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Abstract 

Rainfall is a major process transferring water mass and energy from the atmosphere to the 
surface. Rainfall data is needed over large scales for improved understanding of the 
Earth climate system. Although there are many instruments for measuring rainfall, none 
of them can provide continuous global coverage at fine spatial and temporal resolutions. 

This thesis proposes an efficient methodology for obtaining a probabilistic 
characterization of rainfall over an extended time period and spatial domain. The 
characterization takes the form of an ensemble of rainfall replicates, each conditioned on 
multiple measurement sources. The conditional replicates are obtained from ensemble 
data assimilation algorithms (Kalman filters and smoothers) based on a recursive cluster 
rainfall model. Satellite measurements of cloud-top temperatures are used to identify 
areas where rainfall can possibly occur. A variational field alignment algorithm is used 
to estimate rainfall advective velocity field from successive cloud-top temperature 
images. A stable pseudo-inverse improves the stability of the algorithms when the 
ensemble size is small. 

The ensemble data assimilation is implemented over the United States Great Plains 
during the summer of 2004. It combines surface rain-gauge data with three satellite- 
based instruments. The ensemble output is then validated with ground-based radar 
precipitation product. The recursive rainfall model is simple, fast and reliable. In 
addition, the ensemble Kalman filter and smoother are practical for a very large-scale 
data assimilation problem with a limited ensemble size. 

Finally, this thesis describes a multi-scale recursive algorithm for estimating scaling 
parameters for popular multiplicative cascade rainfall models. In addition, this algorithm 
can be used to merge static rainfall data fiom multiple sources. 
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Title: H.M. King Bhumibol Professor of Civil and Environmental Engineering, 

Thesis Supervisor: Dara Entekhabi 
Title: Professor of Civil and Environmental Engineering 





Acknowledgments 

There are a great number of people who have contributed significantly to my Ph.D. years 

at the M.I.T. First of all, I would like to thank my thesis supervisors, Prof. Dennis 

McLaughlin and Prof. Dara Entekhabi, for make this all possible. I am deeply indebted 

to them for having shared their knowledge and experience, from which I benefited 

tremendously over the course of my Ph.D. I would like to extend my sincere gratitude to 

my thesis committee, Dr. Ross Hoffman and Prof. Efi Foufoula-Georgiou for their 

invaluable suggestions and supports on this thesis. I also appreciate the assistance fiom 

Prof. David H. Staelin and C. Surusavadee for providing the AMSU-B data and from Dr. 

Christopher Grassotti at AER for providing the NOWRAD data. 

I am most obliged to the Ananda Mahidol Foundation for supports over the past years. It 

is my most honorable opportunity to receive a scholarship from H.M. King Bhumibol 

Rama IX and HRH Princess Sirindhorn of Thailand. I would like to thank HE Dr. 

Chaovana Nasylvanta and A. Anukalya Israsena for giving me an opportunity of a life 

time, P'Pop Komsorn and Khun Manida for their helps and supports. I am also grateful 

to A. Sucharit Koontanakulvong, A. Chaiyuth Suksri, A. Tuantan Kitpaisalsakul, and 

other professors and lecturers at the Civil Engineering and at the Water Resources 

Department, Chulalongkorn University for their encouragements, supports, and advices. 

I have also greatly appreciated the technical and social interaction with my fellow MIT 

students: Crystal Ng for editing my thesis, David Flagg for acquiring most of my data to 

a usable format, and Sai Ravela for the multi-resolution alignment algorithm. Thank to 

the previous and current students from the McLaughlin and Entekhabi research groups 

for many inspiring and useful inputs, discussions, and solutions. Thank to my fellow 

Thai fiends for making my experience here so enjoyable and memorable. 

Above all I am deeply grateful to my family: my dad, my mom, my sister Ann, and Bell 

for their love and understanding through these years. I hope we can finally find some 

pride and joy after these long hard years. 





Contents 

1 . Introduction 

1.1 Importance of Rainfall Estimation in the Climate System ................................... 17 

1.2 Rainfall Data Acquisition .................................................................................... -19 

1.2.1 Rainfall Measurements ............................................................................. -19 

1.2.2 Rainfall Models and Simulations .............................................................. -24 

1.2.3 Rainfall Data Assimilation ........................................................................ -26 

1.3 Comprehensive Rainfall Ensemble for Land-Surface Models ............................. 27 

1.4 Thesis Outline ....................................................................................................... 28 

2 . The United States Great Plains Case Study 

2.1 The United States Great Plains (USGP) Region .................................................. 31 

2.2 Atmospheric Forcing and Rainfall Measurements in the USGP Case Study ....... 33 

............. 2.2.1 The Geostationary Operational Environmental Satellite (GOES) 34 

2.2.2 The NOWRAD Precipitation Product ....................................................... 37 

2.2.3 The Automated Surface Observing Station (ASOS) ................................. 39 

2.2.4 The Tropical Rainfall Measuring Mission (TRMM) ................................. 41 

2.2.5 The Special Sensor Microwave Imager (SSMII) ....................................... 43 

2.2.6 The Advance Microwave Sounding Unit-B (AMSU-B) ........................... 45 

2.3 Rainfall Measurement Error Statistics ................................................................. -47 

2.3.1 Measurement Error Classification ............................................................ -47 

2.3.2 Position Error Statistics of the USGP Satellite Measurements .................. 49 

2.3.3 Intensity Error Statistics of the USGP Satellite Measurements ................. 56 

2.3.4 Error Statistics of ASOS Measurement .................................................... -60 

.......................................................................................................... 2.4 Conclusions -62 



3 . Dynamic Rainfall Model 

.......................................................................................................... 3.1 Introduction -65 

3.2 Spatiotemporal Stochastic Rainfall Model .......................................................... -66 

3.2.1 The Rodriguez and Eagleson Cluster-Point Process Model ...................... 67 

3.2.2 The Recursive Cluster-Point Rainfall (RCR) Model ................................ 73 

3.3 The RCR Model with GOES Forcing ................................................................... 79 

3 .3.1 Rainfall Intermittency and GOES Usage .................................................. -80 

3.3.2 Velocity Field from Consecutive GOES Images ....................................... 85 

3.3.3 The RCR model with GOES Forcing ....................................................... -87 

3.4 Implementation of the RCR Model to the USGP Project ..................................... 90 

.......................................................................................................... 3.5 Conclusions -92 

4 . Dynamic Rainfall Data Assimilation 

.......................................................................................................... 4.1 Introduction -95 

4.2 Sequential Data Assimilation for Non-linear Dynamic Systems ......................... 96 

4.2.1 Ensemble Kalman Filter (EnKF) .............................................................. -97 

4.2.2 The Stable Pseudo-Inversion Technique and the Stable EnKF ............... 102 

4.2.3 Ensemble Kalman Smoother (EnKS) ..................................................... 1 1  

4.2.4 Implementation of EnKF and EnKS on Synthetic Rainfall Problems ..... 114 

4.3 Model Parameter and Measurement Error Estimation ....................................... 121 

4.3.1 Model Parameter Estimation by State-Augmentation ............................. 122 

4.3.2 Estimated RCR Parameters for the USGP Case Study ............................ 126 

4.3.3 Generating Position and Intensity Perturbed Measurements ................... 130 

4.4 Implementation of the Rainfall Data Assimilation on the USGP Case Study .... 131 

........................................................................................................ 4.5 Conclusions -13 7 



5 . Estimation of the Multiplicative Cascade Rainfall Model 

Parameters by the EM-SRE Algorithm 
......................................................................................................... 5.1 Introduction 139 

............................................ 5.2 The Scale-Recursive Estimation (SRE) Algorithm 140 

...................................................... 5.2.1 The Scale-Recursive Representation -140 

............................................................ 5.2.2 The Two-Sweep SRE Algorithm 142 

...................... 5.2.3 Emphasize on the Characteristics of the SRE Framework 145 

............................................................. 5.3 Multiplicative Cascade Rainfall Model 1 4 6  

.................................... 5.4 Rainfall Intermittency and the Tree Pruning Technique 149 

...................................................... 5.5 Parameter Estimation of the SRE Algorithm 151 

.................................... 5.5.1 The Expectation-Maximization (EM) Algorithm 151 

5.5.2 The EM-SRE Algorithm on the Multiplicative Cascade Rainfall 

...................................................................................................... Model 152  

................................................................ 5.5.3 Identifiability and Uniqueness 155  

.......................... 5.5.4 Parameter Sensitivity to Changes in the Tree Structure 160 

................................... 5.6 The EM-SRE Algorithm with NOWRAD Measurement 164 

........................................................................................................ 5.7 Conclusions 167  

6 . Thesis Conclusion and Future Researches 

................................................................. 6.1 Conclusion and Thesis Contributions 169 

.................................................................... 6.2 Suggestions for Future Researches 1 7 3  

....................................................................................... 6.2.1 Rainfall Models -173 

........................................................................... 6.2.2 Rainfall Measurements -174 

................................................................ 6.2.3 Data Assimilation Techniques 1 7 5  

................................................................ A . Field Alignment Algorithm 177 

B . Rank of Cramer Rao Bound for the EM-SRE Algorithm .............. 181 

C . Sampling Strategies o o o o a o a e e a o a a e a a o o o o o o ~ ~ e e a a a a o o o o o o a o e a a a o o o o o a o o o o o o a a o o o o o e a  187 



List of Figures 

1 . 1 Schematic diagram of the hydrologic cycle ............................................................ 1 7  

1-2 Coverage of the NEXRAD network at a height of 2 km above the ground 

level .......................................................................................................................... 20 

........ . 1-3 Tracks of TRMM Microwave Imager (TMI) measurement on Dec 6". 2005 22 

The United States Great Plains (USGP) case study region ...................................... 32 

Data coverage of GOES East and GOES West spacecraft ...................................... 34 

Examples of GOES infrared cloud-top temperature from the USGP case 

......................................................................................................................... study 35 

Examples of NOWRAD 15-minute cumulative rainrate from the USGP 

............................................................................................................... case study -38 

The ASOS locations over the USGP study domain ................................................. 39 

Examples of ASOS cumulative rain interpolated over the USGP study 

..................................................................................................................... domain -40 

Examples of TRMM instantaneous surface rainrate from the USGP study 

..................................................................................................................... domain -42 

2-8 Examples of SSMII instantaneous surface rainrate from the USGP study 

domain ..................................................................................................................... -44 

2-9 Examples of AMSU-B instantaneous surface rainrate from the USGP study 

domain ..................................................................................................................... -46 

2-10 A synthetic example of (a) measurement position errors, (b) amplitude 

errors. and (c) histogram of the residuals (x-axis representing the position 

and y-axis representing the rainrate) ........................................................................ 48 



2-1 1 Example of TRMM position error relative to NOWRAD measurements 

over the USGP region on June 3rd, 2004 at 12:OOGMT; (a) NOWRAD in 

mmlhr, (b) TRMM in mm/hr, and (c) difference between TRMM and 

NOWRAD in mmlhr inside the USGP region ......................................................... 50 

2- 12 Example of TRMM position error relative to NOWRAD measurements 

after applying the multi-resolution alignment algorithm on June 3rd, 2004 

at 12:OOGMT; (a) displacement field in 0.05", (b) aligned TRMM 

measurement in mm/hr, and (c) difference between aligned TRMM and 

NOWRAD inside the USGP region ......................................................................... 5 1 

2-13 Distributions of average TRMM position error over rainy pixels inside the 

USGP region - (a) joint distribution of the position error, (b) marginal 

distribution in the x-direction, and (c) marginal distribution in the y- 

................................................................................................................... direction 53 

2-14 Distributions of average SSM/I position error over rainy pixels inside the 

USGP region - (a) joint distribution of the position error, (b) marginal 

distribution in the x-direction, and (c) marginal distribution in the y- 

................................................................................................................. direction ..54 

2-15 Distributions of average AMSU-B position error over rainy pixels inside 

the USGP region - (a) joint distribution of the position error, (b) marginal 

distribution in the x-direction, and (c) marginal distribution in the y- 

direction ................................................................................................................. ..55 

2- 16 The scatter plots and regression analyses of TRMM versus NOWRAD (a) 

before, and (b) after aligning TRMM with NOWRAD on 2004-06-22 05:45 

........................................................................................................................ GMT -5 7 

2- 17 The scatter plots and regression analyses of SSMII versus NOWRAD (a) 

before, and (b) after aligning SSMII with NOWRAD on 2004-07-0 1 13 : 15 

...................................................................................................................... GMT.. -57 

2-1 8 The scatter plot and regression analyses of AMSU-B versus NOWRAD (a) 

before, and (b) after aligning AMSU-B with NOWRAD on 2004-07-26 

00:30 GMT ............................................................................................................... 57 



2- 19 Histograms of the slope of regression y = hx with x representing NOWRAD 

data andy representing (a) TRMM, (b) SSMII, and (c) AMSU rainfall 

........................................................................................................... measurement .5 8 

2-20 The regression analysis for estimating the constants cl and cz for 

........................................... (a) TRMM, (b) SSMII, and (c) AMSU measurement.. -59 

2-2 1 The scatter plot and regression analysis of ASOS versus NOWRAD from 

an hourly measurement during June 1 - August 3 1 ", 2004 over the USGP 

region ...................................................................................................................... .60 

2-22 The regression analysis result for estimating the constant cl and c2 of ASOS 

measurement ........................................................................................................... -6 1 

3-1 A spatial diagram of the RE cluster point rainfall process showing cluster 

centers and rain cell centers ..................................................................................... 68 

3-2 The spatial and temporal characteristics of rainfall field generated from 

the RE cluster point rainfall model ......................................................................... .7 1 

3-3 Intermittency problem in the RCR model when apply to a large-scale 

problem - (a) NOWRAD rainfall intensity in the USGP study region on 

June 2nd, 2004 at 0:OOGMT and (b) sample rainfall field generated from the 

RCR model ............................................................................................................... 80 

3-4 A comparison between (a) NOWRAD rainfall rate in mdhr ,  and (b) the 

GOES cloud-top temperature in degree Kelvin over the U.S. great plain on 

....................................................................................... 2004/06/0 1 at 04:OO GMT 8 1 

3-5 Improvement when using RCR model with GOES forcing - (a) NOWRAD 

rainrate in m d h r ,  (b) sample rainfall field from RCR model with GOES 

forcing ..................................................................................................................... -82 

3-6 A scatter plot of NOWRAD rainrate versus GOES cloud-top temperature 

.................... on June lSt, 2004 from 00:OO-04:OO GMT over the USGP case study 84 

3-7 Comparison between NOWRAD and GOES displacements obtained from 

MRA algorithm on June lSt, 2004 from 8:00 - 9:00 GMT over the USGP 

region ..................................................................................................................... ..86 



3-8 An implementation of the RCR model with GOES input over the USGP 

region from 05:OO - 08:OO GMT ............................................................................. 9 1 

4-1 The conceptual diagram of the Ensemble Kalman Filter ........................................ -98 

4-2 Performances of the original EnKF and the stable EnKF 

when the ensemble size is small (e.g., n = 200, m = 20, N = 10) ......................... 1 10 

4-3 Performances of the original EnKF and the stable EnKF 

........................ when the ensemble size is large (e.g., n = 200, m = 20, N = 500) 110 

4-4 The temporal diagram of a filing, a fixed-interval smoothing, and a fixed- 

lag smoothing scheme.. ........................................................................................ 1 2  

4-5 True synthetic rainfall and rainfall measurements to be used in experiment 

#1 ............................................................................................................................ 115 

4-6 The synthetic truth and the ensemble mean of the forecast (FC), filter (FL), 

and smoother (SM) ensemble from experiment # 1 from time tl to t6 ................... .I16 

4-7 Ensemble standard deviation of the forecast (FC), filterer (FL), and 

smoother (SM) ensemble from experiment #1 from time tl to .......................... 1 16 

4-8 Root mean square error of the forecast (FC), filter (FL), and smoother (SM) 

ensemble from experiment # 1 fiom time tl to t6. ................................................. 1 17 

4-9 True synthetic rainfall and rainfall measurements to be used in experiment 

#2 ............................................................................................................................ 118 

4-10 The synthetic truth and the ensemble mean of the forecast (FC), filter (FL), 

and smoother (SM) ensemble from experiment #2 from time tl to t6 .................... 1 18 

4- 1 1 Ensemble standard deviation of the forecast (FC), filter (FL), 

and smoother (SM) ensemble from experiment #1 fiom time tl to t6 ................... .I19 

4-12 Root mean square error of the forecast (FC), filter (FL), 

and smoother (SM) ensemble from experiment #2 from time tl to t6 .................... 1 19 

4-1 3 The estimated RCR model parameters using the state-augmentation 

technique with the EnKF (blue line) and EnKS (red line) algorithm for the 

............................................................................................. synthetic experiment 124 

....... 4- 14 The estimated RCR model parameters from the storm event # 1 in Table 4.1 128 



4- 15 The NOWRAD rainrate (left), the smooth ensemble mean (middle), and the 

differences of rainrate over the USGP region at every 3 hours during July 

24", 2004 19:OO GMT to July 25", 2004 4:00 GMT ............................................. 132 

4-16 Samples of the USGP raw data available during July 24th, 2004 19:OO GMT 
th to July 25 , 2004 4:00 GMT .................................................................................. 133 

4- 17 The 1 -day moving average RMSE of the open-loop, forecast, filter and 

smoother mean ensemble with regard to NOWRAD measurement over a 

0.25 degree resolution.. .......................................................................................... 1 34 

4-1 8 Effects of the EnKS smooth ensemble over the EnKF update ensemble .............. 136 

5-1 Examples of scale-recursive structures with (a) a one-dimensional 

inverse-tree, and (b) a two-dimensional pyramidal-like grid.. .............................. .14 1 

5-2 A pruned tree with zero-rainfall intensity node (black) removed .......................... 150 

5-3 (a) Process noise variances and (b) measurement noise variance estimated 

fiom the EM-SRE algorithm from: case A - observation from all scales, 

.............................................. and case B - observation only from the finest scale 158 

5-4 One-dimensional diagram of (a) the 8-level tree with branching number of 

2 x 2, and (b) the 4-level tree structure with branching number of 4 x 4 .............. 16 1 

5-5 (a) State variances and (b) measurement noise variances estimated from the 

EM-SRE algorithm from the 8-level and 4-level tree structure ............................. 163 

5-6 (a) 15-minute NOWRAD rainfall observation and (b) the normal 

probability plot after pruning out zero rainrate of a convective storm on 

Aug. 19,2004 at 20:30:00 GMT over the longitude of 97.2" W - 96" W and 

the latitude of 3 1 .8" N - 33" N.. ........................................................................ 164 

5-7 State variances P,(mJ estimated from the EM algorithm using the 

NOWRAD data using 7-level tree (pink) and 4-level tree (green) on Aug. 

19,2004 at 20:30:00 GMT over the longitude of 97.2" W - 96" W and the 

latitude of 3 1 .8" N - 33" N ..................................................................................... 165 



C-1 Benefit of using the sampling strategy based to a random selection method; 

the mean and covariance are nicely preserved using the SVD sampling 

strategy ................................................................................................................... 187 

C-2 The first 50 singular vectors of a selective matrix sampling 50 members 

from 50, 100, 150, 200, 250, and 300 total members ........................................ 191 

C-3 Comparison between the random selection method and the SVD sampling 

strategy to select 10 rainfall samples from 500 rainfall members generated 

by the recursive rainfall model .............................................................................. 193 



List of Tables 

Characteristics. advantages. and limitations of rainfall-measuring instruments ........ 23 

Measurement summary and roles in the USGP case study ........................................ 33 

Position and intensity error statistics of the USGP rainfall measurements ............. .63 

Parameters of the Recursive Cluster-Point Rainfall (RCR) model ............................ 76 

Storm events chosen to estimate the RCR model parameters .................................. 126 

Constraints on the RCR model parameters for the USGP project ........................... 129 

The average RCR model parameters from the state-augmentation using the 

EnKS over the storm events listed in Table 4.1 ....................................................... 129 

Root-node error variance P(0) -+(O). process error variance Q(s). and 

measurement error variance R(s) used to generate synthetic experiment ................ 157 

The estimated measurement noise variance obtained from the EM algorithm 

summation parameters Px(M)+R(M) and extrapolated Px(M) in Figure 5-7 .......... 166 



Chapter 1 

Introduction 

1.1 Importance of Rainfall in the Earth Climate System 

Water is essential to all life on our planet. It covers three quarters of the Earth's surface 

and is an active component of the atmosphere. The collection of stores of water that exist 

in the Earth system is called the hydrosphere. The hydrosphere extends approximately 15 

kilometers up into the atmosphere and approximately 1 kilometer down into the 

lithosphere or the Earth's crust. Within the hydrosphere, water circulates between the 

atmosphere and the surface stores. The various pathways constituting the hydrologic 

cycle are illustrated in Figure 1 - 1. 

