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Abstract— Scheduling competing jobs on multiprocessors
has always been an important issue for parallel and dis-
tributed systems. The challenge is to ensure global, system-
wide efficiency while offering a level of fairness to user jobs.
Various degrees of successes have been achieved over the
years. However, few existing schemes address both efficiency
and fairness over a wide range of work loads. Moreover, in
order to obtain analytical results, most of them require prior
information about jobs, which may be difficult to obtain in
real applications.

This paper presents two novel adaptive scheduling algo-
rithms – GRAD for centralized scheduling, and WRAD
for distributed scheduling. Both GRAD and WRAD ensure
fair allocation under all levels of workload, and they offer
provable efficiency without requiring prior information of
job’s parallelism. Moreover, they provide effective control
over the scheduling overhead and ensure efficient utilization
of processors. To the best of our knowledge, they are the first
non-clairvoyant scheduling algorithms that offer such guar-
antees. We also believe that our new approach of resource
request-allotment protocol deserves further exploration.

Specifically, both GRAD and WRAD are O(1)-
competitive with respect to mean response time for batched
jobs, andO(1)-competitive with respect to makespan for non-
batched jobs with arbitrary release times. The simulation
results show that, for non-batched jobs, the makespan
produced by GRAD is no more than1.39 times of the optimal
on average and it never exceeds4.5 times. For batched jobs,
the mean response time produced byGRAD is no more than
2.37 times of the optimal on average, and it never exceeds
5.5 times.

Index Terms— Adaptive scheduling, Competitive analysis,
Data-parallel computing, Greedy scheduling, Instantaneous
parallelism, Job scheduling, Makespan, Mean response time,
Multiprocessing, Multiprogramming, Parallelism feedback,
Parallel computation, Processor allocation, Span, Thread
scheduling, Two-level scheduling, Space sharing, Trim analy-
sis, Work, Work-stealing.

I. Introduction
Parallel computers are expensive resource that often must
be shared among a large community of users. One major
issue of parallel job scheduling is how to efficiently share
resources of multiprocessors among a number of compet-
ing jobs, while ensuring each job a required quality of ser-
vices (see e.g. [6], [7], [9], [11], [14], [16]–[19], [24], [27],
[29], [31]–[35], [37], [43], [44]). Efficiency and fairness
are two important design goals, where the efficiency is
often quantified in terms of makespan and mean response
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time. This paper summaries several scheduling algorithms
we developed. For scheduling of individual jobs, our
algorithms ensure short completion time and small waste,
for scheduling of job sets, they offer provable efficiency in
terms of the makespan and mean response time by allotting
each job a fair share of processor resources. Moreover, our
algorithms arenon-clairvoyant [9], [14], [16], [24], i.e.
they assume nothing about the release time, the execution
time, and the parallelism profile of jobs.

Parallel job scheduling can be implemented using a
two-level framework [19]: a kernel-leveljob scheduler
which allots processors to jobs, and a user-levelthread
schedulerwhich maps the threads of a given job to the
allotted processors. The job schedulers may implement
eitherspace-sharing, where jobs occupy disjoint processor
resources, ortime-sharing, where different jobs may share
the same processor resources at different times. Moreover,
both the thread scheduler and the job scheduler may
be either adaptive, allowing the number of processors
allotted to a job to vary while the job is running, or
nonadaptive(called “static” in [12]), where a job runs
on a fixed number of processors over its lifetime. Our
schedulers apply two-level structure in the context of
adaptive scheduling.

With adaptive scheduling [4] (called “dynamic”
scheduling in [19], [30], [32], [46], [47]), the job scheduler
can change the number of processors allotted to a job
while the job executes. Thus, new jobs can enter the
system, because the job scheduler can simply recruit
processors from the already executing jobs and allot them
to the new jobs. Without a suitable feedback mechanism,
however, both adaptive and nonadaptive schedulers may
waste processor cycles, because a job with low parallelism
may be allotted more processors than it can productively
use. If individual jobs provide properparallelism feedback
to the job scheduler, waste can be reduced. Therefore,
at regular intervals (called quanta), a thread scheduler
estimates the desire and provides it to the job scheduler;
the job scheduler allots the processors to the jobs based on
the request. This feedback mechanism is calledrequest-
allotment protocol. Since the future parallelism of jobs
is generally unknown, the challenge here is to develop a
request-allotment protocol, which gives an effective way
to estimate desire and allocate processors.

Various researchers [13], [14], [22], [32] have used
the notion of instantaneous parallelism — the number
of processors the job can effectively use at the current
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moment, as the parallelism feedback to the job scheduler.
Although using instantaneous parallelism for parallelism
feedback is simple, it is only applicable to the situations
where the parallelism of jobs does not change as fre-
quent as the rate of processor reallocation. When jobs’
parallelism change fast, using instantaneous parallelism
as feedback can cause gross misallocation of processor
resources [38]. For example, the parallelism of a job may
change substantially during a scheduling quantum, alter-
nating between parallel and serial phases. The sampling
of instantaneous parallelism at a scheduling event between
quanta may lead the task scheduler to request either too
many or too few processors depending on which phase is
currently active, whereas the desirable request might be
something in between. Consequently, the job may waste
processor cycles or take too long to complete.

