the
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orthogonal projection of U(a*) onto face F' of the hypersurface. The distance to the

Pareto frontier of action a* is

min D(a,a*) < min D(P(a*, F),a")

a€Ap FeF

3.4 A Simple Demonstration of Side Payments

Consider a simple network consisting of two non-mobile, active sensors, shown in
Figure 3-3. Each sensor can choose to direct its sensing toward one of two locations.
Two areas are unique to the individual sensors, while a third is common between
the two. If the sensors choose to sense the common area they block each other and
neither is able to acquire a good measurement. If the sensors are not directed to the
same area they acquire normal measurements. All measurements take exactly one
time period, regardless of which area is being sensed, therefore maximizing the rate

of information acquisition corresponds to maximizing information gain.

Ly = L3 = Ly

Figure 3-3: Simple cooperative sensor situation

This scenario, although contrived, represents a common situation in sensor net-
works (and in autonomous networks in general). Often, in order to meet system goals

such as quality state estimates or time or energy efficiency, sensors must work both
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cooperatively and competitively. In the case described above, sensors may be able
to increase their IARs if they are able to persuade the other sensor not to sense the
common area. By cooperating both sensors can accomplish their goals with greater
efficiency.

The payoff matrix for the scenario just described is shown in Table 3.2. Action
C represents directing sensing to the common area while action C corresponds to
directing sensing to the isolated area associated with the sensor. The rows are the

actions (or modes of operation) for s; and the columns to s; and the matrix entries

are (Ui(a), Us(a)).

C C

C (Oél,ﬁl) (011,52)
C (042,51) (an)

Table 3.2: Simple game payoff matrix

The choice of action for this game depends on the relative quantities of a;, as, 5;
and (.

Case 1: a; > as, 31 > B2 In this case the individually rational solution is (C, C).
This represents no conflict and so there is no incentive for either player to make side
payments. Each player chooses its maximum IAR. This is somewhat myopic since it
may result in a situation where conflict evetually arises. This is a limitation of the
single game with side payments method of solution.

Case 2: a; < ao, 31 > B2 In this case the individually rational solution is (C, C).
There is no conflict in this situation, and both agents choose their maximum IAR.

Case 8: a; > as, 1 < B2 In this case the individually rational solution is (C, Q).
Again, no conflict needs to be resolved, and both agents are able to choose their
maximum IAR action.

Case 4: a; < oy, < P2 This case represents a conflict and hence can demon-
strate how the side payment structure from Section 3.3 resolves conflict in sensor
networks. For both agents, the maximum utility action is to choose C, but if both

agents choose that action neither receives any information and they effectively block
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each other.

There are multiple Nash Equilibria for this case. Two are the pure strategy equi-
libria: (C,C) and (C,C). These are what’s known as unstable equilibria, because any
random perturbation of either player’s strategy results in convergence to a different
equilibrium. This equilibrium, the stable equilibrium, is a mixed strategy, meaning
each action is taken with a certain probability. Let p be player one’s strategy with p;
the probability of taking action C and p, = 1 —p; the probability of taking action C.
Similarly let q be player two’s strategy with ¢, the probability of taking action C and
g2 = 1 — ¢; the probability of taking action C. It can be shown that the stable Nash
equilibrium is p; = % and ¢ = 2. (If a =0, oy < a2 = a; = az = 0. Therefore

a2

player one has no utility for taking any action and it is a degenerate game. Similarly
for B2 = 0.)

Notice that if a; = 1 = 0, meaning neither player has any utility for taking action
C, the stable Nash Equilibrium is p; = ¢, = 0 which corresponds to the pure strategy
solution (C,C). In this case playing the stable Nash Equilibrium prevents both players
from gaining any utility, play becomes deadlocked and the inference problem is never
solved. Obviously a strategy that plays the Nash Equilibrium will be significantly

suboptimal from a system perspective.

Consider the side payment method derived in Section 3.3.1. Since conflict exists
in Case 4 above, under the bargaining method each player will attempt to offer the
other a side payment in order to encourage it to switch actions. The revised payoff

matrix becomes

C C
Cl(a+&,01+8&) | (o1 +&,0)
C| (og,6+&) (0,0)

where &; is the side payment offered by sensor 7. If offers are unconstrained, the bar-
gaining could result in a situation in which both sensors would choose to reconfigure
(if oy +& > az and By + &1 > B2). However, generally if offers proceed incrementally,
one of the two will exceed the threshold before the other. If not, the two agents have

identical preferences and the choice can be made randomly. This payment method can
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also be seen as a Vickrey auction in which the winning bidder receives the privilege of
unimpeded access to the common area. The losing bidder also receives credit equal to

the difference between its two utilities. This credit can be applied to resolving future

conflicts.

