View metadata, citation and similar papers at core.ac.uk brought to you by fCORE

provided by DSpace@MIT

How to do a million watchpoints:
Efficient Debugging using Dynamic Instrumentation

Qin ZHAQ?, Saman AMARASINGHE !, Rodric M. RABBAH !, Larry RUDOLPH !, andWeng Fai WONG?
1 CSAIL, Massachusetts Institute of Technology
2 Soc, National University of Singapore

Abstract— Application debugging is a tedious but inevitable Many architectures provide some support for debugging in
chore in any software development project. An effective debugger order to reduce the overheads of implementing the debugging
can make programmers more productive by allowing them fea¢re set in software. In particular, data breakpoints are very

to pause execution and inspect the state of the process, or . . - .
monitor writes to memory to detect data corruption. The latter expensive to implement without hardware support since they

is a notoriously difficult category of bugs to diagnose and require watching all updates to memory. On every data write, a
repair especially in pointer-heavy applications. The debugging check is made against the set of addresses that are of interest to
challenges will increase with the arrival of multicore processors the end user (the watchlist). As such, execution can slow down
which require explicit parallelization of the user code to get significantly in the absence of hardware support. The GNU

any performance gains. Parallelization in turn can lead to . .
more data debugging issues such as the detection of data race?roJeCt Debugger (GDB) [6] on x86 architectures uses the

between threads. This paper leverages the increasing efficiencyfour available debugging registers to accelerate the watchpoint
of runtime binary interpreters to provide a new concept of debugging feature. This often results in imperceptible or
Efficient Debugging using Dynamic Instrumentation, or EDDI. acceptable slowdowns although support for a watchlist of more
The paper demonstrates for the first time the feasibility of 41 3 handful of memory locations is prohibitively expensive
using dynamic instrumentation on demand to accelerate software . . .

debuggers, especially when the available hardware support is and thus not reall_stlc. For exgmple, using a_S|mpIe progrqm,
lacking or inadequate. As an example, EDDI can simultaneously We observed that in GDB version 5.3, performing a watchpoint

monitor millions of memory locations, without crippling the host ~ with hardware assistance forcibly disabled resulted in a 11,000
processing platform. It does this in software and hence provides times slowdown.

a portable debugging environment. It is also well suited for ; ; ; ;
interactive debugging because of the low associated overheads. Pr(?(?ram d(;abugl;gers Wlt” S\I/at)r/] at?] mcreas.mgly Import&.mt r0|ed
EDDI provides a scalable and extensible debugging framework N Software aevelopment. Vvi € ever increasing size an

that can substantially increase the feature set of standard off the complexity of software, and the advent of multicore and

shelf debuggers. hence mass parallel programming, developers are facing an
Index Terms— Debuggers, watchpoints, dynamic instrumenta- ever increasing challenge in debugging. This bodes poorly
tion for diagnosing data corruption errors that might arise from

bad pointers, buffer overflows, or data races. The feature sets
offered by most existing standalone debuggers are either not
I. INTRODUCTION sufficiently rich, or exhibit poor overhead scalability. There are
however more advanced debuggers that can manage the per-
PPLICATION debugging is an inevitable part of anyformance penalties via static program analysis and advanced
software development cycle. Software debuggers ofteompilation [4], [18], [19]. The drawback to these techniques
run as separate processes that attach to the end user apphctrat they require additional compilation steps, and generally
tion, and then trace through runtime events to detect executiannot apply to precompiled binaries or dynamically linked
anomalies or interrupt execution at programmable breakpointede. These factors may impede widespread user acceptance.
Some anomalies result from dereferencing null pointers orThis paper offers a new approacEfficient Debugging
executing illegal branch instructions, and when detected, thsing Dynamic InstrumentatioEDDI). EDDI leverages the
user can inspect the code at the site of the anomaly, and tradeances in binary instrumentation and code manipulation
back in the program stack to derive more clues. Breakpoints tmols [10], [9], [1], [2] to provide an efficient debugging
the other hand are user programmable predicates that spefrfiynework that can substantially increase the feature set of
when to interrupt the execution of a program. An instructiostandard off the shelf debuggers. As an example, the paper
breakpoint allows the user to pause execution at specifiescribes an implementation of EDDI using GDB that can
instructions when a specified set of conditions is met. A dataonitor more than a million data watchpoints, with a slow
breakpoint, oiwatchpoinf pauses executions when an updatdown of less than 3x compared to native execution. This
to a specific memory location is encountered. Watchpoirability to monitor such a large humber of memory locations
are especially helpful in discovering data corruption bugs thallows for significant versatility in defining a wide range
arise from out-of-bounds or buffer overflow bugs in C andf watchlists. For example, a user can choose to watch (i)
C++ programs. This class of errors is notoriously difficult tentire data structures such as records or arrays, (ii) objects
discover and diagnose without watchpoints. allocated from specific call sites, and/or (iii) objects of a

https://core.ac.uk/display/4400676?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

specific size or type. Furthermore, EDDI runs on off-the-

shelf x86 processors running Linux, on dynamically linked, @
stripped binary executables without a need for application’s

source code.

