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Abstract

Post-marketing surveillance of medical pharmaceuticals and devices has received a great
deal of media, legislative, and academic attention in the last decade. Among medical devices,
these have largely been due to a small number of highly publicized adverse events, some of them
in the domain of cardiac surgery and interventional cardiology. Phase three clinical trials for
these devices are generally underpowered to detect rare adverse event rates, are performed in
near-optimal environments, and regulators face significant pressure to deliver important medical
devices to the public in a timely fashion.

All of these factors emphasize the importance of systematic monitoring of these devices
after being released to the public, and the FDA and other regulatory agencies continue to struggle
to performthis duty using a variety of voluntary and mandatory adverse event rate reporting
policies. Data quality and comprehensiveness have generally suffered in this environment, and
delayed awareness of potential problems. However, a number of mandatory reporting policies
combined with improved standardization of data collection and definitions in the field of
interventional cardiology and other clinical domains have provided recent opportunities for
nearly "real-time" safety monitoring of medical device data.

Existing safety monitoring methodologies are non-medical in nature, and not well
adapted to the relatively heterogeneous and noisy data common in medical applications. A web-
based database-driven computer application was designed, and a number of experimental
statistical methodologies were adapted from non-medical monitoring techniques as a proof of
concept for the utility of an automated safety monitoring application. This application was
successfully evaluated by comparing a local institution's drug-eluting stent in-hospital mortality
rates to University of Michigan's bare-metal stent event rates. Sensitivity analyses of the
experimental methodologies were performed, and a number of notable performance parameters
were discovered. In addition, an evaluation of a number of well-validated external logistic
regression models, and found that while population level estimation was well-preserved,
individual estimation was compromised by application to external data. Subsequently,
exploration of an alternative modeling technique, support vector machines, was performed in an
effort to find a method with superior calibration performance for use in the safety monitoring
application.

Thesis Supervisor: Frederic S. Resnic
Title: Assistant Professor of Medicine, Harvard Medical School
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Introduction

Post-marketing surveillance of medical devices by the Food and Drug Administration

(FDA) has undergone tremendous change in the last few decades. 1-4 These changes were largely

due to a small number of highly publicized adverse events; some of them in the domain of

cardiac surgery and interventional cardiology. 3' 5-13

Medical devices are frequently released quickly because of the need to deliver potentially

lifesaving medical advances to the public. Rare adverse events are an ongoing concern in this

environment because they may not be discovered in pre-marketing trials due to a small sample

sizes and a bias towards healthier subjects.14 To balance this, the FDA has shifted more of its

device evaluation to the post-marketing period.1 5 This creates the potential for large numbers of

patients to be exposed to a new product in the absence of long-term follow-up data, and

emphasizes the need for comprehensive methods in post-marketing surveillance.1 6

The data the FDA uses to conduct this surveillance is very heterogeneous, and results

from a variety of voluntary and mandatory reporting policies.1 6 14, 7-22 The voluntary policies

create significant limitations in event rate recognition through underreporting, bias, and highly

variable reporting quality.' 4 In response, some agencies have implemented mandatory reporting

for medical devices in certain clinical areas, and medical societies have made strides in

standardizing data element definitions within their respective domains.23

Continued improvements in the quality and volume of reported data have created

opportunities for timely and efficient analysis and reporting of alarming trends in patient

outcomes. However, standard techniques regarding alerting thresholds and benchmarking

methodologies do not exist for post-marketing medical device surveillance. Non-medical

industries have been using a variety of automated statistical process control (SPC) techniques for

some time for comparable quality control purposes. 28-32 These systems rely on high-quality

automated data collection, and apply stringent error thresholds24 that make direct application of

these methods for medical devices difficult.

Statistical process control is a classical frequentist technique typically comparing

observed event rates to acceptable rates of adverse events based on previously published or

observed empirical data. However, this is very limiting when no or very limited prior empirical

data are available. Another methodology, Bayesian updating statistics (BUS), seeks to address
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this limitation directly through the construction and explicit use of prior probability estimates

and provide direct comparison of the final posterior distribution to the prior estimate.

Establishing a standard methodology for the selection and incorporation of prior

empirical data to generate alerting thresholds integral is integral to this endeavor. Both SPC and

BUS provide for population-level thresholds with static risk stratification. Logistic regression

(LR) is the most popular of the modeling techniques that have been developed over the last few

decades to help stratify and predict risk for patient subpopulations. These models have been

widely used to improve the quality of care,2 5 provide institutional quality scorecards2 6, provide

risk stratification2 7 and assist patient selection28 in research, evaluate futility of care,29 and to

provide individual patient prognostications. The ability of LR to individually risk stratify a

patient using a large number of clinical factors could be used to develop a stand-alone

monitoring methodology, or be used synergistically with other methods as a risk stratification

tool.

Interventional cardiology (IC) is an ideal medical domain to pioneer prospective real-

time safety monitoring in medical devices for a number of reasons. Not only has IC been an

active area of medical device development in recent years, but it is one of the few domains with

high quality comprehensive data. This is largely due to the development of a national

standardized data dictionary,23 and an increase in mandatory electronic data collection and

reporting by some state agencies.

In addition, there are a number of well-known LR mortality risk models that have been

developed in IC over the last 15 years.30 35 Several studies of these models have shown good
36-40

external validation with respect to both calibration and discrimination.3 6 4 Others have shown a

loss in either discrimination, calibration, 4 or both.42 This is thought to be primarily related to

medical practice and patient composition changes related to geography and time.43 ' 44 A study

comparing the demographics of percutaneous coronary intervention (PCI) patients in two

registries collected twelve years apart found significant differences in a number of important risk

factors. 45

This highlights the need for a thorough evaluation of existing and newly developed LR

models for use with a safety monitoring system. Also, exploration of alternative modeling

techniques, such as a new machine learning technique called Support Vector Machines (SVM),

could potentially improve risk stratification performance in this domain.
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The specific goals of this project are to:

1) Develop local logistic regression (LR) risk models, and validate both local and well-

known external LR models in order to optimize this modeling method for use in a

real-time safety monitoring tool.

2) Explore a recent advance in machine learning, support vector machines, as an

alternative risk modeling and stratification method for use in the monitoring

application.

3) Develop prospective methods of statistical monitoring and alerting thresholds.

Exploration of these methods will include derivations of statistical process control,

Bayesian updating statistics, and logistic regression based risk stratification and

assessment.

4) Implement a web-based safety monitoring tool in interventional cardiology that

allows detailed evaluation of specific outcomes.

5) Perform a sensitivity analysis between statistical process control and Bayesian

statistical updating monitoring methods on interventional cardiology data.
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Manuscript Organization

This manuscript will be organized into four chapters. Chapter One will describe the

design of a new local logistic regression model for the outcome of post-intervention in-hospital

death. This model will then be internally validated, and external validation will be conducted on

a number of well-known logistic regression models for this outcome from other centers.

Chapter Two which will explore a new machine learning methodology, support vector

machines, to determine if the use of this risk modeling method would be a reasonable addition to

the safety monitoring tool.

The results of the LR model evaluations were incorporated into the design and

development of the statistical methodologies necessary to conduct real-time safety monitoring.

The development of these methods, as well as the implementation of a web-based application

providing this type of analysis, will be described in Chapter Three.

A sensitivity analysis between statistical process control and Bayesian updating statistics

methodologies will be performed in Chapter Four. Actual interventional cardiology data will be

used to provide scaled outcome rates for evaluation over a range of baseline event rates and

volumes. A conclusion will then summarize the findings in each portion of the work.
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Chapter 1: Performance Evaluation of Logistic Regression Risk Model

Background

In the last decade, significant emphasis has been placed on the development of statistical

models to help predict risk in various patient populations. In addition to providing the basis for

quality scorecards, 26 46 these risk profiles can be helpful on the procedural level to both patients

and physicians. Numerous studies have shown that subjective prediction of risk tends to be poor

at very low and very high probabilities. 47' 48 The use of various statistical methods can provide

an objective estimation of outcome risk.

There has been conflicting literature on whether or not these models can be used outside

of their development population. Initial validation is usually based on patients from a given

geography and time frame. These evaluations are only directly applicable in that respect, and

concerns have been raised about the applicability of a model when patient demographics change

with geography, clinical practice changes with time, and disease prevalence changes with both.

Some of this concern stems from prior analyses showing deleterious effects on accuracy by

changes in geography and time.4 3 A study comparing the demographics of percutaneous

coronary intervention (PCI) patients in two registries collected twelve years apart found

significant differences in age, lesion severity, thrombolytic use, stent use, and death that

highlight how much the characteristics of a population can change with a decade of medical

advances. 45

Continuous evaluation of model performance is important to ascertain that classification

performance does not degrade with time. Some models are re-developed periodically to adjust

for temporal trends.49 Also important is validation of a model on geographically or temporally

distant populations.50 Constructing a model using a large numbers of patient encounters across a

wide variety of geographic areas increases the probability that the model will be suited for

different populations, but the only way to determine the model's applicability is to verify the

performance empirically in representative sample.

In the field of cardiology, one of the most widely studied areas of risk stratification has

been coronary angiography. This article seeks to build on prior work on the applicability of risk

models in different geographies and over time. Several prior studies of PCI risk models have
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shown good external validation with respect to both calibration and discrimination.36-40 Others
41 4have shown a loss in either discrimination, calibration, 4 or both.42 In the present study we

consider the hypothesis that models exhibit differences in discrimination and calibration over

space and time.

Methods

Data Collection

Brigham & Women's Hospital (BWH), Boston Massachusetts has maintained a detailed

database of all cases of PCI since 1997. The dataset is based on the American College of

Cardiology National Data Repository dataset,23 with a variety of additional, detailed, data

elements. The registry is part of the quality assessment and quality improvement program of

Brigham & Women's Hospital, and was approved by the hospital Institutional Review Board.

All catheterization laboratory procedures performed are included in the database, and real-time

data acquisition is accomplished through a dedicated team of trained nurses, physicians and

technologists. A total of 5,216 PCI procedures were recorded between January 01, 2002 and

September 30, 2004 on all patients who underwent PCI at BWH. This data set serves as the

source for the evaluation of each model in this study.

Model Evaluation

Evaluation of all models was done with 2 and maximum log likelihood methods.

Discrimination was assessed with the area under the receiver operating characteristic curve

(AUC).51 ' 52 A summary of each of the models used is shown in Table 1. Calibration was

evaluated with Hosmer-Lemeshow goodness-of-fit x2- estimates using deciles.53 95%

confidence intervals for these parameters were computed with the non-parametric bootstrapping

method of STATA (Version 8.2, College Station, TX).54 These CIs were reported using the

percentile method, or bias corrected method if the estimation bias was greater than 25% of the

standard error.5 5
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Model Dates Location Sample AUC HL(p) Validation Type

NNE 1999 1/1/1994 12/31/1996 NH, ME, MA, VT (7) 15331 0.88 0.09 Bootstrap Resampling

NY 1992 1/1/1991 6/30/1991 NY 5827 0.884 NA Subset Significance

NY 1997 1/1/1991 12/31/1994 NY 62670 0.892 0.11 Subset Significance

Ml 2001 10/1/1999 8/30/2000 Detroit, Ml 10796 0.90 0.5 Training/Test

ACC 2002 1/1/1998 9/30/2000 National 100253 0.89 0.133 Training/Test

BWH 2001 1/1/1997 12/31/1999 Boston, MA 2804 0.86 0.11 Training/Test

CC 1997 1/11993 12/31/1994 Cleveland, OH (5) 12985 0.846 NA Bootstrap Resampling

Table 1: Summary of the training data sets for the models used in this study. Sample = sample size. AUC = area
under the receiver operating characteristic. HL(p) = Hosmer-Lemeshow p value.

External Validation of Risk Models

Six external and one local previously described multivariate post-PCI in-hospital

mortality risk models were evaluated using the BWH data set: the Northern New England

Cooperative Group (NNE 1999),3° the New York State (NY 1992 & NY 1997),31 32 University

of Michigan Consortium (MI 2001),33 the American College of Cardiology-National

Cardiovascular Data Registry (ACC 2002),34 the Cleveland Clinic Foundation Multi-Center (CC

1997),35 and the Brigham & Women's Hospital (BWH 2001)56 models. Pair-wise comparison of

the area under the ROC curve for each model was performed by Analyse-It (Version 1.71, Leeds,

England, UK).