For thread scheduling, this paper makes use of two
adaptive thread schedulersA-GREEDY [1] and A-STEAL

[2], [3], which provide parallelism feedback.A-GREEDY

is a greedy thread scheduler suitable for centralized
scheduling, where each job’s thread scheduler can dispatch
all the ready threads to the allotted processors in a central-
ized manner, e.g. the scheduling of data-parallel jobs.A-
STEAL is a distributed thread scheduler, where each job is
executed by decentralized work-stealing [8], [10], [23].A-
GREEDY and A-STEAL were originally presented in our
joint work [1]–[3] with Kunal Agrawal from MIT. Both of
them guarantee not to waste many processor cycles while
simultaneously ensuring that the job completes quickly.
Instead of using instantaneous parallelism,A-GREEDY

and A-STEAL provide parallelism feedback to the job
scheduler based on a single summary statistic and the
job’s behavior on the previous quantum. Even though they
provide parallelism feedback using the past behavior of the
job and we do not assume that the job’s future parallelism
is correlated with its history of parallelism, our analysis
shows that they schedule the job well with respect to both
waste and completion time.

For job scheduling, this paper also introduces an
“adaptive” job scheduler -RAD, which combines the
space-sharing job scheduling algorithm “dynamic equi-
partitioning” [32], [43] (DEQ) with the time-sharing round
robin (RR) algorithm. When the total number of jobs is
smaller than or equal to the total number of processors, it
uses DEQ as job scheduler. DEQ allots each job with an
equal number of processors unless the job requests for less.
DEQ was introduced by McCann, Vaswani, and Zahorjan
[32] based on earlier work on equipartitioning by Tucker
and Gupta [43]. When the total number of jobs is greater
than the total number of processors,RAD applies time-
sharing round robin algorithm, which also ensures that
each job gets an equal slice of scheduling time.RAD
was originally presented in our paper [25].

Intuitively, if each job provides good parallelism feed-
back and makes productive use of available processors, a

good job scheduler can ensure thatall the jobs perform
well. To affirm this intuition, we combine the thread sched-
ulers A-GREEDY and A-STEAL with the job scheduler
RAD, and get two adaptive two-level scheduler —GRAD
and WRAD correspondingly [24], [25].GRAD, which
couplesRAD with A-GREEDY, is suitable for centralized
thread scheduling.WRAD, which couplesRAD with A-
STEAL, is more suitable for scheduling in the distributed
manner.

Based on the “equalized allotment” scheme for proces-
sor allocation, and by using the utilization in the past quan-
tum as feedback, we show that our two-level schedulers are
provably efficient. The performance is measured in terms
of both makespan and mean response time. BothGRAD
and WRAD achievesO(1)-competitiveness with respect
to makespan for job sets with arbitrary release times,
and O(1)-competitiveness with respect to mean response
time for batched job sets where all jobs are released
simultaneously. Unlike many previous results, which either
assume clairvoyance [11], [26], [27], [31], [34], [37], [44]
or use instantaneous parallelism [9], [14], our schedulers
remove these restrictive assumptions. Moreover, because
the quantum length can be adjusted to amortize the cost
of context-switching during processor reallocation, our
schedulers provide effective control over the scheduling
overhead and ensures efficient utilization of processors.

Our simulation results also suggest thatGRAD per-
forms well in practice1. For job sets with arbitrary release
time, their makespan scheduled byGRAD is no more than
1.39 times of the optimal on average and it never exceeds
4.5 times. For batched job sets, their mean response time
scheduled byGRAD is no more than2.37 times of the
optimal on average, and it never exceeds5.5 times.

The remainder of this paper is organized as follows.
Section II describes the job model, scheduling model,
and objective functions. Section III describes the thread
scheduling and job scheduling algorithms ofGRAD.
Section IV and Section V analyze the theoretical perfor-
mance and present the empirical results forGRAD respec-
tively. Section VI presents a distributed two-level adaptive
scheduling algorithmWRAD, and states its performance.
Section VII discusses the related work, and Section VIII
concludes the paper by raising issues for future research.

II. Scheduling Model and Objective
Functions
Our scheduling problem consists of a collection of inde-
pendent jobsJ =

{
J1, J2, . . . , J|J |

}
to be scheduled on

a collection ofP identical processors. In this section, we
formalize the job model, define the scheduling model, and
present the optimization criteria of makespan and mean
response time.

1The experimental study ofWRAD is still in progress, and therefore
we only present the simulation results ofGRAD in the paper.

2



Job Model
We model the execution of a multithreaded jobJi as a
dynamically unfolding directed acyclic graph (dag) such
that Ji = (Vi, Ei) whereVi and Ei represent the sets of
Ji’s vertices and edges respectively. Each vertexv ∈ Vi

represents a unit-time instruction. Thework T1 (Ji) of the
job Ji corresponds to the total number of vertices in the
dag, i.e.T1 (Ji) = |Vi|. Each edgee ∈ Ei from vertexu to
v represents a dependency between the two vertices. The
precedence relationshipu ≺ v holds if and only if there
exists a path from vertexu to v in Ei. The spanT∞ (Ji)
corresponds to the number of nodes on the longest chain
of the precedence dependencies. Therelease timer(Ji) of
the jobJi is the time at whichJi becomes first available
for processing. Each job is handled by a dedicated thread
scheduler, which operates in an online manner, oblivious
to the future characteristics of the dynamically unfolding
dag.

