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Abstract

Cardiac arrhythmias are characterized by a disruption or abnormal conduction of electrical
signals within the heart. Treatment of arrhythmias has dramatically evolved over the past
half-century, and today, minimally-invasive catheter-based therapy is the preferred method
of eliminating arrhythmias. Using an electroanatomical (EA) mapping system, which pre-
cisely tracks the position of catheters inside the patient's body, it is possible to construct
three-dimensional maps of the ventricular and atrial chambers of the heart. Each point of
these maps is annotated based on bioelectrical signals recorded from the electrodes located
at the tip of the catheter. These maps are then used to guide catheter ablation within
the heart. However, the electroanatomical mapping procedure results in relatively sparse
sampling of the heart and a significant amount of time and skill are require to generate
these maps.

In this thesis, we present our software system for the integration of pre-operative,
patient-specific magnetic resonance (MR) or computed tomography (CT) imaging data with
real-time electroanatomical mapping (EAM) information. Following registration between
the EAM and imaging data, the system allows allows for real-time catheter navigation within
patient-specific anatomy. We then evaluate candidate registration strategies to rapidly and
accurately align the pre-operative imaging data with the intra-operative mapping data us-
ing simulated electroanatomical mapping data using the great cardiac vessels including the
aorta, superior vena cava, and coronary sinus. Based on these in vitro results, we focus
on a registration strategy which is constrained by the ascending and descending aorta. In
vivo prospective evaluation of the resulting image integration was then performed (n>200)
in both experimental and clinical electrophysiology procedure. To compensate for residual
error following registration or patient movement during a procedure, we present and eval-
uate warping strategies for deforming the pre-operative imaging data into agreement with
the intra-operative mapping information.
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Chapter 1

Introduction

1.1 Motivation

Cardiac arrhythmias are a significant cause of morbidity and mortality in industrialized

societies. Arrhythmias are characterized by abnormalities in electrical impulse formation

or conduction within the heart [1]. These abnormalities disrupt the coordinated mechanical

contraction and can result in reduced or insufficent cardiac output or other complications.

Arrhythmias may or may not manifest clinical symptoms; however, clinical sequelae can be

extremely serious including elevated risk of stroke, congestive heart failure, and/or sudden

cardiac death. Even when clinical sequelae are non-fatal, arrhythmias are responsible for sig-

nificant morbidity and healthcare cost. Current treatment options range from non-invasive,

such as lifestyle modification and pharmaceutical therapy, to minimally- or highly-invasive,

including catheter-based ablation, device implantation, and cardio-thoracic surgery. While

non-invasive therapies can suppress the occurrence of arrhythmias and mitigate their sec-

ondary effects, these treatments have may significant side-effects, which make them less

ideal for long-term patient management of arrhythmias. Interventional procedures remain

the only method for curing a patient with an arrhythmia [1]. Minimally-invasive catheter-

based procedures result in less operative trauma, cause less pain and scarring, and reduce

hospitalization time and healthcare cost with success rates comparable to more traditional

surgical methods [2]. Therefore, catheter-based radio frequency (RF) ablation of cardiac

arrhythmias has become the preferred treatment by both patients and healthcare institu-

tions.

However, the catheter-based treatment paradigm has matured only relatively recently

1 5



1.2. PATHOPHYSIOLOGY OF CARDIAC ARRHYTHMIAS

for complex arrhythmias such atrial fibrillation (AF) or ventricular tachycardia (VT). Treat-

ment of these arrhythmias require extensive RF ablation within the heart, and treatment

with the introduction of catheter-based, "electroanatomical mapping" (EAM) systems;

these systems precisely track one or more "mapping" catheters within a patient's heart in

real-time. The EAM systems record electrical information from electrodes on the catheter

as well as record the position of RF ablation lesions. This information is then used to

create a 3D map of the electrical characteristics of the heart and ablations applied to the

heart (Figure 1-7). Under EAM guidance, the efficacy of catheter-based treatments now ap-

proaches surgical success rates. However, there are several limitations of the current EAM

paradigm. First, catheter-based mapping is time intensive, and the resulting map is largely

dependent on the skill and experience of the operator. Second, catheter mapping is a point

sampling technique which results in a relatively sparse representation of the chamber(s) of

interest within the heart. Finally, patient movement during an EAM procedure can result

in significant disparity between pre-movement and post-movement EAM information, which

requires the time-consuming remapping of the relevant cardiac chambers.

In the ideal situation, an electrophysiologist would have sufficent information to plan an

appropriate treatment for each patient prior to an interventional procedure. For surgical

planning, pre-operative magnetic resonance (MR) and computed tomography (CT) imaging

can provide important, patient-specific, anatomical and physiological information. However,

this information would be most useful if integrated directly in with the intra-procedural

EAM data. The goal of this thesis is to develop and validate new methods for the rapid and

accurate integration of pre-operative imaging data with intra-operative electroanatomical

mapping information. The methods to be presented extend the capabilities of conventional

catheter-based electroanatomical mapping so that reliable registration and image-guided

catheter ablation of cardiac arrhythmias can be performed using patient-specific imaging

information.

1.2 Pathophysiology of Cardiac Arrhythmias

A normal human heart can be thought of two pumps connected in series which are respon-

sible for circulation of oxygenated blood throughout the body and circulating deoxygenated

blood through the lungs so that gas-exchange can occur (Figure 1-1). Deoxygenated blood

16



1.2. PATHOPHYSIOLOGY OF CARDIAC ARRHYTHMIAS

enters the right atrium of the heart from the superior vena cava, the inferior vena cava,

and the coronary sinus. This blood then passes the tricuspid valve into the right ventricle.

Upon ejection from the right ventricle through the pulmonic valve, the blood enters the

pulmonary circulation via the pulmonary artery. Within the lungs, gas-exchange occurs,

and the oxygenated blood returns to the left atrium of the heart via the pulmonary veins.

From the left atrium, the blood is then emptied through the mitral valve into the left ven-

tricle. The muscular left ventricle then contracts to exceed the diastolic blood pressure at

the aortic valve. When the isometric contraction exceeds this pressure, blood is ejected

from the left ventricle into the systemic arterial circulation.

1.2.1 Cardiac Electrophysiology

The human heart has an intrinsic electrical conduction system which is responsible for

synchronized contraction of the cardiac chambers and maintaining sufficient arterial blood

pressure for the perfusion of the body. In a resting state, there is a potential difference

across the cell membrane of myocytes resulting from an ion concentration difference. Ion

channels and pumps span the cellular membrane to passively and actively maintain this

difference between the intracellular and extracellular space. These cells have the ability to

undergo a trasient depolarization and repolarization known as an action potential (AP),

which can be triggered from external mechanisms or via spontaneous mechanisms. During

depolarization, rapid effiux and influx of sodium, potassium, and calcium ions result in a net

positive current out of the cell. Immediately following depolarization, repolarization occurs,

and the ion channels and pumps re-establish the concentration gradients and therefore the

potential difference acrss the cellular membrane.

In a normal heart, contraction is initiated by an action potential originating from the

main pacemaker cells within the sinoatrial (SA) node located near the junction of the

superior vena cava (SVC) and the right atrium (RA). This electrical impulse then spreads

across the right and left atria, via gap junctions connecting individual myocardial cells

(Figure 1-2). The coordinated excitation of the myocardial cells results in contraction of the

atria. After a short delay in the Atrio-Ventricular (AV) Node, which permits optimal filling

of the ventricles, the electrical impulse is conducted to the apical region of the ventricles

via the Bundle of His and then the left and right bundles branches. Through excitation-

contraction coupling, the impulse results in synchronized contraction of the left and right

17



1.2. PATHOPHYSIOLOGY OF CARDIAC ARRHYTHMIAS

Figure 1-1: Cardiac anatomy. (Plate 505 of [3])

ventricles, thereby propelling blood into the systemic and pulmonary arterial circulation.

Following a depolarization, a myocyte enters an absolute refractory period followed by a

relative refractory period. During absolute refractory, an action potential cannot be elicited

from the cell. When the cell is in relative refractory, an increased stimulus is required to

depolarize the cell and initiate an actional potential. The refractory period can have an

important role in the initiation and continuation of an arrhythmia, which will be explained

further in the next section.

18



1.2. PATHOPHYSIOLOGY OF CARDIAC ARRHYTHMIAS

Figure 1-2: Cardiac conduction pathways of the heart. In a normal heart, cellular cau-
tomaticity within the Sinoatrial (SA) node initiate an electrical cascade within the heart
that results in synchronized mechanical contraction of the heart. The SA node is on the
posterior aspect of the right atrium near the junction of the superior vena cava and the right
atrium. From the SA node, the impulse spreads across the right atrium at a conduction
velocity of approximately 1 m/s, and the impulse is conducted from the SA node directly to
the left atrium via Bachmann's bundle (interatrial myocardial band). The atrioventricular
(AV) node, in a normal individual, is the only route for the electrical impulse to reach the
ventricles. At the cellular level, the AV node contains similar cells to the SA node, and in
certain cases, it may assume the role of cardiac pacemaker for a diseased or damaged heart.
At the AV node, there is a physiologically relevant conduction delay. The impulse is then
conducted via the bundle branches and Purkinje fibers to the apical regions of the heart.
These cells begin the mechanical contraction of the heart. and the electrical impulse is now
conducted at a slower rate via gap junctions between cells (Plate 501 of [3]).

19



1.2. PATHOPHYSIOLOGY OF CARDIAC ARRHYTHMIAS

1.2.2 Pathogenesis of Arrhythmias

By disrupting the normal electrical conduction of the heart, arrhythmias may result in a

significantly reduced efficiency of the heart and can lead to life-threatening side effects. Ar-

rhythmogenic mechanisms are classified based broadly on the distinction between electrical

impulse generation and impulse conduction (Table 1.1). The resulting cardiac arrhythmias

can be divided into two categories based on heart rate: 1) bradyarrhythmias or bradycar-

dias in which the heart rate is less than 60 beats per minute and 2) tachyarrhythmias or

tachycardias in which the heart rate is in excess of 100 beats per minute for three beats or

more. Bradyarrhythmias are most often treated with an implantable pacemaker described

below.

Table 1.1: Arrhythmogenic Mechanisms (from [4])
Abnormal impulse initiation

Automaticity
Normal Automaticity
Abnormal Automaticity

Triggered Activity
Early afterdepolarizations
Delayed afterdepolarizations

Abnormal impulse conduction
Conduction block leading to ectopic pacemaker escape
Unidirectional block and reentry

Ordered reentry
Random reentry

Reflection

Tachyarrhythmias are the result of one of three mechanisms. They can be caused by

increased or enhanced cellular automaticity, triggered activity, or unidirectional conduction

block and reentry. Tachyarrhythmias are broadly divided into two categories based on the

location of the arrhythmia. A supraventricular tachyarrhythmia (SVT) arises above the

ventricles, while a ventricular tachycardia (VT) occurs within the ventricles. In general,

a 12-lead electrocardiogram (ECG) canl be used to accurately differentiate these types of

arrhythmias based on several characteristics of the recorded bioelectrical signals. There

are several distinct SVTs including sinus tachycardia, atrial premature beats, atrial flutter,

ectopic atrial tachycardia, AV nodal reentrant tachycardia (AVNRT), and atrial fibrillation

(AF or AFib).

20



1.2. PATHOPHYSIOLOGY OF CARDIAC ARRHYTHMIAS

The remaining portion of this dissertation will focus on two complex arrhythmias of

great clinical importantce: atrial fibrillation and ventricular tachycardia.

1.2.3 Atrial Fibrillation

Atrial fibrillation is a cardiac arrhythmia which eliminates any coordinated contraction of

the left atrium as a result of extremely high rate of excitation by multiple foci located

within the pulmonary veins [5]. Over time, AF results in structural remodeling of the left

atrium. Atrial fibrillation is a significant healthcare problem; it is the most common cardiac

arrhythmia requiring treatment with an estimated prevalence of 2.3 million patients in the

United States in 2001 [6]. In addition, the prevalence of atrial fibrillation increases with

age; AF occurs in 3.8 percent of individuals over 60 years old and 9.0 percent of people 80

years of age and older [6, 7]. Although atrial fibrillation can be asymptomatic or "silent"

in many patients, the consequences of the disease can be devastating. Thrombo-embolism

from the left atrial appendage can result in a stroke or cerebral vascular attack (CVA).

Of high-risk patents with atrial fibrillation who are only taking aspirin, incidence of stroke

ranges from 5.0 percent to 9.6 percent per year [6, 8, 9].

In most patients, atrial fibrillation is associated with other etiologies such as cardiovas-

cular disease, hypertension, coronary artery disease, cardiomyopathy, and valvular heart

disease [6]. Cardiac surgery, myocarditis, pericarditis, and other factors are also consid-

ered predisposing factors for atrial fibrillation. Beyond the risk of stroke, atrial fibrillation

eliminates so-called atrial kick which affects left ventricular filling. Therefore, patients with

impaired left ventricular function from congestive heart failure can be further compromised.

Atrial fibrillation is classified into three types: 1) paroxysmal 2) persistent and 3) per-

manent or chronic atrial fibrillation. These classifications are based on the duration of the

arrhythmia:

Paroxysmal Transiently occurring episodes of AF with spontaneous initiation and termi-

nation of the arrhythmia.

Persistent atrial fib}rillation will continue until a treatment such as external cardioversion

defibrillation is adnilnistered.

Permanent (chronic) cardioversion and drug treatments are ineffective in restoring a

patient to sinus rhythnl.
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1.2. PATHOPHYSIOLOGY OF CARDIAC ARRHYTHMIAS

From an electrophysiology standpoint, atrial fibrillation is a complex and difficult dis-

ease to treat. It now has been shown by many studies that rapidly firing foci within the

pulmonary veins are responsible for the spontaneous initiation of paroxysmal atrial fibrilla-

tion; however, treatment options are limited by patient safety concerns. There is a high-risk

of stenosis following RF ablation of these foci deep within the pulmonary veins. Pulmonary

vein stenosis or a narrowing of the pulmonary veins is a serious complication that 2-41

percent of patients who undergo ablation may develop [10]. Treatment of PV stensosi may

require stenting or balloon dilatation. Relevant interventions to minimize paroxysms of

atrial fibrillation, the risks associate with the disease, and the peri- and post-operative

complications are discussed below (Section 1.3).

1.2.4 Ventricular Tachycardia

Cardiovascular disease remains the most common cause of death in developed countries

around the world [11]. It is estimated that 50 percent of all deaths from cardiovascular

causes are a result of malignant ventricular tachyarrhythmias [11]. In the setting of a

prior myocardial infarction (MI), the predominate pathogenesis of ventricular tachycardia

(VT) is reentry in the region of the scarred myocardium [12, 13]. The myocardial tissue

can be divided into three types: dense scar tissue, healthy myocardial tissue surrounding

the affected region, and the "border zone" at the interface between healthy and scarred

myocardial tissue. It is important to think about these regions as a complex structure

in three-dimensions; the border zone includes any interfaces between normal tissue and

dense scar. In this border region, electrically-active myocardial fibrils are interspersed with

the fibrotic scar tissue. These regions are characterized by abnormal electrophysiologic

properties including slowed conduction velocity and decreased cell-to-cell coupling.

As with reentrant circuits in other locations within the heart, the self-perpetuating

arrhythmia requires a unidirectional conduction block and a substrate with slow enough

conduction to allow for recovery of the excitability of the initially blocked region (Figure

1-3). Once the reentrant circuit has been initiated, the cycle length of the wavelength of the

tachycardia circuit must be short enough or the conduction pathway must be long enough

so that the wavefront of the arrhythmia is always encountering excitable tissue.

Over the past decade, significant advances have been made in the treatment of ventricu-

lar tachyarrhythmias; however, they remain a clinical challenge. From a clinical standpoint,
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1.2. PATHOPHYSIOLOGY OF CARDIAC ARRHYTHMIAS

Figure 1-3: Extensive surgical mapping experience demonstrated a sheet of viable myocar-
dial fibers located in the sub-endocardium (A) with multiple entrance and exit sites (B
and C). While a single re-entrant circuit is all that is need for a sustained monomorphic
ventricular tachycardia, the sub-endocardial network is a complex interdigitation of viable
myocardial fibrials with scar tissue. This complex network can result in many morphologies
of ventricular tachycardia, and it is also extremely difficult to map and treat in a clinical
setting (Image reproduced from [13]
).

ventricular tachycardias can be broadly divided into two categories: stable and unstable.

A "stable" VT refers to a hemodynamically tolerable state during the arrhythmia; how-

ever, with an elevated heart rate and decreased left-ventricular end diastolic filling time,

the arterial pressure is often reduced. If the VT is stable, the reentrant circuit can be

mapped during the arrhythmia; this mapping can be used to identify critical entrance, exit,

and conduction sites which sustain the tachycardia. Likewise, an "unstable" VT refers to

a hemodynamically intolerable VT during which arterial blood pressure is to low to en-

sure adequate perfusion of the major organ systems, which can lead to organ failure and

ultimately death.

Unfortunately. it is estimated that only approximately 10% of patients have a sustained

VT which is hemodynamically tolerable for the duration of an activation map [14]. Further-

more. in this small population, it is common that secondary VTs can be initiated which are

unstable and. therefore, unable to be mapped. Clinical VT is also classified based on mor-

phology of the 12-lead electrocardiogram (ECG). Mononmorphic VT has a single, repeating

waveform as seen on a 12-lead ECG recording. In contrast, polymorphic VT presents as
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Figure 1-4: Theoretical ventricular tachycardia circuit with multiple entrance sites. In
this picture, the gray areas represent regions of conduction block which could result from
structural changes such as fibrotic scar tissue or functional block from wavefront collision
and refractory. The black arrows represent the movement of the reentrant wavefront. In this
reentrant circuit, the main conduction pathway (CP) has two entrance sites and multiple
bypass tracts (Bys), which could lead to several morphologies of ventricular tachycardia.
(Image reproduced from [16].)

a continuously evolving waveform, suggesting multiple pathways interacting in a complex

manner to sustain reentry. It is not surprising that this occurs considering the complex,

three-dimensional pathology with multiple entry and exit sites (Figure 1-4) [15]. Options

and strategies for treating patients with stable and unstable ventricular tachycardias are

discussed next.

1.3 Interventions

There is a wide spectrum of treatments for cardiac arrhythmias including pharmacological

therapy, implantable devies, surgical interventions, and catheter-based therapies. A succinct

review of current and historically releavent treatment options for arrhythmias including

benefits and limitations of these interventions will now be presented.
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1.3.1 Pharmacological

Specific drug therapies are targeted at the mechanism causing an arrhythmia. While ex-

tensive details are beyond the scope of this thesis, a brief discussion of antiarrhythmic

drugs will be included. At this time, there are no long-lasting drugs to treat patients

with slow heart rate arrhythmias (bradyarrhythmias). For short-term management of these

patients, anticholinergic drugs and 31-receptor agonists are available. For long term man-

agement of tachyarrhythmias, there are four classes of antiarrhythmic drugs commonly used;

these drugs target different cellular channels and signaling pathways to alter depolarization

and/or repolarization characteristics of myocytes. In addition to antiarrhythmic drug ther-

apy, patients with atrial fibrillation or other cardiovascular disease may be treated with

antithrombotic and/or anticoagulant drugs to reduce the change of thrombus formation via

platelet function and coagulation cascade.

However, there are many common and potential side effects associated with these drugs.

Amiodarone, a commonly prescribed Class III antiarrhythmic drug, can reduce sinus node

firing, suppresses automaticity, and interrupts reentrant circuits; however, the side effects

can include pulmonary toxicity leading to pneumonitis and pulmonary fibrosis, cardiac

toxicity, QT interval prolongation, and gastrointestinal side effects such as anorexia, nausea

[17]. Neurological side effects can also include muscle weakness, peripheral neuropathy,

ataxia, tremor, and sleep disturbances [17]. From a patient management perspective, these

potential side effects must be carefully evaluated versus quality of life for a patient and

versus other treatment which are discussed below.

