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Abstract

The startup and steady uniaxial elongational viscosity have been measured for two monodis-

perse polystyrene melts with molecular weights of 52 kg/mole and 103 kg/mole, and for three

bidisperse polystyrene melts. The monodisperse melts show a maximum in the steady elon-

gational viscosity vs. the elongational rate, ǫ̇, of about two times 3η0 whereas the bidisperse

melts have a maximum of up to a factor of 7 times the Trouton limit of 3η0. The Wiest

model which incorporates anisotropic drag and finite extensibility may be used to interpret

the results in molecular terms.
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1 Introduction

The scaling of linear viscoelastic properties such as the zero shear viscosity, η0 and the char-
acteristic reptation time , τd, for the Doi-Edwards model (Doi and Edwards, 1986) have been
investigated thoroughly both theoretically and experimentally in the literature for monodisperse
polymer melts. It is commonly accepted that the zero shear viscosity and the reptation time both
scale with the molecular weight as η0 ∼ M3.4 and τd ∼ M3.4 for monodisperse polymers with
molecular weights substantially above the entanglement molecular weight, M > (2− 4)Me. Elon-
gational flow properties have however not been analyzed as intensely. Thorough investigation of
the elongational viscosity for very diluted solutions of monodisperse (and bidisperse) polystyrene
have been made and analyzed by Gupta et al. (2000) and Ye et al. (2003). Wagner et al.
(2005) have recently published elongational results for bidisperse blends of small amounts of ultra
high, narrow molecular weight polystyrene ,Mw = 3220 Kg/mole and Mw = 15400 Kg/mole in lower
molecular weight polydisperse polystyrene, Mw = 423 Kg/mole. Steady state was never reached,
but the authors found that the blends were more strain hardening than the monodisperse melts,
and that maximum amount of strain hardening increased with increasing content of ultra high
molecular weight polystyrene. To our knowledge the only published steady elongational viscosi-
ties for monodisperse melts are those of Bach et al. (2003a) and Luap et al. (2005). Neither the
Doi-Edwards model nor other reptation-based models (Marrucci and Grizzutti (1988), Mead et al.
(1998), Fang et al. (2000), Ianniruberto and Marrucci (2001), Schieber et al. (2003)) have effec-
tively been able to predict the flow behaviour of especially high Deborah-number flows, i.e. fast
elongational flows with ǫ̇ ≥ 1/τd. Indeed, the major limitation to progress in the understanding of
the nonlinear properties in elongational flow seems to be the scarcity of data for well-characterized
narrow molecular weight linear polymer melts.

There have been a number of recent efforts at extending the basic reptation picture to incor-
porate additional physical mechanisms that modify the evolution in the polymeric stress in strong
stretching flows. These include incorporating the role of ’intrachain pressure’ within a differential
framework (Marrucci et al. 2004) and within the integral molecular stress function formulation
( Wagner et al. 2005) or through detailed analysis of the rate of creation and destruction of
’slip links’ (Likhtman 2005). The key change that each of these models seek to incorporate is
a modification in the scaling of the steady elongational steady stress with the elongational rate,
σzz − σrr ∼ ǫ̇n. The bare reptation model of Doi and Edwards predicts a saturation in the stress,
n = 0 (corresponding to thinning in the elongational viscosity). Incorporation of chain stretching
results in unbounded stress growth, which can be truncated through considering the finite extensi-
bility of the chains resulting ultimately in n = 1 (Fang et al. 2000) corresponding to finite limiting
value of the elongational viscosity. The proposed models by Marrucci and Ianniruberto (2004)
and Wagner et al. (2005) both find that n = 0.5. In the present work we use the simple model
proposed by Wiest (1989) which models the effects of the surroundings chains as an anisotropic
drag acting on a finitely-extensible dumbbell that represents a single segment of the orienting
and elongating chain. This computationally simple model gives n = 0.5 and we show below that
it is able to capture many of the important features that we observe in the steady elongational
viscosity.

Bach et al. (2003a) measured the elongational viscosity of two narrow molar mass distribution
polystyrene melts, with Mw = 200 kg/mole, PS200K, and Mw = 390 kg/mole, PS390K. The main
conclusions drawn from this work were: 1) The steady elongational viscosity for Deborah numbers,
defined as De = ǫ̇τd greater than unity scales as η̄ ∼ ǫ̇−0.5. 2) The steady elongational viscosity
scales linearly with the molecular weight for De > 1, i.e. η̄ ∼ Mw ǫ̇−0.5 and finally 3) the steady
elongational viscosity is a monotone decreasing function of the elongational rate. That is, η̄ does
not exceed 3η0 for any elongational rate accessed experimentally. The authors did point out,
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that their conclusions with regard to molecular mass scaling were based on merely two samples.
Based on the scaling properties of η0 and τd with the molecular weight it is however realized
that these conclusions cannot be true if one extends them to elongational measurements of lower
molecular weights. There are simply too many constraints. Marrucci and Ianniruberto (2004)
have treated this problem theoretically and suggested that melts with fewer entanglements may
show a maximum in η̄ as function of ǫ̇.

The first purpose of this work is to investigate how two polystyrene melts with Mw = 103 kg/mole,
PS100K, and Mw = 52 kg/mole, PS50K, behave in a uniaxial elongational flow at 130◦C. Polystyrene
has an entanglement molecular weight of Me = 13.3kg/mole (Fetters et al., 1994), giving the melts
respectively 7.7 and 3.9 entanglements. With these fluids it is possible to analyze what happens
to η̄ in the transition going from low to high Deborah numbers, i.e. from the linear to the non-
linearly dominated regime. The elongational measurements can give an indication of which of the
constraints noted above must be relaxed.

The reptation time for PS100K is τd ≈ 100s at 130◦C. The range over which the elongational
rates can be measured by the filament stretching rheometer (FSR) to avoid dissipative heating in
the sample is ǫ̇ ≤ 0.3s−1 (Bach et al. 2003a), making it possible to transition from low to high
Deborah numbers for PS100K. The lower molecular weight PS50K sample is expected mostly to
provide information about the linear region, since τd ≈ 10s.

