
How to do a million watchpoints:
Efficient Debugging using Dynamic Instrumentation
Qin ZHAO2, Saman AMARASINGHE1, Rodric M. RABBAH 1, Larry RUDOLPH 1, andWeng Fai WONG2

1 CSAIL, Massachusetts Institute of Technology
2 Soc, National University of Singapore

Abstract— Application debugging is a tedious but inevitable
chore in any software development project. An effective debugger
can make programmers more productive by allowing them
to pause execution and inspect the state of the process, or
monitor writes to memory to detect data corruption. The latter
is a notoriously difficult category of bugs to diagnose and
repair especially in pointer-heavy applications. The debugging
challenges will increase with the arrival of multicore processors
which require explicit parallelization of the user code to get
any performance gains. Parallelization in turn can lead to
more data debugging issues such as the detection of data races
between threads. This paper leverages the increasing efficiency
of runtime binary interpreters to provide a new concept of
Efficient Debugging using Dynamic Instrumentation, or EDDI.
The paper demonstrates for the first time the feasibility of
using dynamic instrumentation on demand to accelerate software
debuggers, especially when the available hardware support is
lacking or inadequate. As an example, EDDI can simultaneously
monitor millions of memory locations, without crippling the host
processing platform. It does this in software and hence provides
a portable debugging environment. It is also well suited for
interactive debugging because of the low associated overheads.
EDDI provides a scalable and extensible debugging framework
that can substantially increase the feature set of standard off the
shelf debuggers.

Index Terms— Debuggers, watchpoints, dynamic instrumenta-
tion

I. I NTRODUCTION

A PPLICATION debugging is an inevitable part of any
software development cycle. Software debuggers often

run as separate processes that attach to the end user applica-
tion, and then trace through runtime events to detect execution
anomalies or interrupt execution at programmable breakpoints.
Some anomalies result from dereferencing null pointers or
executing illegal branch instructions, and when detected, the
user can inspect the code at the site of the anomaly, and trace
back in the program stack to derive more clues. Breakpoints on
the other hand are user programmable predicates that specify
when to interrupt the execution of a program. An instruction
breakpoint allows the user to pause execution at specific
instructions when a specified set of conditions is met. A data
breakpoint, orwatchpoint, pauses executions when an update
to a specific memory location is encountered. Watchpoints
are especially helpful in discovering data corruption bugs that
arise from out-of-bounds or buffer overflow bugs in C and
C++ programs. This class of errors is notoriously difficult to
discover and diagnose without watchpoints.

Many architectures provide some support for debugging in
order to reduce the overheads of implementing the debugging
feature set in software. In particular, data breakpoints are very
expensive to implement without hardware support since they
require watching all updates to memory. On every data write, a
check is made against the set of addresses that are of interest to
the end user (the watchlist). As such, execution can slow down
significantly in the absence of hardware support. The GNU
Project Debugger (GDB) [6] on x86 architectures uses the
four available debugging registers to accelerate the watchpoint
debugging feature. This often results in imperceptible or
acceptable slowdowns although support for a watchlist of more
than a handful of memory locations is prohibitively expensive
and thus not realistic. For example, using a simple program,
we observed that in GDB version 5.3, performing a watchpoint
with hardware assistance forcibly disabled resulted in a 11,000
times slowdown.

Program debuggers will play an increasingly important role
in software development. With the ever increasing size and
complexity of software, and the advent of multicore and
hence mass parallel programming, developers are facing an
ever increasing challenge in debugging. This bodes poorly
for diagnosing data corruption errors that might arise from
bad pointers, buffer overflows, or data races. The feature sets
offered by most existing standalone debuggers are either not
sufficiently rich, or exhibit poor overhead scalability. There are
however more advanced debuggers that can manage the per-
formance penalties via static program analysis and advanced
compilation [4], [18], [19]. The drawback to these techniques
is that they require additional compilation steps, and generally
cannot apply to precompiled binaries or dynamically linked
code. These factors may impede widespread user acceptance.

This paper offers a new approach:Efficient Debugging
using Dynamic Instrumentation(EDDI). EDDI leverages the
advances in binary instrumentation and code manipulation
tools [10], [9], [1], [2] to provide an efficient debugging
framework that can substantially increase the feature set of
standard off the shelf debuggers. As an example, the paper
describes an implementation of EDDI using GDB that can
monitor more than a million data watchpoints, with a slow
down of less than 3x compared to native execution. This
ability to monitor such a large number of memory locations
allows for significant versatility in defining a wide range
of watchlists. For example, a user can choose to watch (i)
entire data structures such as records or arrays, (ii) objects
allocated from specific call sites, and/or (iii) objects of a

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DSpace@MIT

https://core.ac.uk/display/4400676?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

specific size or type. Furthermore, EDDI runs on off-the-
shelf x86 processors running Linux, on dynamically linked,
stripped binary executables without a need for application’s
source code.

We believe this is the first paper to demonstrate the feasi-
bility of using a dynamic binary instrumentor in an interac-
tive debugging environment. EDDI provides a more efficient
interactive debugger that is considerably more powerful than
existing debuggers. In contrast, prior works that use dynamic
instrumentation for program analysis and bug discovery [14],
[20] are not yet well suited for interactive debugging. For
example, tools such as MemCheck [14] which can detect
uninitialized memory read, writes to unallocated memory,
and other memory use errors, can incur slowdowns between
10-30x, and are more suitable for regression testing than
interactive debugging.

