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Abstract 

Natural composites in general and sedimentary rocks in particular are highly heterogeneous 
materials which defy a straightforward implementation of the materials science paradigm of 
microstructure-properties-performance correlation. The application of nanoindentation to nat- 
ural composites has provided the geomechanics community with a new versatile tool to test 
in situ phase properties and structures of geomaterials that cannot be recapitulated ex situ in 
bulk form. But it requires a rigorous indentation analysis to translate indentation data into 
meaningful mechanical properties. The development and implementation of such an indenta- 
tion analysis for the strength properties of cohesive-frictional porous materials is the focus of 
this thesis. We report the development and implementation of a multi-scale indentation analy- 
sis based on limit analysis, which makes it possible to infer from an experimental hardness 
value and the solid's packing density the strength properties of the cohesive-frictional porous 
material. Making use of most recent advances in non-linear strength homogenization theory, 
we implement a homogenized cohesive Cam-Clay type elliptical strength criterion which takes 
into account the strength properties of the constituents (cohesion and friction), the porosity 
and the microstructure, into a yield design approach to indentation analysis. Making use of the 
strong duality of the lower and upper bound theorem, we identify the resulting upper bound 
problem as a Second-Order Conical optimization problem, for which advanced solvers such as 
MOSEK became recently available. The originality of our approach lies in the combination 
of finite element discretization and advanced optimization techniques, which is readily imple- 
mented in standard tools of computational mechanics, such as MATLAB. The upper bound yield 
design solutions are benchmarked against solutions from comprehensive elastoplastic contact 
mechanics finite element solutions and compared with lower bound solutions, which all show an 
excellent agreement. Furthermore, from a detailed pararnet er study based on intensive compu- 
tational simulations, we show that it is possible to condense the indentation hardness-material 
properties relation of cohesive-frictional porous materials into a single hardness-packing density 
scaling relation. On this basis, it is possible to use the hardness-packing density scaling relation 
for reverse analysis of the strength parameters of cohesive-frictional solids from indentation. 
The procedure is illustrated for shale materials. Fkom hardness values of six shale materials of 
different packing density and mineralogy, we deduce that the clay fabric in highly compacted 



shales is most likely a purely cohesive (friction-less) nano-granular material, having a uniaxial 
strength of roughly 440 MPa. 

Thesis Supervisor: Franz- Josef Ulm 
Title: Professor of Civil and Environmental Engineering 
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Part I 

General Present at ion 



Chapter 1 

Introduction 

Is it possible to break down natural composite material, such as shales, clays, clay- 

bearing sedimentary rocks, carbonates, sandstones, even salt rock down to a scale 

where rock mechanical characteristics no longer change from one type to  another, 

and upscale ("nanoengineer") the behavior from the nanoscale to the macroscale of 

engineering rock behavior? 

The question here raised is at the core of a new approach to geomechanics in experimental 

nano- and micromechanics of geomaterials, known as the GeoGenome project [I]. This thesis 

aims at contributing to this project with a particular focus on the assessment of strength 

properties of porous geomaterials by nanoindentation. This Chapter provides an introduction 

to the topic, research motivation and objectives, and an outline of this report. 

1.1 Industrial Context 

The strength properties of geomaterials in general and of sedimentary rocks in particular are 

of critical importance for many fields of oil and gas exploitation engineering, ranging from 

hydraulic fracturing and well bore stability to the appropriate choice of the drilling fluid chem- 

istry and density and unwanted sand production phenomena. Measuring and predicting the 

strength properties is of utmost importance. Classically, strength properties are estimated us- 

ing macroscopic triaxial testing methods. However, this classical technique requires expensive 



macroscopic material sampling often from very high depths. Furthermore, all rocks exhibit a 

high degree of heterogeneity, which makes it difficult to extrapolate strength values from one 

horizon to another. 

Very recently, a new approach has been suggested to deal with the intrinsic diversity of earth 

materials. Coined the GeoGenome project [I], this approach aims at identifying a fundament a1 

unit of material invariant behavior of sedimentary rocks. Once this scale is identified, it is 

possible to upscale the intrinsic material behavior from the nano-scale to the macro-scale, and 

quantify macroscopic diversity on the basis of a few material invariant properties. The work 

presented in this thesis is part of this 'genoming' effort of geomaterials. 

1.2 Research Motivation and Objectives 

One of the main experimental tools in the GeoGenome project is nanoindentation, that is the 

nan~scale  deformation of a material surface by a rigid indenter1. The nanoscale mechanical 

contact approach overcomes two main restrictions of macroscopic testing: (1) it can be carried 

out on small material volumes; (2) it allows testing of in situ phase properties and structures of 

geomaterials that cannot be recapitulated ex situ in bulk form. Nanoindentation alone, however, 

does not directly provide a measurement of the material properties, but provides a snapshot 

of them embedded into the measured indentation data. Indeed, it requires an appropriate 

indent at ion analysis to translate indent ation data into meaningful material properties. 

This thesis deals with the indentation analysis of the hardness of porous materials. The 

hardness is obtained by dividing the applied load P by the projected contact area A, (see Fig. 

1-1): 

Our aim is to relate this measured quantity to meaningful strength properties and morphology 

of porous materials. 

The hardness of materials is a fundamental quantity used in Materials Science and Engi- 

neering for materials property characterization. For purely cohesive materials like metals, the 

' A detailed description of this technique is given in Chapter 2. 
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Figure 1-1: Schematic of an indentation test on a porous material. Two possible pore morpholo- 
gies of an rev are displayed: (a) matrix pore morphology (qO = 0); (b) disordered polycrystal 
morphology (qo = 0.5). 



rule-of-thumb is that the hardness is roughly three times the uniaxial yield strength of the ma- 

terial, i.e. H / Y  = 3 [73]. This rule-of-thumb fails for cohesive-frictional materials for which it 

was recently recognized that the hardness-to-cohesion ratio depends as well on the friction angle 

q5 and other parameters relating to the geometry of the indenter (for instance cone angle 6), i.e. 

H / C  = 3 (4,6) [37]. However, those relations are restricted to monolithic material systems, 

and cannot be applied to porous materials, the class of materials composing the majority of 

natural composites, including shales, clays, clay- bearing sedimentary rocks, carbonates, sand- 

stones, etc. This motivates the research presented in this thesis. More specifically, making 

use of recent progress in non-linear micromechanics [30] we seek for the relation between the 

indentation hardness (1.1) and the following properties characterizing the isotropic strength 

behavior of a two phase solid-pore composite (see Fig. 1-1): 

1. Cohesion cS and friction angle of the solid phase; 

2. The porosity p respectively the solid concentration or solid packing density 17 = 1 - p; 

3. The connectivity of the solid phase captured by a percolation threshold 170, below which 

the porous material looses its mechanical performance. 

Thus, we are interested in determining the following relation: 

where 6 represents a dimensionless geometrical parameter characterizing the indenter geometry. 

Once this relation is available, it becomes possible to translate indentation data, namely the 

hardness, into meaningful strength properties of a porous material. In particular, it should 

enable us to answer the following two questions: 

If information about porosity and pore morphology (i.e. percolation threshold qO) of a 

material is available, is it possible to deduce from hardness measurements the cohesion 

and friction angle of the solid phase? The answer to this question is of critical importance 

for indentation analysis of porous materials, providing a quantitative means to estimate 



from a nanoscale contact approach the in situ nano-strength properties of the solid phase 

of porous materials. 

a If a large range of hardness measurements on materials of different compositions and 

porosities is available, is it possible to infer the link between composition, microstruc- 

ture and mechanical properties of a class of materials, like shales? The answer to this 

question is of critical importance for the GeoGenome project. Indeed, it would put the 

problem of natural porous materials on par with other monolithic materials systems such 

as int ermet allic alloys and ceramics and semiconduct or materials . 

1.3 Chosen Approach 

To reach our goal, we break down the problem in three different tasks. 

The first task consists of analyzing the micromechanics of strength properties of porous 

materials, and of translating those relations into a workable model for analyzing the compos- 

ite strength behavior of porous materials on the basis of constituent properties (cs, +') and 

microstructure (p,~,,). We will achieve this task by a combination of strength homogeniza- 

tion and yield design theory, to arrive at expressions of the dissipation potential of a porous 

material composed of a purely cohesive and a cohesive-frictional solid phase, captured by the 

Von-Mises and Drucker-Prager strength model, respectively. In addition, two limit cases of the 

microstructure of porous materials are considered, namely a matrix-pore inclusion morphology 

and a disordered polycrystal morphology (see Fig. 1-1). 

The second task consists in the computational implement ation of the yield design theory 

for the determination of the hardness-tecohesion relation (1.2). In particular, we will focus 

on the implementation of the Upper Bound Limit Theorem of yield design as a non-linear 

minimization problem, combining the meanwhile classical discrete formulation of the Upper 

Bound Limit Theorem with second-order conical constraints that are solved with the solver 

MOSEK. 

This computational implementation is put to work for the analysis of indentation tests of 

different cone angles 6.  Normalized hardness-to-solid cohesion relations of the form (1.2) are 



determined through intensive computational simulations. The use of those relations for practical 

indentation analysis of porous materials is illustrated through the application to indentation 

data of shale materials of different mineralogy and packing density. 

1.4 Thesis Outline 

This report is divided in four parts: 

Following this Introduction Chapter, the second Chapter of this first part provides an in- 

troduction to indentation testing and a review of existing indentation analysis of strength 

properties. This will be achieved by means of a dimensional analysis of the involved quantities, 

culminating in the derivation of the dimensionless relation (1.2) which is at the core of our 

investigation. 

Part I1 of this thesis is devoted to the determination of this hardness-to-cohesion ratio for 

cohesive-frictional porous materials. It is composed of two Chapters: Chapter 3 starts out 

with a brief introduction to strength homogenization theory of porous composites composed 

of a cohesive or cohesive-frictional solid and a pore space. Using both the Lower and Upper 

Bound Limit Theorem, we show how this homogenized strength criterion can be put to work for 

indent ation analysis. Chapter 4 is devoted to the computational mechanics implement ation of 

the Upper Bound Theorem of Yield Design as a minimization problem for indentation analysis 

of the strength properties of a porous material. This will be achieved by identifying first the 

type of optimization problem, and by a reformulation of the problem that makes it possible to 

solve the minimization problem with advanced solver software. 

Part I11 is devoted to the determination of the dimensionless relation (1.2) based on inten- 

sive computational simulations. In particular, Chapter 5 is devoted to the validation of the 

computational method developed in Part 11, and also studies the sensitivity of the numerical 

results with regard to the mesh size. Chapter 6 presents a detailed parameter study of the dif- 

ferent dimensionless numbers that affect the hardness- to-cohesion ratio (1.2), and summarizes 

the results in terms of characteristic curves that can be used for indentation analysis. 

Finally, Chapter 7 in Part IV is devoted to the application of the method to shale materials, 

from which we provide estimates of the solid's cohesion cS and friction angle together with 



some preliminary conclusions regarding the morphological arrangement of this nano-granular 

material. 

The main findings and contributions of this study are summarized in Chapter 8, which also 

suggests perspectives for future research. 

1.5 Research Significance 

The research presented in this thesis aims at contributing to the GeoGenome project, by pro- 

viding an innovative means for the assessment of nano-strength properties of porous composites 

from indentation data. This assessment is of critical importance for both the identification of 

material invariant properties of such materials, and for the development of quantitative up- 

scaling rules that ultimately shall allow the prediction of macroscopic strength properties of 

geomaterials. In fact, the determination of nano-strength properties (cS,  4') from nanoinden- 

tation provides for the first time access to properties of the solid phase of a porous material at 

the nanometer scale. Those values can directly be employed for the prediction of the strength 

domain of the porous material at larger scales, provided the pore volume fraction cp and the 

pore morphology, expressed for instance by the solid percolation threshold 70, are known. Vice 

versa, if the strength properties are known, it is possible to identify the mechanical performance 

of porous materials in terms of strength-packing density relations and solid percolation thresh- 

olds. The tools developed in this thesis, therefore, contribute to materials science research of 

natural composites, that aims at correlating nano- and microstructure of porous materials with 

properties and performance. It is on this basis that we expect progress in nanotechnology to 

impact everyday engineering applications and society. 



Chapter 2 

Nanoindentat ion Technique and 

Indentat ion Analysis 

The advent of instrumented indent at ion techniques has provided the mechanics community 

with an unprecedented opportunity to explore mechanical properties of materials at multi- 

ple length and force scales. Indeed, thanks to the self-similarity possible in indentation tests 

and the resulting mechanical response of the materials system, one single experimental tech- 

nique is able to provide access to mechanical properties of materials from the nanoscale to the 

macroscale. Most of the developments in the last decade concentrated on indent ation testing 

of metals, which are atomically cohesive materials. In contrast, natural composit es, like shales, 

clays, clay-bearing sedimentary rocks, carbonates, sandstones, even salt rock, are porous mate- 

rials that exhibit macroscopically a pronounced cohesive-frictional behavior. Following a short 

introduction to the nanoindentation technique, the aim of this Chapter is to review recent de- 

velopments, strength and limitations of indent ation met hods for the determination of strength 

properties. Based on this review and dimensional analysis, we will define the focus of this study: 

the indentation hardness-tesolid cohesion ratio H/cS  of a porous material. 
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Figure 2-1: A typical P - h curve obtained on a shale material (courtesy of C. Bobko, MIT): 
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Typically, the extraction of mechanical properties is achieved by applying a continuum scale 

mechanical model to derive two quantities, indentation hardness H and indentation modulus 



All quantities required to determine H and M are directly obtained from the P - h curve, 

with the exception of the projected area of contact Ac. Chief among those are the maximum 

applied force Pma and corresponding maximum depth h,,, , the unloading indent at ion stiffness 

= (dP/dh)h,hmax, and residual indentation depth h upon full unloading of the material 

surface (Fig. 2-1). The contact area A, can also be extrapolated from the maximum depth 

hmax [55] .  

It should be noted that both hardness and indentation modulus are not material properties 

per se, but rather 'snapshots' of respectively the strength response and the elastic response of 

the indented material. This will be discussed in Section 2.2 below. 

2.1.2 Self-similarity of the Indentation Test 

Spherical, conical and pyramidal indenters are the most common shapes used in practice1. In 

this thesis, we will focus on sharp indent at ion testing with conical or pyramidal indenters. 

The Vickers indenter is a four-sided pyramid with a semi-vertical angle of 68" (Fig.2-2). The 

Berkovich indenter which is commonly employed for small scale testing is a three-sided pyramid 

and was constructed with a semi-vertical angle of 65.3", such as to maintain the same area-to- 

depth ratio as the Vickers indenter. In contrast to the four-sided pyramids, Berkovich indenters 

have the advantage that their three edges are more easily manufactured to meet at a point. A 

cube corner indenter has the same geometry as a Berkovich indenter but with a sharper face 

angle of 90". 

One key feature of the analysis of pyramidal or conical indentation is the self-similarity 

of Hertz-type contact problems. The conditions under which frictionless Hertz type contact 

problems possess classical self-similarity were stated by Borodich 161; and include: 

1. The shape of the indenter is described by a homogeneous function whose degree is greater 

or equal to unity. Using a Cartesian coordinate system Oxlx2x3 whose origin 0 is at 

the indenter tip and x3 is the orientation of the indentation, the shape of the indenter 

(height) is defined by: 

f ( A l l ,  Ax2) = Adf (x1,x2) (2.3) 

'inspired by the presentation of G. Constantinides in his Ph.D-Thesis [23]. 

28 
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Figure 2-2: Geometrical caracteristics of conical, Vickers and Berkovich indenters (&om [23]). 
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pyramid, d = 1, and making use of the triple symmetry: 

B (4 )  = cot z9 sin (7r/6 + 4)  (2.6) 

where z9 is the angle in vertical cross-sections. For a Berkovich indenter, having a face 

angle of 115.13", z9 = 65.3"; and for a cube corner indenter of 90" face angle, 29 = 35.26" 

(see Tab. 2.1). 

2. The operator of constitutive relations F for the indented material is a homogeneous 

function of degree n with respect to the components of the strain tensor E (respectively 

the strain rate-tensor d ): 

A linear elastic law satisfies this relation since K = 1; as does any nonlinear secant elastic 

formulation of the form a = @ ( E )  : E for which the secant elastic stiffness tensor satisfies: 

A similar reasoning applies to the dissipation function 7r (Ad ) = An7r (d ) applied in yield 

design solutions, as we will see in forthcoming Chapters. 

Then provided the homogeneity of material properties and that the stress-strain relation 

remains the same for any depth of indentation, the whole load-displacement curve in a depth- 

sensing test can be scaled by [6]: 

It is important to note that the projected contact area A, - in contrast to the load P - is not 

affected by the constitutive relation (coefficient n) . In return, from a straightforward application 

of (2.1), the hardness scales with the indentation depth according to: 



Table 2.1: Geometrical relations between projected area and equivalent half-apex cone angle. 

Berkovich 
Vickers 

Cube corner 
Cone 

In the case of conical and ideal (sharp) pyramidal indenters, for which d = 1, we readily find 

that the load-displacement relation is scaled by P oc h2 and that the hardness is a constant 

over the loading process. That is, 

Semi-vertical angle, 6 
65.3" 

Projected Area 

3J3h2 tan2 6 

Finally, the degree of the homogeneous shape function is d = 1 for both the three-sided 

pyramidal (Berkovich, corner cube) indenters and for the conical indenter. For this reason, it 

is common practice to consider, instead of the original three-dimensional pyramidal shape, an 

equivalent cone of revolution. The projected contact area of this cone w.r.t. to depth is the 

same as that of the real indenter; that is, according to (2.9): 

Equivalent cone angle 6 

70.32" 
4h%an2 6 

3d3h2 tan2 6 
nh%an2 6 

where Cl is a constant characterizing the specific pyramidal indenter, and 6 is the equivalent 

semi-apex cone angle (see Tab. 2.1). Using Eq. (2.12), the flat Berkovich indenter (I9 = 65.3*), 

for which C1 = 24.56, can be assimilated to an equivalent cone of semi-apex angle 6 = 70.32"; 

and a cube corner indenter (I9 = 35.26"; Cl = 2.598) to one with 6 = 42.28'. The area-to-depth 

relations for different sharp indenter shapes are summarized in Table 2.1. 

This correspondence is very helpful since the use of a conical indenter, instead of the full 

3-D t hree-sided pyramidal indenter, allows us to formulate the sharp indent at ion problem as a 

2-D axisymmetric problem, which is much more computationally efficient. 

68.0" 
35.26" 

6 

70.32" 
42.28" 

6 



2.2 Indent at ion Analysis 

From now on, we will focus on the indentation analysis of conical indentation2. Indentation 

analysis aims at linking indentation data to meaningful material properties. As we have already 

noted, both the contact stiffness and the hardness, as defined by (2.2) and (2.1) are not material 

properties. This Section reviews some tools of continuum indentation analysis. 

2.2.1 Contact Stiffness and Indentation Modulus 

The investigation of the link between the unloading slope S and the elasticity properties of the 

indented material is recent3, thanks to the development of depth sensing indent at ion techniques 

which provide a continuous record of the P - h curve during loading and unloading in an 

indentation test. The contact stiffness S = (dP/dh) ,=,_ gives a measure of the material elastic 

response, as Eq. (2.2) shows, which is also known as Bulychev-Alekhin-Shoroshorov (BASh) 

equation [14] or Sneddon's solution [68]. It originates from the analytical solution of Heinrich 

Hertz (1882) 1421 of the linear contact problem of two spherical surfaces (with different radii 

and elastic constants), which provides a means of evaluating the contact area of indentation, 

and which forms the basis of much experimental and theoretical work in indentation analysis 

based on contact mechanics. In 1885, Boussinesq published a solution for the problem of contact 

between a solid of revolution and an elastic continuum [9], of which the flat punch solution is the 

best known. In the first half of the 20th century, the elastic solutions were extended to other 

shapes of indenters by Love 1511, Galin [35], and Harding and Sneddon 1411. Subsequently, 

Sneddon 1681 derived general relationships among load, displacement and contact area for a 

punch of arbitrary axisymmetric shape. Much of the later developments [28][55] rely on these 

general solutions and solution methods, which constitute the basis for what is now known as 

(elastic) indent at ion analysis; that is, the translation of indent at ion data into meaningful elastic 

2~nspired by the presentation of G. Constantinides in his Ph.D-Thesis [23]. 
3Depth sensing indentation techniques have been conceptualized by Tabor and coworkers (731, and its imple- 

mentation down to the nanoscale appears to have developed first in the former Soviet Union from the mid 1950s 
on throughout the 1970s (for a review of the chronology of events, see, for instance, [7]). This instrumented 
indentation approach received considerable attention world-wide, ever since Doerner and Nix [28] and Oliver and 
Pharr [55] in the late 1980s and early 1990s, also identified this technique for analysis and estimation of mechan- 
ical properties of materials, such as microelectronic thin films for which few other experimental approaches were 
available. 



mechanical properties. In fact, the indentation modulus M that is determined from the BASh 

equation (2.2) can be linked to the elastic constants of the indented material by applying a 

linear elastic model to the data. In the isotropic case, M reduces to the plane-stress elastic 

modulus, 

where E is the Young's modulus, v the Poisson's ratio; p is the shear modulus and k the bulk 

modulus of the indented homogeneous isotropic material. In contrast to the isotropic case, for 

which the indentation modulus is the same for all direct ions of indent at ions, the indent at ion 

modulus of anisotropic materials depends on the direction of indentation. For instance, in the 

case of a transverse isotropic material, the indent ation modulus obtained by indent ation in the 

axis 23 of symmetry relates to the five independent CUkl coefficients of the material in the 

following way [32] [40] : 

In turn, for indentation normal to the axis of material symmetry (direction x l  or 22) the 

indent at ion modulus reads 1251 : 

where we employ the reduced notations C33 = C13 = C1133 = C3311, C31 = d m  > 
C13 and C44 = C2323 = C1313. 

2,2.2 Indentat ion Hardness 

The indent ation hardness is defined as the maximum applied force P,, divided by the projected 

contact area A, (see Eq. (2.1)) In contrast to the contact stiffness, hardness measurements, 

therefore, do not require a continuous record of the indentation depth. This may explain why 

hardness has a much longer history in Materials Science than the contact stiffness. Indeed, 

the very concept of 'hardness' can be found as early as in the 18th century in the works of 



several prominent mineralogists: Reaumur (1683-1757), Hauy (1743-1822) and Mohs (1773- 

1839). Williams [81] credits the French Scientist Reni! Reamur (1683-1757) as the father of 

hardness measurements, which served from this early time on as a tool for classification of 

materials and standardization of products. The application of indent at ion met hods to assess 

material properties can be traced back to the work of the Swedish engineer Brinell (1849-1925). 

Pushing a small ball of hardened steel or tungsten carbide against the surface of the specimen, 

Brinell empirically correlated the shape of the permanent impression with the strength of metal 

alloys [lo]. The merits of Brinell's proposal were quickly appreciated by contemporaries: Meyer, 

O'Neill, and Tabor suggested empirical relations to transform indentation data into meaningful 

mechanical properties [73]. These early studies concentrated on the evaluation of hardness of 

metals and on the link of hardness with strength properties. Tabor, from slip-line field solution 

for indentation in a rigid-plastic solids by a frictionless rigid wedge, suggested a hardness vs. 

yield stress relationship of the form H / Y  = 3 [72]. This relation got under scrutiny by several 

researchers for elastic-perfectly plastic solid (see discussion in [46]) and more recently for work- 

hardening materials (see discussion in [17]), which lead to the conclusion that hardness is not 

a material property, but rather a snapshot of materials mechanical properties and indenter 

geometry dependent. These conclusions not only hold for cohesive materials (of the Von-Mises 

or Tresca-type), but as well for cohesive-frictional materials [37]. 

