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Abstract

In this thesis, a physics-based model of an aircraft gas turbine combustor is developed
for predicting NO, and CO emissions. The objective of the model is to predict the
emissions of current and potential future gas turbine engines within quantified uncer-
tainty bounds for the purpose of assessing design tradeoffs and interdependencies in
a policy-making setting. The approach taken is to capture the physical relationships
among operating conditions, combustor design parameters, and pollutant emissions.
The model is developed using only high-level combustor design parameters and ideal
reactors. The predictive capability of the model is assessed by comparing model
estimates of NO, and CO emissions from five different industry combustors to certi-
fication data.

The model developed in this work correctly captures the physical relationships
between engine operating conditions, combustor design parameters, and NO, and
CO emissions. The NO, estimates are as good as, or better than, the NO, estimates
from an established empirical model; and the CO estimates are within the uncertainty
in the certification data at most of the important low power operating conditions.
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Chapter 1

Introduction

Increasing concern over local air quality, community noise, and climate change caused

by air transportation has led to an effort aimed at developing a means to articulate

trade-offs at the aircraft design level among fuel burn, emissions of local air quality

pollutants, cruise emissions, and community noise. A tool, called the Environmental

Design Space (EDS), is therefore being created, which is intended as an aircraft

system level design tool for use in regulatory policy making within the FAA and

the International Civil Aviation Organization (ICAO). A critical aspect of EDS is

the development of an emissions model capable of capturing the interdependencies

between different emissions, noise, and engine performance. The development of such

an emissions model is the topic of this thesis.

1.1 Motivation for Emissions Prediction

The worldwide fleet of aircraft is expected to more than double in the next twenty

years [1]. Development of new technology is not expected offset the increase in emis-

sions caused by the growth in aviation [2]. Due to a lag in the introduction of tech-

nology in the aviation industry, the time required to transition from basic research

to fleet impact can be as much as 25 years [3]. Because of this, a method is desired

for assessing the influence of different policy scenarios regarding trade-offs on engine

emissions and other aircraft design parameters.

15



1.1.1 Major Aircraft Engine Emissions

Emissions from aircraft engines that impact local air quality are oxides of nitrogen,

carbon monoxide, soot, unburned hydrocarbons, and oxides of sulfur. Oxides of

nitrogen, commonly referred to as NOT, consist of NO and NO 2 , and are the most

highly regulated pollutants from aircraft engines [4]. NO, emissions also tend to be

difficult to control because changes in engine design aimed at improving fuel efficiency

often make it more challenging to limit NO. production. Between 1970 and 1998 for

example, emissions of all major aircraft pollutants except for NO., decreased, while

NO. emissions increased by about 10% [5].

Carbon monoxide, known as CO, is another regulated emission. According to work

done by Lukachko and Waitz however, the impact of aviation CO on the environment

is only about 1/100th of the impact of NO. emissions [6]. Even so, CO emissions are

regulated and need to be accounted for by an emissions prediction model.

While there are other important emissions from aircraft engines, in particular

soot, this thesis focuses only on modeling the gaseous emissions, NO, and CO.

Local NO, Emissions

Both NO, and CO emissions are regulated because of their effects on the environment

and on human health. The effects of CO are mainly local, while the effects of NO. are

felt both locally and globally. As shown in Figure 1-1, in 1999 it was predicted that by

2010 there would be significant increases in regional NO. produced by aircraft relative

to what was being produced in 1990. Worldwide low altitude NO. emissions from

aircraft are expected to increase by a factor of 2.6 between 2002 and 2020 [5]. These

anticipated increases in NO, are of concern because of the health issues associated

with local NO, production, in particular the production of ground-level ozone (smog),

which can lead to respiratory problems and other detriments to human health.

16
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Figure 1-1: Regional NO, Emissions in the US [7]

Local CO Emissions

CO has been reduced by operating at nearly 100% combustion efficiency at high power

settings. While taxiing on airport runways, however, combustors do not operate as

efficiently and higher levels of CO are produced. Carbon monoxide emissions caused

by idling aircraft engines in airports are a health concern because CO reduces the

oxygen carrying capacity of blood and significantly reduces the ability of a person to

perform physical activities.

Cruise Emissions

As mentioned previously, NO, emissions also have a global effect. This is because at

cruise altitude, emissions of NO, contribute to the formation of atmospheric ozone

and the depletion of atmospheric methane. Significant NO. emissions injected di-

rectly into the upper troposphere/lower stratosphere, may lead to climate change.

Figure 1-2 shows the estimated contributions to radiative forcing of aircraft emissions

in 1992 as well as a projection to 2050. Radiative forcing essentially means the ap-

proximate global effect on climate and the labels: good, fair, poor, refer to the level

of understanding of the effect. The whiskers on the figures are the 67% confidence

17
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Figure 1-2: Radiative Forcing from Aircraft [9]

limits. The 2050 projection has a scale that is about a factor of five different from

the scale in 1992, showing that the effects of aircraft emissions on the global climate

are expected to increase. For this reason policies to control cruise emissions are being

considered and an emissions model should be capable of predicting aircraft engine

emissions at all engine settings.

1.1.2 The ICAO Regulation Process

The International Civil Aviation Organization, (ICAO), determines the emissions

regulations to be met by all subscribing countries. The method the ICAO uses is

based only on the landing-takeoff cycle (LTO cycle). The LTO cycle is shown in

Figure 1-3, where idle is 7% sea level static (SLS) thrust, approach is 30%, climb out

is 85%, and takeoff is 100% SLS thrust. Engines are certified based on time in mode

(TIM), which is defined in Figure 1-3, emissions index (EI), fuel flow rate (rhf), and

rated output (RO). An emissions index is defined as the ratio of grams of a particular

pollutant to kilograms of fuel burned. The certification variable for each pollutant is

in the form of a Dp/Foo, which is defined as

4

Dp/Foo = Z EIi x TIMi x mnf,/RO, (1.1)
i=1

18
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Figure 1-3: ICAO LTO Cycle [8]

where the sum is over the four ICAO LTO-cycle points. The most recent regulation

on NO, emissions from the ICAO is

LTO NOX = -1.0 + 2 -OPR, (1.2)

where OPR refers to the overall pressure ratio of the engine being certified. The

regulation is for engines with OPRs between 30 and 82.5 and places a linear barrier

on the maximum Dp/Foo allowable for NOX.

The ICAO currently does not have a non-proprietary, physics-based capability for

looking at trade-offs for different emissions under different regulatory policy scenarios.

Therefore, well-intended actions to improve emissions of a particular pollutant, can

lead to unintended negative impacts on other emissions, noise, or engine performance.

The purpose of the emissions modeling methods described in this thesis is to estimate

the design trade-offs and the effects of design changes on emissions so that these trade-

offs can be more rigorously estimated during the analysis of potential policy changes.

1.1.3 An Emissions Tool for Trade Studies

Over the past 40 years, fuel consumption for commercial aviation aircraft has been

reduced by 70%, noise has been reduced by 50%, and CO and unburned hydrocarbons

19



(UHC) have been reduced by about 90% [5]. These improvements have come from

the ability to increase OPR, bypass ratio, and turbine entry temperature (TET), due

to better materials and cooling methods, which leads to higher thermal efficiency and

combustion efficiency. During this same time period however, as previously noted,

NO, emissions have risen approximately 10% for commericial aviation aircraft. Figure

1-4 shows four generations of engines over the past 30 years plotted with NO. versus

engine pressure ratio. The change from generation 1 through 4 saw an increase in

Generation 2 -

G tin

/ 7

~-

'U

*

Generation 4

20 )f I 31

Engine Presure Ratio

Generation 3
Range

40 A5 i54

Figure 1-4: NO, Emissions by Combustor Technology Generation [10]

pressure ratio from 20 to 40 and an increase in the TET. The combined effect of these

changes led to an increase in thermal efficiency from 48% to 55% but it also led to

some of the generation 3 engines, which make up most of the engines in the current

aircraft fleet, with NO, levels similar to the generation 1 engines [10]. Assessing such

trade-offs among different emissions, fuel burn, and noise is essential, and to do this,

an emissions model must exist that has the ability to take part in trade studies.

20

1S40 ()

z

I
8U (

to00

A0 1)

I

Dwipmnt

0 0
14 15

W - nea1 00 4



1.2 Necesssary Attributes of an Emissions Model

for Policy Making

For an emissions model to assess trade-offs between different emissions as well as

the effects of potential future combustor designs, the model should have three fea-

tures. The emissions model should represent the physical relationships between op-

erating conditions, simplified combustor design parameters, and pollutant emissions

in a consistent way. The model should have as inputs, high-level design parameters

and operating conditions that would be convienient for an expert to use in projecting

future technology. For example, overall fuel-air ratio and inlet pressures and tem-

peratures are more appropriate than detailed specifications of cooling flow geometry

and recirculation zone patterns. The model should be general, meaning one modeling

methodology can be applied to estimate broad trends in combustor designs across

engine manufacturers.

1.3 Current Emissions Prediction Strategies and

Techniques

There are currently several techniques used in practice to predict the emissions of

aircraft gas turbine combustors. These techniques fall into four general catagories,

empirical models, semiempirical models, simplified physics-based models, and high-

fidelity simulations. Each method has its strengths and weaknesses and each will be

discussed in turn.

1.3.1 Empirical Models

Empirical models tend to be the simplest of the four model types and the least com-

putationally intensive. They are defined here as any emissions model which requires

empirically determined constants along with any engine specific conditions (P3, T3,

mass flow-rate, fuel flow-rate, etc). These models are used mainly for NO, emissions

21



and are useful for correlating known historical NO, emissions for a specific combustor.

Equations 1.3 and 1.4 are examples of typical empirical NO, models.

EINOX = 0.0042 - 3 7 exp T3 345) T 4, (1.3)
439 345

where P3 is the total pressure at the combustor inlet in psia, T3 is the total tempera-

ture at the combustor inlet in 'R, and T4 is the total temperature at the combustor

exit in 'R [11].

EINO, = 0.068P 5 exp T 3  -9.67 exp (humFact x 0.0027114) (1.4)X 345 -

where P3 , T3 , and T4 are defined as before and humFact is a humidity factor that

depends on altitude. At sea level, humFact = 0.0063 [11]. These two commonly used

empirical models for NOx show that this type of model usually uses only P3 , T3 , and

occasionally T 4 as inputs. Relative humidity is incorporated by including a humidity

factor, as in equation 1.4, or by using the Boeing method 2 (BM2) approach [12].

The two empirical models shown above are used for single annular combustors

(SAC). Within this group of combustors, NOx models are generated by fitting em-

pirical constants using the certification data of a combustor. In general, an empirical

model can be fit to a single annular combustor using

EINOX = 031 P3
4exp (T), (1.5)

by fitting the 3 coefficients using a least squares approach. Using this technique, each

combustor within a given design family will have its own empirical NOx model that

will predict the NOx emission index for that combustor. The prediction will generally

be very good within the range of data used to generate the empirical constants. Dif-

ferent families of combustors have different general forms for empirical NO, models.

Equations 1.6 and 1.7 are empirical NOx models for dual annular combustors and
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lean-premix-prevaporize (LPP) combustors respectively. Both are from [11].

EINOX = 3 .9p4exp 3459.67 x exp(humFact x 0.002114) x FAR/delphi (1.6)3.9P3 7ex 349.90

where P3 , T3 , and humFact are defined as before and FAR is the fuel-air ratio of the

combustor and delphi is a variable that modifies the FAR for different cooling flow

regimes. This model is more complex than the simple model for the SAC and may

be better described as a semiempirical model. The LPP model is

0.0075T3
EINOX = 0.0000758(P 3 x 6.8948) T (1.7)

T4

where P3, T3 , and T4 are all defined as before. There are similar models for rich-

quench-lean (RQL) combustors, staged-dual annular combustors, double dome com-

bustors and others. In all cases there is a general form of the empirical model and

coefficients are fit on an individual basis for specific combustors.

For situations where the combustor of an engine is fixed and certification data

are available, empirical models are easy to generate and are generally regarded as

more accurate when applied to engines for which they were derived but not for other

engines. Inputs to these models are usually based on P3 and T3 , which are easily

estimated using performance specifications quoted by manufacturers and thus pro-

prietary data is unnecessary. The weaknesses of these types of models are that they

are not as accurate when used more generally and that they are useful for predict-

ing emissions only within the bounds of the historical databases on which they are

generated. When an empirical model is used for a large variety of combustors within

a single family using only a single set of empirical constants, the correlation with

any particular combustor tends to be poor. This makes it difficult to use empirical

modeling techniques unless an empirical model is generated for every combustor that

is to be studied. Since empirical models are generated from fitting a certain number

of constants using historical certification data, they cannot be expected to perform

as well when the combustor undergoes a design change.