Figure 1-1: Schematic diagram of the hydrologic cycle (from U.S. Geological Survey) 
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In the hydrological cycle, water mass is transported from the atmosphere to the surface 

by the process called precipitation. The precipitation process can occur in liquid form or 

solid form. However, the majority of precipitation, especially over the tropics, is in a 

liquid form and is commonly referred to as rainfall. Rainfall has immediate and major 

impacts on the environment and human livelihood. It can infiltrate and run off to nearby 

streams shortly after it reaches the ground. Conversely, the frozen precipitation including 

snow, ice, and hail can remain inactive where it falls for a long time before it begins to 

melt and interact with the environment. 

Rainfall amount and its variation are primary factors in many engineering and 

management decisions. Excess rainfall can cause flooding, while insufficient rainfall can 

cause drought and starvation. These extreme behaviors of rainfall result in enormous 

damage to properties and human lives. Rainfall couples with other environmental 

variables in complex manners and causes global scale weather anomalies as well. 

Perhaps the most well known example of a tropical climate anomaly is El Nino. It is a 

disruption of the ocean-atmosphere system in the tropical Pacific, which has important 

consequences for weather and climate around the globe. The El Nino-Southern 

Oscillation (ENSO) can cause anomalously wet weather in California, wetter and colder 

winters in the eastern United States and dryer summer monsoon seasons across the 

southern hemisphere [2]. 

Not only is rainfall the primary transport process of water mass, the latent heat absorption 

and release of rain is also the major source of energy that drives the global atmospheric 

circulation [118]. As water changes from liquid to vapor and back to liquid, latent heat 

is absorbed and released into the atmosphere. The variation of latent heat is an important 

part of understanding the energy balance, which in turn affects the climate on a regional 

and global scale. 



1.2 Rainfall Data Acquisition 

Rainfall data is an essential ingredient for better understanding the Earth's climate 

system. In many applications, we seek to obtain rainfall information at the spatial and 

temporal resolution of interest. This data can be collected from rainfall measuring 

instruments, or can be estimated from rainfall prediction models. However, obtaining 

accurate and comprehensive rainfall data from either source can be difficult to achieve 

because rainfall measurements are scattered in space and time. In addition, the 

intermittent dynamics of rainfall is too complex to simulate accurately over a large scale 

and an extended period. 

1.2.1 Rainfall Measurements 

There are many types of instruments employed worldwide to detect and collect rainfall 

data. They include rain gauges, ground-based radar stations, and remote sensing 

instruments onboard orbiting satellites. Although rainfall data is universally expressed as 

the depth of water falling on a level surface in inches or millimeters, the algorithms to 

obtain rainfall data for each instrument is usually unique. Even instruments from the 

same platform can vary greatly in their characteristics, scales, coverage and accuracy. A 

suitable choice instrument is based on many factors, such as, topography, accessibility, 

desired spatial and temporal resolution, etc. 

The first and most basic instrument used by humans to measure rainfall is the rain-gauge. 

It directly collects water in an open container. Rainfall measurement from a rain-gauge 

station can be very usefbl if the continuous record of rainfall data over a particular 

location or over a small region is of interest. At the global scale, interpolating rainfall 

measurement from rain gauge station requires a dense network that can be very costly. In 

addition, it is impossible to set up and routinely operate rain gauge stations in remote 

areas or over the ocean. 



A new era of rainfall measurement emerges from the development of radar during World 

War 11. Microwave radiation at wavelengths between 1 - 20 centimeters can indicate the 

presence of rain [8, 133, 1341. Active microwave radiation or radar provides information 

on raindrop distribution, which can be directly converted to rainfall rate. A single radar 

station offers a means of obtaining rainfall distribution in a three-dimensional space that 

can only be crudely approximate with rain gauge data. By the end of the 20" century, 

dense networks of radar stations have been set up in many major populated areas 

including the Next Generation Weather Radar (NEXRAD) program in United States. 

Radar has quickly become the primary source of rainfall measurement in many regions. 

However, worldwide coverage of rainfall data fiom this source alone is not possible. 

Furthermore, accuracy and coverage of rainfall measurement fiom radar stations can be 

limited by many factors including topography. For example, the utility of the NEXRAD 

for estimating rainfall at the surface over the United States is highly compromised across 

the mountainous West [48,78] as illustrated by data voids in Figure 1-2. 



Another breakthrough in monitoring global rainfall is the development of passive and 

active microwave satellites. Similar to radar, these air-borne instruments detect emitted 

and scattered radiation by raindrops and ice particles, which can also be accurately 

converted to rainfall intensity. Microwave radiation can penetrate through cirrus clouds 

(i.e., high and thin clouds with no rain) and provide information at various levels of the 

atmosphere. Currently, there are substantial numbers of satellites with active and passive 

microwave instruments orbiting around the Earth. Some examples of the current rainfall- 

measuring satellite projects operated by the United States are the Tropical Rainfall 

Measuring Mission (TRMM), the Special Sensor Microwave Imager (SSMII) onboard 

the Defense Meteorological Satellite Program (DMSP), the Advanced Microwave 

Sounding Unit (AMSU) onboard National Oceanic and Atmospheric Administration 

(NOAA) satellites. 

Rainfall measurements from microwave satellites are useful for studies of the Earth 

climate system at a global scale. These satellites can provide information over remote 

regions and over the ocean whose measurement from rain gauges and radar stations are 

unavailable. However, since microwave radiations have relatively low energy, these 

satellites must be in low orbit around the Earth in order to obtain data at a usable 

resolution. Data from a low satellite is given as the satellite progresses along its track, as 

in the example shown in Figure 1-3. Measurements at different locations along the track 

are observed at different times, making it difficult to integrate with other data sources. In 

addition, the revisit time of the satellite usually takes several hours to several days. At 

this temporal frequency, rainfall measurement fiom low orbit satellite is not practical to 

track rainfall dynamically over any particular region. 



2A12 TMI Profile Ascending Image 

2A12 TMI Profile Descendina lrnaae 

Figure 13:  Tracks of TRMM Microwave Imager (TMI) measurement on December 6,2005 
fi-om TRMM Orbital Data Products chtta://disz;.sci. gafc,rzasa,gov/&M&tapoovTW 

As opposed to a low orbit satellite, a geostationary satellite orbits the Earth at a speed 

matching the Earth's rotation. At 22,300 miles (or 35,800 kilometers) above the Earth, a 

geostationary satellite is high enough to continuously monitor the Earth with a fill-disk 

view. This seems to be a perfect source of comprehensive rainfall measurement. 

Unfortunately, microwave radiation, which is commonly used to measure rainfall, has 

insufficient energy to be detected at this altitude. In addition, any higher energy radiation 

cannot penetrate through cirrus cloud and accurately estimate rainfall at the surface. The 

variable detectible at this altitude that is most related to rainfall is the cloud-top 

temperature fiom infrared and visible radiation. Although these continuous cloud-top 

images cannot be directly converted to rainfall intensity, they provide information on 

cloud-drift winds, cloud-thickness, and moisture contents, which can help with estimating 

rainfall. 



Table 1.1: Characteristics, advantages, and limitations of rainfall-measuring instruments 

rn 

Lowarbit High-Orbit 
Station Radar Satellites Satellites 

Measurement Data Cumulat~ve Ram Ram Reflecn~ty Ram Reflecuv~ty Cloud-top Temp 
- 

I 

I 1 I I 

Data Example 

Estimation Accuracy Locally Accurate Accwab Accurate Poor 

Coverage Area Point Location Regional Scale Global Scale Continental Scale 

Poor 
Good (US) 

Spatial Availability Poar (Global) Good Very Good 

Temporal Availability Vey Frequent Vey Frequent Infrequent Very Frequent 

In conclusion, each rainfall-measuring instrument has its advantages and limitations over 

one another, as summarized in Table 1.1. At present, no single instrument can provide 

accurate and comprehensive rainfall measurement at a usable spatial and temporal 

resolution over the global scale. The optimal rainfall data must be obtained by 

combining many sources of rainfall measurement together. However, merging these 

measurements with different characteristics is not a straightforward task. It requires well- 

established knowledge of the rainfall process and understanding of measurement error 

characteristics from each instrument. 



1.2.2 Rainfall Models and Simulations 

Rainfall is a complex environmental variable that is difficult to describe either 

deterministically or statistically. It is affected by turbulent and chaotic physical 

processes, varies over a wide range of spatial and temporal scales, and it is intermittent. 

The rainfall process can couple with other environmental variables in complex manners 

and may never be fully understood. However, needs for rainfall data in many 

applications motivate us to search for a model that can accurately and effectively 

simulate and estimate rainfall at spatial and temporal resolutions of interest. A rainfall 

model is required to propagate rainfall information temporally and/or spatially. 

There are countless rainfall models in the literature. Some aim to capture long-term 

variations, some aim to provide rainfall information where no or insufficient rainfall data 

are available, and some aim to simulate and forecast rainfall into the future. Rainfall 

models may be classified into two categories: 1) meteorological rainfall models, and 2) 

stochastic rainfall models. 

Meteorological models seek for a complete physical description of the rainfall process by 

accounting for dynamical and thermo-dynamical relationships of the atmosphere [81]. 

Meteorological models are the most sophisticated and computationally demanding among 

the two types of rainfall models. However, they provide relatively accurate rainfall 

estimation and are commonly used for short term rainfall forecasting. Meteorological 

models that are used in short term forecasting are referred to as Quantitative Precipitation 

Forecasting (QPF) systems. The popular QPF models used in the United State are the 

Pennsylvania State University- National Center for Atmospheric Research Mesoscale 

Model (MM5) [22, 511, the National Center for Environmental Prediction's Eta model 

[ 1 1, 12, 1 1 51, and the Regional Atmospheric Modeling System (RAMS) [95, 1021. 

Stochastic models attempt to capture rainfall characteristics in space andlor time using 

only a few parameters. Statistical rainfall models that use past statistics of rainfall to 



estimate trends into the future may be classified in this group as well. Stochastic models 

are use l l  for representing general spatial and temporal trends or correlations among 

many climate variables. They can be used to provide short term forecasts but generally 

are relatively less accurate than the forecasts obtained fkom meteorological models. 

Stochastic models can also be further categorized into three types: 1) spatial, 2) temporal, 

and 3) spatiotemporal stochastic models. Spatial stochastic models are static models that 

describe the spatial pattern of rainfall mostly using scaling methods. These include 

multi-scale, multi-fi-actal and cascade models [47, 54, 75, 97, 1171. Spatial stochastic 

models are useful for merging multi-resolution rainfall data obtained at the same 

measurement time. However, they cannot deal with temporal dynamics of rainfall. 

Conversely, temporal stochastic models focus on the dynamics of rainfall process at one 

or multiple discrete locations. Examples of temporal stochastic models include the 

single-site Bardett-Lewis rectangular pulse model [67, 1291, the Neyman-Scott 

rectangular pulse model [25, 411, and single or multi-site temporal models [17a, 18b, 

1 191. They provide reasonable characteristics of temporal dynamics of rainfall but fail to 

characterize spatial features of rainfall. Finally, spatiotemporal stochastic models 

account for both spatial and temporal characteristics of rainfall process [94]. 

Spatiotemporal stochastic models are normally adapted fiom the spatial and temporal 

stochastic models. 



1.2.3 Rainfall Data Assimilation 

Data assimilation is a data merging technique used to combine measurement information 

with prior knowledge from a dynamic model to produce an analysis state. This technique 

is useful if measurements are scattered or indirectly related to the variables of interest. In 

this case, the dynamic model will provide a flow of information from local measurements 

to all variables in the space and time of interest. Data assimilation can be used to merge 

multiple sources of rainfall measurements together. By selecting a suitable rainfall model 

to propagate information, we can ultimately obtain comprehensive rainfall at spatial and 

temporal resolution of interest. 

The concept of data assimilation can be illustrated by a simple calculus problem. 

Suppose there are two pieces of information, xl representing forecast from a model, and 

x2 representing measurement of the state x. What combination of xl and x2 gives the best 

estimate of true x? The answer depends on uncertainty of xl and x2, statistically described 

by variances oI2 and 022, respectively. The analysis state or the best estimate of x that 

give the least uncertainty, denoted by i , is given by the weighted sum of xl  and x2 in the 

following form, 

The estimate i will be optimal if the probability density of x ,  and xr are Gaussian, (e.g., 

full probabilistic characterization can be described only by the mean and (co)variance.). 

Over the past decades, many data assimilation algorithms proposed. These algorithms 

can drastically differ in their formulations, efficiency, concepts and appropriateness for 

specific applications. Well-known data assimilation algorithms include the 3DVAR and 

4DVAR methods [23, 24, 122, 1231, the representer methods [9, 101, the Kalman Filter 

and Extended Kalman Filter methods [35, 43, 861, the Ensemble Kalman Filter methods 



[16, 36, 38, 391, and the Particle Filter [6, 100, 1321. Among the many algorithms, those 

based on the ensemble Kalman Filter (EnKF) may be the most commonly used in 

hydrologic community. It is simple and efficient, yet accurate enough for many 

applications. The particle filter is more accurate for dealing with very complex and non- 

linear systems; however, its computation expense makes the algorithm impractical to 

apply for a large data assimilation problem. 

1.3 Comprehensive Rainfall Ensemble for Land-Surface 

Models 

Many recent climate forecasting and land-surface models are based on ensemble 

approaches where many possible outcomes are simulated [33, 38, 74, 77, 84, 108, 1361. 

These models usually require a probabilistic characterization of rainfall over an extended 

time period and spatial domain. This can be obtained fiom the ensemble of rainfall 

conditioned on the available measurements. Therefore, a single realization of 

comprehensive rainfall data is no longer sufficient. We need a way to generate rainfall 

ensembles and feed them to ensemble-based climate and hydrological models. A large 

number of land-surface model studies create the input rainfall ensemble by simply 

perturbing each rainfall pixel randomly or using a simple statistical model that does not 

provide realistic correlation of rainfall in space and time [33, 84, 1081. An unrealistic 

rainfall ensemble can degrade the outputs from these models or may cause the model to 

become unstable. On the other hand, other applications use rainfall ensembles generated 

from a QPF models [19, 20, 951. Although, a rainfall ensemble produced by a QPF 

model is realistic, it is time consuming and impractical for large scale problems. 

Therefore, having a fast, efficient and reliable algorithm to merge and provide 

comprehensive rainfall ensembles at desired spatial and temporal resolution would 

greatly benefit climate system studies. 



1.4 Thesis Outline 

The outline of this thesis is given as following. In chapter 2, we introduce the 

atmospheric forcing and rainfall measurements across the United States Great Plains 

(USGP) region. These measurement sources include the Geostationary Operational 

Environmental Satellite (GOES), the NOWRAD precipitation product, the Automated 

Surface Observing Station (ASOS), the Tropical Rainfall Measuring Mission (TRMM), 

the Special Sensor Microwave Imager (SSMII), and the Advance Microwave Sounding 

Unit-B (AMSU-B). This study area and these measurements will be used to illustrate the 

rainfall data assimilation technique. We also propose a multi-resolution alignment 

method to estimate position error statistics and a regression method to estimate the 

intensity error statistics, which are required in the data assimilation framework. 

In Chapter 3, we provide details of the Recursive Clustered Rainfall (RCR) for 

propagating rainfall ensemble through space and time. The chapter begins by introducing 

the cluster-point process rainfall model and forming the RCR model by assuming the 

Markov properties. The GOES cloud-top temperature measurements are then used to 

handle rainfall intermittency. In addition, we employ multi-resolution alignment with 

two consecutive cloud images to estimate the velocity field. The velocity field is then 

used to advect rainfall. Finally, we use the RCR model to propagate rainfall over the 

USGP region. 

Chapter 5 presents a dynamic rainfall data assimilation, which is the core topic of the 

thesis. The approach is the widely applied Ensemble Kalman Filter (EnKF). We also 

improve the stability of the EnKF for small ensembles by utilizing the stable pseudo- 

invert technique. Next, the Ensemble Kalman Smoother (EnKS) algorithm is used in 

order to incorporate measurements taken later than the estimate time. The EnKS may be 

more practical in the reanalysis applications. Then we utilize the state-augmentation 

technique to estimate for the unknown parameters in the RCR model. Lastly, we perform 



the dynamic rainfall data assimilation using the RCR model, the EnKF, and the EnKS 

algorithm and provide comprehensive rainfall ensembles over the USGP region. 

Chapter 6 is a standalone section. It presents the Expectation-Maximization technique on 

the Scale-Recursive Estimation fiamework (EM-SRE) to estimate the multiplicative 

cascade rainfall model parameters. This rainfall model is well known for its ability to 

provide spatial characteristic of rainfall field and can be used to statically merge multiple 

sources of rainfall measurement given at the same time. We present the general form of 

the Scale-Recursive Estimation (SRE) algorithm for estimating static rainfall and employ 

the multiplicative cascade rainfall model into the SRE fiamework. In addition, we 

propose a tree pruning technique to deal with rainfall intermittency, as well as the 

Expectation-Maximization (EM) algorithm to estimate the scaling parameters on the tree 

efficiently. The identifiability and uniqueness of the scaling parameters are emphasized. 

Finally, we apply the EM algorithm to estimate the scaling parameters fiom real rainfall 

estimate inside the USGP region. 

Finally, this thesis conclude with Chapter 6 by summarizing the major contributions of 

rainfall data assimilation and suggesting possible future research directions associated 

with the work presented in the preceding chapters. 





Chapter 2 

The United States Great Plains Case Study 

2.1 The United States Great Plains (USGP) Region 

The United States Great Plains (USGP) case study is set up to study large-scale 

hydrological process. It is used here to demonstrate the utility of the rainfall data 

assimilation technique in providing the forcing for a land-surface soil moisture estimation 

study [136]. The spatial domain is delineated by the United States Geological Survey 

(USGS) hydrological unit boundaries as shown in Figure 2-1. The region is located 

between 25.85ON to 49.01°N latitude and 114.07OW to 90.12OW longitude. The time 

interval of interest is from June lSt, 2004 at 0:00 GMT to August 31St, 2004 at 23:OO 

GMT. All rainfall and weather related variables used in the USGP project are 

interpolated to latitudellongitude grid. The spatial resolution depends on the native 

resolution of measurements but is not finer than 0.05". The temporal resolution will be 

rounded to a 15-minute interval. The temporal resolution is chosen to facilitate the data 

assimilation procedure, especially for continuous measurements from satellite-based 

instruments. 

The large size of the study region is chosen to allow examination of the scaling properties 

and intermittency effects of rainfall, while the time window is chosen to avoid snow and 

ice. In addition, the USGP region is relatively flat. We exclude the mountainous areas 

across the West in order to minimize topography effects on the accuracy of ground-based 



measurements. The measurements over the USGP region will be provided over a 

rectangular area containing the USGP boundary; however, the evaluation of the 

measurements and rainfall assimilation results will only be done over the shaded area in 

Figure 2- 1. 