The lack of a maximum in η̄ vs. ǫ̇ for PS200K and PS390K is believed to be related to the
monodisperse character of the melts, and it has therefore been decided to make three bidisperse
melts, in which each of the individual polymers in the blend are expected not to display a maximum
in η̄ vs. ǫ̇ when studied in isolation. We have decided to mix PS390K with PS50K in two different
concentrations in order to investigate the effect of diluting PS390K with PS50K. Secondly we have
made a mixture of PS390K with PS100K, where PS390K has the same mass-concentration as one
of the PS390K+PS50K-blends.

The composition of the three blends used in the work is shown in table 1. In this table we
also show the concentration of PS390K relative to the overlap concentration, c*, of PS390K in a
dilute solution under theta conditions defined by Doi (1992) (page 20). The radius of gyration
Rg for PS390K is found to be Rg = 168nm, (Fetters et al., 1994), and since one polymer has
a volume of order O(R3

g), the overlap concentration of PS390K is found to be c*=16kg/m3, or
c*=1.6w/w%. We also specify in table 1 the weight-average molecular weight of the bi-disperse
blends, Mw = φLML +φSMS where φi and Mi are the weight fractions- and the molecular weights
of the long chain (L) and short chain (S) components.

2 Experimental section

2.1 Synthesis and Chromatography

The two polystyrene samples PS50K and PS100K were synthesized by anionic polymerisation
(Ndoni et al. 1995). The molecular weights were determined by size exclusion chromatography
(SEC) with toluene as the eluent using a Viscotec 200 instrument equipped with a PLguard and
two PLgel mixed D columns in series (from Polymer Laboratories) using a RI detector. On the
basis of calibration with narrow molecular weight polystyrene standards, the values of Mw and
Mw/Mn were measured for the monodisperse samples. The results are given in table 2.

2.2 Mechanical Spectroscopy

The viscoelastic properties of the polystyrene melts were obtained from small amplitude oscillatory
shear flow measurements on an AR2000 rheometer from TA instruments using a plate-plate ge-

3



ometry (see figure 1 and 2). The measurements were performed at 130◦C for the PS50K, PS100K
and blends, and at 150◦C for the blends. The measured data at 150◦C was shifted to 130◦C using
the time temperature superposition shift factor aT found from the WLF-equation (Bach et al.
2003a):

log10(aT ) =
−c0

1(T − T0)

c0
2 + (T − T0)

(1)

where c0
1 = 8.86, c0

2 = 101.6◦C, T0 = 136.5◦C and T is the sample temperature in ◦C.

2.3 Transient elongational viscosity measurements

The transient elongational viscosity was measured using a filament stretching rheometer which is
described in detail elsewhere (Bach et al. 2003b). The polystyrene melts were dried according to
the protocol of Schausberger and Schindlauer (1985), and moulded into cylindrical-shaped samples,
with radius of Ri = 4.5mm and height of Li = 2.5mm using a Carver hydraulic press. The PS50K
and PS100K-samples were pressed at 150◦C and annealed at this temperature for 2 minutes.
The bidisperse blends were pressed and annealed for 2 minutes at 170◦C. The temperatures were
chosen to ensure that the polymer chains were completely relaxed and still did not degrade;
this was confirmed using SEC after the elongational experiment was performed. The moulded
pellets were placed between two parallel plates inside the filament stretching rheometer, and the
temperature was raised to 130◦C. To ensure adhesion between the end plates and polymer melt, the
end plates were coated with a solution of polystyrene in tetrahydrofuran as described in Bach et al.
(2003a). In most of the experiments performed the sample was pre-stretched in order to reduce
the transmitted force in the vertical plane to avoid the sample being ripped of the end plates.
All samples was pre-stretched by variable amounts, thus the initial radius for experiments with
PS100K at ǫ̇ = 0.3s−1 was R0 = 1.5mm, whereas the initial radius for Blend 3 was R0 = 4.3mm
at ǫ̇ = 0.00015s−1. The pre-stretch was performed with stretch rates considerably lower than the
inverse of the longest relaxational time. The melt is allowed to relax before every elongational
experiment is started. We wait until all residual orientation in the polymer has disappeared, which
is the case when no residual forces are present as indicated by the load cell. This equilibration
time is at least ten times the longest relaxation time of the melt.

During a stretching experiment a laser micrometer samples the central diameter of the elon-
gating filament while a load cell measures the force at the end plate. The diameter data is sent
directly to a controller that produces a signal to the motor pulling the end plates apart. This
control method ensures that the radius decreases exponentially with time as R(t) = R0e

−ǫ̇t/2. The
Hencky strain is defined as ǫ = −2 ln(R(t)/R0). After an elongational experiment is complete, the
measured radius R(t) and force F (t) are used to calculate the tensile stress

σzz − σrr =
F (t) − m1g

πR(t)2
(2)

and the transient elongational viscosity as:

η̄+(t) =
σzz − σrr

ǫ̇
(3)

where the measured force, F , is corrected by the weight of lower half of the polymer filament, m1

and the gravitational acceleration g (Szabo 1997). This weight is measured by forcing the filament
to break at the symmetry plane after the end of an experiment.

At small strains there is an extra force contribution from the shear components in the deforma-
tion field during start-up. The shear component originates from the no slip condition at the rigid
end plates and is especially important at small aspect ratios. For Newtonian fluids this reverse
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squeeze flow problem can be modelled analytically and the effect of the additional shear may be
eliminated by a correction factor (Spiegelberg and McKinley (1996)).

η̄+
corr = η̄+

(

1 +
exp(−7ǫ + ǫ0)/3)

3Λ2
i

)

−1

(4)

where Λi = Li/Ri is the initial aspect ratio, ǫ0 is the pre stretched Hencky strain, defined as
ǫ0 = −2 ln(R0/Ri) and η̄+

corr is the corrected transient uni-axial elongation viscosity.
This correction is analytically correct for very small strains (ǫ → 0) for all types of fluids.

However, the correction is less accurate at increasing strains where the effect of the correction
fortunately vanishes.

In this work we have chosen to present the elongation measurements in both uncorrected and
corrected form, as we also prefer to present the raw data. For the aspect ratio used here, the extra
force contribution is negligible after about one additional strain unit . This was demonstrated
experimentally in Bach et al. (2003b), and theoretically in Kolte et. al. (1997) for polymer melts.