3.4.1 Solution Performance

To demonstrate the effectiveness of the side payment method the cannonical problem

described in Section 3.4 was implemented in simulation.

In the simulation the “decrease in uncertainty” for each sensing modality is de-
terministic but not static. Let n! be the number of times player i takes action C,
and let n? be the number of times player i takes action C and successfully receives a
measurement. To model the fact that each successive measurement has less informa-
tion content (since it is more likely to include information that was part of a previous
measurement) we contract the decrease in uncertainty by 64 with each measurement.
This implies that if the expected decrease in uncertainty prior to the first measure-
ment is dug, the expected decrease after n measurements is dpg * %‘3. Additionally,
we assume there is some joint information in the measurement area that is common to
both sensors, so when one player successfully measures the common area it contracts
the possible decrease in uncertainty for the other player by 6;. Let u be the current
level of uncertainty for each area, with p; corresponding to the area unique to player
one, y; the area unique to player two and p3 the common area. The system goal can

be written as the optimization equation

a* = argminges7T(a)

(3.11)
s.t. max(u(a)) <7v

Using the principle of maximum IAR, and preserving the assumption that every

action takes exactly one time step, the individual agents attempt to maximize the
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information gain at each step. The change in information can be denoted

Spi = S * o 3.12
i 0; d

2 n?  onf
op = 6pf + 0 %0 (3.13)
This leads to the payoff matrix for the single stage game of

1 9
1| (Opl,0p3) | (Op,0p3)
2| (0p3,0p3) | (0,0)

One reason this scenario was examined was because an optimal solution can be derived
without resorting to combinatorial methods, enabling the computation of a subop-
timality ratio for each simulated environment. To simulate different environments,
the initial uncertainty of each of the three locations was randomly assigned. In all
simulations the rates of information contraction were constant (65 = .9, 6; = .99).

The results of over 300 monte carlo simulations are shown in Figure 3-4.

3 T T T T T T T T
—&— Side Payments
—6— Random
—&— Nash
2.5¢ —6— Minimax 4

Suboptimality Ratio

2 4 6 8 10 12 14 16 18 20
# sensor time steps (optimal)

05—

Figure 3-4: Suboptimalities for four algorithms
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As is evident from the Figure 3-4, the side payment solution method outperformed
the uncoordinated solution methods (random, minimax, and Nash Equilibrium). Ad-
ditionally, it should be noted that the Nash Equilibrium solution did not result in a
feasible solution in 8.9% of simulations due to deadlock, compared with 7.2% for the
random algorithm and 2.2% for the minimax algorithm. The side payments solution
method found a feasible solution in all of the simulations.

The mean and standard deviation of the suboptimality ratios for the various so-
lution methods are summarized in Table 3.3. Not only was the side payment method

closest to the optimal, it also performed the most consistently.

Side Payments | Random | Nash | Minimax
Mean 1.0733 1.848 1.3363 | 1.6522
0o 0.0839 0.6139 | 0.2228 | 0.4971

Table 3.3: Statistical comparison of solution methods

The Nash Equilibrium, minimax and random methods evaluated in Figure 3-4 and
Table 3.3 are all uncoordinated methods, so it is perhaps unsurprising that the method
of coordination through side payments outperformed them. Further comparison is
made in Table 3.4 of the side payment method versus other coordinated methods. In
the case of coordinated solution methods, conflicts are resolved through arbitration.
The method of arbitration varies with the various solution methods. In NBS the
Nash Bargaining Solution (a classical axiomatic bargaining solution) is found. The
NBS is a mixed strategy in the dual action space that satisfies specific axioms of
“fairness.” In the Swap solution method, conflicts are resolved through turn taking.
If at the time of the N** conflict player one prevails, player two will receive the
advantage in the (N 4 1)®" conflict. This type of solution method takes no account of
individual utilities, and so will be of limited use in non- symmetric situations. Again,
the algorithms were run on approximately 350 monte carlo simulations with original
uncertainties distributed randomly.