1.3.2 Implantable Devices

The majority of implantable devices in cardiac electrophysiology are pacemakers. These

devices are made by a number of manufacturers and have similar features. In general, a

pacemaker is a battery-powered, electronic device which is responsible for stimulating the

heart to contract at a regular interval. Leads (wires) with electrodes from the device are

advanced via the left or right subclavian vein into the right side of the heart, where they are

affixed to the wall of the heart. Depending on the patient's condition, leads made be placed

in the right atrium or in both the right atriumn and right ventricle. Pacemakers may be

permanently or temporarily placed to assist patients with acute or transient symptoms fol-
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lowing an intervention or secondary to a drug toxicity. Pacemakers are predominantly used

to treat patients with bradyarrhythmias (slow-heart rate); however, bi-ventricular pacemak-

ers are increasingly used for cardiac resynchronization therapy for patients with congestive

heart failure. In this case, a third-pacemaker lead is implanted within the coronary sinus

along the left ventricle of the heart to coordinate the exact contraction timing between the

left and right ventricles.

Implantable cardioversion defibrillators (ICDs) and their variants, such as pacemaker-

ICDs, are commonly used for patients who have both bradyarrhythmias or conduction

blocks as well as a propensity for life-threatening tachyarrhythmias. These devices are able

to terminate tachycardias by delivering a high-voltage shock through leads placed within

the heart. This shock depolarizes the entire heart simultaneously, and it is used to "reset"

the heart from the tachycardia.

Another class of implantable devices relevant to cardiac electrophysiology are left atrial

appendage (LAA) occlusion devices; while not clinically approved in the United States at

the time of this writing, these are devices which will likely become commonplace for patients

with atrial fibrillation. Although strategies differ among the different manufacturers, these

devices block blood flow to the left atrial appendage, a structure with relatively low blood

flow and a high incidence of thrombo-embolism formation. The goal of these devices are

to decrease the risk of stoke and other embolic events in patient populations with atrial

fibrillation. Atrial fibrillation disrupts the normal contractile function of the left atrium;

therefore, there is an increased prevalence of stasis within that chamber. Stasis of blood

leads to thrombosis, which can then embolize to other part of the body resulting in infarc-

tion. Many of the methods developed in this thesis could be used to guided positioning of

LAA occlusion devices, implantation of other medical devices, or injection of biologically

active substances.

1.3.3 Surgical Interventions

While percutaneous catheter ablation using radio frequency (RF) energy has supplanted

surgery for most electrophysiology interventions, many key observations and breakthroughs

in the treatment of arrhythmias have come from the surgical experience. In terms of sur-

gical treatment of atrial fibrillation, the single-procedure success rate of the Cox maze

III procedures (97-99 percent) remains unparalleled by catheter ablation (60-90 percent)
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[18, 19, 20, 21]. During a Cox maze procedure, maze-like incisions are made in both atria

to prevent multiple macrorentrant circuits necessary to sustain atrial fibrillation. Surgical

and catheter based interventions remain the only available curative interventions.

In terms of patient management, catheter-based interventions remain preferred; how-

ever, in patients with valvular insufficiency or ventricular aneurysm requiring a surgical

procedure, concurrent surgical treatment for arrhythmias is routinely performed. We will

now review important observations and developments in treatment which have major im-

plications for catheter-based interventions.

In treatment for Wolff-Parkinson-White (WPW) syndrome, an arrhythmia caused by

accessory conduction pathways from the atria to the ventricles, the surgical paradigm for

ablative treatment emerged. This paradigm includes three important steps. First, electrode

mapping enabled surgeons to elucidate the mechanism(s) for an arrhythmia. Second, an

anatomical location of the arrhythmia was localized. This then allowed for the third step:

ablation of these pathways to eliminate the arrhythmia. Surgical and experimental proce-

dures and observations demonstrate the feasibility for mapping and ablating arrhythmias

using catheterization during a minimally-invasive electrophysiology procedure.

From this paradigm, surgical methods to treat complex arrhythmias including atrial fib-

rillation and ventricular tachycardias emerged. In terms of atrial fibrillation, high density

electrode mapping demonstrated multiple wavelet reentry, during which there is irregu-

lar, very rapid, and random activation of the atrium [22]. To eliminate the substrate for

these multiple-wavelet circuits, the surgical Maze procedure aimed to compartmentalize the

atrium, but it originally allowed for a conduction pathway from the SA node to the AV node.

This procedure, along with the later insights of a focal triggers of atrial fibrillation located

in the pulmonary veins has resulted in the catheter-based procedure which are described

below.

For VT treatment, catheter-ablation methods evolved directly from the surgical mod-

ification of arrhythmogenic substrate in post-MI patients. Since the reentrant circuit is

predominantly located within the border zone between normal and scarred mnyocardiumn, ,

the initial surgical experience with simple aneurysmectomy was disappointing [23, 24]. Fur-

ther experimentation over time resulted in two effective strategies: subendocardial resection

and encircling endocardial ventriculotomy (Figure 1-5). The resection involves surgical re-

moval of the subendocardial layer contain the arrhythmogenic substrate in the border zone
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Figure 1-5: Surgical substrate modification for treatment of VT. At the border between
infarcted or aneurysmal myocardium, a VT circuit is represented predominantly on the en-
docardial surface of the heart with some transmural portions. Surgical procedures including
subendocardial resection and ventriculotomy are thought to remove or transect and disable
critical endocardial portions of the reentrant circuit, respectively. Using this knowledge,
electroanatomical mapping allows the border zones to be identified based on electrogram
characteristics (described below). Ablations are then placed at entrance and exit sites in an
attempt to disrupt these critical portions of the reentrant circuit. Figure reproduced and
adapted with permission from [25].

[25, 26, 27]. Endocardial ventricullotomy consists of the placement of circumferential surgi-

cal lesions through the border zone, which presumably disrupts the reentrant circuits which

sustain VT [28, 29]. In place of or as an adjunct to subendocardial resection, cryoablation

has been used as an intervention during surgery; likewise, the incorporation of cryoablation

with endocardial ventriculomoty was similarly effective [30, 31]. This ablative modality is

effective in destroying myocardial cells without disrupting the fibrous stroma in the regions

surrounding the scar.

Several important lessons learned from the surgical experience treating ventricular tachy-

cardia remain relevant for modern catheter-based approaches. First, intraoperative map-

ping was initially performed as an additional guide for surgical resection. A multi-electrode

plaque would be placed on the endocardial surface of the ventricle, and the origin of the

VT would be removed or transected using a scalpel blade. During evolution of this surgical
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procedure, however, it was determined that equivalent results were obtained by visualiz-

ing the scar and either simply resecting it or placing cryoablation or laser ablation lesions

along its border. These "empiric" lesions are thought to eliminate critical portions of the

reentrant pathway, and therefore render the VT non-inducible.

1.3.4 Cardiac Catheterization

While highly efficacious in the long-term, these surgical procedures are associated with sig-

nificant peri- and post-operative morbidity and mortality (3-14%). Because of the high

success rate and low morbidity, catheter-based electrophysiology procedures are now the

preferred intervention for the treatment of most arrhythmias. During this procedure, one

or more catheters are advanced percutaneously through the vasculature into contact with

cardiac tissue. Femoral veins and arteries are the most common entry sites for catheteriza-

tion of the heart; additional access can be gained at the subclavian and jugular veins, but

these sites are less commonly used. A hemostatic sheath is placed at the access site, which

allows for easy exchange of catheters and guidewires with minimal blood loss to the patient.

Catheters are then advanced up the femoral vein into the inferior vena cava and the right

atrium of the heart. For access to the left heart, a catheter can be advanced retrograde

up the femoral artery into the descending then ascending (arch) aorta; the catheter is then

advanced across the aortic valve plane into the left ventricle of the heart (Figure 1-6).

Additional access, if needed, to the left heart is commonly gained via a transseptal

puncture across the septum separating the left atrium and the right atrium. Transseptal

access is the major access avenue during catheter-based atrial fibrillation ablation procures,

and it is also commonly used to reach difficult positions in the left ventricle during other

procedures.

Catheter ablation has been highly successful in the treatment of accessory pathways,

AV nodal reentrant tachycardia (AVNRT), and AV junction ablation. However until the

introduction of electroanatomical mapping systems. treatment of complex arrhythmias such

as atrial fibrillation and ventricular tachycardia remained extremely difficult. Without a

catheter mapping system, electrophysiologists were challenged with integrating in their

minds information including 1) fluoroscopic catheter position information 2) bioelectrical

characteristic recorded at various catheter locations 3) ablation lesion placement and 4)

post-ablation electrical information.
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Figure 1-6: Cardiac catheterization. During a catheterization procedure, percutaneous
access is gained at the femoral arteries and veins near a patient's groin. The catheter
is then advanced up either the aorta or the inferior vena cava into the left ventricle or
right atrium, respectively. While catheters are used for a wide variety of diagnostic and
interventional procedures, electrophysiology studies are focused on electrogram information
recorded from the distal electrodes on the catheter.

1.3.5 Catheter-Based Electroanatomical Mapping

To overcome these difficulties, catheter localization and arrhythmia mapping systems have

been developed, and these systems have resulted in effective, catheter-based treatments of

complex arrhythmias. These electroanatomical mapping (EAM) systems simultaneously

record both the position and bioelectrical information for one or more electrode on one or

multiple catheters (Figure 1-7). These biolectrical recordings are known as electrograms.

The electrogram information is then annotated relative to the surface ECG signal. Com-

mon annotations include maximum unipolar voltage at the distal electrode on the mapping

catheter, maximum bipolar voltage between the two most distal electrodes on the mapping

catheter, and local activation time (LAT) which indicates the starting time of the electro-

gramn relative to the ECG reference (Figure 1-7). While these three annotations have been

most commonly used, there has been some additional work with electroanatomical map-

ping using annotations including dominant electrograrm frequency, electrogram fractionation

indexing, electrogram duration, and impedance mapping [32, 33].

Currently, there are three types of localization commonly used: 1) ultra low-field mag-
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Figure 1-7: Electrogram Annotation. In the left frame, an anterior-posterior (AP) view
of a left atrial electroanatomical map produced with the Carto XP system. The white
cross-hair cursor indicates the selected point on the map. The corresponding electrogram
annotation is shown on the right-hand side of the image. At the top of the electrogram
annotation window, Lead II of the 12-lead ECG is displayed. The red point and dotted
line on the right indicate the reference annotation, which is made on the maximum value
of Lead II a consistent point of the QRS complex during ventricular contraction. Below,
Lead II, the bipolar (1-M2) and unipolar (M1) electrogram recording made from the
distal tip of the catheter are shown. The maximum bipolar voltage (M1-M2) for this point
is indicated by the vertical calipers (1.47 mV). Likewise, the maximum unipolar voltage
(M1) is also annotated (3.83 mV). Finally, the Local Activation Time (LAT) is the relative
time measured from the reference annotation to the annotation made on the electrogram
information (yellow dot; left hand dotted line). For the point selected, the LAT is -188 ms.
which indicates this spot is excited 188 ms before ventricular contraction.

netic 2) sonomicronmetry and 3) bioimpedance. The predominant magnetic electroanatomi-

cal (EATM) platforml is the CARTO system (Biosense-Webster, Diamond Bar. California.

USA), which creates three-dinmensional (3D) maps of electrophysiology characteristics and

chamber anatomic definition by continuously tracking and annotating catheter locations

(Figure 1-8) [34]. The CARTO EAM system creates low-intensity magnetic fields fron a

device placed beneath the operating table to localize the catheter in space with 6 degrees
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of freedom (position in x, y, and z; rotation of roll, pitch, and yaw) [34]. With this system,

a single mapping catheter is manipulated in various spaces in and around the heart and

great vessels proximal to the heart; the position is tracked relative to a reference patch or

catheter usually temporarily fixed to the upper back of a patient. The accuracy of this

system is estimated at 0.8 mm in position and 5 degrees in rotation.

1.4 Diagnostic Modalities

In many cases, overt symptoms of cardiac arrhythmias may be absent or subtle, and many

patients may not recognize a problem for which they should seek medical attention. Patients

may present with a range of symptoms including syncope, dyspnea, palpations, angina, or

chest discomfort, overt heart failure, or myocardial infarction [35]. An overview of important

diagnostic modalities is presented in Table 1.2. Details of imaging and other diagnostic

modalities are presented below.

Table 1.2: Imaging modality comparison.

Modality
Fluoroscopy
MRI
CT
Ultrasound

Cardiac Device Spatial Approx. Spatial Radiation Soft tissue
Compatability Dimension Resolution Dose contrast

(mm2 /mm3 )
Yes 2D 0.3 x 0.3 Med-High
No 3D 0.5 x 0.5 x 1.2 0 +++
Yes 3D 0.3 x 0.3 x 0.5 High +
Yes 2D/3D 0.35 x 0.35 0 +

1.4.1 Electrocardiogram

The 12-lead electrocardiogram (ECG) is the primary way to initally diagnosis arrhythmias.

This non-invasive test uses a combination of limb-leads and precordial chest leads to record

the change of the principle heart vector over time. While the ECG is a powerful tool for

identifying abnormal cardiac rhythms, it is significantly limited in its ability to localize the

focus or reentrant circuit which is initiating and/or sustain an arrhythmia.

1.4.2 Fluoroscopy

Fluoroscopy is an x-ray imaging modality used extensively during interventional catheteri-

zation procedures. While this imaging modality is fast, providing real-time cine images of
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Figure 1-8: Electroanatomical mapping of porcine model of chronic myocardial infarction.
In this model, an infarction is created by occluding the left anterior descending coronary
artery with agarose microspheres. Eight weeks following the infarction, electroanatomical
mapping of the left ventricle is performed using the CARTO mapping system. Upon gross
pathological examination (A), the transmural scar is visible from the epicardial surface of
the anterior wall. In, ivo electroanatomical mapping identified this anterior wall infarct by
bipolar voltage amplitude criteria (B), unipolar voltage amplitude criteria (C), or bipolar
EG-M duration criteria (D). The projections are LAO in B-D; note the characteristic leftward
rotation of the porcine heart. The color ranges in the bipolar voltage. unipolar voltage and
EGI1 dlratioi map)s are 0.5 1.5 mV, 2 7 mV, and 50 80 nIsec: purple and red represent
normal anl severely diseased tissue in the bipolar and unilpolar voltage niaps. while the
opposite is true for the ECG duration map.

the thoracic cavity, it has a limited ability to image soft tissue.

Rotational angiography is an emerging technology which utilizes a fluoroscopy system
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Figure 1-9: Anterior-Posterior (AP) fluoroscopic image showing a patient undergoing elec-
trophysiology study. In this image, a patient has a decapole catheter within the coronary
sinus, a 10-pole lasso catheter within the right superior pulmonary vein, and an 8-mm tip
electroanatomical mapping catheter within the right superior pulmonary vein of the left
atrium. While fluroscopic imaging provides real-time imaging of catheter orientation, the
standard view is a 2D projection of a 3D space, and there is minimally soft-tissue contrast
available discern cardiovascular structures.
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to capture a series of images from multiple rotational angles about an isocenter. A typ-

ical rotational acquisition requires only 4 to 8 seconds of normal fluoroscopic exposure,

a small amount considering the several hours of fluoroscopy patients may receive during

an extremely complex ablation procedure. A back-projection algorithm can then be used

with cardiac gating information to reconstruct various chambers and vessels of the heart.

While these systems are currently commercially available, further work is being performed

to optimize the acquisition and reconstruction of the data. Rotational angiography has the

potential to provide intra-procedural 3D reconstructions of the cardiac anatomy.

1.4.3 Magnetic Resonance Imaging

Cardiovascular magnetic resonance imaging (MRI) is effective for imaging structures and

function of the heart without the use of ionizing radiation (Figure 1-10). The standard clin-

ical cardiac MRI system has a main magnetic field strength of 1.5 T with 3.0 T systems be-

coming increasingly common. The advantages of cardiac MR include its three-dimensional

imaging capabilities and its soft tissue differentiation. However, implantable cardiac devices

such as pacemakers and ICDs remain contraindications for MR examination.

Current and future efforts include parallel channel image acquisition to increase imaging

speed through interleaving and interventional magnetic resonance imaging (iMRI) during

which catheters will be tracked under real-time MR guidance using a combination of pre-

intervention and intra-interventional imaging.

1.4.4 Computed Tomography

Computed Tomography (CT) imaging now provides high spatial-resolution (0.3 x 0.3 x 0.5

mm voxel size), ECG-gated imaging (Figure 1-11). Image reconstruction is retrospectively

gated to the electrocardiogram. For an atrial reconstruction, the exam is gated to 65

percent of the R-R interval (time between heart beats), which should represent atrial diastole

before atrial contraction. Likewise, for ventricular imaging, the exams are reconstructed at

ventricular diastole before ventricular contraction (90 percent R-R interval).

1.4.5 Ultrasound

Ultrasound or echocardiography is all essential diagnostic and long-term monitoring modal-

ity for numerous cardiac conditions. Briefly, high-frequency sound waves (5-9 MHz) are
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Figure 1-10: Contrast-enhanced magnetic resonance angiography (MRA) of the heart. The
two left images are oblique reformats of the left atrium and pulmonary veins from a 3D
MRA imaging dataset. In the left frame, the relationship of the posterior wall of the
left atrium to the descending aorta is seen as well as that of the pulmonary veins to the
branching pulmonary artery. In the middle frame, a clear view demonstrates the proximity
of the left main branch of the pulmonary artery next to the left upper pulmonary vein.
The right frame is a 3D surface reconstruction showing the intricate relationship of the
left atrium, pulmonary veins, and pulmonary arteries from a right posterior oblique view.
These images were acquired on a 1.5 T GE Signa CVi MRI with a 25.0 x 25.0 cm FOV.
The reconstructions were performed on an GE Advantage Workstation.

emitted from a probe. These waves travel through and are reflected back by various tissues

and structures within the body. These reflections are then used to create 2D or 3D images

of the heart.

There are three main types of ultrasound commonly used in conjunction with cardiac

electrophysiology. First, trans-thoracic echocardiography (TTE) is commonly used pre-

operatively to assess cardiac parameters such as ejection fraction, valve insufficiencies, and

wall motion. During a TTE exam, the ultrasound transducer is placed on the patient's skin

to create one of many common views (apical four chamber, apical two chamber, parasternal

long axis). Second, transesophageal echocardiography (TEE) uses a miniature transducer

on an endoscope type probe to image from the esophagus located posterior to the left

atrium.

Intracardiac Echocardiography (ICE) is commonly imaging modality used during catheter-

based interventions. A single linear ultrasound array is located on the tip or a deflectable 8-

or 10-French catheter (2.3 or 3.2 nlm diameter). The catheter is typically placed within the

right atrium or coronary sinus to image various aspects of the left atrium during pulmonary
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Figure 1-11: Axial slice from CT imaging of the heart showing a four chamber view of
the heart. This acquisition was made using iodinated contrast give as a bolus from a
peripheral intravenous line. CT can provide high spatial resolution but does not provide
extensive soft-tissue contrast. The heterogeneous distribution of contrast agent can cause
imaging artifacts; as demonstrated in this image, the high contrast concentration in the
right atrium causes scattering artifacts. Besides contrast, pacemaker and ICD leads can
also cause significant artifacts; however, CT imaging does not interfere with the normal
operation of these devices. The reconstruction was retrospectively cardiac gated. This
image was acquired on a Siemens Sensation 16-slice CT scanner.

vein isolation to eliminate atrial fibrillation.

1.5 Surgical Planning and Imaged-Guided Surgery

Surgical planning and image-guided surgery enhance a physician's understanding of reality

by augmenting the normal senses with additional information provided by the various di-

agnostic modalities described above. Surgical planning uses this information to understand

the extent of a disease process and optimize the intervention to the specific needs of a pa-

tient. Image-guided surgery uses the pre-operative data in combination with intra-operative

information to assist a physician during an intervention.