Eriksson and Rasmussen (2005) suggest that the relevant non-dimensional measure of the
surface tension in viscoelastic flow is the ratio of the surface tension stresses to the complex
modulus G∗(ω) =

√

G′(ω)2 + G′′(ω)2, i.e. Vc= σ/(RG∗(ǫ̇)), where the angular frequency, ω, has
been replaced with the characteristic deformation rate, ǫ̇. This Viscoelastic Capillary number
resembles the surface elasticity number, (Spiegelberg and McKinley (1996) and Rasmussen and
Hassager (2001)) at high deformation rates and the inverse of the classical Capillary number at
low deformation rates. As Vc stays below 0.03 in all experiments, the effect of surface tension is
negligible.

The effect of gravitational sagging can be evaluated using a relevant measure of the magnitude
of gravitational forces relative to the viscous forces. Here we use the ratio Li exp(ǫ+ ǫ0) ρg/(2ǫ̇η̄+)
as in Rasmussen et al. (2005) where ρ is the density of the polymer melt. The duration of the
elongational experiments in this work were considerably below the sagging time, as this number
is less than 0.1 in all the performed experiments.

See Szabo and McKinley (2003) for additional discussion of similar correction factors.

3 Linear Viscoelastic Measurements

A linear viscoelastic (LVE) analysis provides us with an estimate of the elongational behaviour
in the limit De → 0 and provides a verification of the reliability of the elongational experiments
especially at short times and small strains. If the verifications of the experiments were the sole
purpose of doing LVE-experiments a simple Maxwell-fit to the data would be sufficient. But we
also seek to determine the characteristic time constants of the individual polymeric species in the
melt, and for this the Baumgaertel, Schausberger and Winter (BSW) model is used (Baumgaertel
et al. 1990). Each polymer contributes a distinct spectrum with a characteristic time constant.
We analyse the LVE-data with a theoretical approach suggested by Jackson and Winter (1995)
which handles mono- and bidisperse melts. This is not to be confused with a blend rule, since
the LVE-properties of the blends cannot be predicted from the composition of long- and short
polymers by this procedure. The LVE properties of monodisperse linear polymers (Milner and
McLeish, 1998) and mixing rules for blends of monodisperse species (des Cloizeaux (1988)) have
been studied in detail. In terms of physical insight the BSW-approach is not far from a simple
Maxwell-fit, with few exceptions as described later.

The relaxation modulus G(t) is found from the continuous-spectrum H(λ), which for the
bidisperse blends is composed of two individual spectra:
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G(t) = G1(t) + G2(t) (5)

Gi(t) =

∫

∞

0

Hi(λ)

λ
exp(−t/λ)dλ, i = 1, 2 (6)

Hi(λ) = neG
0
N,i

[

(

λ

λmax,i

)ne

+

(

λ

λc

)

−ng

]

h(1 − λ/λmax,i) (7)

Here h(x) is the Heaviside step function, ne is the slope of the (log(ω), logG′) curve at intermediate
frequencies ω, ng is the slope of (log(ω), logG′′) for ω → ∞, and λc is called the crossover relaxation
time. We constrain the individual contributions to the modulus in a way such that G0

N = G0
N,1 +

G0
N,2 is constant.

When least-squares fitting (Rasmussen et al. 2000) the BSW model to the LVE data, ne, ng

(both independent of temperature), λc and G0
N are treated as fixed values. The cross over time

λc depends on temperature as any other relaxation time. ne = 0.23, ng = 0.67 and λc = 0.4s (at
130◦C) as obtained by Jackson and Winter (1995). The value of G0

N was found by Bach et al.
(2003a) to be 250 kPa at 130◦C, and we have decided to use this value as a fixed parameter. This
means, that the only remaining adjustable parameters to model the LVE data are the two largest
relaxation times, λmax,1 and λmax,2 as seen in table 3.

Since the monodisperse melts only have one largest time constant λmax, this is the single
adjustable parameter for fitting the LVE data for PS50K, PS100K and PS390K to the BSW-
model. In order to be able to compare the properties of monodisperse and bidisperse melts, the
same values of ne, ng and λc are always used. The model parameters are given in table 3, obtained
by least squares fitting the measured values of G′ and G′′. The experimental results for G′ and
G′′ are shown in figures ?? and ?? together with the best fit of the BSW-model. The zero shear
viscosities are calculated as:

η0,i =

∫

∞

0

Gi(s)ds = neG
0
N,iλmax,i

(

1

1 + ne
+

1

1 − ng

(

λmax,i

λc

)

−ng

)

(8)

For the monodisperse melts i = 1. For the bidisperse melts i = 1, 2, and the individual η0,i can
be added to find the actual, measured value of η0 = η0,1 + η0,2.

Fitting η0 for the monodisperse melts PS50K, PS100K, PS200K and PS390K with the molec-
ular weight as a power law, the exponent is found to be 3.38 as generally observed for these
moderately entangled systems.

The average reptation time is calculated as:

λa,i =

∫

∞

0
Gi(s)sds

∫

∞

0
Gi(s)ds

≈ λmax,i

(

1 + ne

2 + ne

)

(9)

This expression applied to the Doi Edwards relaxation modulus gives a value that is within 2%
of the commonly denoted reptation time, τd. This time is found to scale with molecular weight as
λa ∼ M3.52 for our monodisperse melts.

The characteristic time constants for the bidisperse systems found in Table 3 show that the
smaller time constant in the blend is more or less unchanged compared to the time constant for
the undiluted small molecular weight melt. This is in agreement with the expectation (Doi et al.
1987) that there will be no tube dilation for the short chains. By contrast the longest relaxation
time in the blend has been significantly reduced compared to the longest relaxation time for an
undiluted melt of long chains which is attributed to the effect of tube dilation, Doi et al. (1987).
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Struglinski and Graessley (1985) have predicted that when the molar masses in a binary blend
of short (Ms) and long (Ml) chains are far apart, the reptation time for the longest molecules
should not depend on the blend composition. The relevant constraint release parameter is defined
as Gr = MLM2

e /M3
S with the prediction that the reptation time of the longer chains should be

unchanged provided Gr < 0.1. More recent investigations (Lee et al. 2005 and Park et al. 2004),
however, suggest that the critical condition is somewhat lower with Grc ≈ 0.064 such that the
non-dilation regime is limited to Gr < Grc. The constraint release parameters for our blends
(shown in Table 1) are indeed all larger than Grc indicating that tube dilation takes place and
that relaxation of the stress carried by the long chains is the result of constraint release due to
reptation of the short chains. This is reflected in the values of λa,2 for the blends compared to the
value λa,1 for the pure long chains (PS390K) in table 3. By contrast the short relaxation time of
blend (λa,1) is substantially unchanged compared to that of the pure short chains indicating that
the short chains are reptating in an essentially frozen network of long chains. Moreover according
to the revised Struglinski and Graessley criterion our blend 3 should be the least affected by tube
dilation also in agreement with observations.