Given the prominent role the indentation hardness will play in our investigation, it is in- 

structive to elucidate the meaning of hardness by means of a dimensional analysis of a conical 

indentation test on a homogeneous elastic perfectly plastic material halfspace (see Fig. 2-3). 

The analysis presented below is due to Ganneau et al. [37]. The two dependent quantities 

of interest that define the hardness are the force P and the projected contact area A, = ?ra2, 

where a = h, tan t9 is the contact radius, and h, is the contact depth. These two dependent 

quantities depend on the properties of the elastoplastic cohesive-frictional material (stiffness 

GIukl, cohesion C, friction angle q5), the indentation geometry (which in the case of conical 
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Fkom a straightforward application of dimensional analysis (or more precisely the Pi-Theorem 

[3]) to relations (2.16), it is readily found that the two dimensionless relations, 

. . . . . .  . . .  

Figure 2-3: Schematic of a conical indentation test. 
.* . 

indentation reduces to the half-apex angle 0), and the rigid indentation depth h: 

fir. 9 2 .',Y i+&.L, 
define a unique third dimensionless relation, the hardness-to-cohesion ratio as a unique function 

. . . . .  
of the stiffness-to-cohesion ratio, the friction angle 4 and the half-apex angle 8: 



Relation (2.18) has been extensively explored for elastoplastic cohesive materials (4 = 0), with 

and without strain hardening (see review in [17]). In particular, it has been shown, that the 

H/C-ratio for cohesive materials, for which (cijkl/~)-' --+ 0, comes close to Tabor's 1948 

suggestion (noting that Y = 2c for a Tresca material): 

It is worthwhile to note that (cijkl /c)-' + 0 comes close to the assumption of yield design 

approaches, which can be found early on in the indentation literature. For instance, Lockett 

[50] and Chitkara and Butt [I81 developed yield design solutions for conical indentations in 

cohesive rigid-plastic solids (without and with friction at the indenter-material interface). More 

recently, using the Upper Bound Theorem of Yield Design, Ganneau et al. [37] determined the 

hardness-t ecohesion relations for conical indent at ion into a cohesive-frict ional material of the 

Mohr-Coulomb type: 

Figure 2-4 displays the H/C ratio as a function of the friction angle for two indenter geometries, 

the Berkovich indenter corresponding to an equivalent cone half-angle of OB = 70.32', and a 

Cube Corner corresponding to an equivalent cone half-angle of Occ = 42.28'. An interesting 

observation is that the H/C value for small friction angles comes very close to the value given in 

(2.19) for a purely cohesive material (for a Tresca material), i.e. H/C = 2H/Y - 5.6. However, 

as the friction angle increases, we observe a strong deviation from this 'rule-of-thumb' value, 

generally admitted for metallic materials. In fact, internal friction kinematically impedes the 

45' slip lines commonly observed for frictionless materials and as a consequence increases the 

plastic yield volume and thus the overall dissipation capacity of the system, which translates into 

a higher hardness value of cohesive-frictional materials. Furthermore, based on the observation 

that the activation of internal friction gives rise to a strong dependence of the H/C on the cone 

half-angle 8, Ganneau et al. [37] propose a Dual-Indentation technique based on the ratio of 
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Figure 2-4: Upper bound solutions for the hardness-to-cohesion ratio for two conical indenter 
geometries: Berkovich indenter (OB = 70.32") and Cube Corner indenter (Occ = 42.28") (Data 
from [37]). 

two hardness measurements: 

Figure 2-5 displays the hardness ratio for the Berkovich and Corner-Cube indenters as a function 

of the friction angle in the interval q5 E [5", 30'1. As expected from the dimensionless relation 

(2.20), there exists a unique relation between the hardness ratio HB/Hcc and the friction 

angle, which provides a means of assessing q5 from the contrast in hardness between a Berkovich 

indentation test and a Cube Corner indentation test. While small for very small friction angles, 

the hardness ratio becomes significant for greater friction angles, for which the ratio appears 

to increase almost linearly with the friction angle in the interval considered. Once the Mction 

angle is determined, it is possible to determine the cohesion from the H/C curves displayed in 

Figure 2-4. 
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Figure 2-5: Hardness-ratio (Berkovich / Cube Corner) vs. friction angle (from [37]). 

Limitations of Existing Tools of Indentation Analysis 

The existing models employed in indent at ion analysis are restricted to monolithic systems, and 

little has been reported for indentation on heterogenous materials, a category composing the 

majority of natural solids, including shales, clays, clay-bearing sedimentary rocks, carbonates, 

sandstones, etc. Indeed, the application of relations (2.13) to (2.20) is based on two assumptions: 

1. The representative elementary volume (rev) satisfies the separation of scale condition: 

where L: is the characteristic size of the rev, which must be much greater than the size 

of the largest heterogeneity of size d contained in the rev; and much smaller than the 

indentation depth h, which defines the order of length magnitude of the strain gradient 

variation in the microstructure induced during an indent at ion test. 

2. The behavior of the indented halfspace is composed of a monophasic homogeneous mate- 



rial defined by spatially invariant material properties; that is: 

Those two assumptions impose severe restrictions on the applicability of the indentation 

technique for heterogeneous materials. The following section shows some recent extension 

of the nanoindentation technique for heterogeneous materials in general, and particularly for 

materials in which the dominating heterogeneity is the pore space in between a solid matrix or 

solid particles. It is on this basis that we will define the research focus of this thesis. 

2.3 Indentation Analysis of Heterogeneous Materials 

Recent extensions to continuum indent at ion analysis can be classified as follows: 

Thin-Film Indent at ion Analysis; 

St at istical Indent at ion Analysis of Mult iphase Materials (Grid-Indent at ion Technique) ; 

Mult i-scale Indent at ion Analysis. 

2.3.1 Thin-Film Indentation Analysis 

Indentation on thin films is one of the most popular current applications that aim at overcom- 

ing the limitations of classical continuum indentation analysis based on the infinite half-space 

model. The heterogeneity is due to the presence of a thin film of thickness t on a (infinite) 

substrate of known mechanical properties. In order to determine the indentation properties 

(Mf, Hf) of the thin film, the majority of thin-film models rely on phenomenological arguments 

or finite element simulations to subtract from the overall (or effective) indentation properties 

(Me f ,  He f ) ,  extracted from an indentation test by means of Eqs. (2.2) and (2.1) the substrate 

effects (Ms, Hs): 



where ZM and ZH are weight functions for stiffness and hardness, which depend on the inden- 

tation depth-tefilm thickness ratio, hlt. As ZM + 0 and ZH --* 0, the effect of the substrate 

is eliminated. Several models have been proposed in the literature to estimate the weighting 

functions for thin-film stiffness [38], [47], [82], 1491, [60], [16] and thin-film hardness [13], [5], 

[31]. This type of approach extends the domain of application of indentation to problems where 

the size of the heterogeneity (here thin film thickness) is of a similar order of the indentation 

depth, thus overcoming the restriction of strict scale separability (2.22). On the other hand, 

the approach is restricted to layered material systems for which the size of the heterogeneity is 

known, and does not cover random heterogeneous material systems. 

2.3.2 Statistical Indentation Analysis of Multiphase Materials (Grid Inden- 

tat ion Technique) 

Indent at ion on multiphase materials became recently popular in the particular context of in- 

dent at ion on cementitious materials 1211, (221, which culminated in the development, validation 

and implementation of the swcalled 'grid-indentation technique' [23], [24]. The experimental 

basis of this method is a large series of indentation tests carried out on a surface grid (grid 

indentation technique). The indentation depth is chosen in a way so to satisfy in an average 

sense the scale separability condition (2.22), allowing for the application of the tools of contin- 

uum indentation analysis. Each indentation test is considered a single statistical event, and the 

mechanical properties extracted from continuum indentation analysis are considered as random 

variables. Those data are then analyzed by deconvoluting the empirical frequency densities 

or response distributions of the mechanical indentation properties, x = M, H ,  by means of a 

theoretical theoretical probability density function (PDF): 

1 
For x = (M, H) find ( p J ,  s J, fj) from min - (Pi - P (zi)12 m 

i=l 

subjected to: 



where p J, s J are the mean value and standard deviation of x = M, H of phase J = 1, n, and f J 

is the volume fraction of this phase present in the multiphase material; Pi is the observed value 

of the experimental frequency density; m is the number of intervals (bins) chosen to construct 

the histogram, and P (xi) is the value of the theoretical probability density function at point 

xi (assumed to be Gaussian): 

Figure 2-6 illustrates this deconvolution technique for the indent at ion modulus M and hardness 

H obtained from 300 indentation tests on a shale material operated to maximum indentation 

force of P,, = 285 pN and maximum indentation depths of h,, = 102 f 39 nm. As the 

figures show, two characteristic phases can be identified mechanically at this scale in terms of 

mean values, standard deviations and volume fractions. We will come back to this technique 

in Chapter 8 devoted to the nano-strength properties of shale materials. 

2.3.3 Multi-Scale Indentation Analysis 

Multi-scale indentation analysis incorporates into the indentation analysis information about 

the microstructure of the indented material. Similar to the thin-film indent ation analysis, 

it considers the indentation properties as effective or composite material properties that are 

functions of the constituent properties and their morphologies that manifest themselves at 

a scale situated below the characteristic scale of nanoindentation. With a focus on porous 

material, Ulm et al. [78] and Constantinides and Ulm [24] determined the effective indentation 

modulus from application of the tools of continuum micromechanics [83], [30] for: 

An isotropic matrix-pore morphology, for which the matrix remains continuous for the 

entire solid concentration range 17 = 1 - p E [0,1] 1781: 

where rS = kS/pS = 2 (I + us) /3 (1 - 2uS) > 0 is the solid's bulk-teshear modulus ratio, 
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Figure 2-6: Frequency distributions for indentation modulus M and indentation hardness H 
of a shale material, together with best fitted normal distributions for phase properties. (Shale 
#3, indentation normal to bedding 23; courtesy of Chris Bobko, MIT). 



and mS is the solid's (isotropic) plane stress modulus (see Eq. (2.13)): 

An isotropic Polycrystal (or self-consistent) morphology of solid particles that loose con- 

tinuity below a solid percolation threshold of = 112 [24]: 

where phom/ps is the macrc~tc~rnicro shear modulus ratio: 

The focus of a multi-scale indentation analysis of porous materials is two-fold: (1) investi- 

gation of the microstructure of a heterogeneous material, by analyzing the scaling relations of 

the experiment a1 indentation properties (M) , with the porosity 9 or the solid's packing density 

7 = 1 - 9; and (2) determination of the solid's intrinsic material properties (mS, rS) by means 

of (2.27) and (2.29). Figure 2-7 illustrates this approach in form of a plot of the indentation 

modulus ratio M/mS vs. packing density. 

In summary, the dimensionless expressions (2.27) and (2.29) provide a means to determine 

from measurements of the indentation modulus M (within the context of continuum indentation 

analysis, i.e. Eq. (2.2)) the solid stiffness and the solid morphology. Such scaling relations are 

currently not available for hardness measurements of porous materials, linking the hardness to 

the strength properties of the solid phase of the porous material, the porosity and the pore 

morphology. 



Packing Density 7 [I] 

Figure 2-7: Multi-scale indentation analysis: the effective-to-solid stiffness ratio vs. solid pack- 
ing density: 'MT' stands for 'Mori-Tanaka scheme', which captures a matrix-pore morphology, 
and which has been used to derive Eq. (2.27). 'SCS' stands for ' Self-consistent Scheme', which 
captures a polycrystal morphology, and which has been used to derive Eq. (2.29). (From [24]; 
data is from Calcium-Silica Hydrates of cement-based materials). 



2.4 Conclusion: Problem Formulation 

An indentation test is a surface test which provides access to bulk properties of the indented 

material. This requires the tools of continuum indent at ion analysis to translate indent at ion 

data into meaningful mechanical properties. The application of indentation analysis to porous 

materials faces several challenges. Porous materials are by nature heterogeneous, as they are 

composed of a solid phase and a pore space. This heterogeneity may itself influence the in- 

dentation response, and may eventually lead to a break of the self-similarity of the indentation 

test, if the pore size is of a similar order as the indentation depth. In return, if the pore size 

is much smaller than the indentation depth, which is the case in most geomaterials dominated 

by nanoporosity, then an indent at ion test provides access to the homogenized cornposit e prop- 

erties of a porous material. This is the case we consider in this thesis. The task of indentation 

analysis then is to link those composite indentation properties (H, M) to properties and mi- 

crostructure of the constituents. This is the goal of the multi-scale indentation analysis (see 

Section 2.3.3). While elastic multi-scale indentation analysis are well advanced, a multi-scale 

indentation strength approach has yet to be developed. This is the focus of this thesis. 

To summarize the problem, let us return to the dimensional analysis of Section 2.2.2. The 

two dependent quantities of interest are still the indentation force P and the projected contact 

area A, (respectively the contact depth h,). However, in the case of indentation into a micro- 

homogeneous porous material composed of a solid phase and the pore space, the two variables 

now depend on the following set of independent variables (see Fig. 2-8): 

1. Constituent parameters: In the case of a microhomogeneous two-phase solid-pore compos- 

ite, this includes the elastic stiffness properties of the solid phase, C[j,l, and the strength 

properties of the solid phase, which we capture by the solid's cohesion cS and the solid's 

friction angle 4', or friction coefficient a. 

2. Volume fractions of the constituents: In the case of a two-phase solid-pore composite this 

is the porosity cp , respectively the solid concentration q = 1 - p. 

3. Pore morphology. As in the elastic multi-scale indentation model reviewed in Section 

2.3.3, we will consider an isotropic pore morphology (spherical pores) and two pore mor- 
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Figure 2-8: Indent at ion variables for indent at ion into a cohesive frict ional porous material. 



phologies: a matrix-pore morphology and a polycrystal (or self-consistent) morphology. 

As shown in Figure 2-8, these two pore morphologies represent two limit cases. The case 

of a matrix-pore morphology captures the continuity of the matrix, while the polycrystal 

morphology is characterized by a solid percolation threshold below which the solid parti- 

cles loose the continuity. This adds another variable to our set of independent quantities: 

the solid percolation threshold, 70. 

4. Indenter geometry, which in the case of conical indentation (see Section 2.1.2) reduces to 

the semi-apex angle 0. 

5. Indentation depth h 

Thus formally, instead of (2.16): 

From the point of view of dimensional analysis, the difference between (2.16) and (2.31) are only 

two dimensionless parameters, q, qo, which need to be added to the dimensionless expressions 

(2.17): 

and (2.18): 

In return, there is a fundament a1 difference between (2.16)-(2.18) and (2.3 1)-(2.33). Similar to 

the elastic case (2.27) and (2.29), the material properties in the multi-scale hardness-strength 

analysis (2.33) are the one of the solid, not the composite. 

The aim of the next Part of this thesis is the development of a method that allows the 

determination of the normalized hardness-to-solid cohesion ratio H/cs .  To achieve this goal we 



-1 
will employ the tools of yield design, assuming that (C&~/P) -' 0. In particular, by means 

of an original computational implementation of the upper bound limit theorem of yield design, 

we will develop such solutions for cohesive and cohesive frictional solids, of the form: 
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Chapter 3 

Multi- Scale Yield-Design Approach 

In the Second Part of this thesis we develop and implement a multi-scale yield design approach 

for the indentation analysis of the strength properties of a porous material composed of a solid 

phase and a pore space. The model we develop is based on the scale separability condition: 

the characteristic size of the pore space is much smaller than the indentation depth. This 

assumption of scale separability allows us to separate the problem in two scales: at the scale of 

the indentation operation, we consider an rev that has a homogenous strength behavior. At a 

scale below, the rev is composed of a solid phase and a pore space. The strength behavior of the 

solid phase is assumed to follow a pure shear strength criterion, namely a Von-Mises Criterion, 

and a pressure-dependent strength criterion of the Drucker-Prager type. A first homogenization 

step thus consists in determining the strength domain of the porous media at the scale of 

the rev. Implementation of this homogenized strength criterion in a yield design approach of 

the indentation test then provides a means to link the hardness to the strength properties of 

the solid and to properties characterizing the microstructure, as outlined in Chapter 2. This 

Chapter develops in details this multi-scale yield design approach, and illustrates the approach 

through the development of an analytical lower bound. Chapter 4 then shows the computational 

implementation of the upper bound approach. 



3.1 Yield Design Approach for Conical Indentat ion 

Our starting point is the scale of conical indentation into an infinite half-space composed of 

revs of a characteristic length scale L, satisfying the scale separability condition (2.22), which 

we recall: 

d < L < h  (3.1) 

where d is the characteristic size of the microstructure, roughly the porosity. The indentation 

depth h  which is the only relevant length scale of the indentation operation in the infinite half- 

space (which by its very nature has no length scale), characterizes the order of magnitude of 

the variation of the position vector :, and therefore determines the characteristic length scale 

of the application of differential calculus necessary for indentation analysis. 

3.1.1 Problem Formulation 

Consider an indentation test of a rigid conical indenter (semi-apex angle 8) into an infinite 

half-space oriented in the -z direction (see Fig. 51). 

The indenter is at an indentation depth h, the projected contact area A, is assumed to be 

known, and a force P is applied. The work rate provided from the outside to the (half-space 

materials) system is [37] : 

where is the rate of indentation depth, AM = A,/ sin 8 is the contact area of the cone mantel 

with the material (A, being the projection of this surface on the z-axis); T (21) = E 34 is the 

stress vector on AM oriented by the unit outward normal pl (positive outward to the material 

domain; i.e. in a cylinder coordinate frame TI = - cos 8 gT +sin 8 gz),  E is the macroscopic stress 

tensor; and U is the velocity field of the material on AM. 

In elastoplastic problems, a part of the external work rate (3.2) is stored into recoverable 

elastic energy (incl. hardening) into the material system. By contrast, limit analysis is based on 

the assumption, that a materials system, at plastic collapse, has exhausted, in response to the 

prescribed force P, its capacities, (i) to develop stress fields that are both statically compatible 



Figure 3-1: Yield Design Approach for conical indentation. 

(i.e. in equilibrium) with the external loading and compatible with the local strength domain 

of the constitutive materials; and (ii) to store the externally supplied work rate (3.2) into 

recoverable elastic energy. As a consequence, the work rate 6W is entirely dissipated in the 

material bulk (and eventually along surfaces of discontinuity, which will not be pursued in this 

study); hence from an application of the divergence theorem to (3.2) (see, for instance, [63] ,[77]): 

where E : D represents the maximum dissipation capacity the homogenized material can de- 

velop in the material bulk for the solution fields (X,7Y). The solution stress field E is statically 

and plastically admissible, satisfying: 



where superscript t stands for transpose; and F (X) is the yield function defining the strength 

domain of the material system in continuous material sub-domains; while D is the solution 

strain rate field in continuous material sub-domains, which is kinematically compatible with 

the velocity field U and compatible with the plastic flow rule of the material: 

1 aF (E) 
D = - s grad^ + gradu) = A- 

2 d E  

Provided that (E,U) is related through (3.5) by the normality rule of plastic flow, it is readily 

understood that the maximum dissipation capacity E : D can be expressed as a unique function 

of the strain rate. This function is called dissipation function [77] or support functions [63] : 

Some background on the properties of the II function is given in Appendix A.2. What we retain 

here is that the yield design approach requires the determination of the yield function F (E) 

and the associated dissipation function II (D). As we will see below, this requires us to choose 

an appropriate strength criterion for a cohesive-frictional porous material. 

3.1.2 Lower and Upper Bound Theorem 

The limit theorems of yield design approach the actual dissipation capacity (3.3) by a lower and 

an upper bound estimate. The lower estimate is based on statically and plastically admissible 

stress fields E' satisfying (3.4). Such a lower bound approach leads to underestimating the 

actual dissipation capacity: 

J ~ E / : D ~ ~ = P / R ~  PR 

The upper bound approach is based on kinematically and plastically admissible strain rate 

fields Dl, satisfying (3.5). Such an upper bound approach leads to overestimating the actual 

dissipation capacity: 

p h 5  LE : D ' ~ o  2 LII(D') d o  



For the actual limit load solution (E,tJ), both the lower and upper bound give the same result: 

the problems are 'dual" to each other. In return, the lower and the upper bound define two 

formidable optimization problems: 

Lower Bound Theorem (or static principle of limit analysis): Among all statically admis- 

sible (SA) stress fields El, find the one which maximizes the indentation load P. Letting 

= 1, the lower bound (3.7) of an indentation test can be expressed in terms of a lower 

bound of the hardness H- = P1/Ac: 

Upper Bound Theorem (or kinematic principle of limit analysis): Among all kinematically 

admissible (KA) velocity fields U1, find the one which minimizes the maximum dissipation 

capacity the system can afford. This can be expressed in terms of an upper bound H+ of 

the hardness: 

H = -  inf / n ( ~ ' ) d a < ~ + ;  R = 1  
Ac Q'KA 

3.1.3 Frictionless Contact Condition 

To complete the problem formulation for either lower or upper bound, we need to define bound- 

ary conditions, or more precisely contact conditions at the indenter-material interface (see 

Fig. 3-1). For a frictionless contact condition, all shear stresses at the interface are zero, i.e. 

V&n= 0; i * r l ( n )  = O # E 1 ( ~ )  = Eln:. 

t E1 (a) = (EL, - q,) sin 20 + xi, cos 20 = 0 

Q (r, 2) E AM; 

n . z1 (n) = EL, sin2 0 + Ck, cos2 0 - C:, sin 28 I 
'More details about the duality of the limit theorems are given in Appendix A.1. 



In the upper bound approach, a velocity field is kinematically admissible, if it satisfies the zero- 

velocity boundary conditions at infinity. On the other hand, there is an additional interface 

condition, which arises from a frictionless contact condition, which a priori permits a tangential 

slip (without dissipation), while the normal velocity Uf is the one of the rigid indenter [37] : 

t/ (r, z) E AM; -14 = -&sin 8 

(r, z) + 00; = 0 

3.2 Homogenized Strength Criteria of Porous Cohesive-Frictional 

Materials 

In this section we review some elements of strength homogenization theory of porous materials 

based on the contributions of Dormieux and co-workers [30]. Thanks to the scale separability 

condition (3.1) we can separate the scale of the rev from the one of its constituents, i.e. the 

solid phase and the pore space. The 'effective' behavior of the composite defined at the scale 

of the rev, intervenes in the indentation analysis. In the chosen Yield Design Approach (see 

Section 3. I),  this 'effective' strength behavior is captured by the yield criterion (3.4b) and by the 

corresponding dissipation functions (3.6), which represent dual definitions of the (macroscopic) 

strength behavior (see Appendix A.1). The focus of this section is the determination of both for 

a porous material composed at a microscale of a solid phase and an empty pore space. What 

we aim to derive is the macroscopic expression of the strength criterion, based on the strength 

properties of the solid phase, and on information relating to the pore morphology. This will 

be achieved within the framework of nonlinear homogenization theory of strength properties, 

which was pioneered by Suquet [69] [70], and further developed and implemented for porous 

materials by Dormieux and co-workers [30]. 