Currently, empirical models for NO, are used in most large scale engine per-
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formance tools (NPSS, NEPP). Each combustor will usually have its own empirical

model and the models are not typically used for analyzing the effects of design changes.

Another weakness of empirical models is that they do not exist for prediction of CO

emissions. This makes it impossible to capture consistent trades between NO. and

CO with empirical modeling techniques, which makes empirical models inadequate

for use in a policy-making emissions model.

1.3.2 Semiempirical Models

Semiempirical models consist of equations that contain empirically determined con-

stants, cycle parameters, and experimentally gathered data on residence times, char-

acteristic kinetic times, and other parameters like primary zone temperature. These

methods are capable of modeling CO emissions as well as NO_ emissions with sepa-

rate correlations, which may nor may not be consistent with one another. Equation

1.8 is an example of a semiempirical model for carbon monoxide,

EICO = 35 x rCO/BICO, (1.8)

where TCO is a characteristic kinetic time based on a reaction rate constant, and

Tsl,co is a characteristic quenching time, based on a measured quench length where

the overall equivalence ratio of the combustor drops below a certain value, causing

the temperature to drop below a critical value that hinders CO oxidation to CO 2 [13].

Equation 1.9 is an example of a semiempirical model for NO, prediction.

EINOX = AVP1.2exp(.009Tp,)
rhTpz (AP/ P)0.5

where A is a constant, V is the combustor primary zone volume, P is pressure, Tpz

is the primary zone temperature, mA is the primary zone air flow rate, and AP is

the liner pressure drop [14]. Generally empirical models for NOx emissions are used

in favor of semiempirical models by industry and in tools like NEPP and NPSS.

A weakness of the semiempirical modeling approach is that the outputs, EICO
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and EINOX, are very sensitive to the inputs and the inputs are very difficult to obtain,

particularly in the case of EICO. Since the relations for different emissions are not

related to one another in any way, which could lead to inconsistent predictions of NO,

and CO, and since the models frequently require experiment or expert knowledge of

a particular combustor for use, these types of models do not meet the requirements

for use in a policy making tool. These models also have limited use for predicting

the effects of combustor design changes on emissions because the effects of a design

change on the model inputs would likely not be known unless the design change has

already been tested physically.

1.3.3 Simplified Physics-Based Models

Simplified physics-based models consist of reduced-order physics and chemistry in

ideal reactors aimed at using physical parameters to get useful results at a fraction of

the computational burden of a more detailed simulation. These types of models are

not widely used for emissions prediction. A weakness of using a simplified physics-

based model is that it is possible to get accurate estimates of emissions with a model

that is not accurately capturing the physics and chemistry of the combustion process.

For example, if a physics-based model does not incorporate two phenomena with

opposite effects on a particular output, then in cases where the effects cancel out, the

physics-based model will provide a good estimate of the output, but in cases where

the effects do not cancel out, the physics-based model will not provide a good estimate

of the output. This situation, however, is difficult to account for with a simplified

physics-based model. Simplified physics-based models and the ideal reactors of which

they consist will be discussed in greater detail in Chapter 2.

1.3.4 High Fidelity Simulations

High fidelity simulations use grids with millions of points, detailed kinetic mecha-

nisms, large eddy simulations (LES), and complex 3D geometries to estimate the

products of gas turbine combustion. High-fidelity simulations have been used effec-
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tively for some aspects of combustor design, however, they are very computationally

intensive, and require detailed knowledge of combustor geometry and operating con-

ditions. Table 1.1 provides data from a NASA Glenn simulation of a GE90 engine to

Component No. of Iterations No. of Processors Wall clock time

Combustor 31000 256 3 hr 53 min

Table 1.1: Full Simulation Time [15]

predict temperature and velocity fields. The table shows that the time and computing

power required for this sort of approach is too great for use in a policy making tool.

Furthermore, high-fidelity simulations require detailed definitions of the combustor

designs, which would not be available for assessing technology trade-offs for potential

future combustor designs.

1.3.5 State of the Art for Emissions Trade Analyses

Currently, empirical models are used more than any other type of model because they

are general and computationally inexpensive. For trade studies and design change

analyses however, empirical models are less useful. Semiempirical models exist to

some extent on an individual combustor basis for both NO. and CO, but the inputs

to these models are typically not available when considering the impacts of alterna-

tive emissions policies on future engine and combustor configurations. Semiempirical

models also would have limited capability for studying the effects of design changes

that have not yet been measured. Physics-based models have been shown to have

some potential for capturing the interdependencies of emissions as well as combustor

performance on a very specific basis. Most of the work done with these models has

focused on creating a model to predict the emissions of a single combustor and has

not been extended in a general way. Full simulations require detailed definitions of

the geometry and operating conditions and are computationally prohibitive.
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1.4 A Physics-Based Emissions Model

Given that the physics-based model has the most potential for a general emissions

model for a policy tool, a simplified physics-based model was selected for further

study to determine whether or not a model of that nature could be developed to

meet the three requirements for a policy-making tool referred to in Section 1.2.

1.4.1 Objective

The objective of this research is thus to create a physics-based model for estimating

emissions of potential future gas turbine combustors within quantified uncertainty

bounds. The method should be capable of predicting various tradeoffs associated

with typical changes in the design of a combustor. The emissions model is being

designed for use as a component of a policy-making tool, and as such, higher levels

of uncertainty are acceptable than would be the case if the model was for use in the

design of a combustor.

1.4.2 Emissions Model Success Criteria

The success of the emissions model developed in this thesis is measured by how

well the three attributes that make a model suitable for use in a policy making tool

are incorporated. The physical relationships among operating conditions, simplified

combustor design parameters, and pollutant emissions are assessed by comparing the

response of the model emissions outputs to different operating conditions and design

parameters to the response that would be expected from theory or the response that

is apparent in certification data. A successful model should predict trends that are

supported by theory and data. The high-level design parameters and operating con-

ditions that would be convienient for an expert to use in projecting future technology

should be built into the model as inputs. How well the model predicts broad trends

in the emission levels from different combustor designs is determined by how well the

model performs relative to an empirical model for NO,, and whether or not the model

predictions are within the uncertainty in the certification data for CO. The goal is to
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produce estimates of the trends in emissions of NOx and CO at a level of accuracy

that is valuable in a policy-making setting. In particular, it is desired first that the

correct sign be predicted for changes in emissions with design and operating param-

eters. If this level of performance is met, an additional goal is to predict changes in

emissions with changes in design and operating conditions with an accuracy that ap-

proaches that of the uncertainty and variability of measurements of emissions indices

for the active fleet (e.g. about 16% for NO, and 23% for CO). Detailed data from

five industry combustors were used in the assessment of the model.

1.5 Thesis Outline

Chapter 2 discusses the development of the physics-based emissions models used in

the study. Chapter 3 focuses on how primary zone unmixedness is set in the model.

Chapter 4 compares the response of the model emissions outputs to changing oper-

ating conditions and combustor design parameters. Chapter 5 presents a comparison

of the emissions levels predicted by the model to the ICAO certification data and an

empirical model for five different engines. The model's ability to predict the effects of

a design change is also assessed in Chapter 5. Chapter 6 contains general conclusions

about the work as well as a discussion of future work that should be done.
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Chapter 2

Developing a Physics-Based

Emissions Model

This chapter discusses the developement of a physics-based emissions model for single

annular aircraft gas turbine combustors. The functional requirements of the model

are discussed followed by the inputs and outputs of the model. Fundamentals of

combustion are then reviewed to introduce the governing equations followed by a

discussion of ideal reactors. The use of ideal reactors to model each zone of a gas

turbine combustor is then discussed.

2.1 Functional Requirements

The physics-based emissions model should have as inputs, high-level design param-

eters and operating conditions that would be convienient for an expert to use in

projecting future technology. The emissions model should also represent the physical

relationships among operating conditions, combustor design parameters, and pollu-

tant emissions in a consistent way. The model must also produce estimates of the

trends in emissions of NO. and CO at a level of accuracy that is valuable in a policy-

making setting. In particular, it is desired first that the correct sign be predicted for

changes in emissions with design and operating parameters. If this level of perfor-

mance is met, an additional goal is to predict changes in emissions with changes in
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design and operating condtions with an accuracy that approaches that of the uncer-

tainty and variability of measurements of emissions indices for the active fleet (e.g.

about 16% for NO, and 23% for CO).

2.2 Model Input/Output

The inputs to the physics-based emissions model are the combustor inlet temperature

and pressure, the mass flow rate into the combustor, the fuel flow rate, the mass flow

splits, the combustor zone volumes, and the primary zone unmixedness. The inputs

are all useful and convienient for expert use and contain the physical relationships

between operating conditions and combustor design parameters.

The chemical kinetics taking place in the combustion process are modeled with

the Gas Research Institute mechanism (GRImech) version 3.0 for propane [16]. Us-

ing GRImech v3.0 ensures that the physical relationships between gaseous pollutant

emissions and combustor design parameters and operating conditions are accounted

for in a consistent manner.

The outputs from the model are the emissions indices of NO- (EINO_) and CO

(EICO).

2.3 Combustion Fundamentals

Combustion in a gas turbine engine consists of the rapid oxidation of a fuel, which

generates heat. For gas turbine combustion, the oxidizer is typically air and the fuel

may be liquid or gaseous [14]. The combustion of a fuel-air mixture in an aircraft

engine is a complex, unsteady, turbulent process governed by a set of non-linear

partial differential equations.
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2.4 Governing Equations

The governing equations are the conservation of mass, species, momentum, and energy

for a reacting flow. The most general form of mass conservation for a fixed point in

a flow may be written as

ap
-p + V - (pu) = 0, (2.1)at

where p is density and u is velocity. The general form of species conservation for a

reacting flow may be written as

+ V - h' = rh'" for i = 1,2,...,N, (2.2)

where Y is the mass fraction of species i, rh' is the mass flux of species i, and r'h" is

the net rate of mass production of species i per unit volume. The first term on the

left of Equation 2.2 is the rate of increase of mass of species i per unit volume. The

second term is the net rate of mass flow of species i out by diffusion and bulk flow

per unit volume [17]. The conservation of momentum in general form for a reacting

flow may be written as

Du p a u)i]
P a= + pgi + [2peiei - . , (2.3)Dt axi axj 3

which is a general form of the Navier-Stokes equation. The compressible form of the

conservation of momentum must be used because large changes in density can occur

in a reacting flow. The unsteady term must be kept because most flows within a

gas turbine combustor are turbulent. In Equation 2.3, u is velocity, p is pressure,

g is gravitational acceleration, y is dynamic viscosity, eij is the strain rate tensor,

eij = i i + ,ui and Jij is the Kronecker delta. The conservation of energy in

one dimension may be written as

( '| + k + ~d = - hid'x", (2.4)
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where hi is the specific enthalpy of species i, k is the thermal conductivity and u, is

the velocity in the x direction.

The simultaneous solution of these four coupled, non-linear, partial differential

equations, (with an appropriate model for turbulence and the kinetic relations for

the chemical species), could in theory be solved to provide estimates of species con-

centrations. Since a detailed geometry definition is required to solve such a problem,

the governing equations are too general to meet the objectives of a physics-based

emissions model for a policy making tool. To create a physics-based model of gas

turbine combustion that does not require detailed geometric specifications, several

assumptions that reduce the level of complexity of the governing equations must be

made.

2.5 Reducing the Governing Equations

The full set of governing equations includes several aspects of reacting flows that may

be neglected if higher levels of uncertainty in the emissions estimates are acceptable.

Ideal reactors such as perfectly stirred reactors and plug flow reactors make a number

of assumptions that significantly reduce the complexity of the combustion process

while still providing useful information.

2.5.1 The Perfectly Stirred Reactor

The perfectly stirred reactor (PSR) is an ideal reactor that neglects mixing phenomena

in a reaction. Combustion processes are characterized by the characteristic times

certain processes take. In a system where either the mixing rates are high or the

chemical reaction rates are slow, the chemical kinetics constrain the burning rates in

the mixture. The situation may be characterized by a Damkohler number, Da. The

Damkohler number is defined as

Da = ' , (2.5)
Tchem
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where Tf lo, is a characteristic mixing time and Tchem is a characteristic chemical time

[18]. In situations where Da < 1, the burning rate is almost completely dependent

on the chemical kinetics of the mixture. When this is the case, calculations that

ignore mixing phenomena, like convection and diffusion, and focus only on the kinetic

modeling may be used.