Struglinski and Graessley also conclude that the zero shear viscosity η0 for bidisperse melts
depends on the weight average molecular weights as the monodisperse melts where η0 ∼ M3.4

w .
This prediction deviates less than 40 percent from our measured zero shear viscosities.

Ye et al. (2003) used two monodisperse polystyrene samples of molar masses
Ms = 2890 kg/mole and Ml = 8420 kg/mole to prepare a series of bidisperse solutions span-
ning the range from pure short chains to long chains. All blends were dissolved in
tricresyl phosphate with an overall polymer volume fraction of 7%. These blends,
all in the semidilute regime, were subsequently characterized in uniaxial extensional
flow and successfully compared to the predictions of a simplified reptation model
designed to investigate the effects of polydispersity. A characteristic feature of the
steady elongational viscosity is that all investigated solutions, including the monodis-
perse solutions show a transition to strain hardening and which is interpreted as
a signature of chain stretching. In other words there was no qualitative difference
between the measured elongational viscosity of the entangled monodisperse and bidis-
perse polystyrene solutions. The results obtained by Ye et al. are thus expected to
differ from our study for at least two reasons. Firstly, in Table 1 we show the values
of the Struglinski-Graessley parameter Gr for the blends studied by Ye et al. The
widely disparate values of the reptation times for the two species lead to Grc << 1
and indicate that, in contrast to our experiments, the dynamics of the longer chain
should remain unchanged regardless of the presence of the shorter species. Secondly,
the materials studied by Ye et al. are semi-dilute entangled solutions rather than
melts. Even though the number of entanglements is comparable, the higher molecu-
lar weight of each entangled segment when diluted by a solvent results in a greater
number of Kuhn steps in each segment and consequently a larger molecular extensi-
bility (Appendix 8.2).

4 Elongational Viscosity Measurements

4.1 Startup of elongational flow

Figures ??, ?? and ?? show the corrected transient elongational viscosity (equation ??) for PS50K,
PS100K, Blend 1 and Blend 3 together with the LVE-prediction, all measured at 130◦C. The
elongational measurements for all melts show good agreement with the LVE prediction at small

7



strains. The deviation between the transient elongational data and LVE measurements is less
than 15% in all measurements. Figures ??, ??, ?? and ?? show the same measurements as in the
Figures ??, ?? and ??, with uncorrected tensile stress differences (equation ??) plotted against
strain. It is seen, that the steady elongational viscosity is obtained for all elongational rates. As
the elongational rate increases, the plateau region is maintained for fewer strain units compared
to smaller rates. This is due to a larger pre-stretch, ǫ0, for the high stretch rate experiments. The
reason for increasing the pre-stretch in the faster experiments is two-fold. Firstly,
it minimizes the magnitude of the correction for reverse squeeze flow (see eq.(4)).
Secondly it helps reduce the tendency for deadhesion of the sample from the endplate.
The adhesive force holding the sample to the end plate has a maximum value; by pre-
streching the sample to induce a neck at the midplane, higher tensile stresses (and
hence higher maximum stretching rates) can then be tolerated in the middle of the
filament for a given force of adhesion at the end-plates.

4.2 Steady viscosity scaling at intermediate Deborah numbers

4.2.1 Monodisperse melts

We first turn our attention to the results for the monodisperse melts in order to compare with
the results from Bachs et al. (2003a). We see from figure ?? and ?? that the steady viscosity for
PS100K reaches a value very close to 3η0 for the lowest elongational rate. The time dependent
transient viscosity, η̄+, for the lowest rate follows the LVE-prediction. At intermediate Deborah
numbers, i.e. 1 < De < 10, the steady elongational viscosity, η̄ rises above 3η0. For PS100K η̄ is
about 50% above 3η0, and the η̄-maximum is stretched over two decades of ǫ̇. The maximum for
PS50K is measured to be at least 100% above 3η0. It is possibly higher than 6η0, since the highest
measured elongational rate also gives the highest η̄+-value. The rate at which the maximum
occurs corresponds to a Deborah number around De ≈ 3 for both melts (assuming that η̄ reaches
its maximum at a elongational rate somewhat higher than ǫ̇ = 0.3s−1 for PS50K).

The elongational viscosity measurements for PS100K and PS50K in the non linear regime,
i.e De > 3 are very limited because of the restriction due to dissipitative heating limiting the
measurements to ǫ̇ ≤ 0.3s−1. There are only two measurements in the nonlinear regime available
for PS100K, and none for PS50K. This makes it difficult to compare with the scaling behaviour
proposed by Bach et al. (2003a).

Bach et al. (2003a) claimed that the steady elongational stress scaled linearly with the molec-
ular weight at high Deborah numbers. This scaling can be illustrated by interpretating data
according to recently published theory by Marrucci and Ianniruberto (2004). Figure ?? shows
steady values of (σzz − σrr)/G

0
N vs. ǫ̇τp for all of the monodisperse melts. Here τp represents the

relaxation time of the squeezing pressure effect as defined by Marrucci and Ianniruberto (2004).
Marrucci and Ianniruberto report τp for PS200 to be τp = 1000s, and the scaling is τp ∼ M2

w.
This is used to calculate τp for the other monodisperse melts, which then become: τp = 66.8s for
PS50K, τp = 264.2s for PS100K and τp = 3802.5s for PS390K. It is seen in figure ??, that the
scaled values for PS50K and PS100K lie on the same line as the data for PS200K and PS390K
steady state stresses, hereby showing that the linear scaling of steady stress with molecular weight
at high Deborah-numbers is valid.