EDDI uses on-demand dynamic instrumentation to augment
traditional debuggers. It uses a set of optimizations to lower
the cost of checking for runtime anomalies and breakpoint
conditions, as well as heuristics to reduce the frequency of
the checks altogether. Section II describes the framework,
and Sections III and IV details the implementation and op-
timization of EDDI for use as a general purpose watchpoint
debugger. It allows the end user to efficiently watch updates to
individual memory cells, or any range of addressable memory
in general. Section V presents an evaluation of EDDI using
several SPEC2000 benchmarks. It documents the time and
space overhead associated with EDDI. This is followed by
the conclusion.

II. T HE EDDI INTERACTIVE DEBUGGING ENVIRONMENT

EDDI is on-demand binary instrumentation and code ma-
nipulation that aim to reduce the overhead associated with
application debugging. It receives commands from a standard
debugger, and then instruments the user application to imple-
ment those commands. For example, to set a data breakpoint
and then watch for updates to that memory location, EDDI
instruments the stores to memory and checks on every write
if the address written matches the address watched. EDDI
uses a set of optimizations and heuristics to reduce the
instrumentation and runtime overhead of checking breakpoint
conditions or predicates.

An overview of the EDDI interactive debugging environ-
ment is shown in Figure 1. It consists of three components.

• The user application is interpreted using an off the shelf
binary instrumentation and code manipulation system. We
use DynamoRIO [2], although Pin [9] and other systems
are also plausible.

• The debugger is a separate process. It provides traditional
debugging functionality. We use GDB for that purpose.

• The front-end works as the interface between the user,
and the debugger and interpreter layer. Programmers uses
the front-end to relay commands to the debugger, and
the debugger relays output back to the user through the
front-end. Some commands are directly relayed to the
interpreter. The front-end also consolidates the code ma-
nipulation carried out by EDDI against the code mapping
assumed by the debugger.

Front-End

Debugger

DynamoRIO

User

User
Application

Fig. 1. The EDDI Debugging Infrastructure.

OptimizerInstrumentor

Start trace builderbasic block builder

dispatch

context switch

indirect branch
lookup

BASIC BLOCK
CACHE

TRACE CACHE

non-control-flow
instructions

non-control-flow
instructions

indirect branch
stays on trace?

Signal
Handler

Fig. 2. DynamoRIO dynamic binary rewriting framework with EDDI
extensions.

A. DynamoRIO and extensions for EDDI

DynamoRIO is a transparent runtime code manipulation
system that can execute and manipulate real world applications
running on IA-32 hardware. DynamoRIO works under both
Linux and Windows. Figure 2 shows the main components
of DynamoRIO, and highlights the added modules for EDDI.
When an application is running with DynamoRIO, it is copied
into a thread-private code cache one basic block at a time,
and then runs directly from the code cache. When some
basic blocks on a common path become “hot”, they are
stitched together to form a single-entry multi-exits trace, and
promoted to a trace cache. The basic block and trace caches
are collectively called the code cache.

EDDI adds an on-demand instrumentor to instrument basic
blocks before they are stored into the code cache, and an
optimizer to exploit instrumentation redundancy and reduce
overhead. Section IV focuses in detail on the set of op-
timizations that EDDI performs. DynamoRIO uses thread-
private code caches, and this allows for instrumenting threads
differently when necessary. The signal handler in DynamoRIO
is modified to intercept and process all the signals before
relaying them to and from the user application.

B. Instruction Mapping

An application debugged with EDDI is heavily manipulated
such that the instruction sequences and code layout can differ
substantially from the original native user code. Thus in order
to maintain transparency, it is necessary to maintain and

preserve a mapping from the instructions in the code cache
to the native application instructions. This translation process
is akin to the mapping between binary code and source code
in traditional debuggers. For instance, when a user sets an
instruction breakpoint at specific program location, the front-
end will need to map the location to the address of the
corresponding instruction in the code cache, and relay that
location to the debugger which then can interrupt execution
at the remapped instruction address. This gives the user the
illusion of debugging their native code, whereas the debugger
is in fact operating in a different context. When the debugger
pauses execution, the front-end recalls the instructions in the
native application to display, and the user remains unaware of
the binary instrumentation and runtime optimizations that are
underway.

EDDI maintains a hash table of(pc, tag) key-value
pairs to translate instruction addresses from the application
code to the code cache. Thepc (program counter) is the
address of a native instruction, and thetag is the index of the
code fragment that instruction is mapped into. The mapping
provides a very lightweight mechanism to implement instruc-
tion breakpoints. When a user requests a new breakpoint, the
code fragment containing the instruction is removed from the
code cache (if it is cached), and the breakpoint is triggered the
next time the code fragment is placed in the code cache. This
approach allows us to implement a software control breakpoint
without any support of hardware or trap instructions. In effect
it boot-straps on the code caching mechanisms inherent to
binary manipulation systems.

Translation in the reverse direction is also simple. This is
necessary for example when a data breakpoint or watchpoint
is triggered. Because instrumentation and optimization are
deterministic operations, EDDI can simulate the instrumen-
tation and optimization process on a code fragment, and
identify the original application instruction corresponding to
each instruction in the fragment. In order to reconstruct a trace,
EDDI maintains a record of the basic blocks that make up a
trace region.

C. Coordination and Communication

The front-end parses all user inputs commands, whether to
the application or the debugger. The front-end then communi-
cate with the other two components to execute the commands.
We use the standard GDB/MI (machine independent) interface
to communicate between the front-end and GDB. Because
GDB is unaware of the changes made by DynamoRIO to
the user application, the front-end has to mediate GDB’s
interaction with the user application.