The perfectly stirred reactor (PSR) assumes that the Damkohler number is essen-

tially zero and thus the mixture is considered perfectly stirred. Mixing has no effect

on the system and is not included in the calculations. This assumption allows for a

large reduction in the complexity of the governing equations.

Conservation Equations for the PSR

Following Turns [17], the conservation equations for the perfectly stirred reactor may

be written as follows. The control volume for the analysis is shown in Figure 2-1.

Mass conservation for an arbitrary species i may be written as

CV

Reactants -

T, P rh Yi.i
Mixture

T P Yj

M ixtu re

T P rM Yi

Figure 2-1: Diagram of a Perfectly Stirred Reactor, adapted from [17]

0 = mh'2"V + Thiin - rhi,out, (2.6)
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where rh'"V is the rate of generation or destruction of mass of the ith species, V is

the volume, rhi,j is the mass flow of the ith species into the control volume, and

rhi,out is the mass flow of the ith species out of the control volume. The generation or

destruction of a species is written as

rh'" =wiMWi, (2.7)

where cZj is the net production rate of the ith species in mol/mss and MWj is the

molecular weight of the ith species in kg/mol. The mass flow of the ith species into

the control volume is the mass flow in multiplied by the initial mass fraction of the

species, or

7iin = ?yi, (2.8)

and similarly, the mass flow out of the control volume is

m = TY. (2.9)

The mass fraction of a species is the individual mass of the ith species in the mixture

divided by the total mass of the mixture.

The conservation of energy for the perfectly stirred reactor may be written as

Q = rh (hout - hn). (2.10)

In terms of the individual species this is

N N

? = ZYiout hi(T) - Yi,inhi(Tin) , (2.11)

where hi is the specific enthalpy of the ith species, which is written as

hi(T) = h,, + j c,i(T)dT. (2.12)
ST
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The term h' is the enthalpy of formation of the ith species and c, (T) is the specific

heat of the ith species, which is a function of the temperature of the mixture.

The Mathematical Simplicity of the Perfectly Stirred Reactor

Since there is no dependence on flow parameters there is no conservation of momentum

equation for the perfectly stirred reactor. Also, because the reactor is operating at

steady-state, there is no time dependence in the conservation equations. As a result

the perfectly stirred reactor is described fully by a set of coupled nonlinear algebraic

equations instead of a system of non-linear partial differential equations. The result

is that problems dealing with perfectly stirred reactor models may be solved using a

Newton-Raphson approach.

2.5.2 PLUG Flow Reactor

A plug flow reactor is an ideal reactor that assumes steady, one-dimensional, inviscid

flow with ideal gas behaviour. The assumptions imply that there is no mixing in the

axial direction. The control volume for the conservation equations that follow refer

to Figure 2-2. The conservation equations for a plug flow reactor may be written as

Flow
cv

W x

Figure 2-2: Diagram of a Plug Flow Reactor, adapted from [17]

Conservation of Mass:
d(puxA) = 0, (2.13)

dx
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Conservation of Momentum:

dp dux
d + PUXd = 0, (2.14)
dx dx

Conservation of Species:
d Y LjMW, = 0, (2.15)
dx PUx

Conservation of Energy:

dT u2 dp u 1 dA) 1 M(---= ---- + _ _ - Ehi~iw (2.16)
dx pcp dx cp A dx UXPp i=

The Mathematical Simplicity of the Plug Flow Reactor

The assumptions of the plug flow reactor reduce the coupled, non-linear, three-

dimensional governing equations of combustion to a set of coupled ordinary differential

equations, for which many efficient solution methods exist.

2.6 Modeling a Gas Turbine Combustor with Ideal

Reactors

A gas turbine combustor typically consists of a primary zone, an intermediate zone,

and a dilution zone. To represent the physical relationships among operating condi-

tions, pollutant emissions, and combustor design parameters like zone volumes, the

emissions model should be developed to capture the physical layout of a combustor.

2.6.1 The Role of the Primary Zone

The primary zone of a gas turbine combustor is designed to anchor the flame and

achieve nearly complete combustion of the fuel. To do this, the primary zone must

provide sufficient residence time for the fuel-air mixture, as well as high temperatures

and high turbulence for rapid mixing of the fuel and air. For these reasons primary

zones of typical combustors have large recirculation regions of flow, high temperatures,
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and high levels of turbulence.

2.6.2 Modeling the Primary Zone

Regions of strong turbulence in a combustion process tend to have short characteristic

mixing times relative to the kinetic times. The result is that these regions have low

Damkohler numbers. This suggests that the primary zone could be modeled using a

PSR, which assumes instantaneous mixing with a Damkohler number of zero. Figure

2-3 shows the effects of increasing levels of turbulence intensity on Damkohler number

and how the combustion should be modeled. Turbulence intensity, V/S", which is

the ratio of characteristic turbulence velocity to the laminar flame speed, is plotted on

the vertical axis, and a length scale ratio, lt/AF, which is the ratio of the turbulence

length scale to the flame thickness, is plotted on the horizontal axis. The Damkohler

number is related to these scales by

Vt = -- t (2.17)
S. Da AF

Both the equation and the figure show that as turbulence intensity increases, the

Damkohler number decreases. The figure shows that as the Damkohler number de-

creases, the combustion process becomes more and more suitable for modeling with

a stirred reactor. With the high level of turbulence expected in the primary zone

for most engine power settings, the PSR has the potential for being an appropriate

model.

2.6.3 Primary Zone Emissions Considerations

Using only a single PSR to model the primary zone of a combustor implies that the

entire fuel-air mixture is perfectly mixed and remains so throughout the zone. In a

real combustor, however, fuel and air are injected separately, and this ideal situation

cannot be expected to prevail. This means that the Damkohler number is not likely

to be close enough to zero for a single PSR to be an adequate model for emissions of

NO, and CO, which are highly sensitive to the local fuel-air ratio in the combustor.
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Figure 2-3: The Effect of Turbulence on Damkohler Number [18]

The activation energy of NO, is strongly dependent on temperature and thus on local

equivalence ratio. For CO, if the local equivalence ratio is greater than unity, large

amounts of CO will be formed due to lower oxygen concentration for completing the

reaction to CO 2 . For equivalence ratios close to unity, large amounts of CO will form

because of CO 2 dissociation. For very low equivalence ratios ($ < 0.6), the mixture

strength cannot support complete combustion and CO is formed in great quantities

farther down the combustor. According to Lefebvre [14], only for equivalence ratios

of about 0.7-0.9 will low levels of CO be formed. Therefore, if CO emissions are to be

properly calculated, any deviation from a perfect mixture in the primary zone must

be accounted for to ensure that local equivalence ratios are correct. Due to these

considerations, the model of the primary zone should include some mechanism for

incorporating varying levels of unmixedness.

Modeling Unmixedness in the Primary Zone

A typical approach for capturing the unmixedness in a combustor is to assume that the

mixture can be approximated by a normal distribution about some mean equivalence

ratio [24]. The distribution is then defined by an unmixedness parameter, s, where

s = ,) (2.18)
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and uo is the standard deviation of the distribution and p is the mean equivalence

ratio. This technique has been used numerous times [19]. Figure 2-4 shows how the

0.35
Mean Equivalence Ratio 1.0
a = 0.25

0.3- No. PSRs = 10

0.25-

S0.2-

E oi
0.15

0.1 -

0.05- -

0-
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Primary Zone Equivalence Ratio

Figure 2-4: Normal Distribution of Equivalence Ratio in the Primary Zone PSRs

equivalence ratios and mass flow percentages through a set of 10 PSRs are set with

an unmixedness value of s = 0.25 and a mean equivalence ratio of #p = 1. The

equivalence ratios are determined using Equation 2.18 and the mass flow percentages

are calculated from the cumulative distribution function and are shown on the vertical

axis.

To determine how many PSRs should be used for the distribution, a variable

number of PSRs were run to represent the primary zone of a combustor, followed by

a PSR to represent the intermediate zone and a plug flow reactor to represent the

diluton zone. The inputs were taken from an industry gas turbine combustor. The

emissions output from the different cases were plotted to determine when adding more

PSRs no longer had a significant impact on the emissions indices. The outputs of

interest are the emissions indices of NO_ and CO. The percentage change in emissions

indices for NO, and CO were calculated as

%'AEINo (i + 1) =EINOx(i + 1) - EINOx(i) (2.19)
EINOx(i)

%AEICO(i + 1) = EICO(i + 1) - EICO(i) (2.20)
EICO(i)
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where the values i and i +1 refer to the number of PSRs in the model and i = 1, ..., 39.

The number of PSRs was considered adequate when the percentage change with each

additional reactor in EINO. fell below 5% and the percentage change in EICO fell

below 15% for all four ICAO engine power settings. The reason for this was that the

90% confidence interval for new, uninstalled engines picked out of a fleet is ±16% for

EINO, and +23% for EICO [20]. Since the desired accuracy of the model is to be

within the uncertainty in the data, the addition of more PSRs beyond the uncertainty

in the data has no impact on whether or not the objectives of the model will be met.

Stricter criteria than the uncertainty in the data were used because the values for

the uncertainty in the NO_ and CO emissions data are considered conservative. The

results of the analysis are shown in Figure 2-5. The data was collected with an

Primary Zone Model Requirements for EINOx, s = 0.7 Primary Zone Model Requirements for EICO, s = 0.7
100-- 100o

-3--- Idle -E3-- Idle
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-4-Climb -e- Climb
80 - A Takeoff A80 -A- Takeoff

70- 70-
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Figure 2-5: Determining the Primary Zone Model

unmixedness level of s = 0.7, which is the highest value of primary zone unmixedness

that is expected to occur [19]. Higher levels of unmixedness require more reactors to

appropriately reflect the normal distribution, which is why the unmixedness level was

chosen at the highest level. The plots show that for EINO, to be modeled adequately

with a normal distribution, there must be at least eleven PSRs in the primary zone.

For EICO to be modeled adequately, there must be at least sixteen PSRs in the
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primary zone. Therefore, to ensure that the normal distributions are being modeled

well enough, the primary zone model consists of sixteen parallel PSRs. Figure 2-6 is

a diagram of the primary zone model.

S

Model Inputs 
-1b L 8

PSRs

Figure 2-6: Diagram of the Primary Zone Model

2.6.4 Assumptions and Limitations of the Primary Zone Model

The main assumption of the primary zone model is that local mixing is instantaneous

relative to local burning. This results in a premixed flame in each of the primary

zone PSRs. Unfortunately, in most liquid fueled gas turbine engines, the combustion

process is governed by diffusion flame phenomena, meaning that the burning occurs

at stoichiometric fuel-air ratios. Equivalence ratios of unity lead to high flame tem-

peratures and thus high NO, production, implying that a model consisting only of

premixed flames may not calculate the emissions index of NO, accurately in some

cases, particularly in older combustors where attempts at some level of premixing

were not made.

Another assumption of the primary zone model is that each individual reactor is

essentially zero-dimensional and everything occurs at once. In an actual combustor

primary zone, cooling air is gradually added and the fuel and air gradually mix.

This assumption could have a significant effect on CO emissions since a mechanism

for quenching reactions occurring near the combustor walls is not possible with this
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model.

2.6.5 The Role of the Intermediate Zone

The intermediate zone of a combustor is designed to recover dissociation losses, burn

poorly mixed fuel-rich pockets at low altitude and serve as an extension of the primary

zone at high altitude. At low altitude, the high temperature conditions of the primary

zone lead to the dissociation of CO 2 to CO. If the reaction is then quenched the CO

concentration will essentially be frozen, leading to high CO output. The intermediate

zone's role is then to slowly add dilution and cooling air while maintaining a high

enough temperature to complete combustion. Pockets of fuel-rich mixture may also

exist leaving the primary zone which must be burned in the intermediate zone oth-

erwise there will be a penalty in combustion efficiency. At high altitude combustion

is usually not complete at the exit of the primary zone because the fuel-air concen-

tration is lower, due to lower pressure, which leads to reduced reaction rates. In this

case the combustion process continues in the intermediate zone. These requirements

lead to a trade off in the intermediate zone between zone length, which determines

the residence time, and combustion efficiency.