We consider an rev positioned at the macroscale at point g (Fig. 3-2). The rev is composed, 

at the microscale, of a solid phase and a pore space. We denote by g the position vector that 

locates each point within the microstructure, so that the overall position is defined by g + z. 
Depending on z, the microscopic particle located at point z belongs either to the solid phase 

(Vs) or to the pore space ( V P ) .  As a consequence the microscopic stress-field is heterogeneous 



Figure 3-2: rev composed of a solid phase and a pore space, sujected to a uniform stress at its 
boundary. 

within the rev: 

Note that we employ here a 'small' u instead of a 'capital' X, in order to indicate that the 

stress-field is defined at the microscale. On the other hand, the micro- and the macro stress are 

related by the stress averaging relation: 

where an 'overbar' stands for volume averaging; 9 = 1 - 7 is the porosity (7 is the solid 

concentration); and the superscript s adjacent to the 'overbar' in (3.14) stands for the volume 

average over the solid phase: 
s 1 

u (g) = - 
VS JVS u (z) dVi 

3.2.1 Strength Domain of the Solid Phase 

In what follows, we will consider only the micro- and macro- isotropic strength situation. This 

implies two conditions: 



1. The strength behavior of the solid phase is defined by an isotropic strength criterion, that 

is, it depends only on the micro-stress invariants: 

where fS (a) stands for the strength criterion of the solid phase. Among all possible 

isotropic strength criteria for solids, we will consider two strength criteria which depend 

only on the first two stress invariants, and which appear to us representative for a large 

range of isotropic solid strength criteria. These are: 

(a) The Von-Mises Criterion which is an isotropic shear strength criterion: 

where J2 = &sijsij is the 2nd invariant of the stress deviator sij = aij - 4 1 ~ 6 ~ ~  (&j 

is the Kronecker delta), and where cS is the solid's cohesion. As an alternative to 

the 'direct' definition of the solid's strength domain in form of a strength criterion, 

we will employ here below the dual definition, expressed by the dissipation function. 

For a Von-Mises solid, the dissipation function reads [63]: 

where I{ = div, 2 = t r  d is the volume strain rate, and J; = 46 : 6 is the deviatoric 

strain rate invariant of the strain rate tensor d (2) = 4 1; 1 + 6. Similarly to the micro- 

stress field, we here employ a 'small' ?r and a 'small' d to indicate the microscopic 

origin of the dissipation function and of the strain rate. The latter is the symmetric 

part of the gradient of the micro-velocity field 2 = 2 (2): 

(b) The Drucker-Prager Criterion which is an isotropic pressure-dependent strength cri- 



terion: 

where a: is the solid's friction coefficient and hS = cS/a is the cohesion pressure (or 

isotropic tensile strength). The corresponding dissipation function reads [77] : 

where the microscopic strain rate d is given by the flow rule: 

An associated flow rule yields I; = 2 a a L  0, exhibiting thus a plastically dilating 

behavior. 

2. The pore morphology or the solid particle morphology is isotropic, having no directional 

bias that introduces strength anisotropy. A representative isotropic morphology is the 

sphere (representative of spherical pores and/or spherical solid particles). 

3.2.2 Elements of Strength Homogenization Theory 

In order to link the microscopic strength behavior to macroscopic strength behavior, consider 

the rev to be subjected to a uniform stress boundary condition: 

where X is the macroscopic stress related to the microscopic stress field a (g) by (3.14). The 

external work rate induced by this loading is: 



where D is the macroscopic strain rate tensor which is the volume average of the microscopic 

strain rates d (4): 

1 
D = 2 V L v  

(2 (4) 8 IZ (z) + n (2) 8 v (4)) d a ~  = d (2) 

Using the Hill Lemma (which applies provided uniform boundary condition), we note that: 

Within the context of yield design, the left hand side of (3.26) representing the external work 

rate (3.24), is readily identified as the macroscopic dissipation function (3.6). According to 

yield design theory, this external work rate is entirely dissipated in heat form as expressed by 

the right hand side of (3.26) which in turn is readily identified as the volume average of the 

microscopic dissipation function. The Hill Lemma (3.26), therefore, provides the link between 

the macroscopic and the microscopic dissipation function [69], and reads for an empty porous 

material [39], [30]: 

II (D) - 7r (2, d (z)) = (1 - P) 7rS (d ( z ) )~  (3.27) 

where 7rs is the dissipation function of the solid, as specified by (3.18) and (3.21) for a Von-Mises 

and a Drucker-Prager solid; that is: 

1. For a Von-Mises solid, ensuring the incompressibility of the micro-velocity field (see Eq. 

2. For a Drucker-Prager solid, provided that I: 2 2aS fl (see Eq. (3.21)): 

In summary, the key to the homogenization of the solid's strength properties is an appro- 

priate representation of the microscopic strain rate fields d (z)  that develop within the solid 

phase at plastic collapse, and which are related to the macroscopic strain rate D by (3.25). 



Those strain fields are used as input for calculating the solid's dissipation function (3.18) and 

(3.21) ; and finally volume averaging yields the macroscopic dissipation function. The proce- 

dure appears straightforward; however, its simplicity belies its complexity due to the highly 

heterogeneous strain rate fields that develop around the elementary heterogeneities in a porous 

material at plastic collapse: the pores. The approach developed by Dormieux and coworkers [30] 

for cohesive-frictional porous materials circumvents this difficulty by introducing an effective 

strain rate. 

3.2.3 Average and Effective Strain (Rates) in the Solid 

As we have seen, all comes down, in the strength homogenization theory, to evaluating the 

average dissipation rate (3.27) associated with plastic collapse of the solid phase in functions 

of the macroscopic strain rate D. The question therefore is how to relate d (g) to D, or, 

in the case of an isotropic solid strength behavior (3.28) and (3.29), I: (4) = t r d  (2) and 

J; (g) = (g) : 6 (z) to t r D  and $A : A. 

To this end, an interesting parallel can be made with the micro-macro strain relations in 

linear micromechanics. For a micro- and macro linear isotropic porous material, the first- 

order volume averages over the solid phase of the volume strain tr  E (4) and deviator strain 

1 e (g) = E (2) - 3 (tr E (g)) 1 are given by [29]: 

with Ed = E - $ (tr E) 1 the macroscopic strain deviator tensor. khom and phom are the 

macroscopic bulk and shear moduli, and kS and pS are the bulk and shear moduli of the solid 

phase. The linear averages display a de-coupling between the volume and deviator strain: a 

macroscopic volume strain tr E provokes on-average only a microscopic volume strain in the solid 

phase tr  o (g)', and a macroscopic strain deviator Ed provokes on-average only a microscopic 

strain average. A link of this form is readily recognized to be limited when it comes to evaluating 

strain (resp. strain rates) level in the plastic limit state. It suffices to consider a hollow sphere 



subjected to an isotropic loading at its outer surface. In the solid adjacent to the solid, micro- 

shear strains govern the behavior, which are expected to influence the overall strength behavior. 

Higher order averages capture those coupled volume-shear strain conditions. The quadratic 

averages of the volume and deviator strain of the solid are given by [29] : 

Higher order averages can be seen as 'effective' strains in the sense that they appear to be a 

better approximation to capture the heterogeneity of the strain field in the microstructure. In 

order to use expressions (3.31) for strength homogenization in the sense of (3.27), (3.28) and 

(3.29), it is necessary to make the link ( E ,  E) + (d, D) and give a 'plastic' meaning to the 

stiffness properties. 

3.2.4 Von-Mises Solid 

Consider a Von-Mises solid, which deforms plastically in an incompressible way (i.e. (3.19)). 

Incorporating this plastic incompressibility condition into (3.31) requires: 

Hence, khom and phom can be seen as the homogenized bulk and shear moduli of a porous 

material composed of an incompressible solid, kS + w. Under this condition, it is readily 

understood from a dimensionless analysis that khom and phOm are linear functions of the solid's 

shear modulus; hence: 

Functions K (9; vO) and M (q; qO) which will be given later on depend only on the porosity 

cp and the pore morphology captured here through a solid percolation threshold 70. Then, 

transposing (3.31) to estimate the 'effective' strain rate in the solid phase at plastic collapse, 



we let: 

The effective deviatoric strain rate (3.34a) now provides an estimate of fls in (3.28), and 

thus an estimate of the macroscopic dissipation function of a porous material composed of a 

Von-Mises solid: 

nest (D) = cS,/(l - 9) (IC (tr D)2 + 2M A : A )  2 0 

Finally, we seek for the expression of the yield criterion that corresponds to the dissipation 

function (3.35). We remind ourselves that the macro-stress X corresponding to the plastic 

dissipation rate II (D) = C : D is situated at the boundary of the macroscopic strength domain, 

and that the dependence of ne" (D) on the two strain rate invariants, tr D and $A : A ,  implies 

that the homogenized strength criterion depends on the two macro-stress invariants Em = 5 tr !E 

and Ed = ,/=: 

It follows: 

Em = 
anest (cS 

= (1 - 9) x s  (tr Dl (3.37a) a (tr D) 

1 anest anest cd = J ~ = ( l - Y ) ~ ~ ~ E G X  nest (3.37b) 

Finally, using (3.37) to replace in (3.35) (tr D,  $A : A) by (Em, Cd) yields the macroscopic 



Figure 3-3: Strength homogenization of a porous material composed of a Von-Mises solid and 
an empty pore space. 

. . - .  .. . 

strength criterion of a porous material whose solid phase is a Von-Mises solid: 

. , . . . - . . 

The strength domain of the porous composite is found . - ,  to . be . - .  a closed elliptic domain centered . . .. 

at the origin of the (Em, Ed) plane (Fig. 3-3). . . 

3.2.5 Drucker-Prager Solid 

On a similar basis, one can derive the homogenized strength criterion of a porous material 

composed of a plastically dilating Drucker-Prager solid, I; 2 2 a a .  The derivation can be 

found in [30]. Here we illustrate the dual application of yield design theory and determine 

from the macroscopic strength criterion F (Em, Ed) the corresponding macroscopic dissipation 

function IteSt (D) . The homogenized strength criterion reads [30] : 

where K: = K: (9; qo) and M = M (rp; qo) are the same functions as in the Von-Mises case (see 
- . .  - 1 

relations (3.33). The strength domain of the porous composite is an ellipse centered at the 



. - - .  . . . . . . . . .  
11. . , . . . . . . .  

Figure 3-4: strength h o m o ~ ~ n i z a t i o ~ ' ~ f  a p&ous material composed of a Drucker ~ r a g e r  solid . . . . . . . . .  . 7 . . , . . ,  , 
and an empty pore space. 

- - .  . - . - -  - - - .  . . . .  - .  . . . . . .  . , 

. . point (Ern = E&, Ed = 0) in the (Ern, Ed) plane (see Fig. 3-4) : ' I '  

Hence, in contrast to the 

frictional porous material 

the 

fact 

symmetrical porous cohesive material (see Fig. 3-3), 

is not symmetric w.r.t. the .origin. This is,due to the 
- - - - 

cohesive 

that the 
- .  . . . .  . . - - 

. I  

. - .  ., ~rucker-Pr'Agir I !  solid is sensitive to the confining . .  

What we aim to derive is the macroscopic dissipation function, II (D) = Ern tr  D + Ed : A. 

To simplify the expressions, let us rewrite the elliptical strength criterion (3.39) in the form: 

. - . . 2 , . - 4 .  . . .  Ern - . . . . . .  

. ,. . F ( E ~ , E ~ ) = (  A C)2+(%) - 1 = 0  . . . , ,  . . . (3.41)- ' . . ' - .  * '  

. . . . . . 
4 a . - . . - .  . . 

. - where A, B, C are constants that are readily derived from (3.39). ~ e x t  recallidg that the 
. . . . . .  . . macroscopic strain rate D is parallel to the normal to the boundary of the strength domain - 

. . . . - - - - . - . - . . - - .  . . - -  - - . - .  . - .  - - -  
allows us to use the normality rule: - 

. d . . - .  . . - .  . .  - - 



where i is the plastic multiplier. The plastic dissipation therefore reads: 

or equivalently, after a substitution of (3.41) in (3.43) : 

Moreover, to determine i as a function of the strain rate invariants (tr D,  d c ) ,  we 

substitute (3.42) in the yield criterion F (Em, Ed) = 0 (!): 

2 

A t r D  B ,/= 
F ( E m , L d ) = ( T ) 2 + (  i ) 1 ~ 0  

Finally, a substitution of (3.42) and (3.45) in (3.44) yields the sought expression of the macre 

scopic dissipation function: 

By design, the dissipation function (3.46) is sufficiently general to be used for both the Drucker- 

Prager and the Von-Mises porous material. The coefficients A, B and C are given in Table 3.1. 

A straightforward comparison of the coefficients for the Von-Mises (superscript VM) and the 

Drucker-Prager solid (superscript DP) shows that the coefficients scale according to: 

As expected, for a = 0, we retrieve the Von-Mises case. 

Finally, Table 3.1 also specifies the A, B, C coefficients for a modified cohesive Cam-Clay 



Coefficient (1  Von-Mises Solid (cS) I Drucker-Prager Solid (hS = cs/a, a) I Cam Clay (rn, p,p,) 

Table 3.1: Elliptical strength parameters for a porous material composed of a Von-Mises solid 
and a Drucker-Prager solid. 

model, a common plasticity model in geotechnical engineering (developed by the (UK-) Cam- 

bridge School, namely Roscoe, Schofield, Wroth, Parry and later Burland). The yield function 

can be written in the form [77]: 

where m, p, p, are three model parameters that are determined from triaxial testing. Rewriting 

(3.48) in the form of (3.41) provides a means to link those empirical fitting parameters to the 

strength properties of the solid phase, the porosity and its morphology (coefficients K, M): 

Vice versa, the link with the Cam-Clay model shows that the homogenized strength model of 

a porous material composed of a cohesive-frictional solid and pore space is a 'Cam-Clay type' 

strength model. 

3.2.6 Effect of Pore Morphology (Mori-Tanaka and Polycrystal Morphology) 

We are left with specifying the effect of the pore morphology on the homogenized strength 

criteria (3.38) and (3.39), respectively on the macroscopic dissipation functions (3.35) and 

(3.46). This comes to specify the functions K = K (ip; qo) and M = M (9; qo) defined by 



(3.33). We remind ourselves that those functions are determined from the linear upscaling of the 

isotropic stiffness properties of a porous material composed of a linear isotropic incompressible 

solid phase (kS + oo): 

khom = X: (p; qo) pS; phom = M ( ip ;  qo) pS 

Two types of pore morphology can be distinguished, which we have already encountered in 

Section 2.3.3 in the context of multi-scale elastic indent at ion analysis. 

Mori-Tanaka Scheme 

The Mori-Tanaka Scheme represents a porous material with a dominating matrix-pore inclusion 

morphology. The matrix remains continuous for the entire solid concentration range q = 1 - p E 

[O, 11. The linear upscaling model yields 1301 : 

Use of (3.51a) in (3.47) shows that the elliptical criterion is defined only if the following condition 

is met: 

(3.52) 2 - lim -1 
In other words, only for a Von-Mises solid phase (a = 0) is it possible to analyze the solid-only 

limit case. In this case, we recognize from Table 3.1 and relations (3.51) that: 

lim Amt (a  = 0) + +oo; lim Bmt (a = 0) = cS; Cmt (a = 0) = O cp=o cp=o (3.53) 

Use of (3.53) in (3.41) yields: 

lim F (Em, Ed) = 
cp=o 
as =o 

which is the Von-Mises strength criterion (3.17). 



It is also useful to check the strength behavior at the limit porosity 9 = 9;~ = 4a2 a = 

J z / 2 .  While lirn,,,ky Amt = lim,,,ky Bmt = lim,=,ky Cmt + +m, let us note that 

Therefore, for finite values of Em and Ed, the homogenized strength criterion remains satisfied: 

lim F (Em, Ed) = lim 
,=,;l- ,=,ky ( E ) 2 - l < 0  (3.56) 

Polycrystal Morphology 

Solid particles whose behavior is driven by the contact between particles are captured by the 

polycrystal (or self-consistent) model. The model is characterized by a percolation threshold 

of qo = 112, below which the solid particles loose continuity. The linear self-consistent scheme 

provides the following expressions for X: and M [30] : 

Msc (9;vo = 112) = 3 
(1 - 29) 
(3 - 9) 

We verify without difficulty that Ksc (9 = 170 = 112) = Msc (9 = 70 = 112) = 0, in which case 

the elliptical criterion degenerates to a point at the origin of the (Em, Ed) plane, corresponding 

to a zero-strength capacity. Furthermore, (3.57a) and (3.47) allow us to identify the porosity 

domain of relevance of the self-consistent model: 

We verify that the solid-only limit case can only be analyzed for a Von-Mises solid phase (a = O), 

for which the homogenized strength criterion degenerates to the Von-Mises strength criterion 
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. Figure 3-5: Domain of application of the homogenized strength criteria for porous media. . L P ' r  4 1 ? . r . i c  . . r .  

..: ' 4 t . 1  

(3.54). On the other hand, for rp = rpp @ a+ = (3 - (pp) / (1 - 2~:?), 

. . 
Therefore, for finite values of C, and Cd, the yield criterion is satisfied in this hmit case, 

lim F (C,, Ed)  = lim 
cp=ec" cp=cpE= . . . . . .  . - -  =--?La. . I  ! . . . . . . . . .  . - - 

. !J, 3 -. --p- FA 
- .. ' . - We keep those limit results in mind for the forthcoming applications of our model in indentation 

. . - .  . - - analysis. . - .  - 0 - Y  . , a  

In summary, Figure 3-5 displays the domain of application of the homogenized strength 

criteria for porous media, in form of a plot of the limit solid concentration rh = 1 - cp'm as a 

function of the solid's friction angle, for the considered two pore morphologies, the Mori-Tanaka 
. 
.. , . ; model and the Self-Consistent model. 
- i 

1 3.2.7 Summary of Governing Equations .. . 
. . 
-' We now have two representations of the macroscopic str riteria of porous materials: 



Coefficient I Mori-Tanaka ( 1 7 ~  = 0) I Self-consistent (rln = 112) 

Table 3.2: Summary of elliptical strength parameters for a porous material composed of a 
cohesive-frictional solid phase organized in a matrix-pore inclusion morphology (Mori-Tanaka) 
and a polynystal morphology (Self-consistent). 

B = B/cs 3&(1 - 9) 39  (1 - 29) (1 - 9) 

J(3 + 29) (39 - 4a2) (39 - v2 - 4a2 (1 - 29)) 

The direct definition (3.41) of the yield criterion F (Em, Ed) of a porous material, which 

turned out to be a Cam-Clay type strength criterion: 

c = c/cs 

Limit 

The coefficients (A, B,  C) contain all the information about the solid's properties (cS , a )  

and the isotropic microstructure (9, qo). Table 3.2 summarizes the coefficients for the two 

morphologies considered in this study, the Mori-Tanaka matrix-pore morphology and the 

Self-consistent morphology (Sect ion 3.2.6). 

The dual definition of the strength domain expressed by the macroscopic dissipation 

function (3.46) : 

- 4 (1 - 9 )  a 

39 - 4a2 
lim - 2 pmt -% < 9 < 1  

where A, B, C are the coefficients A, B, C normalized by the solid's cohesion cS (see Table 

3.2). 

- 4 (1 - 9 )  (1 - 29) a 
39 - v2 - 4a2 (1 - 29) 

v : ~ = = + + a 2 - 1 ~ ( 9 + 3 2 a 2 + 6 4 a 4 ) < ( o < 1 / 2  

With those strength elements in hand, we can return to the initial focus of our study, which 

is indentation analysis. In particular, use of (3.61) and (3.62) in respectively (3.9) and (3.10) 



allows us to redefine our problem in the dimensionless form (2.34): 

where H-/cS is a lower bound of the sought hardness-to-solid cohesion ratio that is obtained 

with any stress field Z' that is statically admissible with the boundary conditions (3.11) and 

plastically admissible with the homogenized strength criterion approximated by (3.61). On 

the other hand, H+/cS is an upper bound of the sought hardness-to-solid cohesion ratio and 

is obtained with kinematically admissible velocity fields that satisfy the velocity boundary 

conditions (3.12). It follows: 

H 1 
- =.F(a,v,qo,8)  = - inf 
cS 

A,UIKA J' (Ja2 ( t r ~ ) ~  + 2B2A : A f ~ t r ~ )  dfl 

3.3 Analytical Lower Bound: Flat Punch Indentat ion 

By way of illustration, we develop here below an analytical lower bound solution for the flat 

punch problem, 8 = 7r/2, based on statically admissible stress fields satisfying the strength 

criterion (3.61). 

3.3.1 Problem Formulation 

The simplest statically admissible stress field is a piecewise constant stress field of the form (see 

Fig. 3-6): 



Figure 3-6: Flat punch problem with piecewise constant stress fields. 



where H = PJA, is the hardness. For this stress field the stress invariants read: 

Use in the elliptical strength criterion (3.61) yields the following two inequalities: 

Assuming that both domains are at yield, we obtain three possible lower bound solutions: 

Since we employ a lower bound approach, we need to find the maximum value of the hardness 

in function of the three parameters (A ,  B,  C), which as we will see below is: 

3.3.2 Von-Mises Solid 

We start with a Von-Mises solid, for which CVM = 0: 

Use of AvM and BVM (from Table 3.1), that is: 



yields: 

For a matrix-pore inclusion morphology, for which K = Lt and M = Mmt are given by the 

Mori-Tanaka estimate (3.51), we obtain: 

In turn, a polycrystal morphology, for which K = K,, and M = Msc are given by the Self- 

Consistent estimate (3.57), yields: 

In both cases, (3.73) and (3.74), we recover for (o = 0 the Von-Mises lower bound solution of 

the flat punch problem: 

HLt lim - = lim H,-, = 2 f i  
cp=o cS cp=O cs 

This solution is clearly a lower bound: in comparison to the 'rule-of-thumb' (2.19), H/Y 2 2.8, 

the lower bound solution (3.75) predicts H-/Y = H-/  (&cS) = 2. On the other hand, the 

lower bound solutions allow us to illustrate the effect of the pore morphology on the hardness- 

to-solid cohesion relation, as displayed in figure 3-7 in form of a plot of H-/cS vs. the solid 

concentration q = 1 - 9. The figure is the transposition of figure 2-7 to strength indentation 

analysis. In particular, it shows that the Mori-Tanaka scheme (MT) provides a continuous 

relation over the entire range of possible solid concentrations, 0 5 q 5 1, while the polycrystal 

lower bound (SCS) prediction only covers the range between the solid percolation threshold 

q0 = 112 and q = 1. Moreover, a study of the particular behavior of the polycrystal solution 

(3.74) around the percolation threshold readily reveals that the solution has an infinite slope: 

We keep this in mind for further developments. 
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Figure 3-7: Effect of the pore morphology on the Lower Bound hardness-to-solid cohesion 
relation: 'MT' stands for 'Mori-Tanaka scheme', 'SCS' stands for 'Self-consistent scheme'. 

3.3.3 Drucker-Prager Solid 

We consider next the Drucker-Prager solid, for which: 

For a matrix-pore morphology (K = Kmt,M = Mmt), substitution of (3.77) in (3.69) yields: 

Similarly, for a polycrystal morphology (K = Ksc,M = MS,), substitution of (3.77) in (3.69) 

yields: 



Limit Packing Density qlim [I]  

Figure 3-8: Asymptotic Behavior of the lower bound hardness-to-cohesion ratio at the limit 
packing density qlim. The figure shows that the effect of the pore morphology (MT = Mori- 
Tanaka, SCS = Self-consistent) is negligible for high packing densities, for which the composite 
hardness response is dominated by friction. 

Letting a = 0, we verify that (3.78) and (3.79) reduce to (3.73) and (3.74), respectively. 

