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Abstract

Human-robotic systems will play a critical role in space exploration, should NASA
embark on missions to the Moon and Mars. A unified framework to optimally leverage
the capabilities of humans and robots in space exploration will be an invaluable tool
for mission planning. Although there is a growing body of literature on human robotic
interactions (HRI), there is not yet a framework that lends itself both to a formal
representation of heterogeneous teams of humans and robots, and to an evaluation
of such teams across a series of common, task-based metrics. My objective in this
thesis is to lay the foundations of a unified framework for architecting human-robotic
systems for optimal task performance given a set of metrics. First, I review literature
from different fields including HRI and human-computer interaction, and synthesize
multiple considerations for architecting heterogeneous teams of humans and robots. I
then present methods to systematically and formally capture the characteristics that
describe a human-robotic system to provide a basis for evaluating human-robotic
systems against a common set of metrics. I propose an analytical formulation of
common metrics to guide the design and evaluate the performance of human-robot
systems, and I then apply the analytical formulation to a case study of a multi-agent
human-robot system developed at NASA. Finally, I discuss directions for further
research aimed at developing this framework.
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Chapter 1

Introduction

As NASA prepares to embark on exploration missions to the Moon and Mars, human-

robotic systems will play a critical role in fulfilling mission objectives. Humans and

robots will be required to work in teams to explore and conduct science on planetary

surfaces, and erect, maintain, and repair space-based infrastructure. NASA has made

a great deal of progress towards developing and demonstrating robotic and automated

technologies over the past decade, and current research activity is focused on testing,

demonstrating, and validating specific robotic and automated technologies that will

enable effective human-robotic systems [19, 44, 47, 51, 80, 83, 13]. However, these

technologies are evaluated using a wide range of metrics that are highly application

specific. There is no existing framework of common metrics to compare the advantages

and disadvantages of different human-robotic systems performing a space exploration

task or set of tasks. Formulating such a framework is a necessary step towards

optimally leveraging the capabilities of humans and robots in space exploration.

In this thesis, I develop the foundation for such a framework through a review

and synthesis of considerations for architecting human-robot teams (Chapter 2). To

structure the discussion I propose an outline of a framework for designing human-

robotic systems consisting of four building blocks: 1) specifying tasks, 2) generating a

human-robotic team, 3) allocating functions to agents in the system, and 4) evaluating

the system against common task-based metrics. I then use this structure to discuss

considerations for designing optimal human-robotic systems to perform a task or set
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of tasks, given a set of metrics.

In Chapter 3, I present further work towards developing formal methods to rep-

resent human-robotic system architectures. My objective is to provide a basis for a

standard means of evaluating human-robotic systems against a common set of metrics.

Evaluating different human-robotic systems based on a non-standard description of

system architecture makes it difficult to compare the evaluation results for different

systems. Rather, a designer must systematically and formally capture the charac-

teristics that describe each human-robotic system to ensure that the evaluations of

different human-robotic systems are comparable. In this chapter, I discuss the impor-

tant elements that must be captured in the formal representation of a human-robotic

system. I then illustrate the formal representation through a case-study of the ter-

restrial human-robotic Nursebot System, which provides assistance to nursing home

residents and caregivers.

In Chapter 4, I propose an analytical formulation of common metrics to guide

the design and evaluate the performance of human-robot systems. The increased

relevance of human-robot systems raises the issue of how to optimally (and reliably)

design these systems to best leverage the varied capabilities of humans and robots.

The question of optimality in turn raises the question of what metrics to use in

order to guide the design, and evaluate the performance, of human-robot systems.

In this chapter, I present objectives for maximizing the effectiveness of a human-

robot system which capture the coupled relationships among productivity, reliability,

and risk to humans. Reliability parameters are proposed to characterize unplanned

interventions between a human and robot, and the effect of unplanned interventions

on the effectiveness of human-robot systems is then investigated analytically using

traditional reliability analysis.

I then present a real-world example of carrying out the theoretical analysis of the

effectiveness of a human-robot system (Chapter 5). I apply the analytical formulation

from Chapter 4 to a case-study of the Peer-to-Peer System, a multi-agent human-robot

system developed at NASA. I describe the Peer-to-Peer System, including agents and

their roles, and a formal description of the tasks performed during experiment trials.

16



I then use data collected during the experiment trials to compare the effectiveness of

the system to a human-only team performing the same tasks.

Finally, in Chapter 6, I summarize the contributions of this thesis towards a unified

framework for analytically comparing the advantages and disadvantages of human-

robot systems. I also discuss directions for future research, and potential applications

of such a framework in space exploration and other fields.
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Chapter 2

Review and synthesis of

considerations for design and

evaluation of human-robot

multi-agent systems

New robotic and automated technologies provide many options for architecting teams

of humans and robots for space exploration. However, the nature of space exploration

requires that human-robotic systems perform tasks in changing environments that are

difficult to characterize. It is an open question how to best integrate these technolo-

gies to optimally leverage the capabilities of humans and robots for specific space

exploration tasks. In this chapter, I undertake the analysis of considerations for ar-

chitecting human-robotic systems from a designer's perspective to facilitate the future

transition from analysis to design of human-robotic systems.

'This chapter is based on work under consideration for publication with IEEE Transactions on
Systems, Man, and Cybernetics.
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2.1 Analyzing human-robotic systems from a de-

signers' perspective

In Figure 2-1 I propose a framework for designing human-robotic systems to perform

a task or set of tasks. I use this framework to guide the discussion of considera-

tions for architecting heterogeneous teams of humans and robots for optimal task

performance, given a series of tradeoffs among various metrics. The building blocks

of this framework include 1) specifying tasks, 2) generating a human-robotic team,

3) allocating functions to agents in the system, and 4) evaluating the system against

common task-based metrics. A designer must first identify the tasks to be performed

by the human-robotic system and define the environment in which these tasks will

be performed. Tasks must be defined independent of the human-robotic system per-

forming them in order to provide for a framework in which human-robotic systems

are comparable across a series of common, task-based metrics. Task specification

must also capture the uncertainty of the environment in which the task or tasks are

performed; this lays the foundation for a framework capable of addressing the value

of flexibility and robustness in human-robotic systems. The specification of tasks and

environment can be used to formulate a set of common metrics to compare different

teams of humans and robots.

Next the designer must formally describe the human-robotic system architecture.

This includes defining the number and type of agents, capabilities and constraints

of each agent, and the ways in which agents interact (including hierarchical relation-

ships). The designer then searches the space of feasible options for allocating tasks to

members of the team architecture. This search yields an optimal task allocation for a

given set of common, task-based metrics. The designer then formulates a new team

architecture and iterates through the design process until all architectures of interest

have been evaluated for comparison. Finally, the designer compares each of the team

architectures (with optimal task allocation), and chooses the team architecture which

best meets the designer's objectives.

20
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Figure 2-1: Flowchart of framework for designing optimal human-robotic systems

While there is a great deal of literature addressing each of the building boxes

in the proposed framework, these works have not yet been integrated into a unified

framework for designing optimal human-robotic systems to perform a task or set of

tasks, given a set of metrics. In this chapter, I investigate considerations relevant

to each numbered building block of the framework proposed in Figure 2-1. I discuss

issues related to (1) task specification (Section 2.2). I also discuss considerations

related to (2) formally describing a team architecture. The modes in which humans

and robots can work together to execute a space exploration task or set of tasks

depend on considerations such as inherent capabilities and constraints of each agent

and the different modes in which agents interact (Section 2.3). I explore desirable

characteristics of (3) task allocation methods for a team architecture (Section 2.4).

Finally, I propose (4) common metrics to compare different teams of humans and

robots (Section 2.5).
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2.2 Task specification

The first step in designing a human-robotic system (depicted as the first building

block in Figure 2-1 is to describe the tasks to be performed and the environment

in which they will be performed. One must adequately capture the characteristics

of the task and environment that are anticipated to potentially influence system

performance. This provides a basis for evaluating the performance of the human-

robotic system [12]. In this section, first I outline the characteristics a description of

task and environment should capture. I then draw on the literature to discuss the

different methods of task specification. From this literature review, I synthesize and

propose a method to specify tasks and environment. Finally, I present an illustrative

example of the synthesized task specification method.

2.2.1 Characteristics of task specification

Specification of tasks must be independent of the human-robotic system performing

it in order to provide for a framework in which human-robotic systems are compa-

rable across a series of common, task-based metrics. Common task-based metrics

are necessary to compare the performance of different human-robotic systems per-

forming the same tasks. Task specification must also characterize the uncertainty of

the environment in which the task or tasks are performed; this will lay the founda-

tion for a framework capable of addressing the value of flexibility and robustness in

human-robotic systems.

2.2.2 Specifying tasks: literature review

Often, descriptions of tasks for robotic systems or human-robotic systems are system-

specific. This leads to system-specific metrics for evaluating the human-robotic system

and precludes the ability to compare the advantages and disadvantages of different

human-robotic systems performing the same task(s). Potkonyak et al. [60] remind

us that formulating the task specification with a description of the final outcome

of the task opens up the possibility for multiple solutions to achieve the desired
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outcome. Specifying a task so that multiple human-robotic systems can fulfill the final

outcome is a necessary step towards formulating common, task-based metrics which

can be used to compare the advantages and disadvantages of different human-robotic

systems. The interested reader is referred to literature on system architecture theory

for further discussion of system-independent task and requirements specification [24].

Once we have specified the final outcome of the task(s) for which we are designing

a human-robotic system, we require a method of further specifying the subtasks

that allow for the task(s) to be successfully completed. These subtasks must be

system-independent and describe the task to be performed rather how a particular

system performs the task. This taxonomy of system-independent task specification

and system-dependent task specification is addressed in the field of assembly and task

planning [38] and is also relevant for human-robotic systems operating in the space

environment. System-independent task specification is captured in the first building

block in Figure 2-1 and is the subject of discussion in this section. System-dependent

task specification is a property of a particular human-robotic system and is discussed

further in Chapter 3.

The literature provides us with a number of different methods for system-independent

task specification. In a discussion of task allocation for human-robot interaction in

manufacturing, Ghosh et al. [37] describe a method for defining tasks by dividing

tasks into subtasks and listing general and specific requirements for completing each

subtask. An example of Ghosh et al. task specification is presented in Table 2.1.

Rodriguez et al. [62] propose a similar method in a paper discussing human-robot

system performance for space exploration. Tasks are decomposed into functional

primitives and associated performance metrics. An example of Rodriguez et al. task

specification is shown in Table 2.2.

However, Acquisti et al. [1], suggest that these types of functional analyses are lim-

ited in that they do not consider "informal logistics" such as environmental conditions

and problem resolution. (See [42, 17] for discussion of the environmental conditions

relevant in exploring planetary surfaces.) The nature of space exploration requires

that human-robotic systems perform tasks in changing environments which are diffi-
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Task: Assembly Operation
Subtask General Requirements Specific Requirements
Reach
Select
Grasp
Move Degree of Freedom Weight of Object

Distance
Speed of Movement
Acceleration

Position
Assembly

Table 2.1: Ghosh et al. task specification [37]

Task: Collect Geologic Sample
Functional Primitive Performance Metrics
Traverse Distance Traveled

Terrain Degree of
Difficulty

Find Rocks
Carry Rocks

Table 2.2: Rodriguez et al. task specification [62]

cult to fully characterize, and the capability for flexibility and robustness become key

drivers in evaluating a human-robotic system operating in a changing environment.

As the environment changes, same actions will have different effects. Therefore, the

actions taken by agents in a human-robotic system are dependent on the context in

which the actions are being performed. This phenomenon is referred to as context-

conditioned variability, unanticipated variability, or situated action, and is recognized

in a variety of fields including motor control, cognitive engineering, and cognitive sci-

ence [78]. The interested reader is referred to [49, 9, 75] for further discussion of

environmental context and situated action.

Consequently, we require a task specification that is capable of capturing the infor-

mation about the environment and state of the human-robotic system. In addressing

this requirement, we review work on artificial intelligence, which addresses the prob-

lem of capturing temporal relationships among actions and events [3, 71, 18, 53]. For

example, Nicolescu et al. [53] propose a task specification which captures this infor-
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mation in the form of a behavior network. A behavior network is a link-node represen-

tation of context-conditioned, complex sequences of behaviors. Although Nicolescu et

al. implement these behavior networks to help robots learn representations of high-

level tasks, they capture the characteristics we require for task specification; they

use precondition/postcondition dependencies to allow for task specification that is

dependent on environmental and system states [53]. Table 2.3 shows an example of

implementing Nicolescu's behavior network framework to specify tasks.

Task: Collect Geologic Sample
Behavior Permanent Preconditions Enabling Preconditions Ordering Constraints
Traverse Traverse mechanisms

functional
No obstacles larger than
X[units]

Find Rocks Find Rocks mechanisms Area traversed has rocks
functional

Carry Rocks Carry Rocks mechanisms Rocks to carry must be Must Find Rocks
functional less than Y [units] before Carry Rocks

Table 2.3: Example of behavior network task specification adapted from [53]

Each behavior (or subtask) is described by permanent and enabling precondi-

tions, and ordering constraints. Permanent preconditions must be met during the

entire execution of the behavior or else the behavior is not possible. When a rover

is traversing a boulder-strewn field, one permanent precondition is that the boulders

over the course of the entire traverse must be small enough for the rover to negotiate.

If the rover encounters a boulder too large to negotiate, it is not possible to continue

traversing. Enabling preconditions must be met immediately before the activation of

a behavior but do not need to be met during the entire execution of the behavior.

If a rover is tasked with finding rocks, the enabling precondition is that there are

rocks in the area. This is an enabling precondition because the rover can continue

to carry out the action of finding rocks for some time after all rocks in the area have

been surveyed. Finally, ordering constraints specify the sequences of behaviors. For

example, it is necessary to find rocks before carrying rocks.

Once we have specified tasks dependent on environment and system states, we
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must represent uncertainties in the tasks to be performed and the environmental and

system states. By capturing these uncertainties in task specification, we lay the foun-

dation for evaluating the flexibility/robustness of a system, defined as the ability of a

human-robotic system to accommodate uncertainties in task and environment. (See

Section 2.5 on common metrics for further discussion of flexibility/robustness.) The

Acquisti et al. [1] Brahms Activity Model of work practices aboard the International

Space Station represents uncertainties in tasks to be performed by categorizing tasks

and subtasks according to a two by two matrix. On one axis, the task or subtask is

scored according to the degree to which it is scheduled; on the other axis, the task

or subtask is scored according the uniqueness or repeatability of the activity. This

sort of categorization assigns a specific uncertainty to each task or subtask. I propose

implementing a similar description of uncertainty to each task and subtask in the

task specification. This description can be formulated as a probability function, or a

quantitative or qualitative categorical ranking. The ability of human-robotic systems

to accommodate uncertainty in the tasks and subtasks to be performed provides a

measure of the system flexibility. Flexibility as a metric for system performance is

discussed further in Section 2.5.

The Brahms Activity Model also links tasks to environment and system states

and investigates the effect that environmental and system states, such as background

noise, have on performance. To evaluate and compare the performance of different

human-robotic systems for space exploration tasks with the framework proposed in

Figure 2-1, I assert it is necessary to describe the uncertainty in the environmental and

system states. For example, it may be important to evaluate how different human-

robotic systems perform with the mean-level of background noise as well as the high

and low bounds for level of background noise. This description of uncertainty in

environmental and system states can be formulated as a probability function, or a

quantitative or qualitative categorical ranking. The ability of human-robotic systems

to accommodate uncertainty in the tasks and subtasks to be performed provides a

measure of the system robustness. Robustness as a metric for system performance is

discussed further in Section 2.5.
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By directly linking tasks and subtasks with environment conditions, subtask order-

ing constraints, and associated uncertainties, the goal is to synthesize a task specifi-

cation method that will ultimately provide the capability to evaluate the performance

of human-robotic system operating in an uncertain and changing environment.