2.6.6 Modeling the Intermediate Zone

To determine how to best model the intermediate zone, six candidate intermediate

zone reactor setups were studied and the output of each model was compared to

emissions data. Six candidate reactor setups were studied because it was unclear

how to best model the intermediate zone. The six candidate reactor setups were a

single plug flow reactor, a single PSR, a set of parallel plug flow reactors, a set of

parallel PSRs, a bulk plug flow reactor with a wall plug flow reactor, and a bulk

plug flow reactor with a wall PSR. The single plug flow reactor was tested because it

would be an appropriate model if the mixing of fuel and air in the primary zone, as

well as added cooling air and dilution air prior to the intermediate zone, is complete.

For this situation the plug flow reactor could be used to simulate a one-dimensional
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reacting flow. A single PSR was tested because it would be an appropriate model

if recirculation due to the addition of downstream dilution air and cooling air is

present in the intermediate zone. Parallel plug flow reactors and parallel PSRs were

tested because they would be a more appropriate model for the intermediate zone if

the effects of a non-uniform mixture, due to the addition of cooling air and dilution

air along the walls of the combustor, are significant in terms of emissions output.

Modeling the bulk flow with a single plug flow reactor and the flow near the walls

of the combustor intermediate zone, where CO is not likely to oxidize to CO 2 due to

the lower temperatures, with a PSR or a plug flow reactor was tested because of the

possibility that most of the CO formed during combustion is due to quenching near

the walls of the combustor.

Testing each candidate intermediate zone model revealed that the single plug flow

reactor provided the best results. The single PSR reactor significantly overestimated

CO at low power. The set of parallel PSRs and plug reactors yielded poor predictions

of both NO, and CO at all conditions and the wall reactor setups were too sensitive

to flow split information in the intermediate zone to be used in a general model. The

single plug flow reactor provided the best CO and NO, estimates and was selected

for the intermediate zone model. Figure 2-7 is a diagram of the intermediate zone

P3, T3 Dilution

Primary Zone
-- Species, T, P, PLUG --

mass fow

Figure 2-7: Diagram of the Intermediate Zone Model

model.
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2.6.7 Intermediate Zone Emissions Considerations

The formation of NO in a gas turbine combustor only proceeds at a significant rate at

temperatures above around 1800K [14]. Since these high temperatures are expected

to occur mainly in the primary zone, the effect of the intermediate zone model on NO,

emissions is negligible as seen in Chapter 4. Since the intermediate zone is designed

to complete the combustion of the mixture leaving the primary zone, the intermediate

zone oxidizes most of the CO to CO 2.

2.6.8 Assumptions and Limitations of the Intermediate Zone

Models

The main assumption of the intermediate zone model is the instantaneous addition of

cooling air and dilution air. This is not expected to impact NO, output significantly,

but it may have an effect on CO emissions. Gradual air addition would allow for

higher zone temperatures, which would lead to more CO oxidation to CO 2. The

assumption may therefore, lead to overestimates of CO emissions.

2.6.9 The Role of the Dilution Zone

The dilution zone of a gas turbine combustor is designed to bring the gas to an

acceptable mean temperature and to improve the pattern factor prior to the turbine

inlet. At most power conditions combustion has essentially been completed and the

emissions of NO. and CO are not changed. At low power it is possible that further CO

oxidation may take place but the addition of dilution air and cooling air will usually

reduce the temperature to the point where these reactions are no longer taking place.

2.6.10 Modeling the Dilution Zone

The flow in the dilution zone is essentially one-dimensionally moving towards the

turbine and should be modeled reasonably well with plug flow reactors. The model

for the dilution zone is thus two serial plug flow reactors, one for the initial addition
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of dilution air, which could potentially have an impact on CO emissions, and another

for the addition of pattern factor cooling air. Figure 2-8 is a diagram of the dilution

P3, T3 Dilution Dilution

Intermediate Zon~e
-- P Species, T, P, PLUG PLUG

mass flow

Figure 2-8: Diagram of the Dilution Zone Model

zone model.

2.6.11 Modeling the Injection of Dilution/Cooling Air

Gas turbine combustors usually have two main forms of air addition that serve two

different purposes. Dilution air is usually injected in two major locations and its

purpose is to bring the gas temperature to the point where CO is still oxidizing to

C0 2, but NO, is no longer being formed in major quantities, and also to reduce the

mean gas temperature prior to turbine entry. Cooling air is injected along both the

inner and outer diameter of the combustor liner and its purpose is to protect the liner

material from the hot temperatures of the reacting bulk flow. Where and how much

air is injected into the combustor is defined by flow splits and geometry, which define

where the flow is introduced into the combustor and what percentage of the total air

mass flow rate comes through each cooling slot and dilution hole. Figure 2-9 is an

example of a set of flow splits for a given combustor geometry. The letters in the

figure would be different percentages of mass flow rate entering at each location. The

difficulty with the flow split information is determining how to map the flow split

inputs from the physical domain to the model domain. The model consists of air

addition only at two main dilution points and a final cooling air addition point. The

challenge is thus to determine when the air flow from each of the physical injection
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Figure 2-9: Typical Combustor Flow Splits

points mixes in with the bulk flow. Several possibilities for this were tested and it was

found that assuming the cooling air mixes into the bulk flow when it encounters a

dilution jet provides the best results. This means that in the model, the flow entering

at location D is combined with the flow from location F because the injection at

D is cooling air that has encountered a main dilution injection at location F. The

assumption allows for simple transitions from combustor to combustor even though

the geometries and flow splits are usually unique to individual combustors.

2.6.12 Assumptions and Limitations of Injection Mapping

A major assumption of the modeling of air addition into the combustor is that it

is not necessary to exactly match the geometry and flow split inputs of the physical

combustor in the model domain to calculate emissions of NO, and CO. However, since

CO emissions can in some cases be the result of CO from the primary zone becoming

entrained into the cool air along the liner and then failing to oxidize because of the

lower temperatures, the air addition model may lead to erroneous CO predictions in

some cases. This is because the model does not permit gradual addition of cooling air

along the walls of the combustor where the CO from the primary zone could become

entrained.
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2.6.13 Model Implementation

The ideal reactors that make up the physics-based emissions model are run using

Chemkin version 4.0. The inputs, reactor linking, air addition, and output calcula-

tions are all done with Matlab.

2.6.14 The Physics-Based Emissions Model

Figure 2-10 is a diagram of the simple physics-based emissions model that was created.

The primary zone is modeled as a network of 16 parallel PSRs, the intermediate zone

is modeled as an injection of air followed by a plug flow reactor, and the dilution zone

is modeled as an injection of air followed by a plug flow reactor, followed by another

injection of air and another plug flow reactor.

DiutonDiuton Cflg

Inputs 0-40 Plug PPlug outputs

PSRs

Figure 2-10: Diagram of the Physics-Based Emissions Model
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Chapter 3

Setting the Unmixedness

Parameter

All of the inputs to the physics-based emissions model are measured physical quanti-

ties with the exception of primary zone unmixedness. The primary zone unmixedness

is a physical parameter, but it is not typically measured by industry. The physical

nature of this parameter stems from the level of mixing between fuel and air that

occurs in the primary zone of the combustor. There are several different options for

how the unmixedness parameter can be set. Among these are setting the unmixed-

ness level as a constant value at all engine power settings, setting the unmixedness

level as a function of primary zone equivalence ratio and using the relation generally

across all engines, and setting the unmixedness level as a function of primary zone

equivalence ratio for each individual baseline combustor. Setting a single value of

unmixedness across all engine power settings assumes that the unmixedness is only

a function of primary zone geometry. Setting the unmixedness using a general rela-

tionship between unmixedness and primary zone equivalence ratio implies that the

unmixedness is only a function of the fuel-air ratio and is independent of geometry.

Setting the unmixedness as a function of primary zone equivalence ratio for each base-

line combustor assumes that the unmixedness could be a function of both geometry

and fuel-air ratio. Testing each method revealed that the unmixedness should be set

as a function of primary zone equivalence ratio for each individual baseline combustor
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because the unmixedness is a function of both fuel-air ratio and combustor primary

zone geometry.

3.1 Industry Data

Industry data were used to study the effects of the unmixedness parameter and how

it is set. The data came from five different combustors on five different gas turbine

engines in the same engine line. Table 3.1 gives the relative power of each engine and

how the engines are labeled in the study. Engine la is the result of a design change

Engine 1 Engine la Engine 2 Engine 3 Engine 3a
Relative Power Medium Medium Low High High

Table 3.1: Relative Power of Each Engine in the Study

on Engine 1 and Engine 3a is the result of a design change on Engine 3.

3.2 Sensitivity to Unmixedness

To determine the impact of the unmixedness parameter on the model output, the

sensitivity of NO, and CO emissions to primary zone unmixedness was studied at

each ICAO LTO-cycle point. The unmixedness parameter was varied from 0 to 0.7

at all four power settings for Engine la. The results are shown in Figure 3-1. Given

that the emissions of NOX and CO are strong functions of unmixedness, particularly

for idle CO, the method of setting unmixedness is crucial to meeting the objective of

estimating emissions within the uncertainty in the certification data.

3.2.1 Single Value Optimization

Using a single value for the primary zone unmixedness of a combustor is useful if the

unmixedness parameter is set largely by the geometry of the combustor. That is, if

the unmixedness parameter is determined almost entirely by the injection methods

and the locations of air and fuel injection in the primary zone. If the assumption that
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the parameter is set largely by geometry is correct, then a single value of unmixed-

ness should work well across different engine settings and combustors with similar

geometries.

Setting the unmixedness to a single value is done by optimizing the unmixedness

so as to minimize the difference between model and ICAO Dp/Foo for both NO. and

CO. The differences in Dp/Foo for NO, and CO were calculated using Equations 3.1

and 3.2. The objective function for the optimization is given in Equation 3.3.

ADp/Foo NOX = ICAO Dp/Foo NOx - Model Dp/Foo NOx (3.1)

ADp/Foo CO = ICAO Dp/Foo CO - Model Dp/Foo CO (3.2)

f = (ADp/Foo NOx) 2 + (ADp/Foo CO)2  (3.3)
ICAO Dp/Foo NOx + ICAO Dp/Foo CO

The results of using this method for calculating the unmixedness for the five industry

combustors are given in Table 3.2. The combustors used in the analysis are all

Engine 1 Engine la Engine 2 Engine 3 Engine 3a

Unmixedness 0.30 0.02 0.34 0.19 0.27

Table 3.2: Single Value Optimized Unmixedness

very similar geometrically so the differences between the unmixedness values of each

combustor suggest that the parameter should not only be set by geometry.

3.2.2 General Curve Optimization

To set a general curve for the unmixedness parameter, unmixedness was optimized

at each ICAO LTO certification point for each engine. Following Sturgess, the un-

mixedness values were then fit with a polynomial as a function of equivalence ratio

[19]. This technique is useful if the unmixedness is not a function of geometry but

only a function of primary zone equivalence ratio. The objective function for these
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optimizations is shown in Equation 3.4.

- (ICAO EINO,; - Model EINOi)2 + (ICAO EICOj - Model EICO) 2

(ICAO EINOxj + ICAO EICO) '

where the subscript i, refers to the ICAO LTO cycle point (idle, approach, climb out,

or takeoff). Figure 3-2 shows the result obtained by Sturgess et al [19]. Figure 3-3

shows the result obtained by using the physics-based model. The square data points

in Figure 3-2 are individually optimized unmixedness values for the same three engines

used in the analysis of a single value unmixedness optimization as well as Engine la

and Engine 3a. The figures show there is a relationship between unmixedness and

09 Heywood & Mikus
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Figure 3-2: Unmixedness versus Primary Zone Equivalence Ratio [19]

primary zone equivalence ratio that should be accounted for. This is expected since

combustors are designed to mix fuel and air very well at a design point and will likely

not mix it as well at off-design points since the geometry is fixed. The fit for this

relationship with a fourth-order polynomial has an R2 value of 0.74. Figure 3-3 shows

that the data point with the lowest value of primary zone equivalence ratio is far from

the curve. This point is the optimized unmixedness value for Engine 3a at idle and

given the sensitivity of idle CO to unmixedness, idle CO will not be predicted well

by the model if this technique of setting primary zone unmixedness is used.
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Figure 3-3: Model Unmixedness versus Primary Zone Equivalence Ratio

3.2.3 Individual Curve Optimization

The third option for setting the unmixedness parameter is to set the relationship

between primary zone unmixedness and equivalence ratio for each individual baseline

engine. The objective of this is to capture the relationship between unmixedness

and equivalence ratio while allowing different combustors to have different curves.