Another conclusion from the work of Bach et al. (2003a) was that the steady elongational
viscosity scales with about ǫ̇−0.5 for large Deborah numbers. By examining the raw-data from
Bach et al. (2003a) more closely and performing a linear regression it is however concluded that
the exponent is −0.42 ± 0.03 within a 95% confidence interval. In the present study there are
only two measurements of η̄ for PS100K that could confirm this power law behaviour, and none
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for PS50K. Figure ?? shows the steady elongational viscosity of PS100K, and it appears to show
the expected asymptotic behaviour.

4.2.2 Bidisperse melts

Figure ?? and ?? show the corrected transient elongational viscosity for the blends denoted Blend
1 and Blend 3, see Table 1. It can be seen from both plots, that there is good agreement between
the elongational measurements and the LVE prediction for small strains. The steady viscosity lie
substantially above 3η0 for all measurements, except for Blend 3 at ǫ̇ = 0.3s−1.

The complex interdependence of the transient extensional rheology of entangled
blends on stretching rate, molecular weight and concentration is illustrated in Figure
11 for the PS50K/PS390K blends. For a pure 50K melt at a strain rate of ǫ̇ = 0.1s−1

the transient extensional response closely follows the linear viscoelastic envelope.
The addition of a small concentration of high molecular weight to the blend (Blend
1; c/c* = 2.5) results in a substantial transient strain-hardening and also a steady
extensional viscosity that is substantially above 3η0 for the blend. That this additional
stress is contributed by the higher molecular species can be easily demonstrated
by examining the tensile stress contribution associated with a single mode Upper
Convected Maxwell, (UCM) model (with modulus and relaxation time determined
from Table 3). This is shown by the dashed line in Figure ??. As the concentration of
higher molecular weight species is increased to 14% (Blend 2) the magnitude of the
extensional viscosity climbs further. Once again we show the contribution of the high
molecular weight species to the transient stress growth by plotting the response of an
UCM model (solid line). The increase in the relaxation time of blend 2 also results
in an increase in the Deborah number (Deblend2 = 1755s ·0.1s−1 = 176) and consequently
the chains are fully elongated during the course of the experiment. This is illustrated
by the horizontal dotted line in Figure 11 which corresponds to cutting off the stress
growth for Blend 2 at a Hencky strain of ǫmax = 1

2
ln(NK,seg) = 1.55s−1, see appendix 8.2.

Although the ultimate steady elongational viscosity shows some increase over 3 times
the steady shear viscosity for this blend, it is clearly reduced substantially compared
to Blend 1. Finally we also show in Figure 11 the transient response of the pure
PS390K material at the same imposed stretch rate of 0.1s−1, together with the UCM
model (dashed dot line). The material shows an initial linear viscoelastic response,
followed by strain-hardening but a steady elongational viscosity that is substantially
less than 3(η0).

Plotting the steady elongational viscosity against elongational rate in figure ??, ?? and ?? , it
is seen that the maximum in elongational viscosity is about 90% above 3η0 for Blend 3, and about
700% above for Blend 2.

5 Constitutive Modelling of the Steady Elongational

Viscosity

The mathematical inconsistency mentioned in the introduction is solved by acknowledging that
the steady elongational viscosity for moderately entangled melts can have a maximum that exceeds
3η0; the magnitude of the maximum depending on the molecular weight. The viscosity was found
to scale with ǫ̇−0.4 for large Deborah numbers, but where Bach et al. (2003a) claimed that this
behaviour starts at De > 1, the results from PS100K show that this occurs at much higher
Deborah numbers, De > 10, and for PS50K even higher. It is thus clear that the shape of the
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steady elongational viscosity curve η̄ is molecular weight dependent. The results from the blends
show, that the magnitude of the steady viscosity maximum becomes greater as the difference
between the chain lengths in the blend increase.

The behaviour of the elongational viscosity for dilute solutions for high Deborah numbers has
been studied by Gupta et al. (2000) who found that η̄ ∼ ǫ̇−0.5 for very diluted solutions of narrow
molar mass distribution polystyrene. This result can be modeled theoretically by including finite
extensibility into the Giesekus (1982) anisotropic friction dumbbell model to account in an average
fashion for the orientation of the surrounding molecules (Wiest 1989). The asymptotic analysis is
performed in details in the Appendix.

Marrucci and Ianniruberto (2004) quantitatively predict the experimentally found asymptotic
stress behaviour by incorporating chain squeeze into their model. This will essentially give rise to
anisotropic friction too, and the Wiest model is a simple way of describing this.

The constitutive model in terms of integral average of the connector dyad 〈QQ〉 is:

〈QQ〉(1) = − 4H

ζ−1

(

f〈QQ〉 − kT

H
I

)

(10)

= 4kTζ−1 − 4H〈QQ〉fζ−1 (11)

where the Giesekus mobility tensor is:

ζ−1 =
1

ζ

(

δ − a

nkT
τp

)

(12)

and f describes the nonlinearity of the Warner spring in the FENE-P dumbbell model:

f =

[

1 − 〈Q2〉
Q2

0

]

−1

(13)

where 〈Q2〉 = tr〈QQ〉. Here H is a spring constant, n is the number density of dumbbells, k is
Boltzmann’s constant, T the absolute temperature, I is the unit tensor, and Q0 is the maximum
length of the dumbbell. The stress tensor for the polymer is given by eq. (13.7-5) of Bird et al
(1987):

τp = −nHf〈QQ〉 + nkTδ (14)

By elimination of 〈QQ〉 a constitutive equation in terms of the polymeric stress, τp, may be
obtained in the form:

(

Z − λH
DlnZ

Dt

)

τp + λHτ p,(1) −
aZ

nkT
(τpτp) = −nkTλH

(

γ̇ +
DlnZ

Dt
δ

)

(15)

Where

Z =
1

b

(

b + 3 − trτp

nkT

)

(16)

γ̇ is the strain rate tensor and b is the finite extensibility parameter for the entanglement segment
found as: b = HsegQ

2
0/(kT ) and λH is the single time constant of the model λH = ζ/(4Hseg). The

zero shear viscosity is found (Wiest, 1989) to be η0 = nkTλHb/(b + 3).
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This model has three free parameters, a, b and λH , where a is a dimensionless scalar between
0 and 1 describing the degree of anisotropy in the hydrodynamic drag in the melt; when a = 0
the drag is completely isotropic while a = 1 corresponds to maximum anisotropy. The model
describes the dynamics of one entanglement. The finite extensibility parameter b is
independent of molecular weight and equal to three times the number of Kuhn steps in a
entanglement segment, Nk,seg, and λH is a characteristic time constant. The ratio of the contour
length of the molecule to the root mean square end-to-end distance of the equilibrium scales
with

√

Nk,seg. By solving the constitutive equation for uniaxial elongational flow one sees, that by
changing the a-parameter from 0 to 1 at fixed values of b and λH , the steady elongational viscosity
η̄ has a maximum above 3η0, whose magnitude increases as a → 0 , and decreases, and almost
disappears as a → 1.