2.2.3 Synthesized method for task specification

From this discussion I now synthesize and outline a method of defining tasks and en-

vironment. The method, consisting of the four steps justified in the previous section,

are outlined below and illustrated in Figure 2-2:

1. Identify final outcome of task or set of tasks to be performed

2. Identify sub-tasks (or functional primitives) which are independent of the choice

of human-robotic system

3. For each sub-task or functional primitive, identify precondition and post-condition

dependencies with environment and system states

4. Describe uncertainty associated with subtasks and environmental states

.. dent..y

Figure 2-2: Outline of synthesized method for task specification

2.2.4 Illustrative example of synthesized method for task

specification

In Tables 2-4 and 2-5 I present an illustrative example of applying this method to the

Intelsat-VI Repair task performed by STS-49. The Intelsat-VI Repair is a particularly

interesting example of the effect uncertainty in environment and system states can
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have on even simple space tasks. During launch of the Intelsat VI in 1990, the second

stage failed to separate from the satellite, resulting in an orbit which was too low

and unstable to be of use. NASA eventually decided to salvage the satellite with a

Space Shuttle repair mission to capture Intelsat-VI and attach a kick motor to the

satellite to boost it up to its intended orbit. However, attempts by an EVA astronaut

to capture the satellite failed. The capture bar failed to engage and the satellite

began to wobble in a conical spin. Ultimately three EVA astronauts were required to

capture and stabilize the satellite by hand [4].

I apply the synthesized method for task specification on the Intelsat-VI repair

task as an illustrative example to motivate the importance of capturing uncertainty

in environment and system states at the level of task specification.

In this example, Subtasks Functions are the actions required to carry out the task

of providing Intelsat-VI the capability to boost from LEO to GEO. Each subtask func-

tion is defined to be independent of the choice of human-robotic system performing

the task. Each subtask function also has an associated Subtask Uncertainty, describ-

ing the likelihood that each subtask function will be performed. In this particular

example, there is no uncertainty with the subtask functions to be performed.

Each subtask function is performed in the context of environmental states. Per-

manent Precondition States must be met during the entire execution of the subtask

or else the subtask is not possible. Enabling Precondition States must be met imme-

diately before the activation of a subtask but do not need to be met during the entire

execution of the subtask. Also, each permanent and enabling precondition environ-

mental state has an associated Environmental Uncertainty describing the likelihood

that state will be fully realized, partially realized, or not realized. This description

of likelihood can be for example: a probability mass function (as shown in the il-

lustrative example), probability distribution, or qualitative categorical ranking (for

example: high, medium, low).

In this section I have discussed considerations relating to task specification, the

first building block in the framework proposed for architecting human-robotic systems

for space exploration tasks (Figure 2-1). I outlined the characteristics a description
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Final Outcome of Portfolio of Tasks: Provide Intelsat capability to boost from LEO to GEO
SUBTASKS ENVIRONMENT ORDERING CONSTRAINTS

Function Uncertainty Permanent Preconditions Enabling Preconditions Pre Post Concurrent

State Uncertainty State Uncertainty
Position None Intelsat position known Z% likelihood within Y [units Shuttle is in None None- first Engage Document
For of distance] LEO within X task to be Capture Task
Capture [units distance] performed with

B% likelihood within V [units of Intelsat Intelsat
of distance]

Intelsat orbit, trajectory F% likelihood that trajectory is
known known within L [units of

distance]
G% likelihood that trajectory is
not known within L [units of
distance]

Engage None Intelsat position known Q% likelihood within E [units Capture bar is J% within I [units Position Transport Document
Capture of distance] positioned from optimal] Capture Intelsat to Task
with A% likelihood within L [units "optimally" Bar servicing
Intelsat of distance] structure

Intelsat orbit, trajectory 0% likelihood that trajectory is
known known within B error

M% likelihood that trajectory is
not known within B error

Intelsat dynamic behavior S% likelihood that behavior is K% within AA
known known within N error [units from optimal]

V% likelihood that behavior is
not known within N error

Capture mechanism on T% likelihood it functions as
Capture Bar functions as expected
expected R% likelihood it does not

function as expected
Transport None Intelsat dynamic behavior BB% likelihood that behavior is Intelsat position CC% likelihood Engage Replace Document
Intelsat to known known F error before transport that Intelsat Capture Intelsat Task
servicing P% likelihood that behavior is is known position is known with rocket
structure not known F error within DD [units of Intelsat motor

Position of servicing structure C% likelihood within EE [units distance]
known of distance]



0

CAD

0

0

0

FF% likelihood within U [units
of distance]

Capture mechanism of GG% likelihood it functions as HH% likelihood
servicing structure functions expected that Intelsat
as expected JJ% likelihood it does not position is known

function as expected within II [units of
Intelsat is docked with KK% likelihood it is and distance]
transfer mechanism remains docked during subtask

LL% likelihood it is not docked,
or undocks, during subtask

Replace None Intelsat remains secured in MM% likelihood it remains Not Applicable Transport Release Document
Intelsat servicing structure secured Intelsat to Intelsat Task
rocket NN% likelihood it becomes servicing from
motor unsecured structure servicing

Attachment mechanism 00% likelihood that it functions structure
functions as expected as expected

PP% likelihood that it does not
function as expected

Release None Release mechanism of H% likelihood it functions as Position of QQ% likelihood Replace None- end Document
Intelsat servicing structure functions expected Intelsat in that Intelsat Intelsat of task Task
from as expected servicing position is known rocket
servicing SS% likelihood it does not structure known within RR [units of motor
structure function as expected distance]

Intelsat dynamic behavior N% likelihood that behavior is UU% likelihood
known known within TT error that Intelsat

WW% likelihood that behavior position is known
is not known within XX error within VV [units of

Intelsat trajectory known YY% likelihood that trajectory distance]
is known within ZZ error
AB% likelihood that trajectory
is not known AC error

Document None All States and States Uncertainties listed above None None None None Document
Task Documenting mechanisms D% likelihood mechanisms Task

functional functional
W% likelihood mechanisms not
functional



of task and environment should capture and have drawn on the literature to discuss

the different methods of task specification. The interested reader is referred to [37,

62, 78, 53, 70] for more detailed discussions of task specification techniques. From

this literature review, I have synthesized and proposed a method to specify tasks and

environment and presented an illustrative example of our task specification method.

Next, I will discuss considerations related to the second building block in the proposed

framework: formally describing human-robotic systems.

2.3 Option space available for architecting human-

robotic systems

Once tasks have been specified, the designer generates multiple human-robotic system

architectures capable of performing these tasks. This is the second building block in

the framework proposed in Figure 2-1. In this section, I describe considerations

for specifying what constitutes a team architecture, and how to generate multiple

team architectures. Before generating architectures, it is important to consider how

to formally represent human-robotic system architectures. First the designer must

bound the option space by formally specifying the range of capabilities and constraints

for each type of agent. Then the designer must formally specify the modes in which

agents interact as a team. The designer iterates through this process to generate

multiple architectures for human-robotic systems. In this section, I draw from the

literature to discuss considerations related to specifying capabilities and constraints

for each agent and the modes in which agents interact. I then describe how these

considerations can be used to generate multiple team architectures.

2.3.1 Specifying capabilities and constraints of agents

In specifying the range of capabilities and constraints of each type of agent in a

human-robotic system, I address the following questions: What are the types of tasks

or functions the agent is capable of performing? What are the limitations or con-
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straints of the agent in performing these tasks or functions? What is each agent's level

of autonomy? From a designer's perspective, these considerations specify the current

or anticipated state of technology available in designing an agent for a human-robotic

system. In this section I discuss considerations related to answering each of these

questions.

Embodiment of an agent

The first two of these questions relate to the embodiment of the agent, or how the

physical body of the agent interacts with the environment and system states through

the constraints of the body [46]. Embodiment is a concept that is relevant to cogni-

tive science research in artificial intelligence, artificial life, and robotics [52]. Quick

et al. [61] provides a formal definition for embodiment:

"A system X is embodied in an environment E if pertubatory channels

exist between the two. That is, X is embodied in E if for every time t

at which both X and E exist, some subset of E's possible states have the

capacity to perturb X's state, and some subset of X's possible states have

the capacity to perturb E's state."

Moreover, embodiment is not necessarily a binary attribute. Although all agents

are embodied, some may exhibit a higher degree of embodiment than others [52, 61,

21]. "For instance, the greater the perturbatory 'bandwidth' connecting agent and

environment, the higher the degree of embodiment [52]."

I delineate two categories of embodiment: physical and cognitive. The physical

body of the agent allows both physical and cognitive interaction with the environ-

ment and system states. The ways in which the body of the agent physically interacts

with the environment is a function of its inherent physical abilities. For example, the

Space Shuttle robotic arm known as the Remote Manipulator System (RMS) is ca-

pable of physically interacting with the environment and system states by moving

in three-dimensional space and grappling objects. The ways in which the body of

the agent cognitively interacts with the environment and system states is a function
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of its inherent cognitive abilities. For example, the RMS is able to cognitively in-

teract with its environment and system states by continuously monitoring its own

state-information (or "health") for changes that may indicate, for example, collision

or contact with an object in the environment [73]. While the RMS is continuously

monitoring its own state-information, some subset of the environment's states (such

as the location of other objects) has the capacity to perturb the RMS's states (such

as position and orientation), and vice versa. Perturbations in either the RMS's states

or the environment states result in a perturbation in the sensor information relayed

to the RMS and represent a cognitive interaction with the environment.

Autonomy of an agent

Specifying the level of autonomy of an agent is a more complicated matter. There is

a great deal of literature addressing the definition of autonomy [40, 39, 35, 7, 77, 10].

However, to date no universally accepted definition of autonomy exists. In this section

I briefly present a sampling of definitions for autonomy and motivate the choice of the

definition of autonomy we use in this work. I then elaborate on the considerations

related to my choice of definition for autonomy.

Franklin et al. [35] propose the following definition for autonomy based on a survey

of various agents:

"An autonomous agent is a system situated within and a part of an

environment that senses that environment and acts on it, over time, in

pursuit of its own agenda and so as to effect what it senses in the future."

While this definition captures the importance of environment in a formal definition

of autonomy, it describes autonomy as an absolute quantity unrelated to the degree to

which an agent is free from intervention by other agents. Barber et al. [7] addressed

this shortcoming in the following proposed definition for autonomy:

"An agent's degree of autonomy, with respect to some goal that it

actively uses its capabilities to pursue, is the degree to which the decision-
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making process, used to determine how that goal should be pursued, is

free from intervention by any other agent."

However, the ultimate aim of Barber et al. [7] is to quantify autonomy, and as a

result their definition overlooks the underlying cause of the degree to which an agent

is free from intervention by any other agent: the agent's ability to sense and act in a

changing environment.

For this work I adopt and build on the following basic definition of autonomy:

the ability of an agent to accommodate variations in the environment

(in pursuit of its goals) [77]. When we discuss autonomy in the context of the

framework proposed in Figure 2-1, we are primarily interested in understanding the

capabilities and constraints of agents in a human-robotic system to sense and act in a

changing environment. The nature of space exploration requires that human-robotic

systems perform tasks in changing environments which are difficult to fully charac-

terize and the capability for flexibility and robustness are key drivers in evaluating a

human-robotic system. Specifying the autonomy of agents as the ability to accom-

modate variations in the environment provides the ability to describe the capabilities

and constraints of agents as they relate to the task and environment uncertainties

described in task specification (Section 2.2), and lays a foundation for ultimately

evaluating the performance of human-robotic systems operating in an uncertain and

changing environment.

I propose that there are two components to this definition of autonomy: agent

and team. Each agent in a human-robotic system has its own inherent level of ability

to accommodate variations in the environment in pursuit of its goals. However, team

interaction may augment or diminish this inherent level of ability. (This proposed

taxonomy is inspired by the quantitative treatment of relative autonomy for multi-

agent interaction presented in [10].) For example, imagine there are no variations

in environment in our task specification and we know exactly where the satellite

is in relation to Space Shuttle Remote Manipulator Arm. In this case the Remote

Manipulator Arm is able to successfully navigate to and grapple the satellite without

any interaction with other agents. However, if the satellite is actually two meters to
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the left of the expected position, the Remote Manipulator Arm would not be able to

navigate to and grapple the satellite without help from other agents. Thus the Remote

Manipulator Arm has a low level of agent autonomy. However, with a human in the

loop providing information about the actual position of the satellite, the Remote

Manipulator Arm can accommodate a great deal of variation in the position of the

satellite (i.e. variation in the environment). Thus a certain level of team interaction

between a human and the Remote Manipulator Arm increases the Arm's autonomy

(or ability to accommodate variation in the environment). The team component of

autonomy is primarily a function of interaction among agents, and considerations

related to interaction among agents are discussed in Section 2.3.2.

2.3.2 Specifying modes of interaction among agents

Pertaining to the second building block in the framework proposed in Figure 2-1, I

have discussed considerations related to specifying the inherent capabilities and con-

straints of agents in a human-robotic system. I now discuss considerations related to

how these agents may interact. There are at least two characteristics necessary to de-

scribe the interaction between agents in a human-robotic system: the level of cognitive

interaction between agents, and level of physical interaction between agents [7, 31].

Cognitive Interaction

While the Human-Robot Interaction (HRI) community has made progress toward

defining common metrics for evaluating human-robot interactions [31, 20], I did not

find a consensus on or an explicitly categorized list of the different modes of cognitive

interaction. As a result, I present characteristics of cognitive interaction synthesized

from sources addressing interaction with automation, metrics for human-robotic in-

teraction, and studies on human-robotic interaction. These characteristics are decom-

posed to form a set of independent cognitive interaction modes which can be used

to describe the cognitive interaction option space available for architecting heteroge-

neous teams of humans and robots.

35



Characteristics of cognitive interaction: literature review

As a first step in developing modes of cognitive interaction, I discuss what types

of interaction are applicable from human interaction with automation, addressed in

the field of human-machine interaction (HMI). Parasuraman et al. [57] propose four

classes of functions for automation: information acquisition, information analysis,

decision and action selection, and action implementation. In my framework, action

implementation is considered a property of task allocation rather than cognitive inter-

action. However, the other three functions are characteristics of cognitive interaction

and I propose that they can be generalized to modes of cognitive interaction between

any two agents:

" Information Exchange (IE): characterizes the flow of information between

two agents in terms of agent requests and transfer of input

" Information Assessment (IA): characterizes what state and environment

information an agent is able to gather and assess as nominal (according to

plan) vs. off-nominal (not according to plan) about other agents.

" Decision and Action Selection (DS): characterizes how two agents work (or

do not work) together to make execution decisions. ( [34, 8] propose taxonomies

for this mode of interaction)

While the four functions for automation proposed by Parasuraman et al. may be

sufficient in describing human interaction with automation, human-robot interaction

is fundamentally different from HMI because "it concerns systems which have com-

plex, dynamic control systems, exhibit autonomy and cognition, and which operate

in changing real-world environments. [69]" As a result, one would expect that the

three modes of cognitive interaction derived from HMI are not sufficient to describe

all modes of agent-agent cognitive interaction for our framework.

I review HRI sources with the purpose of identifying additional modes of cogni-

tive interaction. In Table 2.6 I synthesize these characteristics, and provide definitions

that are based on HRI literature but modified to apply to agent-agent interaction,

36



including human-human interaction, robot-robot interaction, and human-robot in-

teractions. Since many of these characteristics are interdependent, I also decompose

the descriptions where appropriate to form a set of independent modes of cognitive

interaction.

This decomposition analysis yields two additional modes of cognitive interaction:

" Inherent Lag (IL): characterizes lag in Information Exchange between agents

" Command Specification (CS): characterizes the level of functional detail of

commands that an agent requires from other agents in order to operate

Synthesized modes of cognitive interaction

I propose a set of five independent modes of cognitive interaction derived from various

sources addressing interaction with automation, metrics for human-robotic interac-

tion, and studies on human-robotic interaction. These modes formulate an option

space available for architecting the cognitive interaction among agents in a human-

robotic system. I define these modes as a property of the cognitive interaction between

two agents:

" Information Exchange (IE): characterizes the flow of information between

two agents in terms of agent requests and transfer of input

* Information Assessment (IA): characterizes what state and environment

information an agent is able to gather and assess as nominal (according to

plan) vs. off-nominal (not according to plan) about other agents.