Local Model Development

To test the hypothesis that time and space degrade the accuracy of a risk model, a new

local model was developed using the same BWH data that was used to evaluate the

discrimination and calibration of existing models. Standard univariate methods were used to

generate odds ratios (ORs) with 95% confidence intervals (CIs) and p values to select variables

that would be included in the new model.5 7 Additionally, all available covariates which have

been shown to be univariate risk factors in previous studies were included in the analysis (Table

2). Backward stepwise logistic regression was performed using STATA.19 Variables were first

removed using a residual Wald chi-square p value of 0.1, and then considered for inclusion based

on a p value of 0.05. Since there was no independent test set, the evaluation was based on

bootstrap resampling with 1000 samples.5 8

11



Factor % Pts % Deaths OR 95% CI p
Age

<50
50-59
60-69
70-79
>79

Gender
Male
Female

Diabetes
PVD
COPD
Shock
Unstable Angina
Urgency

Elective
Urgent
Emergent
Salvage

LVEF
>39
20-39

<20
Tachycardia
Pre-PCI IABP
AMI 24 Hr
Cr > 2.0 mg/dL
CHF
Prior PCI
Prior CABG
Lesion Risk

Low
High

Intervention
LAD

Disease Location
Proximal LAD
RCA

Diseased Vessels
0
1

2

3

11.0
21.6
27.8
27.6
11.9

70.7
29.3
31.7
9.5
10.6
1.7

4.9

49.9
37.9
11.8
0.4

91.3
7.6
1.1

2.4
0.7
10.6
5.3
10.1
33.8
1101

66.3
33.7

42.4

47.2
52.3

9.0
52.6
25.5
12.8

0.2 1.00
0.4 2.55
0.9 5.20
1.5 8.91
4.8 29.3

1.4
1.4
1.8
2.4
2.0
37.4
11.6

0.3
0.9
5.7

45.4

1.1

3.6
5.5
13.5
19.4
5.2
5.0
4.0
0.5
1.1

0.5
3.0

1.9

2.2
1.7

0.4
0.9
1.9
3.0

1.00
1.02
1.58
1.97
1.55
82.0
15.8

1.00
2.98
19.6

270.3

1.00
3.22
5.04
14.5
19.3
6.1
4.5
3.9
0.28
0.76

1.00
5.5

1.87

3.34
1.69

1.00
2.07
4.5
7.3

Table 2: Univariate Association of Factors with In-Hospital Mortality and Registry Demographics. % Pts = percent
of sample population. % Deaths = percent of deaths within the sub-population. OR = Odds Ratio. 95% CI = 95%
Confidence Interval. p = p Value. PVD = Peripheral Vascular Disease. COPD = Chronic Obstructive Pulmonary
Disease. LVEF = Left Ventricular Ejection Fraction. PCI = Percutaneous Coronary Intervention. IABP = Intra-
Aortic Balloon Pump. AMI = Acute Myocardial Infarction. Cr = Creatinine. CHF = Congestive Heart Failure.
CABG = Coronary Artery Bypass Grafting. LAD = Left Anterior Descending. RCA = Right Coronary Artery.
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Ref
0.30 - 39.9
0.68 - 39.9
1.199 - 66.3
3.98 - 215.5

Ref.
0.61 - 1.70
0.99 - 2.5
1.05 - 3.69
0.81 - 2.97

48.1 - 139.8
9.7 - 25.7

Ref
1.3 - 6.9

9.1 -42.6
91 - 803.2

Ref
1.77 - 5.84
1.53- 16.6
8-17 - 25.9
8.15 -45.7
3.8 - 9.8
2.5 - 8.3
2.3 - 6.5

0.14 - 0.57
0.41 - 1.42

Ref
3.24 - 9.4

1.17 - 3.01

1.95 - 5.72
1.03 - 2.76

Ref.
0.49 - 8.8
1.06- 19.1
1.7 - 31.2

0.392
0.112
0.033
0.001

0.952
0.058
0.034
0.183
<0.001
<0.001

0.010
<0.001
<0.001

<0.001
0.008

<0.001
<0.001
<0.001
<0.001
<0.001
<0.001
0.385

<0.001

0.010

<0.001
0.036

0.323
0.041
0.008



Results

Local Multivariate Prediction Rule Development

After full backward stepwise variable selection, the variables associated with an

increased risk included older age, diabetes, unstable angina, salvage procedure, cardiogenic

shock, AMI, and any intervention on the left anterior descending artery as shown in Table 3.

The AUC was 0.929 revealing excellent discriminatory ability of the new model, and bootstrap

re-sampling the data to obtain a 95% CI of 0.90-0.96 with an SE of 0.017, indicating a good

ability to discriminate with respect to the outcome of death. The model had an adequate
2goodness of fit (HL X=7.61 with 8 d.f., p=0.473).

Factor OR 95% CI p
Prior PCI 0.30 0.12 - 0.74 -1.20 0.009
Age (yrs)

60-69 4.41 1.31 - 14.84 1.48 0.016
70-79 8.25 2.58 - 26.34 2.11 <0.001
80+ 21.39 6.76 - 66.97 3.06 <0.001

Diabetes 1.82 1.02- 3.26 0.60 0.042
Unstable 5.46 2.82 - 10.52 1.70 <0.001
Salvage 19.25 5.06 - 73.24 2.96 <0.001
Shock 14.86 7.39 - 29.87 2.70 <0.001
AMI Present 1.72 1.37 - 2.17 0.54 <0.001
Any LAD PCI 1.72 0.97 - 3.07 0.54 0.066

Table 3: Multivariate Analysis of Factors Significantly Associated with In-Hospital Mortality in the New BWH
model. OR = Odds Ratio. 95% CI = 95% Confidence Interval. 13 = Beta Coefficient. p = p Value. Constant
(intercept) = -7.777; Hosmer and Lemeshow goodness-of-fit X2

= 7.61; p = 0.473; AUC = 0.929. AMI = acute
myocardial infarction. LAD = left anterior descending. PCI = percutaneous coronary intervention.

External Validation

The external model performances on the BWH dataset are shown in Table 4. During the

study period there were 71 observed deaths (1.36%). BWH 2004 very closely approximated this

with 70.5 deaths, NY 1992, CC 1997, and BWH 2001 over predicted, and the remainder under

predicted. The AUC indicates excellent discrimination across all models, with the worst being

the New York State 1992 model and the best being the new local model. A summary view of the

AUC for all models is shown in Figure 1. Of the external models, the best AUC was obtained by

the ACC 2002 model.
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Curve Deaths AUC 95% CI HL X2 95% CI HL (p) 95% CI
NY 1992 96.7 0.82 0.76 - 0.88 31.1 13.9 - 50.0 <0.001 <0.001 - 0.003
NY 1997 61.6 0.88 0.81 - 0.92 32.2 16.4 - 45.5 <0.001 <0.001 - 0.004
CC 1997 78.8 0.88 0.82 - 0.93 27.8 19.6 - 38.7 <0.001 <0.001 - 0.013
NNE 1999 56.2 0.89 0.84 - 0.94 45.9 31.9 - 67.4 <0.001 <0.001 - <0.001
MI 2001 61.8 0.86 0.81 -0.90 30.4 16.7 - 43.1 <0.001 <0.001 - 0.011
BWH 2001 136.1 0.89 0.84 - 0.93 39.7 23.2 - 73.3 <0.001 <0.001 - 0.001
ACC 2002 49.9 0.90 0.84 - 0.95 42.0 24.9 - 63.3 <0.001 <0.001 - 0.002
BWH 2004 70.5 0.93 0.89 - 0.96 7.61 1.5 - 14.2 0.473 0.073 - 0.992

Table 4: Summary of discrimination and calibration performance for each model. Deaths = Estimated Deaths. AUC
= Area Under the Receiver Operating Characteristic Curve. 95% CI = 95% Confidence Interval. HL x2 = Hosmer-
Lemeshow X2. HL(p) = Hosmer-Lemeshow probability > x2 Value.

1

0.9

0.8

Q
0

0
0.

._

Cs.=

._

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

0 0.2 0.4 0.6 0.8 1

1 - Specificity (false positives)

Figure 1: AUC for all models. The grey line shows no discrimination.

Pair-wise AUC comparisons were performed as well, shown in Table 5, by using the

method described by Hanley and McNeil.5 9 Overall, the best discrimination was obtained by the

new local model, which attained significance with respect to every model but ACC 2002. The

second best performance was by the external model constructed with the largest training set

(ACC 2002), followed by the old local model (BWH 2001). Significant differences were noted

between NY 1992 and every model but MI 2001, as well as between MI 2001 and ACC 2002.

This indicates that the NY 1992 model, and to a lesser extent the MI 2001 model, is the least

discriminatory.
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NY 1992 NY 1997 CC 1997 NNE 1999 MI 2001 BWH 2001 ACC 2002

Diff p Diff p Diff p Diff p Diff p Diff p Diff p

NY 1992

NY 1997 0.056 0.007

CC 1997 0.051 0.101 0.004 0.859

NNE 1999 0.062 0.013 -0.007 0.712 0.011 0.644

MI 2001 0.041 0.165 -0.015 0.485 -0.01 0.627 -0.022 0.310

BWH 2001 0.066 0.019 0.011 0.602 0.015 0.551 0.004 0.849 0.026 0.287

ACC 2002 0.080 0.002 0.025 0.145 0.03 0.176 0.018 0.254 0.040 0.045 0.014 0.519

BWH 2004 0.105 0.001 0.049 0.007 0.053 0.011 0.043 0.048 0.064 0.003 0.038 0.050 0.024 0.176

Table 5: Pair-wise Discrimination Model Comparison. Diff = AUC difference. p = p value of difference.

The Hosmer-Lemeshow goodness-of-fit test reveals poor calibration (p < 0.05) for all the

models but the newly developed one. Calibration for all models was further explored by plotting

the observed to expected frequency of death for each quintile of every model. Figure 2-B is

provided to more clearly show the relationships for the low risk population. As shown in Figure

2. the NY 1992 model underestimated the risk of death for low scoring patients, and over

estimated this risk for high scoring patients. NY 1997 performed fairly well for low risk

patients, but overestimated the probability of death for high risk patients. ACC 2002 performed

well under low risk conditions, but significantly underestimated the probability of death for high

risk conditions. NNE 1999 consistently under predicted deaths, and CC 1997 as well as BWH

2001 consistently overestimated mortality risk. As expected, BWH 2004 performs well, but

since this is not an independent test sample, this result should be interpreted with caution.
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0.07

Figure 2-A: The observed and expected mortality rates for each quintile of patient risk. Each risk quintile contains
approximately 1050 patients. The diagonal line represents a perfect agreement between observed and expected
mortality estimates.

Figure 2-B: Expanded View from 0 to 0.15 of the Observed to Expected Probability Ratios.
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Discussion

Interventional cardiology practice has changed significantly over the last decade.

Procedural skill development, pharmacology, and device development have all contributed to the

evolution of the field, and patient outcomes have changed over that time period in response to

these advances. There as been a substantial reduction in risk of death and major adverse cardiac

events (MACE)60 over the past decade. All of these factors create a moving target for any risk

stratification model.

All the external models evaluated on the BWH data set showed good discrimination. The

model with the worst discrimination was NY 1992, which was to be expected due to the age of

the study, and small sample size with which the model was developed. The best external model

was the one developed on a national database with the most patient records, suggesting that

geographic issues may be related to discrimination. Although these results are promising, it is

important to note that discrimination is not the only (and possibly not the most important) factor

in determining the applicability of a prognostic model from the perspective of physicians and

patients. A model can exhibit perfect discrimination but still be useless for application on

individual cases. Good calibration is essential for this type of application. All models, except

possibly the one developed locally with recent data, but including a model derived locally,

showed poor calibration for our test set, suggesting that time may play an important role in the

applicability of a model.

Similar findings have been previously reported. Some techniques have been suggested to

recalibrate the model.6 1 One of these techniques was employed by Kizer, et al41 and Peterson, et
,162al62 with some success, and may offer a strategy to maintain discrimination and improve

calibration.

This study supports routine evaluation of any risk model, including aging local models,

prior to local implementation. Discrimination was maintained for most risk adjustment models,

though those more recently published and those based on the largest original datasets appeared to

have the most robust discrimination when applied to a current clinical dataset. The preservation

of discrimination supports the use of these models for generic risk stratification, but the poor
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calibration indicates that they are not useful for application in individual cases: the estimated risk

of death for a single patient that is produced by these models is incorrect.