In terms of electrophysiology procedures, surgical planning and image-guidance could

be useful in many ways. The preferred treatment for atrial fibrillation is pulmonary vein

isolation, where RF ablations are placed circumferentially around the ostium of the pul-
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monary vein. As described above, pulmonary vein stenosis resulting from ablation within a

pulmonary vein is a serious complication of these procedures. Therefore, surgical planning

could be useful for identifying per-patient anatomical variations in pulmonary vein type.

Additionally, this information could be used to plan an optimal ablation lesion set which

minimizes the risk of complications yet requires the fewest RF lesion applications. Within

a procedure, image-guidance could augment the relatively sparse EAM mapping with high

resolution, patient-specific anatomical information. For treatment of ventricular tachycar-

dia, this paradigm could also provide important physiological information regarding the

location and extent of myocardial scar tissue in which reentrant circuits predominantly

reside.

1.6 Thesis Goals

Electroanatomical mapping is widely used to guided catheter-based ablation of complex

cardiac arrhythmias. While electroanatomical mapping allows a physician to create rela-

tively sparse but relevant representations of the endocardial and epicardial surfaces of the

heart, pre-operative imaging could provide both anatomic and physiologic information not

available to physicians. This information could be used pre-operative to understand im-

portant anatomical variations and pathological disease state. During an electrophysiology

intervention, this information could then be used as a patient-specific guide for ablation to

eliminate an arrhythmia.

In this thesis, we examine these problems and propose solutions which not only allow

for the incorporation of pre-operative cardiac imaging with intra-operative electroanatom-

ical mapping data, but which also allow a physician to understand the robustness of the

registration and to compensate for differences between pre-procedure and intra-procedural

information. First, in Chapter 2, we describe our surgical planning platform, the Myo sys-

tem, which incorporates pre-operative imaging data with real-time catheter mapping data

to visualize the position of a catheter within patient-specific imaging data. Next, in Chapter

3, we present a variant of the iterative closest point algorithm as well as various clinical

strategies to register or align the pre-operative imaging data with sparse intra-operative

electroanatomical mapping information. To compensate for residual differences following

a registration, methods are presented and evaluated in Chapter 4 to deform or warp the
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pre-operative imaging data to more closely match the intra-operative information. Finally,

in Chapter 5 we present a summary of our research and propose avenues for future devel-

opment.
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Chapter 2

Myo Surgical Planning System

In this chapter we describe the Myo software system which integrates pre-operative, patient-

specific MR and/or CT imaging information with real-time electroanatomical mapping in-

formation. The system has been used for image-guided therapy in a large number of complex

cardiac electrophysiology ablations, and it continues to evolve. We present the resulting ap-

plication programmer interface (API) used to develop the modular Myo application as well

as related, inter-communicating programs for ablation information, signal processing, and

image processing. Although registration was the primary intent of the Myo software, the

system has evolved into a platform which allows for integration of information from many

sources during cardiac electrophysiology procedures.

2.1 Introduction

Image-guided surgery and surgical planning have become important tools to assist physi-

cians with diagnostic, pre-procedural planning, and perioperative guidance. These systems

are expected to provide advanced visualization, segmentation, and registration algorithms

to process information within one environment., and they must be extremely robust through

then entire duration of an intervention, which can last from 2-12 hours. Beyond these rig-

orous specifications, physicians and engineers must work together to streamline surgical

planning into the clinical workflow of an intervention; while these systems provide valuable

information to the physicians. they must accomplish these goals with minimal amount of

distractions and data gathering requiring the attention of the interventionalists. From a

research standpoint, a surgical planning system should be a flexible framework which allows
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for rapid integration of new algorithms and information to further increase the utility of

the system before, during, and after interventions.

Surgical planning has been and continues to be an active area of research between engi-

neering and medicine. While the Myo surgical planning system will be presented in depth

here, it is worth noting that there are several surgical planning systems available from aca-

demic research centers and commercial entities. The origins of the surgical planning field

are found with the ANALYZE system developed by the Biomedical Imaging Resource at

the Myo Clinic since the early 1970s [36, 37, 38]. It would be difficult to discuss surgical

planning without acknowledging the open-source 3D Slicer platform and the advance re-

search and development activities of the Surgical Planning Laboratory (SPL) at Brigham

and Women's Hospital in Boston, Massachusetts. The SPL and the 3D Slicer software

are actively developed and lead the fields in numerous area beyond image-guided neuro-

surgery using the open-bore magnetic resonance therapy (MRT) system [39, 40]. Finally,

the National Alliance for Medical Image Computing (NA-MIC) is a research initiative to

incorporate the best-of-practice from the countless on-going research projects in medical

imaging, image processing, and surgical planning [41].

Surgical planning and image-guided therapies have been an active area of research;

however, little work has been focused on surgical planning in the heart. To address this

need we present the Myo image-guided therapy system. To fully utilize patient-specific

imaging data before, during, and after a catheter-based cardiac intervention, the Myo system

is capable of integrating both pre-operative imaging data with real-time intra-procedural

data from multiple sources. In the following discussion, the constraints, design, and features

of the Myo software system will be presented.

2.2 Myo Design Goals and Constraints

In designing the Myo surgical planning software, it is useful to review the operating con-

straints for the system. These constraints include practical restrictions in terms of patient

management, the electrophysiology lab and procedures, and input data to the system.

An electrophysiology study is a complex procedure to identify and eliminate arrhythmo-

genic substrates from a patient's heart. These procedures involve a wide range of technolo-

gies including a fluoroscopic imaging system, an EP recording system, stimulator, an elec-
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Table 2.1: Myo information sources

troanatomical mapping system, an RF ablation generator, ultrasound imaging equipment,

and possibly some sort of remote catheter manipulation system (Figure 2-1). Currently,

these systems are largely independent, and it is the responsibility of the electrophysiologist

to integrate information from these many sources.

From a practical perspective, the surgical planning software for use in the electrophys-

iology laboratory must be robust, fast, accurate, and easy to use. In addition, the system

can be used to make powerful combinations of information already observed by the in-

terventionalist. For example, pre-operative imaging data with electroanatomical mapping

information and RF ablation information, pre-operative lesion placement can be planned

and intra-operative assessment of RF lesions could be more accurate than current meth-

ods. Therefore, the system should integrate information in useful ways to facilitate a better

understanding and treatment of an arrhythmia.

From a research and development standpoint, there are many desirable qualities for the

Myo software. Stemming from the close collaboration of doctors and engineers for this

project, there is rapid iteration, development, and evaluation of ideas constantly occurring.

To facilitate this research, a software architecture which is highly modular and easy to

extend is desired. Furthermore, a modular design allows development by several researchers

to occur simultaneously as long as interface specifications are well defined.

2.2.1 Imaging, Navigation, and Electrophysiology Information

The MIyo system is able to import and export real-time and pre-operative information from

a wide variety of sources.

Catheter Position Information
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Source Data I/O
Aquisition Source

MR Imaging Pre-Operative Binary File
CT Imaging Pre-Operative Binary File
Rotational Angiography Pre-Operative Binary File
Electroanatomical Mapping Real-time TCP/IP
RF Ablation Real-time Serial
Electrogram Information Real-time ADC Board
Robotic Guide Catheter System Real-time TCP/IP



2.2. AIYO DESIGN GOALS AND CONSTRAINTS

Figure 2-1: Information display during EP study. This photograph shows the numerous
sources of information an electrophysiologist must integrate during a catheter-based electro-
physiology study. In this photograph, the physician uses an EP recording (A, F) to display
and review electrogram information from various catheters, an electroanatomical mapping
system (D) to co-localize catheter positions with electrogram information, real-time and
review screens (B, E) for fluoroscopy display, and the Myo software system (C) to provide
patient-specific pre-operative catheter navigation information.
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As discussed in the introduction to this thesis, there are several electroanatomical mapping

systems currently used during electrophysiology interventions. The goals of these systems

is to provide non-fluoroscopic guidance for catheter manipulation. While providing the

physician with real-time feedback of the catheter location each system handles cardiac and

respiratory motion directly or indirectly. Real-time data streams from both the Biosense-

Webster CARTO system and the Medtronic LocaLisa system have been integrated into the

Myo framework. We will now review the information provided by these systems.

In terms of the CARTO system, a continuous stream of three-space positions (x,y,z) and

orientations (pitch, yaw, roll) for the single mapping catheter is provided. Additional infor-

mation is provided to determine the proper gating of the catheter location to an isochronal

point within the cardiac cycle. These measurements are relative to a reference patch ad-

hered to the back of a patient. The use of an intravenous reference catheter within the

coronary sinus would eliminate respiratory motion effects; however, both the additional

expense and relative instability of this configuration have made it less common in clinical

practice.

Medical Imaging Data

From a data accuracy point of view, it would be highly desirable for pre-operative imaging

(CT or MR) to be completed immediately proceeding the catheter-based electrophysiology

procedure in order to minimize the effects of hydration/fluid levels, rate, and rhythm changes

between imaging and intervention. However, the reality of scheduling make this nearly

impossible, and imaging studies can be performed anywhere from days to months before

the electrophysiology. This results in the first constraint for the surgical planning software:

it must eliminate the need for external marks on a patient for use a fiducials, as it is

likely that semi-permanent marks would be erased before an intervention. From a practical

perspective, external fiducial markers would be difficult to use, their utility for registration

will be discussed in Chapter 3.

2.3 Myo System Architecture

To integrate the real-time and pre-operative information described above, we will now review

the design of the Myo system.
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2.3.1 Design Philosophy

The Myo system was designed to meet the needs of a specific area of medicine: cardiac

electrophysiology. While the Myo system may not include many of the generalized features

of the aforementioned surgical planning systems, a flexible but focused framework was de-

signed and implemented to meet the specific needs of this medical specialty. By focusing

the application domain, the system allows for easier and quicker yet powerful user inter-

actions during a procedure. This system and the methods and strategies used for image

integration in cardiac electrophysiology are designed to be streamlined in the current clini-

cal workflow of an electrophysiology procedure. While many surgical planning systems have

extensive features and capabilities, they also suffer from general and sometimes confusing

user interfaces which require expert knowledge to use the system.

Besides ease of use, the Myo system was also designed to maximize efficiency for its

developers. While the system started as a light-weight framework which wrapped the var-

ious libraries and toolkits that it integrated, the Myo system evolved to a heavy-weight

framework which allowed developers to rapidly reuse high-level and complex objects for

numerous applications; by abstracting common components into the MyoAPI, it reduced

the overhead required to develop new modules within the application.

2.3.2 Development Platforms

The Myo system was developed in C++ using the Visualization Toolkit (VTk) for OpenGL

graphic capabilities, the Insight Toolkit (ITk) for registration and segmentation algorithms,

and the Qt application framework for the graphical user interface [42, 43, 44]. The resulting

Myo system is cross-platform compatible.

The VTk provides advanced 2D and 3D rendering capabilities which are layered on

top of the OpenGL graphics libraries. By using OpenGL, the VTk takes advantage of

hardware acceleration now commonly available on mid- to high-end PCs and workstations.

The VTk uses a pipeline design to visualization data. A visualization pipeline consists of

sources which provide the data. filters which affect the data, and sinks which either store

the data or allow the data to be interactively visualized. This pipeline design allows for

computational efficiency through a lazy-execution model of the various pipeline components;

when an object is modified in the pipeline, only the dependent objects following the modified
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object are required to update.

The ITk provides an extensive set of segmentation, registration, and finite-element anal-

ysis (FEM) algorithms. Although it does not provide visualization algorithms itself, the ITk

can be easily integrated with the VTk to display the information processing results. The

ITk leverages the generic program concepts available in C++ to provide a framework that

processes any dimensional data. The ITk makes use of processing pipelines which operate

in an analogous fashion to the visualization pipelines of the VTk. The pipeline design of

these toolkits has directly impacted the design of the Myo system, and we will return to

this topic in the discussion below.

While the VTk and ITk provide a powerful set of tools to manipulate and visualize

image data, these systems do not provide user interface. The Qt application framework was

used to provide the graphical user interface to the Myo system.

2.3.3 Myo Module Design

The Myo system is comprised of many specific modules derived from the generic frame-

work which use a common communication system (see below) to pass information objects

within and between various modules (Figure 2-2). For each module, a single MyoProces-

sor is instantiated, and this class is responsible for controlling the information flow within

each module as well as with other modules. The MyoProcessor is the parent to various

MyoControllers, which are responsible for processing data, user interactions, and messages

received from other modules. In terms of the classic model-view-controller design pattern,

the MyoProcessor acts as the interface between the GUI components (view) and the data

or model. In terms of data, a flexible tree data type has been implemented which can send

and receive message from within the module as well as from other modules, if the parent of

the data node delegates them to its children.

This modular, object-oriented design has many advantages including conceptual clarity,

reusability. reliability, extensibility, robustness in the face of exceptions, and maintainability.

In general, object-oriented design is conceptually focused on reducing complex problems

into simpler objects; from a development standpoint, these complex objects can be derived

from simpler objects through inheritance. Object-oriented design facilitates collaborative

development through specification definition between various components of a system.

Within and between modules, the Myo architecture leverages many common design
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Figure 2-2: Generic Myo module diagram. A Myo module consists of a top-level MyoCon-
troller Object which is responsible for handling inter- and intra-module communication.
In addition, the module may include processors which are responsible for handling GUI
actions, managing and processing module specific data, and

patterns to create the proper abstractions [45]. In the Myo architecture, all classes are

derived from a basic MyoObjet class, which provides a unique hashcode, a method for

comparing object equality, and a simple output method which converts the object's identity

into a string representation.

2.3.4 Myo Communication

Layers of software abstraction are created via data hiding and encapsulation. A mecha-

nism is needed which will allow various objects to send and receive messages. In the Myo

system, there are three major types of messages which are handled via the Myo commu-

nication system: (1) inter-module communication (2) intra-module communication and (3)

thread communication. To communication between modules, a MyoEvent is used. A con-

crete subclass of MyoEvent can be sent from any MyoObject-derived class. The event is

then propagated up the object hierarchy to the MyoProcessor. The MyoProcessor then

passes the message to the MlyoApplication communication system, which will deliver the

event to all other modules which have registered as listeners for this type of event. From

communication between objects within a single module, a MyoSignal should be used. Fi-
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Figure 2-3: Myo communication. There are two main mechanisms in place for communi-
cation within the Myo framework. Events are messages which can be sent by any object;
these messages are intended for communication between different modules. For localized
message, such as communication between the GUI components and data representation,
there are signals, which will not be propagated to other modules within the application.
The signals are directional; they can be sent to the children of an object or they can be
sent to the parent, who will redistribute the signal to its children or parent. In order for
an event to be received and processed within a module, the module must be register as a
listener for that event, and an appropriate event handler must catch the event.

nally, MyoThreadSignals are used to pass information from worker threads to the main GUI

thread.

2.3.5 Myo Visualization Pipeline

The MIyo architecture leverages the VTk and ITk packages for advanced 2D and 3D visu-

alization, segmentation, and registration capabilities. These packages use a pipeline design

which consists of objects that represent the data, objects which operate on the data, and a

direction of data flow [42]. This pipeline model is built on the idea of having source data

which is subsequently processed and multiple view of the data are available (Figure 2-4).

The pipeline uses a lazy execution model which only executes processes down stream to a

modification within the pipeline. Therefore, parallel branches within the pipeline do not

need to be refresh if a modification is made after the branch point within the topology of
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Figure 2-4: Myo visualization pipeline.

the pipeline. Controlling synchronization of arethe pipeline elements occurs through explicit

and implicit execution control. For the purpose of the Myo system, the explicit execution

is used to force timely updates of real-time information provided by the electroanatomical

mapping system. Other information is updated as needed through implicit control.

In order to leverage the pipeline model within the Myo architecture, a wrapper was

created which allows dynamic manipulation of the pipeline topology within the application.

2.4 Results and Discussion

The Myo architecture has evolved significantly since early functional prototypes of the

system. To date, the Myo system has been used in over 200 electrophysiology procedures

at the Cardiac Arrhythmia Unit at the Massachusetts General Hospital and at Homolka

Hospital in Prague, Czech Republic. The system is a robust platform for simultaneously

handling information to and from a variety of sources including electroanatomical mapping

systems, RF ablation generators, data acquisition hardware, imaging systems, and remote

catheter manipulation systems. The Myo system has been designed for easy and efficient

user interactions during electrophysiology procedures and for flexible and powerful research

capabilities. We will now present the major functions and features of the system.

2.4.1 Graphical User Interface

The Myo system was designed to be "data-centric", where data would be easily maniuplated

by a user with a minimal number of menus to navigate. To create a data-centric application,

the workspace of Myo system contains the MyoPatientTree, which includes top-level items

for data, modules, settings, and tools (Figure 2-5). User interactions, such as loading data

or performing a registration, are then added to the tree to allow for rapid manipulation
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by a user. Manipulations can include globally altering the representation of data within

all MyoWindows (see below) or establishing a connection with an external data source via

TCP/IP network connection, serial port, or ActiveX object.

Figure 2-5: Myo Application. The Myo application is a data-centric program that supports
a multiple document interface (MDI) for several different views of the same data. The
left-hand portion of the application is the Patient Tree, which allows for rapid yet powerful
interactions with patient data, client and server connections, and various modules for data
processing within the application. The two windows contain several 3D surface models of
various cardiac structures. At the top of each window, there is a toolbar which has preset
anatomical views as well as functions for setting individual characteristics of the window
and data seen each 3D window.

Interactions with the PatientTree are accomplished through context menus which appear

when an object is right-clicked. These context menus are typically sub-classed from rele-

vant but more generic context menus such that the sub-classed menu provides additional,

specific options. The context menus have been designed such that most user-interactions
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are limited to two-level menus. While the context menus minimize the clutter of the appli-

cation workspace, the right clicking can sometimes be cumbersome when a large number of

operations must be performed.

The Myo GUI also includes a log window, which text events from any module. These

events report connection errors, indicate the completion of a threaded operation, and record

results of data processing such as a performing a registration between two data types.

The Myo system supports the multiple document interface (MDI) style which allows a

parent window to have many children window objects contained within the graphical space

of the application. For convience within the electrophysiology lab, the Myo application

was extended to support two operating modes for window layout, floating and integrated.

During floating mode, the PatientTree is contained within an individual window, and all

MyoWindows act as top-level windows, which permit screen layouts with other applications.

When the windows are integrated, the PatientTree is docked on the left side of the appli-

cation, and all MyoWindows are re-parented to be children of the MyoApplication. This

feature allows for dual screen interactions where the electrophysiologists are able to see a

screen with only MyoWindows showing the real-time combination of electroanatomical data

and patient-specific imaging models while data operations are being perfomed on a separate

screen.

In terms of serialization, the application contains methods for serialization of base data

contained within patient tree. However, all derivative data such as a transformation re-

sulting from a registration between pre-operative imaging models and intra-operative elec-

troanatomical data is not stored currently. The application also has an auto-save feature

which ensures that in the event of an unhandled exception, there will be minimal data loss.

2.4.2 Data Types

The Myo application has been designed to handle several data types, and the framework

is easily extensible to incorporate additional types and sources of data. The major data

types which the application currently supports include polygon surface model data in many

common formats such as STL (stereolithography) models, imaging data using the DICOM

standard medical imaging format, and manufacturer specific electroanatomical mapping

information including interfaces to binary and ASCII mapping data files.
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2.4.3 Visualization

The Mlyo system provides both 3D and 2D views of the various data types it handles. These

views are provided by the MyoWindow class which accepts MyoVTKPipelines as inputs,

but the MyoWindow allows a user to show different properties (color, representation, trans-

parency) for each individual actor rendered within the window; this flexiblility allows for

multiples views of the same data within each window. These views can include endoscopic

views where a portion of the heart model is clipped away, exposing the endo-lumenal surface

onto which RF ablation lesions are placed during a procedure.