" Decision and Action Selection (DS): characterizes how two agents work (or

do not work) together to make execution decisions. ( [34, 8] propose taxonomies

for this mode of interaction)

* Inherent Lag (IL): characterizes lag in Information Exchange between agents

" Command Specification (CS): characterizes the level of functional detail of

commands that an agent requires from other agents in order to operate
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Characteristic Description Decomposition
Regulation of Regulation of control is one description of Information Exchange: flow of
Control [31] the flow of information between agents and information between two agents

relates to which agent requests assistance or
input [31].

Situational Situational awareness is the knowledge of Information Exchange: flow of
Awareness [31, what is going on around you [69]. This also information between two agents
69] relates to how agents in a human-robotic Decision and Action Selection: how

system make decisions; does one agent Dio and Actonelecto how
make all execution decisions based on two agents work together to make
multiple, simultaneous task demands or, at decisions (unilaterally vs
the other end of the spectrum, is one agent collaboratively?)
unaware of all execution decisions [31]?

Communication Communication latency is the measure of Inherent lag: delay in information
Latency [31] the time lag for communications between exchange

agents[3 1].
Neglect Tolerance Neglect tolerance is defined as the time Information Assessment: what state
[20] between required attentions to an agent and environment information an agent

[20]. is able to gather and assess (nominal
vs. off-nominal) about other agents.

Information Exchange: flow of
information between two agents
Decision and Action Selection: how
two agents work together to make
decisions (unilaterally vs
collaboratively?)

Interaction Effort Interaction effort is a measure of how much Command Specification: level of
[20] attention an agent is demanding [20] functional detail of commands that an

agent requires from another agents in
order to operate
Information Assessment: what state
and environment information an agent
is able to gather and assess (nominal
vs. off-nominal) about other agents.

Decision and Action Selection: how
two agents work together to make
decisions (unilaterally vs
collaboratively?)

Authority Authority relationships specify which agent Decision and Action Selection: how
Relationships [12] commands the functions to be performed two agents work together to make

and the level of detail of commands [12]. decisions (unilaterally vs
Examples of authority relationships are: collaboratively?)
supervisor, operator, peer/collaborator, and Command Specification: level of
bystander [12]. functional detail of commands that an

agent requires from another agents in
order to operate

Table 2.6: Review of characteristics of cognitive interaction from HRI sources
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Physical interaction

The capacity for physical interaction among agents is an important consideration in

architecting human-robotic systems. I present characteristics of physical interaction

that I have synthesized from HRI sources. My objective is to generalize these char-

acteristics of physical HRI to formulate an option space for architecting the physical

interaction of agents in a human-robotic system.

The DARPA/NSF Interdisciplinary Study on Human-Robot Interaction discusses

spatial relationships as a basic taxonomy of HRI [12]. Spatial relationships refer to

the viewpoint and intimacy of the operator in relation to the robot [12]. From this

taxonomy, intimacy directly relates to the capacity for physical interaction between a

human and robot. The study characterizes the intimacy of the operator as: remote,

beside, "robo-immersion" or robot's eye, inside [12].

While taxonomies are an interesting analysis tool, I seek to formulate an option

space that allows us to design for different classifications of intimacy. I draw from

the DARPA/NSF Interdisciplinary Study [12], and papers exploring common met-

rics for HRI [31] and characteristics of human robotic systems [74] to form a set of

generalized, independent physical HRI modes which can be used to describe agent-

agent interactions, including human-human interaction, robotic-robotic interactions,

and human-robotic interactions. These modes formulate an option space available

for architecting the physical interaction among agents in a human-robotic system. I

define these modes as a property of the physical interaction between two agents:

" Response Time (RT): the time required for one agent to physically intervene

with another agent in need of unplanned assistance

* Availability (AV): the fraction of time that one agent can devote to physically

intervening with another agent in need of unplanned assistance

" Proximity of Physical Interaction (PPI): a measure of the proximity of

close physical interaction between two agents during nominal operations

" Duration of Physical Interaction (DPI): a measure of the duration of close

physical interaction between two agents during nominal operations
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2.3.3 Generating team architectures

So far I have discussed considerations relating to generating a team architecture,

the second building block in the framework proposed in Figure 2-1. This included

a discussion of the considerations related to specifying the range of capabilities and

constraints for each type of agent, and the modes in which agents interact. How-

ever, I have not yet considered how to use this information to formally represent

human-robotic team architectures. In this section, I describe what constitutes a

team architecture, and how multiple team architectures can be generated.

Defining a team architecture

A human-robotic team architecture consists of all human and robotic agents who par-

ticipate in fulfilling the objectives of the human-robotic system. For space exploration

tasks, human agents include all space and ground personnel participating in any as-

pect of the operation of the human-robotic system. Similarly, robotic agents include

all space- and ground-based robotic and/or automated technologies participating in

any aspect of the operation of the human-robotic system.

I define a team architecture by specifying the number of human agents, number

of robotic agents, the capabilities and constraints associated with each agent, and

the modes available to form scripted and unscripted interactions between agents. I

specify another team architecture by changing any of these parameters. As a result,

one is able to generate small variations in a human-robotic system such as changing

whether a human agent can repair a robotic agent (this corresponds to changing the

range of physical interaction between the human and robotic agent). One is also able

to generate vastly different human-robotic systems by changing the number of agents

and capabilities and constraints associated with each agent.

2.4 Task allocation

In this section, I discuss considerations related to the task allocation, the third build-

ing block in the framework we proposed in Figure 2-1. In specifying the capabilities
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and constraints of agents, number of agents, and range of interactions among agents

as described in the previous section, we form a description of a human-robotic system

architecture that we would like to evaluate. However, it is likely that this description

does not dictate a unique way in which the agents work together to execute tasks to

complete the goal. For example, the end-effector on the Shuttle Arm may be capable

of grappling a satellite, and an astronaut located on the end of the Arm may be

capable of grappling a satellite. Which agent should perform this task?

In this section, I address the question of which agents should be allocated which

actions in order to carry out tasks and achieve the global goal. First I outline the

desirable characteristics of a task allocation method for space exploration applications.

I then review different methods proposed in literature and suggest possible methods

for future work.

2.4.1 Characteristics of task allocation method

The goal of task allocation is to enumerate and provide a framework for scoring

different ways in which a human-robotic system can perform a task or set of tasks.

Since during the design stage we are not able to directly measure the performance of

a fielded system, we evaluate an estimate of performance, or utility of the system. In

estimating the utility of the system, we assume that we are capable of assessing the

value or cost for each agent to execute an action [36]. Metrics which can be used to

form utility measures relevant to space exploration systems and tasks are discussed

in detail in Section 2.5. However, we require that our task allocation method provide

a framework for clearly defining the utility measure to be evaluated so that we know

under what circumstances and assumptions a human-robotic system is optimal. For

example, we may allocate actions to agents in the team with the purpose of reducing

the operating costs of the system. Or, we may allocate actions to agents based on

which agent will perform the job most reliably. It is likely that we would allocate

tasks for a team architecture differently depending on whether our primary aim is to

optimize our system for cost or reliability. In fact, design often involves selecting and

trading-off between multiple metrics.
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The task allocation method must also be capable of capturing interrelated utilities

or situations in which an agent's utility is dependent on which other tasks or actions

other agents execute [36]. For example, the task allocation method must be able to

distinguish that the effectiveness (as a measure of utility) of an astronaut grappling a

satellite may depend on whether other astronauts or robotic agents are also helping

to grapple the satellite or not. The task allocation method must also be capable of

imposing task constraints, such as the sequential execution of tasks. For example,

one must capture a satellite before repairing it.

2.4.2 Literature review of task allocation methods

The Fitts' list approach [70] is one of the earliest proposed methods for the analysis of

task allocation. The Fitts list consists of a table enumerating what "men are better

at" and what "machines are better at" and is presented in Table 2.7. However, it is a

qualitative approach subject to interpretation [70] and it does not allow the analysis

of interaction among subtasks [37].

Men Are Better At Machines Are Better At
Detecting small amounts of visual Responding quickly to control
auditory, or chemical energy signals
Perceiving patterns of light or Applying great force smoothly and
sound precisely
Improvising and using flexible Storing information briefly, erasing
procedures it completely
Storing information for long Reasoning deductively
periods of time and recalling
appropriate parts
Reasoning inductively
Exercising judgement

Table 2.7: Fitts list [37]

As an improvement to this method, Ghosh et al. [37] propose a systems approach

to task allocation for manufacturing applications which allows the analysis of issues

unique to each problem. First, Ghosh et al. form an inventory of the tasks to be

performed. Then they discuss the required performance characteristics for performing
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the tasks. Finally, they compare capabilities of humans and robots to perform the

subtasks [37]. However, this method falls short of providing a framework for incor-

porating a utility measure to translate the comparison analysis into an evaluation of

task allocations.

More recently, Gerkey et al. [36] have proposed a taxonomy of multi-robot task

allocation (MRTA) problems and describe how many types of these problems can be

related to other, well-studied optimization problems. In these cases, the utility is

explicitly incorporated into the method. However, the Gerkey et al. taxonomy of

optimization problems shares many of the same fundamental problems as the Fitts

and Ghosh et al. approaches; these task allocation methods are not capable of incor-

porating interrelated utilities or task constraints [36].

I expect to draw methods for our application from task allocation methods cur-

rently being developed in the field of artificial intelligence (AI) planning and schedul-

ing. AI planning and scheduling research is working towards providing methods that

address complex mixtures of action choices, ordering constraints, and metric quan-

tities [61]. Nearly all practical planning systems have made use of a Hierarchical

Task Network (HTN) planning technique [72], and this method is also particularly

applicable to our framework. In this method, high-level tasks are reduced down to

primitive tasks (or actions) while taking into account ordering constraints to form a

network of all feasible actions to complete the task [72]. Time and metrics quantities

are easily introduced into this method as well [72]. In HTN planning, the user must

specify the combinations of actions that should be used for particular purposes. The

interested reader is referred to [29, 28, 45] for a more thorough discussion of HTN

planning.

Effinger et al. [27] provide an interesting example for using a type of HTN to

describe the Lunar Roving Vehicle (LRV) deployment sequence as documented for

Apollo 15. Specifically, they use the Temporal Plan Network (TPN) shown in Figure

2-3 below. This network description incorporates action choices, ordering constraints,

and metric quantities.

In this example, the actions "Remove Insulation Blanket" and "Remove Operating
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Figure 2-3: Temporal plan network of the Apollo 15 LRV deployment sequence [27]

Tapes" must happen sequentially. However, the actions "Lower LRV using braked

wheel" and "Deploy aft wheels" may happen in parallel. The double circle in the

diagram indicates a choice node. In this example, the system has a choice of two

different ways it can perform the action "Deploy seats and footrests." The metric

quantity of time required to perform an action is indicated in brackets above each

link in the network.

In the proposed framework, we explicitly specify the subtasks to be performed

with ordering constraints in the task specification. In defining a team architecture, we

explicitly specify the different combinations of feasible agent actions that may achieve

each subtask. Therefore, HTN planning provides a natural method of translating

task specification and team architecture definition into a task allocation and metric

evaluation framework.

The primary difference between Al planning and scheduling applications and this

application is that AI research is focused on solving problems in real-time operations

(see [81, 41] for HTN-based examples) whereas we would implement the proposed

framework for designing human-robotic systems before any system has been fielded.

However, this difference does not limit the application of AI methods such as HTN

for the framework.
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2.5 Common metrics to compare different human-

robotic systems

In this section, I discuss considerations related to evaluating human-robotic system

against common, task-based metrics; this corresponds to the fourth building block

in the framework I proposed in Figure 2-1. Architecting human-robotic systems for

optimal space exploration implies a set of metrics the designer uses to guide op-

timization. I propose five metrics that are particularly relevant to evaluating the

performance of human-robotic systems conducting space exploration tasks: produc-

tivity/effectiveness, reliability of successfully completing the task(s), risk to humans

in the system, resources required to support system design, implementation, and

operations, and flexibility/robustness of the system to changes in task functions or

environment states. In this section, I discuss each of these metrics as well as the

trade-offs among them.

2.5.1 Productivity/Effectiveness

The productivity or effectiveness of a human-robotic system relates to a measure of

quality in performing a task or set of tasks under specific conditions. The purpose

of a productivity/effectiveness metric is to capture relevant trade-offs in the quality

of task performance for different human-robotic systems and task allocations. The

definition for a measure of productivity or effectiveness is unique to the task or set

of tasks being performed. For example, if the task is to traverse a planetary surface,

we may score the time to traverse as a measure of productivity or effectiveness.

Although the quality of task performance is a major driver in comparing human-

robotic system for space exploration tasks, this metric alone does not provide a com-

plete picture of the system performance. While a decision maker may find a low

traverse time appealing, he or she will likely want to weigh this advantage against

other metrics. For example, the decision maker is likely to prefer a "slower" system-

low traverse time-but that is capable of handling a rough or unknown terrain or than
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poses lower risk to humans.

2.5.2 Reliability

The reliability of a human-robotic system is the probability that the human-robotic

system will perform its required task during a specified interval of time under specific

conditions. In other words, assuming there is a deterministically specified task to be

performed and given an environment in which the task is to be performed, reliability

is the probability that the human-robotic system will successfully complete the task

in the time allotted. Although there is a dearth of resources discussing methods for

analyzing the reliability of human-robotic systems, the reader is referred to [15, 16,

22, 23, 55, 68, 79] for methods of analyzing the reliability of robotic systems.

The description of team architecture specifies causal relations for how agents in the

human-robotic system carry out actions to complete the task or set of tasks. However,

there are uncertainties in these causal relations. For example, in the Intelsat-VI

repair task there is some amount of uncertainty as to whether the EVA astronaut

will be able to secure himself to the RMS and whether the RMS will function as

expected in maneuvering the astronaut. These causal relationships and associated

uncertainties have direct implications for the reliability of the system. It is important

to note that these uncertainties are human-robotic system specific, meaning they are

applicable to a specific human-robotic system architecture. They are not related to

the system-independent task and environmental uncertainties described in the task

specification in Table 2.5. In order to quantify reliability, we must assume a specific

task and environment, without considering the implications any of the uncertainties

enumerated in the task specification. (I discuss the relationship between metrics and

uncertainty in task specification in Section 2.5.5.) The reliability metric of human-

robotic system quantifies the relevant uncertainties in how each human-robotic system

carries out the actions (as dictated by a particular task allocation) to complete the

task or set of tasks.
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2.5.3 Risk to humans

A measure of the risk to humans when carrying out a task or set of tasks is a par-

ticularly important consideration in evaluating human-robotic systems for space ex-

ploration applications. For each human-robotic system -task allocation combination,

the designer must analyze and score the extent to which potential undesirable conse-

quences threaten the well-being of humans in the human-robotic system. For example,

a human-robotic system task allocation that requires astronauts to perform multiple

EVAs is inherently more risky to the astronauts than a human-robotic system task

allocation in which humans tele-operate a robotic agent from Earth. As a second

example, a human-robotic system task allocation that requires human and robotic

agents to work in close physical proximity is inherently more risky to the astronauts

than if the astronaut operations are physically segregated from robotic operations. As

with the reliability metric, risk to humans is a property of a specific task allocation

for a human-robotic system and is evaluated without considering the implications

any of the uncertainties enumerated in the task specification. The reader is referred

to [22, 2, 30, 82] for methods of analyzing the risk that a human-robotic system poses

to humans.

2.5.4 Resources

The resources required to support the operations of a human-robotic system are also

a major driver in comparing and selecting a system for space exploration applications.