The poor calibration of the prior models suggests that variations in practice and patient

demographics as well as clinical features over time have a large effect at the patient level on the

risk estimate's accuracy. Further study is required to identify the optimum frequency of model

recalibration.
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Chapter 2: Performance Evaluation of Support Vector Machine Risk Models

Background

In the last few decades, significant emphasis has been placed on the development of

statistical models to help predict risk in various patient populations. These models have been
'25 S26widely used to improve the quality of care,2 provide institutional quality scorecards26 , provide

risk stratification 27 and assist patient selection 28 in research, evaluate futility of care,29 and to

provide individual patient prognostications.

Percutaneous coronary intervention (PCI) is one of the most common procedures in

cardiology, and is associated with significant morbidity and mortality. Opportunities for

providing objective risk assessment in this domain have been improving since the development
23

of a national standardized data dictionary, 23 and an increase in mandatory electronic data

collection and reporting by some state agencies.

The gold standard modeling technique in this domain is logistic regression (LR). There

are a number of well-known LR mortality risk models that have been developed over the last 15

years.30-35 Discrimination of these models is generally high, and has been retained in external

validation studies. However, calibration degraded when these models were applied to

subsequent local or external data.74 There are a number of possible explanations for this,

including changing medical practice, differing patient demographics, and different access to
44

resources.

Calibration failure primarily affects individual patient prognostication, and negatively

impacts risk stratification and any application that relies on individual estimates. Recalibration

techniques are being explored to provide adequate calibration over time, but no method has

emerged as a standard.

Application of a modeling technique that outperforms LR in terms of calibration can

extend the useful life of a risk model before recalibration or model refitting is required. One of

the most recent developments in artificial intelligence modeling has been Support Vector

Machines (SVM). These models are able to find an optimal separation hyperplane in a multi-

dimensional space to perform classification of a dichotomous outcome. To our knowledge, this

methodology has not been explored in interventional cardiology, and has potential applications

in a number of applications, such as real-time safety monitoring of new medical devices.75
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In this study, we seek to evaluate and compare the discrimination and calibration

performance between a variety of LR and SVM risk models in the evaluation of post-procedural

in-hospital mortal mortality in PCI.

Methods

Source Data

Data were collected from Brigham and Women's Hospital (BWH) (Boston, MA)

containing all cases (7914) of percutaneous coronary interutaneous coronary intervention (PCI) performed at the

institution from January 1, 2002 to December 31, 2005. The outcome of interest was post-

procedural in-hospital death, and there were 124 (1.57%) events during the collection period.

The cases were used to generate 100 random data sets. All cases were used in each set, and 5540

were allocated for training and 2374 were allocated for testing. For SVM evaluation, each

training set was randomly divided into 3957 kernel training and 1583 sigmoid training portions.

Data element definitions were based on the American College of Cardiology - National

Cardiovascular Data Registry (ACC-NCDR) data dictionary.2 3 The BWH Institutional Review

Board approved this study.

Acute Heart Attack Hx COPD
Age Hx PVD
Body Mass Index Hx Stroke
CHF Class Hyperlipidemia
CHF on Presentation Hypertension
Creatinine > 2.0 mg/dL IABP
Diabetes Prior PCI
Elective Case Shock
Emergent Case Unstable Angina
Family Hx Heart Disease Urgent Case
Heart Rate

Table 1: Hx = history, COPD = Chronic Obstructive Pulmonary Disease, PVD = Peripheral Vascular Disease, CHF
= Congestive Heart Failure, PCI = Percutaneous Coronary Intervention, IABP = Intra-Aortic Balloon Pump.

Variable Selection

After careful literature review, all previously identified risk factors for PCI were selected

for inclusion in this study.3 03 5' 56 Univariate analysis was then performed with SAS 9.1 (Cary,

NC). Variables not significantly associated with the outcome of death were removed from the

data (sex, smoking status, prior myocardial infarction, prior CABG, and a history of chronic
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renal insufficiency). A total of 21 variables were retained for use in model creation and analysis.

These variables are listed in Table 1.

Logistic Regression

Model development for LR was performed using the PROC LOGISTIC of SAS. A

standard backwards stepwise model selection method was used.80 In addition, 3-fold cross-

validation (CV) was performed on each training set to determine the optimum threshold for

feature selection in the backwards stepwise method. The modeling parameters were optimized

separately for mean squared error (MSE), Area under the Receiver Operating Characteristic

(AUC) curve, and Hosmer-Lemeshow (HL) %2 goodness-of-fit values. The thresholds evaluated

were 0.05 to 0.50, in 0.05 increments. The optimized threshold parameters were then used to

generate a model for each entire training data set, and then applied to the respective test data.

Support Vector Machine

The Support Vector Machine (SVM) models were developed using GIST 2.2.1

(Columbia University, New York, NY). Radial (SVM-R) and polynomial (SVM-P) based

kernels were selected for evaluation because of their good performance in other domains.

Polynomial kernels transform the feature matrix using the following equation, where X and Y

are features (predictors) and the class variable, respectively:

K(X, Y) = (X o + 1)

The primary kernel parameter is the power, represented as d in the above equation. Gaussian

radial-based kernels81 transform the feature matrix using the following equation:

-IIx-yll2

K(X,Y) = e 2w2

The primary kernel parameter is the width function, represented as w in the above equation. The

other parameter that can be used in both kernels is the cost function, which determines the ratio

of error weight between false positives and false negatives. This parameter was fixed constant at

a value of 1. Classification SVMs give outputs as a binary classifier (-1, 1) and also as a

continuous discriminant (distance from the hyperplane). A method described by Platt82 allows
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the generation of a probabilistic outcome by fitting a sigmoid function to the discriminant using

independent holdout training data. In this study, we used the corrected Platt algorithm provided

by Lin and colleagues. 83

The parameters of each kernel type were optimized on the kernel training set separately

for MSE, AUC and HL x2 values by a grid search method on the training set, using 3-fold cross-

validation.84 The sigmoid training set was used to convert discriminant results into probabilities.

The width function for the radial-based kernel ranged from 2-4 to 24 (2 -4, 2 3 2-2, etc.), and

power for the polynomial-based kernel ranged from 1 to 6 by integers. For each respective

kernel type and optimization parameter, the best kernel parameter was used to generate a model

on the entire kernel training set, and a sigmoid for discriminant conversion was generated using

the sigmoid training set. Each of the models was then applied to the respective test data set.

Statistical Evaluation

Discrimination was assessed with the area under the receiver operating characteristic. 51

Calibration was evaluated by the Hosmer-Lemeshow goodness-of-fit X2 goodness-of-fit
782

estimates. 7 8 X2 values with 8 degrees of freedom are considered adequately calibrated for values

of 15.51 or less (corresponding to ap value >= 0.05). Pair-wise comparison between

performance measures was performed using a one-way ANOVA test for summary values with

known standard errors.

Results

A summary of test data evaluation for each model type and cross validation optimization

parameter is shown in Table 2. Each respective model parameter (p-value threshold for a

variable to stay in the model, kernel width factor, and kernel power for LR, SVM-R, and SVM-

P, respectively) and performance measure includes the mean values and 95% confidence

intervals for the respective model type.

Results of the pair-wise comparison between each optimization type of each modeling

method are shown in Table 3. The upper right half of the table contains AUC comparisons, and

the lower left half of the table contains HL 2 comparisons. p values less than 0.05 indicate a

significant difference between the pair.
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None of the LR models resulted in AUCs that were significantly different from any other

ILR model (all p > 0.05). All of the LR models had higher AUCs than the radial-based SVMs (all

p < 0.05). The LR models had significantly higher AUCs when compared to the HL x2

optimization method of SVM-P (p = 0.012, 0.012, 0.025, and 0.027), but not higher than the

AUCs from MSE or AUC methods.

None of the LR models had HL %2 values significantly different from any other LR

model (all p> 0.05). All of the radial-based and polynomial-based SVM models showed

significantly lower HL %2 values than any of the LR models (all p < 0.05). The HL X2

optimization method was superior to both the MSE and AUC methods in the radial-based SVM

models (p < 0.001). The HL %2 optimization method in both kernel types was significantly better

than all of the other model versions based on MSE and AUC, except the MSE and AUC

optimization methods of SVM-P (p < 0.05).

Model Opt Parameter Mean AUC (95% CI) HL %2 (95 % CI)

LR None 0.10 0.911 (0.905 - 0.916) 101.1 (49.4 - 152.8)
LR MSE 0.25 (0.22 - 0.28) 0.912 (0.906 - 0.917) 89.8 (53.0 - 126.7)
LR AUC 0.29 (0.26 - 0.33) 0.912 (0.906 - 0.917) 94.7 (46.0 - 143.4)
LR HL x2 0.17 (0.14 - 0.20) 0.911 (0.905 - 0.916) 99.1 (46.8 - 151.4)

SVM-R MSE 0.13 (0.08 - 0.17) 0.873 (0.874 - 0.883) 30.3 (27.9 - 32.6)
SVM-R AUC 0.28 (0.19 - 0.36) 0.894 (0.888 - 0.900) 28.5 (26.0 - 30.9)
SVM-R HL Z2 4.53 (3.47 - 5.59) 0.901 (0.895 - 0.908) 16.4 (13.4 - 19.4)
SVM-P MSE 3.09 (2.97 - 3.21) 0.912 (0.905 - 0.919) 34.1 (12.4 - 55.8)
SVM-P AUC 2.65 (2.50- 2.80) 0.915 (0.909 - 0.922) 33.5 (11.8- 55.1)
SVM-P HL 2 2.98 (2.64 - 3.31) 0.899 (0.891 - 0.907) 20.0 (15.2 - 24.8)

Table 2: Analysis of the test data by model method and cross validation optimization method. LR = backwards
step-wise Logistic Regression model, SVM-R = radial-based kernel SVM, SVM-P = polynomial-based kernel SVM.
Opt = Cross Validation optimization method. AUC = Area under the Receiver Operating Characteristic Curve. HL

2X = Hosmer-Lemeshow Goodness-of-Fit. MSE = mean squared error. For the model parameters, the values refer
to the exclusion threshold (p-value) for LR, w for SVM-R, and p for SVM-P.
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LR LR LR LR SVM-R SVM-R SVM-R SVM-P SVM-P SVM-P
(MSE) (AUC) (HL) (0.10) (MSE) (AUC) (HL) (MSE) (AUC) (HL)

0.980 0.724 0.667 <0.001 <0.001 0.014 0.997 0.393 0.012
LR (MSE) i- +- -- -

0.857 0.741 0.311 <0.001 <0.001 0.014 0.986 0.379 0.012
LR (AUC) .. . .-

0.773 0.901 0.175 <0.001 <0.001 0.032 0.756 0.239 0.025
LR (HL) -- - - - -

0.725 0.858 0.958 <0.001 <0.001 0.035 0.715 0.214 0.027
LR (0.10) + +4 -

0.002 0.009 0.010 0.007 <0.001 <0.001 <0.001 <0.001 <0.001
SVM-R (MSE) *- - 4' - T T T T T

0.001 0.008 0.008 0.006 0.301 0.004 <0.001 <0.001 0.354
SVM-R(AUC) . + t t t

<0.001 0.002 0.002 0.001 <0.001 <0.001 0.025 0.002 0.677
SVM-R(HL) .. . . X . +4 T T

0.011 0.025 0.024 0.019 0.729 0.612 0.111 0.4378 0.019
SVM-P (MSE) . + + .-

0.010 0.024 0.022 0.018 0.772 0.652 0.124 0.968 0.002
SVM-P (AUC) +. +4 +4 + 

<0.001 0.003 0.003 0.002 <0.001 0.002 0.204 0.212 0.232
SVM-P(HL) --_ -- --+-
Table 3: Summary of p values for the pair-wise comparison between different versions of the modeling methods.
The top right half of the table contains p values for AUC measurements, and the bottom left half of the table
contains p values for the HL X2measurements. LR = backwards step-wise Logistic Regression model, SVM-R =
radial-based kernel SVM, SVM-P polynomial-based kernel SVM. AUC = Area under the Receiver Operating
Characteristic Curve. HL = Hosmer-Lemeshow Goodness-of-Fit. MSE = mean squared error. Bold values are
statistically significant. T = Column-based model statistically superior. - = Row-based model statistically
superior.

Discussion

All of the models had excellent discriminatory (AUC) performance. This suggests that

the clinical data collected in this domain is able to account for the majority of risk for in-hospital

post-PCI mortality.

The LR models had superior discrimination to the SVM-R models, and also to the HL 2

optimization method of the SVM-P models. This shows that the clinical data are probably

linearly separable, and is consistent with prior studies of logistic regression in this domain. In

addition, the polynomial kernel was superior to the radial kernel in its ability to discriminate

using the MSE and AUC methods.