We believe this is the first paper to demonstrate the feasi- ’ Front-End ‘
bility of using a dynamic binary instrumentor in an interac-
tive debugging environment. EDDI provides a more efficient ﬁ ﬁ
interactive debugger that is considerably more powerful than DynamoRIO
existing debuggers. In contrast, prior works that use dynamic
instrumentation for program analysis and bug discovery [14], Debugger [User
[20] are not yet well suited for interactive debugging. For Application
example, tools such as MemCheck [14] which can detect
uninitialized memory read, writes to unallocated Memorygy 1. The EDDI Debugging Infrastructure.
and other memory use errors, can incur slowdowns between

10-30x, and are more suitable for regression testing than %
interactive debugging. Start [basic block builder | | trace builder |
EDDI uses on-demand dynamic instrumentation to augment
traditional debuggers. It uses a set of optimizations to lower | dspatch
the cost of checking for runtime anomalies and breakpoint
conditions, as well as heuristics to reduce the frequency of e
the checks altogether. Section Il describes the framework,
and Sections Il and IV details the implementation and op- [g.qceLock TRACE CACHE
timization of EDDI for use as a general purpose watchpoint CACHE
debugger. It allows the end user to efficiently watch updates to | mrconiotfow ——F” Mook F’ nsmictons |- harect trancy
individual memory cells, or any range of addressable memory I i i |

in general. Section V presents an evaluation of EDDI using
several SPEC2000 benchmarks. It documents the time and
space overhead associated with EDDI. This is followed @ 2. DynamoRIO dynamic binary rewriting framework with EDDI
the conclusion. tensions.

Il. THE EDDI INTERACTIVE DEBUGGING ENVIRONMENT ~A. DynamoRIO and extensions for EDDI

EDDI is on-demand binary instrumentation and code ma- DynamoRIO is a transparent runtime code manipulation
nipulation that aim to reduce the overhead associated w@istem that can execute and manipulate real world applications
application debugging. It receives commands from a standdkning on 1A-32 hardware. DynamoRIO works under both
debugger, and then instruments the user application to implddux and Windows. Figure 2 shows the main components
ment those commands. For example, to set a data breakp8iPynamoRIO, and highlights the added modules for EDDI.
and then watch for updates to that memory location, EDIYhen an application is running with DynamoRIO, it is copied
instruments the stores to memory and checks on every wiif¢o a thread-private code cache one basic block at a time,
if the address written matches the address watched. ED®d then runs directly from the code cache. When some
uses a set of optimizations and heuristics to reduce thasic blocks on a common path become “hot’, they are
instrumentation and runtime overhead of checking breakpofitiched together to form a single-entry multi-exits trace, and
conditions or predicates. promoted to a trace cache. The basic block and trace caches

An overview of the EDDI interactive debugging environare collectively called the code cache.
ment is shown in Figure 1. It consists of three components. EDDI adds an on-demand instrumentor to instrument basic
« The user application is interpreted using an off the sheioCcks before they are stored into the code cache, and an
binary instrumentation and code manipulation system. v@ptimizer to exploit instrumentation redundancy and reduce
use DynamoRIO [2], although Pin [9] and other systenglgrhgad. Section IV focuses in detail on the set of op-
are also plausible. timizations that EDDI performs. DynamoRIO uses thread-
« The debugger is a separate process. It provides traditioRMate code caches, and this allows for instrumenting threads
debugging functionality. We use GDB for that purpose_dﬁferently when necessary. The signal handler in DynamoRIO
« The front-end works as the interface between the usé, modified to intercept and process all the signals before
and the debugger and interpreter layer. Programmers ulgying them to and from the user application.
the front-end to relay commands to the debugger, and
the debugger relays output back to the user through tBe Instruction Mapping
front-end. Some commands are directly relayed to the an application debugged with EDDI is heavily manipulated
interpreter. The front-end also consolidates the code Mgych that the instruction sequences and code layout can differ
nipulation carried out by EDDI against the code mappingbstantially from the original native user code. Thus in order
assumed by the debugger. to maintain transparency, it is necessary to maintain and

preserve a mapping from the instructions in the code cache I1l. SOFTWARE WATCHPOINT

to the native application instructions. This translation processtq gemonstrate the effectiveness of EDDI, we implemented
is akin to the mapping between binary code and source cogeimportant debugging facility, namely software watchpoints,
in traditional debuggers. For instance, when a user sets \gfhin EpDI. This watchpoint facility is more flexible than
mstrucyon breakpoint at specific program location, the frong; qware watchpoints — more data locations can be watched,
end will need to map the location to the address of thg,y any size of watch ranges is allowed. There are many
corresponding instruction in the code cache, and relay thafyes in the design of software watchpoints. These include
location to the debugger which then can interrupt executiqy|apility issues as the number of watchpoints is increased,

at the remapped instruction address. This gives the user {he memory footprint, runtime overhead, support for 64-bit
illusion of debugging their native code, whereas the debugagfy muii-threading. In this section, we will discuss some

is in fact operating in a different context. When the debugggf e insights we gained in these issues gained from our
pauses execution, the front-end recalls the instructions in theementation of software watchpoints. In the following

native application to display, and the user remains unawareiction, we will discuss how we optimized the implementation.
the binary instrumentation and runtime optimizations that are

underway.