The performance differential in this case was much less than with the uncoordi-

nated methods, but the side payment method still outperformed other coordinated

77



Side Payments | NBS Swap
Mean 1.0710 1.0992 | 1.09462
oo 0.0910 0.1210 | 0.1205

Table 3.4: Statistical comparison of coordinated solution methods

strategies, despite requiring less communication than the Nash Bargaining solution

and being more generally applicable than the Swap solution.

3.5 Limitations and Possible Extensions

The above discussion and analysis has focused on the advantages of coordinating
sensor measurements through side payments, but there are significant limitations to
the method. It does require significant amounts of inter-sensor communication, which
may be problematic in networks where power consumption is an issue. The amount
of necessary communication can also potentially increase exponentially with the size
of the network, since conflicts may arise between any subset of two or more sensors
within the network.

The issue of agreement also has not been addressed, specifically as it applies
to distributed decision making. It was assumed that sensors did not begin taking
measurements until all conflicts have been resolved, all bargains have been made and
the network has entered a stable state. Knowing when such a state has been reached
is an issue of great practical importance in distributed systems [23].

In extending the above techniques, it may be fruitful to consider strategic players.
In the above analysis, sensors took side payments only when the resulting enhanced
utility exceeded its currently expected utility. This is what’s called a “price taking”
technique in the market-based literature. However, in non-stationary networks there
may be some benefit to planning when to take on credit based on a network model.

The results of [18] may be useful in analyzing such a situation.

The methods developed in this chapter have focused on strategic bargaining to

extend the maximum JIAR principle derived in Chapter 2 to a setting in which mul-
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tiple sensors may be active at once. A strategic bargaining soultion was adopted
because of its ability to avoid conflict and encourage cooperation without massive
communication and computational overhead. The performance of the strategic bar-
gaining method was verified using monte carlo simulation on a cannonical problem of
sensor cooperation. In Chapter 4 results will be presented from more varied and re-
alistic sensor situations that will further support the use of side payments for conflict

resolution in sensor networks.
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Chapter 4

Simulated Implementation and

Results

4.1 Simulation Setup

To examine the effectiveness of the MIAR method of choosing sensor parameters de-
veloped in Chapter 2 and the multi-agent negotiation protocol described in Chapter 3
several simulations were developed. These experiments and their results are described
in this chapter. First the MIAR principle for parameter selection was tested for two
different single sensor problems described in Section 4.2, then the application of the
negotiation protocol was tested in two sensor network problems described in Sec-

tion 4.3.

4.2 Single Sensor Simulation

Both simulations described in this section utilize the same basic sensor model and

environment, described in the following sections.
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4.2.1 Simulated Environment

The simulated environment for these experiments consisted of a 2-D world in which
possible target locations were chosen randomly. In a battlefield scenario such “hotspots”
can often be determined using pre-deployment intelligence, taking into account such
factors as terrain type, road locations, foliage density, river paths and other environ-
mental considerations. Each location may be accompanied by a priori probabilities
for each target type. Thus targets corresponding to boats are much more likely to be
found in rivers than thick forests. This information is reflected in an initial probability
vector for each target location.

Figure 4-1 shows a sample problem space for the simulation. In this case, there
are ten possible target locations and one target. The target locations are shown as

circles while the target itself is shown by a star.

10 T T T T

Figure 4-1: Example of a simulated battlefield

4.2.2 Sensor Model

The sensor model consisted of two components: the measurement model and the
time model. Deployments of the sensor were assumed to consist of a center point and

a sensing radius r. Measurements were received for all locations within distance r
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of the center point according to the measurement model described in Section 4.2.2.
Also, as described in Section 4.2.2, all measurements for a single deployment become
available simultaneously upon completion of the deployment. The total time for the

deployment is modeled to depend on the chosen sensing radius 7 (but not the chosen

center point).