Scheduling Model
Our scheduling model assumes that time is broken into a
sequence of equal-sizedscheduling quanta1, 2, . . ., each
of length L, where each quantumq includes the interval
[L·q, L·q+1, . . . , L(q+1)−1] of time steps. The quantum
lengthL is a system configuration parameter chosen to be
long enough to amortize scheduling overheads.

The job scheduler and thread schedulers interact as fol-
lows. The job scheduler may reallocate processors between
quanta. Between quantumq−1 and quantumq, the thread
scheduler of a given jobJi determines the job’sdesire
d(Ji, q), which is the number of processorsJi wants
for quantumq. Based on the desire of all running jobs,
the job scheduler follows its processor-allocation policy
to determine theallotment a (Ji, q) of the job with the
constraint thata (Ji, q) ≤ d(Ji, q). Once a job is allotted
its processors, the allotment does not change during the
quantum.

A scheduleχ = (τ, π) of a job setJ is defined as
two mappingsτ : ∪Ji∈J Vi → {1, 2, . . . ,∞}, and π :
∪Ji∈J Vi → {1, 2, . . . , P}, which map the vertices of the
jobs in the job setJ to the set of time steps, and the set of
processors on the machine respectively. A valid mapping
must preserve the precedence relationship of each job. For
any two verticesu, v ∈ Vi of the job Ji, if u ≺ v, then
τ(u) < τ(v), i.e. the vertexu must be executed before
the vertexv. A valid mapping must also ensure that one
processor can only be assigned to one job at any given
time. For any two verticesu andv, bothτ(u) = τ(v) and
π(u) = π(v) are true iffu = v.

Objective Functions
Our scheduler uses makespan and mean response time
as the performance measurement, which are defined as
follows.

Definition 1: The completion time Tχ(Ji) of a job
Ji under a scheduleχ is the time at which the sched-

ule completes the execution of the job, i.e.Tχ(Ji) =
maxv∈Vi

τ(v). Themakespanof a given job setJ under
the scheduleχ is the time taken to complete all jobs in
the job setJ , i.e. Tχ(J ) = maxJi∈J Tχ(Ji).

Definition 2: The response timeof a job Ji under
a scheduleχ is Tχ(Ji) − r(Ji), which is the duration
between its release timer(Ji) and the completion time
Tχ(Ji). The total response timeof a job setJ under a
scheduleχ is given byRχ(J ) =

∑
Ji∈J (Tχ(Ji)−r(Ji))

and themean response timeis Rχ(J ) = Rχ(J )/ |J |.
The goal of the paper is to show that our scheduler

optimizes the makespan and mean response time, and we
use competitive analysis as a tool to evaluate and compare
the scheduling algorithm. The competitive analysis of an
online scheduling algorithm is to compare the algorithm
against an optimal clairvoyant algorithm. LetT∗(J ) de-
note the makespan of the jobsetJ scheduled by an optimal
scheduler, andχ(A) denote the schedule produced by an
algorithmA for the job setJ . A deterministic algorithm
A is said to bec-competitiveif there exists a constantb
such thatTχ(A)(J ) ≤ c·T∗(J )+b holds for the schedule
χ(A) of each job set. We will show that our algorithm isc-
competitive in terms of the makespan, wherec is a small
constant. Similarly, letRχ(A)(J ) and Rχ(A)(J ) denote
the total response time and mean response time in terms
of the scheduleχ(A) produced by an algorithmA. For
the mean response time, we will show that our algorithm
is also constant-competitive for any batched jobs.

III. GRAD Algorithms
GRAD usesA-GREEDY as thread scheduler, andRAD
as job scheduler. We present these two algorithms in this
section.

A-GREEDY Thread Scheduler
A-GREEDY [1] is an adaptive greedy thread scheduler
with parallelism feedback. Between quanta, it estimates
its job’s desire, and requests processors from the job
scheduler. During the quantum, it schedules the ready
threads of the job onto the allotted processors greedily
[7], [21]. For a job Ji, if there are more thana (Ji, q)
ready threads,A-GREEDY schedules anya (Ji, q) of them.
Otherwise, it schedules all of them.

A-GREEDY classifies quanta as “satisfied” versus “de-
prived” and “efficient” versus “inefficient.” A quantum
q is satisfied if a (Ji, q) = d(Ji, q), in which caseJi’s
allotment is equal to its desire. Otherwise, the quantum
is deprived. The quantumq is efficient if A-GREEDY’s
utilization u(Ji, q) is no less than aδ fraction of the total
allotted processor cycles during the quantum, whereδ is
named asutilization parameter. Typical values forδ might
be 90–95%. Otherwise, the quantum isinefficient.