Furthermore, letting cp = cpk~ from (3.57) into (3.78) yields the following asymptotic behavior of 

the Mori-Tanaka hardness-to-cohesion ratio at the highest possible solid concentration, qk? = 

- 

lim H i t  - 3q -- 
3 & J m  + 2d- 

1 -  cs 5 - 2q 

Similarly, letting cp = c p ! ~  from (3.58) in (3.79) yields the asymptotic hardness- to-cohesion 

ratio at the highest possible packing density q ! ~  = 1 - ($ + 4a2 - & J(9 + 32a2 + 64a4)) : 

lim = 3 2 \ / ( - 2 + 3 q + Z q 2 ) + 3 J ( - 2 - q 2 + 5 q - 2 q 3 )  
p=cplim=l sc +im sc C S  r l+2 (3.81) 

Figure 3-8, which compares the asymptotic behavior of the two lower bounds (3.80) and 

(3.81), shows that the effect of the pore morphology is rather negligible for high limit packing 



densities > 65%, corresponding to friction angles of the solid of 0 < a < 0.5 for a Mori- 

Tanaka solid phase and 0 < a < 0.8 for a polycrystal solid. As expected, the two morpholw 

gies provide the same asymptotic value for ,Iirn = 1, which corresponds to a = 0, and for 

which (3.80) and (3.81) converge to the Von-Mises solid value (3.75). A second limit pack- 

ing density, for which (3.80) and (3.81) coincide is ,Iirn = 0.676, which corresponds to a 

friction coefficient of a = J3 (1 - 77:~)/2 = 0.5 for a Mori-Tanaka pore morphology, and 

a = J ((2,!F - 1) (2 - ( q ~ ) 2  - ,$)) / (4,:~ - 2) = 0.785 for a polycrystal morphology: 

On first sight, it may be surprising that the H-/cs  for high packing densities are actually 

higher than the pure Von-Mises solid value (3.75). This paradox is readily explained by the 

fact that H/C of a cohesive-frictional solid increases with the friction angle (see Section 2.2.2 

and Fig. 2-4). Therefore, the results in Figure 3-8 show that the friction angle dominates the 

asymptotic behavior for high packing density. In return, as the material becomes increasingly 

porous, the effect of the solid's friction vanishes to the benefit of the specific pore morphology, 

which dominates the limit behavior at lower limit solid concentrations (corresponding to 'high' 

(i.e. unrealistic) friction coefficients). 

Moreover, the limit behavior provides a convenient way to compare the effect of morphology 

on the hardness-t~cohesion ratio for cohesive-frictional porous materials. Instead of comparing 

the response for the same friction coefficient, it is more appropriate to compare the response for 

,, , respectively. the same limit packing density, by replacing in (3.78) and (3.79) a by l?k~ and ,Iirn 

This yields for the Mori-Tanaka morphology: 

(The expression for the polycrystal morphology is quite lengthy and is therefore omitted). 

Figure 3-9 displays the hardness-to-cohesion ratio for q ~ k ~  = 11:~ = 0.676 in the interval 7 E 

[Ilo, lllim] (where stands for the percolation threshold: qo = 0 for Mori-Tanaka morphology, 
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Figure 3-9: Lower bound hardness-tecohesion ratio for two cohesive materials of different 
morphology (MT = Mori-Tanaka, SCS = Self-consistent) and different friction coefficients a, 
but same limit packing density vky = q ! ~  = 0.676. For comparison, the figure also displays 
the a = 0 case, for which vky = = 1. 

70 = 1 /2 for polycrystal morphology). 

3.4 Chapter Summary 

In this Chapter we developed a multi-scale indentation strength approach for cohesive-frictional 

porous materials. The approach is based on recent progress in the field of nonlinear strength 

homogenization of porous materials. The separation of scale condition between the macro- 

scopic scale of the indentation analysis and the microscopic scale of the components of the 

porous rev allows us to derive estimates of the homogenized yield function of a porous material 

while considering both the strength properties of the cohesive-frictional solid and the particular 

morphology of the porous microstructure, namely a matrix-pore inclusion morphology (Mori- 

Tanaka scheme) and a polycrystal morphology. The results obtained with these models in a 

lower bound estimate of a flat indenter shows the potential of this novel approach to determine 



the hardness-tesolid cohesion relation from the limit theorems of yield design: 

In particular, the lower bound results reveal that the presence of friction in highly compacted 

solids leads to an increase of H/cS compared to the solid-only situation. These results need 

now to be confirmed with an upper bound approach based on kinematically admissible velocity 

fields. While the theory is now in place, it is quite difficult to develop analytically the upper 

bound for the indentation test in closed-form. For this reason, the next Chapter presents an 

original numerical implementation of the multi-scale upper bound approach. The comparison 

of this upper bound with the lower bound developed here is discussed in Chapter 5. 



Chapter 4 

Computational Implement at ion of 

the Upper Bound 

'Problems of mi-symmetrical plastic pow cannot, in general, be solved by the method 

of characteristics (slip lines) as in plane strain' (Johnson, 1985, page 168). 

The very difficulty of solving the plastic flow problem in axi-symmetrical conditions, as 

noted by Johnson in his classical book on contact mechanics [46], motivates the development 

of a computational strategy to implement the Upper Bound of yield design for the analysis 

of the hardness-to-cohesion ratio of cohesive-frictional porous materials. Given the limited 

possibilities for analytical solutions (such as slip-line solutions), the beneficial use of a continuum 

discretization into finite elements toget her with linear programming techniques was early on 

recognized for the implementation of both the lower bound theorem for plane-stress conditions 

[54], [57], [58] and the upper bound theorem for plane-strain conditions [2], [33], [76], [8]. The 

most advanced implementation is due to Sloan and co-worker combining (plane stress/plane 

strain) 2-D or 3-D linear finite element formulations with linear and non-linear programming 

[65], [66], [67], [52], [53], [48]. We employ a similar strategy for the axi-symmetrical conditions 

of the indentation test. The axi-symmetrical discretization by finite elements is identical to the 

one developed by Ganneau and Ulm [36] for conical indentation analysis in a Mohr-Coulomb 

material (see Section 2.2.2). The originality of our approach is the numerical implementation of 



the discretized dissipation function of the elliptical (Cam-Clay type) strength criterion in form 

of a second-order 'conic' optimization problem, for which advanced numerical solvers became 

recently available. 

4.1 Governing Equations 

The upper bound problem we want to solve is the defined by (3.64) and (3.12). Restated as a 

minimization problem, it reads: 

H H 
cs ' min J ( J ~ + C D - )  - = 3 ( ~ , c p , % , 0 )  = a cs 

subject to (s.t.): 

V(T,Z) E AM; U'.TJ= -sin0 

(T, 2) ' 00; Q' = 0 

The coefficients A, B and C are the pore morphology parameters summarized in Table 3.2. 

We recall that A, = AM sin0 is the projected contact area of the conical indenter (half-apex 

angle 0) with the 'deformed' infinite half-space a, when the indenter is at an indentation 

depth h (see Fig. 2-3). It is assumed to be known. Furthermore, Q' = E'(g) is the plastic 

velocity field normalized by the indentation rate = 1 taken as reference. (I' belongs to a 

space of kinematically admissible (KA) velocity fields which satisfy the zero-velocity boundary 

condition at infinity of the studied domain, as well as the frictionless contact conditions at the 

indenter-material interface. Those conditions are constraints in the optimization problem (4.1). 

Finally, the invariants of the strain rate field D' (g) = i (gradg  + g a d u )  derive from the 

velocity field: 

where R = 1 - 6 1 @ 1 is the forth-order deviator tensor projection of the unit tensor Iijkl = 

(fiik6jI + 6i16j1) which obeys to R : R = K. The implementation of this upper bound problem 



requires on the one side the discretization of the material domain R, and on the other hand an 

efficient formulation to solving the optimization problem. This is the focus of this Chapter. 

4.2 Space Discretization by Finite Elements 

4.2.1 Assumptions 

Using a finite element discretization comes to replacing the infinite half-space R by a bounded 

domain R'. A further simplification consists of modeling the 'deformed' surface as a flat surface, 

when the indenter is at a given indentation depth h. This amounts to neglecting in the evalu- 

ation of the overall dissipation capacity (4.1) of the material bulk the contribution of localized 

regions around the indenter undergoing pile-up or sink-in (see Fig. 41). However, compared 

to the material bulk volume that contributes to the overall dissipation capacity, the additional 

contribution of the pile-up or sink-in material volume 6R is expected to be of second-order in 

the evaluation (4.1) of the maximum dissipation the porous material system can afford. In 

other words, the dissipation capacity of the porous material system is determined for a fixed 

'undeformed' geometry, and the projected contact area is readily determined from the cone 

geometry (see Section 2.1.2) as A, = ?r (h tan o ) ~ .  Of course, for any practical application in 

indentation analysis, the piling-up or sinking-in phenomena cannot be neglected in the evalua- 

tion of the hardness value from its definition (1.1). Finally, making use of the ad-symmetry of 

the geometry of the indentation depth, all developments below are developed in 2-D cylinder 

coordinates (r, z )  . 

4.2.2 Finite Element Discretization 

The velocity field in R' is discretized in the form: 



1 P = HA, 

Figure 4- 1: Modeling assumption in the application of yield design for indent at ion analysis. 
The analysis is carried out on a fixed 'undeformed' geometry, which neglects the dissipation 
contribution of the pile-up (or sink-in) volume 60. 



where u,k are the nodal velocities and Nk are linear shape functions. We restrict ourselves to 

linear three-node triangle elements, for which (4.3) is written in the form: 

where (u!, u:) are nodal velocities in the r- and z-directions, respectively, and Nk are the 

following linear shape functions expressed in terms of the nodal coordinates (ri, 2,): 

where r32 = r3 - r 2  z23 = 22 - z3 

r13 = r1 - r3 z31 = 23 - 

r 2 1  = 7-2 - r1 z12 = z1 - z2, and 2A = I (rl - r3)(z2 - z3) - (r3 - rZ)(z3 - zl) 1 is twice 

the triangle area. The 'volume' of the axi-symmetric triangle is given by: 

4.2.3 Constraints From Velocity Boundary and Frictionless Contact Condi- 

tions 

The application of a finite element discretization lends itself readily for the implementation of 

the boundary and contact conditions in (4.1). Instead of prescribing zero-velocity boundary 

conditions at infinity, they are prescribed on all nodes (ri, zi) situated at the (finite) edges aR' 



of the discretized domain 0' (see Fig. 4-2): 

(the last condition is the velocity condition along the symmetry axis in the 2-D cylinder coor- 

dinate system). 

Similarly, the frictionless contact condition along the indenter - material interface I, can be 

written in the form: 

V ~ E I  -cos(0)u~+sin(0)u~=-hsin(0) (4.8) 

This contact condition implies that the whole optimization problem is proportional to h and 

that the optimal solution ~h is proportional to h. In other words, h is a dummy variable, 

which we set equal to h = 1. Both boundary and contact conditions are linear constraints in 

the optimization problem, which can be written in the compact form: 

where [A1] is the constraint matrix, [u] are the velocity unknowns on and I, and vector 

[bl] assembles the constraints (0 on ijflvd, - sin 0 on I ). 

4.2.4 Discretization of Dissipation Function 

Using the classical notation of displacement-based finite element formulation (see e.g. [4]) which 

is here applied to the velocity formulation, the components of the strain rate tensor are given 

by: 

(Dl) = PI* (4 

where (Dl) = (D;, , DhB, Diz, DiZIT are the components of the strain rate tensor written in 

vector form: 



Figure 4-2: Boundary conditions for the optimization problem leading to an upper bound of 
the exact limit load. 

[B] is the strain rate-velocity matrix (equivalent to the strain-displacement matrix in the FEM) . 
For the chosen linear interpolation (4.5), [B] is constant per element. This simplifies the calcu- 

lations. For instance, the volume strain rate can be expressed as: 



where [B,] is the vector:' 

and ( u )  the nodal velocity vector: 

Similar, the shear strain rate invariant can be obtained from: 

where [Bd] is a 6 x 4 matrix of constant coefficients which links the components of the strain 

deviator tensor to the nodal velocity vector, (A:) = [B~]' (u)'. If we substitute (4.12) and 

(4.15) in the dissipation function (3.62) of the porous material, we obtain a means to evaluate 

the contribution of each triangle element to the overall dissipation capacity: 

.Iv 
nest (D') d V  = l (\l(u)' [BB] (u)' + C [B]' (u ) )  V 

where [BB] is the 6 x 4 matrix: 

'For constant strain per three-node triangle element (volume V, section A) we note that: 



4.3 Formulation of the Optimization Problem 

4.3.1 Problematique 

With the spacial discretization in hand, we can reformulate the problem (4.1) as follows: 

- = min - ' c (4- + c [BIT (u)) v 
cS (u )  Ac el 

s.t. 

[All (u) - (bl) = 0 

This minimization problem is far from trivial, as it involves as objective function a quadratic 

term that cannot be handled with the classical tools of linear optimization. The following 

brief review inspired by [59] and [62] of three major optimization classes, namely the Linear 

Optimization, the Semi-Definite Optimization and the Second-Order Conic Optimization, will 

provide the necessary background for solving this problem. Some additional background is 

given in Appendix B. 

4.3.2 Optimization Classes 

The first step to solving an optimization problem amounts to identifying the optimization class 

to which the problem belongs. Knowledge of the optimization class allows one to choose the 

corresponding class of solvers, if such a solver exists. Choosing a solver that is adapted to one's 

problem has two main advantages. First, there is no need to adapt one's problem to the solver 

by means of approximations. Then, the solver will be efficient and the problem can be solved 

in an optimal time. 



Linear Optimization (LO) 

The simplest optimization problem is the linear problem. The standard Linear Optimization 

problem can be written as: 

(LO) mincTx 

s.t. x 2 0 

A x = b  

where A E Rmxn, b E Rm, c E Rn. 

Semi-Definite Optimization (SDO) 

Linear Optimization is a simplification of a more general class of problems, the Semi-Definite 

Optimization problem, which has the following standard form: 

(SDO) min Tr(CX) 

s.t. Tr(AiX) = bi , i = 1, ..., rn 
X 0 

where Ai are symmetric n x n matrices, and b E Rm. Furthermore, X 0 means that X is a 

symmetric positive semi-definite matrix. The matrices are assumed to  be linearly independent. 

Second-Order Conic Optimization (SOCO) 

Second Order Cone Optimization, which is a particular case of Semi-Definite Optimization, is 

the problem of minimizing a linear objective function subject to the intersection of an affine set 

and the direct product of several second-order cones. The standard SOCO problem takes the 

following mat hematical form: 

(SOCO) min cTx 

s.t. Ax = b 

X E K  



where K is the product of several second-order cones, that is, K = K' x K2 x ... x K N  with 

From a pure mat hemat ical point of view, the constraint function defining the second-order cone 

Kj is nothing more than some specific quadratic functions. 

For the solution of those optimization problems, two main methods are available: the Sim- 

plex Method (SM) and the Interior Point Method (IPM). The Simplex Method has been the 

main method to solve Linear Problems, while the Interior Point Method allows solving more 

complex problems such as nonlinear convex programming, semi-definite optimization (SDO) 

and second-order conic optimization (SOCO). In particular, IPMs appear to be the first and 

also most efficient approach for SDO. SDO and IPM are today a very active area of research 

in mat hematical programming. 

4.3.3 Reformulation as Convex Conic Problem 

After this brief presentation about optimization, we can now return to developing a strategy 

for solving (4.18). While the term min(u, CDL = minC [ B ] ~  (u) is readily recognized as a 

Linear Problem, the quadratic term = min(u, defies the 

classification in one of the three optimization classes. On the other hand, let us rewrite the 

problem (4.1) in a slightly modified form: 

This problem is equivalent to the original problem and is recognized to be of the form (4.21), 

i.e. a Second-Order Conic Problem. 



4.4 Implement at ion in MOSEK 

In general, before solving an optimization problem, data is gathered and prepared. Then, the 

data is communicated to the optimization software. Finally, once the solution has been obtained 

by the solver, it is analyzed. A popular software tool for doing all those tasks is MATLAB. 

However, MATLAB has the disadvantage that it is slow at solving optimization problems. In 

particular, solving large-scale sparse problems might be time consuming if not impossible using 

MATLAB and in any case, MATLAB can not handle the optimization of a Second-Order Conic 

problem. On the other hand, MOSEK which is the name of a set of optimizer, can deal with a lot 

of various optimization problems [85]. In particular, one of MOSEK's optimizers in specialized 

in SOCO problems and can deal with large-scale and sparse problems [84]. Therefore, MOSEK 

optimizers seem to be a very good choice to solve our optimization problem (4.23). 

The MOSEK optimizers can be used from different sources. For example, it can be used 

from a C routine. An optimization toolbox has also been created which makes it possible 

to use the MOSEK optimizers from within the MATLAB environment, so that the MOSEK 

optimizers are used as ordinary MATLAB functions. This combination MOSEK / MATLAB 

is very convenient: the MATLAB environment is very user-friendly and intuitive, and the 

optimization problem is solved much faster with MOSEK than with MATLAB. This efficiency 

comes from the fact that the MOSEK optimizer is written in C and works as an independent 

black box that uses the inputs given by MATLAB and delivers the outputs to MATLAB. 

For these reasons, the MATLAB environment will be used to write, with the MOSEK 

formalism, the discrete formulation of the optimization problem. 

4.4.1 MOSEK Formalism 

In order to  use MOSEK, the conic optimization problem must be presented in the following 

form: 

min cTx + cf 

( . .  ( 1" 5 A x  5 uC 

1" 5 x 5 ux 

X E C  



where C is a set of quadratic cones and rotated quadratic cones. The mathematical definition 

of C is as follows: 

Let xt E pt, t = 1, ..., k be vectors comprised of parts of the decision variables x such 

that each decision variable is a member of exactly one vector xt. C is defined as: C := 

{x E Rn, xt E Ct, t = 1,2, ..., k), where: Ct is a quadratic cone 

or a rotated quadratic cone 

Through the MATLAB interface, the definition of a cone is done in two steps. First, the type 

of the cone (quadratic cone or rotated quadratic cone) is specified. Then the indices of the 

variables playing a role in the cone are given. For example, if the cone is defined as: 

n 

K = {X E &In : > anit xi 2 0 
i=2 

then the indices order is [I, 2, . . . , n] . 

4.4.2 Discrete Formulation with Additional Cones 

Let us define the cone we need to consider for each triangle i. In addition to the nodal velocities, 

we have x as an additional unknown; hence: 

2  3 3 ) i ,  E R7 : A2 (D:) + B~ (2~:) 5 t2 and t 2 0 = { ( t i  ( u u ur u: u, ur 

(4.28) 

This cone is not defined directly by the unknowns but is defined with non-linear functions of the 

u: )). In order to adapt our problem to the MOSEK 
2  formalism, we will introduce additional cones, which replace the original cone A2 (D:) + 



2 ~i 
4 8  ( d) 5 z2. This may seem at first counter intuitive, since adding new unknowns may 

appear to complicate the problem and to slow the computational solution. However, since our 

optimization formulation is a Second-Order Cone problem, and since MOSEK is specialized in 

solving that kind of problem, the addition of appropriate new unknowns defining cones will 

turn out to be a perfect match for our implementation in MOSEK. 

The Nonlinear Functions Dv and Dd 

For each element (section A), we develop the expressions (4.12) and (4.15) of Du and Dd as 

follows: 

(4.30) 

An interesting observation is that D: is the sum of four functions, which are squared functions 

of linear functions in the velocity unknowns. Therefore, in order to define the original cone 

A2 (D:)~ + 82 ( 2 ~ 6 ) ~  5 z2, we are led to add for each triangle new unknowns in order to 

describe new cones. The additional unknowns we introduce are (dl, d2, d3, d4, d5) : 

dl = AD, 



I 1 2 2 3 - 1  1  3 - Z + Z L  1 3 ~ 2 - 1 - 1 - 1  2 r l - 7 - 3 - 1  l r - r  - i u ' - k U 2 + U 3  d2 = 2 8  ( Q U : . ~  + 3 u r 2A + g U r  ;A - s"z 2A gUz 2A su~%? 6 < + T ; + ( ~ P )  

We can now define the cones. 

Cone to Define Dd 

The first cone we define expresses the link between 4B2 (D:)' and the additional unknowns 

(d2, d3, d4, d5). A 6th additional unknown d6 is then created as 4 = ( 2 8 0 : )  2. These unknowns 

belong to the quadratic cone Ct: 

The Original Cone 

A second cone is defined to express the original cone, i.e. the square-root of the original objective 

function. This quadratic cone is defined as: 

With the formalism of MOSEK, the same unknown cannot belong to several cones at the same 

time. We thus introduce an additional unknown d7 = d6 and then redefine the cone: 

This last cone c;ls corresponds to z2 2 (03) + 4@ (D:)~. The linear relation d7 = d6 

will be taken into account as an additional linear constraint in the optimization problem. 



Modification of the Objective Function 

In a last step, we redefine the volumetric term in the objective function, CDA = CIA d l .  

The final objective function is then defined by a gth unknown dg which is the following linear 

combination: 

This linear relation correspond to the objective function z + CDL which represents the dissi- 

pation capacity now as a linear equality. This equality is implemented as a linear constraint in 

the optimization problem. 

4.4.3 Summary 

The solver MOSEK eventually deals with the following problem: 

where x is the vector that has as unknowns the nodal velocities and the nine additional un- 

knowns that define the cones, i.e. for each element: 

The linear constraint Rx = S assembles the boundary conditions and contact conditions (4.9) 

as well as the equalities d7 = d6 and (4.36). 

4.5 Computational Environment 

We present briefly here below the computational environment in which we solve the problem. 



4.5.1 Organization of the Program 

The solver MOSEK is called from the MATLAB interface. The program developed with MAT- 

LAB is organized into four parts: 

1. The first part reads the inputs from a file written by the finite element software CESAR- 

LCPC; CESAR-LCPC is used to create the mesh for our sample and write a .data file of 

this mesh; the .data file contains the coordinates of the nodes and proposes a numbering 

of the nodes; the nodes where there is a boundary condition are also emphasized. 

2. The second part writes the objective function, the linear constraints and the conic con- 

straints with the formalism of MOSEK. 

3. The third part calls the solver MOSEK 

4. The fourth and last part organizes the outputs given by MOSEK and displays graphically 

the results. 

4.5.2 Presentation of the Results by MOSEK 

During MOSEK optimization, several information are shown on the screen (Fig. 4-3 and Fig. 

4-4) : 

a MOSEK displays the method it uses to solve the minimization problem. As expected, it 

uses the 'Interior Point Method'. 

a MOSEK uses both a primal and dual problem formulation, which converge toward the 

same limit. The problem status is given as 'primal-dual feasible' (see Appendix B). 

a The solution st atus is 'optimal' or 'near-optimal' according to the speed of the convergence 

of the iteration process. 

a At the end of MOSEK routine, the computational time is given. 

a Last, our MATLAB routine displays the final value of the hardness-to-cohesion ratio. 
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Figure 44: MOSEK screen (2) 



4.6 Chapter Summary 

We now have a working model in place to perform the multi-scale indentation analysis of the 

hardnessto-cohesion ratio of cohesive-frictional porous materials. In this Chapter, we developed 

an original computational implementation of the upper bound theorem. Our approach is based 

on the identification of our problem as a Second-Order Conic optimization problem. To our 

knowledge, this is the first time that the upper bound approach, when used with an elliptical 

strength criterion, is recognized as a SOCO. This identification opens the way for solving the 

problem by most advanced solver techniques, such as MOSEK. The originality of our approach 

lies in the combination of finite element discretization and advanced optimization techniques, 

which is readily implemented in standard tools of computational mechanics, such as MATLAB. 