The curves are developed using the certification data for existing engines and do not

require any additional inputs. This allows for the effects of geometry as well as the

level of premixing of fuel and air to also be accounted for on an individual engine

basis. Once the unmixedness curve for a baseline combustor is set, design changes

on that combustor can be studied using the established curve. The optimization

technique used to set the unmixedness at each power setting was the same as for the

general curve. The result for Engine la is shown in Figure 3-4. The curve was fit to

the square data points, which are the optimized unmixedness values for Engine la at

the four ICAO-LTO cycle points.
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3.3 Evaluating the Different Options

To determine which method of setting the unmixedness is most appropriate, the single

point method and the individual curve method were used to set the unmixedness

for Engine la using the known emissions data for that engine. The unmixedness

calculations from Engine la were then used on Engine 1 in the same manner that

they would be if one were trying to predict the impacts of the design change from

Engine la to Engine 1. The emissions data for Engine 1 were then used to calculate

individually optimized unmixedness values at each engine setting and the results were

compared to each method of setting unmixedness.

3.3.1 Single Point Estimate

Using the single point optimization on Engine la yields an unmixedness value of

s = 0.02. To study the effects of the design change from Engine la to Engine 1, the

unmixedness value calculated for Engine la is assumed to be valid for Engine 1 at all

power settings. Table 3.3 compares the optimized unmixedness values for Engine 1

using the certification data and the value of unmixedness calculated from Engine la.
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The comparison shows that the geometry is not the only factor responsible for the

Idle Approach Climb Out Takeoff
Engine 1 Calculation 0.02 0.02 0.02 0.02

Engine 1 Optimization 0.25 0.70 0.34 0.20

Table 3.3: Comparison of Engine 1 Calculated and Optimized Unmixedness

unmixedness levels in the primary zone of the combustor and that a single value of

unmixedness for all engine power settings is not adequate for assessing the effects of

design changes.

3.3.2 General Curve Estimate

The general polynomial fit of the relationship between primary zone unmixedness

and primary zone equivalence ratio was derived using data from all five engines. To

determine how well the curve set the unmixedness for a design change, unmixedness

values for Engine 1 were calculated using the curve and compared to the actual

optimized unmixedness values for Engine 1 set by the ICAO certification data. The

comparison is shown in Table 3.4. The table shows that the general curve produces

Idle Approach Climb Out Takeoff
Curve Calculation 0.53 0.65 0.34 0.24

Engine 1 Optimization 0.25 0.70 0.34 0.20

Table 3.4: Comparison of Engine la Calculated and Optimized Unmixedness

good estimates of unmixedness at all of the ICAO points except idle, where the

unmixedness estimate is off of the optimized value by more than 100%.

3.3.3 Individual Curve Estimate

The individual polynomial fit was set using the certification emissions data for En-

gine la. To determine how well the curve set the unmixedness for a design change,

unmixedness values of Engine 1 were calculated using the curve and compared to the

optimized unmixedness values for Engine 1 set by the ICAO certification data. The

comparison for this case is shown in Table 3.5. The best estimate of the unmixedness
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Idle Approach Climb Out Takeoff
Curve Calculation 0.40 0.46 0.38 0.25

Engine 1 Optimization 0.25 0.70 0.34 0.20

Table 3.5: Comparison of Engine la Calculated and Optimized Unmixedness

value at idle is obtained using this method. The approach estimate is not as good

as the general curve approach estimate, but the sensitivity of the emissions outputs,

particularly CO, are much higher at idle, as shown in Figure 3-1.

3.4 Setting Unmixedness

To meet the objectives of the model, the individually derived unmixedness curve

method was selected. Since one of the objectives of the model is to estimate the

emissions of NO, and CO within the uncertainty in the certification data, the general

curve method, which produces good estimates of unmixedness at approach, climb-out,

and takeoff, cannot be used because of the poor estimate of idle unmixedness. The

single value method cannot be used because the estimates of unmixedness are poor

at all four ICAO certification points. The individually derived unmixedness curve

method provides the only means of estimating idle unmixedness in a way that the

objective of calculating CO emissions within the uncertainty in the data could be met.

For more general applications of the model to future combustors where certification

measurements on similar combustors do not exist, it will be necessary to apply the

general curve fit method.

3.5 Unmixedness Parameter Issues

The reason the unmixedness is difficult to estimate is likely due to a number of issues

that are not accounted for in the model but are compensated for by the unmixedness.

The unmixedness parameters exist in the physics-based model to capture the effects

of incomplete mixing of the fuel and air injected into the primary zone of a combustor.

Unfortunately, the parameter contains more than just a measure of this unmixedness.
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It also serves as a correction factor in the model for everything that the model does

not capture very well. Issues like the use of a gaseous fuel rather than a liquid fuel,

instantaneous mixing of cooling air and dilution, incomplete kinetic modeling, as

well as unmixedness are all compensated for by this single parameter. It is not the

intention of the model to use unmixedness as a factor for calibrating the model and

covering up modeling errors but it is difficult to separate physical unmixedness from

everything else that is occuring in the combustor. The issue is exacerbated by the

fact that there are no non-proprietary industry data on unmixedness, meaning that

the only way to determine an initial level of unmixedness is to set it using certification

emissions data.

Given that a more rigorous method of setting the unmixedness level would require

a model that deals with the effects of fuel evaporation, gradual air addition, and

complete kinetics, which would not meet the objective of creating an emissions model

for a policy making tool, the ability to estimate approximately how a design change

affects unmixedness, thereby capturing the physical relationship between combustor

design parameters like the primary zone geometry and operating conditions like the

fuel-air ratio, is considered adequate. Looking at Table 3.6, which shows the optimized

values of unmixedness at each condition for Engines la and 1, and the calculated

unmixedness for Engine 1 using the unmixedness curve derived for Engine la, it is

clear that at each LTO-cycle point, the effects of the design change from Engine la

to Engine 1 on unmixedness, with the exception of takeoff are captured correctly.

That is, the unmixedness from Engine la to Engine 1 increases at idle, increase at

approach, and increases at climb out, as they should. At takeoff the unmixedness

should have decreased from Engine la to Engine 1 but the curve did not predict this

correctly. The value of unmixedness at takeoff for each engine however, is within 25%

of the optimized value for Engine 1.
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Idle Approach Climb Out Takeoff
Engine la Optimization 0.01 0.42 0.24 0.22
Engine 1 Optimization 0.25 0.70 0.34 0.20

Engine 1 Curve Calculation 0.40 0.46 0.38 0.25

Table 3.6: Comparison of Engine la Calculated and Optimized Unmixedness
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Chapter 4

Assessing the Predictive Capability

of the Model

In this chapter, the response of the emissions model to critical inputs is examined

and the results are compared to theory. The goal is to establish confidence in the

predictive capability of the model.

4.1 NO, Chemistry

As mentioned previously, NO, emissions from gas turbine combustors include NO

and NO 2 . Most of the chemical reactions taking place lead first to NO formation and

then, when temperatures are reduced, to the formation of NO 2. After some time in

the atmosphere essentially all of the NO produced in the combustor will have been

converted to NO 2.

The formation of nitric oxide (NO), proceeds at a high rate only at temperatures

above about 1800 K [14]. NO is thus typically formed in the hot bulk flow region

of the combustor and tends to be highest at full power conditions, where the flame

temperature within the combustor is very high. Nitric oxide is formed by four differ-

ent mechanisms: the Zeldovich mechanism, also known as the thermal mechanism,

the prompt mechanism, the N20 intermediate mechanism, and through fuel-bound

nitrogen. The Zeldovich mechanism is a well known set of two chain reactions that
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is extended by a third reaction.

O+N 2  NO + N, (4.1)

N+02 NO + O, (4.2)

N+ OH NO+ H. (4.3)

The reaction rate constants for the Zeldovich mechanism all have the Arrhenius form,

which is given in Equation 4.4.

k(T) = ATbexp(--EA/&T), (4.4)

where k(T) is the reaction rate constant, which is only a function of temperature, A

is a constant, T is the temperature, b is a constant, EA is the activation energy, and

R, is the universal gas constant. Rate constants enter formation rate expressions of

a chemical reaction like A + B * C, in the manner shown in Equation 4.5.

d[C = k(T) [A] [B], (4.5)
dt

where k(T) is the rate constant for the reaction and A and B are the concentrations

of the reactants taking part in the reaction. The presence of the Arrhenius reaction

rate constants in the Zeldovich mechanism reactions implies that the emissions of NO

that result when the mechanism is dominant increase exponentially with temperature.

Since the Zeldovich mechanism is dominant at high temperature, NOx emissions

should be increasing exponentially around temperatures of about 1800 K.

At lower temperatures the Zeldovich mechanism has a much smaller impact on

NO formation and the prompt and N20 intermediate mechanisms are responsible for

most of the NO emissions. The prompt mechanism, which is linked to the combustion

chemistry of hydrocarbons, occurs very rapidly in the flame zone of a reaction. In

general terms, the prompt mechanism is due to hydrocarbon radicals reacting with

N2 to form intermediate compounds that ultimately become NO [17]. The chemical
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reactions of the prompt mechanism are more complex and less well understood than

the those of the Zeldovich mechanism. The N20 intermediate mechanism is also

responsible for some of the NO production at lower temperatures. The process tends

to be important under fuel-lean conditions (op < 0.8) [17]. The chemistry of the N20

mechanism is better understood than that of the prompt mechanism and is shown in

Equations 4.6 through 4.8.

O+N 2 + M.<*N 2 0 + M, (4.6)

H+N 20 NO + NH, (4.7)

O+N 20 NO + NO, (4.8)

where M is a third body. Since the prompt and N20 intermediate mechanisms are

prevalent at lower temperatures and the Zeldovich mechanism is nearly negligible,

the emissions of NO, should not follow the same exponential trend that they do at

high temperature.

The final mechanism of NO. formation is that due to fuel-bound nitrogen. Some

fuels contain organically bonded nitrogen, which could eventually form NO [14]. This

possibility was not included in the physics-based emissions model since the NO for-

mation from fuel-bound nitrogen depends mainly on how much nitrogen is bonded to

the fuel.

4.2 CO Chemistry

Hydrocarbon combustion can usually be characterized as a two-step process: first

fuel is broken down to carbon monoxide, and second, carbon monoxide is oxidized to

carbon dioxide [17]. This is shown as two global reactions in Equations 4.9 and 4.10

for propane.

C3 H8 + 3.502 = 3CO + 4H 20, (4.9)

1
CO + -02 < CO 2. (4.10)

2
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The chemistry involving CO is well understood (though it involves many minor species

not shown), and the key difficulty in predicting CO emissions comes from the physical

modeling of the combustor. This is because carbon monoxide emissions that result

from incomplete combustion of the fuel are usually caused by three main sources that

are difficult to account for [14]. These main sources for are:

1. Inadequate burning rates in the primary zone,

2. Inadequate mixing of the fuel and air,

3. Quenching of the postflame products by entrainment with the liner wall-cooling

air.

CO emissions are sensitive to small changes in these conditions. Accurate prediction

of CO emissions trends hinges on a model's ability to capture these three phenomena.

4.3 Predicting NO, and CO Chemically

To determine whether or not the chemistry of combustion is captured correctly by the

physics-based emissions model, the effects of the key inputs that impact combustion

were studied. The inputs that have the most significant effect on combustion are the

temperature and pressure of the combustor, as well as the primary zone equivalence

ratio. These parameters are all inputs to the emissions model. Each of these pa-

rameters was varied with a range of ± 5% of the design value of the parameter at

all four ICAO LTO-cycle conditions for Engine 1. The emissions indices of NO, and

CO were then calculated using the model and the results compared with theoretical

arguments.

4.4 Model Response to T 3

Figure 4-1 gives the NO, response of the model to combustor inlet temperature. The

figure has three sets of data points corresponding from left to right, to the idle, ap-

proach, and takeoff conditions. The climb-out was not plotted in the figure for clarity.
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The trends that should be compared to theoretical arguments are those found within

each set of data points where the sensitivity of the model output to the variation

of inlet temperature is established. The differences between the three sets of points

contains changes in all parameters and not just inlet temperature and thus those

differences do not provide an independent assessment of the impact of temperature.

If the model is capturing the correct physics and chemistry, the high temperature

NO, emissions should trend exponentially with temperature. At the higher values of

the combustor inlet temperature, for example, the takeoff condition, the NO, levels

are increasing exponentially with increases in temperature. At the lower temperature

conditions, it is clear that the Zeldovich mechanism is not playing as prominent a

role in NO. formation since the trend does not follow the same exponential curve

that it does at high temperature. This is the appropriate response. The results of the

temperature analysis show that the model correctly estimates the general response of

NO, to temperature changes at the different power settings.
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Figure 4-1: Model EINO, versus Combustor Inlet Temperature

Figure 4-2 gives the CO response of the model to combustor inlet temperature.