The MSE method is a common optimization score in regression model development, and

the AUC and HL X2 values were experimental optimization parameters. To our knowledge, there

have been no reports on their use for optimizing variable selection. Discrimination in the LR

models was insensitive to the optimization method. The SVM-R models showed a performance

improvement with AUC over MSE, and with HL X2 over both AUC and MSE. The SVM-P
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showed a performance improvement with both the MSE and AUC methods over the HL X2

method.

Calibration was significantly higher in both of the SVM model types compared to the LR

models. Different optimization methods did not significantly impact the LR models. However,

the HL X2 optimization method provided significant improvement for the SVM-R models.

None of the models achieved an upper 95% CI lower than 15.51, revealing that at least a portion

of each model type failed to adequately calibrate. However, this is a common finding in other

studies that evaluated risk models on a large volume of data sets. This happens because small

numbers of models with large HL 2 values skew the distribution.

When a model is generated, a balance must be maintained between overfitting and

underfitting. Overfitting improves the fit of the model on the training data but reduces its

performance on external data. Underfitting generalizes the fit of the model by reducing the

complexity of the fit on the training data in order to improve classification or regression results

to other data sets. In these data, the AUC and MSE optimization methods significantly overfit

the SVM-R models, as shown by the large difference between the mean width factors of HL X2

and the other two optimization strategies. In GIST, a decrease in the width factor is associated

with an increase in the fit to the training data. However, the model parameters were not

substantially different between optimization types for LR or SVM-P.

The primary limitations of this study are the lack of manual manipulation in the modeling

process, although this was required by the methodology. In the single model development

process, optimization in terms of model parameters, introduction of interaction terms, and feature

selection would be manually performed by further optimizing a cross-validation score (MSE,

AUC, etc.) if the discrimination was not deemed good or the calibration was inadequate in the

training sample.

The parameter selection process used a 3-fold CV method, and the model evaluation used

a separate testing sample over 100 randomized data sets. This is related to the nested stratified

10-fold CV method as described by Statnikov and colleagues.85 The small number of training

folds (or inner loop) were utilized because of high computational times of GIST in the relatively

large data sets. This may have increased the variance of the scores in the parameter optimization

methods, although the large number of data points in each fold likely minimized this problem.
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Overall, both the polynomial and radial-based SVMs achieved better calibration than the LR

models. Experimentation with different scoring methods used to select parameters for model

generation revealed that the regular method of MSE scoring performed as well as the others for

LR. However, the HL X2 method achieved the best results for both discrimination and

calibration for the radial-based kernels, but improved calibration performance at the expense of

discrimination for the polynomial-based kernels. This tradeoff requires further exploration.

Use of support vector machine risk models to promote adequate calibration and produce

more accurate individualized prognostic estimates for patients is supported by this preliminary

study. Future work will include investigating other calibration indices, recalibration methods,

and further evaluation of this method for inclusion in an automated real-time safety monitoring

system.
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Chapter 3: Design and implementation of an Automated Real-Time Safety

Monitoring Application

Background

Minimizing harm to patients and ensuring their safety are cornerstones of any clinical

research effort. Safety monitoring is important in every stage of research related to a new drug,

new medical device, or new therapeutic procedure. This type of monitoring of medical devices,

under the auspices of the Food and Drug Administration (FDA), has undergone major changes

over the last several decades. -4 These changes have largely been due to a small number of

highly publicized adverse events.5- 13 The FDA's task is complex; the agency regulates more

than 1,700 types of devices, 500,000 medical device models and 23,000 manufacturers. 3 ' 6 17, 19,

20, 22, 63 In pre-marketing clinical trials, rare adverse events may not be discovered due to small

sample sizes and biases towards healthier subjects.14 The FDA must balance this concern with

the need to deliver important medical advances to the public in a timely fashion. In response to

this, the FDA has shifted some of its device evaluation to the post-market period, allowing new

devices to reach the market sooner.' 5 This creates the potential for large numbers of patients to

be exposed to a new product in the absence of long-term follow-up data, and emphasizes the

need for careful and thorough post-marketing surveillance.'6

The current FDA policies in this area include a heterogeneous mix of voluntary and

mandatory reporting.1 6, 14, 17-22 Voluntary reporting of adverse events creates limitations in

significant event-rate recognition through underreporting bias, and highly variable reporting

quality. 14 Several state and federal agencies have implemented mandatory reporting for medical

devices for specific clinical areas, and national medical societies are making strides to

standardize data element definitions and data collection methods within their respective
2366

domains.2 64 6 Continued improvements in the quality and volume of reported data have

created opportunities for timely and efficient analysis and reporting of alarming trends in patient

outcomes.

Non-medical industries (Toronado, HGL Dynamics, Inc., Surrey, GU, WinTA, Tensor

PLC, Great Yarmouth, NR) have been using a variety of automated statistical process control

(SPC) techniques for quality control purposes for many years.66 -68 These systems rely on
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24automated data collection, and use standard SPC methods of varying rigor. 24 However,

automated SPC monitoring has not been widely deployed in the medical domain due to a number

of constraints: (a) historically, automated data collection could usually only be obtained for

objective data such as laboratory results and vital signs; (b) much of the needed information

about a patient's condition is subjective and may be available only in free text in the medical

record; and (c) medical source data, due to heterogeneity of clinical factors, typically has more

noise than industrial data, and standard industrial SPC metrics may not be directly applicable to

medical safety monitoring.

Within the medical domain, the most closely related clinical systems that have been

developed to date are those in clinical trial monitoring for new pharmaceuticals. A variety of

software solutions (Clinitrace, Phase Forward, Waltham, MA; Oracle Adverse Event Reporting

System [AERS], Oracle, Red Shores, CA; Trialex, Meta-Xceed, Inc., Freemont, CA; Netregulus,

Netregulus, Inc., Centennial, CO) have been created to monitor patient data relevant to the study

trial. These systems rely on standard SPC methodologies, and can provide real-time data

monitoring and analysis through internal data standardization and collection for the trial.

However, the focus of these systems is on real-time data aggregation and reporting to the FDA.

The increasing availability of detailed electronic medical records and structured clinical

outcomes data repositories may provide new opportunities to perform real-time surveillance and

monitoring of adverse outcomes for new devices and therapeutics beyond the clinical trial

environment. However, the specific monitoring methodologies that balance appropriate adverse

event detection sensitivity and specificity remain unclear.

In response to this opportunity, we have developed the Data Extraction and Longitudinal

Time Analysis (DELTA) system, and explored both standard and experimental statistical

techniques for real-time safety monitoring. A clinical example was chosen to highlight the

functionality of DELTA, and to provide an overview of its potential uses. Interventional
23

cardiology was chosen because the domain has a national data field standard,2 3 a recent increase

in mandatory case reporting from state and federal agencies, and recent device safety concerns

publicized by the FDA.
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Methods

System General Requirements

The DELTA system was designed to provide real-time monitoring of clinical data during

the course of evaluating a new medical device, medication, or intervention. The system was

designed to satisfy five principal requirements. First, the system should accept a generic dataset,

represented as a flat data table, to enable compatibility with the broadest possible range of

sources. Second, the system should perform both prospective and retrospective analysis. Third,

the system should support a variety of classical and experimental statistical methods to monitor

trends in the data, configured as analytic modules within the system, allowing both unadjusted

and risk-adjusted safety monitoring. In addition, the system should support different

methodologies for alerting the user. Finally, DELTA should support an arbitrary number of

simultaneous datasets, and an arbitrary number of ongoing analyses within each dataset. That is,

DELTA should "track" multiple outcomes from multiple data sources simultaneously, thus

making it possible for DELTA to serve as a single portal for safety monitoring for multiple

simultaneous analyses in an institution.

Source Data and Internal Data Structure

A flat file representation of the covariates and clinical outcomes serves as the basis for all

analyses. In addition, a static data dictionary must be provided to DELTA to allow for parsing

and display of the source data in the user interface. Necessary information includes whether

each field is going to be treated as a covariate, an outcome, and whether it is discrete or

continuous.

The system uses a SQL 2000 server (Microsoft Corp., Redmond, WA) for internal data

storage, importing all clinical data and data dictionaries from source databases at regular time

intervals. This database also stores system configurations, analysis configurations, and results

that are generated by DELTA at the conclusion of a given time period. The user interface is

web-based, and uses a standard tree menu format for navigation. DELTA's infrastructure and

external linkages are shown in Figure 1.

Security of patient data is currently addressed through record de-identification steps69

performed to the fullest extent possible while maintaining the necessary dataset granularity for
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Figure 1: Overall DELTA infrastructure and an example external data source. SPC: Statistical Process Control; LR:
Logistic Regression; BUS: Bayesian Updating Statistic.

the risk adjustment models. The system is hosted on the Partners Healthcare intranet, a secure

multi-hospital network, accessible at member sites or remotely through VPN.

Statistical Methods

DELTA utilizes a modular approach to statistical analysis that facilitates further

expansion. DELTA currently supports three statistical methodologies: statistical process control

(SPC), logistic regression (LR), and Bayesian updating statistics (BUS). Discrete risk

stratification is supported by both SPC and BUS. Periodic and cumulative analysis of data is

supported by SPC and LR, and only cumulative analysis is supported by BUS.

Risk stratification is a process by which a given sample is subdivided into discrete groups

based on predefined criteria. This process is used to allow providers to quickly estimate the

probability of an outcome for a patient. Statistically, the goal of this process is to create a

meaningful separation in the data to allow concurrent and potentially different analyses to be

performed on each subset. Criteria are selected based on prior data, typically derived from a

logistic regression predictive model, and the relative success of this stratification can be

determined by a stepwise increase in the incidence of the outcome in each risk group. The LR

30

-



method does not offer discrete risk stratification because it incorporates risk stratification on a

case level.

Retrospective data analyses traditionally use the entire data set for all calculations.

However, in real time data analysis, it is of interest to monitor both recent trends and overall

trends in event rates. Evaluation of recent trends will intrinsically have reduced power, because

of the reduced sample size, to detect true, significant shifts in event rates. However, such

monitoring may serve as a very useful 'first warning' indicator when the cumulative event rate

may not yet cross the alerting threshold. This type of alert is not considered definitive, but can

be used to encourage increased monitoring of the intervention of interest and heighten awareness

of a potential problem. In DELTA, these recent data analyses are termed 'periodic', and can be

configured to be performed on a monthly, quarterly, or yearly basis.

SPC is a standard quality control method in non-medical industrial domains. This

method compares observed event rates to static alerting boundaries developed from previously

published or observed empirical data. Each industry typically requires different levels of rigor in

alerting, and selection of confidence intervals (or number of standard errors) establishes this

benchmark. In the medical industry, the 95% confidence interval (CI) is considered to be the

threshold of statistical improbability to establish a 'true' difference. In DELTA, the 95% CI of

proportions by the Wilson method is used to calculate the alerting boundaries for all statistical

methods.70 The proportion of observed events are then compared to these static boundaries, and

alerts are generated if they exceed the upper CI boundary. DELTA's SPC module is capable of

performing event rate monitoring on multiple risk strata provided that criteria for stratification

and benchmark event rates are included for each risk stratum. This method supports comparison

of benchmark expected event rates with cumulative and periodic observed event rates.

While simple and intuitive, the SPC methodology does not support case-level risk

adjustment. It is also dependent on accurate benchmark data, which may be limited for new

procedures or when existing therapies are applied to new clinical conditions.70

Logistic regression is a non-linear modeling technique used to provide a probability of

an outcome on case-level basis. Within DELTA, the LR method allows for continuous risk-

adjusted estimation of an outcome at the case level. The LR model must be developed prior to

the initiation of an analysis within DELTA, and is mostly commonly based on previously

published and validated models.
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Alerting thresholds are established by using the LR model's expected mortality

probability for each case. These probabilities are then summated in both periodic and

cumulative time frames to determine the 95% confidence interval (CI) of the event rate

proportion by the Wilson method. Alerts are generated if the observed event rate exceeds the

upper bounds of the 95% CI of a given boundary. This method provides accommodation for

high risk patients by adjusting the alerting boundary based on the model's expected probability

of death. This is can be very useful in when outcome event rates vary widely with patient co-

morbidities. A limitation of this method is that the alerts become dependent on the

discrimination (measure of population prediction accuracy) and calibration (measure of small

group or case prediction accuracy) of that model.

BUS is an experimental methodology pioneered in non-healthcare industries.72 This

method incorporates Bayes' theorem7 3 into a traditional SPC framework by utilizing prior

observed data to evolve the estimates of risk. Alerting boundaries are calculated by two

methods, both of which are considered cumulative analyses only. The first method includes

previous current study data with the prior data used in the SPC method to calculate the 95% CI

of the event rate proportion by the Wilson method. This means that the alerting boundary shifts

during the course of real-time monitoring due to the influence of the earlier study data.