Measurement Model

Sensors were simulated to receive power measurements according to the equation

2= (v/SNR:(0) + n)? (4.1)

where for each sensor ¢, SNR;(!) maps the set of target locations to Rt and 7 is a zero-
mean, unit variance random variable. SNR was chosen to be a function of the survey
location [ in order to model the effects of target occlusion and obfuscation on sensor
management. For instance, most sensors’ SNRs are higher for targets in the open than
occluded targets (i.e. under camoflage, behind trees, etc.) For stationary sensors, the
effect of location on the target SNR may have less to do with occlusion than distance
from the sensor. The SNR in this case is assumed to decrease proportionally to the
inverse of the square of the distance of the target from the sensor. For each simulation
that uses this sensor model the SNRs will be specifically stated.

This measurment model was chosen for two reasons. First, it captures essential
sensor differences in a simple, one parameter equation. Second, it is a rough approx-

imation of the actual measurements of several types of active power sensors.

Time Model

The time for a single deployment of the sensor was modeled as the sum of two in-
dependent factors: preparation time and sensing time. The preparation time was
assumed constant (i.e. identical for each sequential deployment) and independent of
the deployment parameters (center point and radius). The sensing time was modeled

as a constant times the sensing radius r. For example, if a sensor surveyed locations
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(3.2,5.1) and (7.8, 6.2), the minimum possible deployment radius covering these lo-
cations would be /((3.2 — 7.8)2 + (5.1 — 6.2)2)/2 = 2.37. The minimum deployment
time to acquire sensor measurements for these two locations would be a + b * 2.37.
For sensors that require significant amounts of pre- and post-processing, a will be
generally be large. Varying b can model different velocities in mobile sensors or the

rate of signal propagation for stationary sensors.

Single-mode Simulation

First, the MIAR principle was applied to the problem of choosing the center point
and radius for successive deployments of a sensor with a single mode of operation.
The perfomance of the MIAR algorithm was compared to two other algorithms: the
“random” algorithm, which chose randomly among a set of center points and radii,
and the “all in” algorithm which surveyed all locations with each deployment. The
problem was to correctly classify each of the randomly selected target locations de-
scribed in Section 4.2.1 as either being occupied by a target or not. The chosen
measure for this problem was the Shannon entropy of each possible target location.
Figure 4-2 shows sample trajectories of the decrease in entropy versus time for the

three different assignment algorithms.

random
------- MIAR

maximum entropy

0 1000 2000 3000 4000 5000
total deployment time

Figure 4-2: Sample entropy trajectories vs. time

84



Algorithm | Mean Time | 0, Time | Max Run Time | Min Run Time
Random 11944 3460 20978 6282
All in 4519 1195 8066 2259
MAIR 2519 479 3964 1766

Table 4.1: Statistics for 100 runs of single sensor, single mode simulation

The discrete jumps in Figure 4-2 correspond to the ending of one deployment time
and the beginning of the next. Each time new measurements became available they

were integrated into the probability mass functions with a corresponding change in

entropy at the survey locations.

Statistics for the different algorithms over 100 runs of the simulation are summa-

rized in Table 4.1.

The MIAR algorithm shows dramatic improvement compared to the “all in” al-
gorithm. This demonstrates that, in choosing how to deploy a single, mobile sensor,
the maximum IAR principle can improve the time efficiency of solving the inference

problem.

Of interest is how the time constants affect the performance of the algorithm.
Figure 4-3 shows how the difference between the “all in” and MIAR algorithms depend
on the ratio §. The plots represent the average performance of the “all in” and random
algorithms relative to the MIAR algorithm. The error bars delineate two standard

deviations.

For values of ¢ near zero, total time cost is dominated by sensing time. In this
case the difference between MIAR and both alternative algorithms is large. As the
ratio increases, the difference decreases. In the limit as § — oo the diffence goes to
zero. This makes sense, since when a >> b, the increase in E[t] due to adding a new
location is small compared to the increase in E[u()], so the deployment chosen by
the MIAR algorithm will approximately correspond to the “all in” deployment. It
is interesting that the difference with the random algorithm also goes to zero. This
suggests that as the amount of time dedicated to non-transit activities increases,

the utility of any planning decreases. An algorithm that chooses which locations

to survey randomly performs as well as either the “all in” algorithm or the MIAR
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Figure 4-3: Relative Performance Loss as a Function of £

algorithm. The MIAR appears to be most relevant when the majority of time is spent

in surveying and measuring, not in preparation or post-processing.