EDDI maintains a hash table dpc, tag) key-value A Memory Checks
pairs to translate instruction addresses from the applicationin order to monitor all memory references, whenever the
code to the code cache. Thee (program counter) is the application code is copied into code cache, the instrumentor
address of a native instruction, and thg is the index of the inserts watchpoint checking code before every memory ref-
code fragment that instruction is mapped into. The mappiggences. In order to support any number of watchpoints with
provides a very lightweight mechanism to implement instru@rbitrary sizes, the overhead of checking must scale the with
tion breakpoints. When a user requests a new breakpoint, the number of watchpoints. We associate each memory byte
code fragment containing the instruction is removed from thecation with a tag to indicate if that it is being watched.
code cache (if it is cached), and the breakpoint is triggered tBefore each memory reference is executed, this tag is checked.
next time the code fragment is placed in the code cache. Thisere are two advantages of this approach. First, it is easy
approach allows us to implement a software control breakpoint set a watchpoint. We only need set the associated tag of
without any support of hardware or trap instructions. In effeenemory location being watched, instead of modifying the code
it boot-straps on the code caching mechanisms inherentingected by the dynamic instrumentor. Secondly, the runtime
binary manipulation systems. overhead does not increase dramatically as the number of

Translation in the reverse direction is also simple. This atchpoints is increased although the tag lookup overhead may
necessary for example when a data breakpoint or watchpdirease a little.
is triggered. Because instrumentation and optimization areln particular, the injected code performs the following major
deterministic operations, EDDI can simulate the instrumenperations:
tation and optimization process on a code fragment, andl) Save the registers that will be used or affected in the
identify the original application instruction corresponding to checking process.

each instruction in the fragment. In order to reconstruct a trace2) Calculate the reference address and lookup the associ-
EDDI maintains a record of the basic blocks that make up a ated tag.

trace region. 3) Checks if the tag is set to ‘watched’, and trap if it is.
4) Otherwise, the saved registers are restored.
C. Coordination and Communication Figure 3 is an example of simple checking code injected for

, the memory store instructiomov esi -> [eax, ebx]
The front-end parses all user inputs commands, whether to

the application or the debugger. The front-end then communi-
cate with the other two components to execute the commanBs. Tag Lookup Table
We use the standard GDB/MI (machine independent) interfaceThere is a trade-off between memory usage and the effi-
to communicate between the front-end and GDB. Becausiency of the watchpoint tag lookup. To tag, or potentially
GDB is unaware of the changes made by DynamoRIO tag, every or any memory location, the most straight forward
the user application, the front-end has to mediate GDBépproach is to split the address space into equal halves [3]. In
interaction with the user application. this approach, the tag corresponding to a memory location can
The communication between the front-end and the applicgasily be obtained by a simple addition of a constant offset
tion is implemented using UNIX signals and inter-processto the memory location. However, it is also the most space
message queues. The front-end generates a signal wheooitsuming approach. Another approach is to use a bit map
wants to communicate with the application. The signal t® represent the whole addressible space. For example, Wahbe
caught by EDDI, and delayed until the current code fragmeet. al. [19] suggested the association of a one-bit tag to every
completes its execution (i.e., executes a branch instructiod)bytes. This incurs only a 3% overhead. However on byte-
This avoids a mapping between the code cache and the natidelressible architectures like the x86, the required space is
instruction sequence. Afterward, the application and front-emtcreased to 12.5% of total address space [12]. If we need to
can exchange messages. distinguish between reads and writes, then two bit tags are

mov %ecx -> [ECX_slot]

mov %edx -> [EDX_slof] byte in the table contains information about the first three
mov %eax -> [EAX_slot] bytes in the next region. It is also possible to use bit-maps in
seto [OF_slot + 3] the second level to reduce the memory requirement. However
lahf such approach would make the lookup more complicated as
mov %eax -> [AF_slof] additional operations such as shifts is required. Our approach
mov [EAX_slot] -> %%eax . . . -
lea [Y%eax, %ebx] -> Y%ecx uses a less compagq representation for an easier array indexing
mov %ecx -> %edx in the lookup process.
shr - %ecx, $20 -> %ecx The two-bit tag to a byte location mapping allows us to
cmp L1 _table[%ecx, 4], $0 perform an important optimization — the checking of multiple
1 LrﬁE\I/EL_RLElS-tI—aCt))EE’/oecx 4] -> %ecx locations in a single comparison. For example, a four byte
and %edx, $OXfff -> Jbedx tag would hold the information for 16 bytes. In a single 32-
testb $OXAA, [%ecx, %edx] bit width comparison, we can check the status of 16 byte
jz LABEL RESTORE locations. If comparison is done using 64-bit operands, even
int3 more Icoations can be checked in a single comparison.
LABEL_RESTORE:
mov [AF_slot] -> %eax
add [OF_slot], $0x7f000000 -> [OF_slot]
sahf C. Runtime Overhead
mov [EAX_slot] -> %eax . L . .
mov [EDX_slot] -> %edx The naive software watchpoint implementation described
mov [ECX_slot] -> %ecx above suffers from significant runtime overhead. In the next
section, we will describe important optimizations to drastically
Fig. 3. An example of the checking code that is injected by EDDI. reduce this overhead. However, to get a better understanding

of what should be optimized, we need to uunderstand the

needed. In this case, 25%, or 1G byte memory for a 32-giverhead that we are dealing with. In the instrumented code,

address space is needed. Worse, such mappings do not s¢gl€an find three major overheads in each check:

to 64-bit architectures. « The overhead for saving and restoring registers so as to
Instead of using continous memory for the tags, EDDI context switch to the checking cod@g,

uses a two-level hierarchical table approach. Given a memory, The overhead in finding the corresponding téx,, and

address, the: most significant bits are used to lookup the o The overhead in the checkingc.

first level table, while the rest of the bits determines the tagﬁ1

osition in the second level table. To reduce the memo e total overhead in the naive implementation is therefore
P : i bs + Or + O¢) x N where N is the number of memory
usage and lookup overhead, the entry of the first level ta Iéef

is set tonull if there is no memory location in that region erences. As we shall see, the overhead can be reduced by
y 9 dgcreasing any element in this formula. This is the subject of

being watched. The sizes of the first level and the seco . : . .
: . e next section. Although we did not consider cache locality
level table are not necessarily the same as the size of a pize