The validation of this approach is shown in the next two Chapters, before we apply it to shale 

indentation analysis in Chapter 7. 
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Chapter 5 

Verification and Validat ion 

This third part of the thesis presents the upper bound solutions obtained with the optimization 

algorithm developed in Chapter 4. This Chapter is dedicated to a rigorous verification and 

validation of the upper bound solution procedure. Given the discretized nature of the problem 

with finite elements we start with a sensitivity analysis of the results with regard to meshing 

effects. In particular, we study the effect of the boundary of the modeled domain on the 

hardness-to-cohesion ratio. We then present a validation of the upper bound solution for flat 

indentation for which we developed a lower bound solution in Chapter 3. Both verification and 

validation provide a sound basis for a parameter study of the multi-scale strength model in 

Chapter 6. 

5.1 Discretization Verification 

In contrast to theoretical indentation analysis which is based on the infinite half-space model 

of a continuum, the implementation of the upper bound of our model involves a finite sample 

domain nt(see Fig. 4-1). This introduces two additional finite length scales into the axi- 

symmetric analysis: sample height ZM and sample radius r~ (see Fig. 42 ) .  A third additional 

length scale is introduced by the finite characteristic size l of the elements employed in the 

finite element (FE) mesh of Q'. We recall that the use of linear interpolation functions leads 

to a constant strain rate per element, and thus to a constant value of the dissipation function 



per element (see Section 4.2.4). Eliminating those discretization effects is of critical importance 

in several regards. In particular, the additional three length scales (h, TM,~?)  may jeopardize 

the classical self-similarity properties of the indentation test as stated in Section 2.1.2. As a 

consequence, the hardness would depend not only on the strength properties of the indented 

material, but as well on mesh-size effects and size of the modeled domain. Hence, instead of 

(2.34) : 

where: 

The ratios zM/h and rM/a represent respectively the sample height-to-indentation depth 

ratio and the radial sample extension-to-contact radius (a = htan6 in conical inden- 

tation). Both reflect a possible effect of the zero-velocity boundary conditions on the 

indentation response. In the continuum half-space model, zM/h + oo and rM/a + oo. 

Eliminating those effects for finite values of zM/h and rM/a amounts to eliminating arti- 

ficial boundary condition effects. 

The ratio rM/Q, which is the radial extension of the sample over the characteristic size of 

a mesh element, reflects the mesh sensitivity of the implementation. In fact, for TM = z ~ ,  

rM/e N fi where N is the number of elements. In the continuum model + oo. 

Eliminating this discretization effect for finite values of rM/! is critical for the choice of 

the appropriate element size. 

The ultimate aim of studying those invariants is to determine an optimized mesh whose 

response in indentation analysis approaches the best the half-space model. By 'optimized' we 

mean a mesh which eliminates the discretization length scale effects, while remaining compu- 

tat ionally efficient for a massive employment in a parameter study of our model. 

5.1.1 Regular vs. Irregular Mesh 

To start our investigation, we have a look on mesh effects induced by regular vs. irregular 

FE meshes. The elements we use are triangular elements. Meshes are generated with the pre- 



Figure 5- 1: 2 mesh configurations: (a) direct triangulation, (b) sub-triangulation: a rectangle 
is divided into 8 regular triangles. 



Figure 5-2: Mesh effects due to irregular mesh generated by direct triangulation: Hardness- 
to-cohesion ratio vs. mesh-size number rM/l.  (Simulation results for 19 = 70.3Z0, a = 0, q = 

0.033, qo = 0). 

processor of CESAR-LCPC, which offers among other options two mesh operations (see Figure 

5-1): 

1. Direct triangulation: The domain 0' is discretized by triangular elements of a character- 

istic length t, without imposing any fixed points that restrict the location of individual 

nodes (Fig. 5- 1 ( a ) ) .  This mesh generation procedure depends on the triangulation met hod 

used in the software, for instance Delaunay triangulation1, and yields an irregular mesh. 

The particular triangulation method may induce another length scale in the analysis, 

characterizing the regularity of the mesh. For instance, a Delaunay triangulation enforces 

that no three points are on the same line and no four are on the same circle, for a two 

dimensional set of points. As the number of points increases, the effect becomes neg- 

ligible; but along this way, there are effects of the non-smoothness of the mesh on the 

hardness-to-cohesion ratio. This is shown in Figure 5-2, in form of a plot of H/cS  vs. 

'In mathematics, and computational geometry, the Delaunay triangulation or Delone triangularization for a 
set P of points in the plane is the triangulation DT(P) of P such that no point in P is inside the circumcircle of any 
triangle in DT(P). Delaunay triangulations maximize the minimum angle of all the angles of the triangles in the 
triangulation; they tend to avoid " sliver" triangles. (from http: / /en.wikipedia.org/wiki/Delaunay - triangulation) 



rM/ t .  The irregular mesh influences the discretized velocity field, which in turn prevents 

a smooth evolution of the velocity when the mesh is refined. 

2. Sub-Triangulation: The domain 0' is first discretized by quadrilateral (square) elements .2 

The quadrilateral elements are then subdivided into eight triangular elements. The first 

step generates a regular distribution of nodes in Q': nodes are now nicely organized in a 

regular woven-type pattern (Fig. 5-l(b)). As a consequence, the velocity field is a lot less 

influenced by the distribution of the nodes. A careful examination of the velocity fields 

shows a slight disturbance around the vertical line demarcating the limit between the free 

surface region and the region below the indenter. We can hardly avoid this disturbance in 

the velocity field, since this vertical line separates anyway two zones with very different 

boundary conditions. On the other hand, this disturbance seems not to affect the overall 

hardness-tecohesion response. Indeed, the nice and smooth curves that are presented 

throughout this chapter are based on the regular mesh obtained by subtriangulation. 

5.1.2 Eliminating Boundary Effects 

The aim of this Section is to determine the minimum extension of the meshed domain for 

which the effects of the zereboundary conditions prescribed along an' become negligible. In 

this case, the discrete solutions should be close to the infinite half-space model underlying 

indentation analysis. Given the large variety of possible model parameters that may influence 

the results, we need to define a reference 'worst-case scenario'. This 'worst' representative case 

corresponds to the one which produces the widest distribution of the velocity field in 0'. From 

a visual inspection of a large array of velocity field results, we choose the case where 0 = 70.32" 

(Berkovich indentation), a = 0, q5 = 0.000001, which is very close to the pure Von-Mises case. 

2 ~ n  the pre-processor of CESAR-LCPC, the quadrilateral elements are &noded solid elements, which are 
divided in eight 6-noded triangles. In our computational implementation we reduce the 6-noded elements to 
3-noded elements by means of a specially designed interface program. 



Figure 5-3: Study of boundary effects: Hardness-tecohesion ratio vs. radial extension rM la,  at 
constant values of z M / h  and rM/e .  (Simulation results for 6 = 70.32', a = 0, rp = 0.000001, q0 = 

0) 

Radial Sample Extension r M / a  

Figure 5-3 displays the hardness-to-cohesion ratio as a function of the radial extension parameter 

r M / a  (rM is the radial mesh length, a is the projected contact radius). For this study, the height 

z M / h  of the sample and the mesh size number rM/e  are kept constant. The results call for the 

following comments: 

For r M / a  < 1.2, the problem is not primal-dua13. This means that there are too many 

constraints on the sample and there is no primal-dual feasible solution. In this case, the 

velocity fields appear to be unrealistic (see Fig. 5-4), leading to unrealistic high H/cs 

values (for instance, H/cS ( r M / a  = 1.1) = 407.4 !) . 

0 For 1.2 < r M / a  < 1.8, the influence of the mesh extension is important, and thus the 

effects of the lateral zero-velocity boundary conditions on the indentation response. This 

can be explained from a visual inspection of the velocity fields in Figure 5-5: As r M / a  

3The reader will find a definition and importance of a primal-dual problem in Appendix B dealing with some 
elements of optimization theory. 



Figure 5-4: Velocity field for r M / a  = 1.1. The solution is not primal-dual feasible. (Simulation 
result for 0 = 70.32O, u = 0 , ~  = 0.000001, qo = 0). 

increases from 1.2 (Fig.5-5 (a)) to 1.8 (Fig.5-5 (b)), the velocity fields emerge freely to 

the surface, instead of being generated by the enforced zero-velocity boundary condition 

at r ~ .  

Figure 5-3 shows that the H/cs stabilizes for r M / a  > 1.8. However, a closer look on the 

velocity field reveals that the velocity field for r M / a  = 1.8 is still influenced by the lateral 

boundary conditions, in particular in comparison with a larger extension r M / a  = 4 (Fig.5-5 

(c)) for which the boundary effect becomes negligible. This does not change the overall H/cs 

ratio, since the velocity field is compressed horizontally and lengthened vertically and since the 

perturbed vectors are very small compared to the average vector. As a consequence both effects 

. compensate each other, and the internal dissipation still equates to H/cs = 4.88 - 4.90. 

Our final choice is r M / a  = 2.6 (Fig.5-5 (d)), for which the effects of lateral boundary 

conditions can be considered as negligible on the velocity field and the H I P  ratio. 



Figure 5-5: Velocity fields for (a) r M / a  = 1.2, (b) r M / a  = 1.8, (c) r M / a  = 4.0 and (a) 
r M / a  = 2.6. (Simulation results for B = 70.32', a = 0 , ~  = 0.000001,q0 = 0). 
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. , On the other hand, the velocity fields displayed in Figure 5 7  tell a different story: For 

. : . z M / h  = 1.8 (Fig.57 (a)) the velocity field appears to be strongly' disturbed close to the . . . .  6 

lower ,boundary, while this effect is negligible for zM/h ,= 5.7% (Fig.5-7 (b)). The reasqn, . .. 4 , . . F 
t 

. r* for which both samples yield the ssme HIP ratio may be explained as before: the velocity 

. . .  . .  :: .*i field is lengthened horizontally and compressed vertically and since the disturbed vectors .: : . a L . -  . -  - .  . . I .  

1 .., are very small compared to the average vector, both effects compensate and the internal 



. . .  Figure 5-7: Velocity fields for (a) z M / h  = 1.8, (b) z M / h  = 5.75. (Simulation results for .: 

6 = 70.32O, a = 0, cp = 0.000001,~~ = 0). 

Based on this study, we choose a value of z M / h  = 3.5, which ensures that the vertical 

boundary effects do not affect the (upper bound) indentation hardness response. 
. . .  

5.1.3 Upper Bound Convergence Study 
. - .  . 

The last effect we study is the mesh-size effect captured by the mesh size number r M / l  in 

the dimensionless relation (5.1). In these simulations, r M / a  = 2.6 and z M / h  = 3.5, which 

eliminates possible boundary effects. Therefore, studying the effect of the mesh size number 

r M / l  provides a means to verify the convergence behavior of our upper bound computational 

implementation. Figure 5-8 shows a consistent convergence of the upper bound solution: as the 

mesh size number increases the hardness-to-cohesion ratio converges towards a constant value, 

and this for finite values of the mesh size number. We choose r M / l  = 130 which corresponds 

to a total number of triangle elements of N = 16,000. This high number of elements comes 

at a price, as figure 5 9  shows: the computational time increases rapidly with the number 

of elements. Recalling that rM/e  is roughly a, figure 5 9  allows us to conclude that the 

computational time increases almost linearly with r M / l .  



Figure 5-8: Convergence study of mesh size effects: Hardness-tc~cohesion ratio vs. mesh-size 
number r M / 4  at constant values of r M / a  = 2.6 and z M / l  = 3.5. (Simulation results for 
0 = '70.32O7 a = 0, cp = 0.033, vo = 0). 

Number of Elements 

Figure 5-9: Computational time vs. number of elements. (Simulation results for 0 = 70.32", 
a = 0, cp = 0.033, q0 = 0). 



5.2 Validat ion 

We now have a working computational model in hand, which validates the computational 

implementation of the upper bound solution. This allows us to return to the true focus of our 

study, which is (2.34): 

This section is devoted to a quantitative validation of the upper bound solution. The upper 

bound finite element simulation is validated with the following data: 

The Von-Mises pure solid case, for which Cheng and Cheng [17] reported H/Y 2. 2.8 

from comprehensive finite element elastoplastic analysis on a conical indentation with a 

semi-apex angle of 6 = 68". We will study this limit case by letting a = 0 and ip = 0 in 

our model, while varying the semi-apex angle 6. 

The lower bound solution for flat indentation developed in Sections 3.3.2 and 3.3.3. 

As we will see, these two limit cases provide a means to quantitatively assess the predictive 

capabilities of our upper bound solution. 

5.2.1 Validation Set #1: Limit Case of a (Pure) Von-Mises Solid 

The Von-Mises solid-only-case is the most classical validation test for hardness-strengt h prop- 

erties relations (see Section 2.2.2). The earliest quantitative work for such materials is due to 

Tabor [72]. Tabor's slip-line field solution for indentation in a rigid-plastic solids by a friction- 

less rigid wedge provides H/Y = 3, where Y = &cs is the uniaxial strength and cS is the 

Von-Mises cohesion. Cheng and Cheng [17] by means of comprehensive finite element elasto- 

plastic contact simulations showed that H/Y 2. 2.8 for materials for which Y/E 4 0, when 

Y is taken as the uniaxial yield stress at 10% of strain. This value is considered today as a 

rule-of-thumb in the indentation literature. We should note, however, that Cheng and Cheng 

obtained this result by simulating the comical indentation having a semi-apex angle 0 = 68O. 

To our knowledge, this apex angle is not representative of any of the typical indenter shapes 



used today (see Section 2.1.2, Table 2.1): the equivalent cone angle of a Berkovich or Vickers 

indenter is 8 = 70.32" and 8 = 42.28" for the Cube Corner. 

We want to validate our approach for this limit case of a Von-Mises solid. This is obtained 

by letting a = 0 and cp = 0 in our model: 

For purpose of comparison with Cheng and Cheng's value, we assume that the uniaxial strength 

Y is representative of the yield stress at 10%. On the other hand, we do not fix the cone-angle, 

but determine H+/Y  for three indenter shapes: cube corner, 68"-Cone, Berkovich (or Vickers) 

and flat indenter. The values we obtain with the upper bound approach are presented in Table 

5.1, and are plotted in Figure 5-10 as a function of the half-cone angle. We readily note that our 

simulation result for the 68"-Cone are in excellent agreement with Cheng and Cheng's result 

obtained by complete elasto-plastic finite element simulations. Furthermore, the results also 

show that there is a slight (yet visible) dependence of the hardness-to-strength ratio on the 

cone angle: the highest hardness is obtained for the flat punch and the lowest hardness for 

the cube corner4. Finally, Table 5.1 lists the values for both the Mori-Tanaka scheme and the 

Self-consistent Scheme. As expected, for a pure solid phase, both schemes provide the same 

response. 

Finally, the value we obtain with the upper bound solution for the flat punch, H f  / Y = 3.1 

is well above the lower bound prediction H - / Y  = 2 developed in Section 3.3.2 (Eq. (3.75)). 

4 ~ o r  reference: The Berkovich-to-Cube Corner hardness ratio for the Von-Mises case is: 

The dual indentation technique of Ganneau et al. [37] developed for cohesive-frictional solids (of the Mohr- 
Coulomb type) would predict for this ratio (see Eq. (2.21) and Fig. 2-5) a friction angle of roughly 4 = 10'. 
The accuracy of this method, therefore, appears to be limited to higher friction angles, as the same ratio may 
simply correspond to the effect of the cone angle on the hardness of a pure cohesive solid of the Von-Mises type. 



e H+IY (MT) H+/Y (SCS) 
Cube Corner 42.28" 2.5292 2.5274 

68"-Cone 68" 2.7956 2.7941 
Berkovich 70.32" 2.8275 2.8263 
Flat punch 1 90" 1 3.1003 1 3.0957 

Table 5.1: Hardness-to-Yield Strength values obtained with the upper bound solution for a Von 
Mises solid material for different indenters. (MT = Mori-Tanaka, SCS = Polycrystal) 

Cheng and Cheng (2004) 

1 A lowr bound (Secthn 3.3.2) 1 
I I 

I 0 
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Figure 5-10: Effect of the half-cone angle 0 on the hardness-to-strength ratio H / Y  of a Von- 
Mises solid. The figure also displays the results of Cheng and Cheng obtained £?om compre- 
hensive elast oplastic contact finite element simulations. 



5.2.2 Validation Set #2: Comparison with Flat Punch Lower Bound Solu- 

t ion 

Given the strong duality of the two approaches (see Appendix A. I), the true lipness test for any 

yield design approach is the comparison of the lower and the upper bound solution. We have 

already noted that close to the pure solid state (cp + 0) , our upper bound solution comes very 

close to the actual solution of the problem, while our lower bound approach based on a simple 

piece-wise constant stress field performs rather poorly. The focus of this second validation set is 

a comparison of the lower and upper bound over the entire range of possible porosities, and for 

different pore morphologies. This will be done for flat punch indentation for which we developed 

a lower bound in Sections 3.3.2 and 3.3.3. 

Porous Von-Mises Material 

We start with the comparison for a porous Von-Mises solid, for which we compare the lower 

bound solutions developed in Sect ion 3.3.2 with the upper bound solutions obtained with the 

computational model. In terms of the dimensionless relation (5.2), the focus is on: 

Figure 5-11 displays the upper and the lower bound solutions of the hardness-to-cohesion ratio 

as a function of the solid packing density 7 = 1 - cp for the two pore morphologies: the 

matrix-pore inclusion morphology (MT = Mori-Tanaka) and the polycrystal morphology (SCS 

= Self-consistent Scheme). The figure reveals some interesting results: first, the upper bound 

solution at all times is a true upper bound to the lower bound. Second, not surprisingly, we 

find that the upper bound solution is well above the lower bound solution close to q = 1, where 

the latter - as we have stated before - performs poorly. This trend seems to hold for packing 

densities roughly above 75%. But below this value, i.e. as the porosity increases, both the upper 

bound and the lower bound give comparable values, and almost coincide for a large range of 

values. For obvious reasons, they exactly converge to the same zero-value at the percolation 

threshold (vo = 0 for Mori-Tanaka, = 112 for Polycrystal). In other words, for 70 5 7 < 314, 
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Figure 5-11: Comparison of lower bound (LB) and upper bound (UB) solutions for the flat 
punch for a porous Von-Mises Material (MT=Mori-Tanaka, SCS=Self-Consistent Scheme). 

we almost achieve with our approach the strong duality between the lower and the upper bound 

approach for a porous Von-Mises material. 

Porous Drucker-Prager Material 

Figure 5-12 compares the lower and upper bound flat punch solution for a porous material 

composed of a Drucker-Prager solid and pore space; that is: 

The observation made for the Von-Mises case also apply here. In particular, we find an excellent 

agreement of the lower and upper bound solution for packing densities qo < q < 3/4qlim, where 

qlim = qlim (a,  qO) is the limit packing density defined for the Mori-Tanaka morphology by (3.57) 

and for the Self-consistent morphology by (3.58). For 3/4qlim < q 5 qlim, lower and upper 

bound diverge in a very similar way as in the Von-Mises case. 



Packing Density q [I] 

Figure 5-12: Comparison of lower bound (LB) and upper bound (UB) solutions for the flat punch 
for a porous Drucker-Prager Material (MT=Mori-Tanaka, SCS=Self-Consistent Scheme). 



This limit behavior is exemplified in Figure 5-13 which displays the lower and upper bound 

of lim H/cS for q + l)lirn (a, qO) for both the Mori-Tanaka and Self-consistent ~ o r ~ h o l o ~ ~ . ~  

The figure shows that the trend predicted by the lower bound approach (i.e. Fig. 3-8) is 

reproduced by the upper bound solutions, but at a somewhat higher level, as expected from an 

upper bound solution. The conclusions made in Section 3.3.3 apply here as well: 

The pore morphology (MT or SCS) is rather negligible for high limit packing densities 

> 65%, corresponding to friction angles of the solid of 0 < a < 0.5 for a Mori-Tanaka 

solid phase and 0 < a < 0.8 for a polycrystal solid. 

The frictional behavior dominates the asymptotic behavior of porous materials for high 

packing densities, for which lim H/cS  is greater than lim H/cS for a Von-Mises solid ma- 

terial, qfim = 1. 

As the material becomes increasingly porous, the effect of the solid's friction vanishes to 

the benefit of the specific pore morphology, which dominates the limit behavior at lower 

limit packing densities. 

5.3 Summary of Validation 

The excellent agreement with Cheng and Cheng's analysis (based on the weak form of equilib- 

rium, i.e. finite element solution) for a pure Von-Mises solid provides strong evidence that the 

upper bound approach for low to zero porosities provides an excellent prediction of the actual 

hardness-to-strengt h values. Furthermore, the excellent agreement of the upper and lower flat 

punch solutions for packing densities qo 5 1) < 3/4qlirn provides strong evidence that the solu- 

tion we here propose is the actual yield design solution, in the sense of the 'strong duality' of 

yield design theory. This is not surprising in the light of the developments presented in Chapter 

4: the consistent formulation and implementation of the upper bound has sufficient degrees of 

5 ~ h e  attentive reader will find that the limit value of the numerical solution for a = 0 in Figure 5-12 does 
not correspond to the H/cs  value for the flat punch reported in Table 5.1. In fact, the displayed upper bound 
values are the limit values for the Berkovich indenter 8 = 70.32', which are compared with the lower bound flat 
punch limit values. Since H B / c S  < HQOO / c s ,  this minor detail does not change the course of our arguments. 
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Figure 5-13: Asymptotic behavior of lower and upper bound hardness-to-cohesion ratio at the 
limit packing density qlim. (The lower bound corresponds to the flat punch, while the upper 
bound solution is for Berkovich indenter). 



freedoms to accurately capture the actual dissipation capacity of the material system below 

the indenter, for which reason the solution converges to the actual solution of the optimization 

problem. Hence, in all what follows we will refer exclusively to the upper bound solutions. 

What is most surprising, however, is that the relatively simple lower bound based on a piece- 

wise constant stress-field performs exceptionally well for packing densities qo < q < 3/4qlim. 

The reason for this agreement can only be related to the elliptical strength criterion, which 

appears to be well adapted to capture the strength behavior below an indenter even with crude 

stress field approximations. 

Indeed, if we evaluate the stress field corresponding to the upper bound from (3.37) we 

readily see that the stresses are far from piecewise constant as assumed in the lower bound 

approach. The stresses z, = g t r ~ / c ~  and ad = d a / c s  are displayed in Figure 5-14. 



Figure 514: Sress Fields (a)  Em = i t r ~ l c ~  and (b )  ad = Jm/cS corresponding to 
the upper bound solution for a = 0, rp = 0.1 and q0 = 0. 



Chapter 6 

Parameter Study 

The excellent performance of the upper bound solution for the Von-Mises solid limit case and 

of the upper and lower bound flat punch solutions for cohesive-frictional porous materials are 

very strong arguments in favor of the use of the upper bound solution for indentation analysis. 

On this background, this Chapter examines how the hardness-to-cohesion ratio H/cS  depends 

on the different parameters, in particular the semi-apex angle 0. The question is motivated 

by multiple inden ter  approaches which became recently popular in the indent at ion literature. 

Multiple indenter approaches aim at overcoming the non-uniqueness of the reverse analysis of 

a single indentation test by means of multiple indentation tests with different geometry. The 

approach we develop below for porous cohesive-frictional materials is of a similar vain, but 

instead of making use of the dependence of the hardness on the cone angle (which we find to 

be weak), we identify hardness-packing density scaling relations for flat punch, Berkovich, and 

Cube Corner indentation. 