Relating the maximum in η̄ with drag anisotropy for monodisperse melts may help rationalize
why the local maximum is almost absent for high molecular weight melts, such as PS390K, and
becomes increasingly larger with lower molecular weights. If the size of a is interpreted as a
potential for anisotropy, one would intuitively assume that for a 100% stretched and aligned
polymer melt, which would be the case at infinite elongational rate at steady state, the anisotropy
inside the melt would be largest in the limit of long chains. A melt of shorter, but still stretched
and aligned chains, would have a higher density of free ends thereby reducing anisotropy.

The same arguments can be used for bidisperse melts. Blend 1 and 2 contain the same
polymers, but the long chains are more diluted by short chains in Blend 1 and we would expect
the a-parameter for Blend 2 to be larger than for Blend 1, since the potential for anisotropic drag
is lowest when the longer chains are surrounded by fewer long chains. Blend 2 and 3 have the same
mass fraction of PS390K, but are mixed with PS50K and PS100K chains, respectively. Again we
expect the anisotropic parameter a to be smallest for Blend 2, which is the case as shown later.
This effect is more pronounced compared to the difference between Blend 1 and 2.

The question is now whether or not the model is able to explain the data quantitatively. If
the model is fitted to results of the monodisperse melts, ideally only two parameters should be
fitted, a and λH , since b is related to the number of Kuhn steps in an entanglement segment which
is known. It is not expected that a single mode version of the model will describe the complete
transient elongational viscosity because the initial transient growth in the stress is related to the
LVE behaviour, and the Wiest model is basically a single time constant model with inclusion of
anisotropy and a FENE-P spring between the dumbbells. A multi mode version would be needed
to quantitatively describe the LVE behaviour. Since we are concerned primarily with the steady
elongational viscosity only one mode is used in this analysis.

PS100K is the melt with the most elongational measurements above and below ǫ̇ = 1/τd, i.e.
at intermediate Deborah numbers, which in this work is the most interesting area. To obtain an
idea of the relative magnitude of the different constitutive parameters, a fit to the elongational
viscosity data for PS100K is made by changing both a b and λH , and a separate fit where b is
kept constant at 3Nk,seg and only a and λH are allowed to change. Bach et al. (2003a) reported
the number of Kuhn steps between entanglement segments as Nk,seg = 22, which makes b = 66.
The result is shown in figure ??, and the fitted values are shown in the caption. Both fits give
reasonable agreement with the experimental data. The time constant λH is in both fits of about
the order of the expected reptation time in both fits, around 100 seconds, and a is in the expected
interval between 0 and 1. In contrast to the limiting case of the Giesekus model (b → ∞),
the Wiest model does not predict unphysical degree of shear-thinning in the steady
shear viscosity for a > 0.5, Wiest (1989). Instead, it is found that the shear stress
plateaus, corresponding to the steady shear viscosity decreasing as γ̇−1.

The least square fitted value of b corresponds to very little extensibility which appears unphys-
ical. Since we find no consistency in the magnitude of b, this parameter is allowed to float in the
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following fits of the experimental data to the model.
The value of λH does seem to resemble the reptation time, and in the following fits the value

of λH is held fixed on λa. The experimental data do, as mentioned before, show that the steady
elongational viscosity scales with M for high Deborah numbers between PS390K and PS200K, and
that the steady elongational viscosity η̄ ∼ ǫ̇−0.4. If it is assumed that the former also applies for η̄
between the PS200K and PS100K, this can be used as a constraint fitting the steady viscosities for
PS100K to the Wiest model. This is essentially the same as weighting the two largest elongational
rates-measurements highest, since these do confirm the experimentally found molecular weight
scaling between PS200K and PS100K, and also seem to decrease as η̄ ∼ ǫ̇−0.4. The fitted param-
eters of the Wiest model to the data, with the above mentioned constraint regarding molecular
weight scaling, and the choices of λa are given in table 4 (see also figure ??). The blend data for
Blend 1, 2 and 3 are least square fitted to the Wiest model by using two time constants and two
zero shear viscosities, but no constrains on the molecular weight scaling as seen in the figures ??,
?? and ??.

From table 4 for the monodisperse melts, it is seen that the value of a is unity for PS390K and
gradually decreases as the molecular weight goes down, ending at a = 0.14 for PS50K, indicating
that the degree of molecular anisotropy in the drag-force falls as molecular weight goes down,
which was expected due to the higher density of dangling ends. The fitted values of b show no
general tendency. We have also included the values of the maximum in the steady elongational
viscosity relative to 3η0, and the maximum in η̄max/(3η0) is somehow inversely proportional to
a. The strain hardening behaviour we see for the low molecular weight melts and the bidisperse
blends is therefore in the terms of the Wiest model related to the amount of isotropy in the
elongated melt.

The results for the blends show that it is possible to fit the data successfully to a two-mode
Wiest model to the Blend 3-melt but not to the Blend 1-melt. If a single-mode fit is used instead,
with all the parameters varying, a much better fit is obtained.

6 Conclusion

The steady elongational viscosity of two moderately entangled monodisperse polystyrene melts,
with molecular weights of 52 kg/mole and 103 kg/mole, have been found for elongational deformation
rates ranging from ǫ̇ = 0.003s−1 to ǫ̇ = 0.3s−1. It is observed, that the steady elongational viscosity
vs. elongational rate goes through a maximum, and followed by a decrease where the elongational
rate scales as η̄ ∼ Mw ǫ̇0.4 for large elongational rates. The maximum is the result of fewer
entanglements in these melts, in agreement with the predictions of Marrucci and Ianniruberto
(2004).