A resource metric captures the time, money, and other resources required to design,

implement, and operate the human-robotic system. This includes considerations such

as the number of ground and space-based support personnel required during the nom-

inal operation of the human-robotic system, the duration of operations support, sup-

porting ground infrastructure, and space-based infrastructure. The number of ground

and space-based support personnel includes those required to operate, monitor, and

communicate with robotic agents, monitor critical subsystems supporting manned

activities, conduct task-level planning and scheduling, and other activities. The du-
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ration of operations support is a key resource driver; will the ground and space-based

personnel support operations for one week or one year? Ground-based infrastructure

requirements include accommodations for ground support and control of the human-

robotic system. For example, ground support and control may be able to make use of

existing structures during the operations of one human-robotic system architecture,

while a different human-robotic system architecture requires a specially-designed fa-

cility. Finally, the infrastructure required in space for operation of the human-robotic

system must also be included in a resource metric. Considerations such as the quan-

tity and mass of payloads to be launched, type of launch vehicle required (man-rated

or cargo), destination of payload, and type of payload are all relevant to addressing

the infrastructure required in space.

2.5.5 Flexibility/Robustness

The nature of space exploration requires that human-robotic systems perform tasks

in changing environments that are difficult to fully characterize, and the capability

for flexibility and robustness are key drivers in evaluating a human-robotic system.

Flexibility of a system is defined as "the ability of a design to satisfy changing require-

ments after the system has been fielded [66]," and robustness of a system is defined

as "the ability to satisfy a fixed set of requirements despite changes in the system's

environment or within the system itself [66]." The reader is referred to [64, 65, 11, 63]

for further discussion of flexibility and robustness of space systems.

In the proposed framework, both flexibility and robustness relate to the ability of

the human-robotic system to respond to the uncertainties defined in task specification

and environment (see Figure 2-1). Specifically, flexibility is defined as the ability of the

human-robotic system to respond to Subtask Uncertainty, and robustness is defined

as the ability of the human-robotic system to respond to Environment Uncertainty.

Of the four metrics discussed, three are defined assuming a specific task or set

of tasks, with no uncertainty in the tasks to be performed or the environment in

which they are performed. These metrics are: productivity/effectiveness, reliability,

and risk to humans. A metric evaluating the flexibility and robustness of differ-
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ent human-robotic systems is required to capture how these three metrics change

with task uncertainty. For example, the productivity/effectiveness and reliability of

human-robotic systems traversing a planetary surface may change drastically depend-

ing on whether the scout is navigating a smooth or boulder-strewn field. If mission

planners are not certain what type of field the system will be required to explore,

then they may prefer to implement a human-robotic system which sacrifices produc-

tivity/effectiveness but maintains a relatively high reliability of successfully carrying

out the task in an uncertain environment.

2.5.6 Trade-offs among metrics

I propose that the five metrics described in this section capture many of the relevant

trade-offs in designing human-robotic systems for space exploration. In capturing

these relevant trade-offs, I hypothesize that these metrics will provide a fair and bal-

anced basis for comparing different human-robotic systems and will not skew results

towards consistently recommending predominantly human or predominantly robotic

systems for space exploration tasks.

The metric capturing productivity/effectiveness of a human-robotic system is not

inherently biased towards the abilities of either human or robotic agents. Human

agents will score higher on certain tasks and subtasks, and robotic agents will score

higher on others. Reliability is a metric equally applicable to both human and robotic

agents as well; it is not clear how a human-robotic system will score before carrying

through the analysis for a specific task and task allocation. Risk to humans and

resources required to support operations of a human-robotic system are two critically

important metrics to decision makers. However, they tend to drive the solution

towards predominantly robotic systems without capturing the true value that humans

bring to space flight - the ability to accommodate uncertainty. The flexibility and

robustness of a human-robotic system are necessary and often forgotten performance

metrics required to provide a balanced comparison of different human-robotic systems.
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2.5.7 Towards evaluation of metrics

While a discussion of methods for evaluating these high-level, common metrics is

beyond the scope of this thesis, it is important to recognize that evaluation of these

metrics may require an experimental-based understanding of lower-level metrics. For

example, works analyzing existent HRI systems identify human situational aware-

ness as a major driver in HRI system performance [69, 25, 261. Human situational

awareness have implications for a number of high-level metrics including productiv-

ity/effectiveness and risk to humans. Therefore, an experimental-based understanding

of lower-level metrics may prove useful in providing analytical relationships between

the description of system architecture and common, high-level metrics.

2.6 Summary

In this chapter, I presented a framework for architecting human-robotic system for

space exploration tasks (Figure 2-1). I discussed considerations related to each of the

building blocks of this framework: 1) specifying tasks, 2) generating human-robotic

system architectures, 3) allocating functions to agents in the system, and 4) evaluating

the system against common task-based metrics.

In discussing task specification, I outlined the characteristics a description of task

and environment should capture. I have drawn on the literature to discuss the dif-

ferent methods of task specification. From this literature review, I synthesized and

proposed a method to specify tasks and environment. Finally, I presented an illus-

trative example of our task specification method.

In addressing considerations related to generating human-robotic system archi-

tectures, I have drawn from literature to discuss considerations related to specifying

capabilities and constraints for each agent and the modes in which agents interact. I

also described how these considerations can be used to generate multiple team archi-

tectures.

In the discussion on task allocation, I addressed the question of which agents

should be allocated which actions in order to carry out tasks and achieve the global
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goal. I outlined the desirable characteristics of a task allocation method for space ex-

ploration applications and reviewed different methods proposed in literature. Finally

I suggested possible methods for future work.

I also proposed a common set of metrics relevant to comparing different human-

robotic systems performing space exploration tasks and discussed trade-offs among

these metrics. The next chapter is aimed at further developing a formal representation

of human-robotic systems.
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Chapter 3

Towards a formal representation of

human-robotic systems in space

exploration

3.1 Introduction

3.1.1 Motivation: Why do we need a formal team represen-

tation?

In this chapter I present work towards formal methods to represent human-robotic

system architectures. This work builds on the previous chapter discussing the consid-

erations in architecting human-robotic systems. My objective in developing a formal

method for representing teams of humans and robots is to provide a basis for a stan-

dard means of evaluating human-robotic systems against a common set of metrics.

Evaluating different human-robotic systems based on a non-standard description of

system architecture will make it difficult to compare the evaluation results for different

systems. The designer must systematically and formally capture the characteristics

that describe each human-robotic system to ensure that the evaluations of different

human-robotic systems are comparable.
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3.1.2 Outline of chapter

In Section 3.2, I discuss the important elements that must be captured in the for-

mal representation of a human-robotic system. In Section 3.3, I illustrate initial

work towards formalizing the description of these elements through the case-study of

the terrestrial human-robotic Nursebot System, which provides assistance to nursing

home residents and caregivers.

3.2 What are the important elements to capture

in a team representation and why?

3.2.1 Elements of a human-robotic team architecture

I define a human-robotic team architecture to consist of all human and robotic agents

that participate in fulfilling the objectives of the human-robotic system. In the context

of space exploration, human agents include all space and ground personnel partici-

pating in any aspect of the operation of the human-robotic system. Similarly, robotic

agents include all space- and ground-based robotic systems "which have complex,

dynamic control systems, exhibit autonomy and cognition, and which operate in a

changing real-world environment [69]."

A formal representation of team architecture must specify the number of human

agents, number of robotic agents, the capabilities and constraints associated with

each agent, and the range of interactions between agents. A change in any of these

elements results in a different team architecture. Therefore, the formal representation

of human-robotic systems must be capable of capturing variations in a human-robotic

system such as changing whether or not a human agent can repair a robotic agent

(this corresponds to changing the range of physical interaction between the human and

robotic agent). The formal representation must also be able to capture vastly different

human-robotic systems through changes in the number of agents and capabilities and

constraints associated with each agent.

To capture all of these elements, we require formal methods for decomposing the
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system-independent task specification into system-specific functions with ordering

and timing constraints (1), as I will further discuss shortly. We also require methods

for identifying the interactions necessary to fulfill system-specific functions as well

as for specifying the characteristics of these interactions (2). Finally, we require

methods for specifying how system-specific components of form are utilized to fulfill

system-specific functions (3), and for identifying the design parameters relevant to

analyzing the autonomy of the system (4). In this section, I discuss the motivation

for developing each of these four methods.

3.2.2 System-specific functions

In the previous chapter I discussed considerations related to specifying tasks in a way

that allows the comparison of different human-robotic systems. These high-level tasks

describe what the system does in language that is system-independent in order to

formulate common metrics to compare the advantages and disadvantages of different

human-robotic systems [60]. However, each human-robotic system will likely carry out

these tasks and subtasks through different means, or through different system-specific

functions. A critical aspect to describing the architecture of a human-robotic system

is to formally specify what system-specific functions aggregate to fulfill the system-

independent tasks and subtasks. Given a system-independent task specification with

ordering constraints, I identify the functions that a specific human-robotic system

performs to fulfill each system-independent subtask as shown in Figure 3-1.

I propose that organizing the system-specific functions by system-independent

subtasks provides a natural basis for translating the task specification and representa-

tion of team--architecture into a task allocation analysis. We require a task allocation

analysis as a component in the framework for leveraging the capabilities of humans

and robots in space exploration because it is likely that there is no unique way in

which to allocate functions to agents in a human-robotic system to fulfill the system-

independent task specification. Therefore in describing a team architecture, we must

explicitly specify the different combinations of feasible agent actions that may achieve

each subtask. The goal of task allocation is to enumerate and provide a framework
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Figure 3-1: Identifying system-specific functions

for scoring all the different ways in which a human-robotic system can perform a

task or set of tasks. In the previous chapter I reviewed the desirable characteristics

of a task allocation method for this application and identified the Hierarchical Task

Network (HTN), an artificial intelligence (AI) planning and scheduling technique, as

a promising candidate method. In this method, high-level tasks are reduced down

to primitive tasks (or functions) while taking into account ordering (and possibly

timing) constraints to form a network of all feasible actions to complete the task [4].

The proposed method for organizing system-specific functions shown in Figure 3-1

captures many of the elements necessary to implement an HTN by specifying the way

in which high-level task specification is reduced down to system-specific functions.

Now that I have motivated the mapping of system-independent tasks and subtasks

into system-specific functions as shown in Figure 3-1, I will discuss what other descrip-

tive information must be included with the system-specific functions. At least two

attributes must be specified with each system-specific function: ordering constraints

and timing. Just as we specify ordering constraints among subtasks in the system-

independent task specification, it is important to specify ordering constraints among

the system-specific functions where appropriate. This provides temporal relations

describing how system-specific functions aggregate to fulfill subtasks.

Specifying timing constraints on each system-specific function is also important to
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describing the system architecture. While it is conceivable that two different human-

robotic system architectures may perform the same functions to fulfill the specified

task or set of tasks, the systems may implement the functions in different ways.

One way of capturing the implication of different implementations is to describe the

characteristic time (or time range) required for the human-robotic system to carry out

each function. For example, imagine two autonomous planetary rovers that perform

the same function of path planning, but each implement the function using different

software algorithms. The first rover system architecture requires milliseconds to path

plan, while the second architecture requires seconds. Time to implement a function is

in many cases a function of the agent's capabilities and must be captured in the formal

representation of the system. However, it is important to note that characteristics of

different implementations must be captured in other ways as well, including which

agents and what components of agents implement functions. This is addressed in the

following sections.

3.2.3 Identifying agent interactions

In specifying the organization and attributes of system-specific functions, I have not

yet addressed to what level the functions should be decomposed. For example, it is

possible to decompose the rover function of navigating across a planetary surface to

the functions performed by the nuts and bolts of actuators and cameras. However,

decomposing functions to this level does not add insight into the important elements

of the system architecture. In formally describing a team architecture, I propose

that system-specific functions be decomposed to a level such that one agent may be

assigned to perform each function as illustrated in Figure 3-2 below.

This method serves to highlight which system-specific functions require agent-

agent interaction to fulfill a subtask, and the role of each agent in fulfilling the func-

tion. For example, in Figure 3-2, the system requires interaction between Agent 1

and Agent 2 to perform Function 1 and also requires interaction between Agent 1

and Agent 2 to perform Function 2.1. Although the same two agents are interacting

to perform Function 1 and Function 2.1, it possible that the agents must interact
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Subtask A A

Function 1.1 Function 1.2 Fuion1

(performed by Agent 1) (performed by Agent 2) A (performed by Agent 1)

Agent 1 and Agent 2
interact to perform Function 2.1.1 Function 2.2.1Function 2.1 and
fulfill Subtask A

(performed by Agent 1) (performed by Agent 2)

Figure 3-2: Identifying agent interactions

in different ways in order to perform each function. The formal description of sys-

tem architecture must dictate the specific ways in which the agents interact to fulfill

different functions.

Also, this method provides uniform criteria for choosing the level of decompo-

sition of system-specific functions: system-specific functions are decomposed to the

level necessary to capture all agent-agent interactions. An example of decomposing

functions and identifying interactions is presented in the case study (Section 3.3).

Each of these interactions can be further described in term of the modes of cognitive

and physical interaction presented in Chapter 1.

3.2.4 Describing the implementation of human-robotic sys-

tems

So far I have discussed ways for describing a human-robotic system architecture in

terms of system-specific functions and interactions among agents to fulfill these func-

tions. However, an important element of the system architecture is the hardware

and software implementation utilized to fulfill system-specific functions. Two sys-

tems which carry out the same system-specific functions using different hardware or
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software components may exhibit different capabilities. Imagine two human-robotic

systems that perform the same system-specific functions, with the same agents, and

the same agent interactions. The only difference between the two systems is the tech-

nology used by the agents to fulfill the functions; for example, one system uses laser

range finders to sense the environment and the other system uses sonar sensors. This

simple difference between the two systems may have great implications when compar-

ing the system based on common metrics such as effectiveness, reliability, resources

expended, risk to humans, or flexibility/robustness. Therefore, the formal represen-

tation of a human-robotic system must include a description of system hardware and

software components. In Figure 3-3 below I build on the approach for represent-

ing system-specific functions and agent interactions and include a description of the

system-specific components of form utilized to fulfill system-specific functions.

In specifying the hardware and software components used to implement system-

specific functions, I delineate the components which must be used together to perform

the function with an "And" symbol and I delineate options between components with

an "Or" symbol. These symbols are included in the representation to capture the fact

that many systems maintain redundant components to fulfill a function.

Just as system-specific functions can be decomposed down to an arbitrary level,

so can system components. Therefore we require a method for specifying the ap-

propriate level of decomposition for system components in describing the system

architecture. The appropriate level to which components must be decomposed is spe-

cific to each application. However, I propose a guiding principle: the decomposition

of components must capture all relevant differences in form associated with the set

of human-robotic systems the designer is comparing. If the designer is comparing

vastly different human-robotic systems, all relevant differences in form may be cap-

tured at the first level decomposition of components. However, the designer may

be required to specify a multi-level decomposition of components if comparing very

similar human-robotic systems with only slight variations in technology.
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Figure 3-3: Describing the implementation of human-robotic systems

3.2.5 Identifying design parameters for system autonomy

To this point, I have discussed approaches for describing a human-robotic system

architecture in terms of system-specific functions, interactions among agents and

system-specific components of form to fulfill these functions. However, the represen-

tation of a human-robotic system is still missing a full description of the capabilities

and constraints of agents. So far it only includes timing constraints describing the

characteristic time for a system to fulfill a function. It does not yet capture design

parameters such as resource constraints, speed, range of motion, and other capabil-

ities and constraints of the system in performing the functions. In order to specify

the design parameters relevant to describing the system, we first require a method to

identify the set of capabilities and constraints that are relevant to how agents per-

form system-specific functions in the context of the operating environment. We seek

to avoid specifying capabilities and constraints that do not contribute to our under-

standing of how the system operates in its environment. For example, we would not

specify the speed of an agent if we know that speed has no bearing on the agent's

ability to perform its functions within the operating environment.
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The nature of space exploration requires that human-robotic systems perform

tasks in changing environments, and we capture these uncertainties in the environ-

ment in the task specification. These uncertainties or variations are a part of the

description of the operating environment. Therefore we are interested in identifying

the design factors relevant to how agents perform functions in changing environments,

including different environments and transitions between environments. For example,

if we identify temperature as a relevant environmental state in a task specification, we

may be interested in identifying the design factors relevant to how an agent is able to

perform in cold temperatures, warm temperatures, and transitions between cold and

warm temperatures. In other words, we are interested in identifying the set of design

parameters that affect the system autonomy, or ability of the system to accommodate

the range of possible variations in the environment in pursuit of its goals [77].