6.1 Motivation: Multiple Indenter Approach 

It was recently recognized that the extraction of material properties from the reverse analysis of 

a single indentation test suffers from non-uniqueness (see e.g. [17]). Several multiple indenter 

approaches have been proposed to overcome this limitation for elasto-plastic cohesive materials 

with or without power-law strain hardening using conical or pyramidal indenters [34] [12] [15] 



[27] [71] [37] (see also Section 2.2.2). The key idea of the multiple indenter approach is to 

exploit the self-similarity of the indentation test w.r. t . the indenter geometry; i.e. for conical 

indentation from the dependence of the dimensionless relations (2.17) on the tip apex angle 0. 

Using our upper bound approach for conical indentation, we follow a similar strategy here to 

find out whether it is possible to extract the cohesion cs and the friction coefficient a from the 

hardness-tecohesion relation of cohesive-frictional porous materials: 

It is readily understood that the number of indentation results obtained with different apex 

angles should equal the number of unknown constants in the constitutive model [34], i.e. two 

hardness measurements for cohesive-frictional porous materials, if the porosity cp = 1 - 7 and 

the pore morphology 70 are known. This is a necessary, but not sufficient condition. Indeed, 

the uniqueness of such a dual indentation procedure needs to be ensured. This motivates the 

detailed study of relation (6.1) for different semi-apex angles, namely (see Section 2.1.2, Tab. 

2.1): flat punch (0 = 90°), Berkovich (0 = 70.32') and Cube Corner (0 = 42.28'). 

6.2 Comparative Results 

We carried out a great number of simulations by varying the four parameters in (6.1). This 

Section provides an overview of the results in a compact form. 

6.2.1 Visualization of Velocity Fields 

A first screening of the velocity fields obtained with the upper bound approach provides some 

insight into the particular indentation behavior of cohesive-frictional porous materials. Figure 

6-1 compares the indentation velocity fields of two materials having the same friction coefficient 

and the same morphology (here matrix-pore inclusion), but different porosities. There is a 

clear difference in the limit behavior: the plastic zone contributing to the overall dissipation is 

greater for smaller porosities than for larger porosities, and appears to be dominantly dilating 

(except for a narrow zone below the indenter). By contrast, in the case of greater porosities, the 



material bulk that contributes to the dissipation capacity is concentrated into a narrow band 

parallel to the indenter-material interface, where the material undergoes primarily a plastically 

contracting behavior. This difference in activated bulk volume contributing to the dissipation 

explains why higher porosity materials have a lower overall hardness-to-cohesion ratio. 

The velocity fields are also influenced by the pore morphology. By way of illustration, 

figure 6-2 compares the indentation velocity fields of two materials having the same friction 

coefficient and the same porosities but different pore morphologies: a matrix-pore inclusion 

morphology (MT, Fig. 6-2(a, c, e ) )  vs. a polycrystal morphology (SC, Fig. 6-2(b, d, f )) . There 

is a clear difference in the limit behavior: the Mori-Tanaka morphology generates a diffuse 

velocity field around the indenter, while the Self-consistent morphology entails a more localized 

response. In other words, for the same solid friction coefficient and same porosity, the MT-model 

activates more volume to contribute to the overall dissipation capacity than the SC-model. As 

a consequence, the hardness-to-cohesion ratio is greater for MT than for SC. 

Finally, in all cases, there appears to be an effect of the cone angle on the extent of the 

plastic velocities field: as the cone becomes flatter, more material is activated. The hardness-to- 

cohesion ratio is greater for the Berkovich (6 = 70.32') than for the Cube Corner (0 = 42.2B0), 

and it is the highest for the flat punch (6 = 90'). 

6.2.2 Contour Plots .F (a,  9) 

A convenient way to display discrete data points is in form of a contour plot which transforms 

the discrete data system into a continuous distribution of linearly interpolated data points. We 

apply this technique to the H/cS values for each apex angle 6 and homogenization scheme 70. 

Figures 6-3 and 6-4 display the contour plots for the Mori-Tanaka scheme (qO = 0) and the 

Self-consistent Scheme (vO = 1/2), respectively. 

The curved solid line on the left of the figures correspond to the limit case, limq,,a, H/cS, 

where stands for the limit porosity defined by (3.57) and (3.58) (see Section 3.2.5 and 

discussion below). Furthermore, a comparison of the contour-plots 6-3 and 6-4 for different 

cone angles shows that the hardness-to-cohesion ratio increases with the cone angle. We have 

already noted this effect in the pure Von-Mises Solid case (vlirn = 0) (see Fig. 5-10). To analyze 



Figure 6-1: Effect of the porosity on the indentation velocity fields of cohesive-frictional porous 
materials: Flat Punch and a = 0 for (a) (o = 0.1 and (b) (o = 0.3. Berkovich and a = 0.05 for 
(c) rp = 0.033 and (d) rp = 0.3. Cube Corner and a = 0.25 for (e) rp = 0.133 and (f) rp = 0.7. 
(Results with Mori-Tanaka scheme q0 = 0). 



Figure 62: Effect of the pore morphology on the indentation velocity fields for cohesive- 
frictional porous materials: Mori-Tanaka Scheme (qo = 0) for (a) flat punch (a = 0.15, 
rp = 0.1), (c) Berkovich (a = 0.05, rp = 0.033) and (e) Cube Corner (a = 0.25, rp = 0.133). 
Self-Consistent Scheme (qo = 112) for for (b) flat punch (a = 0.25, rp = 0.2), (d) Berkovich 
(a = 0, rp = 0.1) and (f) Cube Corner (a = 0.2, rp = 0.2). 
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Figure 6-3: fiction-porosity contour plots of the hardness-to-cohesion ratio H/cS  = .F (a, 9) 
for three semi-apex angles t? corresponding to (from top to down) the Flat punch, the Berkovich 
and the Cube Corner indentation. The results are for the matrix-pore inclusion morphology 
(Mori-Tanaka, = 0). 
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Figure 6-4: Friction-porosity contour plots of the hardness-tecohesion ratio H/Cd = F (a, 9) for 
three semi-apex angles 6 corresponding to (from top to down) the Flat punch, the Berkovich and 
the Cube Corner indentation. The results are for the polycrystal morphology (Self-consistent, 
vo = 1/21. 



this behavior, we introduce the following hardness ratios: 

The super- and subscripts FP, B, C C  stand for 'Flat Punch', 'Berkovich and Cube Corner, 

respectively. Figures 6-5 and 6-6 display for each homogenization scheme the contour plots of 

the hardness ratios. The figures reveal that the highest hardness contrast is achieved at the 

limit case p + and that the contrast reduces as the material becomes more and more 

porous. 

6.2.3 The Limit Case of Cohesive-Frictional Porous Materials 

We have a closer look on the limit case limq,,iim H/cS, where vlim = 1 - is the limit packing 

density (or solid concentration), for which the elliptical strength criterion is defined. We recall 

(3.57) and (3.58) in the form: 

lim = 1 ( 4 9  + 32a2 + 64a4) - 1) - 4a 2 vo = 112 5 v < vsc 2 (6.4) 

Figure 6-7 displays, for Berkovich (6 = 70.32") and Cube Corner (6 = 42.2B0), the limit values 

lim,,,., H/cs as a function of the limit packing density vlirn, corresponding to friction coeffi- 

cients of a E [O, 0.51. The general trend observed for the lower bound flat punch solution (see 

Figs. 3-8 and 5-12) is found to hold for all cone angles: an increase of lim,,,lim H/cS close to 

the pure solid state, followed by a decrease as the material becomes increasingly porous. We 

have explained this behavior by the effect of friction on highly filled systems in Section 5.2.2. 

To fully apreciate this limit case, we plot in figure 6-8 the Berkovich-to-Cube Corner hard- 

ness ratio %& as a function of the limit packing density for the two homogenization schemes. 

Let us note that 'H& in this limit case is a priori a function of a and 70; i.e. 'H& = ='H& (a, vO). 
An important observation from figure 6-8 is that the ratio of the hardness limit values can be 
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Figure 65: Hardness Ratios for Mori-Tanaka Scheme (matrix-pore inclusion morphology, qo = 
0) : fig:: Flat punch-over-Cube Corner Hardness (top), Fl&: Berkovich-over-Cube Corner 
Hardness (bottom). 
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Figure 66:  Hardness Ratios for Self-consistent Scheme (polycrystal morphology, qo = 112): 
'H:;: Flat punch-over-Cube Corner Hardness (top), 'HEc: Berkovich-over-Cube Corner Hard- 
ness (bottom). 
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Figure 6-7: Effect of the cone angle on lim,,~i, H/cS as a function of the limit packing density 
,,,lim = 1 - . (B = Berkovich (0 = 70.32'), CC = Cube Corner (0 = 42.28'), MT = Mori- 

Tanaka (70 = 0 )  and SC = Self-consistent scheme (qo = 112). 



represented as a function of a single variable, the limit packing density vlim = vlim (a): 

This is an important result in several regards: 

1. Our results can be seen as an extension to cohesive-frictional porous materials of previous 

investigations of hardness-strength relations for cohesive-frictional solids [37]. Instead 

of hardness ratio 7igc - friction angle relations (see Fig. 2-5), we suggest that the 

appropriate parameter for cohesive-frictional porous materials is the limit packing density 

vlim = vlim (a, vO), which combines both the solid's friction coefficient and the micro- 

structural morphology, namely the percolation threshold ~ 0 .  

2. For cohesive-frictional solids, the hardness ratio (6.5) has been suggested as input for the 

reverse analysis of the friction angle by means of the so-called Dual-Indentation tech- 

nique (see Section 2.2.2). It is readily understood from the results in figure 6-8 that 

the uniqueness of the reverse analysis cannot be ensured for a cohesive-frictional porous 

material (at its limit state), as 7igc (vlim) is not a mononone decreasing function. In 

addition, the low hardness contrast between different cone angles that dominates the be- 

havior for 70 < 1) < vlim (see Figs. 6-5 and 6-6) makes it difficult to imagine an efficient 

dual-indent at ion technique to work for cohesive-frict ional porous materials. 

6.2.4 Hardness-Packing Density Scaling Relations 

On first sight, the impossibility to use a multiple indenter approach to extract the strength 

properties of cohesive-frictional porous materials may come as a disappointment. However, 

upon scrutiny the same results allow us to merge two invariants for the limit case, namely the 

friction coefficient a and the pore morphology represented by the percolation threshold 110 into 

one, the limit packing density vlim = vlim (a, q o )  This is of great value as we will see here 

below. 

Figure 6 9  shows normalized hardness-packing density scaling relations for different friction 

angles a, cone angles 8 and pore morphologies. We readily find that it is not possible, except 
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Figure 6-8: Berkovich-to-Cube Corner hardness ratio xEG as a function of the limit packing 
density qBm = 1 - plim (a).  

for the zero-friction case, to scale the hardness response of two porous materials as a function 

of a and q, since the curves do not approach the same asymptotic value. Figure 6-10 shows 

scaling relations of the form (6.7) for small values of a, for which the limit packing densities 

(6.3) and (6.4) coincide: 

In this case, the hardness-packing density scaling relations converge towards the same as- 

ymptotic value. Extending this observation to higher friction angles, we suggest the following 

hardness-packing density scaling relation, in which a is replaced by the limit packing density 

?lim : 

A further normalization of both the hardness by its asymptotic value l i ~ , v l i m  HIP and of 

the packing density 17 by its limit value qlim provides a means to collapse for each scheme all 

curves into one single curve, a master-curve. In order to obtain a normalization for each scheme 

where all the curves have the same initial and final points, the normalization of the q-axis is 



0.2 0.4 0.6 0.8 1 

Packing Density 7 [I] 

[I]/ Bscheme 

BERK 

BERK 

0 0.2 0.4 0.6 
Packing Density 7 [l] 

a [I]/ Bscheme 

t 0.25 
CC 
MT 

-m- 0.25 
CC 
SC 

.0.25 
BERK 
MT 

-0.25 
BERK 
SC 

a [1 ]I Bscheme 

0.2 0.4 0.6 0.8 

Packing Density 7 [l ] 

. . 

Figure 69:  Normalized hardness-packing density scaling relations of the form (6.1) for (a) 
a = 0, (b) a = 0.25 and (c) a = 0.45. (BERK = Berkovich, CC = cube corner, MT = Mori 
Tanaka scheme, SC = Self-consist ent Scheme). - .  
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Figure 6-10: Berkovich Hardness-packing density scaling for small values of a, for which the 
limit packing density of the Mori-Tanaka scheme and of the Self-consistent Scheme coincide. 
(Results for a = 0 - 0.05 - 0.1 - 0.15). 

done as follows: 

MT: 

SC: 

These two master-curves of the double-normalized hardness-packing density scaling relation 

are shown in figure 611. We identify for both pore morphologies, MT and SC, a characteristic . - -  

curve which depends primarily on v/qlim. 

Summary of Results: Fitting Functions 

The ultimate goal of indentation analysis is the reverse analysis of material properties of the 

indented material. In our case, these are the cohesion cS and the friction coefficient a of the 

solid phase of the porous material. The aim of this Section is to derive fitting functions that 

summarize the results in closed form expressions so that these expressions can be used for 

data analysis. Motivated by the good performance of the lower bound solutions developed in 
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Figure 6-11: Double-normalized hardness-packing density scaling relations: H/cs is normalized 
by li%,,lim H/cS and 11 by qtLh (Eq. (6.8a) for MT; Eq. (6.8b) for SC) (Results for a = 
0,0.5,0.1 ... 0.5). 
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Figure 6-12: Fitting of the flat punch simulation data (0 = 90') obtained for a Von Mises solid 
phase (a = 0) with a Mori Tanaka scheme (vo = 0). 

Chapter 3, we fit our results to mathematical expressions that have a similar shape and limit 

behavior. We illustrate the fitting procedure for the Von-Mises case, and present the results for 

the Drucker-Prager solid in a concise form afterwards. 

Von-Mises Solid 

Choice of Fitting Functions for the Mori-Tanaka scheme 

The fitting function we choose for the hardness-packing density scaling relation of a porous 

material composed of a Von-Mises solid is inspired by the lower bound expression (3.73) for the 

Mori-Tanaka scheme: 

where (amt, . .., dmt) are four fitting parameters that minimize for each semi-apex angle the 

difference between the fitting functions and the discrete simulation data. This minimization is 

done with the solver of Excel and leads to the values displayed in Table 6.1 

An exemple of fitting is displayed in Fig. 6-12. 



Choice of Fitting Functions for the Self Consistent Scheme 

In a similar manner, the fitting function we choose for the hardness-packing density scaling 

relation of a porous material composed of a Von-Mises solid is inspired by the lower bound 

expression (3.73) for the self consistent scheme: 

5 (1 - ip) (asc - 3ip) d(1- zip) 
= Fs; (ip, 7 0  = 112) = 12 

cs (bsc - 39) d- 

and the coefficients are given in Table 6.1. 

6.3.2 Drucker-Prager Solid 

We want to extend these fitting functions to the Drucker Prager case. 

Choice of Fitting Functions for the Mori-Tanaka Scheme 

We are looking for a fitting which takes into account the analytical form of the lower bound 

expression (3.78) for the Mori-Tanaka scheme and which is similar to the fitting function (6.9) 

obtained for the Von-Mises solid. For the Mori Tanaka scheme, we are therefore looking for an 

expression of the form: 

In order to give some flexibity to this expression, we introduce a new parameter emt that 

depends on a :  

For each semi-apex angle, we want to determine the parameter emt for each a in order to 

get a general expression for Hmt/cS. Because we want to fit the discrete simulation data with 

this expression by adapting only emt, it may be difficult in some cases to obtain a satisfactory 

fitting over the entire range of a and 7 values. It is therefore important to study the role of 

each parameter. 
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Figure 613: Fitting of e,t for a Mori Tanaka scheme (qo = 0) and for a flat punch (0 = 90'). 

1. From the expression of the lower bound at limit packing density, 

3 d 3 J = T ) +  2,/- 
V3=V31im-l- lim CS 

mt- k t  5 - 271 

we realize that the cohesion cS is directly determined from the limit value 

( q k ~ ,  limV3=V3ky=l-qky H,JP) once the value of qk?, i.e. a, is known. 

2. The vizualization of the simulation curves showing the evalution of Hmt /cS as a function 

of the packing density shows that the value of a corresponds to how much the Von Mises 

curve shifts. 

3. The experimental data considered for the fitting are within the range q E [0.5,1] 

The fitting of emt is done for q E [0.5,1] so that the experimental values lead to a realistic 

a and then to a realistic cS estimate from the limit point q z ,  limV3=dim,l-+im ~ m t / c ~ )  . ( .  mt mt 

The parameter emt is found to be well represented by a second order polynom, as illustrated 

in Fig. 6-13, so that eventually the final expression for Hmt/cS is: 

Hmt -- - 12 (fmt + gmta + hmta2) v 30a - 1 2 a ~  + 4a2 d- f (7 + "mtl)) 4- 
(6. i4) 

t? 16a4 - 124a2 + 64a2q + 184 + h t q  + L t q 2  



Table 6.1: Fitting coefficients 

The coefficients are given in Table 6.1. 

Choice of Fitting Functions for the Self Consistent Scheme 

For the self consistent scheme, similar considerations lead to look for an expression of the form: 

where esc has to be determined. For each semi-apex angle, we want to determine the parameter 

esc as a function of a: in order to get a general expression for Hsc/cS. The fitting of e,, is done 

on a range 7 E [0.65,1] so that the experimental values permit a realistic fitting of a and then 

cS from the limit point limv=v~7=l-,lim sC H,,/cs) . 
The parameter esc is found to be well represented by a second order polynom, so that 

eventually, the final expression for Hsc/cS can be written in the form: 

Hsc 
r S  
- = 12 (fsc + gsca + hsca2) (1 - 9) 

where the coefficients are given in Table 6.1. 

This process leads to satisfactory fittings, as illustrated in Figures 6-14 and 615. 

With the fitting functions defined, it is possible to determine the value of the hardness-to- 
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Figure 614: Comparaison between the fitting functions and the simulation data for the Mori 
Tanaka scheme: Von-Mzses Material (a = 0) :  (a) flat punch, (c)  Berkovich and (e )  cube 
corner. Drucker Prager Material (a = 0.15) : (b) flat punch, ( d )  Berkovich and ( f )  cube corner. 
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Figure 6-15: Comparaison between the fitting functions and the simulation data for the self 
consistent scheme: Von-Mases Material (a = 0):  (a) flat punch, (c) Berkovich and (e) cube 
corner. Drucker Prager Material (a  = 0.15): (b) flat punch, (d) Berkovich and (f) cube corner. 



cohesion ratio for any values of friction angle and porosity. Without this fitting, the important 

number of simulations already carried a lot of information. As an exemple, these discrete data 

could be exploited to study the dependence of the hardness-to-cohesion ratio on the porosity 

for different values of friction angle, both for the Mori Tanaka scheme (Fig. 6-16) and for 

the self-consist ent scheme (Fig. 6- 17). Vice versa, the dependence of the hardness-t o-cohesion 

ratio on the friction angle for different values of porosity could be plotted, both for the Mori 

Tanaka scheme (Fig. 6-18) and for the self consistent scheme (Fig. 6-19). The fitting functions 

enable a better understanding of the link between the hardness-to-cohesion ratio and the two 

parameters, the friction angle and the porosity. These fitting functions generalize the discrete 

simulation data and pave the way for experimental applications. 

6.4 Conclusion 

In order to overcome the non-uniqueness of the reverse analysis of a single indentation test, we 

found a strong link between the hardness and the packing density of the solid phase, that proved 

to be a very interesting parameter of the problem. By adapting the mathematical expressions 

found in Chapter 3, we were able to fit in a satisfactory way the simulation data with some 

closed form expressions that fit the data reasonably well. 
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Figure 6-16: Dependence of the hardness-tecohesion ratio H/cs on the porosity 9 for the 
Mori Tanaka scheme for different values of the friction coefficient a for (a) the flat punch, (6 )  
Berkovich and (c)  cube corner. 
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Figure 617: Dependence of the hardness-tc~cohesion ratio H/cs  on the porosity 9 for the self 
consistent scheme for different values of the friction coefficient a for (a)  the flat punch, (b )  
Berkovich and (c )  cube corner. 
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Figure 618: Dependence of the hardness-to-cohesion ratio H/cs on the friction angle a for the 
Mori Tanaka scheme for different values of porosity (o for (a)  the flat punch, (b) Berkovich and 
(c)  cube corner. 147 
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Figure 6-19: Dependence of the hardness-to-cohesion ratio H/cs  on the friction angle a for the 
Mori Tanaka scheme for different values of porosity (o for (a)  the flat punch, (b )  Berkovich and 
(c)  cube corner. 



Part IV 

Application 



Chapter 7 

Shale Nano-Hardness Analysis 

This last part and chapter shows the engineering application of our model to shales. Shales are 

sedimentary rocks that are ubiquitously present as sealing formations in hydrocarbon bearing 

reservoirs. They are made of highly compacted clay particles of sub-micrometer size, nano- 

metric porosity and different mineralogy; in short, a challenging application for our hardness- 

packing density scaling relations. The first part of this Chapter reviews some elements of shale's 

microstructure with the aim of identifying the scale of application of our model. The particu- 

lar nanoindenation technique employed to determine the hardness of shale's nano-fabric from 

nanoindenation is also presented. It extends previous works by Delafargue and Ulm [26] dealing 

with the nano-elasticity content of shales, to hardness measurements using the 'grid-indent at ion 

technique' developed by Constantinides and Ulm [23] (see Section 2.3). The nanoindenation 

and the statistical indentation analysis was performed by Chris Bobko for six shale materials. 

In the second part of this Chapter, we analyze the hardness values by means of the fitting 

functions developed in Chapter 6. 

7.1 Mult S c a l e  Structure of Shale 

Shales are probably one of the most complicated and intriguing natural materials present on 

earth. The mult iphase composit ion is permanently evolving over various scales of length and 

time, creating in the course of this process the most heterogeneous class of materials in existence. 
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Figure 7-1: Multi-scale structure of shales (adapted from [79]): From top-down: The macro- 
scale is the scale of visible deposition layers and detrital grains. The micro-scale (SEM picture) 
is the scale of a textured clay composite intermixed with silt size quartz grains. At the nano- 
scale (SEM picture, bar in right corner = 100 nm), individual clay particles are visible to form 
a nano-granular material. At a scale still below, one can see the layered structure of the shale 
particle. 

The heterogeneities manifest themselves from the nanoscale to the macroscopic scale (see multi- 

scale structure in Fig. 7-l), which all contribute to a large variety of shale macroscopic behavior. 

Nano-Porosity and Clay Packing Density 

The most prominent heterogeneity of shale materials is the nano-porosity, which is the pore 

space left in between clay sheets. It forms almost the totality of the porosity of shales, as  

poromercury intrusion studies show (Fig. 7-2), displaying a very low characteristic pore access 

radius of some nanometers. The total porosity of shales is typically determined by Mercury 

Porosimetry test. It is the pore space per unit of macroscopic volume, which includes not only 
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Figure 7-2: Pore throat radius distribution of shale materials obtained by poro mercury intrusion 
(PMI) (Source: ChevronTexaco, from [26]). 



the clay material but as well non-clay silt inclusions. At this macroscopic scale, shale is a 

macroscopic composite material composed of a porous clay matrix with an in-general abundant 

population of poorly sorted detrital grains (mainly quartz inclusions), as shown in figure 7-3. 

Hence, in order to determine the porosity in a reference volume consisting of the porous 

clay phase only, one needs to translate the total (measurable) porosity q5 into the nano-porosity 

respectively the clay packing density by: 

where fI is the silt (non-clay) inclusion fraction which is known from mineralogy (namely X-Ray 

diffraction, for details, see [26]). To illustrate the difference, figure 7-4 plots the shale packing 

density 1 - 4 vs. clay packing density = 1 - ip for the six shale materials investigated here 

below. The presence of silt inclusions strongly enhances the packing density of these highly 

compacted materials. 