The results for the figure were generated in the same way as the results for Figure 4-1.

As mentioned previously, inadequate burning and mixing rates, as well as quenching

of the reactions with cool air, lead to emissions of CO. In general, higher combustion
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temperatures lead to faster burning rates, which should lead to lower emissions of car-

bon monoxide. If the emissions model is capturing the response of CO emissions with

temperature correctly, CO emissions should decrease with increasing temperature.

As shown in the figure, this is the case.
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Figure 4-2: Model EICO versus Combustor Inlet Temperature

4.5 Model Response to P 3

The pressure at which combustion takes place is another factor that impacts the level

of pollutants emitted from a combustor. As pressure increases, the flame temperature

increases because higher pressures lead to lower dissociation losses [14]. The effect of

increasing pressure on flame temperature is shown in Figure 4-3. Given that flame

temperature has a significant effect on emissions of NO, and CO, pressure changes

should lead to predictable trends in emissions output.

Figure 4-4 shows the response of NO, emissions to the combustor inlet pressure.

Since liner pressure drop is nearly constant, varying inlet pressure was used as a surro-

gate for changes in combustor pressure [14]. Given that increasing pressure increases

the flame temperature by a significant amount when pressures are initially low and

by a smaller amount when pressures are higher, NO, emissions, which generally in-
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Figure 4-4: Model EINO versus Combustor Inlet Pressure

crease with flame temperature, should show increases at all engine conditions, with

the lower power conditions responding more strongly to pressure. Figure 4-4 shows

that the model is capturing this response.

Figure 4-5 gives the response of the model CO emissions to increasing pressure.

Since CO emissions generally decrease with flame temperature, pressure increases

should lead to decreasing CO emissions. The effect should be more pronounced at
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lower power than at higher power because of the effect of pressure on flame temper-

ature. The model predicts this response.
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Figure 4-5: Model EICO versus Combustor Inlet Pressure

4.6 Model Response to Equivalence Ratio

The equivalence ratio of the primary zone of a combustor, which refers to the ratio

of fuel and air to the stoichiometric ratio of fuel and air, has a strong effect on the

flame temperature of combustion. The stoichiometric fuel-air ratio refers to the ratio

of fuel and air at which all of the oxygen is used to oxidize all of the fuel, that is,

there is no excess fuel or air in the mixture. Thus, as the fuel-air ratio becomes closer

to the stoichiometric fuel-air ratio, meaning the equivalence ratio gets closer to unity,

the temperature of the reactions increases significantly. This has a pronounced effect

on the emissions of both NO. and CO.

Figure 4-6 shows the response of the model NO. emissions at idle and at climb-out

to varying primary zone equivalence ratio. Approach and takeoff were not plotted

for clarity. The primary zone equivalence ratio was varied t5% at both idle and

climb-out by varying the fuel flow into the primary zone. The figure shows that as

the equivalence ratio is brought closer to unity, the emissions of NO, increase. This is
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the appropriate result since the flame temperature increases as the equivalence ratio

moves closer to unity.
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Figure 4-6: Model EINO, versus Primary Zone Equivalence Ratio

Figure 4-7 gives the response of the model CO emissions at idle and climb to

varying primary zone equivalence ratio. The results were produced in the same way

as they were for Figure 4-6. At the idle condition, where large amounts of CO are

anticipated, the effect of increasing equivalence ratio has a significant impact on CO

emissions. The increasing flame temperatures caused by increasing the equivalence

ratio causes a reduction in CO emissions. The climb-out condition reveals a weaker

response of CO to increasing equivalence ratio. At this condition, the temperatures

are high and the varying equivalence ratio does not reduce the temperature enough

to have a significant impact on CO. This is consistent with what the model should

be estimating.
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EICO Response to Primary Zone Equivalence Ratio
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Figure 4-7: Model EICO versus Primary Zone Equivalence Ratio

4.7 Capturing the Effects of Gas Turbine Combus-

tor Design

Most of the discussion thus far regarding the response of NO, and CO emissions has

been based on the correct modeling of the chemical processes taking place within the

combustor. The physics-based emissions model however, must also account for the

physical layout of a gas turbine combustor and how that affects the combustion that

takes place. To determine if the model is capturing the physics and chemistry along

the length of the combustor, the emissions output from each zone was studied for

each ICAO LTO-cycle power setting.

4.7.1 Idle Emissions Output

Figure 4-8 shows the NOX and CO emissions in grams that are produced or oxidized

in each zone of the model of an industry combustor at the idle power setting. For

NOT, nearly all of the production occurs in the primary zone of the combustor as

anticipated given that the temperatures are highest in the primary zone, and that

at idle power, the temperature is quickly reduced below the value of about 1800
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K in the intermediate zone. For CO, formation occurs in the primary zone where
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Figure 4-8: Model Combustor Zone Emissions Production at Idle Power

dissociation losses from the combustion result in CO that has yet to oxidize to C0 2.

The intermediate zone, which is designed to recover the dissociation losses of the

primary zone, is shown in the figure to oxidize most of the CO that was formed in

the primary zone. The dilution zone has little effect on both NO, and CO, which is

appropriate because at that point in the combustor most of the reactions have taken

place and the dilution zone serves to only reduce the mean gas temperature prior to

the turbine. The results for the idle power setting show that the model combustor

zones capture the expected behavior of the emissions production and destruction

within the physical combustor.

4.7.2 Approach Emissions Output

Figure 4-9 gives the NO, and CO emissions for each zone for the approach power

setting. NO, is again produced almost entirely in the primary zone of the model.

This is consistent with the physical nature of the combustor at this power setting.

CO is again formed in the primary zone in great quantities due to dissociation and
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Figure 4-9: Model Combustor Zone Emissions Production at Approach Power

oxidized in the intermediate zone. The dilution zone is again having little effect on

the emissions outputs. The approach condition reveals that the CO formed in the

primary zone is greater than that formed in the primary zone at the idle condition.

This is consistent with CO kinetics. As shown in Figure 4-10, at low equivalence

ratios, CO oxidation does not reach the equilibrium value of CO. As equivalence

ratio is increased however, CO levels approach equilibrium in the primary zone. For

the range of equivalence ratios typically found in the primary zone of a gas turbine

combustor, (about 0.6 to 1.8), the non-equilibrium CO values can be lower than CO

levels at higher equivalence ratios where CO is at its equilibrium value. This is the

case for the equivalence ratios of the industry combustor at idle and approach. Thus,

even though the CO emissions from gas turbine combustors are higher at idle than

they are at higher power settings, the CO emissions from the primary zone of the

combustor are lower at idle in some cases than at higher power. The model estimates

this correctly.
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[14]

4.7.3 Climb-Out Emissions Output

The results of the climb-out power setting emissions outputs from each zone of the

model were similar to those of the idle and approach settings and are shown in Figure

4-11. The NO, emissions are mainly from the primary zone, though the intermediate

zone is shown to be producing some NO,. This is due to the higher temperature

conditions at this power setting and is an appropriate result. The CO emissions

follow the same trend as they did for the other power settings. CO is formed in the

primary zone and oxidized in the intermediate zone. The CO is again attaining an

equilibrium value in the primary zone that is higher than that of the approach setting.

This is consistent with Figure 4-10 given that the climb-out condition has a higher

primary zone equivalence ratio than the approach condition.

4.7.4 Takeoff Emissions Output

The takeoff results are also similar to the other power settings and are shown in Figure

4-12. The intermediate NO, production is higher still at takeoff, which is consistent

with the fact that the temperatures are highest at this condition and the interme-
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Figure 4-11: Model Combustor Zone Emissions Production at Climb Out Power

diate zone temperature has not been reduced enough to halt NO, formation.
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Figure 4-12: Model Combustor Zone Emissions Production at Takeoff Power

emissions in the primary zone are highest at takeoff as expected from the discussion
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on equivalence ratio and CO equilibrium.

4.7.5 Assessment of Model Capability

The model was shown to correctly capture trends in emissions outputs. The responses

to temperature, pressure and equivalence ratio were appropriate and the production

and oxidation of emissions within the various zones of the model match those expected

for an example industry combustor. Confidence in the model's ability to represent the

physical relationships between operating conditions, design parameters, and pollutant

emissions in a consistent manner has thus been established.
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Chapter 5

Results

This chapter presents results generated by the model using industry data for the

five combustors discussed previously. The results include emissions estimates from

the model for Engines 1, 2, and 3, the model estimates of the effects of the design

changes from Engine 1 to Engine la and Engine 3 to Engine 3a. Also included is a

model estimate of NO, and CO emissions for a full throttle sweep of Engine la. The

results are all discussed in the context of the objectives of the model as described in

sections 1.4 and 2.1.

5.1 Model Predictions for Engines 1, 2, and 3

Using the individually set unmixedness curve fit for Engines 1, 2, and 3, the model was

run using the input data for the four ICAO LTO-cycle points and the predictions for

NO, and CO were compared to the ICAO certification data. The NO, predictions are

also compared to predictions from the NPSS single-annular combustor NO. empirical

model given in Equation 1.4, to determine how well the model performs relative to

an empirical model at predicting trends in the emission levels of different combustor

designs.
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5.1.1 Overview of the Results

The use of the model to predict the emissions of NO. and CO from Engines 1, 2, and

3 revealed that the NO, estimates from the model were better than the estimates

from the empirical model for most cases, with the exception of the idle condition for

each engine, which was predicted poorly by both the physics-based model and the

empirical model. For CO emissions, the physics-based model estimates idle CO, which

is the dominant contribution to CO Dp/Foo, within the uncertainty bounds for all

three engines. At higher power the model does not perform as well, estimating most

of the approach, climb-out, and takeoff CO levels outside of the uncertainty bounds.

For all three engines however, the CO Dp/Foo is estimated within the uncertainty

bounds, owing to the dominance of idle CO and the model's ability to estimate it

within the uncertainty in the data for these engines.

5.1.2 Engine 1 Estimates

The results of the model estimates for Engine 1 are shown in Figure 5-1. Figure 5-1a

is a comparison of the model estimated EINOX with the ICAO certification data and

the empirical model estimate. The whiskers on the ICAO data points cover the i16%

uncertainty in the certification data. For Engine 1, the physics-based model estimates

the NO. emissions at approach, climb-out, and takeoff better than the empirical

model. Neither the physics-based model nor the empirical model estimate idle NO,

well. Figure 5-1b, is a comparison of the model estimated EICO with the ICAO

certification data. The whiskers on the ICAO points are the +23% uncertainty in

the EICO certification data. There is no comparison to an empirical model because,

as mentioned previously, there are no non-proprietary empirical CO models. The

figure shows that the model estimates the emissions of CO from Engine 1 within the

uncertainty in the ICAO certification data for both idle and approach. Takeoff and

climb-out CO estimates for Engine 1 are outside of the uncertainty in the data, which

is unclear from the figure due to the low EICO values at those conditions. Figure 5-1c,

is a comparison of the model estimated Dp/Foo for NO, with the ICAO certification

78



value as well as the empirically estimated value, and the model estimated Dp/Foo for

CO with the ICAO certification value. The whiskers are again the uncertainty in the

NO, and CO ICAO certification data. The figure shows that the model estimates

both the NO, and CO Dp/Foo from Engine 1 within the uncertainty bounds. The

figure also shows that the empirical model estimated the NO, Dp/Foo within the

uncertainty bounds.
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Figure 5-1: Emissions Estimates for Engine 1
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5.1.3 Engine 2 Estimates

The results of the model estimates for Engine 2 are shown in Figure 5-2. The plots

give the EINOX, EICO, and Dp/Foo estimates of the model compared to the ICAO

certification data and the empirical model estimates where applicable. The physics-

based model estimates the NO. emissions at approach, climb-out, and takeoff within

the ICAO uncertainty in the data and does a poor job estimating the NO. at idle. The

empirical model estimates the climb-out condition within the uncertainty in the data

but not the idle, approach, or takeoff condition. The EICO model estimate for Engine

2, shown in Figure 5-2b, is within the uncertainty in the data at the idle condition

and outside of the uncertainty in the data at approach, climb-out, and takeoff. The

Dp/Foo estimate for NOX, shown in Figure 5-2c, is outside of the uncertainty band

for both the physics-based model and the empirical model. The Dp/Foo estimate for

CO, also shown in Figure 5-2c, is within the uncertainty in the CO certification data.