I propose that the concept of autonomy is a useful tool for identifying relevant

design parameters to describe the capabilities and constraints of agents. We can iden-

tify relevant design parameters by applying the following question template:

"What design parameters related to performing [a system-specific function in

fulfilling a Subtask]are important for determining [agent]'sability to accommo-

date variations in [specific environment state]?"

Consider the simple human-robotic system described in Figure 3-4.

In this system, the Astronaut tele-operates the Rover in real-time with negligible

time delay. The Astronaut remotely provides navigation direction for the Rover

and the Rover then actuates motion to traverse across the field according to the

navigation directions. I identify relevant design parameters to describe the capabilities

and constraints of the Astronaut and Rover by applying the question template and

answering the following questions:

1. What design parameters related to actuating motion for traversing across

the boulder-strewn fieldare important for determining the Rover's ability

to accommodate variations in boulder size?
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Dependency of environmental state: size of
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System Independent Task Specification I
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(performed by Astronaut) (performed by Rover)

Figure 3-4: Simple human-robotic system

2. What design parameters related to navigating for traversing across the

boulder-strewn fieldare important for determining the Astronaut's ability

to accommodate variations in boulder size?

In answering the first question, we determine that the Rover's wheel size and

configuration are some of the critical design parameters for determining the Rover's

ability to accommodate variations in boulder size. Therefore, we must specify these

design parameters to describe the Rover's capabilities and constraints in performing

this system-specific function.

We also determine that Astronaut reaction time, ability to gauge distance and

speed with information available are some of the critical parameters for determin-

ing an Astronaut's ability to accommodate variations in boulder size. (Information

available is a function of Information Assessment specified in the description of in-

teraction.) Therefore, we must specify these parameters to describe the Astronaut's

capabilities and constraints in performing this system-specific function.

We can apply this question template to each system-specific function performed by

an agent to generate a list of the function-specific design parameters. The specification

of each of these design parameters then describes the capabilities and constraints of

each agent relevant to the operating environment. Although the design parameters

that we specify for different human-robotic systems performing the same task are
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likely to vary, the common question template used to identify these design parameters

provides a standard basis for comparing the performance of different human-robotic

systems in terms of flexibility and robustness, the ability to respond to uncertainty

in task specification and environment.

3.3 Case Study: Nursebot System

In this section, I illustrate initial work towards formalizing the description of human-

robotic systems through the case-study of the terrestrial human-robotic Nursebot

System, which was developed to assist nursing home residents with mild and cogni-

tive physical impairments and support nurses in their daily activities [58, 6, 48, 59].

I choose this terrestrial system for a case-study for three reasons. First, unlike many

human-robotic systems designed for space applications, the current Nursebot System

has few agents: a robotic agent named Nursebot with artificial intelligence capabili-

ties, one nursing home Resident and one Caregiver. The small number of agents in

this human-robotic system is an advantage in formulating an illustrative case-study.

Second, this system exhibits the current state of the art in human-robot interactions.

Third, this system is both well-known and well-documented.

The Nursebot System task specification includes seven subtasks. Nursebot must

contact the nursing home resident, then remind the Resident of relevant appointments,

and then if necessary accompany the resident to appointments. While carrying out

these three subtasks, Nursebot must concurrently maintain an accurate internal model

of the Resident's planned daily activities and status. Nursebot is also tasked with

providing information of interest to the Resident, and must cease interacting with

the Resident upon request [58]. The task specification, including ordering constraints

among subtasks, for the Nursebot System is summarized in Figure 3-5.

Each of these subtasks in the task specification has dependencies on environmental

states that affect the design and performance of the human-robotic system. One of

these environmental states is shown in Figure 3-5; the subtask "Maintain accurate

description of Resident's daily activities and status" is dependent on the time-variant
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Provide information of Cease aiding
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Contact nursing home Remind Resident of Accompany Resident
Resident relevant appointments to appointment
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daily activities and statu

Dependencv on environmental state:
Time-variant properties of Resident's
daily activities

Figure 3-5: Task specification for Nursebot System adapted from [58]

properties of the Resident's daily activities. For example, in a real-world environment

the Resident's daily schedule changes often during the day. As a result it is necessary

to monitor the Resident during the day to maintain an accurate description of the

Resident's daily activities and status. On the other hand, if the Nursebot System is

operating in a controlled environment where the Resident's schedule does not change

during the day, it may not be necessary to monitor the Resident.

In the following sections, I illustrate some of the formal methods for describing how

the Nursebot System fulfills the subtask "Maintain accurate description of Resident's

daily activities and status." I present a description of the system-specific functions

and ordering constraints, identify and provide an example for describing agent inter-

actions, and identify design parameters for system autonomy. Finally, I discuss how

this case-study may be expanded to a complete, formal description of the Nursebot

System.

3.3.1 Specifying system-specific functions and ordering con-

straints

In Figure 3-6 I present a formal description of the system-specific functions that the

Nursebot System carries out in order to fulfill the subtask of maintaining an accurate

description of the Resident's daily activities and status. Arrows in the figure indicate
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the ordering constraints among functions.

In order to maintain an accurate description of the Resident's daily activities

and status, the Nursebot System both models a plan of activities and infers the

activities performed by the Residents throughout the day. Modeling the plan of

activities includes adding new activities, modifying or deleting activities, conducting

time-dependent updates, and then propagating modifications and status updates.

Inferring the activities performed by the Resident includes confirming compliance

reminders, tracking the Resident, reasoning about site-specific tasks, and reasoning

about the likelihood a planned activity has been executed [58]. Some of these system-

specific functions are decomposed further such that one agent (Nursebot, Resident,

or Caregiver) can be assigned to perform each function. This allows the identification

of agent interactions as described in the next section.

Model Status of Activities/ Infer
Activities performed by Resident

Model Plan
of Activities

r -- -- -- -- -- - ---- - ---- --- -- -- ------- -- -- -- --- I-

A~i Confirm
r - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - compliance

to reminders
Add new
activities

r- - - - --- - - - - -- -- -Solicit---nput--Store
ci n rnr----

Input new Store new
activities activities

TrackReason about
Racken likelihood planned \

Modify/ Propagate Resident activity has been
delete modifications and executed

Activities status updates --------- A

Learn Map Follow- -- -- - -- -- - -- -- nvironment differencing Resident

Input Store
modifications modifications

Build Map Label Map

Time

udpe etReason about
site-specific
tasks

Figure 3-6: Example of system-specific functions for Nursebot System [58]
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3.3.2 Identifying and describing agent interactions

In the previous section I have decomposed the system-specific functions to a level

such that one agent can be assigned to perform each function and have organized

the functions in the diagram so as to highlight ordering constraints. In Figure 3-7

I now re-organize the system-specific functions in the diagram into a tree-structure

without ordering constraints to better identify and highlight agent interactions. I

then specify which agent performs each function. If more than one agent can perform

the function, we use the "Or" symbol. Curves connecting two agents are used to

highlight interactions.

I identify that there are nine different interactions among agents that may take

place to fulfill the subtask of maintaining an accurate description of the Resident's

daily activities and status. In order for the Nursebot System to track the Resident,

it must learn the environment. Nursebot is capable of building a map of the nursing

home environment; however the Caregiver must then interact with Nursebot to label

this map (1 possible interaction, represented in the lower left of Figure 3-7). Either

the Caregiver or the Resident can input new activities and/or modifications to the

model plan of activities stored by Nursebot (4 possible interactions, represented in

the upper half of Figure 3-7). Nursebot can solicit confirmation to reminders either

from the Resident or Caregiver (2 possible interactions). And either the Caregiver

or Resident can issue confirmation to Nursebot's reminders (2 possible interactions,

represented in the lower right of Figure 3-7).

Each of these interactions can be described by a set of physical and cognitive

characteristics. For example, consider the interaction between the Caregiver and

Nursebot while adding new activities to the model. The physical characteristics to

describe this interaction include: Proximity of Physical Interaction (PPI), Duration

of Physical Interaction (DPI), Response Time (RT), and Availability (AV). The Care-

giver and Nursebot physically contact while adding new activities to the model plan

(PPI). The duration of physical interaction each time the Caregiver adds a new ac-

tivity to the Nursebot's model is on the order of one minute (DPI). The response

66



time required for the Caregiver to physically intervene when Nursebot is in need of

assistance is on the order of one minute; Nursebot is not able to physically intervene

if the Caregiver needs unplanned assistance (RT). Finally, there is no constraint on

the amount of time the Caregiver can devote to physically intervening when Nurse-

bot is in need of assistance; Nursebot is not able to devote any time to physically

intervening with the Caregiver (AV).

The cognitive characteristics to describe this interaction include: Information

Exchange (IE), Information Assessment (IA), Decision and Action Selection (DS),

Information Lag (IL), and Command Specification (CS). Information Exchange char-

acterizes the flow of information between the Caregiver and Nursebot in terms of

agent requests and transfer of input. The Caregiver can request the addition of new

activities, whereas the Nursebot cannot do this; information about activities in the

form of text is transferred from the Caregiver to Nursebot, and Nursebot provides

visual confirnation that the information has been stored (IE). The Caregiver, who

does not have expert knowledge about Nursebot, is able to detect but likely not iden-

tify faults of the Nursebot components related to adding new activities to the model

plan; Nursebot is not able to sense state or environment information about the Care-

giver (IA). The Caregiver unilaterally decides what activities need to be input in the

model plan (DS). The time delay in information exchange between the Caregiver and

Nursebot is negligible (IL). Finally, Nursebot requires the Caregiver to input detailed

description for the new activity including constraints or preferences regarding the

time or manner of their performance (CS).

3.3.3 Identifying design parameters for system autonomy

I now identify and specify the design parameters for describing the capabilities and

constraints of the Nursebot System that are relevant to how agents perform system-

specific functions in the context of the operating environment. To illustrate this

method I apply the question template described in Section 3.2.5 to the tracking-

related functions that the Nursebot agent performs. These system-specific functions

include building a map of the nursing home environment, map-differencing to find
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Figure 3-7: Example of identifying agent interactions for Nursebot System

people (to avoid or follow), and following the Resident. I answer the following three

questions to identify the design parameters relevant to these three functions:

1. What design parameters related to [building a map to track the Resident

and infer activities performed by the Resident]are important for deter-

mining [Nursebot]'s ability to accommodate variations in [the time-variant

properties of the Resident's daily activities]?

If we are not able to fully predict the Resident's daily activities and Nursebot

must track the Resident, this raises the issue: what is the fidelity of Nursebot's

model of the environment? For example, in following the Resident to unsched-

uled locations, could Nursebot find itself in a location it does not recognize on

its map? To answer these questions I specify the following design parameters:

e Mapping environment (indoors/outdoors, floor surface, etc)
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* Map dimension (2-D, 3-D, etc.)

" Map resolution/grid size

" Estimated state information of Nursebot

- Precision and accuracy of location (x-, y-)

- Precision and accuracy of orientation

" Sensor specifications

- Field of view

- Detection capabilities, limitations

2. What design parameters related to [map differencing to track the Res-

ident to infer activities performed by the Resident]are important for

determining [Nursebot]'s ability to accommodate variations in [the time-

variant properties of the Resident's daily activities]?

Nursebot identifies people and tracks the Resident by comparing a map of the

environment generated in real-time to the map it has learned previously. In

order to determine how well Nursebot can track the Resident, we need to deter-

mine the fidelity of the map generated in real-time. We also need to understand

how Nursebot identifies the Resident (among other people) for tracking. Finally

we need understand the capabilities and constraints of the algorithms used in

tracking the Resident. To address these issues I specify the following design

parameters:

" Map dimension (2-D, 3-D, etc)

" Map resolution/grid size

" Sensor specifications

- Field of view

- Detection capabilities, limitations

* Criteria for resident identification (initial location, face identification, etc.)

" Estimated state information of people, including Resident
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- Precision and accuracy of estimated location (x-, y-) for Nursebot

- Precision and accuracy of estimated Nursebot orientation

- Precision and accuracy of estimated location (x-, y-) of people/Resident

relative to Nursebot

- Parameters for probabilistic model of people's motion

3. What design parameters related to [following the Resident to infer activ-

ities performed by the Resident]are important for determining [Nurse-

bot]'s ability to accommodate variations in [the time-variant properties of

the Resident's daily activities]?

Once Nursebot has built a map of the environment and is able to map difference

to determine the position of the Resident, Nursebot must follow the Resident

through his or her daily activities. We must specify the following design param-

eters to understand the capabilities and constraints of Nursebot in following the

Resident to both scheduled and unscheduled activities:

* Target following distance

" Speed range

" Time constant for matching Resident's speed

" Parameters for mobile and stationary obstacle avoidance algorithm

3.3.4 Expanding the case-study to a complete, formal de-

scription of Nursebot System architecture

In this illustrative case-study I have considered one of the subtasks performed by the

Nursebot System and presented a description of the system-specific functions and

ordering constraints which fulfill the subtask, identified the interactions to fulfill the

subtask, provided an example for specifying the characteristics of these interactions,

and identified the design parameters relevant to Nursebot's functions in tracking the

Resident. To extend this illustrative case-study to a complete, formal description of

the Nursebot System we would have to:
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" Describe the system-specific functions, ordering constraints, and timing for each

of the six subtasks in the task specification presented in Figure 3-5. (Note that

the case-study did not include a description of timing.)

" Identify the interactions to fulfill all six subtasks and specify the characteristics

of each of these interactions.

" Describe the implementation of the human-robotic system as presented in Sec-

tion 3.2.4. (Note that the case-study did not include a description of implemen-

tation.)

* Identify and specify the design factors for system autonomy for each system-

specific function and associated subtask environmental states.

3.4 Summary

In this chapter I discussed methods for formally describing human-robotic systems

(building block 2 of Figure 2-1). This includes methods for: decomposing the system-

independent task specification into system-specific functions with ordering and timing

constraints (1); identifying the interactions necessary to fulfill system-specific func-

tions as well as for specifying the characteristics of these interactions (2); specifying

how system-specific components of form are utilized to fulfill system-specific func-

tions (3); and identifying the design parameters relevant to analyzing the autonomy

of the system (4). My objective in developing these formal methods for representing

teams of humans and robots is to provide a basis for a standard means of evaluating

human-robotic systems against a common set of metrics. In the next chapter, I begin

to investiage an analytical basis for evaluating human-robotic systems in terms of

high-level metrics.
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Chapter 4

Analytical basis for evaluating the

effect of unplanned interventions

on the effectiveness of a

human-robot system

4.1 Introduction and motivation

Human-robot systems are being increasingly considered, and used in a number of

military operations, civilian search and rescue operations, and are proposed as an

integral part of future space missions to the Moon and Mars [14, 12, 67]. The increased

relevance of human-robot systems raises the issue of how to optimally (and reliably)

design these systems to best leverage the varied capabilities of humans and robots.

The question of optimality in turn raises the question of what metrics to use in

order to guide the design, and evaluate the performance, of human-robot systems.

Unfortunately, an analytical framework of common metrics does not currently exist

to compare the performance of different human-robot systems. Formulating such

a framework is challenging in part because techniques do not exist to incorporate

'This chapter is based on work under consideration for publication with Reliability Engineering
and System Safety.
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the effect of human-robot interaction into methods for evaluating metrics such as

productivity, reliability, and risk to humans. The operational environment of human-

robot systems is often hostile to the human agents and the metrics of productivity,

reliability, and risk to humans are strongly coupled.

This chapter addresses the relationships between productivity, reliability, and risk

to humans for human-robot systems operating in a hostile environment. Objectives

for maximizing the effectiveness of a human-robot system are presented which capture

these coupled relationships, and parameters are proposed to characterize unplanned

interventions between a human and robot (Section 4.2). The effect of unplanned in-

terventions on measures of effectiveness is discussed qualitatively (Section 4.3). Next,

the effect of unplanned interventions is formulated analytically in terms of the relia-

bility parameters defined by the author (Section 4.4). The potential implications of

this preliminary analysis on the design and evaluation of human-robot systems are

then discussed (Section 4.5).