Multi-mode Simulation

A second single sensor simulation was run to determine the MIAR algorithm’s effec-
tiveness for managing modes in a multi-mode sensor. In this case, the single sensor
was modeled to have two modes: a wide area mode and a high resolution mode. In
the wide area mode, the SNR was lower, but so were the time constants a and b. This
represents a fast survey mode that can get measurements quickly, but with limited
quality. The high resolution mode, by contrast, takes a long time to get measure-
ments, but the measurements are of a higher quality. Table 4.2 summarizes statistics
from this simulation. The MIAR algorithm uses the MIAR principle to choose which
mode to use for each successive deployment, as well as which locations to survey.
The “high resolution” always chooses the high resolution mode, but uses MIAR to
determine the locations to survey. Similarly, the “wide area” always uses the wide

area mode, but chooses locations according to the MIAR principle.

Notice that, on average, the MIAR algorithm outperforms each of the modes
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Mode Mean Time | 0, Time | Min Run Time | Max Run Time
MIAR 5429 775 3957 7870
high resolution 5667 759 4280 7258
wide area 6529 1174 4583 10511

Table 4.2: Statistics for 50 runs of single sensor, muliple mode simulation

individually. This demonstrates that MIAR is effective at balancing the benefits of
multiple modes in a single sensor. Also, note that on at least one run the MIAR
was outperformed by the high resolution only algorithm. The optimality of MIAR is
dependent on several factors which were not necessarily satisfied in this experiment,
thus it can only be said to be approximately optimal in this case. The trial-by-trial

difference between MIAR and the two single mode algorithms is shown in Figure 4-4.
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Figure 4-4: Trial-by-trial difference in deployment times

4.3 Multisensor Simulation

Two experiments were run using the negotiation protocol described in Chapter 3. The
first was a simulation based on the problem formulation described in Section 3.4 and
used two stationary, homogenous sensors. The second was a difficult discrimination

problem using a group of heterogenous mobile sensors. The experiments and results
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Algorithm Mean Time | 0, Time | Max Run Time | Min Run Time
Random 238.79 65.33 439 112
Nash Equilibrium 243.24 230.28 1858 65
Minimax 242.37 71.82 525 111
Exponential Appr. 153.38 41.17 368 61
Nash Bargaining 150.27 38.83 295 o7
Multi-agent MIAR 149.57 40.82 367 55

Table 4.3: Statistics for 300 runs of homogeneous, multi-sensor simulation

are described in the following sections.

4.3.1 Homogeneous Multi-Sensor Experiment

The situation described in Section 3.4 was implemented in simulation. Rather than
the deterministic, abstract values given previously, the sensors were modeled using
Equation 4.1. The task was to determine whether a target existed at each of the
three locations. The sensors had an SNR of zero if no target existed and one other-
wise. Following the optimization formulation from Chapter 2 the task was declared
complete when the entropy of all locations was below a prespecified threshold. Sev-
eral of the schemes described previously were tested on this environment with results
summarized in Table 4.3

The “Exponential Approximation” algorithm in Table 4.3 approximates the opti-
mal algorithm described in Section 3.4. It uses a decaying exponential approximation
of the entropy as a function of the number of measurements thus far, and then es-
timates the remaining number of measurements necessary for each location. It then
coordinates the actions for the two sensors based on these estimates.

As pointed out in Section 3.4, the Nash equilibrium solution for this problem can
lead to deadlock. Of the 300 simulation runs, 28 (or 8%) resulted in deadlock under
the Nash equilibrium assignment. These deadlocks were not included in the results
summarized in Table 4.3.

As can be seen from the table, the negotation protocol described in Chapter 3
effectively coordinates the actions of the two sensors. It performs as well as the

other two negotiation schemes (Nash Bargaining Solution and Exponential Approx-
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imation) with less communication than the NBS and wider applicability than the
Exponential Approximation. The performance of the non-coordinated deployment

strategies (Random, Minimax, Nash equilibrium) was significantly poorer than that

of the coordinated strategies.

An additional experiment was run on the same environment using a variety of
target SNRs in order to determine how algorithm effectiveness varied with difficulty
of detection (lowering the target SNR increases the difficulty of detecting the target).
The mean times for each algorithm on 50 runs each of 16 different SNRs are plotted

as a function of increasing SNR in Figure 4-5.
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Figure 4-5: Algorithm effectiveness under increasing SNR

The effectiveness of MIAR negotiation appears to be independent of problem dif-
ficulty. The most striking feature of the figure is the tight grouping of coordinated
and uncoordinated algorithms. The three coordinated schemes were able to signifi-
cantly improve system performance over the three uncoordinated schemes. In fact, it
appears that for this environment, the minimax and Nash equilibrium methods were
little better than choosing random deployments, regardless of target SNR. In effect
the only real system improvement came through coordination by using a negotiation

protocol.