The communication between the front-end and the applica-
tion is implemented using UNIX signals and inter-processor
message queues. The front-end generates a signal when it
wants to communicate with the application. The signal is
caught by EDDI, and delayed until the current code fragment
completes its execution (i.e., executes a branch instruction).
This avoids a mapping between the code cache and the native
instruction sequence. Afterward, the application and front-end
can exchange messages.

III. SOFTWARE WATCHPOINT

To demonstrate the effectiveness of EDDI, we implemented
an important debugging facility, namely software watchpoints,
within EDDI. This watchpoint facility is more flexible than
hardware watchpoints – more data locations can be watched,
and any size of watch ranges is allowed. There are many
issues in the design of software watchpoints. These include
scalability issues as the number of watchpoints is increased,
the memory footprint, runtime overhead, support for 64-bit
and multi-threading. In this section, we will discuss some
of the insights we gained in these issues gained from our
implementation of software watchpoints. In the following
section, we will discuss how we optimized the implementation.

A. Memory Checks

In order to monitor all memory references, whenever the
application code is copied into code cache, the instrumentor
inserts watchpoint checking code before every memory ref-
erences. In order to support any number of watchpoints with
arbitrary sizes, the overhead of checking must scale the with
the number of watchpoints. We associate each memory byte
location with a tag to indicate if that it is being watched.
Before each memory reference is executed, this tag is checked.
There are two advantages of this approach. First, it is easy
to set a watchpoint. We only need set the associated tag of
memory location being watched, instead of modifying the code
injected by the dynamic instrumentor. Secondly, the runtime
overhead does not increase dramatically as the number of
watchpoints is increased although the tag lookup overhead may
increase a little.

In particular, the injected code performs the following major
operations:

1) Save the registers that will be used or affected in the
checking process.

2) Calculate the reference address and lookup the associ-
ated tag.

3) Checks if the tag is set to ‘watched’, and trap if it is.
4) Otherwise, the saved registers are restored.

Figure 3 is an example of simple checking code injected for
the memory store instructionmov esi -> [eax, ebx] .

B. Tag Lookup Table

There is a trade-off between memory usage and the effi-
ciency of the watchpoint tag lookup. To tag, or potentially
tag, every or any memory location, the most straight forward
approach is to split the address space into equal halves [3]. In
this approach, the tag corresponding to a memory location can
easily be obtained by a simple addition of a constant offset
to the memory location. However, it is also the most space
consuming approach. Another approach is to use a bit map
to represent the whole addressible space. For example, Wahbe
et. al. [19] suggested the association of a one-bit tag to every
4 bytes. This incurs only a 3% overhead. However on byte-
addressible architectures like the x86, the required space is
increased to 12.5% of total address space [12]. If we need to
distinguish between reads and writes, then two bit tags are

mov %ecx -> [ECX_slot]
mov %edx -> [EDX_slot]
mov %eax -> [EAX_slot]
seto [OF_slot + 3]
lahf
mov %eax -> [AF_slot]
mov [EAX_slot] -> %eax
lea [%eax, %ebx] -> %ecx
mov %ecx -> %edx
shr %ecx, $20 -> %ecx
cmp L1_table[%ecx, 4], $0
je LABEL_RESTORE

mov L1_table[%ecx, 4] -> %ecx
and %edx, $0xfff -> %edx
testb $0xAA, [%ecx, %edx]
jz LABEL_RESTORE

int3
LABEL_RESTORE:

mov [AF_slot] -> %eax
add [OF_slot], $0x7f000000 -> [OF_slot]
sahf
mov [EAX_slot] -> %eax
mov [EDX_slot] -> %edx
mov [ECX_slot] -> %ecx

Fig. 3. An example of the checking code that is injected by EDDI.

needed. In this case, 25%, or 1G byte memory for a 32-bit
address space is needed. Worse, such mappings do not scale
to 64-bit architectures.

Instead of using continous memory for the tags, EDDI
uses a two-level hierarchical table approach. Given a memory
address, then most significant bits are used to lookup the
first level table, while the rest of the bits determines the tag’s
position in the second level table. To reduce the memory
usage and lookup overhead, the entry of the first level table
is set tonull if there is no memory location in that region
being watched. The sizes of the first level and the second
level table are not necessarily the same as the size of a page
of operating system. This approach results in a significantly
smaller memory footprint especially in ‘normal’ use. For
instance, a first level table with220 entries uses 4 Mbytes.
Assuming that each byte of memory is associated with a one-
byte tag for ease of lookup, we will need 4 Kbytes for each of
the 1M second level tables. If we set aside another 4 Mbyte of
memory for use in the second level, we would allow the user
to set byte-size watchpoints in up to 1024 pages. If every byte
in the second level table is set, then the user can effectively
set over 4 million watchpoints.

To extend to a 64-bit system, more levels in the tag
table would be needed. Meanwhile, since in practice only a
relatively small amount of memory is needed, it is possible
to monitor memory allocations, and design a hash function to
reduce the number of tag table levels.

There is one problem with this approach: an unaligned
memory reference can cross table boundaries,i.e four tags for
a 4-byte memory reference could be stored in two consecutive
second level tables. To solve this problem, the spare bits
of the one-byte tag scheme are used. A one-byte tag stores
information not only for the corresponding byte, but also the
three bytes following it,i.e., eight bits are used to indicate
if four bytes are being watched for load or store. So the last

byte in the table contains information about the first three
bytes in the next region. It is also possible to use bit-maps in
the second level to reduce the memory requirement. However
such approach would make the lookup more complicated as
additional operations such as shifts is required. Our approach
uses a less compaq representation for an easier array indexing
in the lookup process.