4.2 Metrics and definitions

In designing human-robot systems to operate in a hostile environment, two objectives

ought to be considered:

1. To maximize the amount of useful work that human agents can do within a

time window (human productivity)

2. To minimize the risk to human agents. In many situations, this entails mini-

mizing time human agents spend in the hostile environment (exposure).

The details of the specific task, the mission-level timeline, and the environment

in which the task is to be performed determine which of these measures is most ap-

propriate. Minimizing exposure may be the primary objective in many terrestrial

applications involving few tasks, dangerous and unpredictable environments, and low

penalties for entering and exiting the operational environment. For example, urban

search and rescue teams may minimize the risk to rescuers by using robotic agents to
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search buildings in danger of structural collapse and identify victims before sending

in rescuers, even though this strategy may not maximize the productivity of each

rescuer. In contrast, maximizing human productivity may be the primary objective

in situations where there is some penalty for entering and exiting the operating en-

vironment. For example, astronauts preparing for an extravehicular activity (EVA)

on the Space Shuttle and International Space Station are required to breathe pure

oxygen for up to a few hours before the EVA to avoid decompression sickness. With

this penalty, mission planners may prefer to maximize the astronauts' productivity

during the span of a single EVA rather than require the astronauts to perform many

short EVAs - even if many short EVAs would minimize the time astronauts spend in

the hostile environment. While both maximizing human productivity and minimiz-

ing exposure are important considerations for human space flight, maximizing human

productivity is also likely to be the dominant objective for situations in which astro-

nauts have other useful work to do in the extravehicular environment. For example,

robotic agents may be deployed to reduce the amount of time humans would spend

working on a particular task. Astronauts would then use the extra time to begin

working on other tasks, thereby increasing the human productivity during an EVA.

The motivation for the following discussions is to formulate an analytical basis for in-

vestigating the effect that human-robot interaction has on the objectives to maximize

human productivity and minimize exposure.

This preliminary analysis investigates the effect of unplanned interventions, a

specific type of human-robot interaction, on each of these objectives. The following

definitions are presented for the purpose of this analysis:

An intervention is defined as a robotic agent receiving unplanned assistance from a

human agent.

Mean Time Between Interventions (MTBI)is the mean time that a human-

robot system operates nominally (human and robotic agents are not engaging in an

intervention). This is defined as:

MTBI = tbtwint (4.1)
nint
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where tbtw-int is the cumulative time that the system is not engaging in unplanned

interventions requiring a human agent, and nint is the number of unplanned interven-

tions requiring a human agent.

Mean Time Between Interventions (MTBI) is analogous to the Mean Time Be-

tween Failures (MTBF) as defined in the IEEE Standard [56]1. However, while MTBF

refers to component or system reliabilities, MTBI takes on a broader meaning. MTBI

is a function of:

1. The environment (and uncertainty in the environment) that the system or

robotic agent is operating in.

2. The autonomy of the system or robotic agent, in this case defined as the ability

to accommodate variations in the environment in pursuit of its goals [77] (in

this case, without human intervention).

3. The inherent component or system reliabilities.

For example, the MTBI for a rover operating in a boulder-strewn field may be

dependant on the size and distribution of boulders, and also the rover's ability to

autonomously navigate among boulders. The inherent reliabilities of the components

utilized by the rover while navigating will also affect MTBI. In defining MTBI I have

renegotiated the meaning of MTBF to better capture properties of a human-robot sys-

tem in the same spirit that [43] defined a maintenance free operating period (MFOP)

to better analyze and predict properties of aerospace systems.

Mean Time To Intervene (MTTI) is mean duration of interventions. This is

defined as:

MTTI = tin- (4.2)
nint

'Mean Time Between Failures (MTBF) is defined in IEEE Std. 493-1997 as: The mean exposure
time between consecutive failures of a component. It can be estimated by dividing the exposure time
by the number of failures in that period, provided that a sufficient number of failures has occurred
in that period.
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where tijg is the cumulative time spent by human agents engaging in unplanned

interventions and nint is the number of interventions requiring a human agent.

Mean Time To Intervention (MTTI) is analogous to the Mean Time To Repair

(MTTR) as defined in the IEEE Standard [56]2. MTTI is a function of many variables,

including (but not limited to):

* the nature of the failure or problem requiring an intervention

* the design parameters describing cognitive abilities and interaction among agents

including:

- the amount of information agents are able to gather about the nature of

the failure prior to and during the intervention

- the amount and type of information that can be transferred between a

robotic and human agent.

* the physical distance between a robotic and human agent

" the lag in communications between a robotic agent and human agent

" the available resources and tools

The goal of this work is to build on these objectives and parameters to analytically

describe the effect of interventions on the effectiveness of human-robot systems, and

explore potential implications for the design and evaluation of human-robot systems.

Next, the effect of interventions on system effectiveness is discussed qualitatively to

form the basis for an analytical discussion.

2 Mean Time To Repair (MTTR) is defined in IEEE Std. 493-1997 as: The mean time to repair
or replace a failed component. It can be estimated by dividing the summation of repair times by
the number of repairs, and, therefore, it is practically the average repair time.
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4.3 Qualitative discussion of the effect of interven-

tions

In this section, the concept of a mission timeline is used to qualitatively discuss the

effect of interventions. A nominal mission timeline in which the human-robot system

performs a collaborative task without unplanned interventions is shown in Figure

4-la. The mission time, tmax.mission, is the maximum time window that the human-

robot system has to perform a specific task, and represents time constraints associated

with humans working in a hostile environment. Consider for example an astronaut

performing a spacewalk or a scuba diver on a dive. In these cases the maximum

time window is dictated by the amount of life support consumables (e.g. oxygen) the

human agents can carry with them. This is the same maximum time window referred

to in the objective to maximize human productivity in Section 4.2. The nominal

amount of time for the human-robot system to perform a specific task is labeled tta,k

in Figure 4-la. The nominal amount of time required for the human agents to fulfill

their part of the specific task is labeled thuman.finish. The time remaining once the

human agents fulfill their part of the specific task is the time available for the humans

to do other work, either within or outside the hostile operating environment.

In this chapter, robotic agents that do not require interventions are referred to as

"reliable" while agents that do require interventions are referred to as "unreliable."

These qualifiers, reliable and unreliable, are obviously not used in their traditional

sense, but they take on an expanded meaning in which the underlying concept of

failure (or time to failure) is replaced by the notion of intervention (or time to inter-

vention). In the context of human-robotic systems, an intervention is not only driven

by component failures, as discussed in Section 4.2.

The case where robotic agents are "unreliable" and require unplanned interven-

tions is depicted in Figure 4-1b,c. Interventions while human agents are still fulfilling

their part of the task increase thuman.finish and ttask, as shown in Figure 4-1b. Un-

planned interventions after thuman.finish lead to a situation in which human agents

may be required to remain in the hostile operational environment and attend to these
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unplanned interventions. If human agents do not remain in the operational envi-

ronment and a time penalty is incurred for repeatedly returning to the operational

environment, the time required to respond and attend to interventions increases.

This situation is depicted in Figure 4-1c. Each of these situations would significantly

increase exposure and decrease the time available for human agents to do other work.

Time req'd for human-robot system to t = t (task)
perform collaborative task under
nominal conditions

a
JI

,y- t= t (max.mission)
t = t_(human~finish) Time human agents -

t(human.finish) have to do other work

Unplanned intervention required

Time for t =t_(task)

intervention

(b)
A

'y'tI t_(max.mission)
t= t_(human.finish) Time human agents

have to do other work

Unplanned intervention required

Time for t = I(task)
intervention

(c)F

t =o0
t = t

t = t_(human.finish) Time human agents
have to do other work

(max.mission)

Figure 4-1: Effect of interventions on mission-level timeline

However, imagine that the human-robot system was "reliable" - in the sense that

the robots did not often run into problems requiring intervention. In this case, the

human agents would have a choice: once they finish their primary task, they could

remain in the operational environment and begin working on other tasks. This would

increase human productivity. Or, once the human agents finish their primary task,
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they could return to the safe environment secure in the knowledge that the robots

will continue to work without requiring interventions. This would minimize the ex-

posure of the human agents. In other words, a "reliable" human-robot system pro-

vides the option of maximizing the effectiveness of the human-robot system by either

maximizing human productivity or minimizing exposure. In the next section, these

relationships are quantified using the metrics and definitions presented in Section 4.2.

4.4 Analytic formulation of the effect of interven-

tions

In the following analyses, the effect of interventions on the objective of maximizing

human productivity is explored by expressing the time available for humans to do

other work as a function of MTBI and MTTI. In addition, the effect of interventions

on the second objective discussed in Section 4.2, namely minimizing human exposure

to the hostile environment, is explored by expressing the probability of intervention

after the thuman.finish as a function of MTBI and MTTI.

4.4.1 The effect of MTBI and MTTI on time for other work

Under nominal conditions (no interventions required), humans will complete their

task in thuman.finish, as shown in Figure 4-1a. The remaining time, assuming the

window of operation in the hostile environment tmax.mission and nominal conditions,

is given by,

tother = tmax.mission - thuman.finish (4.3)

As the robotic agents start requiring interventions, the time available for humans

to do other work decreases, and thus limits the productivity of the human agents.

This section explores how the time available for other work varies as a function of the

mean time between intervention (MTBI) required by the robotic agents, and with the

expected duration of interventions (MTTI).
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A general expression of the time available for humans to do other work is presented

in Eq. 4.4. This expression is normalized by the nominal amount of time (without

interventions) for the human-robot system to perform a specific task. Time for other

work is given by

tother thumanfinish thuman.finish MTTI - ttask - thuman.finish MTTI (4.4)
ttask ttask ttask MT BI ttask MTBI

where thuman.finish is the nominal amount of time (with no interventions) required for

the human agents to fulfill their part of the specific task, and ttask is the nominal

amount of time for the human-robot system to perform a specific task. The first two

terms in Eq. 4.4 represent the time for other work with no interventions. The third

term accounts for the total time spent engaging in interventions before thuman.finish,

as depicted in Figure 4-1b. The last term accounts for the total time spent engaging

in interventions after thuman.finish, as presented in Figure 4-1c. 3

Figure 4-2 shows the amount of time human agents have available for other work

as a function of MTBI and MTTI.
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Figure 4-2: Time for other work as a function of MTBI and MTTI

3 Eq. 4.4 also assumes that the Mean Time Between Intervention (MTBI) is measured from the
end of one intervention to the start of the next intervention, and that two interventions cannot occur
during the same time.
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The figure shows that as MTBI increases, the Time For Other Work initially

increases sharply and then plateaus. Increasing MTTI by an order of magnitude

decreases the Time For Other Work and softens the transition between the initial

increase and plateau as a function of MTBI.

This analysis assumed that MTTI and MTBI are constant throughout the mission

duration, ttask = 20% of tmax.mission, and thuman.finish = 10% of tmax.mission. The curves

represent the relationships between MTBI (ranging from 0 to 60%) and the specific

MTTI (2% or 20%) for which the Time For Other Work is positive. The relationship

between MTBI and MTTI which yield a positive Time For Other Work positive is

given by

MTTI tmax.mission - thuman.finish (4.5)
MTBI - ttask

4.4.2 The effect of MTBI and MTTI on the probability of

intervention

Once the human agents finish their part of the task, they may choose to exit the hostile

environment as soon as possible to minimize exposure. Under nominal conditions,

humans complete their part of the task in thuman.finish, and the robotic agents finish

the task without requiring interventions as shown in Fig. la. In this case, the human

agents may leave the hostile environment directly after thuman.finish. However, if the

robotic agents are likely to require interventions after thuman.finish, the human agents

may instead choose to remain in the hostile environment for a certain amount of time

such that the probability of intervention past this point is within a specified threshold.

This section explores the probability of intervention after thuman.finish as a function

of the mean time between intervention (MTBI) required by the robotic agents, and

the expected duration of interventions (MTTI).

The probability of intervention after human agents finish their part of the task is

described using a Poisson distribution to model the occurrence of initiating events.

In this case, the initiating event is an intervention. The probability that at least one
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intervention will be required between when the human agents finish their part of the

task, and when the task is complete is given by

F(t) = 1 - exp [-J::::to h(s)ds] (4.6)
I-thuman.tot

where thuman.tot is the time required (including interventions) for the human agents to

perform their part of the task, and ttask.tot is the total time (including interventions)

to perform the task. Also, h(s) = M1Br is constant, and MTTI is constant.

The resulting expression for the probability that at least one intervention will be

required after thuman.finish as a function of MTBI, MTTI, ttask, and thuman.finish is

given by,

F(t) = 1 - exp - tass thuman.finish ttask - thuman.finish MTTI] (4.7)
F MTBI MTBI MTBI2

where thuman.finish is the nominal amount of time (with no interventions) required for

the human agents to fulfill their part of the specific task, and ttask is the nominal

amount of time for the human-robot system to perform a specific task.

Figure 4-3 shows the probability that an unplanned intervention is required after

the human agents have finished their part of the task as a function of MTBI and

MTTI.

The figure shows that as MTBI increases, the probability of intervention decreases.

Increasing MTTI by an order of magnitude shifts the curve and increases the proba-

bility of intervention for a given MTBI.

This analysis assumed that both MTBI and MTTI are expressed as a percentage

of the total mission time, ttask = 20% of tmax.mission, and thuman.finish = 10% of

tmax.mission-
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Figure 4-3: Probability of intervention as a function of MTBI and MTTI

4.5 Discussion

Preliminary analysis of the trends presented in the Section 4.4 yields interesting in-

sights for design and evaluation of human-robot systems. Figure 4-2 indicates that

the Time Available For Other Work is sensitive to both MTBI and MTTI. The sensi-

tivities of Time Available For Other Work to changes in MTBI and MTTI are shown

in Figure 4-4 and 4-5, and are respectively described by Eq. 4.8 and 4.9:

&other ttask
SMTTI &MTTI MTBI (4.8)

and,

Otother (MTTI)ttask (49)
sMTBI MTBI 2

84



0

7

6

5

4

3

2

1

0
60

Figure 4-4: Sensitivity of time available for other work to MTTI

-MTI = 2
- MTTI = 20

(% of t_(max.mission))

10 20 30 40

MTBI
(% of t_(max.mission))

50 60

Figure 4-5: Sensitivity of time available for other work to MTBI

In Figure 4-4 and 4-5, ttak, MTBI, and MTTI are expressed as a percentage of

the maximum mission time, and ttask = 20% of the maximum mission time.

Increases in MTTI reduce the time available for human agents to do other work.

However this analysis shows that the sensitivity of Time Available For Other Work

to MTTI is not a function of MTTI, and the sensitivity to MTTI quickly decreases as

MTBI is increased. In other words, as the frequency of interventions decreases, the

objective of maximizing human productivity becomes less sensitive to the duration

of interventions. Also, increases in MTBI result in increased time available for other
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work, and the sensitivity to MTBI increases as MTTI increases. In other words,

increases in the duration of interventions results in greater sensitivity to the frequency

of interventions. This suggests that a designer may be able to compensate for large or

uncertain MTTI and achieve increases in time available to do other work with modest

increases in MTBI.

Interestingly, Figure 4-3 indicates that the probability of robotic agents requiring

an intervention after the astronauts have finished their part of the task is primarily a

function of MTBI. The sensitivity of Probability of Intervention to changes in MTBI

and MTTI are shown in Figure 4-6 and 4-7, and are respectively described by

9F(t) ttask - thuman.jinish fttask.tot
sF-MTTI MTBI MTBI 2  cxp - h(s)ds (4.10)

and,

&F(t)
SF-MTBI = oMTBI (4.11)

= _ man.finish +2 2 M*s. tBIm"".'*"**s MTTI e - ua*-to h(s)ds]MTMTBI 2  + MT Is fthuman.tot

where ttask is the nominal amount of time (with no interventions) for the human-

robot system to perform the task, thuman.finish is the nominal amount of time (with

no interventions) required for the human agents to fulfill their part of the specific

task, thuman.tot is the time required (including interventions) for the human agents to

perform their part of the task, ttak.tot is the total time (including interventions) to

perform the task, and h(s) = MTBI-
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In Figure 4-6 and 4-7, ttask, thuman.finish, MTBI, and MTTI are expressed as a

percentage of the maximum mission time, ttask = 20%, and thuman.finish = 10% of the

maximum mission time.