A-GREEDY calculates the desired(Ji, q) of the current
quantumq based on the previous desired(Ji, q − 1) and
the three-way classification of quantumq − 1 as ineffi-
cient, efficient and satisfied, and efficient and deprived.
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A-GREEDY(q, δ, ρ)
1 if q = 1
2 then d(Ji, q) ← 1 ¤ base case
3 elseif u(Ji, q − 1) < Lδa (Ji, q − 1)
4 then d(Ji, q) ← d(Ji, q − 1)/ρ ¤ ineff.
5 elseif a (Ji, q − 1) = d(Ji, q − 1)
6 then d(Ji, q) ← ρd(Ji, q − 1) ¤ eff.+ sat.
7 elsed(Ji, q) ← d(Ji, q − 1) ¤ eff.+ dep.
8 Report desired(Ji, q) to the job scheduler.
9 Receive allotmenta (Ji, q) from the job scheduler.

10 Greedily schedule ona (Ji, q) processors
for L time steps.

Figure 1: Pseudocode for the adaptive greedy algorithm.A-
GREEDY provides parallelism feedback of jobJi to a job
scheduler in the form of a desire for processors. Before quantum
q, A-GREEDY uses the previous quantum’s desired(Ji, q − 1),
allotmenta (Ji, q − 1), and usageu(Ji, q − 1) to compute the
current quantum’s desiredq based on the utilization parameterδ
and the responsiveness parameterρ.

The initial desire isd(Ji, 1) = 1. A-GREEDY uses a
responsiveness parameterρ > 1 to determine how quickly
the scheduler responds to changes in parallelism. Typical
values ofρ might range between1.2 and 2.0. Figure 1
shows the pseudo-code ofA-GREEDY for one quantum.

RAD Job Scheduler
The job schedulerRAD [25] unifies the space-sharing job
scheduling algorithm DEQ [32], [43] with the time-sharing
RR algorithm. When the number of jobs is greater than
the number of processors,GRAD schedules the jobs in
batched round robin fashion, which allocates one processor
to each job with an equal share of time. When the number
of jobs is at most the number of processors,GRAD uses
DEQ as job scheduler. DEQ gives each job an equal share
of spatial allotments unless the job requests for less.

When jobs are scheduled in batched round robin fash-
ion, RAD maintains a queue of jobs. At the beginning of
each quantum, if there are more thanP jobs, it popsP
jobs from the top of the queue, and allots one processor
to each of them during the quantum. At the end of the
quantum,RAD pushes theP jobs back to the bottom of
the queue if they are incomplete. The new jobs can be put
into the queue once they are released.

DEQ attempts to give each job a fair share of processors.
If a job requires less than its fair share, however, DEQ
distributes the extra processors to the other jobs. More
precisely, upon receiving the desires{d(Ji, q)} from the
thread schedulers of all jobsJi ∈ J , DEQ executes the
following processor-allocation algorithm:

1. Setn = |J |. If n = 0, return.
2. If the desire for every jobJi ∈ J satisfies
d(Ji, q) ≥ P/n, assign each joba (Ji, q) = P/n
processors.

3. Otherwise, letJ ′ = {Ji ∈ J : d(Ji, q) < P/n}.

Assign a (Ji, q) = d(Ji, q) processors to each
Ji ∈ J ′. UpdateJ = J −J ′, and P = P −∑

Ji∈J ′ d(Ji, q). Go to Step 1.

IV. GRAD Theoretical Results
GRAD is a two-level scheduler, whose performance is
usually measured in terms of the global properties such as
makespan and mean response time. Intuitively, if each job
provides good parallelism feedback and makes productive
use of available processors, a good job scheduler can
ensure that all the jobs perform well. Therefore, the
efficiency of GRAD depends on the effectiveness ofA-
GREEDY. Specially, we want individual jobs scheduled
by A-GREEDY to have short completion time and small
waste. In this section, we first introduceA-GREEDY’s time
and waste bound, then we analyze the performance of
GRAD in terms of both makespan and mean response
time.

A-GREEDY ’s Time and Waste Bound
A-GREEDY is a thread scheduler responsible for schedul-
ing individual job Ji. In an adaptive setting where the
number of processors allotted to a job can change during
execution, bothT1 (Ji) /P andT∞ (Ji) are lower bounds
on the running time, whereP (Ji) is the mean of the
processor availability for jobJi during the computation.
An adversarial job scheduler, however, can prevent any
thread scheduler from providing good speedup with re-
spect to the mean availabilityP (Ji) in the worst case.
For example, if the adversary chooses a huge number of
processors for the job’s processor availability just when
the job has little instantaneous parallelism, no adaptive
scheduling algorithm can effectively utilize the available
processors on that quantum.

We introduce a technique calledtrim analysisto analyze
the time bound of adaptive thread schedulers under these
adversarial conditions. Trim analysis borrows the idea
of ignoring a few “outliers” from statistics. Atrimmed
mean, for example, is calculated by discarding a certain
number of lowest and highest values and then computing
the mean of those that remain. For our purposes, it suffices
to trim the availability from just the high side. For a given
valueR, we define theR-high-trimmed mean availability
as the mean availability after ignoring theR steps with
the highest availability. A good thread scheduler should
provide linear speedup with respect to anR-trimmed
availability, whereR is as small as possible.