Users can interact with the windows using a mouse to pan, zoom, and rotate the camera

position. There are also preset anatomical views which are commonly used in the medical

community (Anterior-Posterior, Left/Right lateral, Superior/Inferior. etc.). The user can

also prescribe several clipping planes to review endoscopic (endo-lumenal) views of the

patient-specific surface models. These views assist in accurate movement of the catheter

within the chamber.

2.4.4 Registration

The original goal for the Myo system was to accurately register pre-operative, patient spe-

cific medical imaging data with intra-operative electroanatomical data. While extensive

details and clinical results are presented in Chapter 3, we will review the registration func-

tionality in terms of the Myo application. The Myo application is designed to provide

registrations between: (1) electroanatomical mapping data and pre-operative CT or MR

imaging information (2) different imaging data set (CT to MR, MR to MR, rotational an-

giography and MR or CT) and (3) different electroanatomical mapping systems (CARTO

to LocaLisa).

In terms of the Myo application user interface, the Myo application allows for the cre-

ation of a hierarchy of registrations using the modified Iterative Closest Points (mICP)

algorithml described in Section 3.3.2. Each node in the tree of the registration hierarchy

represents a pairing of data (Figure 2-6). Children of nodes compute a registration using

the rnICP algorithm, which minimizes the error between the current data pair as well as

all of the parent data pairs. Children of the root node can use previous registrations for

initializations; however, the previous pairs are not recomputed during the subsequent reg-
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istration step. Therefore, children of the root node only use the previous registrations as

an initialization, not as a constraint.

Figure 2-6: Myo Registration Hierarchy.

2.4.5 Modules

The Myo application consists of many modules which process, analyze, and modify the

available information. We will now highlight several of the important modules within the

application.

Warping

Methods for warping are discussed in detail in Chapter 4; however, relevant aspects of

these methods and their use within the Myo application will be reviewed here. Warping

or multivariate scattered data interpolation is used to deform the pre-operative surface

models to more closely align with the registered electroanatomical mapping data. The

residual differences between mapping and imaging datasets can be attributed to biological

variations such as respiration, hydration, cardiac rate and rhythm. The algorithms used

within the Myo application make use of several classes of radial basis functions, which

depend solely on the Euclidean distance between the source point and target point. The

resulting transformation is then applied to the entire surface model. As described in Chapter

4, warping via radial basis functions can be represented succinctly linear system of equations.

Two significant advantage of these methods include continuity of the deformation across

the surface model and computational efficency of these warping algorithms.
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Coloring

Data interpolation is another important feature within the Myo application. Electroanatom-

ical mapping points from the CARTO system are annotated with relevant electrophysiologi-

cal information including local activation time (LAT), maximum unipolar voltage, and max-

imum bipolar voltage. However, electroanatomical mapping results in a relatively sparse

sampling of the endocardial or epicardial surfaces of the heart. Therefore, interpolation

methods are needed to represent data trends across the surface models.

Following a registration, the Myo application allows for this information to be mapped

on the patient-specific surface model by two algorithms: volumetric and geodesic. Both al-

gorithms for multivariate interpolation are based on Shepard's method, which is an inverse-

distance weighting interpolation scheme [46]. The interpolation is calculated using the

equation:
n

F(x, y) = wifi (2.1)
i=l

where n is the number of points in the set being interpolated, fi are the scalar values at

each point, and wi are the weights assigned to each point. In the classical form of Shepard's

methods, the weighting function is given by:

h-P
= hi - (2.2)

where p is the "weighting exponential" and is typically equal to 2. The parameter hj is

the distance metric. For the volumetric version of the interpolation algorithm, the distance

metric is simply the Euclidean distance in three-space, give by:

hi = /(x-X)2 + ( - y)2 + ( - )2 (2.3)

In the geodesic version of the algorithm, the geodesic distance is used for the distance

metric. Geodesic distance is defined as the shortest path between two points in a con-

nected domain. To calculate the geodesic distance a modified version of Dijkstra's greedy

breadth-first search algorithm is used. While the volumetric calculation requires much less

computation, the algorithm is not ideal for regions of the patient-specific model with high

curvature. such as the ridge between the left atrial appendage and left superior pulmonary

vein (Figure 2-7). In regions of high curvature. the surface distance between two points is
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Figure 2-7: Myo color mapping. In this posterior-anterior (PA) view of the left atrium,
the Myo software has created a color interpolation from the maximum bipolar voltage
annotations recorded at the white points on the surface of the atrium model. The color
mapping

much larger than the Euclidean distance measured directly between the points. The combi-

nation of this data has interesting implications for more advanced processing and analysis

of electrophysiology information.

Catheter

The catheter module is responsible for rendering of the real-time catheter position and

orientation. This module has evolved to address an on-going problem encountered in surgical

planning and image-guided therapies: depth perception. While there are many commercial

systems available to create 3D effects using stereoscopic shutter glasses, polarized glasses, or

anaglyphic (red/blue) glasses, these methods are largely impractical in the electrophysiology

laboratory due to the procedure length, multiple information sources (Figure 2-1), and

resulting eye strain. While auto-multiview monitors are an emerging technology with strong

potential for 3D visualization, the technology remains expensive, and there is need for

development of efficient methods for real-time rendering to these monitors.

56



2.4. RESULTS AND DISCUSSION

Figure 2-8: Myo catheter visualization.

To improve depth perception of the 3D visualization being rendered on a 2D monitor,

we have incorporated several methods into the catheter module. First, the catheter has a

2D semi-transparent projection displayed on the viewport in front of the 3D render scene.

Therefore, this projection is always visible even when the catheter is obscured by other

objects within the scene, such as the patient-specific anatomical imaging model. When

the catheter protrudes through and obscuring surface, the 3D rendering is visible to the

operate, and it largely obscures the 2D translucent projection (Figure 2-8).

In addition to the catheter projection, the Myo system has several other methods to

assist in visualization of the catheter within the patient specific models. The "Tip-to-

surface" measurement is real-time calculation and visualization of the distance between the

catheter tip and the closest point on the select surface model. Every time the catheter

position is updated, the Euclidean distance to the closest surface point is recalculated, and

it is displayed as both a numneric value (in millimeters) as well as with a small, bright color

sphere located on the surface model (Figure 2-8). The Myo application also has the ability

to create a spline to represent the shaft of the catheter; this method is useful to identify the

position of the catheter shaft. However, it is limited in its accuracy, as the spline is calculated

from a small number of control points at the transseptal puncture location. If additional
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position information of the proximal catheter shaft was provided by the electroanatomical

mapping system or via another means, the accuracy and usefulness of this method could

be greatly improved.

Map Down and Design Line

Similar to the warping methods described above, the Map Down module is used to perform

a point-wise movement of electroanatomical points. During this operation, one or more

electroanatomical point sets are chosen. For each point contained within the point sets, the

closest point on the target surface model is determined, and each point is translated to reside

at the closest point on the surface model. The effect of this non-linear filter is largely visual;

from internal (endoscopic) and external views of the surface models, the electroanatomical

points are visible. However, a major limitation of this method is the fact that the catheter

movements are not effected, and therefore, can be confused by the transformed points.

The Design Line module allows for pre-operative surgical planning to be performed on

the patient-specific imaging models. This feature can be used to chose an optimal ablation

lesion while minimize the risk of pulmonary vein stenosis and the number of necessary RF

ablations.

2.4.6 MyoApps

The MyoAPI, which has been described above, has been used to derive several applications

related to the Myo application. These applications can be executed on a single workstation

or distributed among many workstations to increase available computational power. A

short description of these applications will be include. For additional details, the reader is

referred to [47].

Ablation

Currently, the Ablation application interfaces with the Stockert 70 radio frequency (RF)

ablation generator via a serial port connection to the Global Port interface. After the pro-

gram registers itself with the Global Port, measurements of power, catheter tip temperature,

impedance, and voltage are reported every 100 ms. In addition to these standard param-

eters, derived parameters including the derivative of impedance with respect to time are

reported. Through real-time communication and synchronization between both the EAM

system and the RF generator, the "RF Pepper" function represents each ablation lesion

not a single operator chosen point but as distribution of points representing the catheter
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location over the entire RF lesion application. This functionality aims to provide a more

accurate assessment of lesion formation by including the small catheter movements which

are not reflected by operator-selected points which typically represent the prescribed ab-

lation lesions. Further extensions of the ablation application are being made which model

ablation lesion formation based on the parameters reported by the RF generator.

Signal

To perform advanced signal processing on electrogram data, a MyoAPI-derived application

was designed to interface with a 16-channel data acqusition PCI card (NI-6220, National

Instruments). This application provides real-time display of the digitized electrograms. In

addition, it allows for variable-length recording of these signals, which can be subsequently

processed using fast fourier transforms, signal averaging, cross-correlation, and additional

methods. This application can send this information back to the Myo application, which

can annotate electroanatomical mapping point data with this additional information.

Imaging

The Myo Imaging application is still under active development. Currently, the application

allows for loading of DICOM imaging data. The application provides basic imaging view

capabilities, and segmentation capabilities are being prototyped and implemented within the

application. While the target of the imaging application is segmentation, the application will

also communicate with the main Myo application for catheter position. Using this catheter

position information with the registration between imaging data and mapping data, the

Myo Imaging application will provide multi-slice reconstruction views showing the location

of the mapping catheter within the imaging volume.

In conclusion, the Myo application is a extensible platform for integration, processing,

and visualization of wide variety of information for cardiac electrophysiology procedures.
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Chapter 3

Registration Strategies

3.1 Introduction

Registration is a process to determine a spatial transformation which will bringing corre-

sponding points being registered into alignment. In terms of catheter ablation of cardiac

arrhythmias, registration is performed to align the pre-operative imaging information with

the intra-operative electroanatomical mapping information. In the ideal situation, the reg-

istration process would be fast, accurate, simple, and completed at an early stage of the

intervention.

In this chapter, our focus will be on our main clinical strategy, which uses the aorta as

a constraint for registration. We formalize the problem of image registration in the context

of combining pre-operative imaging data with intra-procedural electroanatomical mapping

data beginning with an outline of the workflow for registration. We will then compare

strengths and weaknesses of multiple registration strategies and methodologies using both

in vitro and in vivo data from phantoms, pre-clinical, and clinical procedures. Throughout

this chapter, we will identify limitations and clinical considerations which may affect the

registration process or complicate the clinical workflow.

3.2 Clinical Workflow

Image integration or registration of pre-operative MR/CT imaging data with intra-procedural

electroanatomical mapping information is a multi-step process (Figure 3-1). These steps

include: 1) image acquisition 2) segmentation 3) catheter mapping 4) registration 5) error
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analysis evaluation and 6) visualization. It is important to examine each step within this

workflow, as the accuracy of a registration is dependent on the preceding steps.

3.2.1 Physiological Variables

Throughout the entire workflow, there are patient-specific physiological variables which

must be considered. Per patient variation of 1) heart rate 2) heart rhythm and 3) respiration

between the steps in the clinical workflow defined above can decrease the overall accuracy of

the resulting registration. To minimize motion-related artifacts, electroanatomical mapping

is performed at end-diastole, the moment at which the heart muscle is relaxed and full of

blood but before it contracts. Variations of heart rate and rhythm can affect end diastolic

chamber volume, which would result in an altered representation in terms of size of the

chamber during image acquisition and subsequent segmentation of the imaging data. In

addition, an arrhythmia such as atrial fibrillation results in an irregular spacing between

ventricular heart beats; therefore, cardiac gating of CT or MR image acquisition based on

the 12-lead ECG is difficult. The resulting images may contain problems such as cardiac

motion artifacts.

The effects of respiration on the registration process are another important considera-

tion. During an average cardiac CT or MR imaging study, a patient is instructed to hold

his/her breath at end-inspiration, which approximates total lung capacity. This maneuver

has several important effects on the registration process and on the resulting anatomical

representation [48]. Electroanatomical mapping is typically performed during "quiet" res-

piration, and map points are acquired at end-expiration, which approximates the functional

residual capacity of the lungs. In terms of registration, when a patient inspires, the heart

translates anterior and inferior within the thorax. This movement alters the geometric rela-

tionship between the heart and the great cardiac vessels such as the aorta and superior vena

cava. In addition, respiration has an effect on the geometry at the ostium of the pulmonary

veins entering the left atrium.

3.2.2 Image Acquisition

For anatomical information, the choice of imaging modality is dependent on the radiology

department at an individual's institution and any patient specific contraindications such

as pacemaker or ICD implant, renal insufficiency, or contrast allergy. Both MR. and CT
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Figure 3-1: Registration workflow. The figure outlines the important steps for the regis-
tration electroanatomical mapping data with pre-operative imaging for catheter guidance.
After the pre-operative CT or MR imaging data is acquired, the data is segmented offline
for the relevant cardiac chambers and vascular structures. During the electrophysiology
intervention. electroanatomical mapping is performed to define chamber geometry and un-
derlying pathophysiology. Ideally, registration between the imaging and mapping would
be performed early in the procedure. Following the registration process, it is important
to understand the accuracy of the registration (Error Analysis). Following the registration
process. catheter-based ablation is performed within the patient-specific anatomy provided
by the pre-operative imaging information.
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imaging provide high resolution data for segmentation, registration, and subsequent catheter

guidance.

Magnetic Resonance Imaging

For catheter mapping and ablation within the left atrium, 3D contrast-enhanced MR angiog-

raphy (MRA) is performed to delineate the endocardial boundaries of the left atrium and

pulmonary veins. The scans are typically performed in a 1.5 Tesla (T) cardiac MR system

using gadolinium-DPTA as a contrast agent (Signa CVi 1.5T, GE Healthcare, Waukesha,

WI). This imaging sequence is not cardiac-gated; therefore, the resulting imaging informa-

tion is an average over the cardiac cycle; however, in our experience, it does not grossly

affect the geometric representation of the left atrium or subsequent registration.

Computed Tomography Imaging

Computed tomography, or computed axial tomography, uses two-dimensional x-ray images

from a large number of rotational angles about a subject to compute three-dimensional

imaging information. Modern cardiac CT systems accelerate image acquisition through the

use of solid-state multiple detector arrays. These 4-, 16-, 32-, and 64-"slice" CT scanners

can acquire the entire thoracic cavity in a single 10-second breath hold. The reconstructed

image volume has an average voxel size on the order of 0.5 mm x 0.5 mm x 0.3 mm. The high

resolution and rapid acquisition times have made CT imaging popular for cardiac related

imaging including coronary artery obstruction. In addition, pacemakers, ICDs, and other

implants are not contraindicated by CT imaging. However, CT imaging does use ionizing

radiation, and in terms of radiation dose, one multi-detector CT imaging examination (6.7-

13.0 mSv, effective radiation dose) is equivalent to approximately 500 chest X-rays (0.02

mSv) [49].

For the pre-operative imaging information required for registration with electroanatom-

ical mapping, studies were performed on 16- and 64-slice CT scanners using an iodinated

contrast agent bolus via peripheral intravenous (IV) access (Sensation 16 and Sensation 64,

Simens Medical Solutions, Erlangen, Germany). CT reconstruction were then performed at

the cardiac phase most closely approximating end-diastole of the chamber of interest.

3.2.3 Segmentation

Following image acquisition, the imaging information is segmented to extract surface repre-

sentations of relevant anatomical structures such as the endo-lumenal (inner) surface of the
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left atrium or left ventricle, the epicardial (outer) surface of the ventricles, the aorta, and

the coronary arteries and veins. Segmentation of imaging data can be performed with a va-

riety of commercial and academic software packages. Segmentation is typically a multi-step

process. The image processing can include smoothing, edge enhancement, thresholding, and

morphology operators. Applications of segmentation include image-guided intervention or

surgery, surgical planning including trajectory planning and prosthesis construction, ther-

apeutic evaluation, and functional evaluation. The segmentation process can be manual,

semi-automated, or automated; however, in most instances, even the best "automated"

segmentation systems still require human input. Manual segmentation is time consuming,

and it is prone to inter- and intra-operator variability even when performed by experts.

Semi-automated and automated methods use a variety of methods leveraging statistical

classification techniques and use of a priori information.

For the registration work presented here, a research tool (Cardiac++) from GE Global

Research was used for segmentation under internal review board (IRB) approval at the Mas-

sachusetts General Hospital. Cardiac++ provides manual methods for thresholding, region

of interest cutting, per-slice masking, and a semi-automated method using a combination

intensity and morphology operator known as the bubble wave [50]. The bubble wave is

designed to segment continuous vascular structures, which is ideal for the application under

consideration here. Seeds are placed within the structure of interest, and the algorithm

attempts to find all connected regions which pass both the intensity and morphology cri-

terion. After performing operations on the slice data, a 3D object is then created, and cut

can be applied from different view angles to eliminate unwanted structures.

3.2.4 Electroanatomical Mapping

The reader is referred to Chapter 1 for an overview to electroanatomical mapping; however,

methods and techniques for catheter-based electroanatomical mapping are largely beyond

the scope of this dissertation. We will discuss several key aspects which must be considered

with regards to image integration. In terms of respiratory effects, map points should be

acquired at the end of quiet expiration, and in areas which are particularly sensitive, it

is often helpful to have the patient hold his/her breath at the end of quiet expiration to

minimize respiratory effects.

Chamber deformation from catheter manipulation is another concern during electroanatom-
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ical mapping. There is relatively little tactile feedback for an electrophysiologist to deter-

mine catheter contact with a region of interest. Since static pre-operative images are being

used during registration and to render patient-specific anatomy, catheter deformation of the

chamber can effect the registration process and cause confusion when using the imaging data

for catheter guidance. In regions of scarred or thinned myocardium, small catheter forces

against the surface of the heart can result in large (1-2 cm) deformations of the anatomy,

which adversely impact the registration process [51].

Aorta EAM Acquisition

Based on in vitro and in vivo experiments comparing internal versus external fiduacial

structures for registration, our main strategy for fusion of EAM and MR/CT data is through

the use of vascular structures as internal fiducials [52, 53]. For this clinical strategy, mapping

the descending and ascending aorta is performed after gaining percutaneous access to the

femoral artery (Figure 3-2). While the description here explicitly references the aorta, these

methods and concepts are easily adaptable for the mapping of any vascular structure as an

aid for registration. Additionally, the method presented here has been optimized for speed,

accuracy, and ease of point acquisition; however, if erroneous points are acquired, they can

be deleted individually before computing the registration.

Prior to acquiring the first electroanatomical mapping point, it is important to un-

derstand the spatial extent of the aorta that has been segmented from the pre-operative

imaging information. Catheter mapping points must only be acquired within the extent of

the aorta represented by the segmented model, as this data can adversely effect the results

of the registration algorithms employed here. It is often helpful to acquire two points - one

point defines the inferior boundary and the other defines the start of the aortic arch. These

points can then serve as guides in the next steps.

To acquire the descending portion of the aorta, the catheter is advanced up the descend-

ing aorta to the beginning of the aortic arch. The tip of the catheter is then deflected in one

of four "cardinal" directions to maintain contact with the vessel wall in this general order:

1) anteior 2) left lateral 3) posterior and 4) right lateral (Figure 3-2). The catheter is slowly

withdrawn, and EAM points are acquired as it moves towards the inferior boundary point

acquired initially. This process is repeated for each of the four directions indicated above.

To complete the EAM point acquisition, the arch of the aorta is mapped in a similar
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Figure 3-2: Acquisition of EAM points within the aorta. The frames depict a simple,
reliable method to facilitate the electroanatomical mapping of the aorta (or other vascular
structures) for use during the EAM-imaging registration process. To acquire the aorta, the
catheter is advanced retrograde to the based of the aortic arch. The catheter tip is then
deflected in one of four directions: anterior (A), left lateral (B), posterior (C), or right
lateral (D). After deflecting the catheter tip, the catheter is slowly retracted, and points
are acquired. The process is then repeated for the remaining directions. After acquiring
the descending aorta, the ascending aorta (E) is acquired in a similar fashion. This EAM
data (F) is then used to register to the EAM data to the segmented imaging data.

fashion. The catheter is advanced towards the aortic root with care taken to stay within

the boundary of the segmented model of the aorta. Points are then acquired with the

catheter tip deflected toward the lateral, inferior, and superior walls of the aortic arch.