) . . o our design, we benefit our tag table lookup should exhibit
of operating system. This approach results in a significant .
. . T , od locality of reference.

smaller memory footprint especially in ‘normal’ use. Fo
instance, a first level table witB?° entries uses 4 Mbytes.
Assuming that each byte of memory is associated with a o
byte tag for ease of lookup, we will need 4 Kbytes for each 0
the 1M second level tables. If we set aside another 4 Mbyte ofwith the trend of towards 64-bit multi-core processors,
memory for use in the second level, we would allow the useur implementation of software watchpoints should scale
to set byte-size watchpoints in up to 1024 pages. If every bytte multi-threaded or 64-bits applications. The extension for
in the second level table is set, then the user can effectivaly64-bit architecture has been discussed above. For multi-
set over 4 million watchpoints. threaded applications, the lookup table can be made either

To extend to a 64-bit system, more levels in the taglobal or thread-specific. This choice will depend on the
table would be needed. Meanwhile, since in practice onlyuser's preference. Meanwhile, because DynamoRIO employs
relatively small amount of memory is needed, it is possibkethread-private code cache, instrumentation can be performed
to monitor memory allocations, and design a hash function ém specific threads or on all threads.
reduce the number of tag table levels. Because DynamoRIO can only monitor and instrument the

There is one problem with this approach: an unalignembde executed in user mode, our software watchpoint cannot
memory reference can cross table boundariespur tags for detect memory reference on watchpoints in kernel mode.
a 4-byte memory reference could be stored in two consecutidewever, by taking advantage of DynamoRIO being able to
second level tables. To solve this problem, the spare bitkentify the system call instructiong.g int80 , we insert
of the one-byte tag scheme are used. A one-byte tag stoi@sctions before and after the system call to discover its tyep,
information not only for the corresponding byte, but also thend predict if any watchpoint will be accessed. For instance,
three bytes following it,i.e., eight bits are used to indicateif a buffer containing watchpoints is used for read or write
if four bytes are being watched for load or store. So the lasgstem call, we might trap it depending on the length.

. Other Issues

IV. OPTIMIZATIONS 2) Loop Invariant Check HoistingWhen executing code
] in a loop, it is often the case that the same location is

We have discussed the lookup overhead and memory Us@gRrenced in different iterations. As in the case of traditional
tradeoffs involved in the design of the tag lookup tablgeqp invariant code motion, checks for loop invariant memory
In this section, we shall focus on optimizing the checkingsferences can be moved outside the loop. In DynamoRIO,
code injected into the user's application. Some of these opffien a trace is a frequent path in a loop, and its last exit
mizations reduce running time at the expense of using MQf§rresponds to the back-edge of the loop. For such traces, we
memory. We perform optimization at two places — when théy scan the code to see if there is any memory reference
instrumentor inserts checking cpde into basic blocks, and WhgRt does not change its address in the traee the registers
code fragments are upgraded into the trace cache. used for address calculation are not changed. Checks for these
memory references can be moved up to beyond the entry of
trace so that the checks are only executed before entering
the trace. It is possible that execution may exit earlier in a

1) Context Switch Reduction (CSRJhe naive checking trace. This can cause a false alarm if checks at the entry
code in Figure 3 consists of 13 instructions for contesiscover a location being watched is to be accessed in the loop
switches: six instructions for three resgisters stealing aR@dy but execution does not reach there. Instead of trapping
restore, and seven f(gﬂags save and restore. To reducémmediately, a bit for the varible is set to 1 when the basic
these overhead, a register liveness analysis is performedPifck is entered. The original lookup and check inside the loop
each basic block. This analysis tries to determine registers tifateplaced with a single bit check that traps if the bit is set.
the checking code can use safely without saving and restoring.

This reduces the overhedts. C. Page Protection based Instrumentation (Pl) Mode
2) Group Checks (GC)We can also reduce the total num-

ber of context switches by grouping checks together within The optimizations descrlbe_d above are based on full in-
a single context switch. Two consecutive memory referenSgUmentation,i.e., instrumenting every memory reference.
checks can be grouped together if there is no instructigifiother optimization strategy we explored in EDDI is to in-

between them that affects the address calculation of the lattét&iment only those memory references that might potentially
reference the watched data. We refer to this strategy as the

memory reference, i.e. the register used by two memor?/ ; . -
references is not updated by the instructions in between, FB9€ Protection based instrumentati(#i) mode of EDDI, as

be more aggressive, we can relax the condition such tiPose to théu_ll instrumentation(FI) mode described in the

if the update of the register for the address calculation cRFfC€ding sections. _ ,

be statically computed, the checking can be aggregated. Fol? P! mode, we make use of the operating system's page
instance, the checks for three consecfiush instructions can Protection mechanism to help identify memory references that
be grouped together since we know the way the stack regidiéfy access a watchpoint. When a watchpoint is set, we first
changes. make a copy of the pages containing that watchpoint. The

3) Merged Checks (MC)When the locations referenced by’"cc?ss right of the original page Is thgn set tp be not accessible.
different instructions are the same or within close proximit uring the program execution, if an instruction references one

of one another, we can merge the checks for these mem F thls pa?e, adstlli;nal ng be raliled. AI S|gnatlhhand(ljerfcatchest
reference into a single check. As mentioned before, usingt signal, and then subsequently replaces the code ragments

4-byte tag for a single byte memory, we can check sixte(ggm?!inr:ng ntg?t flnrst;uctLor&i;/vnz ‘2 ne;'jw S nferwlr teitgdtltlorl?ln
adjacent bytes of memory in a single comparison. At the co ecking and reterence redirection code betore that instruction.