The following theorem shows that, for each jobJi,
A-GREEDY completes the job inO(T1 (Ji) /P̃ (Ji) +
T∞ (Ji)+L lg P ) time steps, wherẽP denotes theO(T∞+
L lg P )-trimmed availability. Thus, jobJi achieves linear
speed up with respect tõP (Ji) whenT1 (Ji) /T∞ (Ji) À
P̃ (Ji), that is, when its parallelism dominates the
O(T∞ (Ji)+L lg P )-trimmed availability. In addition, we
prove that the total number of processor cycles wasted
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by the job isO(T1 (Ji)), representing at most a constant
factor overhead. The details of the proof are documented
in [1].

Theorem 1:Suppose thatA-GREEDY schedules a job
Ji with work T1 (Ji) and critical-path lengthT∞ (Ji)
on a machine withP processors. Ifρ is A-GREEDY’s
responsiveness parameter,δ is its utilization parameter, and
L is the quantum length, thenA-GREEDY completes the
job in

T (Ji) ≤ T1 (Ji)

δP̃ (Ji)
+

2T∞ (Ji)
1− δ

+ L logρ P + L

time steps, whereP̃ (Ji) is the (2T∞ (Ji) /(1 − δ) +
L logρ P +L)-trimmed availability. Moreover,A-GREEDY

wastes at most

(1 + ρ− δ)T1 (Ji) /δ

processor cycles in the course of the computation.

Makespan
Makespan is the time to complete all jobs in the job set.
Given a job setJ andP processors, lower bounds on the
makespan of any job scheduler can be obtained based on
release time, work, and span. Recall that for a jobJi ∈ J ,
the quantitiesr(Ji), T1 (Ji), and T∞ (Ji) represent the
release time, work, and span ofJi, respectively. LetT∗(J )
denote the makespan produced by an optimal scheduler
on a job setJ scheduled onP processors. LetT1 (J ) =∑

Ji∈J T1 (Ji) denote the total work of the job set. The
following two inequalities give two lower bounds on the
makespan [9]:

T∗(J ) ≥ max
Ji∈J

{r(Ji) + T∞ (Ji)} , (1)

T∗(J ) ≥ T1 (J ) /P . (2)

The following theorem bounds the makespan of a job
setJ scheduled byGRAD.

Theorem 2:Suppose thatGRAD schedules a job setJ
on a machine withP processors. It completes the job set
in

T(J ) ≤ ρ + 1
δ

T1 (J )
P

+
2

1− δ
max
Ji∈J

{T∞ (Ji) + r(Ji)}
+L logρ P + 2L

time steps.
Proof Sketch. Suppose jobJk is the last job completed
among the jobs inJ . Let S(Jk) denote the set of satisfied
steps forJk, andD(Jk) denote its set of deprived steps.
The job Jk is scheduled to start its execution at the
beginning of the quantumq whereLq < r(Jk) ≤ L(q+1),
which is the quantum immediately afterJk ’s release.
Therefore, we haveT(J ) ≤ r(Jk)+L+|S(Jk)|+|D(Jk)|.

We now bound|S(Jk)| and |D(Jk)|. According to
[1], we know that the number of satisfied steps is given
by |S(Jk)| ≤ 2T∞ (Jk) /(1 − δ) + L logρ P + L. To
bound the total number of deprived steps, we use the

work-conservative property ofRAD to make a connection
between the total allotment with the total work of the job
set. The key observation is thatRAD must have allotted all
processors to jobs wheneverJk is deprived. Once we get
|D(Jk)|, a simple summation gives us the desired bound.

Since both the quantum lengthL and the num-
ber of processorsP are independent variables with
respect to any job setJ , and both T1 (J ) /P and
maxJi∈J {T∞ (Ji) + r(Ji)} are lower bounds ofT∗(J ),
GRAD is O(1)-competitive with respect to makespan.
Specially, whenδ = 0.5 and ρ approaches1, the com-
petitiveness ratio(ρ + 1)/δ + 2/(1 − δ) approaches its
minimum value8. Thus, GRAD is (8 + ε)-competitive
with respect to makespan for any constantε > 0.

Mean Response Time
Mean response time is an important measure for multiuser
environments where we desire as many users as possible
to get fast response from the system. To introduce the
lower bounds of mean response time for batched jobs, we
need to introduce two definitions – squashed work area
and aggregate span. Consider the jobs in the job setJ are
ordered according to their work, i.e.T1 (J1) ≤ T1 (J2) ≤
· · · ≤ T1

(
J|J |

)
. The squashed work areaof J is

swa (J ) = (1/P )
n∑

i=1

(n− i + 1)T1 (Ji) .

The aggregate spanof J is

T∞ (J ) =
∑

Ji∈J
T∞ (Ji) ,

whereT∞ (Ji) is the span of jobJi ∈ J . The research in
[14], [44], [45] establishes two lower bounds for the mean
response time:

R∗(J ) ≥ T∞ (J ) / |J | , (3)

R∗(J ) ≥ swa (J ) / |J | , (4)

whereR∗(J ) denotes the mean response time ofJ sched-
uled by an optimal clairvoyant scheduler. Both the aggre-
gate spanT∞ (J ) and the squashed work areaswa (J )
are lower bounds for the total response timeR∗(J ) under
an optimal clairvoyant scheduler.