However, with the superior deflection and withdrawal of the catheter within the arch, there

is a tendency for the catheter to 'jump" into the brachiocephalic, subclavian, or common

carotid arteries, which depart the aorta at the superior aspect of the aortic arch. To avoid

acquiring points within these structures, the catheter can be deflected in an superior-lateral

direction. Finally, respiratory effects must also be considered when mapping the aortic arch.

3.3 Registration

Registration is the general term for the process of aligning two sets of data, U and V, to an

underlying, comonll coordinate space. In an abstract sense, a registration problem is one by

which parameters are determined to optimize some a cost functional between the two data

sets (Figure 3-3). The resulting registration is often a spatial transformation between two

disparate coordinate systems. Registration is used in a wide variety of medical applications

including multi-modal image fusion, time-varying series processing, warping (see Chapter
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Figure 3-3: Conceptual registration framework.

4).

Depending on the algorithm and parameters, the registration may be closed-form by

which the solution can be calculated with a single iteration over the framework. The

solution may also be found iteratively, such that the algorithm continues to minimize the

cost function within the registration framework until a stop criterion such as an minimum

error threshold is reached.

The type of resulting spatial transformation used for transformation between the data

should be chosen based on the characteristics of the system and the registration prob-

lem being addressed. In general, there are three types of spatial transformations used for

registration. The transformations are composed of translations, rotational, and scaling

parameters, which can be compactly represented as a single homogenous 4 x 4 matrix.

Y/ y= translations * yaw * roll * pitch * scaling (3.1)
z/ z

1I 

I Co c CoB , o u cs COz sin !, sin o, -sin o s8 sin sin cos si z s in 0x co, si x t1,
lY = sin z o s cos/ os) + sinez sinOysi n sin fsin Oy co s O. -- cos sin/O,: t.2)
z - sin 6,1 cos 11 sinl , cos Off cos t

I I 0 0 0 1Oo3
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Rigid-Body Model In 3-dimensional space, a rigid body transformation consists of six

parameters which allow for rotation and translation within the coordinate system.

Using such a transformation, an assumption is made that the coordinate spaces are

of the same spatial scale. It should be noted that the order of the rotations is not,

in general, commutative; a rotation about the x-axis, then y-axis, then z-axis does

not equal a rotation about z-axis, then the y-axis, and then the x-axis. This class of

spatial transformation is also length preserving.

Global Rescaling Transformation This transformation is very similar to the rigid-body

model transformation; however, in addition to the six-degrees of freedom discussed

above, a seventh parameter is included which specifies an isotropic or global scaling

factor.
m 0 00
0 m 0 0

(3.3)
0 0 m 0

0 O 0 1

Affine Model The nine-parameter affine model allows for anisotropic rescaling along the

three cardinal axes. In this case, the scaling matrix is represented by:

mx 0 0 0

0 my 0 0 (3.4)

0 0 mz 0

0 0 0 1

There are additional methods for warp transformation and locally-varying transforma-

tions. These methods allow for non-linear variation over different regions of space. The

reader is referred to Chapter 4 for further details specifically dealing with interpolation

using elastic transformations. Other parametric transformation classes use finite element

niethods.

There are two classes of objective function used for evaluation during the registration

process: 1) intensity-based or 2) model-based. Intensity-based objective are commonly

used for intra- and inter-modality image registration. These type of functions measure the

agreement between two pixels or voxels based on their intensities. Model-based registration
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methods are commonly used to align information based on global and local shape infor-

mation. The objective function is usually based on a distance criterion (chamfer distance).

Model "mismatch" is one limitation of model-based objective functions; if a significant por-

tion of a structure is missing, a large penalty will adversely affect the registration process.

3.3.1 Iterative Closest Points Algorithm

The iterative closest point (ICP) algorithm is commonly used for rigid registration of

imaging-derived models. The ICP algorithm minimizes the sum of squares distance be-

tween two data sets via an iterative descent method until a convergence criterion is met or

an iteration limit is exceeded [54]. From Besl and McKay, the algorithm is stated [54]:

* The source point dataset P with Np points {Pi} and model shape target X consisting

of geometric primitives (with Nx points, lines, and triangles) are given.

* Initialize the iteration by setting Po = P, qo = [1,0, 0, 0, 0, 0, O]t , and k = 0. The fol-

lowing Steps 1-4 are performed until convergance within a tolerance r or the maximum

iteration limit is exceeded:

1. Compute the closest points: Yk = C(Pk,X)

Cost: O(NpNx) worst case; O(NplogN) average

2. Compute the rotation: (, dk) = Q(Po, Yk)

Where (, d) = Q(P, Y) is the least squares registration.

Cost: O(Np)

3. Apply the registration: Pk+l = qk(Po)

Cost: O(Np)

4. Check convergence criterion and iteration count versus iteration limit where

mean-square error falls below preset threshold (r > 0) such that the precision of

the registration is dk - dk+l < T

In general, the ICP algorithm is extremely fast; however, it does have certain limita-

tions. The algorithm works in an iterative-descent type fashion, which tries to minimize

the error metric at each step. Therefore, the capture range of the algorithm is limited; if

the initialization is not reasonably close to the final solution, the algorithm will converge
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on local-minimal solutions instead of the global minimum. The original implementation

proposed by Besl and McKay noted the limitation of the ICP algorithm to robustly handle

outliers or unequal uncertainty among points [54]. There have been several extension to the

original ICP algorithm including regional weighting, outlier classification, and the robust

generalized total least squares ICP method [55, 56, 57, 58, 59].

3.3.2 Modified Iterative Closest Points Algorithm

We propose a modified iterative closest point (mICP) algorithm to improve convergence

of the registration process in its application to pre-operative image integration in cardiac

electrophysiology. The modification is the addition of class information into the algorithm.

Classes are assigned to both the point data acquired during electroanatomical mapping of

different regions of the heart and great cardiac vessels as well as during image segmentation

and 3D surface model reconstruction. A hierarchy of registrations can then be performed;

at each point in the hierarchy, a source-target pair is assigned. The mICP algorithm then

iterates to minimize the overall sum squared error; however, at each step, the source-target

distance (error) is calculated only within the source-target class assignment.

For example, electroanatomical mapping is performed in the left atrium as well as in the

aorta, which represents two classes of EAM point information. Likewise, the pre-operative

CT or MR imaging data is segmented for these same structures; however, two separate

structures are created to reflect the two EAM point classes. In the subsequent registration

process, the mICP algorithm simultaneous optimizes the point-to-surface error of the aorta

data and the point-to-surface error of the left atrium data.

In terms of the ICP algorithm statement above, the mICP algorithm can be stated as

follows:

* One or more pairs of source point dataset Pi with Npi points {i} and model shape

target Xi consisting of geometric primitives (with Ni points, lines, and triangles) are

given:

* Initialize the iteration b)y setting Po = P. qo = [1,0, 0, 0, 0, 0, 01]
t and k = 0. The fol-

lowing Steps 1-4 are performed until convergance within a tolerance T or the lmaxinmlmr

iteration limit is exceeded:

1. For each source-target pair, compute the closest point within the pair: Y =
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C(Pk, X)

Cost: O(NpNX) worst case; O(NplogNx) average

2. Compute the rotation: (, dk) = Q(Po, Yk)

Cost: O(Np)

3. Apply the registration: Pk+l = qk(Po)

Cost: O(Np)

4. Check convergence criterion and iteration count versus iteration limit where

mean-square error falls below preset threshold (r > 0) such that the precision of

the registration is dk - dk+l < r

3.4 Clinical Registration Strategies

To assess the accuracy of the registration methods described above, a series of in vitro and

in vivo studies were performed. In this first study, the registration methods will focus on

registration strategies for the left atrium for use during a catheter-based pulmonary vein

isolation. The second study will focus on registration strategies for the endo-lumenal surface

of the left ventricle for use during ventricular tachycardia ablation. The third study will

explore registration strategies for use during epicardial ablation, that is ablation performed

on the outer surface of the heart which can be used during both atrial and ventricular

ablation procedures.

3.4.1 Left Atrial Registration Strategies

Overview

To evaluate registration strategies for the left atrium, a three phase study was conducted.

First, an in vitro study was performed using a 3D phantom constructed from a human

MR imaging dataset. In the second phase, registration between pre-operative MR and CT

imaging and catheter-based electroanatomical mapping data was retrospectively performed

to assess the utility of curved vascular structures in the registration process. The third

phase was a prospective in vivo clinical evaluation of a rapid registration strategy which

uses the ascending and descending aorta to rapidly align the pre-operative imaging data

with real-time catheter mapping information with minimal information required within the

72



3.4. CLINICAL REGISTRATION STRATEGIES

left atrium. The clinical portions of this study were performed in accordance with the

guidelines of the Massachusetts General Hospital Human Research Committee.

Atrial Phantom

A 3D cardiac phantom was created using standard solid-modeling and rapid prototyping

methods. Briefly, a human MR imaging dataset was segmented for the left atrium, pul-

monary veins, and aorta (Figure 3-5A). From this segmentation, 3D surface models were

created, which were then embedded into a simple block. The surface model was positioned

within the block to allow for access to the distal pulmonary veins, descending and ascend-

ing portions of the aorta, and the anterior portions of the left atrium via the mitral valve

annulus (Figure 3-5B). A static, fully rigid phantom was then 3D printed using a starch

powder and binder process (ZCorp, Burlington, MA).

Following phantom creation, the CARTO electroanatomical mapping system was used

to acquire multiple mappings (n=5) of: 1) the endo-lumenal surface of the descending aorta

2) the endo-lumenal surface of the aortic arch and 3) the endocardial surface of the left

atrium (Figure 3-5C).

Using the MR imaging data used to create the phantom as well as the catheter-based

electroanatomical mapping information, registration experiments were performed using ei-

ther the descending aorta or aorta including the arch of the aorta as the first step in the

registration process. Following the aorta registration, EAM points within the left atrium

were incrementally added to the registration process. That is, after each additional left

atrial point, the registration was recalculated. The point-to-surface error statistics were

calculated using a 30-50 point "validation set" within the atrium which were not used

during the registration process (Table 3.1).

Retrospective Simulation Experiments

In this portion of the evaluation, patients underwent pre-procedural (1 day to 5 months

prior) contrast-enhanced CT (n=13) or MR (n-25) angiography to image the left atrium,

pulmonary veins. and additional structures. Because of its high spatial resolution. cardiac

CT was used to image the coronary sinus (CS) and superior vena cava (SVC) (see Figure

3-7). These two peri-vardiac vascular structures were chosen because they can be read-

ily mapped with a catheter and because both structures have branching structures which

add unique information for the registration process. The SVC is minlimally curved itself;

however, the left brachiocephalic vein, which extends leftward, and the azygous vein which
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Figure 3-4: Atrial phantom registration. (A) MR imaging of the left atrium, pulmonary
veins, and aorta were segmented and surface reconstructions were made. (B) A 3D phan-
tom was then made from this patient-specific anatomy using rapid prototyping methods
(C) Electroanatomical mappings (n=5) of the aorta (white points) and left atrium (green
points) were then acquired. (D) Registration was then performed using the aorta for initial
registration with the addition of (E) points within the left atrium.
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Registration Accuracy using Descending Aorta and Left Atrium Points

E
E

i

I

a:

0 5 10 15 20 25 30 35
Left Atrium Points Used for Registration

Figure 3-5: Atrial phantom registration simulations. Image integration was based upon
registering the descending aorta points. Then, LA points were sequentially incorporated
into the registration process (horizontal axis). The accuracy of registration (vertical axis)
was defined as the mean distance of 30 additional LA points not included in the registration
process (blue lines; the red lines represent the mean distance for the aorta points). Five
simulations were performed. Note that inaccurate local minimal solutions occurred when
using the descending aorta alone, requiring a number of LA points to correct (A). The
bottom series of frames portray a representative registration using only information in the
descending aorta. In frame (E) notice the location of the green atrium points with respect
to the atrium.
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Figure 3-6: Atrial phantom registration simulations with aorta including arch. Five sim-
ulations were performed. Registration was initially computed using aorta including arch
information. Then, LA points were sequentially added to the registration process (horizon-
tal xis). The accuracy of registration was defined as the mean distance of 30 additional
points within the left atrium, which were not used during the registration process (blue
lines; red lines reprsent mean dstiance for the aorta points). Note the rapid convergance to
a robust solution with minimal information from the left atrium (approximately 3 points).
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Desc Ao All Ao LA Reg. Error w/ Reg Error w/
Points Points Points Desc Ao + LA. All Ao + LA

Acquisition Mean ± Std (mm) Mean ± Std (mm)
#1 67 172 5 9.80 ± 6.44 2.12 ± 1.44

#2 101 204 5 4.58 ± 2.99 1.63 ± 1.09
#3 101 250 5 5.65 ± 3.53 2.07 ± 1.27
#4 98 257 5 5.54 ± 3.40 1.87 ± 1.15
#5 84 221 5 4.38 ± 2.88 1.67 ± 1.12

Table 3.1: Atrial phantom registration strategies using the aorta. In these simulations,
EAM data acquired from the phantom was registered to MR imaging data using one of
two strategies: (1) register using descending aorta, then add 5 points within the left atrium
and recalculate the registration and (2) register using all of the aorta, then add 5 points
within the left and recompute the registration using the additional information. As can be
seen in the results, there was significantly lower point-to-surface error (mm) when the aorta
including the arch was used as a fiducial structure for registration. While the inclusion of
additional left atrium points may increase the precision of the registration when using the
descending aorta, the goal of image integration is a fast and accurate solution, which does
not require extensive mapping within the chamber of interest.

extends posteriorly and inferiorly form the unique shape of the SVC. Likewise, the curva-

ture of the CS as well as its proximity to the left atrium make it potential candidate for

use during the registration process. The imaging data was then segmented to extract the

relevant anatomical structures and 3D endo-lumenal surface reconstructions were made (see

Section 3.2.3). The MR imaging data was segmented for the left atrium, pulmonary veins,

and aorta including the ascending arch and descening portion within to the bottom of the

heart shadow.

These patients subsequently underwent catheter-based pulmonary vein isolation for

treatment of atrial fibrillation. During these interventions, pre-RF ablation mappings of

the left atrium, pulmonary veins, and aorta were acquired using a 3.5 mm or 8 mm-tip

radio frequency ablation catheter. Mapping of the aorta was performed via a femeral ret-

rograde aorta approach (described in detail above in Section 3.2.4). In addition to the

aorta, two additional vascular structures were chosen to as internal fiducial structures for

the registration process: the coronary sinus (CS) and the superior vena cava (SVC) (Figure

3-8).

As seen in Figure 3-8, registration with only the aorta provides an accurate registration

without additional information within the left atrium. In addition, with the incremental

use of left atrium points. a registration based on the aorta changes in a minimal fashion.
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Figure 3-7: Left atrium and great cardiac vessels. A right posterior-oblique (RPO) view
of the left atrium (blue), aorta (purple), superior vena cava (orange), and coronary sinus
(green). Both the coronary sinus (CS) and the superior vena cava (SVC) are thin-walled
venous structures while the aorta has thicker walls to handle the greater arterial pres-
sues. These structural differences of the vessels may cause an increase residual error due to
catheter deformation of the thin-walled structures.
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Figure 3-8: Registration of LA using the great cardiac vessels. In the top three frames
(A-C), registration between EAM and CT imaging models is performed using only the
coronary sinus (green structure). In (B), the aorta points (purple), superior vena cava
points (orange), and left atrial points (blue) are also shown to demonstrate the relatively
poor registration resulting from only information within the coronary sinus. In the bottom
three frames (D-F), registration is performed using only information from the superior vena
cava (orange). In (E) and (F), points within the other structures are shown. The better
performance of the SVC (D-F) for registration is likely related to the additional and unique
information from the azygous and brachiocephalic veins.
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Figure 3-9: Registration convergance of LA using the great cardiac vessels.

In comparison, reigstration strategies which initially used the CS or SVC alone were likely

to fall into a local minimum (3-9). Examples of these erroneous registrations are shown

in Figure 3-8B. The addition of points within the left atrium did eventually improve the

registration; however 15-20 points were needed to converge to a better solution. Therefore,

the use of the aorta as an internal fiducial structure during registration provided the most

rapid and accurate solution for aligning the imaging information with catheter-mapping

data.

Prospective Evaluation of Aortic Registration

In the third phase of this study, a prospective evaluation of the utility of the aorta as an
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3.4. CLINICAL REGISTRATION STRATEGIES

Figure 3-10: EAM + Pre-operative image registration. Pulmonary vein isolation is per-
formed under image guidance using pre-operative image. (A) Posterior-anterior view of
catheter during ablation on right side of left atrium. (B) Endo-lumenal veiw of right half of
left atrium showing same catheter position as (A). Accuracy of image registered is verified
by intracardiac ultrasound; the yellow dashed lines outline the right-sided pulmonary veins.
Note the contact of the catheter with the left atrial wall.

internal fiducial structure to aid in rapid registration of the left atrium was performed.

A series of consecutive patients (n=25) undergoing catheter ablation of atrial fibrillation

were pre-operatively imaged use MR angiography. Segmentation and reconstruction were

performed prior to the catheter ablation procedure. After gaining arterial and venous access

during the subsequent electrophysiology procedure, catheter mapping (described above)

was performed first within the aorta. On average mapping of the aorta took 5 minutes to

complete.

The Myo software system was then used to register the pre-operative imaging data with

this real-time catheter mapping information. Following the aortic registration, the catheter

was manipulated into all 4 pulmonary veins using the Myo software which showed the real-

time mapping catheter position within the patient-specific anatomy (Figure 3-10). During

these manipulations neither fluoroscopy nor intracardiac echocardiography was used to as-

sist in catheter manipulation. In the second step of the registration process, additional in-

formation acquired within the left atrium was used to further refine thec alignment; however,

tiis additional information only provided a minor improvement in thc overal registration.

During this prospective evaluation, the accuracy of registration was confirmed use avail-

able imaging technology including fluoroscopy, contrast-enhanced fluoroscopy, and intrac-

ardiac echocardiography. In addition, to assess the accuracy of Aorta registration alone
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in comparison to the final solution incorporating both the Aorta as well as the complete

LA EAM points, the centroid movement in this alignment was quantified (n=24 cases). In

comprison to registration using the Aorta along, there was an average shift of 0.2±1.0 mm

horizontally (to the patients' right; ranges -2.3 to 2.8 mm), 0.1±1.4 mm inferiorly (range

-2.1 to 3.3 mm), and 0.1±0.9mm anteriorly (range -1.6 to 3.1 mm).

3.4.2 Left Ventricular Registration Strategies

For ablation procedures of scar-related ventricular tachycardia, we investigated strategies

for the rapid and accurate registration of the left ventricle. For this study, two strategies

were evaluated using an in vitro left ventricular / aorta phantom and in vivo using a porcine

model of healed myocardial infarction and a normal model with putative sites for ablation

[51].

Phantom Experiments

In this portion of the study, a human-scale phantom of the left ventricle and aorta was

filled with a diluted solution of gadolinium-DPTA. MR imaging was then performed on the

contrast-filled phantom. These images were then segmented, and a endo-lumenal surface

model was created from the 3D imaging data set. Electroanatomical mapping of the aorta

and left ventricle was then performed in the phantom using a retrograde aortic approach.

Using the three separate acquisitions, a series of simulation experiments were retrospec-

tively performed to combine the pre-operative imaging information with the catheter-based

mapping information (Figure 3-11).

In Vivo Experiments

In this portion of the study, left ventricular registration strategies were evaluated in two

phases. In the first phase, normal animals underwent an iron oxide injection procedure

to place targets for catheter ablation under image guidance (Figure 3-13). Following the

injections, MR imaging was performed to define chamber geometry and location of the

injection sites. During a subsequent electrophysiology study, registration between the pre-

operative MR imaging data and electroanatoimical mapping information was performed, and

RF ablation lesions were placed as close as possible via image guidance from the combined

electroanatomical and imaging data.