The two-bit tag to a byte location mapping allows us to
perform an important optimization – the checking of multiple
locations in a single comparison. For example, a four byte
tag would hold the information for 16 bytes. In a single 32-
bit width comparison, we can check the status of 16 byte
locations. If comparison is done using 64-bit operands, even
more lcoations can be checked in a single comparison.

C. Runtime Overhead

The naive software watchpoint implementation described
above suffers from significant runtime overhead. In the next
section, we will describe important optimizations to drastically
reduce this overhead. However, to get a better understanding
of what should be optimized, we need to uunderstand the
overhead that we are dealing with. In the instrumented code,
we can find three major overheads in each check:

• The overhead for saving and restoring registers so as to
context switch to the checking code,OS ,

• The overhead in finding the corresponding tag,OL, and
• The overhead in the checkingOC .

The total overhead in the naive implementation is therefore
(OS + OL + OC) × N whereN is the number of memory
references. As we shall see, the overhead can be reduced by
decreasing any element in this formula. This is the subject of
the next section. Although we did not consider cache locality
in our design, we benefit our tag table lookup should exhibit
good locality of reference.

D. Other Issues

With the trend of towards 64-bit multi-core processors,
our implementation of software watchpoints should scale
to multi-threaded or 64-bits applications. The extension for
a 64-bit architecture has been discussed above. For multi-
threaded applications, the lookup table can be made either
global or thread-specific. This choice will depend on the
user’s preference. Meanwhile, because DynamoRIO employs
a thread-private code cache, instrumentation can be performed
on specific threads or on all threads.

Because DynamoRIO can only monitor and instrument the
code executed in user mode, our software watchpoint cannot
detect memory reference on watchpoints in kernel mode.
However, by taking advantage of DynamoRIO being able to
identify the system call instruction,e.g int80 , we insert
functions before and after the system call to discover its tyep,
and predict if any watchpoint will be accessed. For instance,
if a buffer containing watchpoints is used for read or write
system call, we might trap it depending on the length.

IV. OPTIMIZATIONS

We have discussed the lookup overhead and memory usage
tradeoffs involved in the design of the tag lookup table.
In this section, we shall focus on optimizing the checking
code injected into the user’s application. Some of these opti-
mizations reduce running time at the expense of using more
memory. We perform optimization at two places – when the
instrumentor inserts checking code into basic blocks, and when
code fragments are upgraded into the trace cache.

A. Basic Block Optimizations

1) Context Switch Reduction (CSR):The naive checking
code in Figure 3 consists of 13 instructions for context
switches: six instructions for three resgisters stealing and
restore, and seven foreflags save and restore. To reduce
these overhead, a register liveness analysis is performed in
each basic block. This analysis tries to determine registers that
the checking code can use safely without saving and restoring.
This reduces the overheadOS .

2) Group Checks (GC):We can also reduce the total num-
ber of context switches by grouping checks together within
a single context switch. Two consecutive memory reference
checks can be grouped together if there is no instruction
between them that affects the address calculation of the latter’s
memory reference, i.e. the register used by two memory
references is not updated by the instructions in between. To
be more aggressive, we can relax the condition such that
if the update of the register for the address calculation can
be statically computed, the checking can be aggregated. For
instance, the checks for three consectivepush instructions can
be grouped together since we know the way the stack register
changes.

3) Merged Checks (MC):When the locations referenced by
different instructions are the same or within close proximity
of one another, we can merge the checks for these memory
reference into a single check. As mentioned before, using a
4-byte tag for a single byte memory, we can check sixteen
adjacent bytes of memory in a single comparison. At the cost
of increased memory usage, we can reduce the total number
of checks significantly.

B. Trace Optimizations (TO)

In DynamoRIO “hot” basic blocks are stitched together to
form traces. So the code in trace are more frequently executed,
and it is profitable to perform more aggressive optimizations
on traces. By taking advantage of the single-entry, multi-
exits property of a trace, the following optimizations can be
performed.

1) Redundant Check Removal:In a trace, with the excep-
tion of the first basic block, a basic block cannot be executed
unless the basic blocks preceding it are executed. Therefore a
check is redundant in a basic block if an identical check has
been performed in its predecessor blocks and can be safely
removed.

2) Loop Invariant Check Hoisting:When executing code
in a loop, it is often the case that the same location is
referenced in different iterations. As in the case of traditional
loop-invariant code motion, checks for loop invariant memory
references can be moved outside the loop. In DynamoRIO,
often a trace is a frequent path in a loop, and its last exit
corresponds to the back-edge of the loop. For such traces, we
can scan the code to see if there is any memory reference
that does not change its address in the trace,i.e., the registers
used for address calculation are not changed. Checks for these
memory references can be moved up to beyond the entry of
trace so that the checks are only executed before entering
the trace. It is possible that execution may exit earlier in a
trace. This can cause a false alarm if checks at the entry
discover a location being watched is to be accessed in the loop
body but execution does not reach there. Instead of trapping
immediately, a bit for the varible is set to 1 when the basic
block is entered. The original lookup and check inside the loop
is replaced with a single bit check that traps if the bit is set.

C. Page Protection based Instrumentation (PI) Mode

The optimizations described above are based on full in-
strumentation,i.e., instrumenting every memory reference.
Another optimization strategy we explored in EDDI is to in-
strument only those memory references that might potentially
reference the watched data. We refer to this strategy as the
page protection based instrumentation(PI) mode of EDDI, as
oppose to thefull instrumentation(FI) mode described in the
preceding sections.