Legend 

a Study Region 
State Boundary 

Figure 2-1: The United States Great Plains (USGP) case study region 



2.2 Atmospheric Forcing and Rainfall Measurement in the 

USGP Region 

The United States Great Plains (USGP) case study incorporates one atmospheric forcing 

and five rainfall measurement sources. The atmospheric forcing is the cloud-top 

temperature images from the Geostationary Operational Environmental Satellite (GOES). 

The remaining five rainfall data sources are the NOWRAD precipitation product, the 

Automated Surface Observing Station (ASOS), the Special Sensor Microwave Imager 

(SSMII), the Tropical Rainfall Measuring Mission (TRMM), and the Advance 

Microwave Sounding Unit (AMSU). The utilization of these measurements for the 

USGP case study, their units and resolutions are illustrated in Table 2.1. The following 

subsections will provide detailed descriptions, the spatial and temporal characteristics, 

and the process used to convert measurements to the format used in the USGP project. 

Table 2.1: Measurements summary and roles in the USGP case study 

1. GOES Implement the rainfall model Kelvin 0.05 1 hr 
2. NQWRAD Gmmd-truth f a  validation mmll5min 0.05 O 15 rnin. 
3. ASOS Gauge Rainfd Measurement mznlhr 0.05 O 1 hr 
4. TRMM Satellite Rainfall Memwement mm/hr 0.05 O 2 /day* 
5. SSbM Satellite Rainfall Meawen~nt nmlhr 0.25 O 6 /day* 
6. AMSU Satellite U f a U  Masuremen.t malhr 0.15' 6/dav* 

Note: * Revisit time of the satellite-based measurement 



2.2.1 The Geostationary Operational Environmental Satellite (GOES) 

The Geostationary Operational Environmental Satellite (GOES) is a weather satellite 

system operated by the National Oceanic and Atmospheric Administration (NOAA). It 

provides key information on a short-range weather warning and forecasting for the 

United States. The GOES system consists of two main meteorological satellites: the 

GOES-West positioned at 135 OW to monitor the Pacific ocean and western United 

States, and the GOES-East positioned at 75 OW to monitor most of North and South 

America and Atlantic ocean. The coverage area of these two geostationary satellites is 

illustrated in Figure 2-2. These satellites encircle the Earth in a geosynchronous orbit at 

the same speed of the Earth's rotation, so they are capable of continuously monitoring the 

atmospheric variables. Each satellite carries two main instruments to observe 

atmospheric and weather condition. First, the imager instrument measures radiant and 

reflected solar energy fiom the Earth's surface and atmosphere in the visible and infrared 

spectrum. Second, the sounder unit provides the vertical profiles of important variables 

such as temperature, moisture, and ozone distribution. 

Figure 2-2: Data coverage of GOES East and GOES West spacecrafi [58] 



The GOES satellites provide cloud-top temperature images for the USGP project. The 

raw dataset is fiom the infiared imager, which provides the radio-brightness temperature 

at a wavelength range between 1 0 . 2 3 ~  to 11.24pm and centered at 10.7pm. This 

dataset is known as the long-wave infrared channel or the "window channel". The 

radiation at this wavelength range is not significantly absorbed by atmospheric gases and 

can represent actual temperature with minimal interference. This dataset is widely used 

to determine cloud-top heights and to track synoptic or mesoscale features. 

The GOES raw data is obtained from the National Oceanographic and Atmospheric 

Administration (NOAA) Comprehensive Large Array-data Stewardship System 

(CLASS). The data is in a netCDF format at a spatial resolution of approximately 2.3 x 4 

km2 (EIW x NIS), and at a temporal resolution of roughly 30-minute intervals. We 

obtain the primary source of GOES data fiom GOES-12 satellite, and use data from 

GOES-10 to fill in missing measurements. Because significant amounts of the 30-minute 

interval dataset are cormpt or missing, we use the GOES dataset at a temporal resolution 

of 1 hour instead. GOES cloud-top temperature data is interpolated to fit the latitude- 

longitude grid at 0.05' resolution, as illustrated in Figure 2-3. 

GOES (Kelvin) @ 2004-06-01 16:1 GOES (Kelvin) Q -4 '"300 GOES (KeMn) @ 2ClnL06-02 00:W -__ 

Figure 23: Examples of GOES infrared cloud-top temperature fkom the USGP case study 



The USGP case study uses the GOES dataset to provide information about cloud location 

and thickness for a rainfall model. Although the data is comprehensive in space and 

time, it will not be used directly to estimate rainfall intensity because various attempts to 

convert the cloud-top temperature to rainfall measurements [I, 5, 130, 1351 fail to 

provide accurate results. However, when it is used in conjunction with other sources of 

rainfall measurements, they provide much more reliable estimates of the potential 

presence of rainfall [62, 86, 90, 1251. Usages of the cloud-top temperature in the 

dynamic rainfall model will be discussed in Chapter 4. 



2.2.2 The NOWRAD Precipitation Product 

The NOWRAD products are value-added commercial data created by the Weather 

Services International (WSI) Corporation. The dataset is based on the Weather 

Surveillance Radat- 1988 Doppler (WSR-88D) system from the Next-Generation Weather 

Radar (NEXRAD) program. However, the commercial NOWRAD products are subject 

to a great degree of quality control in comparison to the raw NEXRAD measurement. 

The details of the algorithm used to enhance raw NEXRAD imagery to produce 

NOWRAD data are proprietary, but general concepts are given in [50]. NOWRAD 

rainrate significantly depends on the reflectivity-rainfall rate (Z-R) relationship; hence, it 

may be less accurate than estimates based on sophisticated algorithms that include 

adjustment for reflectivity, vertical profile, visibility, attenuation, and reflectivity rainfall 

rate variations, etc. [44, 451. Nevertheless, the NOWRAD rainfall product is reasonably 

accurate for a large scale rainfall reanalysis application [50]. In addition, the NOWRAD 

data set is much more comprehensive in time and space over the continental United 

States than other measurements of rainfall. Therefore, it is widely used in many news 

and media channels, consulting companies, and research projects. 

The NOWRAD rainfall dataset for the USGP case study is obtained from the 
1 

Atmospheric and Environmental Research (AER), Inc . The raw dataset represents 15- 

minute cumulative rainfall over the continental United States on a 2 km regular grid. The 

precision of the product is at 0.254 rnrn, and the maximum 15-minute cumulative rainfall 

estimate allowed is approximately 20 mm. In the USGP project, we spatially interpolate 

NOWRAD rainfall data to a 0.05' latitude-longitude grid at a temporal resolution of 15 

minutes. Examples of NOWRAD rainfall measurement over the USGP region are 

illustrated in Figure 2-4. 

1 
NOWRAD dataset is provided by Dr. Ross Hoffinan and Dr. Christopher Grassotti for educational or 

research purposes only. 
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Figure 2-4: Examples of NOWRAD 15-minute cumulative rainrate from the USGP case study 

The NOWRAD rainfall product is relatively accurate and comprehensive in space and 

time. When the NOWRAD data is available, it is unnecessary to employ the data 

assimilation technique to merge multiple measurements in order to provide 

comprehensive rainfall data because the NOWRAD data will dominate the other 

measurement sources. Hence, it is more appropriate to exclude the NOWRAD when 

utilizing the data assimilation scheme and instead employ it to validate the results. The 

exclusion of the NOWRAD data in the data assimilation problem makes sense because 

rainfall measurement with the quality and availability of NOWRAD is very rare. It is 

important to note that the accuracy and coverage of NOWRAD data drops drastically in 

mountainous regions, e.g. over the Rockies on the west of USGP region, as described by 

[78]. Consequently, we will use only the NOWRAD data strictly inside the USGP 

boundary. 



2.2.3 The Automated Surface Obsewing Station (ASOS) 

The Automated Surface Observing Station (ASOS) is a surface observing network used 

primarily for weather forecast activities and aviation operation in the United States. The 

ASOS program is a joint effort of the National Weather Service (NWS), the Federal 

Aviation Administration (FAA), and the Department of Defense (DOD). It provides 

basic micrometeorological measurements including precipitation accumulation. There 

are other surface observing networks in the United States as well. Examples are NWS 

Cooperative Station Network (COOP) and the World Meteorological Organization 

stations (WMO). However, these networks provide less consistent measurements 

compared to the ASOS network. 

ASOS Rain-gauge Location 

-1 10 -1 [)5 -100 -95 
Longitude 

Figure 2-5: The ASOS locations over the USGP study domain 

There are 308 ASOS stations between the latitudes of 25.85"N - 49.01°N and the 

longitudes of 114.07OW - 910.12OW. The rectangular area contains the USGP domain. 

The locations of these ASOS stations are indicated by red symbols in Figure 2-5. For the 

USGP project, we are interested in the cumulative rainfall dataset. This dataset is 

available at the end of every hour at accuracy of 0.25 mm. We use point measurement 



from ASOS station to represent average rainfall over the 0.05" grid call where the station 

is located. 

The samples of cumulative rainrate from ASOS stations are shown in Figure 2-6. Each 

plot shows spatial interpolation of rainfall from 308 ASOS stations over the rectangular 

are surrounding the USGP region. The interpolation is done using the simple plate 

metaphor by solving a direct linear system of equations for missing cells. The red crosses 

represent ASOS stations with no rainfall detected, while the blue crosses represent ASOS 

stations with positive rainfall measurements. Note that the spatial interpolation of ASOS 

data in Figure 2-6 is just for the illustration purposes. In the rainfall data assimilation, we 

only use the point measurement at the ASOS stations. 

ASOS (mm) @j 20Qe08-0104:OO ASOS* (mm) @ 2004-06-01 08:OO ASOS* (m) @ 2cW-08-01 12:m 

ASW* (mm) (# 20060[3.07 $6:00 ASOS* (mrn) @ 200d06-6120:OO 

Figure 2-6: Examples of ASOS cumulative rainrate interpolated over the USGP study domain 



2.2.4 The Tropical Rainfall Measuring Mission (TRMM) 

The Tropical Rainfall Measuring Mission (TRMM) is a cooperative satellite mission 

between United States and Japan to monitor rainfall and other related atmospheric 

variables in the tropical and subtropical regions. The TRMM satellite is in circular, non- 

synchronous orbit with an inclination of 35 degrees relative to the Equator. The satellite 

provides meteorological data between the latitudes of 138"s and 38"N with the revisit 

time of about 12 hours. There are several instruments onboard the TRMM satellite, but 

the main instruments for measuring rainfall are the TRMM Microwave Imager (TMI), the 

Precipitation Radar (PR), and the Visible Infrared Scanner (VIRS.) The TMI is a multi- 

channel passive microwave radiometer and the PR is an active microwave radiometer. 

Their measurements of radiation are used to estimate integrated column precipitation 

contents, liquid water, ice, rain intensity, rainfall types, and precipitation layer depth. 

Finally, the VIRS supplies information on cloud coverage, cloud type and cloud-top 

temperature. 

The raw data from TRMM satellite is processed by the TRMM Science Data and 

Information System (TSDIS), and the post-process data is distributed by Distributed 

Active Archive Center (DAAC). TRMM standard products consist of three levels. The 

level-1 products are mainly raw observations such as VIRS-calibrated radiances, the TMI 

brightness temperatures and the PR reflectivity measurements. The level-2 products 

contain derived geophysical variables including rainrate, rain type, and drop size 

distribution at the same resolution and location as the level-1 observations. Lastly, the 

level-3 products are temporal and spatial climatology of geophysical variables projected 

onto a uniform space-time grid. 

For the USGP project, we are interested in the surface rainrate from TRMM satellite. 

This rainfall dataset is retrieved using the TRMM Microwave Imager (TMI) profiling 

algorithm, referred to as 2A-12. The algorithm provides vertical profiles of hydrometeors 

and instantaneous surface rainrate. The rainrate measurement has a resolution of 5.1 km 



and a precision of 0.1 mmlhr. The raw data is presented by the satellite track spanning 

878 km, across and there are roughly 5 tracks that pass over the USGP region per day. In 

this format, the measurement time will vary as the satellite progresses along the track. To 

simplify the dataset, we aggregate all measurement inside a 15-minute interval and 

express it as a snapshot .of instantaneous rainrate at the end of time interval. For example, 

measurement labeled "0:15" represents rainfall measured between the time 0:00 and 

0:15. We interpolate the TRMM measurement to fit a latitude-longitude grid at the 

resolution of 0.05". Examples of TRMM surface rainfall measurement in the USGP 

project are given in Figure 2-7. 

TRMM (mmhr) @ 2004-06-01 15:15 

TRMM (mmlhr) @ 200446-01 1530 TRMM (mmlhr) @ 2004-SO1 17:00 TRMM (W) @ 200606-02 11:15 

Figure 2-7: Examples of TRMM instantaneous surface rainrate from the USGP study domain 



2.2.5 The Special Sensor Microwave Imager (SSMII) 

The Special Sensor Microwave Imager (SSMII) is a multi-channel passive radiometer 

installed onboard the F13, the F14, and the F15 Defense Meteorological Satellite 

Program (DMSP) platforms. These satellites are in a sun-synchronous polar orbit with a 

period of 102 minutes monitoring almost the entire globe. The revisit time for each 

satellite is approximately 12 hours. The SSMII instrument can penetrate through cirrus 

clouds and sense radiation emitted and scattered by raindrops and precipitation-sized ice 

particles. The satellite radiation observations are processed by the Hydrology Data 

Support Team (HDST) at the NASA Goddard Space Flight Center. The raw data is 

converted to the surface precipitation using the Goddard Profiling Algorithm (GPROF), 

which is similar to the TMI profiling algorithm used in TRMM [118]. 

The SSMII rainfall dataset in USGP project is acquired from the Distributed Active 

Archive Center (DAAC) archive. The dataset represents real-time orbit-by-orbit 

instantaneous rainfall rate at 0.25-degree resolution on an equal latitude-longitude 

projection at a precision of 0.1 mm/hr. The SSMII orbital data is presented by the 

satellite track. There are approximately 15 tracks per day over the USGP region from 3 

SSMII satellites. As with the TRMM dataset, we aggregate SSMII data measured within 

15-minute time intervals to represent a snap-short of instantaneous rainrate at the end of 

the time interval. Because the original SSMII data is on an latitude-longitude grid, there 

is no need to further interpolate the data. Examples of SSMII instantaneous rainfall 

images in the USGP project are given in Figure 2-8. 
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Figure 2-8: Examples of SSMD instantaneous surface rainrate fiom the USGP study domain 



2.2.6 The Advance Microwave Sounding Unit-B (AMSU-B) 

The Advance Microwave Sounding Unit-B (AMSU-B) is a new five-channel microwave- 

sounding instrument developed by the UK Meteorological Office. The instrument is 

placed onboard the National Ocean and Atmospheric Administration (NOAA) polar 

orbiting satellites, e.g. NOAA-K, NOAA-L, and NOAA-M. The AMSU-B is deployed 

to measure radiation from various layers of the atmosphere and estimate global data on 

humidity profiles. The microwave frequency used by the AMSU-B can penetrate 

through clouds and provide the signature of rainfall and snow; thus, allowing the 

instrument to be used to map precipitation. 

The AMSU-B instantaneous surface rainrate in the USGP project is the experimental 

product from the Research Laboratory of Electronics at Massachusetts Institute of 

Technology [12 11. The rainrate estimated fiom the AMSU-B satellite is validated using 

the mesoscale numerical weather prediction model (MM5) and the two-stream radiative 

transfer model (TBSCAT). The final rainfall product is the orbital surface rainrate at 15 

km resolution. As with TRMM and SSMII, we aggregate AMSU-B data measured 

within 15-minute time intervals and represent it as a snapshot of instantaneous rainrate at 

the end of the time interval. We spatially interpolate AMSU-B from [12 11 to the latitude- 

longitude grid at a 0.15O resolution. Examples of AMSU instantaneous rainfall images in 

the USGP project are given in Figure 2-9. 



AMSU (mmhr) @ 2004-06-01 02:15 AMSU (mmhr) @ 20040801 08:30 
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Figure 2-9: Examples of AMSU-B instantaneous surface rainrate from the USGP study domain 



2.3 Rainfall Measurement Error Statistics 

In order to utilize the rainfall measurements in the data assimilation framework, it is 

essential to know its uncertainty described by the error statistics. As seen in (1.1), we 

need these uncertainties to obtain the best estimate of the state. Measurement 

uncertainty is generally obtained by field experiment and ground-truth validation 

processes. In most data assimilation studies, the measurement error statistics are assumed 

to be known or taken directly from the raw data source. Unfortunately, rainfall data in 

the USGP project does not include the measurement uncertainty. Therefore, we must 

estimate these statistics. 

The following sections will provide procedures and detailed analysis for estimating error 

statistics of the USGP rainfall measurements with respect to NOWRAD dataset. We 

choose the NOWRAD precipitation product to represent the truth because it is relatively 

accurate over the USGP region. In addition, NOWRAD measurements are 

comprehensive in space and available at every 15-minute interval. 

2.3.1 Measurement Error Classification 

Measurement errors can be classified into two groups based on their characteristics: (1) 

position error, and (2) scale error. First, the position or displacement error is defined by a 

position difference or an offset between the measurement and the truth. The position 

error is highly correlated in space. It depends on the shape of the underlying 

measurement and the truth. The position error may be a result of using an unaligned 

reference point, using different map projections, or shifting measurement times. Scale 

intensity error (i.e., amplitude or magnitude error) is defined as a difference in the 

magnitude between the measurement and the truth when there is no position error. This 

error is normally assumed to be spatially independent and uncorrelated to the truth. 



Detection and correction of position and amplitude errors have been the focus of many 

recent studies [49, 56, 57, 71, 921. Because the special characteristics of the position and 

amplitude errors are very different, these two types of errors should be separated 

whenever possible. To illustrate their differences, we set up a simple experiment in one- 

dimension as shown in Figure 2-10. We generate a synthetic truth (red solid line) and 

create two measurement datasets fiom it. The first dataset is generated by independently 

altering the position of the truth (Figure 2-lOa), and the second one is generated by 

altering the magnitude of the truth (Figure 2-lob). The blue lines in Figure 2-10a and 2- 

lob are the ensemble mean and the cyan lines are the individual replicates. Even though 

these two datasets have very different characteristics and means, they possess the same 

statistics of the residual, as shown in Figure 2-10c (e.g., the red line represent a Gaussian 

distribution with mean and standard derivation given in the title.) 

Figure 2-10: A synthetic example of (a) meamanent position entors, @) amplitude errors, 
and (c) histogran of the s ( x d s  the pition and 

y-axis representing the mimate) 

In the USGP case study, there are four types of rainfall measurements: ASOS, TRMM, 

SSM/I, and AMSU-B. The ASOS rain-gauge measurements are very scattered in space, 

and there are only a few measurements with positive rainfall rate at each measurement 

time. Because it is a point measurement, estimating the position error is more complex 

than with the other satellite-based measurements. Therefore, in the following section, we 

will first estimate the error statistics for the satellite-based measurements (e.g., TRMM, 

SSMII, and AMSU-B). We will estimate the error statistics of the ASOS rain-gauge data 

separately. 



2.3.2 Position Error Statistics of the USGP Satellite Measurements 

The position error of the satellite-based rainfall measurements in the USGP project can 

be estimated by the position difference between the measurement data and the NOWRAD 

data. There are several solutions to the position error problem and image alignment [3 1, 

49, 63, 92, 105, 1061. In this study, we employ the multi-resolution alignment ( M U )  

algorithm [106] to estimate the offset between the NOWRAD and the satellite rainfall 

measurement. The MRA algorithm aligns satellite measurement field to the NOWRAD 

data at the same observation time by minimizing the misfit. It calculates the 

displacement in x- and y-direction, and establishes aligned field that best fit the 

NOWRAD data. This algorithm is similar to the feature calibration and alignment (FCA) 

technique [49, 55, 921. Details and derivation of the MRA algorithm is given in 

Appendix A. 