Injections were perfomed using an 8 French mapping catheter with a 27-gauge, re-

tractable needle which protrudes from the tip of the catheter (Noga-Star, Biosense-Webster,
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3.4. CLINICAL REGISTRATION STRATEGIES

Figure 3-11: In vitro left ventricular (LV) phantom experiments. After filling a hollow plastic model of the heart
(A) with a dilute solution of gadolinium, magnetic resonance imaging (MRI) scans were performed. The aorta and LV
were manually segmented to generate a three-dimensional (3D) surface reconstruction (B). (C) After electroanatomic
mapping of this phantom, the locations of the endoluminal aortic (blue points) and endocavitary LV (white points)
points were registered with the 3D MRI. Strategies to register these MRI and magnetic electroanatomical mapping
(MEAM) datasets were then evaluated. (D) Image registration was based solely upon registration of the MEAM LV
points with the M\RI-based LV surface. After a coordinate transformation, each MEAM LV point was sequentially
incorporated into the registration process (horizontal axis). The level of accuracy of the registration process (vertical
axis) was defined as the mean distance of either: 1) the complete MEAM LV point dataset to the MRI-based LV
surface (red lines), or 2) the complete MEAM aorta point dataset to the MRI-based aorta surface (blue lines). Five
simulations were performed with each of three separate dataset acquisitions; each line represents an average of each
set of five simulations. This reveals that the MEAM LV point to MRI surface distance (red lines) can be minimized
to I uin error. after only :30 points. However, the high level of inaccuracy ill the MIEAMI aorta point to MRI surface
distance (blue lines) demonstrates that the registration was simply a local minimal solution. Videlicet. in the registered
image (right), the LV points appear to be well-aligned, but the misalignment of the aorta points indicates that this
is an inaccurate solutionapparently as a result of rotation about the LV long axis. (E) Image integration was based
upon first. registering all of the MEAM aorta points with the 1MRI surface. followed by sequential incorporation of
each NMEAM LV point into the registrations process (horizontal axis). The level of accuracy of the registration process
(vertical axis) was again defined by the mean distance of the complete MEAM LV point cdataset to the MRI-based
LV surface (red lines). The results show that after first registering the aorta. the MEAI L point to MR1 surface
distance (red lilies) can be lliinimized to I mm error after incorporating the first three LV points into the registration
process.
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3.4. CLINICAL REGISTRATION STRATEGIES

Figure 3-12: In vivo iron oxide injection experiments. (A) As shown in this procedure flow
map, a solution of iron oxide particles and tissue dye (either methylene blue or India ink)
was injected into the myocardium of normal animals at two to three discrete LV locations
(left). Because the iron oxide particles are visible to MRI (middle), these injections served as
"targets" (shown by an arrow in B) to test the registration strategy. The animals underwent
MRI, and manual segmentation was performed to delineate the endoluminal surface of the
aorta, the endocardial border of the LV, and the locations of the iron oxide injections (shown
in C; each group of three blue dots represents an injection site). During the subsequent
electroanatomic mapping procedure, these 3D datasets were registered with the MEAM
system. Because the iron oxide injections do not leave any electrophysiologic signature, the
locations of the ablation lesions were entirely based upon the registered HMIR images.
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Figure 3-13: Accuracy of image integration based upon the iron oxide injection experiments.
(A) As described in the legend of Figure 2, the register magnetic resonance imaging was
used to guide movement of the catheter tip (green icon) to the iron oxide injection targets
(yellow dot). (B and C) After catheter ablation at this point, the animal was killed and
distance from the ablation lesion (blue asterisk) to the injection (arrow) noted.

Inc). The injection catheter was advanced into the left ventricle in a retrograd-aortic ap-

proach, and the needle was then extended 4 to 6 mm into the myocardium. An injection of

0.2 ml of iron oxide particles (0.4 mg/ml Feridex; Advanced Magnetics, Inc.) were injected

at each site. The sites were chosen to be at least 20 mm apart from each other. In addition,

injections were not placed at the apex of the left ventricle because relatively reproducibility

of this location during catheter manipulation. To facilitate gross pathological review fol-

lowing image-guided ablations, either methylene blue or India ink was mixed with the iron

oxide solution for use as a visual indicator.

In the second phase of the in vivo experiments, a porcine model of healed myocardial

infarction uiderwent MR imaging to define the chamber geometry as well as the location

andcl extent of scarred myocardial tissue (Figure 3-14).

The location and extend of the infarcted myocardial tissue was determined by two-

diileilsional myocardial delayed-enhancement (TR/TE/O = 5.7nis/1.Sils/20 ° ) 15- to 25-

uiintes statu-post gadolinium-diethylene triamine pentacetic acid (gadolinium-DPTA) in-
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Figure 3-14: MlRI-guided catheter navigation in vivo to the myocardial infarct borders. (A) The porcine infarct
models underwent MRI 4 months after the anterior wall infarction procedure. The gadolinium-enhanced scarred
myocardium (yellow arrows) is shown in these long- and short-axis (inset) delayed enhancement magnetic resonance
images. (B) The aorta, LV endocardium, and myocardial scars were manually segmented and compiled into 3D
datasets. During I\IEAM. the chamber geometries were constructed without displaying the corresponding electro-
physiologic information. Radiofrequency ablation lesions were subsequently targeted to the borders of the scar solely
oin the basis of the registered [IR image. Shown are the re-compiled surface reconstrulctions of the segmented LV,
aorta. and scarred ilvocardium (in brown). (C) The registered 3D M.RI of the porcine infarct model is shown: or-
ange clots L points: blue dots aorta points. (D) The electroanatornic bipolar voltage map depicts the anterior wall
invocardial infarct: the color range was set such that the purple color represents normal tissue (i.e., 1.5 mV). The
ablation lesions ae shown as red dots: the yellow arrow denotes the ablation corresponding to the catheter position
shown as a green icon ill (E). (F) The corresponding ablation lesion (blue asterisk) was noted upon gross pathologic
examination to he situated at the scar border; two other ablation lesions placed near the LV apex (yellow asterisk)
were also appropriately localized to the scar borders. Abbreviations as in Figure.
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Injection Expected Measured Residual
Target Distance (mm) Distance (mm) Error (mm)

Animal #1 #1 4.3 1 3.3

#2 1.2 1 0.2
Animal #2 #1 3.1 2 1.1

#2 4.6 3 1.6

#3 5.4 3 2.4
Animal #3 #1 3.9 4 0.1

#2 6.9 3.5 3.4
Animal #4 #1 3.7 6 2.3

#2 1.1 4 2.9
Animal #5 #1 7.5 5 2.5

#2 5.1 4 1.1

#3 1.6 1 0.6
Mean ± StdDev 1.8 ± 0.5

Table 3.2: Registration accuracy based up iron oxide injection experiments.

travenous infusione [60, 61, 62]. The post-QRS gating was timed to coincide as closely as

possible with late diastole which matches the phase of the cardiac cycle during which EAM

points are acquired. MR imaging of the porcine model of healed myocardial infarction was

performed 119 ± 12 days (range: 102 to 133 days) after the infarction procedure.

Following image acqusisition, the MR images were segmented for the aorta, left ven-

tricular endocardial surface, and the scarred myocardium within the left ventricle. Three-

dimensional surface reconstructions were then created of these structures. The animals

subsequently underwent catheter-based electroanatomical mapping. During this procedure,

the electroanatomical mapping information displayed only ventricular geometry without

additional electrogram annotation at each point. After acquiring the aorta and points

within the left ventricle, reigstration of the pre-operative imaging and catheter mapping

information was performed using the mICP algorithm described above.

Using the image integration, the catheter was then manipulated to the borders of the

scarred myocardium, and a series of RF ablation lesions were created. At the conclusion of

each electroanlatomlical mapping and ablation procedure, the animals were sacrificed, and

the heart was immediately explanted for gross pathological examination (Figure 3-14E,F).

For this series of experiments, the proximimity of the ablation lesion to the border of the

scarred mvocardiuml was determined, and it was compared to the locations recorded on the

electroanatomical mapping system (Figure 3-14).
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Results and Conclusions

During both the injection experiments and the delayed-enhancement scar-imaging studies,

there was a consistent difference in left ventricular volume between the pre-operative imag-

ing data and the real-time catheter mapping data. As discussed above, there are several

physiological variables which could contribute to these differences including cardiac rate,

cardiac rhythm, and fluid status during the long, anesthesized procedures. Despite these

errors, these studies have demonstrated that the registration process can still have clinical

utility. Based on the pre-operative MR imaging information, the electrophysiologist was

able to: 1) manipulate and ablate within approximately 2 mm of iron oxide targets iden-

tified only by the imaging 2) ablate at the border of the scarred myocardial tissue based

on delayed-enhancement imaging and 3) manipuate the catheter to anatomical structures

such as the mitral valve, which has a unique electrical characteristic of both a atrial and

ventricular activity on the electrogram recording. These results are particularly meaningful

because the catheter manipuation and therapy was based only on the imaging information

presented by the registration software. In a clnical setting, the addition of electrical and

timing information recording from the mapping catheter would further assist a electrophys-

iologist during targeting and application of therapy; this additional information is expected

to increase the accuracy and utility of the image integration paradigm. These results have

important clinical implications for the treatment of ventricular tachycardia.

There are several limitations of these studies which must be addressed prior to wide-

spread use of image integration during left ventricular electrophysiology procedures. In this

portion of the work, manual segmentation of the pre-operative imaging information was

performed. This process is time consuming as well as being prone to intra- and inter-observer

variability. While general methods for semi- and full-automated segmentation exist, these

methods should be adapted to specifically address segmentation of left ventricular MR

imaging to be most useful. Furthermore, the slice-thickness of the pre-operative MR imaging

was relatively large, and this resulted in artifacts on the surface reconstructions. While more

images could be acquired, this extends the already significant MR imaging time required.

A balance between the time require for MR imaging and the fidelity of the data must be

reached.

Finally, a major limitation of this study is the contraindication of MR imaging in pa-

tients with pre-existing pacemakers or ICDs. Patients with ventricular tachycardia are at
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a signficant risk for sudden cardiac death, and patients are being treated with these de-

vices at an increaing rate. Although technology is evolving and initially research studies

have demonstrated safety, there are not devices or leads approved for cardiac MR imaging.

In addition, legacy current pacing and defibrillation leads and devices will be a problem

for several years following the implantation of MR-compatible devices. In the meantime,

cardiac CT is an alternative imaging modality for this work; it provides high resolution

chamber geometry; however, CT imaging cannot directly distinguish scarred myocardial

tissue from healthy tissue. Therefore, secondary indicators such as wall-thinning at regions

of transmural myocardial scarring must be used instead.

3.4.3 Epicardial Registration Strategies

To evaluate registration for use during epicardial catheter mapping and ablation, a series

of clinical strategies were evaluated to assist in registration. First, a retrospective evalu-

ation of a porcine model of normal and healed myocardial tissue is perfomed to evaluate

registration strategies using combinations of the left ventricular endocardial surface, the

epicardial surface of the heart, and the aorta. Based on these results, registration of the

epicardial surface was performed using the aorta as an internal fiducial structure to assist

in registration.

The epicardial portion of the heart has significant implications for patients with scar

related ventricular tachycardias. Electroanatomical mapping systems are commonly used

to identify important entrance and exit sites for a reentry arrhythmia and to dilineate the

scarred portion of the ventricle based on bipolar electrogram voltage. Substrate based

mapping and ablation are effective in eliminating these reentrant circuits. However this

approach of endocardial substrate mapping and ablation in the precense of transmural scar

tissue, hypertrophic cardiomyopathies, and Chaga's disease have often failed. In each of

these pathogies, typical RF ablation lesions placed on the endocardial surface of the ventricle

may not result in a transmural lesion; therefore, the a malignant reentry circuit will persist

following the electrophysiology study.

Faced with these difficulties, Sosa and collegues pioneered the percutaneous, sub-xyphoid

approach to the pericardial space. which allows catheter-based mapping and ablation of the

epicardial surface of the heart. Using nearly identical mapping and entrainment methods,

this approach can be used to interrupt reentrant circuits previously untreatable by standard
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endocardial mapping and ablation.

Preclinical, retrospective registration strategy evaluation

This protocol was approved by the Massachusetts General Hospital Subcomittee of Rsearch

Animal Care and was performed in accordance to institutional guidelines.

Porcine Infarct Generation

In this portion of the study, a porcine model of healed myocardial infarction was used to

during image integration. Briefly, a closed-chest infarction procedure was performed in 25-

to 35-kg pigs [63, 64]. After an overnight fast and premedication with 1.4 mg/kg Telazol,

1.1 mg/kg acetylpromazine, and 0.05 mg/kg IM atropine, the animals were intubated and

ventilated with oxygen. General anesthesia was maintained with inhaled 1.5% to 2.5%

isoflurane. Arterial access was obtained, and a JR4 guide catheter was placed in the left

main coronary artery. A 2.5- to 3.5-mm PTCA balloon was advanced to the mid left anterior

descending coronary artery (LAD), and the balloon was inflated to 4 atm. Twenty seconds

after balloon inflation, 60 to 80 L dry volume of Contour 75 to 150 m emboli (Boston

Scientific) diluted in 4 mL of sterile saline was injected through the central lumen of the

PTCA catheter. Continuous ECG and hemodynamic monitoring was performed during the

infarction and during recovery. After extubation, the animals were observed and monitored

for I to 3 hours until able to ambulate without assistance. The pigs were housed in the

animal facility for a minimum of 4 weeks before the follow-up imaging and electrophysiology

studies.

MR Imaging Study

The animals were placed on the gantry for MRI in a similar position as during the EAM

procedure to minimize distortions in the shape and curvature of the torso. These animals

underwent MRI and EAM on the same day, whereas the porcine infarct models were imaged

2.4±3.7 days (range 0 to 9 days) before EAM. The animals were mechanically ventilated,

and the images were acquired at end-expiration. All MR images were acquired in a 1.5-T GE

CV/I scanner (GE Medical Systems Inc., Waukesha, Wisconsin) equipped with a surface

cardiac array coil. A breath-held 3D contrastenhanced MR angiogram was used to image

the descending aorta (repetition time [TR]/echo time [TEJ/6.6 ms/2.4 ms/45deg, field of

view [FOV] 28 28 cm. 192 256 matrix, 2.2 mm slice width (sw), 32 slices/scan, 1 number

of excitations [NEX]: 0.44 cc/kg gadolinium). Short-axis and long-axis cardiac images

were acquired with sequential, breath-held two-dimensional SHARK-FEISTA (GE Medical
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Systems Inc.) (TR/TE/ 6.3 ms/1.9 ms/50deg, 8 to 12 views per segment, FOV 26 26 cm,

256 224 matrix 4 to 5 mm sw, 1 to 2 NEX, 20 phases/R to R interval, electrocardiographic

gating). The location and extent of the infarcted tissue in the six animals with healed

MI was determined by two-dimensional myocardial delayed enhancement (TR/TE/theta

5.7 ms/1.5 ms/20, 12 to 16 views per segment, inversion time 90 to 170 ms, FOV 26 26

cm, 256 224 matrix, 4 to 5 mm sw, 2 to 3 NEX, acquired 15 to 25 min post injection

of gadoliniumdiethylene triamine pentacetic acid) (810) and a modified two-dimensional

double-inversion recovery fast spin echo (TR/TE 3 R to R interval [2,500 to 3,500 ms]/144

ms, echo train length 32, FOV 26 x 26 cm, 256 x 224 matrix, 4 to 5 mm sw, 1 to 2 NEX).

The prescribed post-QRS delays were selected to coincide as best possible with late diastole

in order to match the cardiac phase during EAM.

Pericardial Access

Catheter access to the pericardial space was obtained via nonsurgical transthoracic puncture

approached [65, 66, 67, 68]. Briefly, a 17-gauge Tuohy needle (1.5-mm OD, 98.4-mm length)

is advanced under fluoroscopic guidance from the subxyphoid region of the thorax. As the

needle approaches the pericardial space, small amounts of iodinated contrast are injected

to determine proximity to the pericardial sac. After the needle has punctured and crossed

the pericardium, a guide wire is passed through the needle. The needle is subsequently

withdrawn, and a standard short, hemostatic sheath and introducer is then advanced over

the guide wire. A mapping catheter is then passed through the sheath and easily maneu-

vered within the pericarrdial space. Once the mapping catheter is introduced, the catheter

can be manipulated around the epicardial portion of the ventricles as well as the atrium.

However, the epicardial regions surrounding the atria are divided into the transverse sinus,

the superieor sinus, and the oblique sinus (Figure 3-15).

Electroanatomical Mapping

In addition to the pericardial access, standard femoral and arterial access was also gained

to permit endocardial mapping of the left ventricle via a retrograde aortic approach. Before

entering the left ventricle, the aorta was mapping using the technique described above

(Section 3.2.4).

Then, magnetic electroanatomical mapping (MEAM) of the aorta and left ventricular

(LV) endocardiunl were performed using CARTO (Biosense-Webster, Inc.) which allows for

3D mapping using a low-intensity magnetic field to localize the mapping catheter in space.
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Figure 3-15: Epicardial catheterization. To access the pericardial space, a needle is advance
from the subxyphoid region. The yellow arrow above represents the approximate location
of access when the pericardium is crossed. (Figure adapted from [69].)
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The LV endocardium was fully mapped during sinus rhythm to achieve a fill threshold of

15 mm. During pericardial mapping, the electroanatomical map was displayed as a solid

geometric shell without any superimposed electrical information. Using the registered MRI

dataset for catheter guidance (see below) radiofrequency ablation lesions were applied in a

temperature-controlled mode limit of 55°C with up to 50 Watts for 30-60 seconds. Dur-

ing retrospective post-processing analyses, electroanatomical identification of the infarcted

myocardium was delineated by bipolar voltage amplitude criteria; scar is defined as bipolar

voltage amplitude <1.5 mV, and a color scale range of 0.5 mV to 1.5 mV was displayed.

Real-time Experiments

Before each real-time experiment, the MRI datasets were manually segmented using cus-

tomized Matlab software (The MathWorks, Inc. Natick, MA). The Myo software was then

used to receive the MEAM data and perform the registration algorithms and visualization.

As described in Chapter 2, this software: i) displays and allows one to electronically manip-

ulate the segmented MRI dataset, ii) re-creates the electroanatomical map based upon the

transmitted spatial coordinates and electrogram information (including a simulation of the

interpolations of the electrogram data performed by the MEAM system), iii) registers the

two datasets based upon selected features of each dataset, and iv) allows real-time visual-

ization of the catheter tip atop the real time MRI image. The epicardial and scar anatomy

were used to guide catheter ablation in the pericardial space.

Registration

At the beginning of each in vivo procedure, contours from the segmented MR datasets were

loaded into the registration software. Surfaces representing the left ventricular endocardium,

ventricular epicardium and the myocardial scar, were generated for electronic display and

manipulation. Points acquired in the aorta and left ventricular endocardium were used to

register the MRI and MEAM datasets using the iterative closest points (ICP) algorithm.

The real time catheter location is projected onto the endocardial, scar and epicardial MR

images and used to guide the catheter in the pericardial space.

Gross Pathological examination

The animals were finally sacrificed and gross pathological examination was performed to

determine whether the delivered lesion corresponds to the scar border.