In PI mode, we make use of the operating system’s page
protection mechanism to help identify memory references that
may access a watchpoint. When a watchpoint is set, we first
make a copy of the pages containing that watchpoint. The
access right of the original page is then set to be not accessible.
During the program execution, if an instruction references one
of this page, a signal will be raised. A signal handler catches
that signal, and then subsequently replaces the code fragments
containing that instruction with a new one with additional
checking and reference redirection code before that instruction.

Here we use an example to explain how this is done.
Suppose we want to set a watchpoint on data at address
0x020040 with a length of 64 bytes. Besides updating tag
lookup table, EDDI will allocate a new page. Let’s assume that
this new page’s address starts at0x050000 . EDDI copies
the data from [0x020000 , 0x020fff] to [0x050000 ,
0x050fff], and updates a corresponding entry in an offset
table to0x030000 . This offset table is a table with220 entries
for storing the redirection offsets of every pages. The page at
0x020000 is then set to be non-accessible. If an instruction,
I, tries to load 4 bytes from0x020010 for the first time,
a SIGSEGV signal will be raised. EDDI’s signal handler
receives this signal, and locates the code fragment containing
I and I itself. EDDI then builds a new code fragment that
is identical as the old one except that a function call (a
context switch is needed here for transparency) is inserted right
beforeI. By means of a DynamoRIO utility function, the old
fragment is replaced with new one, and execution is resumed

at the function call. The function call calculates the reference
address and check if it is watched and if redirection is needed.
In our case, it is[0x020010 , 0x020013]. There is no watch-
point triggering but a redirection is needed. A sequence of
instructions are dynamically generated by EDDI and executed
instead ofI. The new generated code stub works the same
asI, except for referencing0x050010 and not0x020010 .
At the end of this code stub, a branch instruction jumps to
the instruction immediately afterI, so that execution may
continue. Hereafter, whenever this code fragment is executed
again, the function beforeI will be executed first, checking
the reference target, and making decision if to executeI or the
redirection code stub. The rewriting process may be performed
again if I tries to reference another protected page and a
different set of redirection stub code with a different offset
is required.

Beside the user code, we also insert function call before and
after system call in case of protected page being referenced
by kernel code. We maintain a list of system calls that may
access the user’s pages. If a system call is on this list, EDDI
will first restore the original access right of those pages, and
update the data from shadow pages. After the system call,
EDDI will redo the watchpoints again.

By doing so, in PI mode, EDDI incurs an overhead only for
instructions referencing pages that contain watchpoints, not
all memory references as is the case of the FI mode. Our
experiments show that this can significantly reduce overheads.

D. Watchpoint Scheduling

Because DynamoRIO does not change the data layout,
the hardware watchpoint facility provided by architecture
and made available via the debugger can still be used. By
scheduling hardware and software watchpoints together, EDDI
can provide a flexible watchpoint facility that does not com-
promise on the overhead. EDDI first runs the user applica-
tion under DynamoRIO without any instrumentation, using
hardware watchpoint first wherever possible. When hardware
watchpoints are exhausted – this is caused by either having
too many watchpoints or attempting to watch a wide range of
memory – EDDI can switch to PI mode, clone and set those
pages having watchpoints as non-accessible. Meanwhile, some
watchpoints can still be selected to be hardware watchpoints.
This will help reduce the overhead further. When it is no longer
beneficial to pay for the overhead of PI mode, we can flushes
the code cache and starts instrumenting the code in FI mode
as execution continues.

V. EXPERIMENT

In this section, we evaluated the performance of our EDDI-
based software watchpoint. We ran the experiments on a
3.06 GHz Intel Pentium 4 processor with 1G bytes of RAM.
The operating system is Linux Fedora Core 1. We used the
SPEC CPU2000 integer [16] benchmarks and their reference
input workloads. All benchmarks were compiled with gcc 3.3
using -O3 flag.

int main()
{

int i = 0;
int local_val = 0;
int *local_p = &local_val;
int *heap_p = (int *)malloc(sizeof(int));

for(i = 0; i < 100000000; i++) {
if((i % 1000) >= 2) // set the ratio

*local_p = 1;
else

*heap_p = 1;
}
return 0;

}

Fig. 5. Simple synthetic benchmark.

A. Basic Performance Results

We first evaluated the performance of the different instru-
mentation and optimization techniques without any watch-
points. We used a lookup table with220 entries in first level
table. Each first level entry points to a second level tag table
for 4 Kbytes of memory – the default page size of Linux.
The performance measurements include naive instrumentation
(Naive), and full instrumentation (FI) with the context switch
reduction (CSR), group check (GC), merged checks (MC), and
trace optimization (TO).

The performance result is nomalized to that of native
execution and shown in Figure 4.

As expected, naive instrumentation has a significant over-
head, averaging a 16 times slowdown in performance. How-
ever, the relative slowdown is benchmark dependent. For ex-
ample, the overhead of naive instrumentation in181.mcf is
27% compared to native execution. That is because181.mcf
is an application with poor cache locality, and there is prob-
ably a good deal of overlap between the checking and its
cache misses. In contrast, benchmarks such as186.crafty ,
252.eon , and 255.vortex are applications with signifi-
cantly higher cache hit ratios, so they suffered from substantial
slowdown from executing the checking code.

The second set of bars in Figure 4 shows that CSR
is a very effective optimization that effectively halves the
overhead. That is reasonable since in naive instrumentation
more than half of the injected checking instructions are used
for context switching. When GC and MC optimizations are
added, the overhead is halved further. These two optimizations
are especially effective for the186.crafty and252.eon
benchmarks. Memory references in these benchmarks have
good temporal and spatial localities. On the other hand,
181.mcf benefits little from either the GC or MC optimiza-
tions. Performance improvement from the TO optimization
was disappointing. This can be attributed to the good job done
by the basic block optimizations.