5.1.4 Engine 3 Estimates

The results for Engine 3 are shown in Figure 5-3. The plots are for EINOx, EICO,

and Dp/Foo for NOx and CO, as they were in Figures 5-1 and 5-2. Figure 5-3a, shows

that the model is estimating NO, emissions within the uncertainty bounds at climb-

out and takeoff and is not predicting NOx emissions within the uncertainty in the

data at idle and approach. The same is true for the estimates from the empirical NOx

model. Figure 5-3b, shows that estimate of idle EICO is within the uncertainty in the

data but the approach EICO estimate is not. The climb-out and takeoff conditions

are also estimated outside of the uncertainty bounds, which is not shown clearly in

the figure. The Dp/Foo estimates for NOx and CO are shown in Figure 5-3c. The

model estimates both the NOx and CO Dp/Foo within the uncertainty bounds. The

empirical NOx model also estimates the Dp/Foo for NOx within the uncertainty in

the data.
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Figure 5-3: Emissions Estimates for Engine 3
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5.1.5 Overall Estimates

Figure 5-4 shows the estimates from the model of EINOx and EICO for all three

engines. The figure also includes the empirical NOx model estimates for all three

engines. The solid line is the line of exact match between the estimated and the

certification data emissions of NOx and CO. The dashed lines are the uncertainty

bounds for each emission. The plus marks on the figure are the model estimated

NOx and CO values and the circles are the empirical model estimated NO. values.

The figure shows that the estimated NO, emissions from the model are closer to the

Comparison of ICAO Measured EINO, and Model Predicted EINOx

,0

0"

+ +

+ ,
-o

- - 0
,- 0

5 10 15 20
ICAO Certification EINO g/kg fuel

(a) EINOX

25 30

Comparison of ICAO Measured EICO and Model Predicted EICO
An.

70

60

50W

30

20

10

' 10 20 30 40 50 60 70
ICAO Certification EICO g/kg fuel

80

(b) EICO

Figure 5-4: Emissions Estimates for Engines 1, 2, and 3

ICAO certification data than the empirical model in most cases. The lower values

of EINOx (below 5 g/kg fuel on the figure), where both the model and the empirical

model are outside of the uncertainty bands, are the idle conditions where neither

model performs well. The figure also shows that the estimated CO emissions from

the model are within the uncertainty bands for the higher values of EICO, which

make the most significant contributions to CO Dp/Foo.
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5.1.6 Discussion of Engine 1, 2, and 3 Model Estimates

From Figures 5-1, 5-2, 5-3, and 5-4, it is clear that the estimates of NO, emissions are

as good or better than those of the empirical model at nearly all conditions. The only

exception is the low power condition, where both the physics-based model and the

empirical model do a poor job. This is likely due to the complex NO. chemistry that

may not be modeled appropriately in the physics-based model at lower temperature

and due to the emphasis on the Zeldovich mechanism, which is not dominant at low

power, in the empirical model. For these three engines the model is thus meeting the

objective of performing as well as an empirical NO. model at predicting trends across

different engine designs and operating conditions.

The figures also show that the model estimates low power emissions of carbon

monoxide well, since all idle estimates were within the uncertainty bounds for CO.

The CO emissions at higher power levels are not estimated as well by the model but,

since these higher power conditions produce low emissions of CO relative to idle CO,

the Dp/Foo estimates are within the uncertainty in the data. For these three engines

the model is thus meeting the objective of predicting CO Dp/Foo levels within the

uncertainty in the data.

5.2 Predicting the Effects of Design Changes

An objective of physics-based emissions model is to predict broad trends in pollu-

tant emissions using a single methodology across different combustor designs and

operating conditions using only high-level parameters. The following results assess

the performance of the model in terms of meeting that objective through the model

estimates of the effects of two design changes on the emissions of NO, and CO.

5.2.1 Overview of Results

The results for both design changes were obtained by using the individually set un-

mixedness curves discussed in Chapter 3. For the design change from Engine la to
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Engine 1, the emissions model performs better than the empirical model at estimating

individual levels of NO. at the four LTO-cycle points. The empirical model performs

better than the physics-based model at estimating the NO. Dp/Foo change between

the two engines, but this is due to error cancellations between the certification points

when they are summed in the Dp/Foo metric. The CO predictions from the model

are outside of the uncertainty in the data for most of the certification points for the

two engines, but the change in CO Dp/Foo from Engine la to Engine 1 is captured

correctly.

For the design change from Engine 3 to Engine 3a, the emissions model performs

as well as the empirical model in terms of NO. estimates. The CO estimates from

the model are outside of the uncertainty in the data for most conditions for Engines

3 and 3a, but the change in Dp/Foo between the two engines is captured within the

uncertainty in the data by the model.

5.2.2 Engine la to Engine 1

Table 5.1 compares the model estimated NO, emissions for Engine la with the ICAO

certification data and the empirically estimated NO, emissions at the four LTO-

cycle points. The model estimates of NO. are all within ±16% uncertainty with

ICAO Model Empirical
EINO g/kg fuel EINO, g/kg fuel EINO, g/kg fuel

Idle 4.43 1.40 1.53
Approach 11.26 12.15 5.01

Climb Out 14.30 14.15 18.32
Takeoff 19.19 19.58 24.19

Table 5.1: Engine la NO, Emissions

the exception of the idle setting. None of the empirical estimates are within the

uncertainty in the certification data. Table 5.2 compares the model estimated CO

emissions for Engine la with the ICAO certification data. The model estimates for

CO are all outside the ±23% uncertainty with the exception of approach, with the idle

CO being overestimated by 82%. Idle CO can be estimated within the uncertainty
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for all engines studied in the this research with the exception of Engine la. This issue

will be discussed in more detail in Chapter 6.

ICAO Model
EICO g/kg fuel EICO g/kg fuel

Idle 20.12 36.66
Approach 4.09 3.53

Climb Out 0.62 0.17
Takeoff 0.92 0.12

Table 5.2: Engine la CO Emissions

For the analysis of the design change from Engine la to Engine 1, the results for

Engine la are considered baseline values. How well the model captures the effects

of the design change is assessed by comparing how the estimated emissions levels

change at each condition between the two engines with the certification data for the

two engines. Table 5.3 compares the certification NO, data for Engine 1 with the

model estimated and the empirically estimated NO. emissions. The model estimates

ICAO Model Empirical
EINO, g/kg fuel EINO, g/kg fuel EINO, g/kg fuel

Idle 4.03 7.12 1.59
Approach 9.85 10.94 4.50

Climb Out 12.00 11.29 13.83
Takeoff 13.82 13.00 17.10

Table 5.3: Engine 1 NO, Emissions

the approach, climb-out, and takeoff condition within the uncertainty in the data.

The empirical model does not estimate the NO, emissions at any condition within

the uncertainty in the data. The response of the certification emissions levels to the

design change from Engine la to Engine 1 was a decrease in NO, emissions at all

of the certification points. The model NO, emissions response to the design change

was a decrease in NO, emissions at approach, climb-out, and takeoff, and an increase

in NO, emissions at idle. The empirical model response to the design change was

also a decrease in NO, emissions at approach, climb-out, and takeoff, and an increase

in NO, emissions at idle. Table 5.4 shows the calculated NO. Dp/Foo values for

Engines la and 1 from the certification data, the model, and the empirical model.
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The certification data shows a decrease in NO, Dp/Foo of about 24% as a result of

the design change. The physics-based model estimates a decrease of about 3% in

NO, Dp/Foo. The empirical model estimates a decrease of about 34%. Given that

ICAO Model Empirical
NO. g/kN NO- g/kN NO. g/kN

Engine la 46.56 42.08 45.49
Engine 1 35.16 40.76 30.16

Table 5.4: Engine la and Engine 1 NO, Dp/Foo Estimates

a change of 24% in certification Dp/Foo is greater than the uncertainty in the data,

the change in Dp/Foo is signficant and was not captured by the physics-based model.

This is due to the idle NO, estimates. The empirical model appears to capture the

change in NO, Dp/Foo correctly however, given that the emissions of NO, at each

certification point was estimated outside of the uncertainty in the data, the estimate

was the result of the errors in the four separate estimates at the certification points

cancelling out and thus should not be taken as a positive result for the empirical

modeling method.

Table 5.5 compares the certification CO data for Engine 1 with the model esti-

mated CO emissions at the four certification points. The model estimates climb-out

CO within the uncertainty in the data and idle, approach, and takeoff outside of the

uncertainty in the certification data. Table 5.6 compares the certification data CO

ICAO Model
EICO g/kg fuel EICO g/kg fuel

Idle 19.73 26.66
Approach 4.67 3.56

Climb-Out 0.57 0.69
Takeoff 0.59 0.21

Table 5.5: Engine 1 CO Emissions

Dp/Foo with the model estimated CO Dp/Foo for Engines la and 1. The model

estimates a decrease of about 15% in CO Dp/Foo from Engine la to Engine 1, while

the certification data gives an increase of about 11% from Engine la to Engine 1. The

change in CO Dp/Foo in the certification data from Engine la to Engine 1 is within
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the uncertainty in the data and therefore is not significant. The model estimate,

which is a change of less than 23%, is thus appropriate.

ICAO Model
CO g/kN CO g/kN

Engine la 38.52 65.10
Engine 1 42.67 55.30

Table 5.6: Engine la and Engine 1 CO Dp/Foo Estimates

5.2.3 Discussion of the Engine la to Engine 1 Design Change

Results

One of the objectives of the model is to predict broad trends in emissions levels from

different combustor designs within the uncertainty in the certification data for CO

and as well as empirical models for NO,. The change in CO Dp/Foo was captured

correctly because there was no significant change in the certification data (meaning

the change was within the uncertainty in the data) and the model estimated this.

However, the model did not estimate the emissions levels of CO at the individual

certification points within the uncertainty in the data with the exception of climb-out

for Engine 1 using the Engine la derived unmixedness curve. The objective for CO

emissions prediction was therefore, not met for this design change but the results

are promising because the objective of predicting the correct sign for changes in CO

emission with changing design and operating parameters was met.

For NO, emissions, the model estimates the emissions levels within the uncertainty

in the data for all but the idle condition, but does not capture the magnitude of the

change in NO, Dp/Foo. The empirical model does not estimate the emissions levels

within the uncertainty in the data for any condition, but it does capture the change

in NO. Dp/Foo within the uncertainty in the data. However, this was the result of

error cancelling among the four certification points. The objective for NO- emissions

prediction therefore, was not met because the model did not perform as well as the

empirical model in terms of the NO, Dp/Foo, but given that the only weakness of
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the model for NO_ emissions appears to be predicting idle NO., the results for NO

are also promising.

Another objective of the model is to include high-level design parameters and

operating conditions that would be convienient for an expert to use in projecting

future technology. Figure 5-5 shows the percentage changes in the model inputs for

the design change from Engine 1 to Engine la. The inputs shown in the figure are

the only elements of the model that were changed between the two engines. Since the

results of the design change from Engine la to Engine 1 were promising both in terms

of NO, and CO, the possibility of creating a model using only high-level, convienient

parameters is plausible.