The other alerting method is based on the evolution of the updated risk estimates

represented as probability density functions (PDF). In each period, a new PDF is generated

based on the cumulative study event rate and baseline event rate. Alerting thresholds are

generated by the user specifying minimum percent amount of overlap of the two distributions (by

comparison of central posterior intervals).7 4 The first comparison PDF is the initial prior PDF,

and the second is the previous period's PDF. BUS supports discrete risk stratification.

This method was included in DELTA because it tends to reduce the impact of early

outliers in data and complements the other monitoring methods used in the system. It also may

be particularly helpful in situations in which limited pre-existing data exist. However, the

method is dependent on accurate risk strata development, and on the methods used for weighting

of the prior data in the analysis.
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User Interface

The user interface is provided via a web browser and was developed in the Microsoft

.NET environment, running Microsoft IIS 5.0 Web Server (Microsoft Corp., Redmond, WA).

Each data set is represented as a separate folder on the main page, and all analyses for that set are

nested under that folder (see Figure 2). At the initiation of an analysis, the user designates the

analysis period and starting and stopping dates, selects the statistical module, and selects the

outcome of interest. Data filters can be applied to restrict the candidate cases for analysis.

Covariates used for risk stratification are selected. Lastly, periodic and cumulative alerts for the

statistical method selected can be activated or suppressed based on user preferences. An analysis

configuration can be duplicated and modified for convenience in configuring multiple statistical

methods to concurrently monitor a data source.

The results screen of DELTA serves as the primary portal to all tables, alerts, and graphs

generated from an analysis. Tabular and graphical outputs of the data and specific alerting

thresholds by risk strata are available, and an export function is included to allow researchers to

perform further evaluation of the data.
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Results

- 4 DeltaSystem
Active Alerts
Alert History

- AllDataSets
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Michgan BUS

Michigan LR

Michigan SPC Single

Sim Analysis BUS

Test Analysis BUS

Test Analysis LR

'J ResearchDataSet
- BWH SAT 2004

DES SAT SPC

Run Analysis 

From: 7/1/2003
To: 12/31/2004

Periods: 18
Active Alerts: 7

Last Run At: 51/112005 7:27:21 PM
Last Run By:

Table I - Summary

i FJ'FB I e ....... qil .s. m
Low 641 2824% 0 0.0o/ 0

Mod 1573 69.30% 14 0 89/

High 56 2.47% 13 23.21%.

TOTAL 2270 100.00% 27 1.19%

Sim. Period: ŽJ Ji F Ge l

Tables and Graphs
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Graph - Distribution - Curr ulative
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Alerts - Summary Per Period

Utility -Last 10 Outcome True Samle,
Utility - Excel Summary Worksheet 

Figure 2: DELTA Screenshot showing the results menu screen of the SPC clinical example described in Section 4.
The main menu is displayed on the left, and the analysis menu is displayed above the viewing area.
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Clinical Example

As an example of the application of DELTA to real-world data, an analysis of the in-

hospital mortality following the implantation of a drug-eluting stent was performed. The cardiac

catheterization laboratory of Brigham and Women's Hospital has maintained a detailed clinical

outcomes database since 1997 for all patients undergoing percutaneous coronary intervention,

based on the American College of Cardiology National Cardiovascular Data Repository (ACC-

NCDR) data elements.39

For risk stratification, the University of Michigan risk prediction model33 was used since

it provides a concise method of comparing all three of DELTA's statistical methods using one

reference for prior experience. The previous experience of event rates for all risk strata from this

work is listed in Appendix A. A logistic regression model with risk stratification scores are

listed in Appendix B. The logistic regression model developed from the data was used to create

a discrete risk scoring model. Based on the mortality of patients in the study sample at various

risk scores, these data were divided into three discrete risk categories, and the compositions of

those categories are listed in Appendix B.

A total of 2,270 drug-eluting stent (DES) cases were performed from July 01, 2003, to

December 31, 2004, at our institution, and the outcome in terms of in-hospital mortality was

analyzed. These data were retrospectively evaluated in monthly periods for each of the three

statistical methodologies. There were a total of 27 observed deaths (unadjusted mortality rate of

1.19%) during the study. Local institutional IRB approval was obtained. Risk stratification of

these cases by the University of Michigan model is listed in Table 1, and demonstrates increasing

in-hospital mortality risk with 0%, 0.9%, and 23% mortality risk in the low, medium, and high

risk strata respectively.

An alternative data set was generated by taking the clinical data above and changing the

procedure date from the 8 cases with the outcome of interest in the last 5 periods. The

procedures dates were changed by random allocation into one of the first 13 periods. The

duration of the monitoring was then shortened to 13 periods. This was done to illustrate alerts

when cumulative event rates clearly exceeded established thresholds. The overall event rate for

this data set is 1.71% (27/1583), and the risk stratified event rate was 0% (0/446), 1.3%

(14/1095), and 31%(13/42) for the low, medium, and high risk strata, respectively.

34



Risk Strata Sample Events Event Rate
Low 641 0 00.00%
Mod 1573 14 00.89%
High 56 13 23.21%

Table 1: Multiple Risk Strata SPC.

Results

Statistical Process Control

The single risk stratum SPC was configured with no risk stratification covariates. The

static alert boundary was a 2.07% (upper 95% CI of 100/5863). Periodic evaluations ranged

fromn 0% to 4.5%. Period 4 exceeded the boundary with a 3.4% (5/148) event rate, and period 10

with a 4.5% (5/110) event rate. Cumulative event rates ranged from 0.9% (2/213) to 1.7%

(10/587). No cumulative evaluations had an event rate that exceeded the boundary. The

cumulative evaluation is depicted graphically in Figure 3.

Periodic evaluations of the alternative data set ranged from 0% to 4.7%. Period 4

exceeded the boundary with a 4.7% (7/150) event rate, period 7 with a 2.6% (3/117) event rate,

period 8 with a 2.6% (3/117) event rate, and period 10 with a 4.5% (5/110) event rate.

Cumulative event rates ranged from 0.9% (2/213) to 2.4%(12/490). Periods 4 through 11 had

event rates exceeding the 2.07% threshold and generated alerts, and ranged from 2.1% to 2.4%.

Alerting thresholds were calculated for the low, medium, and high risk strata by using the

upper 95% CI of the proportion of the event rates of each stratum in the University of Michigan

data. The thresholds were 0.3% (1/1820), 1.7% (50/3907), and 44% (49/136), respectively.

There were no events in the low-risk stratum, and no alerts were generated. In the

moderate-risk stratum, the periodic observed event rates ranged from 0% to 2.7%. The alerting

boundary was exceeded with rates of 2.7% (2/75) in period 5, 2.6% (2/78) in period 10, and

1.9% (2/108) in period 18. The cumulative observed event rates ranged from 0.7% to 1.3%, and

never exceeded the upper alert boundary. In the high-risk stratum, the periodic observed event

rates ranged from 0% to 100%. The alerting boundary was exceeded with rates of 100% in

periods 1 (1/1), 7 (1/1), and 10 (3/3), and by a rate of 50% (4/8) in period 4. The cumulative

observed event rates ranged from 16.7% to 100%. The alerting boundary was exceeded by a rate

of 100% (1/1) in period 1.
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Evaluation of the alternative data set was performed periodic and cumulative alerts.

There were no events in the low-risk stratum, and no alerts were generated. In the moderate-risk

stratum, the periodic observed event rates ranged from 0% to 3.6%. The alerting boundary was

exceeded with rates of 3.6% (3/84) in period 3, 2.1% (2/95) in period 4, 2.7% (2/75) in period 5,

2.5% (2/81) in period 7, and 2.6% (2/78) in period 10. The cumulative observed event rates

ranged from 0.7% to 2.0%, and exceeded the alerting boundary in periods 3 through 11. In the

high-risk stratum, the periodic event rates ranged from 0% to 100%. The alerting boundary was

exceeded with rates of 100% in periods 1 (1/1), 7 (1/), and 10 (3/3), and by a rate of 55.6% (5/9)

in period 4. The cumulative observed event rates ranged from 16.7% to 100%. The alerting

boundary was exceeded by a rate of 100% (1/1) in period 1.
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Figure 3: Single-stratum SPC graph showing the cumulative observed event rates versus the static alerting threshold
(expected rates) with 95% confidence intervals.

Logistic Regression

Alerting thresholds were calculated on a periodic basis using the expected probability of

death for the cases in their respective periods, and the 95% upper CI ranged from 4.9%

(1.02/112) to 7.1% (2.51/110). Cumulative-based upper alerting boundaries ranged from 2.3%

(29.86/1835) to 5.7% (1.66/115). The overall expected cumulative event rate was 1.75%

(39.7/2270).
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Periodic event rates ranged from 0% to 4.5%, and no alerts were generated. The two

highest periodic event rates of 3.4% (5/148) in period 4 and 4.5% (5/110) in period 10 had upper

alerting boundaries of 5.8% (2.98/148) and 7.1% (2.51/110), respectively. Cumulative event

rates ranged from a 0.9% (2/213) to 1.7% (10/587) event rate, and the cumulative upper 95% CI

was well above the observed event rate throughout the evaluation and are shown in Figure 4.

Alerting thresholds for the alternative data set based on the upper 95% CI ranged from

4.9% (1.02/112) to 7.5% (3.2/117) in the periodic analysis, and from 2.6% (28.17/1583) to 5.7%

(1.66/115) in the cumulative analysis. The overall expected event rate was 1.78% (28.17/1583).

Periodic event rates ranged from 0% to 4.7%, and no alerts were generated. The two

highest periodic event rates of 4.7% (7/150) in period 4 and 4.5% (5/110) in period 10 had upper

alerting boundaries of 6.2% (3.56/150) and 5.1% (2.51/110). Cumulative event rates ranged

from 0.9% (2/213) to 2.4% (12/490), and were well below the alert boundaries through the

evaluation.
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Figure 4: Logistic Regression graph showing the cumulative observed event rate versus the cumulative expected
event rate with 95% CI.
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Bayesian Updating Statistics

The upper alert boundary varied from 0.2% to 0.3%, from 1.5% to 1.7%, and from 40.2%

to 44.4% in the low, medium, and high risk strata, respectively. From all strata, the only alert

generated was in the high risk stratum period 1 with an observed event rate of 100% and an

upper alert boundary of 44.4% (49/136).

There was a trend towards lower event rates in the PDFs of all risk strata, as illustrated

for the high-risk stratum cases in Figure 5. At no time in any strata did the posterior confidence

interval overlap fall below the user-specified 80% criteria.

The upper alert boundaries in the alternative data set were the same as the real data set.

However, in the moderate-risk stratum, the observed event rates of 1.73% (4/231) in period 3,

1.84% (6/325) in period 4, 2.0% (8/400) in period 5, 1.73% (10/576) in period 7, and 1.71%

(14/818) in period 10% exceeded the alert boundaries that ranged from 1.65% to 1.74% for those

periods.

The trend towards lower event rates in the PDFs of all risk strata in the real data set was

not found in the alternative data set. At no time in any strata did the posterior confidence

interval overlap fall below the user-specified 80% criteria.
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Figure 5: Bayesian Updating Statistics Probability Density Functin (BUS PDF) evolution for
high-risk cases, by period.
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Discussion

The DELTA system satisfied all pre-specified design requirements, and performed all

analyses and graphical renderings within 2 seconds each on the hospital intranet.

The SPC method triggered periodic alerts in both single and multiple risk strata analyses.

This method also triggered the first period's cumulative alert in the multiple risk strata, but this

can be considered a periodic equivalent alert. Otherwise, there were no cumulative event rate

alerts detected by the SPC method. The LR method generated no alarms in either the periodic or

cumulative evaluations. The BUS method generated an alert only in the first period of the high-

risk stratum. While all BUS alerts are considered cumulative, the alert was generated from one

case with a positive outcome for that period.

The alternative data set event rate was elevated manually to generate alarms. The single

stratum SPC method alerted to event rates exceeding the threshold for periods 4 through 11. The

multi-strata SPC method revealed that the event rate rise of concern was in the moderate risk

group, alerting from periods 3 through 11. The LR method generated no periodic or cumulative

alerts in the alternative data set. The BUS method agreed that the elevation was primarily of

concern in the moderate risk stratum by generating cumulative alerts in periods 3, 4, 5, 7, and 10.