7.1.2 Scale Separability Condition 

The focus of our study is on the clay fabric of shale materials defined by the clay packing density 

. In order to apply our multi-scale indentation yield design model (see Fig. 2-S), we muit 

ensure that the charactersitic length scale that defines the clay fabric is much smaller than the 

size of an rev (if it can be defined!) which in turn needs to be smaller than the indentation 

depth (i.e. Eq. (2.22)). This is not an easy task1, as a closer look on the microstructure of shale 

materials reveals (Fig. 7-5). The morphology is characterized by clay minerals that aggregate 

into a large variety of forms and shapes, ranging form highly ordered sheet bundles to wavy flake 

structures and highly pressed and crushed structures of clay sheets. These mineral aggregates 

have a characteristic size of 1,000 nm and a thickness of 100 - 250 nm. In short, the clay fabric 

is highly hetereogeneous. On the other hand, if we remind ourselves that the clay porosity has 

a charactersitic size of N lOnm (see Fig. 7-2), it is readily understood that the porosity of 

shales is situated at a scale below the heterogeneous clay composite that manifests itself at a 

'~ndeed, the scale separability condition for shale indentation is focus of the ongoing Ph.D. work of Chris 
Bobko in the Department of Civil and Environmental Engineering at  M.I.T. 



Figure 7-3: Plane polarized light thin-section photomicrographs, of lOOX (left) and 25X (right) 
magnification, for three shale materials (Source: Chevron Texaco, from [26]). 
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Figure 7-4: Shale packing density 1 - 4 vs. clay packing density Q = 1 - 9. The higher shale 
density is due to silt inclusions. 

length scale of 500 - 5,000 nm. There are two import ant consequence for the application of 

nano-indent at ion: 

1. The heterogeneous nature of the porous composite suggest the employment of a statistical 

indentation method, in order to gain access to average indentation properties of the porous 

clay composite. The grid-indentation technique developed by Constantinides and Ulm [23] 

(see Section 2.3) takes care of this aspect. 

2. The fact that the size of the porosity is much smaller than the characteristic size of the 

clay fabric, allows us to apply our two-scale yield design approach for the extraction of 

strength properties of the clay particles. 

7.2 Nanoindentation Analysis of Shale 

Nanoindentation were performed on six shale materials from different sources, of different 

porosities and mineralogy. Chris Bobko performed the tests in the NanoMechanical Tech- 

nology Laboratory of the Department of Materials Science and Engineering at M.I.T. during 

the Spring 2006, and analyzed the data st atistically using the deconvolution method described 



Figure 7-5: Clay fabric for 3 shale materials. Label N - xi stands for shale #N, and xi stands 
for the observation axis: 23 = view onto bedding plane; xl,x2 = view into bedding plane. 
(Source: [79]) 



in Section 2.3. Our contribution is the analysis of the hardness results. 

7.2.1 Materials and Methods 

Cylindrical shale specimens were cored in three perpendicular directions of shale cuttings, and 

stored in desiccators at their natural relative humidity until testing. For the indentation testing, 

the cylinder specimens were cut into slices of approximate thickness 5 - 10 mm. The surfaces 

were ground and polished with silicon carbide papers and diamond particle suspension to obtain 

flat and smooth surface finish. Force driven nanoindentation tests were performed on the 

shale materials with a diamond Berkovich indenter using a Riboindenter of Hysitron Inc. 

By nanoindentation we refer to indent ation tests operated to average indentation depths of 

h = 100 nm. Given the highly anisotropy of shales, nanoindenation test series were carried out 

in two directions: normal to bedding/deposition plane (23) and in the bedding plane (xl,  22). 

Each indentation test series consisted of 300 tests on a surface carried out on three 10 x 10 

grids of constant grid-size of 50,000 nm, which is sufficiently large that interactions between 

adjacent indents (of size N 6h) are avoided. In each test, the indentation force P and the 

indentation depth h was recorded for a loading, holding and unloading phase (see Fig. 2-1). 

The hardness H and the indentation modulus M were determined from the measured maximum 

force P,, = 285pN and the initial unloading slope S = (dP/dh),=,__ according to relations 

(2.1) and (2.2). The contact area A, was estimated using the Oliver and Pharr method 1551. 

For each test series of 300 tests the indentation properties (H, M (xi)) were deconvoluted 

by a multi-Gaussian fit of the experimental frequency density (see Fig. 2-6). The result are 

characteristic mean values for indentation modulus M and hardness H of the clay fabric of the 

six shale materials in both normal-to-beddding and in-bedding directions. The repeatibility 

of the test procedure and st atistical analysis met hod, and thus the st atistical represent ativity 

of the results, was checked by several series of 100 indentation tests carried out on different 

specimen surfaces of the same shale sample. 



7.2.2 Experimental Stiffness and Hardness Scaling 

The results are presented in form of scaling relations of the indentation properties H, M (xl) , M (23) 

vs. the clay packing density defined by (7.1). Figure 7-6 displays these plots and calls for the 

following comments: 

1. The indentation modulus scaling in figure 7-6(a) provides evidence of the elastic anisotropy 

of the elastic content of the porous clay fabric: the indentation modulus in the bedding 

direction M (21) is consistently greater than M (23) corresponding to the indent at ion 

modulus normal to bedding. This is not surprising for highly compacted sedimentary 

rocks given their deposition history; and it is now generally agreed that shales behave 

elastically as transverse isotropic media [74], [45], [ll] , [75], [43], [64], [go], [61]. As a conse- 

quence the indentation modulus M (xl) > M (23). The link between M (xl)  , M (23) 

and the elasticity constants Cijkjkl is given by Delafargue and Ulm's solution (2.14) and 

(2.15). 

2. In sharp contrast, the experimental hardness scaling relation in figure 7-6(b) exhibits no 

anisotropy: hardness values (almost) take the same value in the direction of bedding (xl) 

and normal to bedding (23). On first sight this result may come as a surprise given the 

pronounced anisotropy of the elasticity content of the clay fabric. On second thought, 

however, the isotropy of hardness hints towards the origin of the hardness, which relates 

exclusively to strength properties. Furthermore, from a more theoretical standpoint, 

these results validate the use of a yield design approach to link the hardness to strength 

properties. Indeed, the assumption of yield design theory is that a material system in its 

plastic limit state has exhausted its capacity to store externally supplied work rate (i.e. 

P in the case of indentation, see Section 3.1) into recoverable (i.e. elastic) energy. As 

a consequence, the work rate is entirely dissipated into heat form in the material system. 

This is the property we explored in the development of our upper bound model in Chapter 

3 and 4. The isotropy of the hardness-packing density relation for shale, therefore, is a 

strong argument in favor of the application of yield design solutions for the extraction of 

strength properties. 



3. The experimental scaling relations in figure 7-6 provide some evidence that the porous 

clay composite exhibits a percolation threshold around qo N 112, for which both inden- 

tation moduli M (xl) , M (23) and the hardness H are expected to be close to zero. This 

particular behavior is a hallmark of granular materials, for which the random loose-packed 

limit (RLP) is known to be 52% [44], below which no continuous force path can be es- 

tablished through the granular assembly. In terms of microstructure, we readily find that 

this nanogranular nature is captured by a polycrystal morphology. 

7.2.3 Reverse Analysis of Strength Properties 

The aim of indentation analysis is to translate indentation data into meaningful material prop- 

erties by means of a reverse analysis. 

Technique 

The indentation data at our disposal are 12 discrete values of the Berkovich hardness for a 

given clay packing density (vi, H:) i.l..n, where n = 12 is the number of experimental hardness 

values. Furthermore, given the consistent scaling of the stiffness and hardness values in figure 7- 

6, a first-order engineering approach consists in assuming that all shale materials have the same 

solid properties (cS , a) and the same micro-morphology captured by the percolation threshold 

70. Hence, the reverse analysis then consists of an inverse analysis in which the experimental 

values (l)i, H:) i=l..n are the input and (cS, a, qo) the output. As sole tool of the reverse analysis, 

we use the fitting hnctions (6.14) and (6.16) of the hardness-to-cohesion ratio for Berkovich 

indentation for both the Mori-Tanaka scheme (qo = 0) and the Self-consistent Scheme. The 

best fit is the one for which the quadratic error between experimental values and model is 

minimized, that is: 

n 
B s 2 min C (H,B - Hqo (c , a, ~ i ) )  

(c. W 7 o )  i=l 
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Figure 7-6: Scaling of (a) the indentation modulus, (b) the hardness as a function of the packing 
density for different shales in the indentation normal to bedding (x3) and parallel to bedding 

(~1) .  



Table 7.1: Geometrical relations between projected area and equivalent half-apex cone angle. 

cS 1 MPal 

where = HEt is given by (6.14) for the Mori-Tanaka Scheme: 

B - HE is given by (6.16) for the Self-consistent Scheme: and H,,,l12 - 

Mori-Tanaka 

92 

Results 

Self-consistent 

255 

Figure 7-7 shows the fitting of the experimental results to the Mori-Tanaka expression (7.3) and 

the Self-consistent expression (7.4). In this fitting, the constraint condition q 5 71im (a, qO) 

was not enforced. On first sight, therefore, it appears that both microstructural morphologies 

could fit the data equally well. The results are summarized in Table 7.1. However, if we check 

now the constraint condition maxi,l,, qi 5 71im (a, qo) , we readily find that only one of the 

two solutions can possibly fit the entire data set: the frictionless purely cohesive self-consistent 

scheme. This shows, for all practical applications, the importance of the limit packing density 

for the reverse analysis of strength properties of cohesive-frictional porous materials. 

Finally, the corresponding uniaxial strength of the Von-Mises solid is YS = 442 MPa, cor- 

responding to a Tresca (or Mohr-Coulomb) cohesion of CS = 221 MPa. 
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Figure 7-7: Fitting of experimental hardness values to hardness-packing density scaling for 6 
shale materials (MT = Mori-Tanaka, SC = Self-consistent) 

7.3 Conclusion 

To our knowledge, this is the first time that the clay fabric of shales was identified as a cohesive 

(no-friction) nanogranular material. On first sight, the no-eiction behavior may come as a 

surprise given the frictional behavior of shale at the macroscale. On second thought, however, 

these nano-results are very consistent with the absence of anisotropy in the hardness behavior. 

In fact, if friction was activated at the particle-to-particle interface, the clay particle morphology 

would be expected to play a role. As we have seen, clay particles are of ellipsoidal to flat shape. 

In other words, the absence of friction explains why the hardness behavior of the clay fabric is 

isotropic. 



Part V 

Conclusions and Perspectives 



Chapter 8 

Summary of Results and Future 

Perspectives 

Natural composites in general and sedimentary rocks in particular, are highly heterogeneous 

materials which defy a straightforward implementation of the materials science paradigm of 

processing (diagenesis)-microstructure-properties-performance correlation. The application of 

nanoindentation to natural composites has provided the geomechanics community with a new 

versatile tool to test in situ phase properties and structures of geomaterials that cannot be 

recapitulated ex situ in bulk form. But it requires a rigorous indentation analysis to translate 

indentation data into meaningful mechanical properties. The development and implementation 

of such an indentation analysis for the strength properties of cohesive-frictional porous materials 

is the overall achievement of our study. This last chapter provides a brief summary of our 

contributions and findings, and suggests some directions for future research. 

8.1 Summary of Main Findings 

The main finding of this thesis is that it is possible to condense the (conical) indentation 

hardness-material properties relation of cohesive-frictional porous materials into a single hardness- 



packing density scaling relation: 

where cs is the solid's cohesion, q = 1 - (o is the packing density of the solid phase; qo is the 

solid percolation threshold capturing the microstructure morphology (qo = 0 for a matrix-pore 

inclusion morphology, q0 = 112 for a disordered polycrystal morphology); qlim = qlim (a, qo) is 

the limit packing density, that is, for a given friction angle (a)  and morphology of the solid (qo), 

the maximum possible solid packing density a cohesiv~frictional porous material can achieve; 

and finally 0 is the half-apex angle of the cone. It is instructive to recall the steps we developed 

to establish and implement the hardness-packing density scaling relation (8.1) : 

Relation (8.1) was derived from an original multi-scale yield design approach to inden- 

tation analysis in Chapter 3, which recognizes the separation of scale condition. The 

approach translates recent progress in non-linear microporomechanics based on micro- 

yield design theory into a workable model for indentation analysis based on macreyield 

design theory. The micreyield design theory provides analytical expression for a cohesive 

Cam-Clay type elliptical strength criterion and of the associated dissipation function in 

functions of constituent properties (6, a) and microstructure parameters (q, qO). The 

macro-yield design theory embeds this micro-macro dissipation function into the evalua- 

tion of the indentation hardness. 

2. The computational implementation of the multi-scale yield design approach was based 

on an original discretization of the upper bound theorem in Chapter 4 and validated 

in Chapter 5. This novel approach recognizes the dissipation function of the elliptical 

(Cam-Clay type) strength criterion as a Second-Order Conic optimization problem. This 

identification opens the way for solving the problem by most advanced solver techniques, 

such as MOSEK. The originality of our approach lies in the combination of finite element 

discretization and advanced optimization techniques, which is readily implemented in 

standard tools of computational mechanics, such as MATLAB. 

3. The application of our model in massive computational simulations presented in Chapter 



6 showed that the hardness (8.1) of cohesive-frictional porous materials is less sensitive to 

the cone-angle 0 as known for cohesive-frictional solids, and that the dominating feature 

is the scaling of the hardness with the packing density q. On this basis, it is possible 

to use the hardness-packing density scaling relation for reverse analysis of the strength 

parameters of cohesive-frictional porous materials. This was illustrated in Chapter 7 for 

shales. By fitting experimental nanohardness values for six shale materials of different 

packing density to the model hardness-packing relations, we showed (1) that the highly 

compacted porous clay fabric of shale materials is (most likely) composed of a frictionless 

purely cohesive solid phase which (2) is organized as a nanogranular material. 

8.2 Research Contributions 

The multi-scale indentation analysis we here propose extends previous approaches limited to 

the elastic properties to strength properties of cohesive-frictional porous materials. On the way, 

the following research contributions were made: 

1. To the field of yield design, the identification of the upper bound approach for an ellip- 

tical strength criterion as a Second-Order Conic optimization problem is highly original. 

By introducing additional unknowns and additional cones, we developed a met hod that 

allows reducing the non-linear yield design problem to a minimization problem of a linear 

function subject to non-linear constraints and conical constraints. To our knowledge, this 

the first time that a yield design approach is solved in this manner. 

2. To the rapidly developing field of nanoscale mechanical contact approaches such as nanoin- 

dentation, the reverse analysis of the indentation hardness by means of a multi-scale mi- 

cromechanical model to predict constituent microstructure is an important contribution. 

The importance lies in the fact that it is now possible to separate constituent strength 

properties (cS ,  a )  from microstructure (q, qo) in indentation analysis of porous materials. 

To our knowledge, this is the first time that the order of magnitude of strength properties 

of a solid phase can be assessed from an indentation test operated at larger scales. With 

progress in instrumented nanoindentation, the material scale that becomes accessible to 



indentation strength property characterization and assessment is truly nanometric. 

3. To the field of geomechanics in general and the GeoGenome project in particular, the 

identification of the clay fabric in highly compacted sedimentary rocks (such as shales) 

as a nanogranular frictionless material is of critical importance. On the one side, our 

contribution confirms that shales are nanogranular materials, an observation that was 

previously derived from the investigation of the anisotropic elastic behavior of shales. On 

the other hand, the finding that the clay nanofabric, from a strength perspective, is most 

likely frictionless thus isotropic opens the way for revisiting the sources of the macroscopic 

friction of shales. 

8.3 Current Limitations and Future Perspectives 

There are some inherent limitations of our approach which relate to the application of yield 

design for indentation analysis: One restriction of our approach relates to the assumption 

of the normality rule (or principle of maximum plastic work), which is at the very basis of 

the existence of the limit theorems of yield design, and which cannot capture an eventually 

non-associated flow behavior. From the perspective of dimensional analysis, the consideration 

of a non-associated flow rule adds additional independent quantities to the set of parameters 

in relations (8.1); but cannot be handled by the proposed yield design solution procedure in 

which the dilatation angle equals the friction angle. For such materials, advanced finite element 

simulations are required. In this case, the proposed approach can be used to determine initial 

values of the cohesion and friction angle for the iterative backanalysis. A similar remark can 

be made for contact friction and strain hardening effects, which we ignore in our yield design 

solutions. These effects appear to be negligible in the case of our shale material, since the 

hardness behaves isotropic in contrast to the pronounced elastic anisotropy, which one would 

expect to influence the hardening behavior as well. 

It could also be (and has been) argued that yield design approaches as the one developed 

here cannot capture piling-up or sinking-in phenomena, as yield design evaluates the dissipation 

capacity of a materials system for a fixed geometry. Indeed, in our upper-bound simulations, 



we assumed the surface surrounding the indenter to be flat, which is far from what is observed 

on topographic images in indentation tests particularly for very sharp indenters like the Cor- 

ner Cube. However, compared to the material bulk volume that contributes to the overall 

dissipation capacity, the additional contribution of the pile-up material volume is expected to 

be of second-order in the evaluation of the maximum dissipation the material system can af- 

ford. The good agreement of our yield design result with the ones obtained from comprehesive 

elastoplastic finite element analysis proofs this observation. Of course, the piling-up or sinking- 

in phenomena cannot be neglected in the evaluation of the hardness value from its definition 

(1.1), which is the input to the reverse analysis using hardness-packing density scaling relations 

of the form (8.1). Hence, like all indentation procedures, the successful determination of the 

strength properties from indent ation tests relies on the determination of the correct projected 

contact area. 

Our contribution is a modest yet important step forward towards a comprehensive multi- 

scale approach to the strength behavior of geomaterials, which still needs to be achieved. For 

one, our hardness scaling relations need to be validated for some model materials, to fully 

appreciate their strength and limitations. Once achieved, it will be necessary to revisit the 

nanobehavior of shales and confirm the order of magnitude of the derived cohesion value of 

the nano-clay fabric, and foremost its frictionless nature. Immediately, new and innovative 

questions arise regarding the origin of the cohesive behavior of clay particles, the origin of 

the frictional behavior at larger scales, and so on. Once those questions will be solved, there 

is no doubt that progress in nanoscience and nanoengineering will translate into day-to-day 

engineering applications. 



Part VI 

Appendices 



Bibliography 

[I] Y. Abousleiman, F.-J. Ulm, GeoGenome Industry Consortium (G2IC), Research Proposal, 

Oklahoma University-M.I.T., 2004 

[2] E. Anderheggen and H. Knopfel. Finite element limit analysis using linear programming. 

International Journal of Solids and Structures, 8, 1413-1431, 1972. 

[3] G. I. Barenblatt . Scaling. Cambridge University Press, 2003. 

[4] K. J. Bathe. Finite element procedures. Prentice Hall, Upper Saddle River, NJ, 1996. 

[5] A. K. Bhattacharya and W. D. Nix. Analysis of elastic and plastic deformation associated 

with indentation testing of thin films on substrates. International Journal of Solids and 

Structures, 24(12), 1287-1298, 1988. 

[6] F. M. Borodich, L. M. Keer, and C.S Korach. Analytical Study of Fundamental Nanoin- 

dentation Test Relations for Indenters of Non-Ideal Shapes. Nanotechnology, 14, 803-808, 

2003. 

[7] F. M. Borodich and L. M. Keer. Evaluation of elastic modulus of materials by adhesive 

(no-slip) nano-indentation. Proceedings of the Royal Society of London. A, 460, 507-514, 

2004. 

[8] A. Bottero, R. Negre, J. Pastor, and S. Turgeman.Finite element method and limit analysis 

theory for soil mechanics problems. Computer methods in applied mechanics and engineer- 

ing. 22, 131-149, 1980. 



[9] J. Boussinesq.Applications des potentiels 6 l'ttude de l'tquilibre et du mouvement des 

solides tlastiques. Gauthier-Villars, 1885. 

[lo] J. A. Brinell. MBmoire sur les Bpreuves B bille en acier. In Congres International des 

Mtthodes d'Essai des Mattriaux de Construction, Paris, Tome 2, 83-94, 1901. 

[ll] J. Brittan, M. Warner, and G .  Pratt. Short Note: Anisotropic parameters of layered media 

in terms of composite elastic properties. Geophysics, 60(4), 1243-1248, 1995. 

[12] J.L. Bucaille, S. Stauss, E. Felder, and J. Michler. Determination of plastic properties of 

metals by instrumented indent at ion using different sharp indenters. Acta Materialia. 5 1, 

1663-1678, 2003. 

[13] H. Buckle in J.W. in Westbrook and H. Conrad, eds. The Science of Hardness Testing and 

its Applications. American Society for Metals, Metal Park OH, pp. 453-491, 1973. 

[14] S.I. Bulychev, V. P. Alekhin, M. Kh. Shorshorov, A. P. Ternovskii, and G .  D. Shnyrev. 

Determination of Youngs modulus according to an indentation diagram. (Ind. Lab. , Transl: 

Zavodskaya Laboratoria) 41, 14041412, cited from [6], 1975. 

[15] N. Challoacoop, M. Dao, and S. Suresh. Dept h-sensing instrumented indent at ion with dual 

sharp indenters. Acta Materialia. 51, 3713-3729, 2003. 

[16] X. Chen, and J.J. Vlassak. Numerical study on the measurement of thin film mechanical 

properties by means of nanoindentation. Journal of Materials Research 16 (10): 29742982, 

2001. 

[17] Y. T. Cheng, and C. M. Cheng. Scaling, dimensional analysis, and indentation measure- 

ments. Materials Science and Engineering R44, 91-149, 2004. 

[IS] N.R. Chitkara and M.A. Butt. Numerical Construction of axisymmetric slipline fiels for 

indentation of thick blocks by rigid conical indenters and friction at' the tool-metal interface. 

International Journal of Mechanical Science, 34(1 I),  849-862, 1992. 

[19] E. Christiansen. Computation of limit loads. International Journal of Numerical Methods 

of Engineering. 17: 1547-1570, 1981. 



1201 H. Ciria Suarez. Computation of upper and lower bounds in limit analysis using second- 

order cone programming and mesh adaptivity, MIT-Dept. of Aeronautics and Astronautics, 

Thesis (S.M.), 2004. http://hdl.handle.net/1721.1/16655 

[21] G. Constantinides, F.-J. Ulm, and K. J. van Vliet .On the use of nanoindentation for ce- 

mentitious materials. Materials and Structures 205 (Special issue of Concrete Science and 

Engineering) RILEM, 191-196, 2003. 

[22] G. Constantinides, and F.-J. Ulm. The effect of two types of C-S-H on the elasticity 

of cement-based materials: Results from nanoindentation and micromechanical modeling. 

Cement and Concrete Research, Vol. 34 (I), 67-80, 2004. 

1231 G. Const antinides, and F.- J. Ulm. Invariant mechanical properties of calcium-silicate- 

hydrates in cement-based materials: instrumented nanoindentation and microporomechan- 

ical modeling, MIT-CEE Research Report, R05-03, Cambridge, MA, 2005. 

1241 G. Constantinides, and F.-J. Ulrn. The nanogranular nature of C-S-H. Journal of the. 

Mechanics and Physics of Solids, in Review, 2006. 

[25] A. Delafargue, and F.- J. Ulm. Explicit approximations of the indentation modulus of elasti- 

cally ort hotropic solids for conical indenters. International Journal of Solids and Structures, 

41, 7351-7360, 2004. 