Theorem 3:Suppose that a job setJ is scheduled by
GRAD on P processors. LetC = 2 − 2/(|J | + 1). The
total response timeR(J ) of the schedule is at most

R(J ) = C

(
ρ + 1

δ
swa (J ) +

2
1− δ

T∞ (J )
)

+ O(|J |L logρ P ) , (5)

where swa (J ) is the squashed work area ofJ , and
T∞ (J ) is the aggregate span ofJ .
Proof Sketch. The proof of the competitiveness of mean
response time is more complex than that of makespan.
The analysis can be divided into two parts. In the first
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Figure 2: Comparing the makespan ofGRAD with the
theoretical lower bound for job sets with arbitrary job
release time.
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Figure 3: Comparing the mean response time ofGRAD
with the theoretical lower bound for batched job sets.

part where|J | ≤ P , GRAD always uses DEQ as job
scheduler. In this case, we use mathematical induction
to show localc-competitiveness argument, which asserts
Inequality (5) is always true at any time stept during the
execution of the job set. In the second part of the proof
where |J | > P , GRAD uses both RR and DEQ. Since
we consider batched jobs, the number of incomplete jobs
decreases monotonically. When the number of incomplete
jobs drops toP , GRAD switches its job scheduler from
RR to DEQ. Therefore, we prove the second case based
on the properties of round robin scheduling and the results
of the first case.

Since bothswa (J ) / |J | and T∞ (J ) / |J | are lower
bounds onR(J ), we obtain the following corollary.

Corollary 4: Suppose that a job setJ is scheduled by
GRAD. The mean response timeR(J ) of the schedule
satisfies

R(J ) =
(

2− 2
|J |+ 1

) (
ρ + 1

δ
+

2
1− δ

)
R∗(J )

+ O(L logρ P ) ,

where R∗(J ) denotes the mean response time ofJ
scheduled by an optimal clairvoyant scheduler.

Since both the quantum lengthL and the number
of processorsP are independent variables with respect
to any job setJ , Corollary 4 shows thatGRAD is
O(1)-competitive with respect to mean response time for
batched jobs. Specifically, whenδ = 1/2 andρ approaches
1, GRAD’s competitiveness ratio approaches the mini-
mum value16. Thus,GRAD is (16+ ε)-competitive with
respect to mean response time for any constantε > 0.

V. GRAD Experimental Results
GRAD’s competitive ratio with respect to makespan and
mean response time, though asymptotically strong, has a
relatively large constant multiplier. Our experiments were
designed to evaluate the constants that would occur in

practice and compareGRAD to an optimal scheduler. We
build a Java-based discrete-time simulator using DESMO-
J [15]. Our simulator models four major entities —
processors, jobs, thread schedulers, and job schedulers,
and simulates their interactions in a two-level scheduling
environment. The simulator operates in discrete time steps,
and we ignore the overheads incurred in the reallocation
of processors.

Our benchmark application is the Fork-Join jobs, which
alternate between serial and parallel phases. Fork-Join jobs
arise naturally in jobs that exhibit “data parallelis”, mean-
ing those that apply the same computation to a number
of different data points. Many computationally intensive
applications can be expressed in a data-parallel fashion
[36]. The repeated fork-join cycle in the job reflects the
often iterative nature of these computations. We generate
jobs with different work, spans, and phase lengths. The
experiments are conducted on more than10000 runs of
jobs sets using many combinations of jobs and different
loads.

Figure 2 shows howGRAD performs compared to
an optimal scheduler with respect to makespan. The
makespan of a job setJ has two lower bounds
maxJi∈J (r(Ji)+T∞ (Ji)) andT1 (J ) /P . The makespan
produced by an optimal scheduler is at least the larger of
these two lower bounds. The makespan ratio in Figure 2 is
defined as the makespan of a job set scheduled byGRAD
divided by the large of the two lower bounds. In Figure 2,
the X-axis represents the ranges of the makespan ratio,
while the histogram shows the percentage of the job sets
whose makespan ratio falls into each range. Among more
than10000 runs,76.19% of them use less than1.5 times
of the theoretical lower bound,89.70% uses less than 2.0
times, and none uses more than 4.5 times. The average
makepsan ratio is1.39, which suggests that in practice
GRAD has a small competitive ratio with respect to the
makespan.

Figure 3 shows the distribution of the mean response
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time normalized w.r.t the larger of the two lower bounds
– the squashed work boundswa (J ) / |J | and the aggre-
gated critical path boundT∞ (J ) / |J |. The histogram in
Figure 3 shows that, among more than8000 runs,94.65%
of them use less than 3 times of the theoretical lower
bound, and none of them uses more than5.5 times. The
average mean response time ratio is2.37.