of increased memory usage, we can reduce the total num%e'r_|ere we use atntexarrt]ple tot thpI.a'? hOV\é tthls LS ggne.
of checks significantly. uppose we want to set a watchpoint on data at address

0x020040 with a length of 64 bytes. Besides updating tag
lookup table, EDDI will allocate a new page. Let's assume that
B. Trace Optimizations (TO) this new page’s address starts (050000 . EDDI copies
the data from[0x020000 , Ox020fff] to [0x050000 ,

In DynamoRIO “hot” basic blocks are stitched together tox050fff], and updates a corresponding entry in an offset
form traces. So the code in trace are more frequently executethle toOx030000 . This offset table is a table witk2° entries
and it is profitable to perform more aggressive optimizationigr storing the redirection offsets of every pages. The page at
on traces. By taking advantage of the single-entry, muli®x020000 is then set to be non-accessible. If an instruction,
exits property of a trace, the following optimizations can bg, tries to load 4 bytes fron®x020010 for the first time,
performed. a SIGSEGYV signal will be raised. EDDI's signal handler

1) Redundant Check Removdh a trace, with the excep- receives this signal, and locates the code fragment containing
tion of the first basic block, a basic block cannot be executddand I itself. EDDI then builds a new code fragment that
unless the basic blocks preceding it are executed. Thereforis ddentical as the old one except that a function call (a
check is redundant in a basic block if an identical check hasntext switch is needed here for transparency) is inserted right
been performed in its predecessor blocks and can be satedforel. By means of a DynamoRIO utility function, the old
removed. fragment is replaced with new one, and execution is resumed

A. Basic Block Optimizations

at the function call. The function call calculates the referen'r('at main()

address and check if it is watched and if redirection is neededint | = 0;

In our case, it i§0x020010 , 0x020013 |. There is no watch- int local_val = 0;

point triggering but a redirection is needed. A sequence ofint ilocal_p =_&chaI;vaI; _ .
instructions are dynamically generated by EDDI and executed™ *h€ap_p = (int *)malloc(sizeof(int));
instead of/. The new generated code stub works the SaMefoi = 0; i < 100000000; i++) {

as I, except for referencin@x050010 and not0x020010 . if((i % 1000) >= 2) // set the ratio
At the end of this code stub, a branch instruction jumps to *local_p = 1;

the instruction immediately aftef, so that execution may else

continue. Hereafter, whenever this code fragment is execute *heap p = 1

again, the function beforé will be executed first, checking (o 0:

the reference target, and making decision if to exe¢uiethe
redirection code stub. The rewriting process may be performed
again if I tries to reference another protected page andrg. s. simple synthetic benchmark.
different set of redirection stub code with a different offset
is required.

Beside the user code, we also insert function call before afid Basic Performance Results
after system call in case of protected page being referenced
by kernel code. We maintain a list of system calls that may We first evaluated the performance of the different instru-
access the user’s pages. If a system call is on this list, EDDENtation and optimization techniques without any watch-
will first restore the original access right of those pages, apdints. We used a lookup table wit° entries in first level
update the data from shadow pages. After the system cédible. Each first level entry points to a second level tag table
EDDI will redo the watchpoints again. for 4 Kbytes of memory — the default page size of Linux.

By doing so, in PI mode, EDDI incurs an overhead only foFhe performance measurements include naive instrumentation
instructions referencing pages that contain watchpoints, ridtaive), and full instrumentation (FI) with the context switch
all memory references as is the case of the FI mode. Og#duction (CSR), group check (GC), merged checks (MC), and
experiments show that this can significantly reduce overheatigce optimization (TO).

The performance result is nomalized to that of native
execution and shown in Figure 4.

As expected, naive instrumentation has a significant over-
Because DynamoRIO does not change the data layogad, averaging a 16 times slowdown in performance. How-
the hardware watchpoint facility provided by architecturever, the relative slowdown is benchmark dependent. For ex-
and made available via the debugger can still be used. Biple, the overhead of naive instrumentatiori8i.mcf is
scheduling hardware and software watchpoints together, ED241% compared to native execution. That is becduBemcf
can provide a flexible watchpoint facility that does not corris an application with poor cache locality, and there is prob-
promise on the overhead. EDDI first runs the user applicably a good deal of overlap between the checking and its
tion under DynamoRIO without any instrumentation, usingache misses. In contrast, benchmarks suctBéscrafty
hardware watchpoint first wherever possible. When hardwa2g2.eon , and 255.vortex are applications with signifi-
watchpoints are exhausted — this is caused by either havigantly higher cache hit ratios, so they suffered from substantial
too many watchpoints or attempting to watch a wide range sfowdown from executing the checking code.
memory — EDDI can switch to PI mode, clone and set thoseThe second set of bars in Figure 4 shows that CSR
pages having watchpoints as non-accessible. Meanwhile, sqg& very effective optimization that effectively halves the
watchpoints can still be selected to be hardware watchpoindgerhead. That is reasonable since in naive instrumentation
This will help reduce the overhead further. When itis no longefiore than half of the injected checking instructions are used
beneficial to pay for the overhead of PI mode, we can flushgf context switching. When GC and MC optimizations are
the code cache and starts instrumenting the code in FI magigied, the overhead is halved further. These two optimizations
as execution continues. are especially effective for the86.crafty ~ and252.eon
benchmarks. Memory references in these benchmarks have
good temporal and spatial localities. On the other hand,
181.mcf benefits little from either the GC or MC optimiza-

In this section, we evaluated the performance of our EDDIiOns. Performance improvement from the TO optimization
based software watchpoint. We ran the experiments onWas disappointing. This can be attributed to the good job done
3.06 GHz Intel Pentium 4 processor with 1G bytes of RAMY the basic block optimizations.