The steady elongational viscosity has also been measured for bidisperse blends of a high and a
low molecular weight monodisperse polystyrene. Here we also observe a maximum in the steady
elongational viscosity vs. elongational rate. This maximum, relative to three times the zero shear
viscosity, increase as the concentration of high molecular weight chains decrease. This observation
is contrary to that found by Wagner et al. (2005), who found that the strain hardening increased
with increasing concentration of ultra high molecular weight polystyrene. The molar masses in
their studies are, however, well above 250 Kg/mole which may be argued to be the upper limit for
the application of the Weist model, see appendix (??). Conversely the maximum increases with
reduced molecular weight of the low molecular weight chains.

The maximum found for bidisperse polymer blends indicates a qualitative difference between
monodoisperse and bidisperse melts. This is different from the corresponding situation between
monodisperse and bidisperse solutions (Ye et al. 2003).
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The fact that the steady elongational viscosity of a blend of long (390kg/mole) and short
polystyrene chains exhibits a maximum as function of elongation rate while the melt of pure
long chains does not, may be interpreted in terms of the Wiest dumbbell model that combines
the Giesekus anisotropic friction concept with finite extensibility. Indeed the pure melt of long
chains has a large potential for anisotropic drag corresponding to the Giesekus parameter a = 1.
Conversely in blends with a significantly lower molar mass or even solutions, the long chains will
encounter an environment with less potential for anisotropy. Basically the long chains undergo
stretching at rates at which the shorter chains are not oriented thereby providing an isotropic
drag.
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8 Appendix

8.1 Behaviour of the Wiest-model for ǫ̇ → ∞
The constitutive equation for homogeneous steady flow of the Wiest model is:

Zτp + λHτ(1) −
aZ

nkT
(τpτp) = −nkTλH γ̇ (17)

In strong uniaxial elongation, steady flows, the only stress contribution to the forces in the
melt is τzz. To solve τp,zz the variable substitution y = −τp,zz/(nkT ), and x = λH ǫ̇ is introduced.
The stress in the zz-direction then becomes:

−ay3

b
+

y2

b
+ 2xy + 2x = 0 (18)

Since τzz in stretching is negative, y > 0 for all values of x. It is assumed that for large elongational
rates, the viscosity, and thereby also y behaves as a power law-function i.e.: y ∼ Axα for x → ∞.
Substituting this into equation (??) we get:

−aA3x3α

b
+

A2x2α

b
+ 2Ax1+α + 2x = 0 (19)

Since the absolute value of the stress, |τzz|, and therefore y, increase for increasing elongational
rates α must be larger than zero. The largest terms in equation (??) are 2Ax1+α and −aA3x3α/b
which have to balance as x → ∞, whereby we obtain α = 1/2.

The pre-exponential terms also have to balance, for x → ∞ so the parameter A becomes:

2A =
a

b
A3 ⇒ A =

√

2b

a
(20)

The final asymptotic result is that:

η̄

nkTλH

=

√

2b

a
(λH ǫ̇)−1/2 for ǫ̇ → ∞ (21)

The modified Giesekus model thereby gives a physical explanation for the fact, that η̄ ∼ ǫ̇−1/2

for high elongational rates whereas the simple Giesekus model predicted η̄ as having a finite limit
for infinite ǫ̇.
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8.2 Molecular interpretation of the finite extensibility b-parameter

We apply the Wiest model to a representative single entangled tube segment of the melt. The
chain in the tube segment is modeled as a FENE spring with maximum length Q0 and spring
constant Hseg given by:

Q0 = Nk,segLk (22)

and

Hseg =
3kT

Nk,segL2
k

(23)

where Nk,seg is the number of Kuhn steps in entanglement segment, and Lk is the length of each
Kuhn step. From these equations the constant b is defined, which yields a simpler expression:

b ≡ HsegQ
2
0

kT
= 3Nk,seg (24)

The finite strain extensibility of an entanglement segment is given by exp(ǫmax) =
√

Nk,seg, Fang (2000), which means that the an in the affine limit, that is at infinite
elongational rate, the segment has reached its maximum stretch at

ǫmax =
1

2
ln Nk,seg =

1

2
ln

(

1

3
b

)

(25)

.

8.3 Scaling of steady state stress with Mw in the Wiest model

For an entangled polymer melt, the pre factor scale for stress is independent of molecular weight:
nkT ≡ G0

N = ρRT/Me. With respect to the time constant λH , the relevant times to consider
would be either the reptation, which is the characteristic time of the entire chain in the constrained
tube taken from the Doi-Edwards interpretation of a polymer melt, or the Rouse time, which is a
time constant for the stretching of the entangled segment between two segments. It makes sense
in the Wiest model to choose the Rouse time as λH since it describes stretching which would make
λH ∼ M2

w. But fitting showed that λH ≃ λa which suggests that λH scales as the Doi-Edwards
reptation time i.e. λH ∼ M3

w. Of course, such apparent inconsistencies are inevitable
with a dumbbell-based segment-level model. More detailed constitutive models for
monodisperse melts (Marrucci and Ianniruberto 2004) recognize that the time-scales
for orientation and chain-stretching scale differently with molecular weight. This is
beyond the scope of the present discussion. We seek simply to show that a simple
model with anisotrpic drag such as the Wiest model is capable of describing the
experimental observations in pure melts and in blends. The steady stress scaling
then become:

(σzz − σxx) = η̄ǫ̇ = G0
N · λ

1/2
H · b1/2 · a−1/2ǫ̇1/2

√
2

∼ (M0
w) · (M3

w)1/2 · (M0
w)1/2 · (Mx

w)−1/2 (26)
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Assuming that the stress scales as (σzz − σxx) ∼ Mw ǫ̇1/2 an expression for molecular weight
scaling-factor x of a is found using equation (??) to be a ∼ M1

w. This is only valid as long as
a ≤ 1.