This sensitivity analysis shows that the Probability of Intervention is nearly three

orders of magnitude more sensitive to MTBI than MTTI. This suggests that MTBI

is the primary driver, and unknown or uncertain MTTI may not significantly impact

the design of a system to minimize the Probability of Intervention.
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The meanings of MTBI and MTTI in the context of this analysis have implications

for human-robot system design and evaluation. As discussed previously, MTBI is a

function of:

1. The environment (and uncertainty in the environment) that the system or

robotic agent is operating in.

2. The autonomy of the system or robotic agent, in this case defined as the ability

to accommodate variations in the environment in pursuit of its goals citekn:revthirtysix

(in this case, without human intervention).

3. The inherent component or system reliabilities

MTTI is a function of many variables, including (but not limited to):

" the nature of the failure or problem requiring an intervention

* the design parameters describing cognitive abilities and interaction among agents

including:

- the amount of information agents are able to gather about the nature of

the failure prior to and during the intervention

- the amount and type of information that can be transferred between a

robotic and human agent.

" the physical distance between a robotic and human agent

* the lag in communications between a robotic agent and human agent

" the available resources and tools

This preliminary analysis suggests that a designer may be able to greatly impact

both measures of the effectiveness of a human-robot system by increasing the MTBI,

despite the likely variability and unpredictability of MTTI. In particular, the objective

of maximizing human productivity becomes less sensitive to MTTI as MTBI increases.

In addition, the objective of minimizing exposure is significantly more sensitive to
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changes in MTBI than MTTI. These are encouraging results since MTBI is primarily

a function of parameters that designers may influence, such as agent autonomy and

component and system reliabilities.

These trends also have interesting implications for experiments aimed at eval-

uating the effectiveness of human-robot systems. Accurately characterizing MTTI

through experimentation may not be necessary to formulate reasonable evaluations

of the effectiveness of a human-robot system. This is fortunate since MTTI is depen-

dent on a host of different factors and is likely to be difficult to accurately quantify.

Another approach would be to characterize MTBI through experimentation with

the factors that result in interventions, and conduct a sensitivity analysis to various

MTTI.
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Chapter 5

Case Study of the Peer-to-Peer

Human-Robot Interaction Project

5.1 Introduction

In this chapter, I present a case-study of the Peer-to-Peer System, a multi-agent

human-robot system developed at NASA. The purpose of this case-study is to provide

a real-world example that illustrates the theoretical analysis presented in the previous

chapter. During Fall 2005, I participated both in the planning of the data collection

methodology at NIST, and the execution of the experiments with this system at the

NASA Ames Research Center. I use the data collected during these experiments

to evaluate the system using the methodology presented in the previous chapter.

The objective of this analysis is to compare the Peer-to-Peer System's MTBI and

MTTI (exhibited during the experiments) to the theoretical values of MTBI and

MTTI necessary for the human-robot system to be more effective than a human-only

system performing the experiment tasks.

In Section 5.2, I describe the Peer-to-Peer System and in Section 5.3, I give a

formal description of the tasks performed during the experiment trials. In Section 5.4,

I describe the data collected which is relevant to this thesis. In Section 5.5, I present

the analysis of the data and analytical formulation for comparing the effectiveness of

the system to a hypothetical human-only system. I also discuss limitations of this
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analysis. In Section 5.6, I conclude and discuss how experimentation and the analysis

can be expanded to provide a more accurate characterization of the Peer-to-Peer

System's effectiveness (as defined in the previous chapter).

5.2 Description of system

The Peer-to-Peer Human-Robot Interaction (P2P-HRI) Project was developed at the

NASA Ames Research Center in 2005 to support NASA's Vision for Space for a

"sustained and affordable human and robotic program to explore the solar system

and beyond. [50]" The purpose of Peer-to-Peer Human-Robot Interaction (P2P-HRI)

project is to develop human-robot interaction techniques to allow humans and robots

to work effectively together and compensate for limitations of robot autonomy through

interaction. In particular the project has three objectives: (1) to develop natural lan-

guage mechanisms for human-robot interaction, (2) to reduce workload for controlling

robotic agents, and (3) to maximize the work that humans and robots accomplish

together [32].

Experiments were conducted in November 2005 at NASA Ames with a multi-agent

system to assess the project's progress with these objectives. The system consisted

of five physical agents: two "EVA astronauts" (i.e. human agents in the operational

environment), one "IVA astronaut" (i.e. human agent inside a habitat mockup), and

two robotic agents. One of the robotic agents was Robonaut, a "torso-up" anthro-

pomorphic humanoid robot developed at the Johnson Space Center [5]. Robonaut's

fine motion and force-torque control allows it to perform many dexterous tasks often

performed by humans. For these experiments Robonaut was mounted on a mobile

platform, allowing it to autonomously traverse through the operational environment

and perform pre-programmed actions. The other robotic agent was K-10, a mobile

rover-like robot developed at NASA Ames with the capability to traverse and per-

form actions during the experiment trials autonomously or through tele-operation by

EVA astronauts (with voice commands) or by the IVA astronaut (through a graphical

interface).
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A number of software agents made up the "Human-Robot Interaction Operating

System" (HRI/OS), which enabled coordination and interaction among the physical

agents. The software agents include: Task Manager, Context Manager, Resource

Manager, Interaction Manager, and Spatial Reasoning Agent. The Task Manager

coordinated actions by assigning high-level tasks to each of the agents. Each agent

was then responsible for determining and executing the low-level actions necessary to

complete the high-level task. Once the agent completed the assigned task, it reported

the status back to the Context Manager. The Context Manager was responsible for

maintaining a record of status, execution, and dialogue which other agents could

query. The Resource Manager coordinated availability and requests for resources

(agents and services) in the system. When an agent requested a resource, the Re-

source Manager generated a prioritized list of agents that should be consulted. The

Interaction Manager then facilitated communication between agents through graph-

ical interfaces and speech. Finally, the Spatial Reasoning Agent provided K-10 the

ability to interpret voice commands (during tele-operation) using different frames of

reference [33].

5.3 Experiment tasks

The November 2005 experiments included a number of trials in which the Peer-to-

Peer System carried out a simulated construction project. During the construction

activities, the EVA astronauts placed panels on a truss structure, Robonaut simulated

welding the seams between panels, and K-10 simulated inspecting the integrity of each

weld.

The formal description of the task specification that I have developed is presented

in Tables 5.1 and 5.2. The start condition for the experiment trials included four of

the six panels already mounted on the truss (with the other two panels located in

the panel depot), and Seam 1-2 already welded. The Enabling Precondition for the

astronauts to begin transporting the remaining panels was that Panels 5 and 6 were

ready in the depot. Robotic agents conducted their functions (welding and inspecting)
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with knowledge of an absolute frame of reference using the Visualeyez System, a 3-D

motion capture system [76]. The Visualeyez system provided the location of each

agent in the operational environment, and the placement of the truss structure which

held the panels was fixed within the absolute frame of reference. Robonaut and K-10

were not able to "sense" the panels or identify variations in panel and seam placement

from the expected location. As a result, proper operation of the Visualeyez system

was a necessary Permanent Precondition for all functions to avoid agent collisions and

to achieve well-placed welds and proper inspections. Other Permanent Preconditions

included the necessity for the frames holding the panels to be precisely assembled and

placed within the absolute frame of reference, and then for the panels to be precisely

placed on the frames. The sources of error associated with uncertainty in each of

these permanent preconditions had to sum to less than 7-8 inches for Robonaut to

successfully weld each seam. Ordering Constraints are also presented in the formal

task specification.

While this task specification presents the baseline scenario for the experiment

trials, two scripted "unplanned interventions" were carried out during each trial. I

refer to these two scripted "unplanned interventions" as "planned interventions" to

distinguish them from the truly unplanned interventions discussed in Sections 5.4 and

5.5. One planned intervention occurred while the astronauts were mounting Panel

5. During this first intervention, the EVA astronauts realized they needed a light to

better check the placement of Panel 5. One of the EVA astronauts then utilized the

Resource Manager and Interaction Manager to initiate voice-command tele-operation

of K-10. The purpose of this intervention was to exercise the Spatial Reasoning Agent

and command K-10 to shine its light on Panel 5. The second planned intervention

occurred while Robonaut was welding either Seam 3-4 or 4-5. For this intervention,

Robonaut would stop in the middle of its weld and request that an EVA astronaut

check the placement of a panel.
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Final Outcome of Portfolio of Tasks: All six panels placed on truss; Seams 1-2, 2-3, 3-4, and 4-5 welded; and Seams 1-2, 2-3, and 3-4 inspected.
SUBTASKS ENVIRONMENT ORDERING CONSTRAINTS
Function Uncertainty Permanent Preconditions Enabling Preconditions Pre Post Concurrent

State Uncertainty State Uncertainty
Transport None 3-D location of Visualeyez operational Panels are None None Place Panel 5 Weld Seam 2-3, Inspect Seam 1-
Panel 5 to robotic and/or during trials? in the Panel on Frame 5 3-4 2,2-3, 3-4
Position 5 human agents Depot

known through
Visualeyez
system

Transport Place Panel 6 Weld Seam 2-3, Inspect Seam
Panel 6 to on Frame 6 3-4,4-5 1-2,2-3,3-4
Position 6

Place Panel None 3-D location of Visualeyez operational None None Transport Panel 5 to Transport Weld Seam 2-3, Inspect Seam 1-
5 on Frame robotic and/or during trials? Position 5 Panel 6 to 3-4,4-5 2,2-3,3-4
5 human agents Position 6

known through
Visualeyez
system
Frames are Sources of error in
ideally frame assembly and
assembled and placement add up to
placed less than 7-8 inches?

Position and Visualeyez operational
Place Panel orientation of during trials? Transport Panel 6 to None Weld Seam 2-3, Inspect Seam 1-
6 on Frame ideal frames Position 6 3-4,4-5 2,2-3,3-4
6 known through

Visualeyez
Lighting Lighting is adequate?

Weld Seam None 3-D location of Visualeyez operational None None Transport Place Panel Weld Seam Transport Place Inspect
2-3 robotic and/or during trials? Panel 2,3 to 2,3 on 3-4 Panel 5,6 Panel 5,6 Seam 1-2

human agents Position 2,3 Frame 2,3 to Position on Frame
known through 5,6 5,6
Visualeyez
system
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Frames are Sources of error in
ideally frame assembly and
assembled and placement add up to
placed less than 7-8 inches?

Panel ideally Variation in panel
placed and placement?
secured on
frame

Weld Seam Position and Visualeyez operational Transport Place Panel Weld Seam Transport Place Inspect
3-4 orientation of during trials? Panel 3,4 to 3,4 on 4-5 Panel 5,6 Panel 5,6 Seam 1-

ideal frames Position 3,4 Frame 3,4 to Position on Frame 2, 2-3
known through 5,6 5,6
Visualeyez

Weld Seam Transport Place Panel None Transport Place Inspect
4-5 Panel 4,5 to 4,5 on Panel 6 to Panel 6 Seam 1-

Position 4,5 Frame 4,5 Position 6 on Frame 2, 2-3, 3-
6 4

Inspect None 3-D location of Visualeyez operational None None Weld Seam 1-2 None Transport Place Weld
Seam 1-2 robotic and/or during trials? Panel 5,6 Panel 5,6 Seam 2-

human agents to on Frame 3, 3-4, 4-
known through Position 5,6 5
Visualeyez _5,6

Inspect system Weld Seam 2-3 Transport Place
Seam 2-3 Panel 5,6 Panel 5,6 Weld

to on Frame Seam 3-
Position 5,6 4,4-5
5,6

Inspect Frames are Sources of error in Weld Seam 3-4 Transport Place Weld
Seam 3-4 ideally frame assembly and Panel 5,6 Panel 5,6 Seam 4-5

assembled and placement add up to to on Frame
placed less than 7-8 inches? Position 5,6

5,6
Inspect Panel ideally Variation in panel
Seam 4-5 placed and placement? None None

secured on
frame



5.4 Data collection methods

Data was collected in the form of video, audio, and real-time manual data logging for

seven experiment trials. Four cameras were positioned to capture video and audio

during the trials. Three of these cameras were placed in the operational area to

capture the movements and audio of the two EVA astronauts, Robonaut, and K-

10. The fourth camera was placed inside the habitat to capture the IVA astronaut's

voice, actions, and the graphical interfaces used to monitor the system. The camera

inside the habitat also captured the EVA astronaut's audio feed. Figure 5-1 shows

the camera placement in the operational environment and habitat.

Habitat Panel 6

Camera 4 [
Camera 3 Panel 5

Panel 4 Panel 3 Panel 2 Panel 1

Camera1

Camera 2

Figure 5-1: Overhead view of camera placement

Real-time manual data logging was also conducted to complement the video and

audio data. Noldus information technology software specifically designed to collect

and analyze behavioral data was used to log the timing of each agent's actions [54].

Three people manually logged data during each trial, myself and the two researchers

from NIST. One person recorded the actions of Robonaut, the second person recorded

the actions of K10, and the third person recorded the actions of both EVA astronauts.

The actions of the IVA astronaut were not logged using the Noldus software. Table
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5.3 lists the actions recorded for each agent.

EVA Astronaut Actions K-10 Actions Robonaut Actions

Start Get Panel Start Move Start Move

End Get Panel End Move End Move

Start Place Panel Start Inspection Start Weld

End Place Panel End Inspection End Weld

Start Request Help Start Provide Help Start Request Help

End Request Help End Provide Help End Request Help

Start Provide Help Interesting Event Marker Interesting Event Marker

End Provide Help

Interesting Event Marker

Table 5.3: Experiment actions

At the beginning of each trial, the Noldus software was synchronized with the

cameras. During the trials, the start time and stop time was recorded for each action,

and the Noldus software then computed the duration of each recorded action. The

purpose of these measurements was to provide approximate timing for actions as well

as provide pointers to the camera data for interesting events.

5.5 Data analysis

The objective of this analysis is to compare the Peer-to-Peer System's MTBI and

MTTI (exhibited during the experiments) to the theoretical values of MTBI and

MTTI necessary for the human-robot system to be more effective than a human-only

system performing the experiment tasks.

Video and Noldus data were collected for seven trials. Each of these trials was

analyzed to identify unplanned interventions, and to estimate the MTBI, MTTI, ttas,

and thuman.finish (Section 5.5.1). A hypothetical human-only workflow to carry out

the experiment task was then derived (Section 5.5.2). Lastly, the experiment values
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of MTBI and MTTI were compared to the theoretical values necessary for the human-

robot system to provide a higher Time For Other Work than the human-only baseline,

and achieve a Probability of Intervention of less than 25% (Section 5.5.3).

5.5.1 Unplanned interventions and experiment values for MTBI,

MTTI

Table 5.4 lists each of the unplanned interventions, and descriptive information in-

cluding: the experiment trial the intervention occurred in, duration, circumstances,

the agent requesting help, and the agents providing help.

Based on these thirteen unplanned interventions, experiment MTBI and MTTI

were derived from the video data and are shown in Table 5.5. The mean total time to

complete the task, ttask, is 710 seconds, and the mean time required for the humans to

complete their part of the task, thuman.finish, is 471 seconds. Although the experiment

did not have maximum mission time, I assumed for the purposes of analysis that

tmax.mission is 3550 seconds, five times the mean duration of ttask.