The operating system is Linux Fedora Core 1. We used theThe last set of bars represents the performance of the page
SPEC CPU2000 integer [16] benchmarks and their referermetection based instrumentation (PI) mode of EDDI. In this
input workloads. All benchmarks were compiled with gcc 3.8ase, because there are no watchpoints set, no instrumentation
using-03 flag. is injected and the slowdown is due purely to DynamoRIO.

D. Watchpoint Scheduling

V. EXPERIMENT

30.00 B Fl-naive

Fl-naive + CSR

25.00 | oFl-naive + CSR + GC

8 Fl-naive + CSR + GC + MC
20.00 1 & Fl-naive + CSR + GC + MC + TO
oPI

15.00

10.00

native execution

Performance normalized to

IR

Fig. 4. Performance of EDDI under different optimizations for full instrumentation and page protection based instrumentation with no watchpoint set.

TABLE | 5.0
PERFORMANCE SCALING OF SYNTHETIC BENCHMARKS WITH RESPECT TO PR
NUMBER OF WATCHPOINT ACCESSESNATIVE EXECUTION TIME OF THE 4.5 __._._./-_.__-—-—-——1\._.
BENCHMARK IS 1.171SECS 40 ,.'U'
Ratio of Fl time | No. of No. of PI time 2
watchpt acc. (sec) | sigsegv| redirects (sec) N8 35 d"
0.00% | 1.876 1 1| 1221 gs ,
0.10% 1.874 2 | 100,001 2.108 28 30 .
0.20% 1.811 2 200,001 2.939 8 % o ®
0.30% 1.813 2 300,001 3.791 ég 2.5 :
0.40% 1.814 2 400,001 4.674 % =
0.50% 1.820 2 500,001 5.541 & 20 R
0.60% 1.823 2 600,001 6.433) 6 | Pl —®=—Flallopts
0.70% 1.821 2| 700,001] 7.272 1.5 fromorome”
0.80% 1.823 2 800,001 8.171 10
0.90% 1.825 2 900,001 9.028 : ‘ T ‘
1.00% 1.847 2 | 1,000,001 9.904 v 4Ex:arim:ntal ZZonfizuratiS:ms10 "
1.10% 1.823 2 | 1,100,001 10.819
1.20% 1.837 2 | 1,200,001 11.678 Fig. 7. Performance scaling for 176.gcc.
TABLE I
CONFIGURATIONS FOR164.9zip AND 176.gcC BENCHMARKS USED IN
26 OUR SCALABILITY EXPERIMENTS.
24 - 164.9zip 176.gcc
2 4, Config No. of No. of No. of No. of
By o SIGSEGV | redirects || SIGSEGV | redirects
Téé 2.0 o 1 22 858 31 135
S5 181 il . 2 33 2,835 36 1,022
g zl’ 6 3 35 12,159 49 1,556
£2 orr oY ~--0---PI_—a—Flall opts]| 4 42 60,852 100 3,736
EC 1.4 TR 5 42 117,930 962 642,775
12 ’ 6 42 183,838 1,312 | 6,458,137
0 o ‘ ‘ ‘ ‘ ‘ ‘ ‘ 7 45 580,135 1,448 | 6,809,815
1 2 3 4 5 6 7 8 9 10 1 12 8 45 | 1,063,054 107 | 10,512,472
Experimental Configurations 9 45 1’679’386 433 14‘750’028
10 45 | 2,176,154 455 | 16,326,327
Fig. 6. Performance scaling for 164.gzip. 11 45 | 2,787,984 1,459 | 16,983,414
12 45 | 5,682,609 1,555 | 17,348,450

B. Scalability

In this section, we evaluate how performance changes whealloc’ed block, we allocate that memory from a memory
watchpoints are set. To this end, we first used a synthefiool. All pages allocated from this pool are set as ‘watched'.
application so we can fine-tune the frequency of accessifbis allows us to set watchpoints easily at runtime for our
the watchpoints. We then studied the performance changesexperimental purpose, without any user intervention.
several benchmarks with different watchpoints setups. Sincen the synthetic application, shown in Figure 5, we first
we do not have a model of how humans actually go aboaliocate a block of memory and add it to the watchlist. Then
setting watchpoints, we used a somewhat contrived methading a loop, we reference either variables on the stack or
In our experiments, the way we set watchpoints is to interceriables in the allocated block. The choice is based on a tun-
calls to themalloc() function, if we want to watch a able parameter so that we can study the relationship between

Performance normalized to

@ Fl-all opts - 0
O Fl-all opts - 5000 memory allocation,252.eon only allocates one 16 bytes

I Fl-all opts - 10000 blocks. We evaluated the rest. We did not evaluate the worst
7 case for the Pl mode since it is obviously going to be quite
disasterous. As shown in Figure 8, we again conclude that the
performance of Fl is stable.