Periodic alerts are very sensitive measures of elevated event rates, but generally lack the

statistical power to make a conclusive decision about the safety of a device. These alerts would

serve to heighten surveillance and possibly reduce the interval of evaluation for the new device,

but would not in of themselves be sufficient to recommend withdrawal of the device. The

discrepancy between SPC and LR periodic alerting was because LR attempts to adjust the

alerting threshold based on the expected outcome of a given case. If there were a rise in the

event rate for a period, SPC would trigger an alert as the rate exceeds the static threshold.

However, if the LR model expected the cases to have that outcome, then the method would likely

not alert as the alert threshold would be adjusted based on that expectation. The cumulative

alerts for this analysis were consistent across statistical methods, and the alerts in the first period

were due to a very low number of examined cases. In the alternative set, the LR method has no

cumulative alerts, and this could be due to the fact that the events were expected by the model.

In phase 3 randomized controlled trials, there is no previous data to use as a benchmark,

and a common method of determining the threshold of stopping the trial is to initially place the
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threshold at a very statistically improbably number (such as 5 or 6 standard errors from an

estimated allowable rate) and gradually reduce the allowable error as the volume of data grows.

The allowable rates are generally established by expert consensus and are manually generated on

a trial by trial basis.

The benefits of incorporating prior information into the development of alerting

thresholds include the ability to develop and establish explicit rules for alerting thresholds. This

methodology could then be applied in an objective manner to a wide variety of monitoring

applications. This removes the need for an expert consensus to develop the thresholds.

However, this objective methodology has limitations. The accuracy of the alerting boundaries is

dependent on the source data. In the case of this clinical example, the University of Michigan

BMS mortality data and model was established as the benchmark. DELTA then considered

mortality event rates statistically significantly above that baseline to be abnormal and of concern.

This becomes important when assessing the external validity of the benchmark data with regards

to applicability in a different patient population. In addition, applying multiple concurrent

statistical methodologies to a monitoring process is meant to guard against specific

vulnerabilities one methodology might have to these type of confounding.

SPC is only concerned with the overall event rate in the benchmark source population to

establish alerting boundaries, and these are static throughout the analysis. This is the least

sensitive to subpopulation variations between the study and baseline populations. Including

multiple risk strata in the analysis increases the sensitivity to finding problems in a specific risk

group but requires the user to ensure that the study subpopulations using the risk stratification

criteria are representative of the source subpopulations. Similar proportions and relative event

rate risks between the source data and study data supports the use of stratification in this clinical

example.

LR is the most susceptible method to population differences because it provides a case

level estimation based on a number of risk factors. In a number of studies these models suffer

degraded predictive ability at the case level in disparate populations and as the time from the

model's development increases.74 In the example, the population's event rate was 1.19% and the

LR model's expected event rate was 1.75%. This shows that the LR model over-predicted

mortality for this population.

40



BUS carries many of the same benefits and drawbacks of using the aggregate source

population's event rate to establish alerting thresholds, but allows for the movement of these

thresholds by changing study event rates. This method is the most capable in determining a

significant shift in a short period of time.

Overall, the results of the example analysis support that the in-hospital mortality

following implantation of DES was acceptably low over the time period studied when compared

with the University of Michigan BMS benchmark data. The prototype system currently in use at

Brigham and Women's Hospital Cardiac Catheterization Laboratory is in a testing and

evaluation phase, and as such, clinicians do not consult the system directly. An evaluation of the

current user interface will be conducted to assess DELTA's acceptability in the clinical

environment by different health care providers. However, the preliminary results of our testing

are encouraging: the DELTA system shows promise in filling a need for automated real-time

safety monitoring in the medical domain, and may be applicable to routine safety monitoring for

hospital quality assurance, and monitoring of new drugs and devices.

Risk Strata Risk Score Sample Deaths Death % Upper 95% CI
Low 0-1.49 1820 1 0.015 0.03
Moderate 1.5-5.49 3907 50 1.28 0.017
High 5.50+ 136 49 36.0 0.443
TOTAL 5863 100 1.71 0.0207

Appendix A: Summary of the sample population and outcome of interest (death) per risk strata in the University of
Michigan data sample.46

Covariate LR [3 Odds Ratio Risk Score
MI within 24 hours 1.03 2.8 1
Cardiogenic Shock 2.44 11.5 2.5
Creatinine > 1.5 mg/dL 1.70 5.5 1.5
History of Cardiac Arrest 1.29 3.65 1.5
Number of Diseased Vessels 0.44 1.54 0.5
Age 70-79 0.81 2.24
Age >= 80 0.97 2.65
Age >= 70 1.0
LV Ejection Fraction <50% 0.51 1.66 0.5
Thrombus 0.52 1.67 0.5
Peripheral Vascular Disease 0.46 1.57 0.5
Female Sex 0.59 1.82 0.5
Intercept -7.20

Appendix B: University of Michigan Covariates with Beta Coefficients for the logistic regression model and Risk
Scores for the discrete risk stratification. 4 6 Intercept is the LR model equation intercept.
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Chapter 4: Sensitivity Analysis of SPC and Bus Alerting Thresholds

Background

In a prior work,7 5 we established the feasibility of a real-time automated monitoring

system, and evaluated implementations of Statistical Process Control (SPC)76 and Bayesian

Updating Statistics (BUS)7 7 for this application on actual clinical data in the domain of

Interventional Cardiology. However, sensitivity analyses to determine the independent and

relative performance of these methodologies has not been established, and is required for the

subsequent use of this tool.

The purpose of this study is to compare alerting thresholds for SPC and BUS methods

using local Interventional Cardiology clinical data.

Methods

Study Setting

Brigham & Women's Hospital (BWH) is a 720 bed academic teaching hospital in

Boston, Massachusetts. BWH's cardiac catheterization laboratory has maintained a detailed

clinical outcomes database since 1997 for all patients undergoing percutaneous coronary

intervention (PCI). The database is compliant with the domain's national data element standard,

based on the American College of Cardiology National Cardiovascular Data Repository (ACC-

NCDR) guidelines, and provides detailed mandatory quarterly reports to the state (MASS-DAQ).

Subjects

All angioplasty procedures performed between January 01, 2002 and December 31, 2004

were selected for inclusion in this study. The outcome of interest was a major adverse cardiac

event (MACE). This is an aggregate outcome consisting of death, post-procedural myocardial

infarction, or a repeat vascularization (PCI or bypass surgery). The actual overall outcome event
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rate for the sample was 6.5% (403/6175). This study was approved by the Partners Institutional

Review Board.

Alerting Thresholds

The Wilson method70 for the 95% confidence interval of a proportion was selected to

generate the appropriate alerting thresholds. The equation is shown here:

2np+z 2 + (z 2 +4npq)
Z22(n+z 2)

where p is the proportion, q is 1 - p, z is Standard Normal deviate associated with the two-tailed

probability a, and n is the sample size. The SPC alerting method uses the Wilson method to

generate a static alerting threshold based on the expected number of events and cases.

The BUS method, however, incorporates past observed events and number of cases into

the baseline prior expected events and cases to generate a posterior alerting threshold for each

new time period. This updating process uses the beta inverse function on the updated baseline to

find the 97.5% tail of the central posterior distribution.7 7

Observed and Expected Event Rate Simulation

A range of identical baseline alerting thresholds were generated for both SPC and BUS

methods. These expected event rates were constructed by varying both the overall event rate and

the number of cases (denominator). The overall event rates were manually set to be 0.005, 0.05,

or 0.5, and a range of magnitudes (statistical power) for each of these event rates was established

by varying the denominator by starting with 10 an doubling up to 1,000,000. In addition, 100,

1000, 10000, 100000, and 1000000 were evaluated to provide "rounded" denominators for

method comparisons. Using this method, 21 levels of denominators were generated for each

overall event rate (10, 21, 44, etc.).

A variety of overall sample observed event rates were needed to perform the evaluation.

In order to preserve the periodic outcome event rate fluctuations, a risk model to predict the
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likelihood of MACE in the clinical data was developed. All variables that were significantly

associated with the outcome from prior studies were selected for inclusion. A logistic regression

model was developed using a backwards stepwise technique (threshold 0.15) with SAS 9.1

(Cary, NC).71 Discrimination of the model was measured by the Area Under the Receiving

Operating Characteristic (AUC)5' and was 0.662. This is somewhat expected because of the

composite end-point, and a prior LR model for MACE at this institution had an ROC of 0.74.56

Calibration of the model was adequate using the Hosmer-Lemeshow goodness-of-fit test.7 The

Chi2 was 5.662 with 8 degrees of freedom, and p=0.6851. External validity was not assessed

because the model was intended for use only with the development data. The model is shown in

Table 1.

The probability of MACE for each case in the data set was generated with the resulting

LR model. Overall data set event rates were set by applying a probability cutoff to enforce the

appropriate proportion of cases to be positive outcomes. All cases with a probability above this

cutoff received a simulated outcome of 1, and all those below received an outcome of 0.

Two sets of observed event rates were generated for each of 21 denominator levels of

three expected event rates (0.5, 0.05, and 0.005). The "fine" variation in observed event rates

varied from +/- 10% by 1% increments of the expected event rate. For example, for the 50%

(0.5) event rate, the "fine" observed event rate variation ranged from 0.4 to 0.6 in increments of

0.01 (0.4, 0.41, 0.42, etc.). The "coarse" variation in observed event rates varied from +/- 90%

by 10% increments of the expected event rate. For example, in the 5% (0.05) expected event

rate, the observed event rates varied from 0.005 to 0.095 (0.05, 0.1, 0.15, etc.).

Parameter 3 Coefficient Standard Error p
Intercept -5.4657 0.4769 <0.001
IABP 0.6362 0.1080 <0.001
Age (in years) 0.0183 0.0046 <0.001
PCI Case 1.1344 0.3677 0.002
Shock on Presentation 0.9055 0.2647 0.001
Diabetes 0.2724 0.1133 0.016
Chronic Renal Insufficiency 0.3845 0.1990 0.053
Left Anterior Descending 70% Block 0.3043 0.1120 0.007
Emergent Case 0.5709 0.1422 <0.001
Salvage Case 1.8571 0.4160 <0.001
Prior Myocardial Infarction -0.2403 0.1250 0.055
Table 1: Logistic Regression model for the outcome of MACE in the clinical data.
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Statistical Analysis

The simulation protocol produced a total of 120 data sets (19 "coarse" and 21 "fine" for

each expected event rate). The data was analyzed using both the SPC and the BUS methods to

generate a number of alerts fired by each method over the first 24 of 36 months. The final

cumulative 3 6th month data was used to determine whether or not the alarm should have fired

(gold standard). No assumption was made that one method was superior to the other, so the

number of alarms of each method was measured with respect to the final 36 th month alarm status

of each method. Analysis was performed with Analyze-It (Version 1.73, Leeds, England) which

uses the non-parametric method of ROC calculation described by Beck and colleagues.79

Results

The results of the "coarse" analysis of SPC and BUS alerting methodologies for the 0.5%

expected event rate showed an AUC of 0.999 and 1.000 for SPC and BUS, respectively. These

results are shown in Table 2. Cross-analysis also showed AUCs of 0.999 for both methods. The

excellent AUCs were retained for each method in the 5% expected event rate with 1.000 and

0.999 for SPC and BUS, respectively. The BUS alerts and the SPC final alert showed good

discrimination at 0.997. While the difference was not statistically significant, the SPC alerts

compared to the BUS final alerts showed a relative decrease in AUC with 0.978. Finally, for the

50% expected event rate, significantly decreased AUCs are noted for all analyses. The SPC and

BUS methods showed AUCs of 0.950 and 0.954, respectively. The SPC alerts with the BUS

final alerts showed an AUC of 0.881, and the BUS alerts with the SPC final alerts showed an

AUC of 0.939. The performance of the SPC with the BUS final alert was significantly worse

than the BUS with the SPC final alert and confirmed a trend suggested in the 5% expected event

rate.
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Alarm Type True Alert Type Base Rate (%) AUC
SPC SPC 50 0.950 (0.916 - 0.984)
SPC BUS 50 0.881 (0.833 - 0.928)
BUS BUS 50 0.954(0.924 - 0.984)
BUS SPC 50 0.939 (0.902 - 0.975)
SPC SPC 5 1.000 (1.000 - 1.000)
SPC BUS 5 0.978 (0.957 - 0.998)
BUS BUS 5 0.999 (0.998 - 1.000)
BUS SPC 5 0.997 (0.992 - 1.000)
SPC SPC 0.5 0.999 (0.996 - 1.000)
SPC BUS 0.5 0.999 (0.997 - 1.000)
BUS BUS 0.5 1.000 (1.000 - 1.000)
BUS SPC 0.5 0.999 (0.997 - 1.000)

Table 2: Comparison of AUCs for each of the three baseline event rates (0.5%, 5%, and 50%) and "broadly" varied
observed rates. between the number of alerts for SPC and BUS (Alarm Type) and the final 36 month alarm status
for SPC and BUS (True Alert Type).