We now interpret the relation between the theoretical
bounds and experimental results as follows. Whenρ =
2 and δ = 0.8, from Theorem 2,GRAD is 13.75-
competitive in the worst case. However, we anticipate
that GRAD’s makespan ratio would be small in practi-
cal settings, especially when many jobs have total work
much larger than span and the machine is moderately or
highly loaded. In this case, the term onT1 (J ) /P in
Inequality (3) of Theorem 2 is much larger than the term
maxJi∈J {T∞ (i) + r(i)}, which is to say, the term on
T1 (J ) /P generally dominates the makespan bound. The
proof of Theorem 2 calculates the coefficient ofT1 (J ) /P
as the ratio of the total allotment (total work plus total
waste) versus the total work. When the job scheduler is
RAD, which is not a true adversary, our simulation results
indicate that the ratio of the waste versus the total work is
only about1/10 of the total work. Thus, the coefficient of
T1 (J ) /P in Inequality (3) is about1.1. It explains that
the makespan produced byGRAD is less than 2-times of
the lower bound in average as shown in Figure 2.

Similar to makepsan, we can relate the theoretical
mean resposne time bounds with experimental results as
follows. When ρ = 2 and δ = 0.8, from Theorem 3,
GRAD is 27.60-competitive. However, we expect that
GRAD should perform closer to optimal in practice. In
particular, when the job setJ exhibits reasonably large
total parallelism, we haveswa (J ) À T∞ (J ), and thus,
the term involvingswa (J ) in Theorem 3 dominates the
total response time. More importantly,RAD is not an
adversary ofA-GREEDY, as mentioned before, the waste
of a job is only about1/10 of the total work in average
for over100, 000 job runs we tested. Based on this waste,
the squashed area boundswa (J ) in Inequality (5) of
Theorem 3 has a coefficient to be around2.2. It explains
that the mean response time produced byGRAD is less
than3 times of the lower bound as shown in Figure 3.

VI. WRAD – Distributed Adaptive
Scheduler
WRAD is a distributed two-level adaptive scheduler that
uses theA-STEAL algorithm [2], [3] as its thread sched-
uler andRAD as its job scheduler. WhileA-GREEDY uses
a centralized algorithm to schedule tasks on the allotted
processors, our new thread scheduling algorithmA-STEAL

works in a decentralized fashion, using randomized work-
stealing [4], [8], [20] to schedule the threads on allotted
processors.A-STEAL is unaware of all available threads at
a given moment. Whenever a processor runs out of work,

it “steals” work from another processor chosen at random.
To the best of our knowledge,A-STEAL is the first work-
stealing thread scheduler that provides provably effective
parallelism feedback to a job scheduler. In this section, we
briefly review A-STEAL, and presentWRAD’s results.

A-STEAL is a decentralized adaptive thread scheduler
with parallelism feedback, and likeA-GREEDY, A-STEAL

performs two functions. Between quanta, it estimates its
job’s desire and requests processors from the job sched-
uler. A-STEAL applies the same desire-estimation algo-
rithm asA-GREEDY to calculate its job’s desire. During
the quantum,A-STEAL schedules the ready threads of
the job onto the allotted processors using an adaptive
work-stealing algorithm. For a jobJi, A-STEAL guaran-
tees linear speedup with respect toO(T∞ (Ji) + L lg P )-
trimmed availability. In addition,A-STEAL wastes at most
O(T1 (Ji)) processor cycles. The precise statements ofA-
STEAL ’s time and waste bound are given by the following
theorem. Please refer to [2] for its proof.

Theorem 5:Suppose thatA-STEAL schedules a job
Ji with work T1 (Ji) and critical-path lengthT∞ (Ji)
on a machine withP processors. For anyε > 0, with
probability at least1− ε, A-STEAL completes the job in

T ≤ T1 (Ji)

δP̃ (Ji)

(
1 +

1 + ρ

Lδ − 1− ρ

)

+ O

(
T∞ (Ji)
1− δ

+ L logρ P + L ln(1/ε)
)

time steps, whereP̃ (Ji) is the O(T∞ (Ji) /(1 − δ) +
L logρ P + L ln(1/ε))-trimmed availability. Moreover, it
wastes at most

W ≤
(

1 + ρ− δ

δ
+

(1 + ρ)2

δ(Lδ − 1− ρ)

)
T1 (Ji)

processor cycles in the course of the computation.

WRAD is O(1)-competitive with respect to both
makespan and mean response time. The methods used
for analyzing WRAD are similar to those forGRAD.
However, sinceA-STEAL and WRAD are randomized
scheduling algorithms, we show that the makespan (or
the expected mean response time) is within a factorc
of that incurred in an optimal clairvoyant algorithm in
expectation, not in the worst case. The following theorem
presents the makespan, and mean response time bound of
WRAD respectively.WRAD is O(1)-competitive for both
makespan and, in the batch setting, mean response time.

Theorem 6:Suppose that a job setJ is scheduled by
WRAD on a machine withP processors. The expected
competition of the schedule is given by

E [T(J )] =
(

ρ + 1
δ

+
(1 + ρ)2

δ(Lδ − 1− ρ)

)
T1 (J )

P

+ O

(
maxJi∈J {r(Ji) + T∞ (Ji)}

1− δ

)

+ L logρ P + 2L
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time steps. Moreover, letC = 2 − 2/(|J | + 1). The
expected response time of the schedule is given by

E [R(J )] = C

(
ρ + 1

δ
+

(1 + ρ)2

δ(Lδ − 1− ρ)

)
swa (J )

+ O

(
T∞ (J )
1− δ

+ |J |L logρ P

)
,

where swa (J ) denotes the squashed work area, and
T∞ (J ) denotes the aggregate span.