The last set of bars represents the performance of the page
protection based instrumentation (PI) mode of EDDI. In this
case, because there are no watchpoints set, no instrumentation
is injected and the slowdown is due purely to DynamoRIO.

7.
77

5.
29

3.
61

0.00

5.00

10.00

15.00

20.00

25.00

30.00

16
4.g

zip

17
5.v

pr

17
6.g

cc

18
1.m

cf

18
6.c

raf
ty

19
7.p

ars
er

25
2.e

on

25
3.p

erl
bm

k

25
4.g

ap

25
5.v

ort
ex

25
6.b

zip
2

30
0.t

wolf

Ave
rag

e

FI-naive
FI-naive + CSR
FI-naive + CSR + GC
FI-naive + CSR + GC + MC
FI-naive + CSR + GC + MC + TO
PI

Pe
rfo

rm
an

ce
 n

or
m

al
iz

ed
 to

na
tiv

e
ex

ec
ut

io
n

16
.6

0

3.
48

1.
25

Fig. 4. Performance of EDDI under different optimizations for full instrumentation and page protection based instrumentation with no watchpoint set.

TABLE I

PERFORMANCE SCALING OF SYNTHETIC BENCHMARKS WITH RESPECT TO

NUMBER OF WATCHPOINT ACCESSES. NATIVE EXECUTION TIME OF THE

BENCHMARK IS 1.171SECS.

Ratio of FI time No. of No. of PI time
watchpt acc. (sec) sigsegv redirects (sec)

0.00% 1.876 1 1 1.221
0.10% 1.874 2 100,001 2.108
0.20% 1.811 2 200,001 2.939
0.30% 1.813 2 300,001 3.791
0.40% 1.814 2 400,001 4.674
0.50% 1.820 2 500,001 5.541
0.60% 1.823 2 600,001 6.433
0.70% 1.821 2 700,001 7.272
0.80% 1.823 2 800,001 8.171
0.90% 1.825 2 900,001 9.028
1.00% 1.847 2 1,000,001 9.904
1.10% 1.823 2 1,100,001 10.819
1.20% 1.837 2 1,200,001 11.678

1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4

2.6

1 2 3 4 5 6 7 8 9 10 11 12

PI FI-all opts

Pe
rfo

rm
an

ce
 N

or
m

al
iz

ed
 to

na
tiv

e
pe

rfo
rm

an
ce

Experimental Configurations

Fig. 6. Performance scaling for 164.gzip.

B. Scalability

In this section, we evaluate how performance changes when
watchpoints are set. To this end, we first used a synthetic
application so we can fine-tune the frequency of accessing
the watchpoints. We then studied the performance changes on
several benchmarks with different watchpoints setups. Since
we do not have a model of how humans actually go about
setting watchpoints, we used a somewhat contrived method.
In our experiments, the way we set watchpoints is to intercept
calls to the malloc() function, if we want to watch a

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

1 2 3 4 5 6 7 8 9 10 11 12

PI FI-all opts

Pe
rfo

rm
an

ce
 N

or
m

al
iz

ed
 to

na
tiv

e
pe

rfo
rm

an
ce

Experimental Configurations

Fig. 7. Performance scaling for 176.gcc.
TABLE II

CONFIGURATIONS FOR164.gzip AND 176.gcc BENCHMARKS USED IN

OUR SCALABILITY EXPERIMENTS.

164.gzip 176.gcc
Config No. of No. of No. of No. of

SIGSEGV redirects SIGSEGV redirects
1 22 858 31 135
2 33 2,835 36 1,022
3 35 12,159 49 1,556
4 42 60,852 100 3,736
5 42 117,930 962 642,775
6 42 183,838 1,312 6,458,137
7 45 580,135 1,448 6,809,815
8 45 1,063,054 107 10,512,472
9 45 1,679,386 433 14,750,028
10 45 2,176,154 455 16,326,327
11 45 2,787,984 1,459 16,983,414
12 45 5,682,609 1,555 17,348,450

malloc’ed block, we allocate that memory from a memory
pool. All pages allocated from this pool are set as ‘watched’.
This allows us to set watchpoints easily at runtime for our
experimental purpose, without any user intervention.

In the synthetic application, shown in Figure 5, we first
allocate a block of memory and add it to the watchlist. Then
using a loop, we reference either variables on the stack or
variables in the allocated block. The choice is based on a tun-
able parameter so that we can study the relationship between

0

1

2

3

4

5

6

7

16
4.g

zip

17
5.v

pr

17
6.g

cc

18
1.m

cf

18
6.c

raf
ty

25
3.p

erl
bm

k

25
5.v

ort
ex

25
6.b

zip
2

30
0.t

wolf

Ave
rag

e

FI-all opts - 0

FI-all opts - 5000

FI-all opts - 10000

P
er

fo
rm

an
ce

 n
or

m
al

iz
ed

 to

na
tiv

e
ex

ec
ut

io
n

3.
36 3.

61 3.
72

Fig. 8. Worst case performance of full instrumentation in EDDI.

performance and the frequency of accessing a watchpoint. The
result is shown in Table I. The performance of the FI mode
remains constant even as the frequency of referencing the
watchpoints increases. We think this is because the second
level check is simple and has relatively little performance
impact compared to context switching and the first level check.
In contrast, the performance of the PI mode degrades almost
linearly with the increase in watchpoint references. From
Table I, we can conclude every105 reference redirection would
result in a 0.9 second slowdown.