Figure ?? below shows the fitted values of a as function of the molecular weight Mw. The solid
line is the best linear fit against molecular weight, i.e. a = AM1

w.
It is not possible to validate the molecular weight scaling of a from the plot, since only three

data points are available. But the plot does indicate, that the Wiest model cannot be applied
as constitutive equation of polystyrenes with molecular weights more than around 365 kg/mole and
hereby explaining why the fit for the steady elongational viscosity for PS390K was so poor. This in-
dicates that the drag anisotropy saturates for polystyrenes with molecular weights above 365 kg/mole.
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9 Table

Blend 1 Blend 2 Blend 3 Ye et al
w/w% PS50K 95.98 85.63 0 -

w/w% PS100K 0 0 85.98 -
w/w% PS390K 4.02 14.37 14.02 -

cPS390K/c* 2.5 10 10 -
Mw[kg/mol] 65.3 100.3 143.1 -

Gr 0.499 0.499 0.064 0.0192

Table 1: Composition of Blend 1, Blend 2, Blend 3 and Ye et al.’s blend

Name PS50K PS100K PS200K PS390K Blend 1 Blend 2 Blend 3
Mw[kg/mol] 51.7 102.8 200.0 390.0 65.3 100.3 143.1

Mw/Mn 1.026 1.022 1.040 1.060 1.218 1.683 1.248

Table 2: Molecular weights (Mw) and polydispersities (Mw/Mn) of the pure and blended
polystyrene melts

Name PS50K PS100K PS200K PS390K Blend 1 Blend 2 Blend 3
η0,1[MPas] 0.82 7.88 82.9 724 0.78 1.02 5.97
η0,2[MPas] - - - - 0.59 4.64 8.58
η0[MPas] 0.82 7.88 82.9 724 1.37 5.66 14.6
λmax,1[s] 12.8 158 1749 15441 12.2 17.4 122.1
λmax,2[s] 2186 3182 5572

λa,1[s] 7.05 87.02 965 8517 6.73 9.60 67.4
λa,2[s] - - - - 1206 1755 3074

G0
N1[kPa] 250 250 250 250 249 242 242

G0
N2[kPa] - - - - 1.43 7.73 8.18

G0
N [kPa] 250 250 250 250 250 250 250

Table 3: Linear viscoelastic properties of the pure and blended melts at 130◦C. The constants in
the BSW model are: ne = 0.23, ng = 0.67 and λc = 0.4s as obtained from Jackson and Winter
(1995) plus G0

N = 250kPa
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Name PS50K PS100K PS200K PS390K Blend 1 Blend 2 Blend 3
w/w% PS50K 95.98 85.63 0

w/w% PS100K 0 0 85.98
w/w% PS390K 4.02 14.37 14.02

a 0.1372 0.2182 0.7033 1.000 1.89 · 10−4 5.65 · 10−4 0.1982
b 9.9 4.6 5.3 6.93 13.3 5.9 98.5

η̄max/(3η0) 2.56 1.54 1.17 1 7.40 5.06 1.95

Table 4: The least square fitt of the Wiest model parameters a and b for the different melts
together with dimensionless maximum in the steady elongational viscosity η̄max/(3η0)

10 Figure captions

Figure 1: Results of linear viscoelastic measurements of G′ as a function of the angular frequency
ω. The measurements on the polystyrene melts were performed at 130, 150, and 170◦C. The data
are all time-temperature shifted to a reference temperature of T0 = 130 ◦C.

Figure 2:Results of linear viscoelastic measurements of G′′ as a function of the angular frequency
ω. The measurements on the polystyrene melts were performed at 130, 150, and 170 ◦C. The data
are all time-temperature shifted to a reference temperature of T0 = 130 ◦C.

Figure 3: Corrected (equation ??) transient extensional viscosity of PS50K and PS100K measured
at different strain rates. Measurements were performed at 130 ◦C.

Figure 4: Same data as in figure ?? for PS50K but plotted as uncorrected transient extensional
stress (equation ??) against Hencky strain ǫ.

Figure 5: Same data as in figure ?? for PS100K but plotted as uncorrected transient extensional
stress (equation ??) against Hencky strain ǫ.

Figure 6: The steady stress divided with the plateau modulus against the Marrucci-Deborah
number ǫτp for PS50K, PS100K, PS200K and PS390K.

Figure 7: Corrected transient extensional viscosity (equation ??) of Blend 1 measured at different
strain rates. Measurements were performed at 130 ◦C.

Figure 8: Same data as in figure ?? for Blend 1 but plotted as uncorrected transient extensional
stress (equation ??) against Hencky strain ǫ.
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Figure 9: Corrected transient extensional viscosity (equation ??) of Blend 3 measured at different
strain rates. Measurements were performed at 130 ◦C.

Figure 10: Same data as in figure ?? for Blend 3 but plotted as the uncorrected transient exten-
sional stress (equation ??) against Hencky strain ǫ

Figure 11: Corrected (equation ??) transient extensional viscositis of Blend 1, Blend
2, PS50K and PS390K at ǫ̇ = 0.1s−1. The broken line is the Upper Convected Maxwell
(UCM) prediction for De = λa,2,blend1 ·0.1s−1 = 121, the solid line is the UCM prediction
for De = λa,2,blend2 · 0.1s−1 = 176, the dashed dot line is the UCM prediction for De =
λa,1,PS390K · 0.1s−1 = 1544. The dotted line is the neo-Hookean model with G = 250
kPa, cut off at ǫmax. The values of three times the zero shear viscosity for each melt
is showed on the right with punctured lines.

Figure 12: Steady extensional viscosity measurements of PS100K (◦) measured at 130 ◦C. The
solid line is the Wiest fit where a=0.1805, b=4.44 and λH = 66.85s. The dotted line is the Wiest
fit where a=0.4055, b=66 and λH = 105.7725s.

Figure 13: Steady elongational viscosity as a function of the elongational rate for PS50K, PS100K,
PS200K and PS390K. All measurements performed at 130◦C. The solid lines are the predictions
of the Wiest model.

Figure 14: Steady elongational viscosity against the elongational rate for Blend 3. All measure-
ments performed at 130◦C. The solid line is the overall prediction of the Wiest model, and the
dashed lines are the individual contributions from the two individual polymer species.

Figure 15: Steady elongational viscosity against the elongational rate for Blend 2. All measure-
ments performed at 130◦C. The solid line is the overall prediction of the Wiest model, and the
dashed lines are the individual contributions from the two individual polymer species.

Figure 16: Steady elongational viscosity against the elongational rate for Blend 1. All measure-
ments performed at 130◦C. The solid line is the overall prediction of the Wiest model, and the
dashed lines are the individual contributions from the two polymers.

Figure 17: Least square fitted parameter of a against Mw. Solid line is a linear fit, a = A(Mw)1.
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