To illustrate the position errors and the correction after applying the MRA algorithm, the 

TRMM measurements are plotted against the NOWRAD data on June 3", 2004 at 12:OO 

GMT. Figure 2-1 1 provides an example of position errors before applying the MRA 

algorithm. Figure 2-1 l a  shows NOWRAD data (e.g., it is multiplied by 4 to give results 

in mdhr ,  Figure 2- 1 1b shows TRMM measurement data, and Figure 2- 1 1 c show the 

difference between these two measurements. In this example, there is significant position 

error between the TRMM and NOWRAD datasets. The TRMM dataset is offset to the 

North-East direction of the NOWRAD data. We then align the TRMM measurements 

inside the USGP region with the NOWRAD data and plot the difference. Figure 2-12 

illustrates the results from aligning TRMM with NOWRAD data on June 3rd, 2004 at 

12:OO GMT. Figure 2-1 l a  represents the displacement field (i.e., offset distance) used to 

align TRMM to NOWRAD, Figure 2-1 1b shows TRMM measurement inside the USGP 

region after alignment with NOWRAD data, and Figure 2-1 l c  shows the difference 

between aligned TRMM and NOWRAD rainfall measurement. By comparing Figure 2- 

1 l c  with Figure 2-10c, it is evident that position error is minimized after applying the 

MRA algorithm to align the satellite measurement with its associated NOWRAD 



measurement. In addition, the displacement field obtained from the MRA algorithm can 

be used to quantify the amount of position error for each measurement type relative to 

NO WRAD measurement. 

(c) NOWRAD - TRMM (original) 

Figure 2-11: Example of TRMM position error relative to NOWRAD measurements 
over the USGP region on June 3rd, 2004 at 12:OOGMT; (a) NOWRAD in mmlhr, (b) TRMM in 
mm/hr, and (c) difference between TRMM and NOWRAD in mm/hr inside the USGP region 



(a) -~~(o.wd6enam 

(GI NOWRAD - TRMM (aligned) 

Figure 2-12: Example of TRMM position error relative to NOWRAD measurements affer 
applying the multi-resolution alignment algorithm on June 3rd, 2004 at 12:OOGMT; (a) 

displacement field in 0.05O, @) aligned TRMM measurement in mm/hr, and (c) difference 
between aligned TRMM and NOWRAD inside the USGP region 



To obtain the position error statistics, we repeat the alignment with many satellite 

measurements and collect their average position error in the x- and y-direction. With a 

collection of position errors, we can plot the histogram and estimate the position error 

statistics. The measurements are selected from our case study between June 1" and 

August 3 lSt, 2004. The measurements used to estimate the position errors must contain 

significant amounts of rain over a large region. Figure 2-13, 2-14 and 2- 15 show the 

distribution of the average displacement over the rainy pixels after aligning TRMM, 

SSM/I, and AMSU with NOWRAD, respectively. In each plot, figure (a) shows the 

joint distribution of the displacement in the x- and y-direction (e.g., Qx and Qy) in 

latitudellongitude degrees. Figure (b) and (c) show the marginal distribution of the 

displacement in the x- and y-direction in degrees, respectively. The mean and variance of 

the marginal distribution is given in the title of figure (b) and (c). 

From the results, the position errors of the satellite-based instruments relative to 

NOWRAD are relatively low. The mean position errors in the x- and y-directions are 

close to zero. In addition, the standard deviation of the position errors depends on the 

resolution of the measurements (e.g., standard deviation of the TRMM position error < 

AMSU < SSMII). The standard deviations are, however, relatively small in comparison 

to the size of the rainfall events, which normally extended over several degrees. With the 

joint distributions or the marginal distributions, we can sample the position error in the x- 

and y-direction from this distribution and perturb the position of the true measurement 

when performing rainfall data assimilation. 



(b) 4( (*): mean = -0.03; std = 0.05 
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(a) TRM M Position Error (degree): Joint Distribution (4,Q,,) 
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Figure 2-13: Distributions of average TRMM position error over rainy pixels inside the USGP 
region - (a) joint distribution of the position error, (b) marginal distribution in the x-direction, and 

(c) marginal distribution in the y-direction 
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(a) SSM l Position Error (degree): Joint Distribution (Q,,G$) 
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Figure 2-14: Distributions of average S S M  position error over rainy pixels inside the USGP 
region - (a) joint distribution of the position error, (b) marginal distribution in the x-direction, and 

(c) marginal distribution in the y-direction 



(a) AMSU Position Error (degree): Joint Distribution (Qx,Qy) 
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Figure 2-15: Distributions of average AMSU-B position error over rainy pixels inside the USGP 
region - (a) joint distribution of the position error, @) marginal distribution in the x-direction, and 

(c) marginal distribution in the y-direction 



2.3.3 Intensity Error Statistics of the USGP Satellite Measurements 

Intensity error of the satellite rainfall measurements can be estimated from the difference 

between the NOWRAD measurement and the aligned satellite measurements. Suppose 

that at each pixel the aligned measurement (j) is related to the corresponding NOWRAD 

data (x) via the equation: 

where h is a constant, and v is the measurement intensity error, which we assume to have 

a Gaussian distribution with zero mean and varianceo:. Since we are directly 

observing the rainfall intensity, the constant h should be equal to 1.0. In the USGP 

project, we can estimate the constant h by performing a linear regression between the 

NOWRAD (on the x-axis) and the aligned satellite measurements (on the y-axis). 

Because there are many pairs (x,y) near zero, the analysis will be more robust if we 

weigh the regression by the average measurement value (e.g., 0.5(x+y) ). Figures 2-16, 

2-17, and 2-18 present examples of the TRMM, SSMII, and AMSU scatter plots and 

weighted regression analysis with NOWRAD data, respectively. In each figure, the 

image on the left represents the scatter plot with NOWRAD and satellite measurements 

before the alignment, while the image on the right presents the scatter plot between 

NOWRAD and satellite measurement after the alignment. The R-squared statistics 

indicate that the regression using aligned measurement data is much better than using raw 

measurements before alignment. Note that we coarsened NOWRAD measurements to 

the same resolution as satellite-based measurements prior to perform the regression 

analyses. 
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Figure 2-16: The scatter plots and regression analyses of TRMM versus NOWRAD (a) before, 
and (b) after aligning TRMM with NOWRAD on 2004-06-22 05:45 GMT 
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Figure 2- 17: The scatter plots and regression analyses of SSM/I versus NOWRAD 
(a) before, and (b) after aligning S S M  with NOWRAD on 2004-07-0 1 13: 15 GMT 
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Figure 2- 18: The scatter plots and regression analyses of AMSU-B versus NOWRAD 
(a) before, and (b) after aligning AMSU-B with NOWRAD on 2004-07-26 00:30 GMT 



We repeat the regression analysis for many storm events and find the slope of the 

regression between NOWRAD (x) and aligned satellite measurements 0. These storm 

events are selected fiom the USGP case study between June 1'' and August 31: 2004 

when there is significant amounts of rainfall. For each satellite source, we select roughly 

200 measurements. The distributions of the slope h of TRMM, SSMII, and AMSU are 

given in Figure 2-19. The red line in Figure 2-19 represents the Gaussian distribution 

with mean and variance equal to the sample mean and variance of h. We can perform the 

hypothesis test and conclude that with 95% confidence the constant h in (2.1) is equal to 

1.0 for all satellite sources. Note that we choose to use h = 1.0 in order to simplify the 

problem. It would have been possible to use the mean values fiom the histograms of 

each measurement source to represent the constant h for that measurement type. 

(a) H - N( 0.W. 024 1 

H H H 

Figure 2-19: Histograms of the slope of regression y = hx with x representing N O W  data 
and y representing (a) TRMM, @) SSM/I, and (c) AMSU rainfall measurement 

In addition to the constant h, we need to define the measurement noise variance 0: in 

order to obtain the complete description of the measurements in (2.1). We assume that 

the standard deviation o,, is given by 

where both cl and cz are constant. Equation (2.2) implies that the measurement 

magnitude uncertainty is proportional to the measurement value itself. 



To estimate these constants, we obtain the residual from the difference between the 

aligned satellite-based rainfall measurement and NOWRAD rainrate, e.g. r = y - x. Then 

we bin these residuals according to the value of the satellite measurement rounded to a 

nearest integer. We repeat the same method over many storm events (the same storm 

events used to estimate the position errors and the constant h). Finally, we perform 

another regression analysis between the bin center taken from the satellite measurement 

(y) and the standard deviation of the residual (i.e., a,, = std(r) ). By estimating the slope 

and intersection of the regression, we can estimate the constants cl and c2 for each 

measurement source. This regression analysis is used to obtain the constants cl and c2 for 

TRMM, SSMII, and AMSU, as shown in Figure 2-20. The analysis implies that the 

standard deviation of the measurement error is roughly around % of the measurement 
. !! ' J . . 

value given. 

(a) $TD=0.22y+ 1.6 
at - 7 .  i 4 

@) STD = 0.35 + 0.7 (c) ST0 = 0,25y + 0,8 

* 

TRMM (mnAw) ~~ (mnnu) 

Figure 2-20: The regression analysis for estimating the constants cl and c~ for 
(a) TRMM, (b) SSM/I, and (c) AMSU measurement 



2.3.4 Error Statistics of ASOS Measurement 

The cumulative rainfall measurements from the ASOS station network are too sparse to 

obtain error statistics using the approach applied to the satellite measurement. There are 

roughly around 300 gauge measurements at each hour from all stations in the rectangular 

domain engulfing the USGP region. Since NOWRAD is not accurate in the mountainous 

regions, we only consider the ASOS stations within the USGP boundary. Consequently, 

the number of rainfall data at each hour reduces to less than 200, and we cannot perform 

the analysis at each measurement time as we have done for the satellite data. 

We aggregate all measurement data from all measurement times in order to have enough 

measurement points for the regression. The scattered plot of the ASOS and the 

NOWRAD measurements during June 1" to August 3 lSt, 2004 and the regression analysis 

are shown in Figure 2-21. We force the regression to pass through the origin. The R- 

square statistics in Figure 2-21 is very low. This implies that there is no significant 

correlation to estimate the constant h in (2.1) from the slope of the regression. To 

simplify the problem, we will assume that the constant h is equal to 1.0, as with the other 

rainfall measws:ment sources. 
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Figure 2-21: The scatter plot and regression analysis of ASOS versus NOWRAD from an hourly 
measurement during June 1 * - August 3 la, 2004 over the USGP region 



With the constant h given, we only need to estimate the constant cl and c2 used to specify 

the measurement error standard deviation in equation (2.2). We propose using the same 

analysis as for the satellite-based measurements. However, we do not have enough data 

to perform the analysis at each measurement time. Therefore, we must use the aggregate 

3 months of data of ASOS in the regression analysis. First, we find the residual between 

ASOS and NOWRAD and bin the residual the nearest rounded ASOS integer. Finally, 

we perform the regression analysis between the standard deviation of the residual in each 

bin and the bin center, which is the ASOS measurement. Since we merge all 3 months 

data together, we will only have one standard deviation at each bin center. The 

regression analysis result and the estimated cl and c2 for the ASOS rainfall data are given 

in Figure 2-22. The constant cl for ASOS is. relatively smaller than the satellite based 

measurements. However, the constant cz is significantly higher. The high value of c2 

may be due to the position error and the assumption of h = 1.0. The values of cl and c2 

for ASOS measurements imply that ASOS measurements are not reliable for a low- 

intensity rainrate, but are more relatively more accurate at a high intensity rainrate. 

std = 0.18 v + 7.2 

M 40 60 80 100 
ASOS value ( r n d r )  

Figure 2-22: The regression analysis for estimating the constants cl and cz 
of ASOS measurement 



2.4 Conclusions 

In this chapter, we introduced the atmospheric forcing and rainfall measurements in the 

United States Great Plains region during the months of June - August 2004. The datasets 

consist of GOES cloud-top temperature, rainfall rate from NOWRAD ground-based radar 

stations, cumulative rainrate from ASOS rain-gauge stations, and satellite-based 

instantaneous rainrate measurement from TRMM, SSMII, and AMSU-B. We would use 

these datasets to illustrate rainfall data assimilation over a large region later in this thesis. 

Details of each data source and its role for the USGP rainfall assimilation case study are 

summarized in Table 2.1. 

We also presented techniques to estimate the error statistics of these rainfall data by 

validating it with NOWRAD rainfall data. For satellite-base rainfall measurement, we 

assumed that there are two independent types of measurement errors: the position error 

and the intensity error. To estimate the position error, we used the field alignment 

algorithm to align the satellite-based rainfall measurements with NOWRAD data and 

kept the average displacement to represent position error statistics in the x- and y- 

direction. For the intensity error, we related the measurements after correcting for 

position error with the true rainfall using (2.1). We showed that we can confidently 

assume the constant h to have an expected value of 1.0. Finally, we assumed that the 

measurement intensity error variance is related to the measurement value by (2.2) and 

estimated the constants cl and cr using regression analysis. 

As for the ASOS gauge data, we cannot efficiently estimate the position error because the 

measurement point is too scattered in space. Therefore, we assumed that it only has 

intensity error. Similarly, we related the measurements to the true state using (2.1), with 

the constant h = 1.0. Finally, we perform the regression analysis to obtain the constants 

cl and c2, which are needed to calculate the intensity measurement error variance in 

equation (2.2). Error statistics of rainfall measurement for the USGP case study are 

summarized in Table 2.2. 



Table 2.2: Position and intensity error statistics of the USGP rainfall measurements 

Conclusively, we obtained all measurements for the USGP case study in the consistent 

format. We estimated the error statistics of rainfall measurements. Thus, we can now 

focus on rainfall model and data assimilation technique in the following Chapters. 

Measurement 

1. ASOS 
2. TRMM 
3. SSMII 
4. AMSU 

Intensity Error Statistics Position Error Statistics (degree) 

Cz 

0.18 
0.22 
0.32 
0.25 

c2 

7.2 
1.6 
0.7 
0.6 

x-displacement y-displacement 
mean 

- 
-0.03 
-0.07 
-0.02 

mean 
- 

-0.03 
-0.03 
-0.06 

std 

0.05 
0.20 
0.1 1 

std 
- 

0.04 
0.21 
0.10 





Chapter 3 

Dynamic Rainfall Model 

3.1 Introduction 

In this chapter, we propose the recursive cluster-point rainfall (RCR) model for 

propagating rainfall information through space and time. The RCR model is 

computationally efficient while capable of simulating reliable spatial and temporal 

structures of rainfall. The model is modified from the spatiotemporal stochastic rainfall 

model using the cluster-point process [25, 93, 94, 1121. It utilizes cloud-top temperature 

to improve model accuracy and to deal with rainfall intermittency. In addition, the 

rainfall model combines the multi-resolution alignment (MRA) algorithm to estimate 

from cloud-top temperature data the velocity field, which is used to propagate rainfall. 

The recursive form of the model fits well with the sequential data assimilation 

framework, and its low computation cost is ideal for the ensemble approaches. 

The organization of this chapter is as follows. In Section 3.3 we will focus on the 

stochastic model, present the spatiotemporal cluster-point process model, and introduce 

the RCR model. The early version of the RCR model is purely stochastic and cannot deal 

with rainfall intermittency. In Section 3.4, we introduce the use of GOES cloud-top 

temperature to cope with the intermittency problem, and use the MRA algorithm to 

estimate the velocity field. Then we revise the RCR model by adding GOES as the input 



forcing data. We implement the RCR model for the United States Great Plains (USGP) 

project in Section 3.5. Finally, Section 3.6 provides the summary of the chapter. 

3.2 Spatiotemporal Stochastic Rainfall Model 

We are interested in using a spatiotemporal stochastic rainfall model to propagate rainfall 

through space and time and provide comprehensive reanalysis of rainfall information 

over a large area. Even though it may not be as accurate as meteorological models, the 

stochastic model is much simpler and demands significantly less computation resources. 

In addition, by conditioning on past measurements using data assimilation, a stochastic 

model should be sufficient for providing reliable characteristics of rainfall space and time 

at a particular resolution. With limitations of current technology, we believe that the best 

way to obtain good short-term rainfall estimation and reanalysis data is to combine 

relatively simple but physically credible models with carehlly designed observational 

strategies. Thus, we focus our interest on modifying and developing an efficient but 

accurate spatiotemporal stochastic rainfall. We will then combine the model with a data 

assimilation framework to provide a complete description of rainfall in space and time 

conditioned on the available measurements. 

There have been a fair number of spatiotemporal stochastic rainfall models proposed in 

the last couple of decades. Most are based on hierarchical clustering of rainfall structure 

and make use of the cluster-point process to model rainfall in space and time [26, 93, 

1 12- 1 141. Among these models, the cluster-point process rainfall model proposed by 

Rodriguez and Eagleson [112] (the RE model) is directly applicable to the rainfall data 

assimilation problem. This model is fast and simple to implement, yet capable of 

providing reasonable spatial and temporal rainfall structures. The following section will 

provide details in generating rainfall using the RE model and develop an efficient 

recursive form for it. 



3.2.1 The Rodriguez and Eagleson Cluster-Point Process Model 

The cluster-point process rainfall model by Rodriguez and Eagleson [I121 is a 

spatiotemporal stochastic rainfall model. It describes a rainstorm event in space and time 

with the point-process method [94] and the hierarchical clustering structure [ lo 1, 1 14, 

1311. This model is used primarily to provide a descriptive characteristic of rainfall 

intensity and cumulative rainfall processes. The RE model is a relatively simple 

stochastic description of the rainfall process. It uses a small number of parameters that 

can be estimated from historical rainfall data. Secondly, geometry and kinematics of the 

model is suited to the structure and organization of tropical cloud cluster as described by 

[60]. Moreover, the covariance hnction derived from the model satisfies approximately 

a Taylor frozen turbulence hypothesis for turbulent flows [53], which is well suited to the 

analysis scheme using first and second moment statistics such as the Kalman filtering 

algorithm [83]. Finally, the model can easily be adjusted and modified to fit many data 

assimilation and estimation frameworks. 

The hierarchical structure of the rainfall field in the cluster model is based on the cluster- 

point process, first introduced by [72]. The idea is empirically supported by radar and 

gauge measurements [7, 5 91. According to the cluster model assumption, rainfall occurs 

over a large region called a large mesoscale area (LMSA). Inside a LMSE, there are 

clustering regions of more intense rainfall called small mesoscale areas (SMSA). 

To obtain the rainfall field from the R-E model, the first step is to obtain the locations of 

the cluster centers. The model assumes that the rain cells are born according to the 

Neyman-Scott process, where cluster centers are randomly distributed in 2-dimensional 

space according to the Poisson process with parameter A,, e.g. cluster per length2. These 

cluster centers do not have rainfall intensity directly associated with them, but they 

contain a random number or rain cells. Figure 3-1 shows the concept of cluster-point 

model with cell centers placed around each cluster center. These cluster centers 

generated from the Poisson process in space will last for an entire storm event. 
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Figure 3-1: A spatial diagram of the RE cluster point rainfall process showing cluster centers and 
rain cell centers 

After the cluster centers are located, we need to obtain the locations of rain cell centers. 

The probability of occurrence of a rain cell centered at (x,y) and time t after the storm 

origin around each cluster centered at (xc,yc) is given by 

where 

f; (t) = fleqB" , t> 0 

Equation (3.2) assumes that rain cells are born stochastically in time according to an 

exponential distribution with parameter #I (e.g., the chance of generating a new rain cell 

decreases as the time from the storm origin increases.) Equation (3.3) assumes a 

symmetric Gaussian distribution of rain cells around the cluster center with the spatial 

decay constant a, (e.g., the chance of generating a new rain cell decreases with the 

distance from the cluster center.) 