Our experiments verify our idea for watchpoint scheduling:
one should start with hardware debug registers, then followed
by PI mode, and when accesses to pages containing watch-
points increases, EDDI should switch over to the FI mode of
operation. Although the current implementation of EDDI do
Fig. 8. Worst case performance of full instrumentation in EDDI. not perform this scheduling, we see no technical difficulty that

will prevent us from implementing it. The experimental results
performance and the frequency of accessing a watchpoint. Tdegtainly point us in that direction.
result is shown in Table I. The performance of the FI mode
remains constant even as the frequency of referencing the VI. RELATED WORK
watchpoints ﬁncrgases. We think thisf is be_cause the sec%dSoftware Watchpoint
level check is simple and has relatively little performance o]) -
impact compared to context switching and the first level check.Watchpoint is an important debugging facility that helps
In contrast, the performance of the PI mode degrades almHSErS identify data corruption bugs. This importance has been
linearly with the increase in watchpoint references. Frofven due recognition in the form of hardware debug registers

Table I, we can conclude evety)® reference redirection would fOr watching memory locations implemented in almost all
result in a 0.9 second slowdown. state-of-the-art processors. There has also been several pro-
We repeated the scalability experiments, this time on two BPS2lS in the past on how to implement software watchpoints.

the SPECint benchmarks, namdl§4.gzip and176.gcc . They can be generally classified as the following.
To evaluate the performance scaling in these benchmarks, we Using page protection: pages containing watched ad-
measured performance using different experimental configu- dresses are protected from being written to and/or read
rations of watchpoints, i.e. different allocated memory blocks ~from. Any attempt to reference a data location residing
are watched. As one can see from Table II, the general trend in these pages is trapped, and the reference address is
in our experiments is to increase the numberSOGSEGV checked against the watchpoints. Note that EDDI's PI
faults and page accesses. However, the exact details of how mode goes further by optimizing on false sharing.
that can be achieved are benchmark dependent. In Table Ils Through trap patching: each store and/or load instruc-
we listed the the number GIGSEGVraised and the number tion is replaced with a trap instruction to trigger checking.
of reference redirection performed for two of our benchmarks.« Through code patching: the watchpoint checking code
These two factors is the main determinant of performance. The is inlined before each store and/or load instruction. This
number of SIGSEGV raised indicates the number sfatic is the equivalent to the naive FI mode of EDDI.
instructions in the application referencing protected pagedahbe [18] and Roberts [13] both compared the above im-
while the number of redirections gives tldgnamicnumber plementation strategies, and made the same conclusion that
of instructions referencing the protected pages. code patching has the lowest overhead. Wahbe then proposed
The results are shown in Figures 6 and 7. The observatiars efficient implementation of software watchpoint [19] using
made in the synthetic benchmarks remained valid. From tbede patching and static analysis. However, their work cannot
experiments, we observe that performance of the FI modebis used on shared libraries. Copperman and Thomas [4]
insensitive to the number of times a page containing a watased a post-load to insert checks into executable to solve the
point is referenced. The opposite is true for Pl mode operaticghared library issue. Keppel [8] suggested using checkpointing
The main reason for this is that the cost of a data referentce identify the short period of execution that updates the
redirection is non-trivial and if more such redirections areatchpoint, then re-execute that period with additional checks.
performed because pages containing a watchpoint is accessddFT [12] is a dynamic instrumentation based information
more often, then the overhead increases accordingly. Note thiaiv tracing system with a small runtime overhead. It is
the number ofSIGSEGVraised also affects the performancepossible to apply the ideas given in this paper to extend
but as evident in Table I, that number is much smaller thaheir work so as to perform software watchpoint. However,
the number of reference redirections, and therefore the impatfT makes use of a key advantage in their implementation
on performance is less pronounced. framework that may not hold in general. LIFT performs
We also compare the performance of the FI mode runniglgnamic translation to run 32-bit applications on a 64-bit
under the best and worst case scenarios. Trivially, the best cagsgtem. This allows them to use up to eight extra registers
is the case where there are no watchpoints. To evaluate &vailable on the 64-bit x86 system that cannot be used by their
worst case, we watched (at most) 5,000, and 10,000 allocagtibit benchmark applications [12]. This completely avoids
memory blocks, or 1024 pages in total. Three benchmartte significant overhead of context switching. We feel that
were ignored in the evaluation becauk®@7.parser allo- EDDI's assumption of no ‘free’ registers is more congruent
cated only very huge memory, and 254.gap does not requeth how such a tool will be employed. Because the Intel

native execution
o =2 N W A~ 00O N

IA32 architecture only has eight general purpose registers, the
overhead for register stealing is usually unavoidable. [1]

B. Memory Debugging 2]

There are many software, hardware or hybrid approaches
proposed to detect memory bugs. Purify [7] and Mem{S]
Check [14] are two widely used software tools for discoverings;
memory usage problems. HeapMon [15] is hardware/software
approach for detecting memory bugs with a helper thread®!
Hardware such as SafeMem [11], iWatcher [21], and Mem-
Tracker [17] have also been proposed for detecting inappro-
priate usage of memory with low overhead. For exampl
SafeMem exploits the use of ECC (Error-Correcting Codej
for detecting memory leaks and memory corruption with low
overhead. But this approach relies on a write-allocate cach®
policy, i.e., the block is loaded on a write miss. One importantg)
drawback of these hardware approaches is that it requires
customized, fixed-functionality hardware.

There have been several hardware proposals to extend
current hardware support for debugging. DISE [5] (Dynamig®l
Instruction Steam Editing) is a general hardware mechani
for interactive debugging. It adds dynamic instructions for
checking memory references into the instruction stream during
execution. Beside requiring customized hardware, it does not
scale well as the number of checks increases when marg
watchpoints are set. Without the optimizations found in EDDI,
for example, this would cause a substantial runtime overhead.