89



4.3.2 Heterogeneous Multi-Sensor Experiment

To verify the effectiveness of the multi-agent extension of MIAR described in Chap-
ter 3, a discrimination simulation was designed and run. The simulation included
five heterogeneous, mobile sensors, each modeled using the sensor model in Equa-
tion 4.1. The world was a 525 grid consisting of zero to three point targets of type
1,2, or 3 randomly placed. The goal of the sensor group was to correctly detect and
discriminate all of the targets as quickly as possible. The uncertainty measure in this
case was the conditional Shannon entropy. The task was declared complete when the

entropy of each location was below a predetermined threshold.

The five sensors fell into two broad categories: two detectors and three discrim-
inators. The first detector was constrained to only survey all the possible locations;
this could model, for instance, a high-altitude or space-based sensor. The sensing
occured quickly (three standard time steps, or a rate of 8.3 locations per time step),
but the SNR was low (one if target existed, regardless of taget type, zero otherwise).
Additionally, if any of the other sensors were active during the sensing period the SNR
decreased to zero, even if a target existed. The second detector could choose any of
the nine 3z3 subgrids to survey. Its SNR was higher (three if target existed, zero
otherwise) but took two standard time steps to sense nine locations, or 4.5 locations
per time step. Despite being slower, this detector had the advantage that there was

no destructive interference from other sensors.

There were three discriminators, one for each target type. For its specific type
the SNR was five, while it was one for other two target types and zero if no target
existed. The discriminators could only survey one location per standard time step (as
opposed to 4.5 for the medium detector and 8.3 for the fast detector). Additionally,
if two discriminators were simultaneously deployed to the same location the SNRs
of each decreased so all targets had value one, and no target had value zero. If all
three discriminators measured the same location at the same time, the SNRs for all

sensors and all targets was zero. The statistics for this experiment are summarized

in Table 4.4
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Algorithm Mean Time | 0, Time | Max Run Time | Min Run Time
Random 874.06 146.76 1327 567
Utilitarian 94.74 6.6812 115 81
Multi-agent MIAR 124.52 10.96 165 107

Table 4.4: Statistics for 100 runs of heterogeneous, multi-sensor simulation

The Utilitarian strategy is a standard solution strategy in which the action that
maximizes the sum of agent utilities is chosen. Although it outperformed the multi-
agent MIAR strategy, it requires the same complete knowledge of the utility space
as other negotiation strategies. The relative inefficiency of multi-agent MIAR is the

tradeoff for it’s significant decrease in communication complexity.

4.4 Results Summary

The four experiments described in this Chapter demonstrate that 1) maximizing the
expected rate of information acquisition is a good method for choosing sensor deploy-
ment parameters and 2) the iterative negotiation protocol is effective from a system
perspective at coordinating the actions of sensors within a group without requiring
a large amount of inter-sensor knowledge. Future experiments should develop more
involved sensor models and more specific environments in order to determine the
applicability of these principles to specific problems of interest such as battlefield
awareness in specific environments. Hardware implementation could also help gauge

the feasibility of the computational requirements of the algorithms.
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Chapter 5

Conclusion

5.1 Summary

The current proliferation of available sensors in military, commercial and industrial
environments provides great possibilities and also significant challenges. Sensors act-
ing together in a network can increase the probability of detecting rescue candidates
in autonomous search and rescue systems, tracking targets of interest in a battlefield
scenario, or discriminating between threatening and non-threatening individuals in
a security system. Such applications demonstrate the promise of networked sensihg,
but the promise comes at a price. As sensors increase in complexity, integrating
multiple modes of operation into a single sensor suite, and especially as multiple, het-
erogeneous sensors are combined into a single network for solving a single inference
problem, a method of choosing the best possible modes for individual sensors and
combinations of modes for multiple sensors must be devised.