The number of rain cells in each cluster is an independent and identically distributed 

random variable with mean v and are independent of the Poisson process, which governs 

the recurrence of cluster centers. The probability of a rain cell to occur at the Euclidian 

grid point (x,y) after time t from the storm origin is given by 

where the summation is over all cluster centers in the domain. Note that the expected 

number of rain cells in the storm (e.g., A cells per length2) is given by 

Once rain cells are born, they last throughout a whole storm event. However, the rainfall 

intensity generated from the rain cells will dissipate in space and time. 

After we obtain the locations of all rain cells in the storm events, we can obtain the 

rainfall intensity field from the following procedure. First, we draw a random birth time 

and an intensity at the cell center at birth for each rain cell from exponential distributions 

with mean f/$ hour and E[io] mmlhr, respectively. Second, we assume that rainfall 

intensity exponentially decreases with the age of the cell and the distance from the cell 

center. Thus, a rain cell j centered at (xj9yJ born at time t, has a rainfall intensity at 

location (x,y) and time t (e.g., rj(x,y9t) ) via 

where ii is a random rainfall intensity of rain cell j, and g{ and g; are given by 



Equation (3.7) assumes that rainfall is dissipating in time exponentially with parameter a 

(e.g., temporal decay constant.) In addition, there is no rainfall at the time before the cell 

was born (e-g., t < 4). Equation (3.8) assumes that rainfall is also dissipating in space. 

The dissipation depends on the distance from the cell center and the parameter o (e.g., 

cell spatial decay constant). 

Finally, rainfall intensity at the Euclidian grid point (x,y) at time t is the summation of the 

contribution from all rain cells in the domain, e.g. 

where the summation is over all rain cells which are born before the current time t. The 

model can incorporate cell movement with common velocity (u,v) in the x-and y- 

direction if desired. Figure 3-2 illustrates the spatial and temporal characteristic of the 

rainfall field generated from the RE cluster rainfall model. The temporal characteristic 

diagram shows that rainfall at each cell center exponentially decays from its birth 

intensity. The spatial characteristic diagram shows that at each time instance, rainfall 

intensity exponentially decays with distance from the rain cell center. 
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Figure 3-2: The spatial and temporal characteristics of rainfall field generated fiom 
the RE cluster point rainfall model 

The procedure for obtaining a rainfall field on a two-dimension Euclidian grid is 

summarized as follows: 

1) Locate the rain cluster centers inside the domain according to the Poisson process 

- Create independent uniform random numbers (i.e., RAND]) between zero and 

one at each pixel on the Euclidian grid domain. 

Select any pixel with the random number RANDl < to become a 
n x  ' ny Y 

cluster center where n, and n, is the grid dimension in x- and y- direction. 

Locate the rain cell centers inside the domain according to the Neyman-Scott 

process 

Create independent uniform random numbers (i.e., RANDz) between zero and 

one at each pixel on the Euclidian grid domain. 

Select any pixel with the random number RAND2 < p(x,y,t) given in equation 

(3.4). At this point the cluster centers can be neglected. 

Assign a random birth time fiom the exponential distribution with mean value 

5 to each rain cell center. 



4) Assign a random initial rainfall intensity from the exponential distribution with 

mean value E[io] to each rain cell center. 

5) Calculate the rainfall field at the Euclidian grid point (x,y) and time t from 

equation (3.9). 

Rodriguez and Eagleson [112] applied this rainfall model to calculate spatiotemporal 

mean and covariance functions of rainfall intensity and cumulative rainfall processes at 

any given time and location of interest. [83] used the model to propagate rainfall and 

applied the Kalman filter algorithm using all rainfall measurements at once. However, 

their method is not practical for real-time problems, especially over a large area because 

the rainfall model depends on the origin time of the storm. First defining the original 

time of the storm event is subjective and vague especially over a large region where 

rainfstorms usually advect and overlap one another. Second, the absolute time reference 

scheme is costly and time consuming to re-evaluate at every time step when a new 

measurement becomes available. 

From the original R-E model, we propose a recursive form using the Markov property. 

The recursive form allows us to disregard information in the past in order to save storage 

and computation time. Moreover, we can employ a sequential data assimilation scheme 

to efficiently update new measurement in real-time. 



3.2.2 The Recursive Cluster-Point Rainfall (RCR) Model 

The Recursive Cluster-Point Rainfall (RCR) model is a modified version of the original 

RE cluster-point rainfall model introduced in the previous section. It assumes the 

Markov property and defines a rainfall process over a time interval instead of over a 

whole storm event. Let r(x,y,t) denote a rainfall intensity at the Euclidian grid location 

(x,y) at time t. The recursive rainfall model can be written as 

r(x, y, t + dt) = F { r (x f ,  y', t ) }  + w(x, y,t) 

where dt is the time interval, F {.) is the dissipation-advection function and w(x,y,r) is the 

process noise. The dissipation-advection hnction accounts for a temporal rainfall 

dissipation and a two-dimensional rainfall advection from the beginning of the time 

interval to the end. The process noise is a non-negative random but spatially correlated 

field. It represents new rainfall randomly generated during the time interval. Note that 

the cluster-point process is introduced only in the process noise w(x,y,t) when the 

additional new rainfall is generated. The rainfall clusters and cells in the RCR model 

have different meanings than those in the original model, in which they are used to 

represent all rainfall fields of a storm event. Details of the dissipation-advection term 

(e.g., F (r(x', yf, t)} ) and the process noise term (e.g., w(x, y, t) ) are given in the 

following sections. 

(a) The Dissipation-Advection Term: F {r(xf, y', t)) 

The dissipation-advection function, F {.) , describes the dissipation and advection of an 

existing rainfall field. The function is separated into two components: (1) the temporal 

rainfall dissipation component and (2) the spatial two-dimension advection component. 
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With regard to the temporal dissipation, we assume that existing rainfall intensity field 

exponentially dissipates over time with a dissipation constant a per hour. Physically, this 

constant implies that rainfall will reduce to about one-half of its existing value within 

approximately 0/, hours. This dissipation represents the temporal decay of rainfall of 

rainfall. It is the only mechanism in the model to reduce the amount of rainfall. This 

constant is equally applied to a whole domain. Thus, given a current rainrate (e.g., 

r(x, y, t) ), the rainrate at the next dt hour is given by 

r(x, y, t + dt) = r(x, y, t) e-"'" 

In addition to temporal dissipation, rainfall may spatially advect in two-dimensional 

space. We assume that rainfall advection follows the Lagrangian persistent framework 

[44] over a short forecasting interval, dt. It states that the forecast variable at time t+dt 

over a position (x,y) comes from the existing variable at position (xo,yo) at time t. 

The position (x,y) is related to (xo,yo) by the velocity field (u,v) in the following form: 

This velocity field (u,v) is commonly used in many rainfall model to advect rainfall data 

through space and time. Acquiring a comprehensive velocity field (u,v) over a whole 

domain at a spatial and temporal resolution of interest is a challenging task. There are 

many studies that focus entirely on the estimation of this velocity field [106, 127, 1281. 

For now, we will assume that the velocity field is available at the same temporal and 

spatial resolution as the rainfall field. 



The order of applying the temporal dissipation and spatial advection to rainfall field is not 

important. Moreover, there is no randomness associated with the dissipation-advection 

term in the form given in this section. It is possible to introduce some noise into the 

parameter a, as well as the velocity fields (u,v) to introduce uncertainty. In this case, we 

should be careful not to use noise that is too large, especially for generating the random 

velocity field. A velocity field that is too scattered can disaggregate rainfall features and 

causes the dissipation-advection term to be unrealistic. 

(b) The Process Noise Term 

The process noise w(x,y,t) in (3.10) is a non-negative random but spatially correlated 

field. It represents new rainfall generated during the time interval dt of interest. This 

new random rainfall field is constructed using the concept of cluster-point process from 

the original RE rainfall model. However, rain clusters and rain cells are defined over the 

time interval instead of over a whole storm event beginning at an ambiguous origin time. 

In other words, we assume that the birth times are uniformly distributed over the time 

interval instead of exponentially distributed over the storm event. This assumption is 

applicable to any interval dt. However, we recommend the time step size between 15 

minutes to a few hours. We will discuss about selecting a suitable time step later. The 

model modification produces similar rainfall features, but has different statistics (e.g., the 

mean and covariance functions of rainfall intensity.) 

Six parameters needed to be specified in order to generate a new rainfall field over the 

time interval dt. These parameters and their definitions are summarized in Table 3.1. 

Note that the last two cluster parameters are used to relate the cluster properties to the cell 

properties, e.g. 



where PC and oc are the cluster birth probability and the cluster spatial dissipation 

constant, respectively. The cluster birth probability governs the number of clusters to be 

born during the time interval dt, according to the two-dimensional Poisson process. This 

parameter is defined as h, in the original model. The cluster spatial dissipation constant 

governs the distribution of rain cells within the domain during the time interval dt 

according to the following probability 

where the summation is over all clusters, and (x: , y:) is the center of cluster k. Equation 

(3.15) is adapted from equations (3.1)-(3.4), but it neglects the f ;  (t) term because the 

birth time is uniformly distributed over the time interval. 

Table 3.1: Parameters of the Recursive Cluster-Point Rainfall (RCR) model 

Parameter Name 
1 .  Cell Birth Probability, P 

2. Temporal Decay 
Constant, a 

3. Cell Spatial Decay 
Constant, o 

4. Initial Mean Rainrate at 
Cell Center, E[io] 

5. Mean Cell Density, v 
6. Spatial Dissipation 

Ratio, p 

Unit Description 
knY2. h i '  Probability of a rain cell to be born inside a unit 

area over a time interval 
h r - I  An exponential decay constant for temporal 

dissipation of rainfall field 
km A Gaussian decay constant for spatial dissipation 

of rainfall from each rain cell center 
rnm / hr An expected rainrate at rain cell centers when 

they are first born 
cells / cluster An expected number of rain cells per rain cluster 

A ratio between the cluster and the cell spatial 
dissipation constant 

Once we locate all rain cells born, we assign a random age and a random initial intensity 

at birth to each cell. The random age is drawn from an independent and identical uniform 

distribution between zero and dt. The random initial intensity at a center is drawn fkom 

an independent and identical exponential distribution with the mean E[id. The new 
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rainfall intensity field presented at the end of time interval dt (e.g., denoted by w(x, y, t) ) 

is given by 

where (x, , y, ) , a, , and ii represent the center, the random age, and the random initial 

intensity of the j-th cell, respectively. The summation in equation (3.16) is over all rain 

cells in the domain. Finally, the rainfall field at the next time step t+dt is given by the 

summation of the dissipation-advection term and this new rainfall according to the 

recursive equation (3.10). 

The procedure for obtaining the rainfall field at time t+dt using the RCR model are 

summarized as follows: 

1) Decay and advect existing rainfall field using (3.11) - (3.14) to obtain the 

dissipation-advection term 

2) Obtain new rainfall field born during time interval dt by the following: 

2.1) Locate the cluster centers inside the domain according to the Poisson process 

- Create independent uniform random numbers (i.e., RANDl) between zero and 

one at each pixel on the Euclidian grid domain. 

- Select any pixel with the random number RANDl < PC dt = dt to 

become a cluster center. 

2.2) Locate rain cell centers inside the domain 

- Create independent uniform random numbers (i-e., RAND2) between zero and 

one at each pixel on the Euclidian grid domain. 



- Select any pixel with the random number RAND2 < p(x,y) dt where p(x,y) is 

given in (3.17). At this point, we can neglect the cluster centers. 

3) Assign a random age by drawing from the uniform distribution between 0 and dt 

to each rain cell center. 

4) Assign to each rain cell center a random initial rainfall intensity from an 

exponential distribution with mean value E[io]. 

5) Calculate new rainfall field generated during time interval dt (e.g., w(x,y,Q ) from 

(3.18). 

6) Calculate total rainfall field at time t+dt from (3.10). 

There are some remarks on the recursive rainfall model that need emphasis. First, the 

spatiotemporal mean and covariance of rainfall intensity and cumulative rainfall derived 

in [112] cannot be applied to the RCR model. This is because we change the temporal 

structures of rainfall and include the advection by the velocity field (u,v). These 

probabilistic characterizations of rainfall are essential in data assimilation and many other 

applications. However, we can use the Monte Carlo method to estimate these 

spatiotemporal statistics numerically. It is fast and simple to generate many replicates 

with the RCR model. By using ensemble approaches, we have more flexibility in the 

model that does not depend on fixed analytical statistics. 

Secondly, all terms in the recursive rainfall model in (3.10) are non-negative values since 

they are all representing rainrate intensity. The process noise term (e.g., w(x,y,t) ) will 

only add more rain to the model. The only mechanism in the RCR model that decreases 

rainfall intensity is with the exponential decay with the parameter a. Rainfall generated 

from the RCR will abruptly increase because of new rain cells but always slowly and 

continuously decreases by the temporal dissipation. Theoretically, rainrate will never 

reach zero with this approach, but we can set a minimum detection threshold and force 

rainfall to zero if one desires. 



Thirdly, the new rainfall field w(x, y, t )  is generated by assuming that the locations of all 

cell centers are defined at the end of time interval t+dt. This assumption simplifies the 

algorithm because there is no need to advect each cell center using the velocity field 

(u,v). It is possible to define them at the beginning of the time step and advect them 

using the Lagrangian persistent framework as well. 

Finally, we assume that rainfall spreading from a cell center and the distribution of rain 

cells around a cluster center are isotropic (i.e., have circular shapes). We could move 

from circular to elliptical shapes by specifying the cell and cluster spatial dissipation 

constant in x- and y-direction separately. We can also rotate the ellipse shapes to any 

desired angle (e.g., in order to better fit a frontal storm system). However, such a 

modification adds more parameters and increases computation cost and complexity of the 

model. 

3.3 The RCR Model with GOES Forcing 

The RCR model provides a simple yet efficient way to propagate rainfall fields through 

time and provide spatial and temporal characterization of rainfall. However, the model 

has two important drawbacks. First, the RCR model cannot efficiently deal with rainfall 

intermittency (i.e. zero rainrate), especially over a large-scale problem. Instead, it 

generates scattered clusters of rainfall everywhere in the domain according to the Poisson 

process. Therefore, rainfall may occur at an inappropriate location. Moreover, once 

rainfall is generated, it is difficult to remove using just a temporal decay function. 

Secondly, the RCR model requires a velocity field (e.g., (u,v) ) to advect rainfall field. 

This velocity field can be difficult to acquire. To cope with these problems, we propose 

using the GOES cloud-top temperature as a forcing input for the RCR model. This 

atmospheric forcing will help adjust the location and amount of new cells. In addition, 



we can employ the multi-resolution alignment algorithm to estimate the velocity field 

fkom two consecutive GOES images and use it to advect the rainfall field. 

3.3.1 Rainfall Intermittency and GOES Usage 

When the RCR model is utilized on a large-scale rainfall problem, it generates clusters of 

rainfall at random locations. Although the characteristics of each rain cluster can be 

realistic, their locations are too sparse and are not consistent with real rainfall event. For 

example, Figure 3-3(a) shows rainfall measurements fkom NOWRAD observations on 

June 2nd, 2004 at 0:OOGMT. If we use the RCR model to generate rainfall, we will obtain 

a rainfall event that looks similar to Figure 3-3(b). Each individual cluster of rainfall fkom 

the RCR model is relatively realistic, but there are so many clusters scattering 

everywhere in the domain. Since the RCR model generates new rainfall stochastically, it 

has no information about where rain clusters should be or should not be placed. 

(a) NOWRAD (mmlhQ @ 2M10W2 W:? [b) Sample Rain Field from RCR Mad4 

Figure 33:  Intermittency problem in the RCR model when apply to a large-scale problem - 
(a) N O W  rainfall intensity in the USGP study region on June 2d, 2,2004 at 0:OOGMT 

and (b) sample rainfall field generated from the RCR model 

To solve the rainfall intermittency problem, we propose incorporating real-time 

atmospheric forcing variables into the RCR model. There are many variables and many 

methods to incorporate those variables into the model. However, since we are seeking a 

simple and eficient rainfall model, we prefer to minimize the number of forcing 
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variables and keep the concepts as straightforward as possible. In addition, the forcing 

variables should be relatively easy to acquire at the desired spatial and temporal 

resolution. 

Among the many weather-related variables, cloud-top temperature from the infiared 

channel seems to be the most suitable one. It is relatively easy to acquire and available at 

high spatial and temporal resolution. In the USGP project, the cloud-top temperature is 

obtained fiom GOES infrared data described in Chapter 2. Cloud-top temperature can 

help the model give more accurate forecasts in many ways. Various studies attempt to 

use it directly to estimate rainfall intensity [l ,  46, 80, 1301, but none of these methods 

provides acceptable results. Others attempt to use cloud-top temperature in combination 

with other data sources to approximate the location of rainfall regions [61, 62, 90, 1 1 1, 

125, 1351. The later method of employing cloud-top temperature usually provides better 

results. These studies agree that most convective thunderstorms are characterized by 

very low cloud-top temperatures. In addition, areas with little or no clouds (e.g., higher 

cloud-top temperature) usually contain zero rainrate. However, not all deep cloud 

regions have rainfall. For illustration purposes, the comparison between GOES cloud-top 

temperature and NOWRAD rainfall rate is given in Figure 3-4. It is apparent that low 

temperature clouds usually cover large areas where only a small portion coincides with 

the rainy region. 

@) GOES [Kelvin) @ 20010602 m : k m  

1 0  -106 -100 -95 -110 1 -100 -95 

Figure 3-4: A comparison between (a) NOWRAD rainfall rate in mmlhr, and (b) 
cloud-top temperature in degree Kelvin over the U.S. great plain on 2004/06/01 at 

the GOES 
04:OO GMT 



In the USGP project, we propose a simple approach to condition the location and amount 

of clusters and rain cells in RCR model using a GOES cloud-top temperature threshold. 

We defme two cloud-top temperature thresholds: the genesis threshold (TG) and the rainy 

threshold (TR). The genesis or birth threshold is the maximum cloud-top temperature for 

which new clusters and new rain cells can be born. In other words, a new rainfall field 

will only be generated inside the deep cloud region with cloud top temperature lower than 

TG. The rainy threshold is the maximum cloud-top temperature for which rainfall is 

allowed. In other words, any rainfall in a pixel with cloud-top temperature greater than 

TR will be suppressed. An example in which GOES cloud-top temperature was used to 

condition the rainfall field generated by the RCR model is given in Figure 3-5. The blue 

dotted line represents the boundary of GOES temperatures lower than TR = 290' Kelvin 

and red dotted line represents the boundary of GOES temperatures lower than TG = 2200 

Kelvin. It is clear that the RCR model with GOES input produces much more realistic 

rainfall output and solves the intermittency issue in both space and time. 

Figure 36:  Improvement when using RCR model with GOES forcing - (a) NOWRAD rainrate 
in mmfhr, (b) sample rainfall field fiom RCR model with GOES forcing; blue and red boundary 

representing region with GOES temperature lower than TR and To, respectively 



The genesis threshold (Tc) and the rainy threshold (TR) can be estimated from the 

statistics relating NOWRAD rain data and GOES temperature. The scatter plots of 

NOWRAD data and GOES cloud-top temperature during deep convective storms usually 

show a strong cloud-top temperature barrier. It separates high intensity rainrate from low 

intensity rainrate regions. We will use this barrier temperature to represent the genesis 

threshold (TG). In addition, the scatter plot also shows a maximum cloud-top temperature 

for rainy pixels, which we will use as the rainy threshold (TR). For example, the scattered 

plots of NOWRAD rainrate and GOES cloud-top temperature on June lSt, 2004 from 

00:OO-12:OO GMT are shown in Figure 3-6. Each row represents a time step at 00:00, 

04:00, 08:OO and 12:OO GMT, while the left column shows NOWRAD rainrate (mmlhr), 

the middle column shows GOES cloud-top temperature ( O  K), and the right column shows 

the scatter plots from pixels inside the USGP regions only. Although the characteristics 

of the scatter plots vary with time and age of the storm, the plots exhibit a strong barrier 

for high intensity rainrate at around 220 degrees Kelvin. The maximum cloud-top 

temperature for which rainfall exists is at around 290 degrees Kelvin. We selected 

approximately 200 pairs of GOES and NOWRAD images from our case study from June 

lSt to August 3 lSt, 2004, and the scatter plots for these measurements possess similar 

characteristics. Thus, we propose that for the USGP case study, the genesis threshold 

(TG) is 220 degrees Kelvin and the rain threshold (TR) is 290 degrees Kelvin. 