Results and Conclusions

In the following sections, results from the real-time. in ?vivo experiments and from retrospec-
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Strategy
Aorta
20 Endo
40 Endo
20 Epi
40 Epi
Aorta + 20 Endo
Aorta + 40 Endo
Aorta + 20 Epi
Aorta + 40 Epi
20 Endo + 20 Epi

Aorta Error (mm) Endo Error (mm) Epi Error (mm)
Mean ± Std. Dev Mean ± Std. Dev Mean ± Std. Dev

1.65 ± 1.27 7.71 ± 4.49 6.96 ± 4.33
9.95 ± 5.68 5.81 ± 3.95 7.06 ± 4.83
7.96 ± 4.56 4.34 ± 2.91 6.21 ± 4.27
10.99 i 8.27 7.42 ± 4.68 5.75 ± 4.08
6.93 + 4.23 5.07 ± 3.79 3.83 ± 3.61
1.51 ± 1.14 5.88 ± 3.40 6.00 ± 3.73
2.13 ± 1.40 5.18 ± 3.17 5.17 ± 3.50
2.11 ± 1.34 5.40 ± 3.64 5.61 ± 3.71
2.31 ± 1.49 5.03 ± 3.42 4.91 ± 3.70
8.72 i 6.21 4.67 ± 2.99 4.71 ± 3.60

Table 3.3: Evaluation of epicardial registration strategies.

tive simulations of registration strategies using the data from the in vivo experiments are

discussed. The retrospective evaluation will be presented first to discuss plausible clinical

registration schemes.

Retrospective Registration Simulations

Following the real-time experiments, the EAM data and pre-operative imaging data were

used in a series of retrospective registration experiments to determine the optimal clinical

strategy for registration and image-guidance on the epicardium of the heart.

Real-time Experiments

A total of 8 animals underwent an anterior infarction procedure. MR imaging was performed

88±38 days (range 42-133 days) after the infarction. The electroanatomical mapping and

registration procedure was performed 4±3 days (range 1-9 days) after the MRI. During LV

endocardial mapping, 114±25 points (range 74-155) were acquired during electroanatomical

mapping. During ventricular epicardial mapping, 121±35 points (range 84-187) were ac-

quired during electroanatomical mapping. Using the registered epicardial image, pericardial

radiofrequency ablation lesions were targeted to the epicardial borders of the scar; a total

of 2.9±1.7 lesions were delivered per animal (range 1-6). In two animals, only one lesion

could be delivered in each since ventricular fibrillation occurred and the animals could not

be resuscitated. Upon gross pathological examination, the ablation lesions were uniformly

situated at the borders of the scar.

These experiments establish the proof-of-principle that pre-acquired cardiac MR images

can be properly registered with intra-procedural electroanatomical mapping data to guide

catheter ablation along epicardial borders of the scarred myocardium. This strategy of
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Figure 3-16: After registration of the ventricle using LV endocardial and aortic points,
mapping of the ventricular epicardium was guided by the registered image. In A and B, the
segmented reconstructed MR images of the ventricular epicardium (in gray) and the scarred
myocardium (in brown) are shown along with the real-time location of the mapping/ablation
catheter tip (green-blue icon). The green points represent electroanatomical point locations
acquired on the ventricular epicardium. The projections in B and C are AP and Left-
Lateral, respectively. In the right anterior oblique view shown in C, the red dot represents
an ablation lesion.

Figure 3-17: Epicardial ablation results. Using the registered ventricular epicardial con-
struct, the ablation catheter was manipulated in the pericardial space to place lesions along
the scar border. In A, the electroanatoIniic'al Imap is shown in an AP projection as a solid
geomletric shell without any annotated electrical information; the two red dots represent
the locations of two ablation lesions delivered to the scar border (as defined by the regis-
tere(l IR image). In B, the cablation lesions (yellow asterisks) are indeed present at the
scar border (dotted yellow line). In a C, the epicardial bipolar voltage amplitude map was
dlisplayed in a post-hoc fashion: the ablation lesions (red dots) were again situated at the
scar bcorder (as defined by a bipolar voltage amplitutide of 1.5 mV.
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image-guided therapy might demonstrate clinical utility in guiding catheter ablation of

epicardial VT circuits.

3.5 Error Analysis

In the studies presented above to evaluate registration strategies for the left atrium, left

ventricle, and epicardial surface of the heart, error following the registration process was as-

sessed using the Euclidean distance between electroanatomical mapping points and the clos-

est corresponding points on the surface model. Stastical properties including the minimum

error, maximum error, mean error, and standard deviation of the error distributions were

calculated. While phantom studies and pre-clinical experiments were specifically designed

to assess the accuracy of registration, it is difficult to assess true accuracy in patients, where

the "ground-truth" is not known. Fluoroscopy, electrograms recorded from the catheter tip,

impedance measurements, and intracardiac ultrasound can be used in an attempt to assess

accuracy; however, individually each of these methods has limitations including limited soft

tissue contrast (fluroscopy), 2D imaging (ultrasound), and possible catheter deformation of

the anatomy.

Therefore, the point-to-surface statistics are useful to assess error, but this information

is an adjunct measure of accuracy. To assess the accuracy of registration between pre-

operative MR or CT imaging data and intra-operative EAM data, a retrospective study

was performed to evaluate convergance of the ICP and mICP registration algorithms. In

the following study, an EAM point sets of both the Left Atrium and Aorta were gener-

ated for a series of patients (n=5). These "synthetic" point sets were chosen from points

which defined the surface of the aorta or left atrium; therefore, it is possible for a resulting

registration to have zero error as measure by point-to-surface distance. A known rotation

was applied to the point set. Following the rotation, a registration was performed, and

the transformation resulting from the registration was compared to the rotation initially

applied to the "synthetic" EANI point. The process was repeated of a grid of rotations to

assess the "capture range" of the ICP algorithm. The registration was performed in two

ways: (1) only data from the left atrium was used for registration and (2) the aorta and

left atrium data was used for the registration process.

Results and Conclusions
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In the first series of registration convergance trials, the synthetic EAM data sets (80 points)

were generated from patient-specific left atrium models (n=5) and registered using only

the left atrium. Pertubations were then applied about the X-, Y-, and Z-axis ranging from

-60 to 60 degrees in 4 degree steps in the X- and Y- axis and 15 degree steps for Z-axis

rotations. After each perturbation, a registration between the EAM and imaging models

was calculated, and the resulting transformation was comapred to the known perturbation

(Figure 3-18).

In the second set of experiments, synthetic EAM point data of the (1) aorta and (2) left

atrium (80 points in each data set for 160 points total) was generated from patient-specific

imaging models (n=5). Again, a known rotational perturbation was applied (Rotation X:

-60 to 60 degrees in 4 degree increments; Rotation Y: -60 to 60 degrees in 4 degree incre-

ments; Rotation Z: -60 to 60 in 30 degree increments), and a registration was subsequently

calculated using the mICP algorithm. The error between the known perturbation and the

resulting transformation following the registration calculation was then calculated (Figure

3-19).

The capture range of the ICP and mICP algorithms is limited even in the "no noise"

experiments performed above. With the addition of the aorta using the mICP algorithm,

there was a larger capture range during the registration process. While these experiments

indicate that the aorta or another fiducial structure could be used to assist in registration of

the left atrium, left ventricle, or epicardial surface, there are several limitations. First, 4,805

to 8,649 registrations were computed to estimate the convergance regions shown (Figures 3-

18 and 3-19). This number of computations requires a significant amount of processing, and

therefore, limits the availability and utility of this information during an electrophysiology

procedure. In addition, the ground truth and perturbation are known, and therefore, we can

asssess the accuracy of the resulting registration; however, this information is not avialable

during in vivo interventions. Therefore, these results can be used a indication of robustness

or precision of a registration, but they will not assess the actual accuracy of a registration.

To make these methods useable intra-operatively during all electrophysiology procedure,

a pyramid scheme could be used in the following way. After registering the EAM data with

the pre-operative imaing models, a thread would compute numerous perturbations about

this registration - starting with small and increasingly larger rotation angles until the

perturbations do not coverge back to the registration solution initially found. In this case,
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Figure 3-18: Registration convergance analysis using left atrium. Dark blue pixels represent
small difference between the resulting registration and the applied perturbation of the data
(ie an accurate registration), and dark red represents rotation error difference greater than
50 degrees. In this series of images, a grid evaluation of registration convergance was
performed. A "synthetic" set of EAM points were generated from a patient-specific imaging
model. These points were then perturbed by applying a known rotation about the X, Y,
and Z axes. A registration was performed, and the resulting transformation was compared
to the known rotation applied to the data. The results are shown above. Each image
above represents a known rotation about the Z-axis. A pixel represents a single registration
result, where the perturbation angle is given by the x-axis and y-axis for the Z-axis rotation
indicated above each image. Notice the relatively small capture range of the ICP algorithm
in this case with no-noise added to the synthetic EAM dataset.
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Figure 3-19: Registration convergance using left atrium and aorta. In this figure, as above,
a known rotation was applied to a "synthetic" EAM point set, which was generated by
sampling a patient-specific imaging model. Registration was then performed using the
mICP algorithm describe above, where there are two classes assigned: aorta and left atrium.
Note the broader regions of convergance even with large rotational pertubrations.
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an extensive grid evaluation of convergance would not be available; however, the calculation

would estimate the size of the minimum to which the ICP or mICP algorithm converged.

3.6 Chapter Summary and Conclusions

In this chapter, we have described the typical clinical workflow for image integration of pre-

operative MR/CT imaging information with real-time catheter-based mapping data. These

steps include: 1) image acquisition 2) segmentation 3)electroanatomical mapping 4) regis-

tration 5) error analysis and 6) visualization. Physiological variation between steps (such

as image acquisition and electroanatomical mapping) of the clinical workflow can result in

poor registrations or large residual errors betwen the two data types. The physiological

variations include changes in heart rate, heart rhythm, respiratory effort.

Accurate registration of a highly-resolution pre-acquired 3D CT/MR image with real-

time electroanatomical mapping can facilitate left atrial, left ventricular, and epicardial

mapping and ablation, and has the added advantage of minimizing the amount of fluo-

roscopy exposure. However, these benefits are rendered irrelevant if the time required to

achieve an accurate registration solution is prohibitively long. Indeed, the practical utility

of image-guided therapy is highly dependent on achieving an accurate registration, but in

a short amount of time. To this end, the major findings of this chapter include: 1) the

curvature of vascular structures is highly-featured enough to accurately register chambers

of the heart, 2) the curvature of the full Aorta is unique enough to rapidly and accurately

register the LA-PVs, and 3) while potentially useful, registration using either the CS or

SVC was less accurate than the Aorta and had a propensity to result in inaccurate local

minima solutions

Registration using a vascular structure: It is important to recognize that the ICP regis-

tration algorithm employed in the custom system used in this study (as well as the system

currently available for clinical use, CartoMerge, Biosense-Webster, Inc.) is a rigid body

registration algorithm. This algorithm assumes that there is no deformation of any individ-

ual structure being mapped, nor distortion in the relationship between various structures.

Accordingly, if a vascular structure outside the chamber of interest is in a fixed relation-

ship with the heart, registration of one structure in theory should in effect register the 3D

CT/MR image with the EAM system frame of reference.
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The in vitro phantom experiments clearly demonstrated the power of incorporating a

curved vascular structure, the arch-descending aorta, into the registration process. However,

this in vitro model does not account for the various biological factors (including changes in

respiration, volume, cardiac motion, and catheter-related anatomical deformation) that are

present during in vivo mapping. Accordingly, the utility of registering a number of curved

vascular structures was assessed in a detailed retrospective evaluation

In theory, any highly featured curved vascular structure should suffice to accurately

register the LA-PVs, left ventricle, or epicardium. But in practice, only the Aorta provided

a near-accurate solution without the need for acquiring additional EAM information within

the LA-PVs; however, when using the aorta to register the left ventricle or epicardial surface

of the heart, it appears that some additional information is necessary. One reason for this is

likely related at least in part to the difference in mapping a relatively rigid arterial structure

versus more distensible venous structures. It is easy to obtain a constellation of contact

endovascular EAM points in the Aorta, but mapping the SVC and CS each have their own

unique challenges. For example, mapping the CS from a femoral venous approach has a

tendency to distend the vein. While not assessed in this study, it is possible that use of an

internal jugular approach may attenuate this deformation. Similarly, the SVC is relatively

easy to map, but it is a relatively straight structure that in itself does not provide enough

unique information to achieve an accurate registration solution for the LA-PVs (unpublished

data). The azygous and left brachiocephalic branches provide a unique shape, but entering

these vessels using the standard mapping catheters (particularly the former) can cause a

significant distortion in anatomy. It remains possible that more flexible specialized mapping

catheters could be developed to overcome these limitations in SVC or CS mapping. But

from a practical perspective, it is hard to imagine an economical solution save the use of a

system like the magnetic navigation system recently developed for clinical use. Additional

future work is required to assess whether the more flexible nature of this catheter might

make it a more forgiving tool for accurate venous mapping.

Segmentation of the Aorta, Coronary Sinus and Superior Vena Cava: For any

registration paradigm to be practical, it is important to be able to rapidly and accurately

segment the relevant structures. To this end, the aorta is typically not a difficult structure to

segment b)ecause: 1) it is relatively large and discretely located away from other contiguous

structures by at least several millimeters, and 2) the timing of the contrast bolus to best
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visualize the LA-PVs and LV is also able to visualize the aorta. Thus, the same CT or MR

imaging scan can adequately visualize all the relevant structures (both the LA-PVs or LV

and Aorta) even when the scan is of poor quality because of patient movement, breathing,

etc. One important caveat to the image acquisition is that inspiration results in movements

of both the LA-PVs or LV and the Aorta. As we have previously described: i) the heart

moves inferiorly and anteriorly, ii) the ipsilateral PVs diverge, iii) the descending aorta

doesn't move, iv) the arch of the aorta moves inferiorly, v) and the ascending aorta moves

inferiorly and left-ward.

To mitigate against this potential source of error, it is important to recognize that

intracardiac electroanatomical mapping is typically performed during quiet respiration and

specifically at the end of 'quiet expiration' (the level of the functional residual volume).

Thus, in order to properly employ the Aorta to register the LA-PVs, the CT or MR imaging

should also be performed at this same respiratory state the level of the functional residual

volume. In the authors' experience, this is easily achievable in virtually all patients with

proper instruction during the imaging scan.

Unlike the Aorta, segmentation of the CS can be challenging because of its small size

and proximity to the left atrium. Multi-detector CT scanning systems can largely overcome

this issue; however, the scan cannot be of poor quality and the patient cannot be in atrial

fibrillation. Furthermore, since the MR imaging protocol typically used to visualize the

LA-PVs is not cardiac-gated and of somewhat lower spatial resolution, the CS cannot be

adequately visualized in the same series of images. A separate MR pulse sequence can

be used to visualize and then segment the CS (unpublished observation). However, 1)

this increases the MRI scanning time, and 2) since the LA-PVs and CS are acquired in

separately, there exists the possibility of mis-alignment of the LA-PVs with the CS MRI.

This could happen, for example, if the phases of respiration of the breath-holds during

image acquisitions for the LA-PVs and CS are different.

Similarly, preparation of the SVC and its azygous and brachiocephalic branches can be

challenging. For CT imaging, the timing of the contrast bolus to visualize the LA-PVs

is not necessary optimal for visualizing the branches of SVC; during the bolus infusion

of contrast from the left arm, the SVC and brachiocephalic branches would be well seen,

but the azygous branch would not be seen. Both the azygous and LA-PVs would contain

adequate contrast with either a two-step contrast infusion protocol or a longer infusion
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time so that either i) contrast is still infusing at the time of imaging, or ii) the contrast has

completely passed though the circulation and all of the vascular structures can be visualized.

Unfortunately, the latter typically results in a lower than preferable contrast-to-noise ratio

and the CT acquisition must be of high quality (no movement or respiration during imaging)

and cannot have any artifacts (e.g. pacing leads). For MR imaging, just like for the CS,

separate pulse sequences are required to individually image the LA-PVs and the SVC with

its branches; and the same limitations exist.

From a practical perspective, if either the CS or SVC were able to accurately and

reliably register the LA-PVs with a level of accuracy comparable to use of the Aorta, the

difficulties attendant with proper CS / SVC image acquisition and segmentation could be

overcome. However, the image acquisition / segmentation difficulties are compounded by

the lack of good registration with either of these structures alone. The post-hoc registration

experiments in this study indicate that use of the CS or SVC for registration is dependent

on acquiring a significant amount of mapping information from within the LA-PVs. And if

this further LA-PVs EAM information is required (and may still result in a local minimal

solution without a full LA-PVs EAM dataset), the utility of CS or SVC mapping to quickly

register the CT/MR image is highly questionable.

Clinical Implications:

At the time this study was performed, there was no commercially-available software to inte-

grate EAM and imaging information; accordingly, custom software was written to conduct

this study. However, commercially-available software now exists to perform image inte-

gration for catheter ablation procedures (CartoMerge, Biosense-Webster, Inc.) and can be

employed for any of the registration strategies described in this study.

It is important to recognize that the clinical utility of this image-guided therapy as

described in this study is highly-dependent on the catheter ablation strategy employed by

the operator. It would be most useful for an ablation strategy that relies heavily on the

use of electroanatomical mapping to guide LA-PV catheter mapping and ablation. On the

other hand. a PV isolation strategy that employs only the use of fluoroscopy, or the use

of comlbination of ICE and fluoroscopy would likely benefit little from CT/MR image

integration. These ablation strategies would likely benefit more from the integration of

CT/MIR imaging with fluoroscopy itself.

But for electrophysiologists that employ electroanatomical mapping to guide the ab-
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lation procedure, the Aorta can be used to rapidly register the LA-PVs. Of note, it is

certainly true that the combination of the descending + arch of the aorta provided the

optimal information for rapid registration, but accurate registration may also be achieved

by mapping the descending aorta alone if this provides enough unique information. For

example, the descending aorta may provide adequately unique information in patients with

a 'sigmoid'-shaped aorta; alternatively, even in patients with a 'normal' aorta, accurate

registration may be achieved by acquiring some EAM information from only the proximal

(curved) region of the aortic arch, and not the full arch.

The location of the aorta between the two sets of pulmonary veins confers a unique

advantage to the use of this structure for registering the LA-PVs. While small errors are

certainly seen by use of the Aorta alone or even with the further incorporation of LA-PV

EAM information, this error is less likely to result in a left-right translation error. This

would be expected to make more unlikely the inadvertent placement of ablation lesions

within the PVs resulting in PV stenosis.

Since the heart is relatively rapidly registered using the Aorta, it should be noted that

this registration paradigm may also be used for aiding in the mapping and ablation of other

chambers of the heart including catheter ablation of ventricular tachycardia, or catheter

ablation of arrhythmias in patients with abnormal cardiac anatomy, such as in patients

with congenital heart disease.

Limitations of Aorta Registration: One disadvantage of Aorta registration is that by

necessity this requires a femoral arterial puncture using a 7 or 8Fr introducer sheath. This

disadvantage is mitigated in part by the fact that retrograde aortic access does confer the

ability to perform LA mapping using a different approach from simply transseptal mapping.

This can allow the operator to place the ablation electrode against left atrial tissue using

a different orientation and stability factors that can at times offer an advantage to the

transseptal approach at certain LA locations (such as the mitral annulus).

In patients with severe atherosclerotic aortic disease, extensive catheter manipulation

within the aorta is undesirable because of the risks of cerebral or peripheral embolization.

Fortunately, such patients with extensive atherosclerotic aortic disease are less common in

patients referred for AF ablation, and in any event, the pre-procedure CT or MRI scan

can easily detect luminal irregularities; when a severely diseased Aorta is recognized in a

particular patient, Aorta mapping can be foregone from the registration strategy.
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This study did not evaluate the use of other structures to register the LA-PVs such as

the right atrium or pulmonary artery. In preliminary work, the pulmonary artery was found

to be a difficult structure to map; while easy to place a catheter within the vessel, it proved

difficult to reliably collect luminal EAM points contacting the various walls of the vessel.

And mapping the right atrium in order to register the left atrium was also not preferable

from a workflow perspective. Similarly, this study did not assess the simultaneous use of

multiple structures to register the LA-PVs.