1261 A. Delafargue and F.-J. Ulm. Material invariant properties of shales: Nanoindentation and 

microporoelastic analysis, MIT-CEE Research Report (SM-Thesis), R04-02, Cambridge, 

MA, 2004. 

[27] A. DiCarlo, H.T.Y. Yang and S. Chandrasekar. On the use of nanoindentation for cemen- 

titious materials. Journal of Mechanics of Materials and Structures. 36, 191-196, 2003. 

[28] M. F. Doerner and W. D. Nix. A Method for Interpreting the Data from Depth-Sensing 

Indentation Instruments. Journal of Materials Research 1, 601-609, 1986. 



[29] L. Dormieux, A. Molinari, and D. Kondo. Micromechanical approach to the behaviour 

of poroelastic materials. Journal of the. Mechanics and Physics of Solids, 50, 2203-2231, 

[30] L. Dormieux, D. Kondo, and F.-J. Ulm. Microporomechanics, J. Wiley & Sons, In Press, 

2006. 

[31] K. Durst , M. Goken, and H. Vehoff. Finite element study for nanoindentation measure 

ments on two-phase materials. Journal of Materials Research 19 (1): 85-93, 2004. 

[32] H. A. Elliot. Axial symmetric stress distributions in aelot ropic hexagonal crystals: The 

problem of the plane and related problems. Mathematical Proceedings of the Cambridge 

Philosophical Society, 45, 62 1-630, 1949. 

[33] M. Fkemond and J. Salen~on. Limit analysis by finite element methods. In: A.C. Palmer, 

editor, Proceedings of the Symposium on Role of Plasticity in Soil Mechanics, Cambridge, 

UK, 1973. 

[34] M. Futawaka, T. Wakui, Y. Tanabe, and I. Ioka. Indentification of the constitutive equation 

the indent ation technique using plural indenters with different apex angles. Journal of 

Materials Research.l6(8), 22852292, 2001. 

[35] L. A. Galin. Contact Problems in Theory of Elasticity. Translated by H. Moss. In: Sneddon, 

I. N. (Ed.), North Carolina State College, 1951. 

[36] F.P. Ganneau and F.-J. Ulm. From nanohardness to strength properties of cohesive- 

frictional Materials - Application to shale materials. MIT-CEE Research Report (SM- 

Thesis), R0401, Cambridge, MA, 2004.. 

[37] F.P. Ganneau, G .  Const antinides, and F.- J. Ulm. Dual-Indent at ion technique for the asses- 

ment of strength properties of cohesive-frictional material. International Journal of Solids 

and Structures 43, 1727-1745, 2004. 

[38] H. J. Gao, C.H. Chiu, and J. Lee. Elastic contact versus indentation modeling of multilay- 

ered materials. International Journal of Solids and Structures 29 (20): 2471-2492, 1992. 



[39] M. Gologanu, J.-B. Leblond, G. Perrin and J. Devaux. Recent extensions of Gurson's model 

for porous ductile metals in Continuum Micromechanics. P. Suquet, ed. Springer-Verlag 

pp. 61-130, 1997. 

[40] M.T. Hanson. The elastic field for conical indentation including sliding friction for trans- 

verse isotropy. Journal of Applied Mechanics. 59, S 123-S130, 1992. 

[41] J. W. Harding and I. N. Sneddon. The elastic stress field produced by the indentation of 

the plane surface of a semi-infinite elastic solid by a rigid punch. Mathematical Proceedings 

of the Cambridge Philosophical Society 41, 16-26, 1945. 

[42] H. Hertz. On the contact of elastic solids (in german), zeitschrift fur die reine und ange- 

wandte mat hematik. English translation in miscellaneous papers (translated by D.E. Jones 

and G.A. Schott):99.146-62. Macmillan, London, UK, 1986, 92:156-71, 1881. 

[43] B. Hornby. Experimantal laboratory determination of the dynamic elastic properties of 

wet, drained shales. Journal of Geophysical Research, 103 (12), 29945-29964, 1998. 

[44] H.M. Jaeger, S. R. Nagel. Physics of granular state. Science, Vol. 255, No. 5051, 1523-1531, 

1992. 

[45] L.E.A. Jones and H.F. Wang. Ultrasonic velocities in Cretaceous shales from the Williston 

basin. Geophysics, 46, 288-297, 1994. 

[46] K. L. Johnson. Contact mechanics. Cambridge University Press, Cambridge, UK, 1985. 

[47] R.B King. Elastic analysis of some punch problems for a layered medium. International 

Journal of Solids and Structures, 23:1657-1664, 1987. 

[48] K. Krabbenhoft, A.V. Lyamin, M. Hjiaj, and S.W. Sloan. A new discontinuous upper 

bound limit analysis formulation. International Journal of Numerical Methods in Engi- 

neering, 63, 1069-1088, 2005. 

[49] J. Li and T.W. Chou. Elastic field of a thin-film/substrate system under an axisymmetric 

loading. International Journal of Solids and Structures 34(35-36): 4463-4478, 1997. 



[50] F.J. Lockett. Indentation of a rigid/plastic material by a conical indentation. Journal of 

the Mechanics and Physics of Solids, 11(5), 345-355, 1963. 

[51] A.E.H. Love. Boussinesq's problem for a rigid cone. Quarterly Journal of Mathematics, 10, 

161-175, 1939. 

[52] A.V. Lyamin and S.W. Sloan. Lower bound limit analysis using non-linear programming. 

International Journal of Numerical Analysis Methods in Geomechanics, 26, 181-216, 2002. 

[53] A.V. Lyarnin and S.W. Sloan. Upper bound limit analysis using linear finite elements and 

non-linear programming. International Journal of Numerical Methods in Engineering, 55, 

573-611, 2002. 

1541 L. Lysmer. Limit analysis of plane problems in soil mechanics. ASCE Journal of the Soil 

Mechanics and Foundation Division, 96, 1311-1334, 1970. 

[55] W.C. Oliver and G.M. Pharr. An improved technique for determining hardness and elastic 

modulus using load and displacement sensing indentation experiments. Journal of Materi- 

als Research, 7(6), 1564-1583, 1992. 

[56] W.C. Oliver and G.M. Pharr. Measurement of hardness and elastic modulus by instru- 

mented indent at ion: Advances in under st anding and refinements to methodology. Journal 

of Materials Research, 19(1), 3-20, 2004. 

[57] J. Pastor. Application de l'analyse limite B l'etude de la stabilite des pentes et des talus. 

Ph.D. dissertation, USMG, Grenoble, France, 1976. 

[58] J. Pastor and S. Turgeman. Mise en oeuvre numerique des methodes de l'analyse limite 

pour les materiaux de Von Mises et de Coulomb standards en deformation plane. Mechanics 

Research Communications 3, 469-476, 1976. 

[59] J. Peng, C. Roos, and T. Terlaky. Self-regularity: a new paradigm for primal-dual interior 

point algorithms. Princeton, N. J . ; Oxford: Princeton University Press, c2002. 

[60] A. Perriot and E. Barthel. Elastic contact to a coated half-space: Effective elastic modulus 

and real penetration. Journal of Materials Research, 19 (2): 600-608, 2004. 



[61] L.F. Pratson, A. Stroujkova, D. Herrick, F. Boadu, and P. Malin. Predicting seismic veloc- 

ity and other rock properties from clay content only. Geophysics, 68(6), 1847-1856, 2003. 

[62] J. Renegar. A mathematical view of interior-point methods in convex optimization. 

Philadelphia. PA: Society for Industrial and Applied Mat hemat ics ; Mat hematical Pro- 

gramming Society, 2001. 

[63] J. Salen~on. Elasto-plasticit6 et calcul (i la rupture. Editions de 1'Ecole Polytechnique, 

Palaiseau FR, 2001. 

[64] C. Sayers. Stree-dependent seismic anisotropy of shales. Geophysics, 64(1), 93-98, 1999. 

[65] S.W. Sloan. Lower bound limit analysis using finite elements and linear programming. 

International Journal of Numerical Analysis Methods in Geomechanics, 12, 6 1-77 1988. 

[66] S.W. Sloan. A steepest edge active set algorithm for solving sparse linear programming 

problems. International Journal of Numerical Analysis Methods in Geomechanics, 12, 2671- 

2685, 1988. 

[67] S.W. Sloan and P.W. Kleeman. Upper bound limit analysis with discontinuous veloc- 

ity fields. Computational Methods in Applied Mechanics and Engninnering, 127, 293-314, 

1995. 

[68] I. Sneddon. The relation between load and penetration in the axisymmetric boussinesq 

problem for a punch of arbitrary profile. International Journal of Engineering Science, 

3:47-57, 1965. 

[69] P. Suquet. Plasticit6 et Homog6n6isation. T h h e  d'Etat, UniversitB de Paris 6, 1982. 

[70] P. Suquet . Effective properties of non-linear composites. In: P. Suquet , editor. Continuum 

Micromechanics, New York, Springer Verlag, 1997 (number 377 in CISM Courses and 

Lectures, pages 197-264). 

[71] S. Swaddiwudhipong, K.K. Tho, Z.S. Liu, and K. Zeng. Material characterization based 

on dual indenters. International Journal of Solids and Structures 42, 69-83, 2005. 



1721 D. Tabor. A simple theory of static and dynamic hardness. Proceedings Royal Society, 

A192, 247. (cited from [46]), 1948 

[73] D. Tabor. The hardness of metals. Oxford classical texts in the physical sciences-First 

published 1951, 2000 

[74] L. Thomsen. Weak elastic anisotropy. Geophysics, 52 (lo), 19541966, 1986. 

[75] I. Tsvankin. P-wave signatures and notation for transversely isotropic media: An overview. 

Geophysics, 61, 467-483, 1996. 

1761 S. Turgeman. Etude des fondations sollicitees a l'arrachement par la theorie de l'analyse 

limite. Ph.D. dissertation, USMG, Grenoble, France, 1976. 

[77] F-J. Ulm and 0. Coussy. Mechanics and Durability of Solids, Volume I: Solid Mechanics. 

MIT and Prentice Hall series on Civil, Environmental and Systems Engineering, Prentice 

Hall, Upper Saddle River, New Jersey, 2003. 

[78] F.-J. Ulm, G. Constantinides and F.H. Heukamp. Is concrete a poromechanics material? 

- A multiscale investigation of poroelastic properties. Materials and Structures (Special 

issue of Concrete Science and Engineering), Vol. 37 (265), 43-58, 2004. 

[79] F. J. Ulm, A. Delafargue, and G. Const antinides. Experimental microporomechanics. In: L. 

Dormieux and F.J. Ulm, editor. Applied micromechanics of porous materials, New York, 

Springer Verlag, 2004 (207-288). 

[SO] Z. Wang. Seismic anisotropy in sedimentary rocks. Part 1: A single plus laboratory method; 

Part 2: Laboratory data. Geophysics, 67(5), 1415-1422 (part I) and 1423-1440 (Part 11), 

2002. 

[81] S.R. Williams. Hardness and hardness measurements. American society of metals. Cleve- 

land, Ohio, 1942. 

1821 H.Y.Yu, S.C. Sanday, and B.B. Rath. The effect of substrate in the elastic properties of 

films determined by the indent ation test - Axisymmetric Boussinesq problem. Journal of 

the Mechanics and Physics of Solids 38 (6): 745-764, 1990. 



[83] A. Zaoui. Continuum micromechanics: Survey. Journal of Engineering Mechanics (ASCE) ,  

128(8). 808-816, 2002. 



Appendix A 

Background on Yield Design Theory 

A.l On The 'Duality' of the Lower and Upper Bound Approach 

A. 1.1 Mat hemat ical Formulation 

Let Cl denote the domain of study. Let U = U ( x )  be a plastic velocity field that belongs to a 

space yKA of kinematically admissible velocity fields. yKA Y, where Y is the space of all 

the velocity fields. Likewise, let a = a@) be a stress field belonging to the space of statistically 

admissible stress tensors xSA. xSA C X, where X is the space of all the symmetric stress 

tensors. Let - Q(a) be the load vector and - q(u) the associated velocity vector, such that the 

external work rate is 6W = - Q(o) - q(u). The generalized divergence theorem informs us that, 

where Cu stands for surfaces of discontinuity, while d is the strain rate gradient: 

The applications 



are linear. Let a(u,  lJ) denote 

Let G be the convex set of admissible stresses, i.e. the set of statistically admissible stress 

satisfying the yield criterion. Finally, define 

A.1.2 Dual Definition of the Exact Limit Load 

The exact limit load results fiom solving any of the following problems (A.6) [20]: 

3u E G 
Q~~~ = supQs.t.  - - (A. 6a) 

J,(u: d)dR+JEU [u] - u - n d a =  - Q(u) - q ( l J ) , v U ~  - yKA 

=sup inf a(u ,U)  
UEG E C K A  

= inf sup a(u,  u) 
U€CKA UEG - 
= inf D(lJ) 

UECKA - 

where D ( u )  = supa(cr,l7). 
UEG 

Problem (a) is called static principle of limit analysis and is a lower bound approach. Prob- 

lem (d) is called kinematic principle of limit analysis and is an upper bound approach. These 

two problems are dual to each other: the same limit load will be obtained from both the static 

and the kinematic principles. The limit load - Q " ~  only depends on the choice of the mathe- 

matical model of the strength domain with consistent approximations for both methods and 

does not depend on the method of solution used (lower or upper bound). The limit load will be 

obtained through the lower approach if the strength criterion is satisfied everywhere and if the 

external loads are such that equilibrium conditions are nowhere violated. The same limit load 

will be obtained through the upper bound approach if the velocity field is kinematically admis- 

sible. The velocity field describes the collapse mechanism whereas the stress field corresponds 



to a st ate of admissible stresses satisfying the strength criterion. 

A. 1.3 Properties of the Dual Formulations 

The two problems (a) and (d) in (A.6) are 'dual' to each other. There are two major results 

relating the primal and dual problems. The first, called 'weak' duality, states that the primal 

objective values provide bounds for the dual objective values, and vice versa. The second 

major result relating the primal and dual problems is called 'strong' duality and states that the 

optimal values of the primal and dual problems are equal, provided that they exist. 

The equality between (b) and (c) in (A.6) precisely follows from strong duality. The proof 

is given in detail in [19]. The paper also shows that the limit fields dim and Q" exist and are 

a saddle point of (0, g) + a(m, l7). 

Since (ulim,uirn) satisfies the saddlepoint condition, then for any a' E C and d E G 

A.2 The Dissipation Functions 'II' 

In Chapter 3, we have introduced and heavily employed the concept of 'dissipation functions' as 

a dual definition of the strength domain of a material. This Appendix provides some background 

on the properties of the dissipation functions. First, let us note the following relation: 

As a consequence, g + n(g, n(g), [U(g)]) can be expressed as a function of g + n(g, D(g)). 

Therefore, in the following, we will focus on g + II(g, D(g)) and present some properties: 

If the convex strength domain G(g) is bounded in the stress space, the 'sup' is in fact 

a 'max' which means: 

WE' D(z)) = Z*(z) : D(z) (A.9) 

where X*(g) is a stress field on the boundary of G(g), where the external normal is 



Figure A-1: Presentation of the flow rule. 

parallel to D and of same direction. The proof is as follows: For a given value of D, the 

condition E : D = II(D) appears as the equation of a hyperplane in the stress space and 

this hyperplane is tangent to the boundary aG at point Z* where the normal to aG is 

parallel to D, as shown in Fig. A-1. If G(g) is strictly convex, E* (g) is unique. 

If the convex domain G(g) is not bounded in every directions of It6, n(g, D (2)) can take 

an infinite value +oo. 

n(2, . ) is a convex function of D (g) . 

n(g, .) is non negative since E (g) = 0 o G(g) implies VD(g), II(g, D (g)) 2 0. 

n(g, .) is positively homogeneous of degree n = 1 with regard to D(g) since 

We have evoked this property in Section 2.1.2 dealing with the self-similarity of the indentation 

test. 



Appendix B 

Some Elements of Optimization 

Theory 

This Appendix provides some background on optimization theory. Our focus is not to be 

exhaustive, but rather to introduce some vocabulary that complements our developments in 

Chapter 4, and which turns out useful for our study. First, we will define the notion of primal- 

dual formulation for a problem. Then, we will see what a primal-dual feasible solution is. 

And last, we will present two resolution methods: the Simplex Method and the Interior Point 

Method. The presentation is inspired by Refs. [59] and [62]. 

B.l Primal-Dual Formulation of a Problem 

In optimization theory, any convex optimization problem has a dual counterpart whose variables 

are different from those of the original problem but whose solution, i.e. the optimal value of 

the objective function, is the same as the one of the original problem. The original problem is 

called 'primal' and the equivalent problem is called 'dual'. 

For instance, in the case of a standard SOCO problem (see Section 4.3.2), the primal 

formulation is: 

(SOCO) min cTx 

A x = b  



X E K  

and its dual form is: 

(SOCD) max bT y 

A * Y + S = C  

S E K  

When there is 'strong duality' between these two problems, the solution of the primal 

problem is equal to the solution of the dual problem. 

These two formulations for the same problem are important, especially when there is strong 

duality, both from a theoretical point of view and from a computational point of view. From 

a theoretical point of view, the primal-dual formulation implies that an initial problem written 

in one particular formulation can be written in an equivalent 'dual' formulation, which offers 

the advantage to suggest another approach, maybe easier, to solve the same problem. From a 

computing point of view, an optimization solver can use both formulations to converge easier 

and faster toward the unique solution. This property is used, for example, by the solver MOSEK 

introduced in Section 4.4. 

B.2 Primal-Dual Feasibility of a Solution 

Since the solution of the primal problem is not necessarily the solution of the dual problem, it is 

interesting to define what the term 'solution' means. Indeed, a 'solution' can be characterized 

in several manners: 

First, a solution vector is said 'feasible' when it satisfies the constraints. 

Then, a solution vector is said 'optimal' when it is both feasible and optimal (obtaining the 

largest or smallest objective value). 

In the general case, if x is a feasible point for the primal problem, and y a feasible point for 

the dual problem, then the two problems are said to satisfy a 'weak' duality, which means that: 

In some particular cases, the two problems satisfy a 'strong' duality. This states that the 



optimal values of the primal and dual problems are equal, provided that they exist. In such a 

situation, the solution is said 'primal-dual feasible'. 

To illustrate this vocabulary, consider a standard Linear Optimization problem: 

A point x is said to be feasible (or strictly feasible) for (LPrimal) if Ax = b and x 2 0 (or 

x > 0). 

A point (y, s )  is feasible (or strictly feasible) for (LDual) if ATy + s = c and s 2 0 (or 

s > 0). 

In the particular case of a Linear Optimization problem, the following property is always 

satisfied: 

If x and (y , s) are feasible for (LP)  and (LD), respectively, then necessarily the point (x, y, s) 

is primal-dual feasible (i. e. an optimal solution). 

A similar property holds for the case of a Second-Order Conic problem: 

If both: 

(SOCO) is strictly feasible, that is, there exists an x E Rn such that Ax = b, x E K 

(SOCD) is strictly feasible, that is, there exists s E Rn, y E Rm such that + s = c, 

S E K  

then we have a pair of optimal solutions x*, (y*, s*) with cTx* = bTy*. 

We keep in mind for both a linear optimization problem and a second-order conic problem, 

that there is strong duality between the primal and the dual formulations, which means that 

the optimal values are equal for both formulations, provided that they exist. 

B.3 Solution Methods 

This Section provides some more details on solution methods. Since we have just defined what 

a solution is, we are now presenting briefly two methods of convergence toward the solution 

when it exists. 



B.3.1 Simplex Method 

Linear Optimization deals with a simple mathematical model that exhibits a combination of 

two contrasting aspects: it can be considered as both a continuous and a combinatorial problem. 

The continuity of the problem is to find a global minimizer of a continuous linear function over 

a continuous convex polyhedral constrained set, and its combinatorial character is to look for 

optimality over a set of vertices of a polyhedron. The Simplex algorithm, invented by Dantzig in 

the mid-1940s, explicitly explores its combinatorial structure to identify the solution by moving 

from one vertex to an adjacent one of the feasible set with improving values of the objective 

function. 

More explicitly, the Simplex Method observes that the solution set of a linear program is 

convex, which means that the solution set of a linear program of n variables can be represented 

as a convex polygon in n-space. Furthermore, it observes that if a maximum or minimum 

value of the solution exists, it will exist at a corner of this polygonal region. Proving this last 

characteristic can be done as follows. Since each of the n variables has a linear relationship 

with the solution, each variable has a minimum effect at one extreme of one of its constraints 

and a maximum at the other extreme, with either a non-decreasing or a non-increasing effect 

in between. Therefore, any solution found away from a corner can be translated along at least 

one variable, while either increasing or decreasing the solution's value, until the solution set 

border is reached. The process can always be repeated until a corner of the solution set is 

encountered. This process is illustrated in Fig. B-1. Therefore, the Simplex algorithm begins 

at an arbitrary corner of the solution set. At each iteration, the Simplex Method selects the 

variable that will produce the largest change towards the minimum (or maximum) solution. 

That variable replaces one of its compatriots that is most severely restricting it, thus moving 

the Simplex Method to a different corner of the solution set and closer to the final solution. 

In addition, the Simplex Method can determine if no solution actually exists. Note that the 

algorithm selects the best choice at each iteration without needing information from previous 

or future iterations. 

On the other hand, the Simplex Method must visit every corner of the solution set in order to 

find the minimum or maximum values. In particular, if the solution set involves many variables, 



Figure B-1: Simplex procedure. 

this search could take an extended period of time and involve a large number of computations. 

B.3.2 Interior Point Method 

The Simplex Method has been the main method to solve Linear Problem until very recently. The 

new area of Interior-Point Method started in 1984 when Karmakar proposed his LO algorithm. 

The theory of IPMs developed into a mature principle during the 1990s, when algorithm for LO 

were transparently extended to more complex problems such as nonlinear convex programming, 

semi-definite optimization (SDO) and second-order conic optimization (SOCO). IPMs are now 

widely considered since, while problems such as LO can also be solved by other methods (an 

IPM is only one alternative), IPMs appear to be the first and also most efficient approach for 

SDO. SDO and IPM are today a very active area of mathematical programming. 



Appendix C 

Sirnulat ion Data 

This Appendix gat hers the simulation data obtained with the solver MOSEK. 

Table C. 1: Simulation values of the hardness-to-cohesion ratio for the flat punch and the Mori 
Tanaka scheme. 



Table C.2: Simulation values of the hardness-to-cohesion ratio for the Berkovich and the Mori 
Tanaka scheme. 

Table C.3: Simulation values of the hardness-to-cohesion ratio for the cube corner and the Mori 
Tanaka scheme. 

Table C.4: Simulation values of the hardness-to-cohesion ratio for the flat punch and the self 
consistent scheme. 



Table C.5: Simulation values of the hardness-to-cohesion ratio for the Berkovich and the self 
consistent scheme. 

Table C.6: Simulation values of the hardness-to-cohesion ratio for the cube corner and the self 
consistent scheme. 

Table C.7: Simulation values of the hardness-to-cohesion ratio at the limit packing density for 
the Berkovich and the Mori Tanaka scheme. 



Table C.8: Simulation values of the hardness-to-cohesion ratio at the limit packing density for 
the cube corner and the Mori Tanaka scheme. 

Table C.9: Simulation values of the hardness-to-cohesion ratio at the limit packing density for 
the Berkovich and the self consistent scheme. 



Table C.lO: Simulation values of the hardness-to-cohesion ratio at the limit packing density for 
the cube corner and the self consistent scheme. 
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