(c) scatter Plot 

Figure 36: A scatter plot of NOWRAD rainrate versus GOES cloud-top temperature 
on June lSt, 2004 from 00:OO-04:OO GMT over the USGP case study 



3.3.2 Velocity Field from Consecutive GOES Images 

The velocity field in the x- and y-direction denoted by (u,v) is a major component in the 

RCR model. It is required at every time step in order to propagate rainfall spatially. The 

velocity field can be obtained from many sources and at many elevations (e.g., direct 

wind measurement at the weather station, displacement of cloud or other substances in 

the atmosphere). However, it is normally very difficult to obtain a comprehensive 

velocity field in space and time at a specific resolution of interest. Since we would like 

to have the most effective and simple rainfall model possible, acquiring new forcing data 

seems to contradict our objective. Therefore, we propose to obtain the velocity field 

from the movement implied by two consecutive GOES cloud-top images. Because the 

RCR model uses GOES cloud-top temperature to help locate the rain cells, also using 

GOES to determine the velocity field minimizes the number of input forcing needed, 

thereby making the model easier to use. 

To obtain a velocity field, we employ the multi-resolution alignment (MRA) algorithm to 

estimate the displacement that produces the minimal misfit between two consecutive 

GOES cloud-top images. The original alignment algorithm is proposed by [I071 to deal 

with position error adjustment in the data assimilation framework. It iteratively searches 

for a displacement field that aligns one image to the other and minimizes the local 

constraint with regard to the misfit between those two images. Ravela and Chatdarong 

used the MRA algorithm to estimate the velocity field from GOES [I061 and compare 

results with CIMSS derived wind [127, 1281, which used a correlation-based algorithm. 

Details of the MRA algorithm are provided in Appendix A. 

When using the velocity field derived from the movement of GOES cloud-top images, we 

assume that the movement of the cloud is equal to the movement of the rainfall feature 

itself. To test this assumption, we use the MRA algorithm to estimate the displacement 

field from one time step to the next using two consecutive NOWRAD rainrate images. 

This is then compared with the velocity field obtained from two consecutive GOES 



images. From our experience, the velocity fields derived fiom NOWRAD and GOES 

data look similar over a region with high rainfall intensity. Thus, using the velocity field 

derived fiom GOES cloud images to advect rainfall in the RCR model should give 

reasonable results. Figure 3-7 shows the comparison between two displacements 

obtained fiom two consecutive NOWRAD images and GOES images on June lSt, 2004 at 

8:OO - 9:OO GMT over the USGP region. Images (a) and (b) show N O W  rainrate in 

mm/hr at 8:00 and 9:00 GMT, while images (d) and (e) show GOES cloud-top 

temperature in Kelvin at the same time periods. Images (c) and (f) show the 

displacement magnitudes and directions obtained fkom the MRA algorithm using 

NOWRAD and GOES, respectively. The displacement field presents the distance in 

degree needed to move the image at 8:00 GMT in order to align well with the image at 

9:00 GMT. It is obvious that over the region with deep convective rainfall, the velocity 

field from GOES and NOWRAD are similar. 

(dl GOES (Kclrin): 0641 08:w -300 

Figure 3-7: Comparison between NOWRAD and GOES displacements obtained from MRA 
algorithm on June I", 2004 from 8:OO - 9:OO GMT over the USGP region 



We repeated this same experiment on approximately 200 consecutive images of GOES 

and NOWRAD measurements at times during June 1'' - August 3 lSt, 2004 when there are 

significant storms. The magnitude differences between GOES and NOWRAD velocity 

fields are less than 0.5 degrees (distance degree) with 95% confidence. The angle 

differences between GOES and NOWRAD velocity are less than 10 degrees (angle 

degree) with 95% confidence. These differences are insignificant, and thus it is 

reasonable to use GOES velocity field to advect rainfall in the RCR model. 

3.3.3 RCR Model with GOES Forcing 

With the use of GOES cloud-top temperature, the RCR model is now practical for 

propagating two-dimensional rainfall through time without experiencing serious 

intermittency issues. In addition, the RCR model is fast, efficient and practical for 

approximate rainfall dynamics, even for a very large scale application. It only requires 

one atmospheric forcing source that is relatively easy to obtain at the spatial and temporal 

resolution of interest. The procedure to execute the RCR model and tips to make the 

algorithm faster and more efficient are as follows. 

1) Define the RCR model parameters listed in Table 3.1 as well as the TG and TR 

thresholds mentioned in section 3.4.1. In general, these parameters are assumed to be 

constant throughout the simulation period. 

2) Beginning at initial time t, define a matrix X, E %"lXn2 representing the initial two- 

dimensional rainfall field of dimension nr x nz. Xt can be a zero matrix if we do not 

have prior knowledge about the initial rainfall field. 

3) Obtain GOES cloud-top temperature at time t and t+dt and estimate the velocity field 

using the Scaling Field Alignment algorithm presented in Appendix A. 

4) Propagate Xt through to the next time step, e.g. t+dt, using the dissipation-advection 

function F {-) with velocity field obtained from step 3) and obtain F {x,) 
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5) Create W E ! R n l X n 2  , the new rainfall matrix during the time interval dt by the 

following: 

5.1) Assign rain clusters on the study domain with the amounts and locations given 

by the two-dimension Poisson process over the time interval dt 

i) Generate a random matrix RAND, E !Rqxn2 between zero and one from a 

uniform distribution, with the dimension equal to the two-dimensional grid. 

ii) Mark the location of cluster centers where RAND, < PC dt 

5.2) Assign rain cells on the study domain based on the locations and amounts of 

rain clusters in the domain. 

i) From all locations of rain clusters, generate the cell birth probability field, 

denoted by PROBB from (3.1 5) 

ii) From GOES cloud-top temperature at time t+dt, obtain a screening matrix 

M S K B  = 1 for all pixel where GOES < Tc, and zero otherwise. 

iii) Generate a random matrix RAND, E !Rnl"" between zero and one from a 

uniform distribution. 

iv) Mark the location of the cell centers at the pixel where 

RAND, < PROBB MASKB. dt 

5.3) Assign random cell ages, denoted by "a", to each rain cell by drawing a 

random number between 0 and dt from a uniform distribution. 

5.4) Assign initial rainfall intensity at the cell center at birth, denoted by "id', to 

each cell center by drawing from an exponential distribution with mean E[io]. 

5.5) Obtain the new rainfall field W at location (x,y) at the end of time interval 

t+dt, by summing up the rainfall from all rain cells using using equation 

(3.16). 



6) Acquire rainfall at the next time step using (3.8), e.g. X,,, = F {x,) + W . 

7) Suppress X,,, at the pixels where GOES at time t+dt is greater than TR. 

8) Increment the time step and repeat starting from step 3 

It is important to make sure the time step dt and the units of the parameters in Table 3.1 

are consistent. In general, the time step is defined over one hour, e.g. dt = 1 hr. There is 

no restriction on the time step; however, making the time step too large may affect the 

accuracy of the velocity field obtaining from the SFA algorithm. Moreover, if the time 

step is too large, rainfall locations suggested by using the GOES cloud-top temperature at 

the end of the time step will be inaccurate. Therefore, it is recommended to define the 

time step dt to be approximately 1 hour or less. 

Finally, there are a few guidelines for speeding up the algorithm, especially when 

working with a large domain. First, we recommend evaluating the probability function 

in equation (3.15) and (3.16) only up to a distance of 3-5 times the spatial dissipation 

constant a, or 0. At further distances, the function will be very close to zero and will 

become insignificant. Second, the summation in equation (3.15) and (3.16) may be time 

consuming if we have to run through each cluster center or cell center individually. We 

highly recommend creating a two-dimensional Gaussian surface matrix and performing 

two-dimensional calculations with a delta function centered at the cluster center or cell 

center. With this modification, the RCR model can efficiently generate and propagate 

rainfall through time. 



3.4 Implementation of the RCR Model to the USGP Project 

In this section, we will illustrate that the RCR model with only GOES forcing should be 

able to provide reasonable rainfall characteristics over the USGP. In addition, the model 

can be used to generate rainfall ensembles that have the anticipated correlation in space 

and time. By following the procedures of the RCR model with GOES input in the 

previous section, we should be able to efficiently propagate rainfall through time. The 

speed of the model is very fast even for a large problem. The simulation on MATLAB 

using OPentium-4 2.8 GHz processor with 2GB RAM for 500x500 domain is roughly 

about 0.5 second for each time step, regardless of the parameters used. When 

propagating the ensemble of rainfall through time, the computation time is linearly 

proportional to the ensemble size, e.g. it takes about 50 seconds to propagate 100 

ensemble rain members through one time step on the same computer. The limitation in 

our simulation usually comes from insufficient memory for storing the rainfall ensemble, 

not computation time. 

To demonstrate capability of the RCR model, we perform a simple experiment over the 

USGP region to propagate the rainfall field on June lSt, 2004 with a time step of 1 hour at 

a resolution of L = 0.05 degree. The parameters used in the simulation are as followed: 

8=0.05 L - ~  hf l ,  a = 0.6 hi1, a = 1.0 L, E[io] = 5 mm/hr, v = 50 cells/cluster, and p =2.5. 

We use the GOES temperature threshold; Tc = 220 K, and TR = 290 K. Figure 3-8 shows 

the simulation results at times 5:00 - 8:00 GMT. The left column represents the GOES 

cloud-top temperature (the only input given to the RCR model), and the middle column 

shows rainfall output from the RCR model. NOWRAD rainfall images are also given in 

the right column for comparison purposes. It is evident that the RCR model with GOES 

forcing is a simple, fast and efficient algorithm, while capable of providing rainfall fields 

that are realistic, especially for convective storm systems. 



RCR modd (mmh): 060105:00 

RCR model (rrmh): 0601 06:00 NOWRAD (rnmdu): 0601 06:OQ 

RCR m a  (mmhv): 0&0107:00 NOWRAD (mmlh): 0601 07:W GOES [K) Q6-01OT:OO 

RCR model (mmh):  W108:00 NOWRAD (mmlh): 0601 08:W GOES (K) o w 1  08:Oo 

Figure 3-8: An implementation of the RCR model with GOES input over the USGP region 
fi-om 0500 - 08:OO GMT 



3.5 Conclusions 

In this chapter, we have presented the simple but efficient Recursive Cluster-Point 

Rainfall (RCR) model, which dynamically propagates rainfall in space and time. The 

RCR rainfall model is based on the spatiotemporal cluster-point process model first 

introduced in [I121 as a descriptive representation of rainfall statistics in space and time. 

We imposed the Markov property on the original rainfall model to amve at the RCR 

model. The recursive model eliminates the need to store all past rainfall history or 

evaluate rainfall from the storm origin. In addition, measurement information can be 

incorporated into the rainfall model in real-time using the sequential data assimilation 

framework. 

To handle rainfall intermittency, we used cloud-top temperatures to precondition the 

probability of birth for rainfall cells. The cloud-top temperature is relatively easy to 

acquire. For example, in our USGP project, the cloud-top temperature is obtained from 

the GOES infrared dataset. The RCR model with GOES input can deal with rainfall 

intermittency reasonably well and produce much more realistic rainfall fields. In 

addition, the same cloud-top temperature data will be used to obtain the velocity field 

required by the RCR model at each time step. We use the Multi-Resolution Alignment 

(MRA) algorithm to estimate displacement field from two consecutive GOES images and 

use this velocity to advect rainfall in space. The experiments show that velocity fields 

derived from GOES cloud-top temperature is consistent with velocity fields obtained 

directly from two consecutive NOWRAD rainfall images, especially over deep 

convective rainfall regions. Therefore, it is appropriate to use the velocity fields from 

GOES data to propagate rainfall fields. 



The RCR model with GOES input is capable of efficiently propagating rainfall features 

through space and time. In the next chapter, we will present detailed discussion of the 

data assimilation framework and techniques. By combining data assimilation with the 

RCR model, we can merge multiple sources of rainfall measurements to provide 

comprehensive reanalysis of rainfall data and ensemble rainfall fields, the ultimate goal 

of our thesis. 





Chapter 4 

Dynamic Rainfall Data Assimilation 

4.1 Introduction 

In this chapter, we introduce the methodology of ensemble sequential data assimilation 

and apply it with the Recursive Clustered Rainfall (RCR) model presented in Chapter 3 to 

estimate comprehensive rainfall ensembles. The organization of Chapter 4 is as follows. 

Section 4.2 will provide the background on sequential data assimilation and introduce the 

Ensemble Kalman Filter (EnKF) algorithm. We then propose a more stable and efficient 

algorithm for the EnKF as well as introduce the Ensemble Kalman Smoothing (EnKS) 

algorithm, which is an extension of the EnKF algorithm. In Section 4.3, we introduce 

the state-augmentation technique for estimating the parameters of the RCR model to be 

used with the United States Great Plains (USGP) case study. We also revisit the rainfall 

measurement sources and their error statistics, which were described in Chapter 2. These 

parameters and statistics are required to perform the ensemble data assimilation correctly. 

The implementation of the dynamic rainfall data assimilation over the USGP project is 

carried out in Section 4.4. The comprehensive rainfall ensemble is then validated with 

the NOWRAD rainfall data to assess the accuracy of the algorithm. Finally, we discuss 

the rainfall data assimilation and conclude the chapter in Section 4.5. 



4.2 Sequential Data Assimilation for Non-linear Dynamic 

Systems 

Sequential data assimilation is a technique that efficiently characterizes the variables of 

interest, known as the state variables, and produces the analysis state from all relevant 

information (e.g., forecasts and measurements) in a recursive fashion. In the data 

assimilation framework, information is divided into two categories, forecasts and 

measurements. Forecasts, which include the state variables and their statistics, are 

obtained recursively from a dynamic model. A major role of the dynamic model is to 

flow local information to all states in the domain of interest spatially, temporally or both. 

Measurements are the information obtained from field observations, which may be 

directly, or indirectly related to the state. In most cases, neither forecasts nor 

measurements are perfect, but each contains some valuable information. The key idea of 

data assimilation is to blend the two sources of imperfect information in order to obtain 

the statistically optimal characterization of the system state. 

In the Earth science community, well-known data assimilation techniques include 

3DVAR and 4DVAR [23, 24, 1231, the representer method [9, 101, the approximated 

Grid-Based methods [35, 86, 100, 1091, the Kalman Filter [43], the Extended Kalman 

Filter [35, 861, the Ensemble Kalman Filter [16, 36, 38, 391, and the Partilcle Filer [6, 

1321. Among the many techniques mentioned, the Ensemble Kalman Filter (EnKF) 

algorithm has rapidly gained popularity and has been utilized in numerous applications 

[38, 74, 77, 108, 1 101. The EnKF-based algorithms are attractive for various reasons. 

First, their sequential structures are convenient and efficient for processing measurements 

in real-time. Second, it uses an ensemble characterization of the state, which provides the 

distributional information and uncertainty. Third, it is relatively easy to implement and 

is applicable to a wide range of dynamic models without the need to derive analytical 

forms of the state or its statistics. Finally, there is no restriction on the form of process 

noise (e.g., noise can be non-additive and correlated to the state.) 



4.2.1 Ensemble Kalman Filter (EnKF) 

The Ensemble Kalman filter (EnKF) is a forward sequential data assimilation method 

based on the Monte Carlo technique. It is first introduced in [36] and later clarified in 

[16]. The EnKF algorithm integrates an ensemble of model states and propagates them 

forward through time using the dynamic model. Therefore, for a large enough ensemble 

size, it is possible to construct the probability density from the ensemble and calculate 

any necessary statistics. The forecast state ensemble obtained from the dynamic model 

can then be recursively updated with new measurement data by using the Kalman Filter 

analysis scheme [43]. Having an ensemble of the states eliminates the need to propagate 

the covariance matrix analytically through time, which is difficult for many non-linear 

dynamic models. For this reason, the EnKF algorithm is applicable to a wide range of 

models, easy to implement, relatively effective to compute and accurate enough for many 

applications. 

The propagation, or forecast, is made through the state or dynamic equation: 

where x, E !RnX' is the state vector of dimension n at time t, f ;  ( a )  is a dynamic function, 

ut , andw, are the forcing variables and the process noise at time t, respectively. The 

state ensemble is propagated to the time step where a new measurement becomes 

available. We assume that the measurement is related to the state via the measurement 

equation, 



where yt E 91mx1 is the measurement vector of dimension m at time t, h, (-) : 8""' + 91mx1 is 

a measurement transformation matrix, and vt E 91mx1 is independent measurement noise 

with zero mean and covariance matrix R. At this measurement time, we employ the 

analysis (update or filter) step to incorporate new measurements into the forecast 

ensemble and produce the analysis ensemble. The analysis is done by using the first two 

moments of the prior density and the measurement likelihood hc t ion ,  which can be 

numerically estimated from the ensemble. Finally after the analysis ensemble is 

obtained, we again apply the forecast step to propagate the ensemble forward to the next 

measurement time step and perform the analysis step; a conceptual diagram of the EnKF 

is shown in Figure 4-1. The process repeats until the ensemble reaches the final time 

step. 
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Figure 4-1: The conceptual diagram of the Ensemble Kalman Filter 

The analysis step in EnKF is similar to that of the Kalman Filter [43]. It uses the mean 

and covariance matrix to calculate Bayes' linear least square estimator. The EnKF 

incorporates the current measurement y, into each forecast state member x[ = xi ( t  I t - 1) 

and produces the analysis state xia = x' (t I t )  from the analysis or update equation, 



where Fi represents a perturbed measurements obtained by adding a random 

measurement noise vt to the real measurement y ,  e.g. yi = y + vi . The Kalman gain 

matrix K is given by 

where pXyh(') E % ~ ~ ~  is the cross covariance between the forecast state f and the 

measurement prediction h(4,  and^^(^) E%""" is the covariance matrix of the 

measurement prediction. These covariance and cross-covariance matrices are defined 

theoretically in terms of the true state xt as 

where ; represents the mean value. However, since the true state is usually unknown, 

the EnKF approximates the covariance and cross-covariance matrices in (4.4) with the 

ensemble covariance and cross-covariance matrices, taken around the ensemble 

meanz and h(x), e.g. 



where N is the ensemble size. Thus, we can numerically calculate the Kalman gain in 

(4.4) by using the ensemble covariance and finally update the state ensemble using the 

analysis (4.3). Using the ensemble covariance matrices implies that we view the 

ensemble mean as the best estimate of the state and the spreading of the ensemble around 

the mean as an error in the ensemble mean. 

There are several caveats about the analysis scheme of the EnKF. First, it is important 

that the update equation (4.3) uses the randomly perturbed measurementJi in order to 

retain the correct posterior covariance or the ensemble spread. If the real measurement 

value y is used, the posterior ensemble covariance will be underestimated [16]. Secondly, 

all of the statistics needed to calculate Kalman gain matrix, K, can be calculated directly 

from ensemble spreads. However, explicit calculation of the inverted term in (4.4) is 

computationally expensive. Furthermore, the inversion can be numerically ill- 

conditioned when the state dimension is large. 