When both methods were evaluated in an identical manner with the "fine" data sets to

determine performance and differences within smaller magnitude event rate deviations, the

trends of the "coarse" data were preserved, and are shown in Table 3. All analyses and cross-

analyses for the SPC and BUS methods in the 0.5% and 5% expected event rates ranged from

0.997 to 1.000 and were not significantly different from one another. However, the 50%

expected event rate, similar to the "coarse" data sets, showed significant decreases in AUCs.

The SPC and BUS AUCs were 0.957 and 0.960, respectively. Cross-analysis of the SPC and

BUS methods showed AUCs of 0.916 and 0.959, respectively. The SUC to BUS AUC was

significantly lower than any of the others, and was consistent with the "coarse" data analysis.

Alarm Type True Alert Type Base Rate (%) AUC
SPC SPC 50 0.957 (0.938 - 0.976)
SPC BUS 50 0.916 (0.891 - 0.942)
BUS BUS 50 0.960(0.943 - 0.978)
BUS SPC 50 0.959 (0.941 - 0.977)
SPC SPC 5 1.000 (1.000 - 1.000)
SPC BUS 5 0.999 (0.998 - 1.000)
BUS BUS 5 1.000 (0.999 - 1.000)
BUS SPC 5 0.998 (0.996 - 1.000)
SPC SPC 0.5 0.994 (0.990 - 0.999)
SPC BUS 0.5 0.997 (0.993 - 1.000)
BUS BUS 0.5 0.997 (0.993 - 1.000)

BUS SPC 0.5 0.997 (0.993 - 1.000)
Table 3: Comparison of AUCs for each of the three baseline event rates (0.5%, 5%, and 50%) and "narrowly"
varied observed rates. between the number of alerts for SPC and BUS (Alarm Type) and the final 36 month alarm
status for SPC and BUS (True Alert Type).
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In order to evaluate the effect the denominator (sample size) has on the alerting

thresholds of each method, the sample size for the expected event rate of 50% was varied from

44 to 1787 for SPC and BUS (Figure 1). This shows that the denominator size plays a large role

in determining the number of alerts that should fire for any particular variation between the

expected and observed event rates. This is expected, as the size of the expected data improves

the confidence in that event rate value. An important trend to note is that for any given

denominator, the SPC method fires more frequently than the BUS method, but this difference is

reduced as the denominator sizes increase.

# Alerts

| BUS 44
0 SPC 44

61

Observed Rat

Figure 1: Illustration of Alert Firing for 50% Expected Event Rate of SPC and BUS from
Expected sample sizes of 44 to 1878.
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Discussion

There are a number of notable trends in the SPC and BUS alerting methodologies when

applied to this clinical data. First, both SPC and BUS are able to excellently discriminate a 'true'

alert in the first 24 months of data where the 36 th month is the gold standard. This suggests that

it is functioning within the statistical framework as an early detection system.

There is also a trend of decreasing performance as the expected event rate decreases.

This is most notable in the 50% expected event rate category. This degradation of performance

suggests that increasing event rates likely create greater variance in the monthly event rate which

could generate more alerts without the setting of a 'true alert' (cumulative month 36).

In addition, when each method is compared to the other, the SPC number of alerts shows

greater disagreement with the BUS 36th month alert than the BUS number of alerts and the SPC

36th month alert. Incorporation of prior month data into the BUS estimate creates a moving

baseline which accounts for the differences, but further exploration of this is necessary. Both

cross-analyses show generally lower AUC which is expected.

The primary limitation of this analysis is the LR modeling required to generate a

probability of outcome to allow observed event rate scaling. The ROC was relatively low,

although the calibration was adequate. This could impact the monthly event rate to be lower or

higher than observed, and could subsequently have an effect on the number of alerts fired for a

particular data set. As noted above, this is primarily due to the composite outcome (MACE) that

was chosen for the evaluation. The other limitation of this work is that there is no true gold

standard for whether or not a given data set should have been considered 'of concern.' This was

approximated by truncating the number of months in the analysis to 24 and setting the gold

standard to the result at 36 months, but this will generally inflate the ROC of each of the

methods.

Further work in this area will be done to evaluate the absolute and relative performance

between these methodologies for data with event rate trends. As noted above, the relative

performance between the methods was relatively similar with the noted exceptions. However,

greater variation between the methods might be observed for event rates with different event rate

trends (shown in Figure 2). These trends will be modeled and the methods will be evaluated,

such as: ascending event rates, descending event rates, "V" or descending then ascending event
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Figure 2: Illustration of possible event rate trends in a data set, such as ascending, descending,
V, and inverse V event rate trends.

rates, and "Inverse V" or ascending then descending event rates. We suspect that each of the

methods will have strengths and weaknesses relating to the data event rate trends.

Overall, this sensitivity analysis shows that relative agreement between SPC and BUS

methods for low event rates (0.5% and 5%), and disagreement between the methods at high

event rates (50%). In addition, using the number of alerts by month appears to be a valid way to

determine when an outcome event rate is becoming a concern based on established baseline data.

Further work to establish a 'number of alerts' threshold for the purposes of sensitivity and

specificity will be required, and is underway.
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Thesis Summary

Risk prediction models have been widely used for prognostication and retrospective

comparisons. However, there are opportunities to adapt these methodologies to perform

prospective monitoring of clinical outcomes. Incorporation of these methods into automated

tools could help support the evolving field of medical post-marketing surveillance.

The performance of the most well-known mortality risk models for the outcome of death

in percutaneous coronary intervention were evaluated on Brigham & Women's Hospital clinical

data. All of the models retained good discrimination. While this was promising, all of the

models except the recent locally developed one showed poor calibration, suggesting that changes

over time as well as regional patient demographics and medical care delivered may play an

important role in the generalizability of a model. The preservation of discrimination supports the

use of these models for generic risk stratification, but poor calibration indicates that use of the

models for individual prognostication should be done with caution, and indicates the need for

further study.

An exploration of support vector machines as an alternative to logistic regression risk

modeling for individual prognostication was performed. While both modeling techniques had

excellent and relatively similar discrimination, the support vector machine models were

consistently superior in terms of calibration. This suggests that this method could provide

superior risk stratification and prognostication for use in the real-time safety monitoring

application.

A real-time safety monitoring system, DELTA, was designed with a SQL database for

back-end data storage and a web-based graphical user interface for user operation. The software

satisfied all pre-specified design requirements, which were 1) the ability to accept a generic flat

data table, 2) perform both retrospective and prospective analyses, 3) incorporate a

complimentary set of statistical methods for event rate monitoring, 4) provide user-configurable

alerting thresholds, and automated alert notification, and 5) support an unlimited number of

simultaneous datasets with nested analyses.

A pilot investigation evaluating the in-hospital mortality following implantation of drug-

eluting coronary artery stents was then performed with the system. The system performed as

expected, and event rates compared to University of Michigan bare-metal stent data were
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acceptably low using adapted statistical techniques including Statistical Process Control,

Bayesian Updating Statistics, and Logistic Regression.

Subsequently, sensitivity analyses between the SPC and BUS alerting methods were

performed to evaluate individual and relative performance of these measures on scaled event

rates for BWH in-hospital major adverse coronary events. A variety of baseline event rates were

evaluated. The analysis revealed relative agreement between SPC and BUS methods for low

event rates, but noted an increasing disagreement between the methods as observed event rates

escalated. In addition, the SPC method generated more alerts for a given analysis configuration

than BUS. Finally, using the number of alerts by month appeared to be a valid way to determine

a 'significant event rate.' Further work to establish specificity and sensitivity thresholds will be

required as gold standard data becomes available.

These research efforts have shown highlighted some of the limitations relating to

calibration in current risk modeling methods. Machine learning modeling methods may provide

improvements in this area. In addition, the design feasibility of a real-time automated

monitoring system was confirmed, some potentially useful statistical monitoring methodologies

were established and evaluated, and the utility and applicability of both logistic regression and

support vector machine modeling were explored for use in the application. Further work remains

to validate and scale up the application for use in multiple clinical environments.

Acknowledgements

The author would like to thank Dr. Frederic Resnic and Dr. Lucila Ohno-Machado for

their excellent mentorship and guidance, without which this work would not have been possible.

In addition, the author would like to thank Richard Cope and Barry Coflan for their excellent

programming work on the DELTA application, Dr. Robert Greenes for guidance and editing

assistance, and Anne Fladger and her staff for literature procurement assistance.

This research was supported in part by Grants T15-LM-07092 and R01-LM-08142 from

the National Library of Medicine of the National Institutes of Health.

51



REFERENCES

1. Munsey RR. Trends and events in FDA regulation of medical devices over the last fifty
years. Food Drug Law J. 1995;50 Spec: 163-177.

2. Medical Device Amendments of 1976 to the Federal Food, Drug, and Cosmetic Act. Pub
L No. 94-295. 1976:90 Stat 539.

3. Pritchard WF, Jr., Carey RF. U.S. Food and Drug Administration and regulation of
medical devices in radiology. Radiology. Oct 1997;205(1):27-36.

4. Safe Medical Devices Act of 1990. Pub L No. 101-629. 1990:104 Stat 4511.
5. Merrill RA. Modernizing the FDA: an incremental revolution. Health Aff(Millwood).

Mar-Apr 1999;18(2):96-111.
6. Kessler L, Richter K. Technology assessment of medical devices at the Center for

Devices and Radiological Health. American Journal of Managed Care. Sep 25 1998;4
Spec No:SP129-135.

7. O'Neill WW, Chandler JG, Gordon RE, et al. Radiographic detection of strut separations
in Bjork-Shiley convexo-concave mitral valves.[see comment]. New England Journal of
Medicine. Aug 17 1995;333(7):414-419.

8. Brown SL, Morrison AE, Parmentier CM, Woo EK, Vishnuvajjala RL. Infusion pump
adverse events: experience from medical device reports. Journal of Intravenous Nursing.
Jan-Feb 1997;20(1):41-49.

9. Fuller J, Parmentier C. Dental device-associated problems: an analysis of FDA
postmarket surveillance data. Journal of the American Dental Association. Nov
2001;132(11):1540-1548.

10. White GG, Weick-Brady MD, Goldman SA, et al. Improving patient care by reporting
problems with medical devices. CRNA. Nov 1998;9(4):139-156.

11. Dwyer D. Medical device adverse events and the temporary invasive cardiac pacemaker.
International Journal of Trauma Nursing. Apr-Jun 2001;7(2):70-73.

12. Dillard SF, Hefflin B, Kaczmarek RG, Petsonk EL, Gross TP. Health effects associated
with medical glove use. AORN Journal. Jul 2002;76(1):88-96.

13. Brown SL, Duggirala HJ, Pennello G. An association of silicone-gel breast implant
rupture and fibromyalgia. Current Rheumatology Reports. Aug 2002;4(4):293-298.

14. Managing Risks from Medical Product Use: Creating a Risk Management Framework.
Report to the FDA Commissioner from the Task Force on Risk Management. Rockville,
MD: U.S. Department of Health and Human Services, Food and Drug Administration;
1999.

15. Monsein LH. Primer on medical device regulation. Part II. Regulation of medical devices
by the U.S. Food and Drug Administration. Radiology. Oct 1997;205(1):10-18.

16. Maisel WH. Medical device regulation: an introduction for the practicing physician.
Annals of Internal Medicine. Feb 17 2004;140(4):296-302.

17. Monsein LH. Primer on medical device regulation. Part I. History and background.
Radiology. Oct 1997;205(1):1-9.

18. Medical device and user facility and manufacturer reporting, certification and
registration; delegations of authority; medical device reporting procedures; final rules.
Fed Regist. 1995;60:63577-63606.

52



19. Improving patient care by reporting problems with medical devices. Med Watch.
Rockville, MD: Department of Health and Human Services, U.S. Food and Drug
Administration, HF-2; 1997.

20. Feigal DW, Gardner SN, McClellan M. Ensuring safe and effective medical devices. New
England Journal of Medicine. Jan 16 2003;348(3):191-192.