5.5.2 Hypothetical human-only workflow

In the previous section I analyzed experiment data to determine the MTBI and MTTI

of the P2P-HRI. In this section I develop a hypothetical human-only workflow to

provide a basis of comparison for measuring the effectiveness of the human-robot

system. A human-only workflow would not involve robotic agents, and therefore

would not have any unplanned interventions in which a robotic agent requests help

from a human agent. To provide a conservative basis for comparison, I assumed that

the time required for humans to perform the primitive tasks (such as weld, inspect,

move between panels) is equal to the time the robotic agents take to perform the same

primitive tasks. I suggest that this is a fair basis for comparison, since the experiment

trials did not involve real welding or inspections, making it difficult to compare the

inherent capabilities of the humans and robots for performing these sorts of primitive

tasks.
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Incident Trial # Duration Circumstances Request Help Given
(sec) From By

K1O not 1 17 EVAl request for tele- KIO EVAl, IVA
responding operation (during EVAl 's

request for light)
K1O 1 11 K10 encounters obstacle K1O EVAl, IVA
encounters (Robonaut) while trying to
obstacle return to its task after

providing flashlight
K1O 2 67 K10 gets too close to K10 EVA1, IVA
encounters Robonaut while traversing
obstacle to help EVA1&2 with light
K1O 2 20 EVA1&2 are too close to K1O EVAl, IVA
encounters K1O when they end tele-
obstacle operation and sent K1O

back to its task
K1O 2 68 K1O encounters obstacle K1O IVA
encounters (Robonaut) while trying to
obstacle return to its task after

providing flashlight
Task 2 130 Task Manager fails to give K10, EVA1&2 IVA
Manager Robonaut and EVA1 &2
fails next task
K10 3 141 K10 is too close to K10 EVAl, IVA
encounters Robonaut. Concurrently,
obstacle there is a problem with

K1O's spatial reasoning
K1O 4 37 K1O encounter an obstacle K1O EVA2, IVA
encounters (Robonaut) while
obstacle traversing to help

EVA1&2 with light
KI not 4 168 KI stops along its K1O IVA
responding traverse back to its task

after providing light
K1O 5 22 K1O encounters an obstacle K1O EVAl
encounters (Robonaut) while
obstacle traversing to help

EVA1&2 with light
K1O 6 29 K1O encounters an obstacle K1O EVA2, IVA
encounters (Robonaut) while
obstacle traversing to help

EVA1&2 with light
K1O 6 38 K1O encounters an obstacle K1O IVA
encounters (Robonaut) while returning
obstacle after helping EVA1&2

with light
KI not 7 61 Lost track of K10 while it K1O EVAl, IVA
responding was traversing to help

EVAl&2 with light

Table 5.4: P2P-HRI experiment unplanned interventions

100



Experiment Parameters Mean (seconds) Standard Deviation (seconds)

MTBI 115 74

MTTI 67 53

Table 5.5: Experiment MTBI and MTTI

In developing the human-only baseline, I assumed that two humans are required

to mount a panel, and one human is necessary to either weld or inspect a seam. As

in the experiment scenario, I assumed that Panels 1 through 4 have been mounted,

Seam 1-2 has been welded, and Seam 5-6 does not need to be welded or inspected.

The planned interventions built into the experiment trials are also incorporated into

the hypothetical human-only baseline. For instance, mounting panel five includes

procuring a light to check the alignment of the panel. The hypothetical time required

for the human-only team to find a light and inspect the alignment is assumed to

be equal to the time for the planned intervention in which K10 provides a light to

the EVA astronauts. Similarly, welding Seam 4-5 includes the time for the planned

intervention in which Robonaut requests assistance from EVA1 and EVA2.

Table 5.6 lists the timing data for the primitive tasks which make up the human-

only workflow. Five instances (labeled 1-5 in the table), each chosen randomly from

different trials, were recorded. The timing data for these primitive tasks was used

to formulate a specific hypothetical human-only workflow shown in Table 5.7. It is

important to note that this may not be the optimum workflow, but is one reasonable

workflow which is used as a baseline for this analysis. The total task time and

maximum time for other work are calculated assuming the mean time (labeled as

Average), one standard deviation below the mean time (labeled as Low), and one

standard deviation above the mean time (labeled as High) for each primitive task.
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1 (sec) 2 (sec) 3 (sec) 4 (sec) 5 (sec) Average Standard
(sec) Deviation

(sec)
Mount Panel 5
including light
intervention 505 339 225 239 287 319 113
Mount Panel 6 45 47 46 40 42 44 3
Weld Seam 4-5
including planned
intervention
(includes
traveling TO) 115 232 205 113 215 176 57
Weld Seam (w/o
intervention)
(includes
traveling TO)
traveling TO)123 111 108 93 106 108 11

Inspect Seam
(includes
traveling TO) 30 32 67 30 27 37 17

Table 5.6: Timing data for primitive tasks

Primitive Average Low High Primitive Average Low High
Tasks - (sec) (sec) (sec) Tasks - (sec) (sec) (sec)
EVA1 EVA2
Mount 44 41 47 Mount 44 41 47
Panel 6 Panel 6
Mount 319 206 432 Mount 319 206 432
Panel 5 Panel 5
Weld Seam 176 119 233 Idle 176 119 233
4-5
Weld Seam 108 97 119 Inspect 37 20 54
3-5 Seam 4-5 (Idle: 71) (Idle: 88) (Idle: 54)
Weld Seam 108 97 119 Inspect 37 20 54
2-3 Seam 3-4 (Idle: 71) (Idle: 88) (Idle: 54)
Inspect 37 20 54 Inspect 37 20 54
Seam 1-2 Seam 2-3
Total Task 792 580 1004
Time __ __ _ _ _ _

Max Time 2758 2970 2546
for Other
Work _ _ _____ __

Table 5.7: Hypothetical human-only workflow
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5.5.3 Analysis of P2P-HRI system effectiveness

The previous two sections provide the basis to analyze the effectiveness of the P2P-

HRI system. In this section I analyze the effectiveness of the P2P-HRI System using

two metrics: time for humans to do other work as compared to the human-only

baseline, and the probability of unplanned intervention after the humans finish their

part of the task. The analytic formulation for each of these metrics described in

Chapter 4 is applied in this section.

Figure 5-2 compares the Time For Other Work as a function of the MTBI and

MTTI exhibited during the experiment trials to the Time For Other Work of the

hypothetical human-only baseline.

t_other.humans > tother.HRI
/ 

/ 189,120

/ 115, 67

- Boundary-Mean
- - - - Boundary - Low

- - Boundary-High

m Experiment-Mean

>K Experiment-Low
* Experiment-High

134 sec.

t_other.HRI> tother.humans

0 50 100 150 200

MTBI (seconds)

Figure 5-2: Time for other work of P2P-HRI System compared to human-only baseline

This analysis assumed ttask = 710 seconds, thumanjfinish = 471 seconds, and

tmax.mission = 3550 seconds. The Boundary-Mean line indicates the boundary over

which the human-only baseline has a greater Time For Other Work than the P2P-

HRI System. The Boundary-Mean line is calculated using the mean values for prim-
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itive tasks to formulate the human-only baseline (calculated in Section 5.5.2). The

Boundary-Low line is calculated using the low values for primitive tasks, and the

Boundary-High line is calculated using the high values for primitive tasks. The

Experiment-Mean data point indicates the mean values of MTBI and MTTI ex-

hibited during the experiment trials. Due to the large standard deviation of MTBI

and MTTI, I have also plotted Experiment-Low and Experiment-High data points.

Experiment-Low indicates one standard deviation below the mean for both MTBI

and MTTI, and Experiment-High indicates one standard deviation above the mean

for both MTBI and MTTI.

The figure shows that the Experiment-Mean MTBI must be increased by 34 sec-

onds or the Experiment-Mean MTTI must be decreased by 16 seconds to cross the

Boundary-Mean line, making the Time For Other Work of the P2P-HRI System

greater than for the human-only baseline. These are relatively modest improvements

in MTBI and MTTI. Additionally, all three Experiment-Mean, Low, and High data

points fall within the Boundary-High line. This evidence suggests that the P2P-HRI

System and the human-only baseline have comparable effectiveness in terms of the

metric Time For Other Work.

The second metric of effectiveness is the probability that an unplanned interven-

tion will be required after the thuman.finish. Figure 5-3 compares the MTBI and MTTI

exhibited in the experiment to a Probability of Intervention less than 25%.

This analysis assumed tta, = 710 seconds, and thuman.finish = 471 seconds. The

Boundary line indicates the MTBI and MTTI which result in either a Probability Of

Intervention greater than 25% or less than 25%. The Experiment-Mean data point

indicates that mean values of MTBI and MTTI exhibited during the experiment

trials. The Experiment-Mean MTBI and MTTI result in greater than 96% chance of

an intervention after thuman.finish. As with the previous analysis, I have also plotted

Experiment-Low and Experiment-High data points. Experiment-Low indicates one

standard deviation below the mean for both MTBI and MTTI, and result in greater

than 99% chance of an intervention after thuman.finish. Experiment-High indicates one

standard deviation above the mean for both MTBI and MTTI, and result in greater
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Figure 5-3: Probability of intervention in P2P-HRI System

than 87% chance of an intervention after thuman.finish.

These results indicate that although the P2P-HRI System is comparable to a

human-only system in terms of Time For Other Work, the Probability of Intervention

is significant. In fact, the Experiment-Mean MTBI must be increased by 779 seconds

for the Probability of Intervention to drop below 25%. This suggests that unless

significant improvements can be made in the MTBI, EVA astronauts should spent

their Time For Other Work in the operational environment, rather than returning

inside the habitat.

A potential shortcoming of this analysis is identified by comparing the analy-

sis of Probability of Intervention to the actual occurrences in interventions after

thuman.finish. In fact out of seven trials, an intervention after thumanfinish only oc-

curred once. This does not seem consistent with Probabilities of Intervention which

range from 87-99%. The reason for this discrepancy is that interventions tended to

occur during particular parts of the experiment trial involving human-robot interac-

tion. Since there was no human-robot interaction after thuman.finish, the actual MTBI

after thuman.finish was much lower than the overall MTBI. Based on this observation,
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the MTBI-MTTI analysis is likely to be most descriptive for homogeneous tasks in

which the MTBI and MTTI remain constant over the task timeline. In absence of

homogeneous tasks, the MTBI-MTTI analysis can be expanded to explicitly account

for quantitatively different phases in the task and the duration of each phase.

5.6 Conclusions

In this chapter, I have presented a case study of the Peer-to-Peer Human-Robot In-

teraction System with the purpose of providing a real-world example to illustrate the

analysis of HRI system effectiveness presented in Chapter 4. I have described the

system, including agents and their roles during the November 2005 experiments. I

have formally described the experiment tasks, including functions, permanent and en-

abling preconditions, and ordering constraints, as well as described the modes of data

collection. In analyzing the data, I identified unplanned interventions and derived

experimental values for MTBI and MTTI, formulated a hypothetical human-only

baseline, and analyzed the effectiveness of the P2P-HRI System.

The effectiveness of the P2P-HRI System was analyzed using two metrics, Time

For Other Work and Probability of Intervention, using the analytic formulation pre-

sented in Chapter 4. In analyzing the time humans have available for work in the

P2P-HRI System as compared to a human-only baseline, I concluded that the Time

For Other Work in the P2P-HRI System is comparable to the human-only baseline.

Indeed, modest improvements in either MTBI or MTTI would result in an HRI Sys-

tem that is more effective than the human-only baseline, with respect to Time For

Other Work. On the other hand, the analytic formulation of Probability of Interven-

tion suggests that there is an 87-99% Probability of Intervention after thuman.finish.

In this case, a significant increase in MTBI is necessary to achieve less than 25%

Probability of Intervention. The difference in system effectiveness derived from the

two measures suggests that both metrics must be considered to form an accurate

picture of the capabilities and limitations of a human-robot system. Together, these

measures of system effectiveness capture the coupled relationships between, reliabil-
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ity, productivity, and risk to humans for human-robot systems, and provide high-level

metrics to compare the performance of different systems.
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Chapter 6

Conclusion

6.1 Summary of contributions

My overall research objective is to the lay the foundations of a unified framework

for architecting human-robotic systems for optimal task performance given a set of

metrics. In this thesis, I have addressed three issues to accomplish this objective.

(1) What are the considerations for architecting human-robot teams? (2) How can

a designer systematically and formally capture the characteristics that describe each

human-robotic system to ensure that the evaluations of systems are comparable? (3)

How can a designer analytically formulate common metrics to evaluate and maximize

the effectiveness of a human-robot system?

In addressing the first question, I reviewed literature from different fields including

HRI and human-computer interaction, and synthesized multiple considerations for

architecting heterogeneous teams of humans and robots (Chapter 2). I organized these

considerations into four main building blocks to provide the backbone for an analytical

framework to compare the advantages and disadvantages of different human-robot

systems. The building blocks included: 1) specifying tasks, 2) generating a human-

robotic team, 3) allocating functions to agents in the system, and 4) evaluating the

system against common task-based metrics.

I further developed the second building block, generating a human-robotic team,

and addressed how to capture the characteristics that describe a human-robotic sys-
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tem (Chapter 3). Methods for formally describing human-robot systems include:

decomposing the system-independent task specification into system-specific functions

with ordering and timing constraints (1); identifying the interactions necessary to

fulfill system-specific functions as well as for specifying the characteristics of these

interactions (2); specifying how system-specific components of form are utilized to

fulfill system-specific functions (3); and identifying the design parameters relevant

to analyzing the autonomy of the system (4). I then illustrated these methods by

formally describing the architecture of the Nursebot System.

To address the last issue of formulating common metrics, I proposed an analytical

formulation of common metrics to guide the design and evaluate the performance

of human-robot systems (Chapter 4). I presented objectives for maximizing the ef-

fectiveness of a human-robot system which capture the coupled relationships among

productivity, reliability, and risk to humans. I developed reliability parameters to

characterize unplanned interventions between a human and robot, and then analyti-

cally investigated the effect of unplanned interventions on the effectiveness of human-

robot systems using traditional reliability analysis. Finally, I applied this analysis to

data collected during experiment trials with the NASA Peer-to-Peer Human-Robot

Interaction System (Chapter 5), and compared the system performance to the hy-

pothetical performance of a human-only team conducting the same tasks. Based

on the results, I proposed recommendations for quantifying future improvements in

effectiveness of the human-robot system.

6.2 Future work

There exist many directions for future research and potential applications of such a

framework in space exploration and other fields. Further development of the building

block 3) task allocation is one exciting area open for future work. In particular, the

framework would benefit from research into a tractable means of applying AI planning

and scheduling techniques to represent human-robotic systems in terms of complex

mixtures of action choices, ordering constraints, and metric quantities to enumerate
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and score different task allocation options.

A key to the success of the AI planning and scheduling approach to task allocation

is to develop meaningful metric quantities to associate with action choices. For such

a framework to fully characterize the effectiveness of a system, metric quantities need

to be developed for productivity/effectiveness, reliability, risk to humans, resources,

and flexibility/robustness. This issue was not addressed in this thesis; instead, global

parameters such as Mean Time Between Interaction (MTBI) and Mean Time To

Interact (MTTI) were defined to address issues of reliability, productivity, and risk

to humans. Future research should work towards developing an experimental-based

understanding of lower-level metrics (such as situational awareness in human-robot

systems). These lower-level metrics may prove useful in providing analytical relation-

ships between the description of system architecture and high-level metrics, and in

developing meaningful metrics quantities to associate with specific action choices.

A unified framework to optimally leverage the capabilities of humans and robots

will be an invaluable asset to decision-makers and designers of human-robot systems

in a variety of different fields including space exploration, military operations, civilian

search and rescue operations, healthcare settings, and other areas. Decision-makers

may use this framework as a tool to analytically investigate the trade-offs among

different human-robot systems and inform decisions on which system to invest in or

implement. System designers may also use this framework to analyze the performance

of a particular human-robot system with the purpose of identifying and quantifying

necessary improvements to make their system a competitive option. Finally, the

further work in task allocation will be applicable to real-time operations of human-

robot systems as well as for design and evaluation of systems. An AI planning and

scheduling task allocation method which incorporates metric quantities for evaluating

high-level common metrics could be used to implement systems which are capable of

choosing task allocations to maximize the specific metrics which are appropriate dur-

ing the different phases of a mission timeline. This capability would be an invaluable

asset for mission planning and execution in space and terrestrial applications.
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