Both GRAD and WRAD follow the same resource
request-allotment protocol, which uses jobs’ utilization in
the past quantum as feedback, and makes fair processor
allotments among jobs. Even though their thread scheduler
A-GREEDY and A-STEAL apply fairly different ways
to schedule ready threads on processors, bothGRAD
andWRAD ensure constant competitiveness with respect
to makespan, and, in batched setting, mean response
time. We believe that this new approach of resource
request-allotment protocol can be useful in many other
resource management problems, and it deserves further
exploration.

VII. Related Work
This section discusses related work in job scheduling
that minimizes makespan and mean response time. In
the offline version of the problem, all the jobs’ resource
requirements and release times are known in advance.
In the online clairvoyant version of the problem, the
algorithm knows the resource requirements of a job when
it is released, but it must base its decisions only on jobs
that have been released. In this paper, we have studied the
online nonclairvoyant version of the problem, where the
resource requirements and release times are unknown to
the scheduling algorithm.

The online nonclairvoyant scheduling of parallel jobs
includes the scheduling of a single parallel job, multiple
serial jobs, and multiple parallel jobs.

Prior work on scheduling a single parallel job tends
to focus on nonadaptive scheduling [6], [8], [21], [35] or
adaptive scheduling without parallelism feedback [4]. For
jobs whose parallelism is unknown in advance and which
may change during execution, nonadaptive scheduling is
known to waste processor cycles [41], because a job with
low parallelism may be allotted more processors than it
can productively use. Moreover, in a multiprogrammed
environment, nonadaptive scheduling may not allow a new
job to start, because existing jobs may already be using
most of the processors. Although adaptive scheduling
without parallelism feedback allows jobs to enter the
system, jobs may still waste processor cycles if they are
allotted more processors than they can use.

Adaptive thread scheduling with parallelism feedback
has been studied empirically in [38], [40], [42]. These
researchers use a job’s history of processor utilization to

provide feedback to dynamic-equipartitioning job sched-
ulers. These studies use different strategies for parallelism
feedback, and all report better system performance with
parallelism feedback than without, but it is not apparent
which strategy is superior.

Some researchers [5], [28], [33] have studied the online
non-clairvoyant scheduling of serial jobs to minimize the
mean response time on single or multiple processors.
For jobs with arbitrary release times, Motwani, Phillips,
and Torng [33] show that every deterministic algorithm
can achieve competitiveness no better thanΩ(n1/3), and
any randomized algorithm can achieve competitiveness
no better thanΩ(log n) for mean response time. Bec-
chetti and Leonardi [5] present a version of the random-
ized multilevel feedback algorithm (RMLF) and prove
an O(log n log(n/P ))-competitiveness result against any
oblivious adversary on a machine withP processors.

Shmoys, Wein and Williamson in [39] study the lower
bounds of online nonclairvoyant scheduling of serial jobs
with respect to makespan. They show that the competitive
ratio is at least(2−1/P ) for any preemptive deterministic
online algorithm, and at least(2 − 1/

√
P ) for any non-

preemptive randomized online algorithm with an oblivious
adversary.

Adaptive parallel job scheduling has been studied both
empirically [29], [32], [43] and theoretically [13], [16],
[17], [22], [33]. McCann, Vaswani, and Zahorjan [32]
study many different job schedulers and evaluated them
on a set of benchmarks. They also introduce the notion
of dynamic equipartitioning (DEQ), which gives each job
a fair allotment of processors based on the job’s request,
while allowing processors that cannot be used by a job
to be reallocated to other jobs. Brecht, Deng, and Gu
[9] prove that DEQ with instantaneous parallelism as
feedback is2-competitive with respect to the makespan.
Later, Deng and Dymond [14] prove that DEQ with
instantaneous parallelism is also4-competitive for batched
jobs with respect to the mean response time. Since DEQ
only addresses the case where there are more processors
than active jobs, a scheduling algorithm that uses DEQ as
job scheduler, can only be applied to the case where the
total number of jobs in the job set is less than or equal to
the total number of processors.

VIII. Conclusions
We have presented two new adaptive scheduling algo-
rithms GRAD and WRAD that ensure fair allocation
under all levels of workload, and they offer provable
efficiency without requiring prior information of job’s
parallelism. Moreover, they provide effective control over
the scheduling overhead and ensure efficient utilization of
processors. To the best of our knowledge,GRAD and
WRAD are the first non-clairvoyant scheduling algorithms
that offer such guarantees.

The request-allotment framework discussed in this paper
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can be applied to application-specific schedulers. Here,
GRAD combinesRAD with A-GREEDY thread sched-
uler, andWRAD combinesRAD with A-STEAL. Analo-
gously, one can develop a two-level scheduler by applying
the request-allotment protocol, and application-specific
thread schedulers. Such a two-level scheduler may provide
both system-wide performance guarantees such as minimal
makespan and mean response time, and optimization of
individual applications.
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