We repeated the scalability experiments, this time on two of
the SPECint benchmarks, namely164.gzip and176.gcc .
To evaluate the performance scaling in these benchmarks, we
measured performance using different experimental configu-
rations of watchpoints, i.e. different allocated memory blocks
are watched. As one can see from Table II, the general trend
in our experiments is to increase the number ofSIGSEGV
faults and page accesses. However, the exact details of how
that can be achieved are benchmark dependent. In Table II,
we listed the the number ofSIGSEGVraised and the number
of reference redirection performed for two of our benchmarks.
These two factors is the main determinant of performance. The
number of SIGSEGV raised indicates the number ofstatic
instructions in the application referencing protected pages,
while the number of redirections gives thedynamicnumber
of instructions referencing the protected pages.

The results are shown in Figures 6 and 7. The observations
made in the synthetic benchmarks remained valid. From the
experiments, we observe that performance of the FI mode is
insensitive to the number of times a page containing a watch-
point is referenced. The opposite is true for PI mode operation.
The main reason for this is that the cost of a data reference
redirection is non-trivial and if more such redirections are
performed because pages containing a watchpoint is accessed
more often, then the overhead increases accordingly. Note that
the number ofSIGSEGVraised also affects the performance,
but as evident in Table II, that number is much smaller than
the number of reference redirections, and therefore the impact
on performance is less pronounced.

We also compare the performance of the FI mode running
under the best and worst case scenarios. Trivially, the best case
is the case where there are no watchpoints. To evaluate the
worst case, we watched (at most) 5,000, and 10,000 allocated
memory blocks, or 1024 pages in total. Three benchmarks
were ignored in the evaluation because197.parser allo-
cated only very huge memory, and 254.gap does not request

memory allocation,252.eon only allocates one 16 bytes
blocks. We evaluated the rest. We did not evaluate the worst
case for the PI mode since it is obviously going to be quite
disasterous. As shown in Figure 8, we again conclude that the
performance of FI is stable.

Our experiments verify our idea for watchpoint scheduling:
one should start with hardware debug registers, then followed
by PI mode, and when accesses to pages containing watch-
points increases, EDDI should switch over to the FI mode of
operation. Although the current implementation of EDDI do
not perform this scheduling, we see no technical difficulty that
will prevent us from implementing it. The experimental results
certainly point us in that direction.

VI. RELATED WORK

A. Software Watchpoint

Watchpoint is an important debugging facility that helps
users identify data corruption bugs. This importance has been
given due recognition in the form of hardware debug registers
for watching memory locations implemented in almost all
state-of-the-art processors. There has also been several pro-
posals in the past on how to implement software watchpoints.
They can be generally classified as the following.

• Using page protection: pages containing watched ad-
dresses are protected from being written to and/or read
from. Any attempt to reference a data location residing
in these pages is trapped, and the reference address is
checked against the watchpoints. Note that EDDI’s PI
mode goes further by optimizing on false sharing.

• Through trap patching: each store and/or load instruc-
tion is replaced with a trap instruction to trigger checking.

• Through code patching: the watchpoint checking code
is inlined before each store and/or load instruction. This
is the equivalent to the naive FI mode of EDDI.

Wahbe [18] and Roberts [13] both compared the above im-
plementation strategies, and made the same conclusion that
code patching has the lowest overhead. Wahbe then proposed
an efficient implementation of software watchpoint [19] using
code patching and static analysis. However, their work cannot
be used on shared libraries. Copperman and Thomas [4]
used a post-load to insert checks into executable to solve the
shared library issue. Keppel [8] suggested using checkpointing
to identify the short period of execution that updates the
watchpoint, then re-execute that period with additional checks.

LIFT [12] is a dynamic instrumentation based information
flow tracing system with a small runtime overhead. It is
possible to apply the ideas given in this paper to extend
their work so as to perform software watchpoint. However,
LIFT makes use of a key advantage in their implementation
framework that may not hold in general. LIFT performs
dynamic translation to run 32-bit applications on a 64-bit
system. This allows them to use up to eight extra registers
available on the 64-bit x86 system that cannot be used by their
32-bit benchmark applications [12]. This completely avoids
the significant overhead of context switching. We feel that
EDDI’s assumption of no ‘free’ registers is more congruent
with how such a tool will be employed. Because the Intel

IA32 architecture only has eight general purpose registers, the
overhead for register stealing is usually unavoidable.

B. Memory Debugging

There are many software, hardware or hybrid approaches
proposed to detect memory bugs. Purify [7] and Mem-
Check [14] are two widely used software tools for discovering
memory usage problems. HeapMon [15] is hardware/software
approach for detecting memory bugs with a helper thread.
Hardware such as SafeMem [11], iWatcher [21], and Mem-
Tracker [17] have also been proposed for detecting inappro-
priate usage of memory with low overhead. For example,
SafeMem exploits the use of ECC (Error-Correcting Code)
for detecting memory leaks and memory corruption with low
overhead. But this approach relies on a write-allocate cache
policy, i.e., the block is loaded on a write miss. One important
drawback of these hardware approaches is that it requires
customized, fixed-functionality hardware.

There have been several hardware proposals to extend
current hardware support for debugging. DISE [5] (Dynamic
Instruction Steam Editing) is a general hardware mechanism
for interactive debugging. It adds dynamic instructions for
checking memory references into the instruction stream during
execution. Beside requiring customized hardware, it does not
scale well as the number of checks increases when more
watchpoints are set. Without the optimizations found in EDDI,
for example, this would cause a substantial runtime overhead.