Evensen proposed a pseudo-inversion technique to be used with the EnKF algorithm 

[38]. The technique is based on singular value decomposition avoids explicit inversion of 

the full covariance matrix and reduces the computation cost from the order of m2 to mN 

(i.e., rn is the measurement dimension and N is the ensemble size). It makes the EnKF 

algorithm even more appealing and practical. However, when the ensemble size is 

smaller than the measurement dimension (e.g., N < m), this pseudo-inverse technique will 

be rank-deficient. The ensemble also collapses to a single member in the common 

situation in which the number of observations is more than twice the number of ensemble 

members (e.g., N < 2m) [66]. This is a serious issue in many large-scale data 

assimilation problems where the ensemble size is limited. 

The next important issue is the sub-optimality of the EnKF algorithm. When using large 

numbers of ensemble members, the EnKF algorithm still produces a sub-optimal analysis 

ensemble because it ignores higher moments in the analysis step. The update (4.3) only 



uses the mean and covariance to update the forecast ensemble. Thus, the analysis 

ensemble is the linear least-squares estimator, and it is optimal only when all underlying 

distributions are Gaussian. In general, the importance of the higher moments varies with 

the processes of interest and their underlying dynamics. The f is t  two moments usually 

contain the most important characteristics of a process. In addition, it is possible to 

transform the state in order to make the first two moments dominant over others (e.g., 

logarithmic transformation.). Consequently, updating the forecast ensemble using the 1 " 
and the 2" moment statistic can be sufficient and accurate enough in many applications. 

The final consideration is the ensemble size. The EnKF uses the ensemble to calculate all 

necessary statistics in the analysis scheme. Using an insufficient ensemble size leads to 

sampling error and may cause instability in the analysis step. An appropriate ensemble 

size depends on many factors, including behavior of the dynamic model, and dimension 

and resolution of the states and measurements [14, 15, 30, 871. Theoretically, the 

ensemble size should be as large as possible relative to the state dimension to minimize 

the sampling error and accurately approximate all statistics of interest. However, the 

ensemble size is normally limited by computation time, computation cost, and storage. 

Commonly, an ensemble size is far less than the state or the measurement dimension. In 

this case, the ensemble generated fkom the EnKF is prone to collapsing [66] or the update 

can become unreliable. The stability issue of the EnKF can be minimized by using a 

proper sampling scheme or performing a more stable pseudo-inverse technique. A stable 

pseudo-inverse technique is presented in the next section. The traditional SVD scheme 

used for minimizing sampling errors is included in Appendix C. It is highly 

recommended to consider the stable pseudo-inverse technique when one chooses to use 

the EnKF with a limited ensemble size. 



4.2.2 The Stable Pseudo-Inversion Technique and the Stable EnKF 

The EnKF algorithm is a simple and effective sequential analysis scheme that can be used 

in many applications. However, the Kalman gain matrix in (4.4) requires the inversion of 

the m x m matrix(ph(") + R),  which can be very computationally expensive for a large 

problem. Moreover, the inversion of a large matrix can become numerically ill- 

conditioned. In this section, we introduce a stable pseudo-inverse technique initially 

introduced in [39] that offers a significant improvement over the pseudo-inverse 

technique proposed in [38]. This stable pseudo-inverse technique is initially used in the 

square-root analysis scheme [39], which is an alternative algorithm to the E n . .  

However, for our problem, the original formulation of the EnKF is preferable over the 

square-root formulation because it is easier to extend to the smoother form, which can be 

beneficial in the reanalysis problem. Moreover, the EnKF updates each individual 

ensemble member, while the square-root analysis scheme updates the ensemble mean and 

later adds a random perturbation. Although the random perturbation is guaranteed to 

match the theoretical value, its spatial pattern may be too random and scattered, and thus 

not suitable for our rainfall application. More information about the square-root analysis 

scheme is given in [39]. 

To derive the pseudo-inverse technique, we define the ensemble matrix X E  91nxN that 

holds all the forecast members xl E 93""' as 

where n is the state dimension, and N represents the ensemble size. In addition, we 

define the ensemble mean X E 9lnXN and the ensemble perturbation x E 91nxN as 



where 1, E R~~~ is the averaging matrix with each element and is equal to 1LV. Then, the 

forecast ensemble covariance matrix Pe A P! E !RnXn can be defined as, 

From (4.2), we define the matrix Y E !RmxN that holds all the perturbed measurement, and 

the matrix 9 E !RmxN that holds all the measurement perturbation vi by 

where m is the measurement dimension, and y is a measurement vector at the analysis 

time. Moreover, we use the ensemble representation of the measurement error 

covariance Re E !RmXm to approximate the true measurement error covariance R by 

Finally, we define S E !RmxN to be the matrix that holds the prediction of measurements 

given the ensemble state, and its perturbation fiom the mean S E !RmxN as 



Using these definitions, the Kalman gain given in (4.4) can be approximated by the 

ensemble covariance matrix from (4.7) and (4.8), e.g. 

(4.20) 

with, 

We seek the pseudo-inverse C' E %""" to approximate the inverse matrix C-' . The 

stable pseudo-inverse technique projects 9 onto the first N-1 singular vectors of s . Thus, 

we only account for the measurement variance contained in the subspace and reject all 

possible contributions in the null space. It is this property of the pseudo-inverse which 

avoids the rank deficient issue and prevents the ensemble from collapsing [66]. We 

begin by taking the full-sized singular value decomposition of s , whose rank equals N-1, 

where Uo E gmxm , ZO E 9lmxN , and VO E '$3 N x N  . By definition, the product of any matrix 

with its pseudo-inverse equals the identity matrix with the first q elements equal to one 

and the others equal to zero; q represents the shorter dimension of the matrix. The 

pseudo-inverse of s is given by 



Zi E sNxm is a diagonal matrix whose first N-1 diagonal elements are the inverse of 

Z, and the remaining elements are zeros: 

wherep = m-(N+l). We can then express C from (4.21) as 

z; = 

where K, E sNxN is given by 

- 
a;' 

- 

We then take the singular value decomposition of K1 

with all matrices having dimension NxN. Finally, we substitute (4.30) into (4.28) and 

obtain the pseudo-inverse of C in the following form: 



T T T f T  = (u, z, U, ) (1 + z:)t ( U ~ ~ ~ U , ) + ~  

where K, E !RmxN of rank N-l  is defined by 

Note that (4.27) requires that U,U; = I ,  which is true only if we perform the full-sized 

singular value decomposition of s as given in (4.22). However, for K1 and K2 in (4.28) 

and (4.29), we can neglect the last N-m singular vectors in Uo because of the 

multiplication with Z,i . Thus, the reduced-sized singular value decomposition of6 , e.g. 

U,X,V~ = s with U, E !RmxiV , Eo E !RNxN , andVO E sNXN , can be used without loss of 

generality. The reduce-sized SVD will significantly speed up the computation time. 

Now that the stable pseudo-inverse C matrix is used to approximate (phti' + R)I , we 

can compute the Kalman gain matrix from equation (4.4) and update the forecast 

ensemble matrix X using the analysis equation (4.3). Let the matrix Xa E '3""" hold all 

the ensemble analysis members xp E !Rnxl after the update, e.g. 

The analysis (4.3) can be written in the ensemble form as 



where the matrices K3 and & are given by 

Note that INK3 gives the row average of K3. The analysis equation of the stable EnKF 

algorithm in the form of (4.43) implies that the analysis ensemble is a weakly non-linear 

combination of the forecast ensemble. Each column of the update matrix I(4 represents 

weights from each forecast member and is given by the projection of measurement onto 

the forecast ensemble space. In order for the estimate to be unbiased, the sum of each 

column of I(4 should be one. In addition, the diagonal elements of & should be 

dominant because they hold the weight for the first-guess ensemble member, while off- 

diagonal elements introduce correlations imposed by the measurement. 

Conclusively, the analysis ensemble Xa can be obtained fiom the stable EnKF by the 

following steps: 

1) At the analysis time step, construct ensemble matrices: X, x , S, S , Y, and 9 . 

2) Compute the reduced-sized SVD: U,Z,V~ = S where, U, E 91mxP, Z, E 91pxN, 

V, E 5RNxN, and = min(m, N) 



3) Forrn the pseudo-inverse diagonal matrixz,' inverting the first p 

diagonal elements of Z0 , i.e. ding (z; ) = (0;' , oil,. . . , oil ) 

4) Compute the matrix product: K,  = z,'u:* where K, E sPxN 

5) Compute the reduced-sized SVD: U,Z,V: = K, where U, E %pxP, El E spXN , and 

V, E 9INxN . 

6) Form the matrix product: K, = U,Z;~U, where K, E 9IrnxP . 

7) Compute the pseudo-inverse: C' = K, (I + z:)-' KT where C' E 9lrnxrn 

8) Compute the matrix product: K, = STc' (Y - S) where K, E sNXN 

9) Compute the update matrix: K, = I + (I - 1, )K, where K, E 3 NxN 

10) Finally, obtain the analysis ensemble matrix: Xu = XK, 

The benefit of using the stable EnKF algorithm with the stable pseudo-inverse is 

significant when the ensemble size is relatively small in comparison to the state or the 

measurement dimension, e.g. N << m, n. To illustrate the advantage of the stable EnKF 

algorithm, a sample experiment is shown in Figure 4-2. The forecast ensemble is 

obtained by perturbing the mean and variance of the one-dimensional Gaussian function 

centered at zero with a variance of one. In this sample, the size of the state dimension 

(n) is 200, the size of the measurement dimension (m) is 20, and the size of the ensemble 

(N) is 10. Figure 4-2a shows the forecast ensemble mean as blue dots, the truth as a black 

solid line and the measurements with red circles. Figures 4-2b and 4-2c show the 

analysis ensemble mean obtained from the original EnKF [38] and the stable EnKF, 

respectively. Figures 4-2d, 4-2e, and 4-2f show the ensemble covariance of the forecast, 

the analysis from the original EnKF, and the analysis from the stable EnKF, respectively. 

It is evident in this example that the original EnKF diverges when the ensemble size is 

relatively much smaller than the state size and measurement size. In contrast, the stable 

EnKF performs well and produces reliable analysis mean and covariance. 



Figure 4-3 shows a sample experiment result when the ensemble size is relatively large. 

In this sample, the size of the state dimension (n) is 200, the size of the measurement 

dimension (m) is 20, and the size of the ensemble (N) is 500. The analysis mean and 

covariance from the original EnKF and the stable EnKF (e.g., Figure 4-3b vs. 4-3c, and 

Figure 4-3f vs. 4-3g) are very similar. In this case, both algorithms provide accurate 

analysis ensemble. 

In our rainfall data assimilation over the USGP region, we would like to obtain the 

rainfall estimate at the resolution of 0.05 degree. This means we are propagating and 

updating the state at 475x475 pixel2, which translates to a state dimension of around a 

quarter million. It is impractical to use an ensemble with a size close to the state or 

measurement dimension. Hence, we should always use the stable EnKF, and from this 

point forward, we will refer to the stable EnKF as the EnKF algorithm. 



(a) Forecast Mean: N = 10 (b) Original EnKF Mean: N = 10 (c) Stable EnKF Mean: N = 10 
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Figure 4-2: Performances of the original EnKF [38] and the stable EnKF 
when the ensemble size is small (e.g., n = 200, m = 20, N = 10) 
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Figure 4-3: Performances of the original EnKF [38] and the stable EnKF 
when the ensemble size is large (e.g., n = 200, m = 20, N = 500) 



4.2.3 Ensemble Kalman Smoother (EnKS) 

The EnKF algorithm was presented previously is a forward sequential algorithm. As a 

state ensemble progresses forward through time, the EnKF algorithm updates it with a 

new measurement and provides an analysis ensemble. This analysis ensemble is then 

propagated to the next time step. At any moment, the ensemble only accounts for 

measurements before and at the estimation time. It cannot incorporate measurements 

after the estimation time. Thus, the EnKF algorithm is suitable for a real-time data 

assimilation problem where we are seeking the most recent state. For a reanalysis 

problem where the state of interest may be in the past, it would be more beneficial to 

account for all the measurements inside a given period in which we are interested. 

To incorporate future measurement with a sequential algorithm, we first need to employ a 

filter algorithm that moves forward from an initial to a final time. Then we propagate 

information backward to the time of interest. This forward-backward sequential scheme 

is call a fixed-interval smoothing algorithm, since the state will be conditioned on all 

measurements in the fixed-time interval between the initial and the final time step. For a 

process with short memory, any measurement far away from the estimation time is less 

likely to affect the state at the current time. In other words, the improvement provided by 

the smoother is related to the system memory (e.g., the temporal persistence of the state). 

There is no need to apply the smoother over a time interval greater than the system 

memory. Therefore, it is sufficient to account only for a fixed amount of measurements 

after the estimate time, which should correspond to the system memory. This method is 

called a fixed-lag smoothing algorithm. A fixed-lag smoothing algorithm can become 

useful for a near-real-time problem where we can wait for some more measurements in 

the future to help with conditioning the state, or when we would like to minimize the 

storage. The concept of a filtering algorithm, a fixed-interval smoothing algorithm and a 

fixed-lag smoothing algorithm can be illustrated with a temporal diagram in Figure 4-4. 
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Figure 4-4: The temporal diagram of a filing, a fured-interval smoothing, and a fixed-lag 

smoothing scheme 

Theoretically, it is difficult to propagate information backward through time because the 

dynamic hc t ion f ;  ( 9 )  in (4.1) is not necessarily invertible. However, it is possible to 

calculate a sub-optimal smoothed state ensemble by using the ensemble covariance in 

space and time, similar to the EnKF methodology. This smoothing algorithm is called 

Ensemble Kalman Smoother (EnKS), which is a straightforward extension of the EnKF 

[37, 38, 401. The EnKS provides the analysis ensemble at timet' from measurements 

available at a later time ti as 

xu (t') = x y )  + x(t')ST (ti)c-' (ti) [Y (ti) - ~ ( t , ) ]  

where Y(ti) from (4.13), S(ti) from (4.16), s(ti) fiom (4.17), and C(ti) from (4.21) are 

evaluated using the ensemble and measurement at the fbture time ti. From (4.46), it is 

obvious that the update at timet' uses the same combination of ensemble members as 

defined by 1<4 in (4.45) in the EnKF. Thus, the fixed-interval smoothing ensemble 

~ ; ( t ' )  E snxN at time t' where ti-, 5 t' < ti < t, is given by 

T 

X: (t') = X' ( t 3 n  K, (ti) 
j=i 



where t~ is the final time step, K4(tj) E 91NxN is the filter update matrix from (4.45) 

evaluated at time 6, andxF(t') E W X N  is the forward ensemble matrix from the EnKF 

algorithm at timet'. The forward ensemble matrix is equal to the analysis ensemble 

matrix Xu if there is an update at timet'; otherwise, it will equal the forecast ensemble 

matrix X. 

Likewise, the fixed-lag smoothing ensemble ~ : ( t ' )  E 91nxN with a lag A at timet' where 

ti-, 5 t' < ti < ti+, is given by 

X: (t') = xF ( t f ) n  K~ (tj) 

As long as these filter update matrices &'s during the period of interest are stored, and 

the columns of the filter ensemble xF have not been shuffled, it is fast and straight- 

forward obtain the smoothed ensemble. It is also possible to store only some rows of 

xF that represent particular state variables of interest, and apply the EnKS algorithm 

without storing the full ensemble matrix. 

The post multiplication of the update matrix I<4 will always result in a new ensemble 

with a different mean and a smaller variance. Consecutive smoothing will lead to a slight 

reduction of the variance and a slight change in the mean value. Despite the reduction in 

ensemble spread, the EnKS does not guarantee that the smoothed ensemble will be more 

accurate than the forecast in estimating the true state. Similar to the EnKF, the EnKS is 

sub-optimal because it only uses the first two moments and ignores higher moment 

information. Moreover, the EnKS tends to smooth abrupt changes in the state 

temporally. Thus, we expect that the EnKS to work best with a process that is temporally 

smooth or a process that has been updating very frequently. 



4.2.4 Implementation of EnKF and EnKS on Synthetic Rainfall 

Problems 

In this section, the EnKF and the EnKS are utilized to merge multiple sources of 

synthetic rainfall measurements and provide a comprehensive rainfall ensemble. We 

choose to perform a synthetic experiment before implementing the data assimilation on 

the USGP region for several reasons. First, the dynamic model is guaranteed to be 

correct because we generate our true state from the dynamic model used in the data 

assimilation. Second, the model parameters are known and controllable. Finally, we can 

generate synthetic experiments for any scenario we would like to test (e.g., missing in 

space and time.) By performing the synthetic experiments, we can pay full attention to 

the difference in the data assimilation results (e.g., forecast, filter vs. smoother) and 

minimize any uncertainty in the problem. 

We use the recursive clustered rainfall (RCR) model proposed in Chapter 4 to propagate 

rainfall ensemble forward in time. Inthis synthetic experiment, we use the GOES cloud- 

top temperature and GOES velocity field from the USGP region as forcing variables for 

the RCR model. The synthetic study domain is 40 x 40 pixel2 at a spatial resolution of 

0.05 degree at a location and time where a deep convective storm is occurring. The true 

synthetic rainrate is generated from the RCR model with parameters P=0.08 pixer2 hi', 

a = 0.6 hi ' ,  cr = 1.75 pixel, E[io] = 5 mm/hr, v = 25 cells/cluster, and p=2 The GOES 

cloud-top temperature thresholds, TG = 220 K, and TR = 290 K, were obtained in Chapter 

4 are are used to alleviate the rainfall intermittency problem. 

We generate two types of measurements: (1) scattered but fine-scaled measurements, and 

(2) coarse-scaled measurement. These synthetic measurements are intended to duplicate 

the characteristics of rain-gauge and satellite measurements, respectively. Their values 

are taken from the true synthetic rainfall, but are perturbed by random noise as in 

equation (4.2). The covariance matrix R E %""" of the measurement noise is assumed to 

be a diagonal matrix and each element on the diagonal is given by 



where xi is the true rainfall at pixel i, cl and cz are 0.1 and 1, respectively. The true 

synthetic rainfall and the rainfall measurements fiom time tl to 16 are illustrated in Figure 

4-5. Note that the red boundary over the true rainfall represents the region with GOES 

cloud-top temperature lower than TB, i.e. the region where new rain cells can be born. 

Y (fine): t, Y (fine): 5 Y (fine): t3 

Y (coarse): t, Y (coarse): tS Y (coarse): t6 

Figure 4-5: True synthetic rainfall and rainfall measurements to be used in experiment #1 

In the first synthetic experiment (experiment #I), we take all measurement inputs given 

in Figure 4-5 and try to estimate the true state. We begin at time to by generating 1000 

realizations of zero rainfall fields and propagate them forward using the RCR model with 

all parameters known. At each time step, we update the forecast ensemble with the 

measurements using the EnKF algorithm. The propagation step and the update step are 

repeated until the update ensemble at the final time t6 is acquired. Then we propagate the 

ensemble backward using the EnKS algorithm and calculate the fixed-interval smoothing. 

The results from the first experiment, which are the ensemble mean, the ensemble 

standard derivation (ensemble spread), and the root mean square error (RMSE) from the 

true synthetic rainfall, are given in Figures 4-6, 4-7, and 4-8, respectively. In Figure 4-5 

the first row shows the synthetic true rainfall field, the 2nd row shows the forecast mean, 



the 3" row shows the filter mean, and the 4m row shows the smoother mean. In Figures 

4-7 and 4-8, the 1" row shows the forecast results, the 2nd row shows the update results, 

and the 3rd row shows the smoother results. Each column of Figures 4-6, 4-7, and 4-8 

represents the time step from tl to tb. In addition, the values in the parenthesis in Figures 

4-7 and 4-8 represent the spatial average of ensemble spread and RMSE, respectively. 