While both CT and MR images are typically acquired in sinus rhythm, only the CT

images are gated to the cardiac cycle. The inability to perform cardiac gating during

MR angiography results in the MR images approximating the end-diastolic volume of the

chamber that is, the largest size of the chamber. Since electroanatomical mapping was

also performed gated to the QRS complex, the diastolic dimension of the atrium is again

expected. Also, because the regions of the left atrium most relevant for performing a PV

isolation procedure do not tend to have large movements during the cardiac cycle (that

is, these regions are tethered to the body near the PVs), the phase of the cycle would

not be expected to have an overly negative/dramatic impact on the quality of registration.

However, additional studies are warranted to better understand the effects of cardiac gating

and cardiac rhythm on image processing and registration.

Until the development of real-time imaging modalities such as 3-dimensional ultrasound

imaging or real-time interventional MRI that may obviate the need for image integration,

there is a need for the development of a clinically-relevant approach to rapidly and accurately

register pre-acquired CT/MR images with real-time electroanatomical mapping to guide

catheter ablation procedures. To this end, this study establishes that the curvature of the

aorta allows it to serve as an internal fiducial structure capable of rapidly registering the 3D

imaging with electroanatornical mapping even before entering the left atrium. The accuracy

of this image integration can then be further refined by the incorporation of additional left

atrial information into the registration process. How this translates into improvements in

the safety. efficacy and speed of the catheter ablation procedure remains to be determined.
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Chapter 4

Multivariate Scattered Data

Interpolation for Model Warping

Following a registration of pre-operative MR or CT imaging data with intra-operative elec-

troanatomical mapping information, there are many reasons for residual errors to exist. The

reader is referred to Chapter 3 for an in-depth examination of error sources throughout the

clinical workflow. In addition, it is not uncommon for a patient under conscious sedation to

move from discomfort during the electroanatomical mapping and ablation procedure. This

movement corrupts the electroanatomical mapping information as well as any registration

which uses the now-corrupt information.

Whatever the underlying reason for residual error following registration, it is impor-

tant to have methods which can compensate for these differences, and if possible, recover

from patient movement. If an interpolation scheme is not used, the actual position of a

catheter could easily be misinterpreted, possible resulting in the application of therapy to

an undesired location within the heart.

In the following sections we will develop and compare methods to warp the pre-operative

CT or MIR image model to the intra-operative electroanatomical mapping data. The main

focus will apply radial basis functions to perform the data interpolation. Following the

development of these methods, we will evaluate the methods through retrospective analysis

of clinical data.
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Figure 4-1: Residual error following registration.Mean point error 1.922 mm. Std Dev. 1.61
Min: 0 Max: 8.3.

4.1 Motivation

Patient movement and physiological variations are two common causes for gross residual

errors following registration between imaging and mapping information. The reader is

referred to Chapter 3 for a discussion of the physiological variations and their effects on the

registration process (Figure 4-1).

Besides physiological differences, patient movement is another significant cause of resid-

ual errors; however in this case the errors affect the accuracy of the electroanatomical

mapping with which a registration is computed. In a typically situation, a patient under

conscious sedation will move due to positional discomfort or pain associated with radio-

frequency ablation application. The electroanatomical mapping system references points

acquired within the heart to a reference patch adhered to the mid-back of a patient. There-

fore. patient movement can alter the relationship of the heart to the reference patch through

soft-tissue deformation of the skin or through changes within the thorax. These changes

do not have to be significant (>3 mm), and often, the smaller changes are harder for the

clinician to recognize and respond to appropriately.

At this time, there are only two options available to the clinician, and both options

have significant limitations. The electrophysiologist can repeat the electroanatomical map-

ping process again. While this is the safest and most accurate way to understand changes
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resulting from patient-movement, this process is extremely time consuming and labor in-

tensive. In addition, there is no current method for identify ablation lesions placed before

the patient movement; therefore, the physician must constantly interpolate the changes

between the pre-movement and post-movement mapping data in his/her mind. The dis-

play of both pre-movement and post-movement electroanatomical maps can also be visual

confusing from the large regions of overlap and difficulty in distinguishing the difference be-

tween the pre-movement and post-movement maps. A minimal improvement can be made

by changing the representation of the pre-movement map to a point cloud representation

without an interpolating 3D surface. The second option is to continue the electrophysiology

procedure without remapping the cardiac chamber and repeating the registration process.

In this option, the transformation resulting from the movement is poorly understood.

Ideally, the methods developed here would be able to compensate for these changes

without the need for repeating the electroanatomical mapping system. In addition, meth-

ods to adapt electroanatomical mapping and ablation information acquired before patient

movement would greatly enhance the clinical utility of the interpolation methods.

4.2 Methods

Given a set of zero-valued surface points (on a pre-operatively derived heart model) and

a non-zero off-surface points of catheter based EAM points following registration, we are

trying to solve the a scattered data interpolation problem. Multivariate interpolation of

scattered data is a common problem encountered throughout science and engineering, and

there are multiple methods available with individual advantages and limitations. Radial ba-

sis functions will be our predominant focus; however, we will briefly review other methods

available for interpolation. The abstract problem description is similar to that of the regis-

tration process, and elastic transformations are commonly used in 2D and 3D domains for

registration as well as for warping of atlas information for intersubject registration problems.

4.2.1 Warping Algorithms

Warping algorithms for 3D deformation of data are broadly classified into two types: 1)

intensity-based algorithms and 2) feature-based algorithms. Model-based approaches con-

strain the warping algorithms through the use of control points, curves, surfaces, and other
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corresponding geometric feature information extracted from both data sets. In contrast to

model-based methods, intensity-based approaches match intensity patterns based on math-

ematical or statistical criteria [70].

4.2.2 Interpolation Problem Statement

In terms of our application, following rigid-body registration between pre-operative MR or

CT imaging data and intra-operative catheter-mapping data, there will be residual errors

from catheter deformation and physiological variations (Figure 4-1). To compensate for

these residual errors, an interpolation is desired:

Given a set of distinct nodes X = {xi} c 1R and a set of desired function values {fi} we

would like to find an interpolant s :3 - R3 such that

s(xi)- fi,i = 1,... ,n (4.1)

where xi = (x, y, z) for points x E R3 .

When warping the pre-operative imaging-derived surface models to the intra-operative

electroanatomical mapping information, the set X = {xi}, i = 1, ... , n are the locations of

the electroanatomical mapping points following registration to the pre-operative imaging

model using the ICP or mICP algorithm (Chapter 3). Likewise, following the registration

process, the set of {fi}, i = 1,... ,n points are the set of points lying on the surface model

which are closest to the EAM points (Figure 4-1).

4.2.3 Radial Basis Function Interpolation

From the problem statement above, we will consider interpolants, s, which take the form

of radial basis function expansions. In general, an RBF expansions take the two-part form:

n

s(x) = Pr(x) + Z Ai(llx - xi) (4.2)
i=1

where p,, is a low-degree polynomial or absent, I| I| denotes the Euclidean norm on RI3, and

O(r) for r > 0 is a fixed, real-valued, univariate function known as the basic function [71].

The basic function is usually unboudned and of global (non-compact) support.

The interpolation or approximation is a combination of radial basis functions centered
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around the landmark points x. If the polynomial in Equation (4.2) is of degree m, then

additional constraint on the coefficents are

Aiq(xi) = 0, for all polynomials q of degree at most m (4.3)
i=l

This constraint along with the interpolation statement in Equation (4.1) lead to a system

of linear equations for the coefficents which specify the RBF:

where the submatrices P,A, f, A, and c are:

A = (aij) = (0(jxj - x~j)) (4.5)

1 X1 al Z1 f
1 X2 Y2 Z2 f2. = .= (4.6)

1 n Zn fn

A = (1, 2, . 7An)
T (4.7)

C = (Co, C1, C2 , C3 )T (4.8)

pl(x) = co + clx + c2y + C3z (4.9)

Solving this linear system determines the A and c, and hense, the interpolator s(x).

Properties of radial basis functions

Perhaps the most widely-known and researched RBF is the 2D and 3D thin-plate spline,

given by:

¢(r) = U(r) = r 2 log r2 (4.10)
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This function U(r) satisfies the equation:

2U= (a 2+a2) U (4.11)

Therefore, U(r) is a fundamental solution of the biharmonic equation: A2U = 0 [72].

The function control points minimize the energy functional given by:

Ec)= J J/[e~eg + +9 f + 2 2 2(X f ] dxddz (4.12)
'92 az exey 8X'9\ ayaz

The choice of the radial basis function 0(r) determines important characteristics of the

resulting interpolation. Three important characteristics are [73]:

* Locality. The definition of locality here is referring to the global extent to which

a radial basis function centered at one interpolation position influences other radial

basis functions. Depending on the RBF choice, each landmark pair used for the

approximation effects the entire transformed space. Other RBFs allow for parameter

variation to limit the effects to a region surrounding the landmark pair.

* Solvability. In order to solve the linear system of equations defined in Equation

(4.4), the left-hand terms must be invertible or non-singular. Therefore, for thin-plate

spline interpolation, the landmarks must not be coplanar. However, the Gaussian and

multiquadric RBFs place no restrictions. In particular, the evaluation of RBFs does

not require the data to lie on a regular grid. A discussion of solvability and the choice

of RBF and singularity conditions is below.

* Efficiency. The computational efficiency of the interpolation scheme depends on

both the radial basis function choice as well as the number of landmark pairs. While

the ever increasing computational speed of computers may reduce concern regarding

computational efficiency, there are two important factors to consider. First, variation

of the constant parameters in the radial basis functions below require recalculation of

the solution to the linear system in Equation (4.4). Second, the warping algorithms

are being used in a multi-threaded, real-time system during cardiac electrophysiology

procedures; therefore. these methods must be extremely fast (on the order of 10-15
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seconds).

Common radial basis functions

There are several commonly used radial basis functions. These are linear, thin-plate splines,

Gaussian, multiquadric, and inverse multiquadrics [74, 75, 73, 71].

(r) = r (linear)

0(r) = r2 log(r), r2 log(r2) (thin - plate spline)

t(r) = r3 (triharmonic)
(4.13)

q5(r) = ear2 , (a > 0) (Gaussian)

0(r) = r2 + c2, (c > O) (multiquadric)

(r) = (inverse quadric)

Compactly supported radial basis functions

One limitation of the radial basis functions listed above is the global support or influence

of all landmark pairs on the warping. Radial basis functions with compact support are

an attractive alternative. The Wendland functions (sometimes known as the +p-functions

of Wendland) are a set of univariate, piecewise polynomials. The general form of these

functions is given by:

(p(r) 0 < r < 1
lf~~~(rf) = ·"'<~~~ r(4.14)

0 r>1

Therefore, outside some range of r the function will be identically zero. The resulting linear

system in Equation (4.4) will then have sparse matrices, and well-known methods can be

exploited in the evaluation of the equation.

4.3 Results and Discussion

Using the radial basis functions explained above, a series of simulations and retrospective

evaluations was performed on patient data from catheter-based pulmonary veins isolation

procedures conducted under image-guidance using the Myo software system. For the fol-

lowing evaluations, registration between EAM and imaging data was performed for a series

of 10 patients. Following the registration using a combination of the entire aorta and left

atrial points, point-to-surface distance was calculated for the left atrium points as well as

separately for the ablation point set (Table 4.1). The pre-operative imaging model was
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LA Error (mm) Abl. Error (mm)
Patient ID Mean (Std.Dev.) Mean (Std.Dev.)
Patient #1 1.59 (1.59) 2.74 (1.90
Patient #2 1.56 (±1.04) 2.50 (±1.55)
Patient #3 2.16 (±1.67) 2.55 (±2.14)
Patient #4 1.70 (±1.39) 2.05 (±1.40)
Patient #5 1.35 (±1.37) 2.16 (±1.50)
Patient #6 2.42 (±1.99) 4.46 (±2.82)
Patient #7 1.41 (±1.18) 1.33 (1.09)
Patient #8 1.68 (±1.25) 2.24 (±2.17)
Patient #9 1.84 (±1.79) 2.82 (±2.03)
Patient #10 1.36 (1.11) 1.88 (1.61)
Mean: 1.69 2.47

Table 4.1: Registration error using aorta + left atrium prior to warping.

then warped to compensate for the residual errors following the registration process. The

points used during the calculation were only points within the left atrium and one fifth of

the ablation point set. The entire point set could be used; however, in this case there would

be no error, as the radial basis functions would interpolate all points. The warping was

repeated for multiple radial basis functions. After each new transformation was applied to

the imaging model, the point-to-surface error was recalculated for the ablation point set.

Registration was performed using the aorta and left atrium in 10 patients. The resulting

point-to-surface errors were then calculated for both the left atrial points and the ablation

point set (Table 4.1). Two radial basis functions were then used to deform the surface

to compensate for the residual errors following the registration process. In the first set of

simulations, a linear radial basis function was used (Table 4.2). The second set a warping was

performed using a thin-plate spline radial basis function (Table 4.3). In both cases, these

radial basis functions have global support; therefore, the resulting warp transformations

result in deformations of the entire surface model.

4.4 Summary and Conclusions

Residual errors following the registration of pre-operative CT or MR imaging data with

real-time catheter mapping information can be visually confusing to an electrophysiologist

using image-guidance during a catheter intervention. There are many causes for these resid-

ual errors including catheter deformation of a cardiac chamber, patient movement, physi-
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Baseline Error (mm) Post-Warp
Patient ID Mean (Std.Dev.) Mean (Std.Dev.)
Patient #1 2.74 (1.90) 1.23 (1.02)
Patient #2 2.50 (+1.55) 1.54 (±1.27)
Patient #3 2.55 (±2.14) 1.77 (±1.93)
Patient #4 2.05 (±1.40) 1.69 (1.19)
Patient #5 2.16 (1.50) 1.46 (1.30)
Patient #6 4.46 (±2.82) 1.64 (±1.51)
Patient #7 1.33 (±1.09) 1.42 (1.11)
Patient #8 2.24 (±2.17) 1.49 (±1.45)
Patient #9 2.82 (±2.03) 1.98 (1.44)
Patient #10 1.88 (±1.61) 1.52 (1.33)
Mean: 2.47 1.57

Table 4.2: Warping results using linear radial basis function.

Baseline Error (mm) Post-Warp
Patient ID Mean (Std.Dev.) Mean (Std.Dev.)
Patient #1 2.74 (±1.90) 1.17 (0.98)
Patient #2 2.50 (±1.55) 1.46 (±1.20)
Patient #3 2.55 (±2.14) 1.83 (±2.08)
Patient #4 2.05 (±1.40) 1.60 (±1.16)
Patient #5 2.16 (1.50) 1.50 (±1.31)
Patient #6 4.46 (±2.82) 1.67 (1.43)
Patient #7 1.33 (±1.09) 1.57 (±1.17)
Patient #8 2.24 (±2.17) 1.38 (±1.26)
Patient #9 2.82 (±2.03) 1.75 (±1.22)
Patient #10 1.88 (±1.61) 1.65 (±1.50)
Mean: 2.47 1.56

Table 4.3: Warping results using thin plate spline radial basis function.
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ological variations in heart rate, heart rhythm, and respiratory patterns; however, precise

quantification of these changes and their impact on the registration process is extremely

difficult. In this chapter, we have explored interpolation using radial basis functions as a

means to correct for these residual differences. Interpolation using radial basis functions

are computationally efficient and provide a smooth warping.

As an extension to this work, the incorporation of automatic estimate of spatial support

extent would reduce the manual calibration required presently. Another extension would

include regularization to relax the constraints of the interpolation scheme to allow for noise

or inaccurate data without causing dramatic surface curvature effects (Figure 4-2).
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Figure 4-2: High curvature surface warping region. Without regularization, the radial basis
functions interpolate all controll points, and this interpolate can result in regions with high
surface curvature as highlighted by the orange arrows seen in the figure above. High surface
curvature is typically a result of internal and external points with respect to the surface
model in close proximity.
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Chapter 5

Conclusions

5.1 Summary

Cardiac arrhythmias arise from disturbances in the normal generation or conduction of elec-

trical impulses within the heart, and these disturbances can result in significant morbidity

and mortality. Atrial fibrillation and ventricular tachycardia are two types of complex ar-

rhythmias with major clinical significance. Medical therapy can suppress these arrhythmias,

and medical devices such as implantable cardioversion defibrillators can provide palliative

care by reacting to life-threatening cardiac rhythms. However, minimally-invasive catheter-

based ablation has become a preferred and curative method to eliminate these arrhythmias

in patients. These catheter-based procedures have been greatly enhanced by the used of

non-fluoroscopic electroanatomical mapping systems, which allow a physician to accurately

and precisely track a catheter within a patient's beating heart. While the precise catheter

tracking and mapping has facilitated treatment of complex arrhythmias, mapping is a time-

consuming, effort-intense, and skill-dependent operation; the resulting maps are a sparse

representation of both the patient-specific anatomy and pathology. To augment catheter-

mapping procedures, we proposed the integration of pre-operative MR or CT imaging in-

formation. These modalities can provide high temporal- and spatial-resolution information

regardling patient-specific anatomy and pathology.

To integrate the pre-operative imaging information with the intra-operative catheter-

mapping information, in Chapter 2, we described the Myo system which handles several

streams of data from the electrophysiology lab. These streams include pre-operative imaging

and pre-operative planning data as well as real-time electroanatomical mapping positions
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from one or more mapping system, ablation information from an RF generator, electro-

gram information from an EP recording system, and information from remote catheter

manipulations systems. The software is robust platform for visualization, manipulation,

and processing of these data streams with an ultimate goal of streamlining all of this infor-

mation in such as way to improve the physicians understanding of both the disease as well

as his or her applied therapies.

Using the Myo system, in Chapter 3 we proposed, tested, and compared methods to

quickly and accurately register or align pre-operative CT or MR imaging data with sparse

electroanatomical mapping points acquired during a catheter-based electrophysiology study.

Internal fiducial structures provided a useful constraint to the registration process. After

evaluating several candidates, the aorta was selected as an optimal constraint. Several

clinical registration were also evaluated for registration in the left atrium, left ventricle, and

epicardial surface of the heart.

In Chapter 4, we presented methods for warping or deforming the pre-operative imag-

ing data to compensate for residual errors following registration. Radial basis functions

were explored because of their desirable properties. These univariate funcions provide a

computational efficent means for smooth interpolation of data.

5.2 Future Work and Extensions

While this work provides a robust framework for the integration of pre-operative imaging

data with real-time electroanatomical mapping data, there are several further directions for

this research to be extended. As the work has developed addition interfaces to the Myo

system have been created. Remote catheter manipulation is rapidly developing in cardiac

electrophysiology. Furthermore, rotational angiography is promising new imaging modality

being developed and used within the Myo framework.

We are currently developing a system which combines information from two electroanatom-

ical mapping systems. The first mapping system provides highly accurate data using pulsed

electromagnetic signals to triangulate the position of the catheter. The second system can

localize many catheter simultaneously through determination of bioelectrical impedance

differences across three orthogonal fields imposed on a patient. By combining these two

mapping systems, there a several desired advantages. The system will allow for simulta-
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neous visualization and tracking of multiple catheters within a patient's heart. Using the

1Myo system, this data can be additionally annotated with frequency mapping information

or used to more quickly determine entrance and exit sites for reentrant arrhythmias.

We are also examining methods to incorporate additional information regarding the

application of RF ablation lesions. Currently information is available from the RF gener-

ator including several parameters characterizing a lesion. Using this information as well

as the image integration paradigm developed in this dissertation could result in a better

understanding of RF ablation application within the heart. This, in turn, could reduce the

likelihood of breakthrough when treating arrhythmias.

Finally, the combination of patient-specific anatomy and electroanatomical mapping in-

formation could improve understanding of arrhythmogenic circuits. First, delayed-enhancement

MR imaging can provided detailed information regarding scar tissue in the left ventricle.

This imaging information could be correlated with electrophysiology stuides in an attempt

to image the substrate for sudden cardiac death. Furthermore, patient specific imaging

information could be used to model reentrant arrhythmias such as atypical flutters or ven-

tricular tachycardia. However, near real-time methods or approximations would be needed

to make use of this information during an electrophysiology intervention.
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