21. Postmarket surveillance. Final Rule. Fed Regist. 2002;67:5943-5942.
22. Center for Devices and Radiologic Health Annual Report Fiscal Year 2000.

www.fda.gov/cdrh/annual/fy2000/annualreport-2000-5.html. Accessed January 18, 2005.
23. Cannon CP, Battler A, Brindis RG, et al. American College of Cardiology key data

elements and definitions for measuring the clinical management and outcomes of patients
with acute coronary syndromes. JAm Coll Cardiol. Dec 2001;38(7):2114-2130.

24. Doble M. Six Sigma and chemical process safety. Int. J. Six Sigma & Compet. Adv.
2005; 1 (2):229-244.

25. Randolph AG, Guyatt GH, Carlet J. Understanding articles comparing outcomes among
intensive care units to rate quality of care. Evidence Based Medicine in Critical Care
Group. Critical Care Medicine. Apr 1998;26(4):773-781.

26. Topol EJ, Block PC, Holmes DR, Klinke WP, Brinker JA. Readiness for the scorecard
era in cardiovascular medicine. Am J Cardiol. Jun 1 1995;75(16):1170-1173.

27. Hunt JP, Meyer AA. Predicting survival in the intensive care unit. Current Problems in
Surgery. Jul 1997;34(7):527-599.

28. Knaus WA, Wagner DP, Draper EA. The value of measuring severity of disease in
clinical research on acutely ill patients. Journal of Chronic Diseases. 1984;37(6):455-
463.

29. Mendez-Tellez PA, Dorman T. Predicting patient outcomes, futility, and resource
utilization in the intensive care unit: the role of severity scoring systems and general
outcome prediction models. Mayo Clin Proc. Feb 2005;80(2):161-163.

30. O'Connor GT, Malenka DJ, Quinton H, et al. Multivariate prediction of in-hospital
mortality after percutaneous coronary interventions in 1994-1996. JAm Coll Cardiol.
Sep 1999;34(3):681-691.

31. Hannan EL, Arani DT, Johnson LW, Kemp HG, Jr., Lukacik G. Percutaneous
transluminal coronary angioplasty in New York State. Risk factors and outcomes. JAMA.
Dec 2 1992;268(21):3092-3097.

32. Hannan EL, Racz M, Ryan TJ, et al. Coronary angioplasty volume-outcome relationships
for hospitals and cardiologists. JAMA. Mar 19 1997;277(11):892-898.

33. Moscucci M, Kline-Rogers E, Share D, et al. Simple bedside additive tool for prediction
of in-hospital mortality after percutaneous coronary interventions. Circulation. Jul 17
2001; 104(3):263-268.

34. Shaw RE, Anderson HV, Brindis RG, et al. Development of a risk adjustment mortality
model using the American College of Cardiology-National Cardiovascular Data Registry
(ACC-NCDR) experience: 1998-2000. JAm Coll Cardiol. Apr 3 2002;39(7):1104-1112.

35. Ellis SG, Weintraub W, Holmes D, Shaw R, Block PC, King SB, 3rd. Relation of
operator volume and experience to procedural outcome of percutaneous coronary
revascularization at hospitals with high interventional volumes. Circulation. Jun 3
1997;95(11):2479-2484.

53



36. Holmes DR, Selzer F, Johnston JM, et al. Modeling and risk prediction in the current era
of interventional cardiology: a report from the National Heart, Lung, and Blood Institute
Dynamic Registry. Circulation. Apr 15 2003;107(14):1871-1876.

37. Holmes DR, Jr., Berger PB, Garratt KN, et al. Application of the New York State PTCA
mortality model in patients undergoing stent implantation. Circulation. Aug 1
2000; 102(5):517-522.

38. Moscucci M, O'Connor GT, Ellis SG, et al. Validation of risk adjustment models for in-
hospital percutaneous transluminal coronary angioplasty mortality on an independent
data set. Journal of the American College of Cardiology. Sep 1999;34(3):692-697.

39. Rihal CS, Grill DE, Bell MR, Berger PB, Garratt KN, Holmes DR, Jr. Prediction of death
after percutaneous coronary interventional procedures. American Heart Journal. Jun
2000; 139(6):1032-1038.

40. Singh M, Rihal CS, Selzer F, Kip KE, Detre K, Holmes DR. Validation of Mayo Clinic
risk adjustment model for in-hospital complications after percutaneous coronary
interventions, using the National Heart, Lung, and Blood Institute dynamic registry.[see
comment]. Journal of the American College of Cardiology. Nov 19 2003;42(10):1722-
1728.

41. Kizer JR, Berlin JA, Laskey WK, et al. Limitations of current risk-adjustment models in
the era of coronary stenting. American Heart Journal. Apr 2003;145(4):683-692.

42. Hannan EL, Wu C. Assessing quality and outcomes for percutaneous coronary
intervention: choosing statistical models, outcomes, time periods, and patient
populations. American Heart Journal. Apr 2003;145(4):571-574.

43. deDombal FT. Computer-aided diagnosis and decision-making in the acute abdomen.
Journal of the Royal College of Physicians of London. Apr 1975;9(3):211-218.

44. Oye RK, Bellamy PE. Patterns of resource consumption in medical intensive care. Chest.
Mar 1991;99(3):685-689.

45. Williams DO, Holubkov R, Yeh W, et al. Percutaneous coronary intervention in the
current era compared with 1985-1986: the National Heart, Lung, and Blood Institute
Registries.[see comment]. Circulation. Dec 12 2000;102(24):2945-2951.

46. McNeil BJ, Pedersen SH, Catsonis C. Current issues in profiling quality of care. Inquiry.
1992;29:298-307.

47. Poses RM, Smith WR, McClish DK, et al. Physicians' survival predictions for patients
with acute congestive heart failure. Archives of Internal Medicine. May 12
1997; 157(9): 1001-1007.

48. Perkins HS, Jonsen AR, Epstein WV. Providers as predictors: using outcome predictions
in intensive care. Crit Care Med. Feb 1986;14(2):105-110.

49. Shaw RE, Anderson HV, Brindis RG, et al. Updated risk adjustment mortality model
using the complete 1.1 dataset from the American College of Cardiology National
Cardiovascular Data Registry (ACC-NCDR). Journal of Invasive Cardiology. Oct
2003;15(10):578-580.

50. Altman DG, Royston P. What do we mean by validating a prognostic model? Statistics in
Medicine. Feb 29 2000;19(4):453-473.

51. Hanley JA, McNeil BJ. The meaning and use of the area under a receiver operating
characteristic (ROC) curve. Radiology. Apr 1982;143(1):29-36.

52. Swets JA. Measuring the accuracy of diagnostic systems. Science. Jun 3
1988;240(4857): 1285-1293.

54



53. Lemeshow S, Hosmer DW, Jr. A review of goodness of fit statistics for use in the
development of logistic regression models. American Journal of Epidemiology. Jan
1982; 15(1):92-106.

54. Margolis DJ, Bilker W, Boston R, Localio R, Berlin JA. Statistical characteristics of area
under the receiver operating characteristic curve for a simple prognostic model using
traditional and bootstrapped approaches. Journal of Clinical Epidemiology. May
2002;55(5):518-524.

55. Carpenter J, Bithell J. Bootstrap confidence intervals: when, which, what? A practical
guide for medical statisticians. Statistics in Medicine. May 15 2000;19(9): 1141-1164.

56. Resnic FS, Ohno-Machado L, Selwyn A, Simon DI, Popma JJ. Simplified risk score
models accurately predict the risk of major in-hospital complications following
percutaneous coronary intervention. Am J Cardiol. Jul 1 2001;88(1):5-9.

57. Hennekens CH, Buring JE. Epidemiology in Medicine. Boston: Little & Brown; 1988.
58. Efron B, Tibshirani R. Bootstrap methods for standard errors, confidence intervals, and

other measures of statistical accuracy. Stat. Sci. 1986; 1:54-77.
59. Hanley JA, McNeil BJ. A method of comparing the areas under receiver operating

characteristic curves derived from the same cases. Radiology. Sep 1983;148(3):839-843.
60. McGrath PD, Malenka DJ, Wennberg DE, et al. Changing outcomes in percutaneous

coronary interventions: a study of 34,752 procedures in northern New England, 1990 to
1997. Northern New England Cardiovascular Disease Study Group. Journal of the
American College of Cardiology. Sep 1999;34(3):674-680.

61. DeLong ER, Peterson ED, DeLong DM, Muhlbaier LH, Hackett S, Mark DB. Comparing
risk-adjustment methods for provider profiling. Statistics in Medicine. Dec 15
1997; 16(23):2645-2664.

62. Peterson ED, DeLong ER, Muhlbaier LH, et al. Challenges in comparing risk-adjusted
bypass surgery mortality results: results from the Cooperative Cardiovascular Project.
Journal of the American College of Cardiology. Dec 2000;36(7):2174-2184.

63. Moss AJ, Hamburger S, Moore RM, Jeng LL, Howie LJ. Use of selected medical device
implants in the United States. Vol 191. Rockville, MD: National Center For Health
Statistics; 1988.

64. New York Public Health Law §2805-1 Incident Reporting (Added L. 1986, c.266).
65. Department of Public Health. 105 Code of Massachusetts Regulations. 2001:130.1201-

1130.1130.
66. Cook DF. Statistical Process Control for continuous forest products manufacturing

operations. Forest Products Journal. 1992;42:47-53.
67. Grigg N, Walls L. The use of statistical process control in food packaging: Preliminary

findings and future research agenda. British Food Journal. 1999;101:763-784.
68. Developed Wheel and Axle Assembly Monitoring System for Improved Passenger Train

Safety. US DOT Federal Railroad Administration. March 2000;RR00-02.
69. Standards for Privacy of Individually Identifiable Health Information: Final Rule. Fed.

Regist. 2002;67:53182-53273.
70. Newcombe RG. Two-sided confidence intervals for the single proportion: comparison of

seven methods. Statistics in Medicine. Apr 30 1998;17(8):857-872.
71. Hosmer DW, Lemeshow S. Applied Logistic Regression, 2nd Ed. 2000.
72. Siu N, Apostolakis G. Modeling the detection rates of fires in nuclear plants. Risk Anal.

1986;6:43-59.

55



73. Bayes T. Essay towards solving a problem in the doctrine of chanes. Philos. Trans. R.
Soc. Lond. 1763;53:370-418.

74. Matheny ME, Ohno-Machado L, Resnic FS. Discrimination and calibration of mortality
risk prediction models in interventional cardiology. J Biomed Inform. Oct
2005;38(5):367-375.

75. Matheny ME, Ohno-Machado L, Resnic FS. Monitoring Device Safety in Interventional
Cardiology. JAm Med Inform Assoc. 2006;13(2):180-187.

76. Oakland JS. Statistical Process Control. 5 ed. Jordan Hill, Oxford, UK: Butterworth-
Heinemann; 2003.

77. Resnic FS, Zou KH, Do DV, Apostolakis G, Ohno-Machado L. Exploration of a bayesian
updating methodology to monitor the safety of interventional cardiovascular procedures.
Medical Decision Making. Jul-Aug 2004;24(4):399-407.

78. Lemeshow S, Hosmer DW, Jr. A review of goodness of fit statistics for use in the
development of logistic regression models. Am J Epidemiol. Jan 1982; 15(1):92-106.

79. Beck JR, Shultz EK. The use of relative operating characteristic (ROC) curves in test
performance evaluation. Arch Pathol Lab Med. Jan 1986;110(1):13-20.

80. Hosmer D, Lemeshow S. Applied Logistic Regression. New York, NY: Wiley & Sons;
1989.

81. Scholkopf B, Sung K, Burges C, et al. Comparing support vector machines with Gaussian
kernels to radial basis function classifiers. IEEE Trans Sig Proc. 1997;45:2758-2765.

82. Platt J. Probabilistic outputs for support vector machines and comparison to regularized
likelihood methods. In: Smola AJ, Bartlett P, Schoelkopf B, Schuurmans D, eds.
Advances in Large Margin Classiers. Cambridge, MA: MIT Press; 1999.

83. Lin H-T, Lin C-J, Weng RC. A note on Platt's probabilistic outputs for support vector
machines. http://www.csie.ntu.edu.tw/-cjin/papers/plattprob.ps. Last Accessed:
03/08/2006.

84. Platt J. Fast training of support vector machines using sequential minimal optimization.
In: Scholkopf B, Burges C, Smola A, eds. Advances in Kernel Methods - Support Vector
Learning; 1998.

85. Statnikov A, Aliferis CF, Tsamardinos I, Hardin D, Levy S. A comprehensive evaluation
of multicategory classification methods for microarray gene expression cancer diagnosis.
Bioinformatics. Mar 1 2005;21(5):631-643.

56