Percentage Change in Engine 1 a Input Parameters from Engine 1
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Figure 5-5: Percentage Change of Inputs from Engine 1 to Engine la

5.2.4 Engine 3 to Engine 3a

Tables 5.7 and 5.8 show the model and empirical estimates of NO. emissions for

Engine 3 compared to the ICAO certification data and the model estimates of CO

emissions for Engine 3 compared to the ICAO certification data. The model NO,

estimates are within the uncertainty in the data for climb-out and takeoff and outside

of the uncertainty for idle and approach. The empirical model estimates are also
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ICAO Model Empirical
EINOX g/kg fuel EINO_ g/kg fuel EINO, g/kg fuel

Idle 3.42 1.31 1.61
Approach 7.63 11.04 5.18
Climb-out 15.44 15.44 16.23

Takeoff 18.34 18.34 20.19

Table 5.7: Engine 3 NO, Emissions

within the uncertainty in the data for climb-out and takeoff and outside of the uncer-

tainty for idle and approach. The model CO estimate for the idle condition is within

the uncertainty in the data for Engine 3 and not within the uncertainty at any other

condition. The assessment of the model's ability to capture the effects of the design

change from Engine 3 to Engine 3a is based on how the changes in the emissions

values in the certification data are captured by the model. The certification data and

model estimates for Engine 3a are shown in Tables 5.7 and 5.8. Table 5.9 compares

ICAO Model
EICO g/kg fuel EICO g/kg fuel

Idle 57.06 61.22
Approach 4.57 1.76
Climb-out 0.37 0.07

Takeoff 0.42 0.05

Table 5.8: Engine 3 CO Emissions

the certification NO, data for Engine 3a with the model estimated and the empiri-

cally estimated NO, emissions. The model estimates idle, climb-out, and takeoff NO-

within the uncertainty in the data. The empirical model estimates only climb-out and

takeoff within the uncertainty in the data. From Engine 3 to Engine 3a, the certifica-

tion NO, emissions levels for all four ICAO LTO-cycle points increased. This result

is estimated correctly by the physics-based emissions model and the empirical NO,

model. Table 5.10 shows the calculated Dp/Foo values for Engines 3 and 3a from the

certification data, the model, and the empirical model. The certification data NO,

Dp/Foo increases about 9%, the model NO, Dp/Foo increases by about 20%, and

the empirical model NO. Dp/Foo increases by about 12%. Both the physics-based

model and the empirical model estimate the change in NO_ Dp/Foo between Engines
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ICAO Model Empirical
EINO, g/kg fuel EINO g/kg fuel EINO g/kg fuel

Idle 3.59 4.12 1.74
Approach 8.02 11.23 5.59
Climb-out 16.68 17.01 17.98

Takeoff 20.40 19.28 22.68

Table 5.9: Engine 3a NO, Emissions

3 and 3a within the uncertainty in the certification data. Table 5.11 compares the

ICAO Model Empirical
NO g/kN NO, g/kN NO g/kN

Engine 3 35.81 34.85 32.90
Engine 3a 39.03 41.98 36.78

Table 5.10: Engine 3 and Engine 3a NO, Dp/Foo Estimates

certification CO data for Engine 3a with the model estimated CO emissions at the

four LTO-cycle points. The model does not estimate the CO emissions at any of

the four points within the uncertainty in the certification data. Table 5.12 compares

ICAO Model
EICO g/kg fuel EICO g/kg fuel

Idle 49.94 68.33
Approach 3.68 0.80
Climb-out 0.38 0.05

Takeoff 0.52 0.06

Table 5.11: Engine 3a CO Emissions

the certification data CO Dp/Foo with the model estimated CO Dp/Foo for Engines

3 and 3a. The model estimates an increase of about 9% in CO Dp/Foo while the

certification data contains a decrease of about 14%. There is therefore a negligible

change in CO Dp/Foo given the uncertainty in the data, which is estimated correctly

by the model.
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Engine 3
Engine 3a

Table 5.12: Engine 3 and

ICAO
DO g/kN

94.35
81.49

Engine 3

IL
a

Model
CO g/kN

98.50
107.73

CO Dp/Foo Estimates

5.2.5 Discussion of the Engine 3 to Engine 3a Design Change

Results

The effect of the design change from Engine 3 to Engine 3a on NO, emissions is

captured by the physics-based model as well as or better than the empirical model for

all cases. The emissions model thus meets the objective of predicting NO. emissions

as well as an empirical model for this particular design change. The effect of the

design change on CO emissions is captured by the model within the uncertainty in

the data in terms of CO Dp/Foo, but the results are not as good for the individual

data points. The objective of predicting CO emissions within the uncertainty in the

data was therefore, not met for this particular design change, but the results were

again promising.

Figure 5-6 gives the percentage changes to the input parameters of the model from

Engine 3 to Engine 3a. Using only these parameter changes the model predicted NO,

Percentage Change in Engine 3a Input Parameters from Engine 3
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Figure 5-6: Percentage Change of Inputs from Engine 3 to Engine 3a
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emissions better than the empirical model and CO Dp/Foo within the uncertainty

in the data, meeting the objective of using high-level, convienient design parameters

and operating conditions in the model.

5.3 NO, Estimates for a Full Throttle Sweep

To assess the model's ability to consistently capture the effect of combustor operating

conditions on pollutant emissions, a full throttle sweep of operating conditions for

Engine la was run with the model and the results were compared to data collected

during the engine's certification testing. To show the benefit of capturing the effects

of operating conditions on pollutant emissions, the model estimates for NO, and CO

are compared with the estimates from the Boeing fuel flow method 2 (BM2), which is

a widely used method for modeling emissions of NO, and CO at different operating

conditions [12].

5.3.1 Throttle Sweep Emissions Estimates

Figure 5-7 compares the emissions model estimates with the data collected on Engine

la during certification testing for NO, and CO. The empirical NO, model results are

also shown. The figure shows that the NOX estimates of the model follow the trend

in the certification data more closely than the empirical model. The physics-based

emissions model is therefore capturing the relationship between operating conditions

and NOx emissions better than the empirical model.

The CO estimate from the model follows the same trend as the test CO data

but at low fuel flow rates the CO estimates from the model are significantly higher

than the test data values. The uncertainty is not shown on the plot but the CO

estimates at these low power conditions are not within the uncertainty in the data.

The physical relationship between CO emissions and operating conditions however is

captured because the trend is estimated correctly.
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Figure 5-7: Throttle Sweep Emissions Estimates for Engine la

5.3.2 Throttle Sweep Estimates versus Boeing Fuel Flow Method

2

The Boeing fuel flow method 2 uses emissions indices of NO_ and CO and corre-

sponding fuel flows at the ICAO certification points to model emissions at different

engine operating conditions. For NOT, the values of the emissions index at the ICAO

points are plotted against the fuel flow rates at those engine conditions. Values of

EINO at other operating conditions are then determined with linear interpolations

between LTO-cycle points. For CO, the same technique is used but only two linear

interpolations are used, one between idle and approach and one between climb-out

and takeoff. The two linear interpolations form a corner that is usually between the

approach and climb-out conditions.

Figure 5-8 shows the BM2 estimates of EINO, and EICO along with the model

estimates and the test data. From the EINOX figure it is clear that the BM2 does

not model the operating conditions between approach and climb-out (which includes

the cruise power setting) as well as the physics-based emissions model. The physics-

based emissions model's ability to capture the effects of operating conditions on NOx
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emissions makes it a more suitable model in this case for estimating the impact

of aircraft operations than the BM2. The EICO figure shows that the physics-based

emissions model and the BM2 both estimate the correct trend of EICO with increasing

fuel flow rate.

(a) EINOX

8U

(b) EICO

Figure 5-8: Throttle Sweep Emissions Estimates for Engine la Compared with Boeing
Fuel Flow Method 2
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Chapter 6

Conclusions and Future Work

6.1 Conclusions

The objective of this thesis was to create a physics-based emissions model for predict-

ing emissions of potential future gas turbine combustors within quantified uncertainty

bounds. To make a successful emissions model for a policy making tool, the model

was required to capture the physical relationships among operating conditions, sim-

plified combustor design parameters, and pollutant emissions in a consistent way with

one modeling methodology. It was desired first that the model predict the correct

sign for changes in emissions with changes in design and operating conditions and if

successful, to then predict changes in emissions with changes in design and operating

conditions with an accuracy that approaches that of the uncertainty and variability

of measurements of emissions indices for the active fleet. The model presented in this

thesis did not meet all of the objectives but several important contributions to NOx

and CO emissions modeling were made.

NOx Emissions

The success criteria for predicting NOx emissions with the physics-based emissions

model was to estimate NOx emissions within the uncertainty in the certification data

or as well as an established empirical model if neither model estimates the emissions

levels within the certification data uncertainty. If the physics-based emissions model
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could make estimates within the uncertainty in the data or as well as an empirical

model while using high-level physical parameters that may be used to project future

technologies, then the physics-based model would make a significant contribution to

emissions modeling for a policy-making tool.

The result of this work was the creation of a physics-based emissions model that

estimated NO. emissions as well as, or better than, the empirical model at all four

certification points for all of the engines and design changes studied in this thesis.

The model has the ability to consistently capture the relationships between operating

conditions and NO, emissions as shown in the throttle sweep analysis, and the model

has the ability to consistently capture the relationships between combustor design

parameters and NO, emissions as shown by the estimates for Engines 1, 2, and 3.

The ability to use one methodology to estimate broad trends in combustor designs

for NO, emissions across engine manufacturers was not studied since only one engine

manufacturer was engaged in this research. However, the model was shown to have

the ability to use one methodolgy to estimate broad trends in combustor designs

within a single engine family as shown by the design change analyses for Engines la

and 1 and Engines 3 and 3a. The model was also shown to perform better than BM2

for interpolating between certification points.

The only concern regarding the physics-based emissions model's NO, emissions

estimates is that the model does not estimate low power emissions well. The estimates

for these cases were usually outside of the uncertainty in the data and the result was

that the Dp/Foo estimates for NO, emissions were not as good as the empirical

model estimates for some cases. The empirical model also did a poor job estimating

low power NO, emissions but the errors in emissions estimates at the four certification

points for the empirical model often cancelled out when the Dp/Foo was calculated.

Though the model did not strictly meet the objective of predicting NO, emissions

as well as an empirical model, the model did perform better than the empirical model.

The inability to correctly capture the change in NO, Dp/Foo for the two design

changes studied in this thesis was due only to poor idle NO, estimates. The physics-

based model has the ability to predict the emissions of a single annular gas turbine
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combustor at specific operating conditions using high-level parameters as well as, and

in most cases better than, an empirical model. This is a significant contribution to

NO, emissions modeling capability.

CO Emissions

The success criteria for predicting CO emissions with the physics-based emissions

model was to estimate CO emissions within the uncertainty in the ICAO certification

data. There were no non-proprietary CO emissions models to use to compare how well

the model estimates CO emissions to other techniques, so using the uncertainty in the

certification data was the only means of assessing the models predictive capability.

Because there were no CO emissions models to compare the physics-based emissions

model estimates to, the ability to capture the relationships between operating con-

ditions, combustor design parameters, and pollutant emissions consistently, meaning

the ability to predict the correct trends in CO emissions with changing conditions

and design parameters, would be a significant contribution, even if the model could

not estimate the emissions of CO within the uncertainty in the data.

The results presented in this work show that the physical relationships among

operating conditions, high-level design parameters, and CO emissions are captured

correctly. The response of CO to design parameters like temperature and pressure, as

shown in Chapter 4, is captured correctly. The response of CO to changing operating

conditions, as shown in the full throttle sweep analysis of Engine la, is captured

correctly. The changes in CO Dp/Foo that resulted from the design changes from

Engine la to 1 and Engine 3 to 3a were captured within the uncertainty in the

certification data by the model. For most cases, the low power CO emissions, which

are more significant than the high power CO emissions because of their contributions

to the Dp/Foo, were estimated within the uncertainty in the data.

A concern regarding the CO emissions estimates from the physics-based model

is that for Engine la, the model did not estimate idle CO within the uncertainty in

the certification data. This led to an esitmate of the idle CO for Engine 1 outside

of the uncertainty in the data when the design change from Engine la to Engine 1
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was studied. The result was that the CO estimates of the Dp/Foo values for each

engine were not within the uncertainty in the data, which means that the objective

of predicting CO emissions within the uncertainty was not met. The poor result

may have been the result of an incomplete intermediate zone model for CO emissions

predictions and should be looked at in more detail in the future.

Though the model did not meet all the objectives for CO emissions prediction

accuracy, it did meet the objective of capturing the physical relationships among

operating conditions, design parameters, and CO emissions. A non-proprietary CO

emissions model now exists as a result of this work, which is a significant contribution

to CO emissions modeling capability.

6.2 Future Work

Although this thesis made contributions to NO_ and CO emissions modeling for

policy-making tools, the work is not done. There are several issues that should be

explored further. These are the inability to predict CO emissions within the uncer-

tainty in the data for Engine la, the poor low power NO, predictions, the extension

of the model to other combustor designs and manufacturing companies, and the de-

velopement of an addition to the model to enable the prediction of soot formation.

For CO emissions, different reactor arrangements, particularly for the intermediate

zone should be studied. For low power NO, emissions, different kinetic mechanisms

should be studied to determine whether or not poorly modeled low temperature NO,

chemistry is the cause of the erroneous predictions at low power.

If the objectives of this thesis can be met by modifying the reactor arrangement

and the kinetic mechanism, then the application of the model to other engine lines

and engine manufacturers should be studied. The physics-based emissions model

presented in this thesis was designed for single annular combustors and tested with

data from one engine manufacturer and one engine line. If the model is to be used in a

policy making tool it must be tested across engine manufacturers and across all power

levels. New models should also be created, using the same methods developed in this

100



thesis, for more advanced combustor layouts such as dual-annular combustors, rich-

quench-lean combustors, and lean-premix-prevaporize combustors, so that a broader

range of potential future technologies may be captured.
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