One of the first steps in deriving such a method must be to formalize the network’s
objectives and constraints, resulting in an optimization problem. Three possible for-
mulations were suggested in Chapter 2: first, those that maximize some inference
metric such as negative Shannon entropy or probability of detection while achiev-
ing the constraints of limited network resources such as energy, bandwidth or time;
second, those that seek to minimize resource consumption given a minimimum con-

straint on some quality metric; and third, those that combine the quality metric and
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resource usage in a hybrid formulation. While much of the previous work in us-
ing sensor networks to solve inference problems has focused on the first and third of
these formulations, this thesis focuses on minimizing resource usage given a minimum
quality metric constraint. Specifically, the problem of achieving an inference metric
above some threshold in a minimum amount of time is proposed. It was then shown
that, under certain simplifying assumptions on the nature of inference metric and
the environment, and that no two sensors are simultaneously active, that the optimal
configuration is the one that maximizes the information acquisition rate (IAR). This
is a problem of immediate applicability in military and commercial security systems,
where decisions must be made rapidly and resources deployed to find a solution as

soon as possible.

Then, in Chapter 3 the principle of maximizing IAR was generalized to networks
in which multiple sensors can be simultaneously active. A game theoretic approach
was proposed under which each sensor is a player in the game, with possible actions
corresponding to the set of sensor deployment parameters. The problem becomes
that of determining an optimal joint action. A coordination protocol was derived
using a side payment technique to determine a negotiated mixed strategy based on
each players locally determined ideal joint action. The coordination method was then
enhanced to include an iterative refinment of the set of possible joint actions. It was
proven that for a general class of multi-player, multi-action, non-zero sum games, the
pareto suboptimaly (defined by Euclidean distance from the final negotiated mixed

strategy to the Pareto frontier) can be bounded.

Finally, the theoretical methods derived in Chapters 2 and 3 were applied in a
variety of simulated environments. The results of these simulations were presented
in Chapter 4, where it was verified by simulation that the maximum IAR principle,
combined with the game theoretic extension to multiple active sensors, is effective at

coordinating the sensing efforts of multiple sensors in a variety of situations.

The contributions of this thesis are of theoretical and practical importance. Sensor
networks are proliferating, but tools for efficiently using these networks are often

lacking. Network usage is often ad hoc and operator driven, necessitating human
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intervention at a rudimentary level of network operation. The proven ability of the
MIAR to quickly and efficiently utilize heterogenous groups of sensors to accomplish
an inference task is intended to relieve the burden on sensor network operators through
automating the control of sensing. The treatment has been systematic and directed,

but is in not complete, as is discussed in Section 5.2.

5.2 Future Work

This thesis leaves several avenues of research open for future work. Finding inference
metrics and environments that satisfy the independence assumptions from Chapter 2
is probably not possible. However, it may be possible to find metrics and environ-
ments that approximately satisfy the assumptions. Preliminary empirical results for
a detection problem with Gaussian noise indicate that the conditional entropy metric
adopted for the simulations in Chapter 4 can be approximated by a decaying expo-
nential in the number of sensor measurements given a constant mode of operation.
This corresponds to the non-stationary system analyzed in Section 2.4.2.

Another interesting area of further research is in analyzing the suggested solu-
tion to the constructed network game. Comparisons, both theoretical and empiriéa.l,
between the proposed method and other negotiation strategies could be made. Ad-
ditionally, further analysis could lead to refinements that integrate more complex
conditions on the pricing of actions, resulting in different negotiated mixed strate-
gies. Also, it may be interesting to examine how relaxing Conventions 3.1 and 3.2
affect the optimality of the final solution. For instance, if an agent is not constrained
to accept an offer that exceeds the difference between its ideal utility and its utility
under the offerer’s ideal joint action, can the pareto suboptimality still be bounded?
This may relate to the 2 bound on strategic pricers derived in {17].

Finally, one of the best methods of furthering the research proposed in this thesis
will be in analyzing its effectiveness in real-world sensor networks. This includes
finding platforms that can support the computational requirements of the method,

defining problem situations that benefit from time minimal analysis, implementing
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the suggested algorithms and methods, and analyzing the resulting data to verify the
effectiveness of the group MIAR principle in directing coordinated sensing in sensor
networks. MIT Lincoln Laboratory has dedicated significant resources to this project
in its ISDS group. The principles developed here were developed with the intent of
future integration into real systems for automatic control of sensor networks. The

results of this integration should be significant.
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