[13]

VIl. CONCLUSION 4]

This paper presents EDDI, an efficient debugging framé&5]
work that uses on-demand dynamic instrumentation and run-
time optimizations to accelerate traditional debugging featurgss
This paper emphasizes the use of EDDI to implement a
versatile data watchpoint facility. It allows users to set ordef¥’!
of magnitude more watchpoints than is practical using off the
shelf debuggers today. EDDI does not rely on any special-
ized hardware, and is evaluated in this paper using sevé
SPEC2000 benchmarks running on a Pentium 4 machine.

The new capabilities facilitated by EDDI can make applica-
. . 119]
tion developers more productive. In the case of data corruption
bugs that occurs in pointer codes, or from buffer overflow
errors, EDDI allows for tracking millions of memory Iocations[zo]
for updates, with an averagex slowdown. A user can, for
example, set data breakpoints for entire ranges of memory,
or restrict watchpoints to objects allocated from specific cqllll
sites, or of a certain type. Though not yet implemented, it
is also conceivable that instead of trapping, user supplied

REFERENCES

V. Bala, E. Duesterwald, and S. Banerjia. Dynamo: a transparent
dynamic optimization system. IRLDI '00: Proceedings of the ACM
SIGPLAN 2000 conference on Programming language design and im-
plementationpages 1-12. ACM Press, 2000.

D. Bruening. Efficient, Transparent, and Comprehensive Runtime Code
Manipulation PhD thesis, Massachusetts Institute of Technology,
September 2004. http://www.cag.csail.mit.edu/rio/.

W. Cheng, Q. Zhao, B. Yu, and S. Hiroshige. Tainttrace: Efficient flow
tracing with dynamic binary rewritingiscc, 0:749-754, 2006.

M. Copperman and J. Thomas. Poor man’s watchpo®t&PLAN Not.
30(1):37-44, 1995.

M. L. Corliss, E. C. Lewis, and A. Roth. Low-overhead interactive
debugging via dynamic instrumentation with dise. HPCA '05:
Proceedings of the 11th International Symposium on High-Performance
Computer Architecturepages 303-314, Washington, DC, USA, 2005.
IEEE Computer Society.

6] GNU/FSF. GDB: The GNU Project Debugger

R. Hastings and B. Joyce. Purify: fast detection of memory leaks and
access errors. |IRroceedings of the Winter Usen x Confergnt@92.

D. Keppel. Fast data breakpoints. Technical Report TR-93-04-06,
University of Washington, 1993.

C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney,

S. Wallace, V. J. Reddi, and K. Hazelwood. Pin: Building customized
program analysis tools with dynamic instrumentation.Phegramming
Language Design and Implementatiopages 190-200, Chicago, IL,
June 2005.

N. Nethercote. Dynamic Binary Analysis and InstrumentatioPhD
thesis, University of Cambridge, November 2004. http://valgrind.org/.

F. Qin, S. Lu, and Y. Zhou. Safemem: Exploiting ecc-memory for
detecting memory leaks and memory corruption during production runs.
In HPCA '05: Proceedings of the 11th International Symposium on
High-Performance Computer Architectuggages 291-302, Washington,
DC, USA, 2005. IEEE Computer Society.

F. Qin, C. Wang, Z. Li, H. seop Kim, Y. Zhou, and Y. Wu. Lift: A
low-overhead practical information flow tracking system for detecting
security attacks. IiMicro 39: Proceedings of the 38th annual IEEE/ACM
International Symposium on Microarchitectu2006.

P. E. Roberts. Implementation and evaluation of data breakpoint schemes
in an interactive debugger.

J. Seward and N. Nethercote. Using valgrind to detect undefined value
errors with bit-precision. InProceedings of the USENIX'05 Annual
Technical Conference2005.

R. Shetty, M. Kharbutli, Y. Solihin, and M. Prvulovic. Heapmon: a
helper-thread approach to programmable, automatic, and low-overhead
memory bug detectionBM J. Res. Dey.50(2/3):261-275, 2006.

SPEC CPU2000 Benchmark Suite, 2000.
http://www.spec.org/osg/cpu2000/.
G. Venkataramani, B. Roemer, M. Prvulovic, and Y. Solihin. Mem-

tracker: Efficient and programmable support for memory access monitor-
ing and debugging. IPCA '07: Proceedings of the 13th International
Symposium on High-Performance Computer ArchitectR@®7.

i R. Wahbe. Efficient data breakpoints. A8PLOS-V: Proceedings of the

fifth international conference on Architectural support for programming
languages and operating systemages 200-212, New York, NY, USA,
1992. ACM Press.

R. Wahbe, S. Lucco, and S. L. Graham. Practical data breakpoints:
design and implementation. IRLDI '93: Proceedings of the ACM
SIGPLAN 1993 conference on Programming language design and im-
plementationpages 1-12, New York, NY, USA, 1993. ACM Press.

X. Zhang, N. Gupta, and R. Gupta. Locating faults through automated
predicate switching. INCSE '06: Proceeding of the 28th international
conference on Software engineeringages 272-281, New York, NY,
USA, 2006. ACM Press.

P. Zhou, F. Qin, W. Liu, Y. Zhou, and J. Torrellas. iwatcher: Efficient
architectural support for software debugging.I8CA '04: Proceedings

of the 31st annual international symposium on Computer architecture

code can be executed on watchpoints. Such features extend Page 224, Washington, DC, USA, 2004. IEEE Computer Society.

the repertoire of features available in standard debuggers,
and creates new debugging capabilities that are otherwise
prohibitively expensive for interactive use. We believe that
EDDI is also practical for detecting data races and data
corruption bugs in parallel programs that will run on multicore
architectures.