VII. C ONCLUSION

This paper presents EDDI, an efficient debugging frame-
work that uses on-demand dynamic instrumentation and run-
time optimizations to accelerate traditional debugging features.
This paper emphasizes the use of EDDI to implement a
versatile data watchpoint facility. It allows users to set orders
of magnitude more watchpoints than is practical using off the
shelf debuggers today. EDDI does not rely on any special-
ized hardware, and is evaluated in this paper using several
SPEC2000 benchmarks running on a Pentium 4 machine.

The new capabilities facilitated by EDDI can make applica-
tion developers more productive. In the case of data corruption
bugs that occurs in pointer codes, or from buffer overflow
errors, EDDI allows for tracking millions of memory locations
for updates, with an average3× slowdown. A user can, for
example, set data breakpoints for entire ranges of memory,
or restrict watchpoints to objects allocated from specific call
sites, or of a certain type. Though not yet implemented, it
is also conceivable that instead of trapping, user supplied
code can be executed on watchpoints. Such features extend
the repertoire of features available in standard debuggers,
and creates new debugging capabilities that are otherwise
prohibitively expensive for interactive use. We believe that
EDDI is also practical for detecting data races and data
corruption bugs in parallel programs that will run on multicore
architectures.

REFERENCES

[1] V. Bala, E. Duesterwald, and S. Banerjia. Dynamo: a transparent
dynamic optimization system. InPLDI ’00: Proceedings of the ACM
SIGPLAN 2000 conference on Programming language design and im-
plementation, pages 1–12. ACM Press, 2000.

[2] D. Bruening. Efficient, Transparent, and Comprehensive Runtime Code
Manipulation. PhD thesis, Massachusetts Institute of Technology,
September 2004. http://www.cag.csail.mit.edu/rio/.

[3] W. Cheng, Q. Zhao, B. Yu, and S. Hiroshige. Tainttrace: Efficient flow
tracing with dynamic binary rewriting.iscc, 0:749–754, 2006.

[4] M. Copperman and J. Thomas. Poor man’s watchpoints.SIGPLAN Not.,
30(1):37–44, 1995.

[5] M. L. Corliss, E. C. Lewis, and A. Roth. Low-overhead interactive
debugging via dynamic instrumentation with dise. InHPCA ’05:
Proceedings of the 11th International Symposium on High-Performance
Computer Architecture, pages 303–314, Washington, DC, USA, 2005.
IEEE Computer Society.

[6] GNU/FSF. GDB: The GNU Project Debugger.
[7] R. Hastings and B. Joyce. Purify: fast detection of memory leaks and

access errors. InProceedings of the Winter Usen x Conference, 1992.
[8] D. Keppel. Fast data breakpoints. Technical Report TR-93-04-06,

University of Washington, 1993.
[9] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney,

S. Wallace, V. J. Reddi, and K. Hazelwood. Pin: Building customized
program analysis tools with dynamic instrumentation. InProgramming
Language Design and Implementation, pages 190–200, Chicago, IL,
June 2005.

[10] N. Nethercote. Dynamic Binary Analysis and Instrumentation. PhD
thesis, University of Cambridge, November 2004. http://valgrind.org/.

[11] F. Qin, S. Lu, and Y. Zhou. Safemem: Exploiting ecc-memory for
detecting memory leaks and memory corruption during production runs.
In HPCA ’05: Proceedings of the 11th International Symposium on
High-Performance Computer Architecture, pages 291–302, Washington,
DC, USA, 2005. IEEE Computer Society.

[12] F. Qin, C. Wang, Z. Li, H. seop Kim, Y. Zhou, and Y. Wu. Lift: A
low-overhead practical information flow tracking system for detecting
security attacks. InMicro 39: Proceedings of the 38th annual IEEE/ACM
International Symposium on Microarchitecture, 2006.

[13] P. E. Roberts. Implementation and evaluation of data breakpoint schemes
in an interactive debugger.

[14] J. Seward and N. Nethercote. Using valgrind to detect undefined value
errors with bit-precision. InProceedings of the USENIX’05 Annual
Technical Conference, 2005.

[15] R. Shetty, M. Kharbutli, Y. Solihin, and M. Prvulovic. Heapmon: a
helper-thread approach to programmable, automatic, and low-overhead
memory bug detection.IBM J. Res. Dev., 50(2/3):261–275, 2006.

[16] SPEC CPU2000 Benchmark Suite, 2000.
http://www.spec.org/osg/cpu2000/.

[17] G. Venkataramani, B. Roemer, M. Prvulovic, and Y. Solihin. Mem-
tracker: Efficient and programmable support for memory access monitor-
ing and debugging. InHPCA ’07: Proceedings of the 13th International
Symposium on High-Performance Computer Architecture, 2007.

[18] R. Wahbe. Efficient data breakpoints. InASPLOS-V: Proceedings of the
fifth international conference on Architectural support for programming
languages and operating systems, pages 200–212, New York, NY, USA,
1992. ACM Press.

[19] R. Wahbe, S. Lucco, and S. L. Graham. Practical data breakpoints:
design and implementation. InPLDI ’93: Proceedings of the ACM
SIGPLAN 1993 conference on Programming language design and im-
plementation, pages 1–12, New York, NY, USA, 1993. ACM Press.

[20] X. Zhang, N. Gupta, and R. Gupta. Locating faults through automated
predicate switching. InICSE ’06: Proceeding of the 28th international
conference on Software engineering, pages 272–281, New York, NY,
USA, 2006. ACM Press.

[21] P. Zhou, F. Qin, W. Liu, Y. Zhou, and J. Torrellas. iwatcher: Efficient
architectural support for software debugging. InISCA ’04: Proceedings
of the 31st annual international symposium on Computer architecture,
page 224, Washington, DC, USA, 2004. IEEE Computer Society.