FC mean: t4 FC mean: tS FC mean: t 

FL mean: t, FL wttlm: I, 

SM mean: t, t Y SM mean: t6 SM mean: k 

Figure 4-6: The synthetic truth and the ensemble mean of the forecast (FC), filter (FL), and 
smoother (SM) ensemble fiom experiment #1 fiom time tl to 
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SM Sf0 (0.B): 1, SM ST0 (0.57): 4 -9 SM SfD (0.78): t SM STD (u.s~ r b SM STD (O.48k t 
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Figure 4-7: Ensemble standard deviation of the forecast (FC), filter (FL), 
and smoother (SM) ensemble fiom experiment #1 fiom time tl to tt; 
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Figure 4-8: Root mean square error of the forecast (FC), filter (FL), 
and smoother (SM) ensemble from experiment #1 from time tl to t6 

The results show that we can use the EnKF and EnKS to merge multiple sources of 

rainfall measurements, and provide reliable results. In the first experiment, the EnKS 

provides only a slight improvement over the EnKF. This is because there is plenty of 

information provided at each time step, and thus, knowledge from other time steps are 

less significant to further improve the ensemble. 

To see the benefit of the EnKS over the EnKF algorithm more clearly, we must reduce 

the amount of measurement information provided at each time step. We set up the 

second experiment (experiment #2) by withholding all measurements at time steps tl, t2, 

t4, and ts Figure 4-9 shows the true synthetic rainfall and new measurements to be used 

in the second experiment. Because there is less information provided at time steps tl, t2, 

t4, and ts, we expect to see significant differences between the EnKF and EnKS results. 

At these time steps, information fiom their neighboring time steps become more 

significant for improving the ensemble. 



True X: t, True X: t, True X: t5 

Y (fine): t2 Y (fine): t3 Y (flrn): t, Y (tine): t6 

Y (coerrs]: 1, Y (coarre): 4 Y (coarse): t, Y (coarse): ts Y (coarse): t6 

Figure 4-9: True synthetic rainfall and rainfall measurements in experiment #2 

The results fiom the second experiment, which include the ensemble mean, the ensemble 

standard derivation (e.g., the ensemble spread), and the ensemble RMSE, are presented in 

Figure 4-10, 4-1 1, and 4-12, respectively. The format of these results is similar to that 

used for the first experiment (e.g., Figure 4-6,4-7, and 4-8). 

FC man: t1 FCfnecu~S FC mwn: t4 FC mean: 5 FC mur: t6 

Figure 4-10: The synthetic truth and the ensemble mean of the forecast (FC), filter (FL), and 
smoother (SM) ensemble from experiment #2 fi-om time tl to 



FC STD (3.32): t2 

rl mil1 
FC STD 13-58): tS FC STD (3-17): t, 

r i r m  m' 
FC STD (2.51): 1 

- 
;TO B.-~OL t, SM STD (0.57): t, 

digure 4-11: Ensemble standard deviation of the forecast (FC), filter (FL), 
and smoother (SM) ensemble from experiment #2 fi-om time tl to t6 
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Figure 4-12: Root mean square error of the forecast (FC), filter (FL), 
and smoother (SM) ensemble from experiment #2 fi-om time tl to t6 

From Figures 4-1 1 and 4-12, the ensemble spread and the RMSE of the smoother are less 

than those of the filter. The mean ensemble of the smoother is also closer to the synthetic 

true rainfall than the filter. It is evident that the smoother ensemble from the EnKS is 

superior to the filter ensemble from the EnKF. The differences are significant at times t2  

and t 4 .  These time steps are located before the next measurement times, and the smooth 

ensemble receives full benefit from propagating information backward. The contribution 

from the EnKS decreases as the measurement time is farther away. It thus seems that the 

improvement from EnKS is minimal when a significant amount of measurement 



information is given, e.g. at t 3 .  Note that the smoother and the filter ensemble at the final 

time will always be the same. 

The smoother ensemble mean is not always closer to the true solution than the filter. The 

EnKS uses correlations between the current states and the later measurements. It 

implicitly use a dynamic model to implicitly propagate information temporally forward 

instead of explicitly propagate information backward using the inversion of the dynamic 

models. Moreover, the EnKS only uses the 1" and the 2nd moments and ignores higher 

moments in the same manner as the EnKF. Regardless, the smoother ensemble always 

has smaller ensemble spread than the filter ensemble. 

Another important characteristic of the forecast generated from the RCR model is that the 

ensemble mean is usually smooth and has very low intensity. This is also observed in the 

updated ensemble mean when there is not sufficient measurement information to update 

the ensemble. This characteristic is closely related to the GOES cloud-top temperature 

forcing variable used to define the new rainfall region. The ensemble mean is usually too 

smooth to represent rainfall features because of the variation in rainfall position in each 

ensemble member. Therefore, it may be more realistic to use an ensemble member 

instead of the mean to represent the rainfall field. 



4.3 Model Parameter and Measurement Error Estimation 

The two key ingredients in a sequential data assimilation scheme are a recursive dynamic 

model for propagating the state of interest, and an analysis algorithm for incorporating 

new measurement information to the state. Since we have both of these key elements, the 

RCR model and the EnKS algorithm, we should theoretically be ready to merge multiple 

rainfall measurements and provide compressive rainfall ensemble for the USGP project. 

Unfortunately, both the rainfall model and the assimilation techniques contain some 

unknown parameters whose values can greatly alter the accuracy and reliability of the 

results. These parameters must be estimated prior to performing the rainfall data 

assimilation algorithm. 

The unknown parameters in our rainfall data assimilation algorithm can be categorized 

into two groups. They are the model parameters and the measurement error statistics. 

The model parameters are required by the RCR model to propagate rainfall ensemble 

forward through time and to produce a reasonable forecast ensemble, while the 

measurement errors statistics are required to weight the uncertainty in the analysis 

algorithm. The following section will provide the parameter estimation technique to 

estimate model parameters in the RCR model; we will also summarize the measurement 

error statistics obtained in Chapter 2 for the USGP rainfall measurements. After all the 

parameters and statistics have been obtained, we can then apply the rainfall data 

assimilation algorithm and calculate the comprehensive rainfall ensemble in the USGP 

case study. 



4.3.1 Model Parameter Estimation by State-Augmentation 

Many of the hydrologic dynamic models, including our RCR model, conceptualize 

complex characteristics and behaviors of variables-of-interest with simple 

parameterizations. Generally, the associated parameters cannot be directly or easily 

measured and they must be inferred by indirect methods. There are varieties of 

parameter estimation techniques commonly used. Popular examples include manual and 

automatic model calibration techniques with historical data [13, 321, direct perturbation 

techniques [3,69], adjoint methods [34, 9 1, 122, 1231, and the state augmentation with an 

ensemble analysis algorithm [4,40,68, 891. 

For the USGP case study, we choose to use the state-augmentation algorithm. State 

augmentation is a fast and straight-forward technique. It can be easily applied with the 

EnKF and EnKS update algorithm. The main idea of the state-augmentation method is 

that the model parameters are considered parts of the model state. They can be updated 

alongside the state by including these parameters in the state vector and using an 

ensemble analysis scheme. This technique allows model parameters to be time-variant 

and updated in real-time in the similar manner as the state. The state-augmentation 

technique with the ensemble Kalman filter-based algorithm has been proven to work 

successfully in many hydrological and Earth climate systems studies [4,68, 891. 

Some studies suggest that a combination of the state-augmentation technique and the 

particle filter is better for estimating the model parameters [68, 1201. Unlike the 

ensemble Kalman filter-based algorithm, where the higher moments are neglected, the 

particle filter uses the full probability density function from the ensemble in the analysis 

step. Hence, it gives more accurate and reliable result, especially when the update 

variable is non-linearly related to the measurement data. This is exactly the case for 

estimating the parameters by the state-augmentation technique. However, the particle 

filter algorithm is usually much more computationally expensive. It can be impractical to 

employ for a high dimensional system such as our rainfall problem. 



It is important to note that when the parameters are time-invariant, the estimated 

parameters from the state-augmentation technique using the fixed-interval EnKS will 

always equal to the parameters at the final time step obtained from the EnKF. This can 

be easily verified from (4.52) with the parameter ensemble matrix persisting in time. 

However, to prevent the ensemble from collapsing, independent and identically 

distributed random noise is usually added to the parameter ensemble before we propagate 

the state ensemble. Therefore, the parameters may vary from one time to another, and the 

parameter estimated from the EnKS will no longer be a constant. 

To ensure that the state-augmentation can be used to estimate our RCR model 

parameters, we first test the technique with synthetic data where the parameters are 

known. The synthetic rainfall are taken from the experiment in Section 4.2.4 with 

parameters B=O.O8 hi1,  a = 0.6 hi', 0 = 1.75 pixel, E[io] = 5 mm/hr, v = 25 

cells/cluster, and p=2. Instead of using the scattered fine-scaled and coarse-scaled 

measurement, we use full fine-scale measurement with low measurement noise, 

e.g. a: =0.1, and make the data available at every time step. The ensemble size is 

increased to 2000. The state and parameters are rescaled so that they have approximately 

the same order of magnitude. After each update time, the ensemble spread decreases. 

Because the parameters are assumed to be persistent in time, there is no process noise 

introduced when the ensemble of parameters is propagated. Consequently, the ensemble 

variation of the forecast will be too small to be effected by the update. Therefore, we 

subjectively increase the parameter ensemble spread at each time before propagating the 

rainfall ensemble forward by adding independent random noises. These noises are drawn 

from the Gaussian distribution with zero mean and standard derivation equal to 1% of the 

parameter values. 

An example of the RCR model parameters estimated from the state-augmentation 

technique is shown in Figure 4-13. In each plot, the blue line represents the ensemble 

mean from the EnKF algorithm, the red line represents the ensemble mean from the 



EnKS algorithm, and the black constant line represents the true parameter values. The 

two values in the parentheses are the temporal average fiom the EnKS results and the true 

parameter value, respectively. In this example, all six parameters in the RCR model are 

treated as unknown and are augmented to the state ensemble when performing the EnKF 

and EnKS analysis. The initial condition of each parameter is assumed to follow a 

Gaussian distribution with the mean value shown at time to and the standard derivation 

equal to ?4 of the mean value. At any time step, if a parameter becomes less than zero, it 

will be resampled fiom the initial condition. This minimum boundary is crucial to 

prevent the RCR model fiom becoming unstable. 
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Figure 4-13: The estimated RCR model parameters using the state-augmentation technique with 
the EnKF (blue line) and EnKS (red line) algorithm for the synthetic experiment 



The results in Figure 4-13 show that the state-augmentation technique can be used to 

estimate all unknown parameters in the RCR model. The state-augmentation technique 

requires a large ensemble size to estimate the RCR model parameters with the EnKF and 

the EnKS algorithm. In our experiment, we can obtain reliable results if we use 2000 or 

more ensemble members. Moreover, we obtain more accurate results when we update 

with good quality measurements (e.g., comprehensive over space and time and with small 

error variance). In addition, the estimated parameters from the state-augmentation 

usually cluster around the initial condition values. To obtain a reasonable initial 

condition, we can iteratively perform the state-augmentation technique many times, each 

time using results from the previous iteration as the initial condition. Finally, the state- 

augmentation is significantly more reliable if we fix some parameters to the true value. 

We have attempted to estimate these parameters by various methods including the 

manual calibration, direct perturbation, and minimization of many different objective 

functions. However, none of these algorithms provides more credible results than the 

state augmentation technique. In estimating the RCR model parameters, the state- 

augmentation technique performs relatively well when the parameter values are well 

constrained and the ensemble size is large. Furthermore, it is significantly faster and 

more convenient to utilize than the other approaches tested. Thus, we propose to use the 

state-augmentation technique to estimate the RCR model parameters for the USGP case 

study. 



4.3.2 Estimated RCR Parameters for the USGP Case Study 

In this section, we apply the state-augmentation technique to estimate the RCR model 

parameters for the USGP project. To make the algorithm stable and reliable, it is 

necessary to generate a large number of ensemble replicates and use good quality rainfall 

measurements. These criteria cannot be met in the USGP project. First, there are 

roughly 500x500 pixel2 over the USGP region at resolution of 0.05'. It is impractical to 

use a large ensemble size. Second, the rainfall measurements to be used in the USGP 

rainfall data assimilation case study, ASOS, SSMII, TRMM and AMSU, are too sparse in 

space or time. It may not be possible to estimate the RCR model parameters using the 

state-augmentation technique in real-time. Therefore, we propose estimating the RCR 

parameters off-line. We will estimate the RCR model parameters over many different 

rainfall events over a small region. We can then analyze the estimated parameters. If the 

estimated parameters agree relatively well, we can use the average parameters to perform 

rainfall data assimilation in the USGP case study. 

We first choose several storm events for estimating the RCR model parameters. Each 

storm candidate should be contained in a small region, e.g. 2.5'x2.5', in order to employ 

a large ensemble size. It should consist of regions with very low cloud-top temperatures, 

e.g. GOES < TB , SO that the RCR model can generate new rain cells. Finally, it should 

last long enough for the state-augmentation to converge. The storm events selected for 

estimating the model parameters for the USGP project are summarized in Table 4.1. 

Table 4.1: Storm events chosen to e: 

I No. I Start Date I Start Time 

I 1. 1 2004106101 1 22:OO GTM 
2. 
3. 
4. 
5. 
6. 
7. 
8. 
9. 

2004106102 1 04:OO GTM 1 32.5 135.0 

#timate the RCR model parameters 

Stop Date 

2004106/06 
2004106112 
200410710 1 
2004107115 
2004107123 
2004108106 
2004108109 
200410812 1 

Longitude 

22:OO GTM 
05:OO GTM 
00:OO GTM 
04:OO GTM 
20:OO GTM 
22:OO GTM 
20:OO GTM 
03:OO GTM 

2004106107 
2004106112 
2004107101 
2004/07/15 
2004107124 
2004108107 
2004108110 
2004108121 

Stop Time 
Latitude 

(ON) 

08:OOGTM 
11:OOGTM 
06:OO GTM 
11:OO GTM 
04:OO GTM 
04:OOGTM 
03:OO GTM 
08:OO GTM 

32.5135.0 
37.0139.5 
34.0 136.0 
33.5 I 36.0 
35.0 I 37.5 
33.0135.5 
38.0 140.5 
30.0 132.5 



For each storm event in Table 4.1, we use the state-augmentation technique with EnKS to 

estimate the RCR model parameters. The ensemble size of 1000 is used and we repeat 

the experiment several times to ensure that the results are relatively reliable. From our 

experience, the state-augmentation technique does not work well when applied with real 

measurement observations. We believe that this is because the RCR model cannot truly 

represent the real physics of the rainfall process, especially intermittency. However, we 

found out that if we slightly smooth the NOWRAD data and provide some constraints on 

the parameters, the state-augmentation algorithm will provide more consistent results. 

It is possible to constrain our parameters because they have physical meaning, but the 

estimated results can be subjective. We choose to minimize the bias by constraining only 

a few parameters that have the most direct physical meaning. Hence, we fix the 

parameter a, which represents the size of rain cells, to have a value of 1.50 L, where L 

equals to the pixel length of 0.05". This corresponds to approximately 7.5 km when the 

cell is first born. This value is chosen so that the model can reproduce small features of a 

storm. In addition, we strictly bound the parameter a to be less than 1.5 hr-' to prevent 

existing rainfall from dissipating too quickly. Figure 4-13 provides an example of the 

parameter estimated from the storm event case 1 of Table 4.1 when all the restrictions 

applied. 
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Figure 4-14: The estimated RCR model parameters from the storm event #1 in Table 4.1 

We then repeat the experiment many times over each storm event. The initial conditions 

and the maximum and minimum bounds for the RCR parameters are given in Table 4.2. 

The average RCR model parameters estimated from the state augmentation technique 

using the EnKS algorithm are given in Table 4.3. The resulting mean parameters are then 

chosen for the rainfall data assimilation implementation during June 1" to August 31St, 

2004 over the USGP region. Note that these parameter values are to be used as 

guidelines. Altering a parameter value by a reasonable amount will not drastically impact 

the overall assimilation result. 



Table 4.2: Constraints on the RCR model parameters for the USGP project 

:he EnKS Table 4.3: The average RCR model parameters from the state-augmentation using 
over the storm events listed in Table 4.1 

Parameter 
B (km-' hr-I) 

a (hi1) 
a fkm) 

Max. Bound 
5.0 x 

1.2 
7.5 

Initial Values 
5.0 x lom3 

0.8 
7.5 

v 
(cell/clus ter) 

41 
45 
32 
39 
40 
52 
42 
35 
42 
41 

Min. Bound 
1.0 

0.4 
7.5 

E [iol 
(mm/hr) 

6.5 
5.1 
4.8 
5.8 
6.7 
7.1 
6.8 
6.1 
7.0 
6.2 

0 

( h )  
7.5 
7.5 
7.5 
7.5 
7.5 
7.5 
7.5 
7.5 
7.5 
7.5 

a 
(hi1) 
0.9 
0.6 
1 .O 
0.7 
0.6 
0.5 
0.5 
0.7 
0.6 
0.7 

Event 
No. 
1. 
2. 
3. 
4. 
5. 
6. 
7. 
8. 
9. 

Ave. 

I3 
( h - 2  . k l )  

3.6 x 

3.2 x 
4.2 x 

3.5 
3.4 lo-3 
3.0 x 
3.3 
3.6 x 
3.1 x 

3 . 4 ~ 1 0 ~ ~  



4.3.3 Generating Position and Intensity Perturbed Measurements 

In order to use the EnKF and the EnKS, we must obtain the perturbed measurement 

matrix %! in (4.13) and the measurement perturbation matrix Y in (4.14). These matrices 

are essential for calculating the update matrix & in equation (4.45) and updating the 

forecast ensemble. We first generate the perturbed measurement matrix Y by taking each 

real measurement images and shifting them with a random displacement (qx,qy). This 

random displacement is drawn from the Gaussian distribution with position error 

statistics from Table 2.2. We recommend using one random displacement to shift a 

whole image. If we choose to randomly and independently shift each pixel, the 

measurement realization may become too scattered. We repeat the process and generate 

position-perturbed ensemble. 

Next, we perturb the rainfall intensity of the ensemble by adding an independent random 

noise to each pixel. This random noise will be drawn from the Gaussian distribution with 

zero mean and the standard derivation given by equation (2.2). The constants cl and cr in 

equation (2.2) are also given in Table 2.2. At this point, we have obtained the perturbed 

measurement matrix Y. The measurement perturbation matrix %! is easily calculated by 

subtracting the matrix Y from its mean, as given in equation (4.14). With the 

measurement perturbation matrix generated in this form, the theoretical covariance 

matrix R will no longer be diagonal. 



4.4 Implementation of the Rainfall Data Assimilation on the 

USGP Case Study 

At this point, we have obtained all the key components needed for the data assimilation 

algorithm, and we are ready to implement it on the USGP project. These three 

components are (1) the RCR rainfall model with GOES input and known parameters, (2) 

rainfall measurements from ASOS, TRMM, SSMII and AMSU-B with known error 

statistics, and (3) the analysis scheme, which consists of the EnKF and the EnKS. The 

USGP project consists of roughly a 500x500 pixel2 domain. Because of limitations in 

CPU and memory, the maximum ensemble size allowed is approximately equal to 200. 

Despite the small ensemble size used, the analysis ensemble calculated from the EnKF 

and the EnKS algorithm is usually stable. Samples of the smoother ensemble from the 

USGP project are given in Figures 4-15. In the figure, each row represents a 3-hour time 

step beginning on July 24", 2004 at 19:OO GMT. The first column represents NOWRAD 

rainrate (e.g., validation data), the middle column represents the ensemble mean from the 

EnKS algorithm, and the right column represents the different between the first two 

columns. The smoother ensembles are obtained from the fixed-lag EnKS algorithm with 

lag A = 1.5 hours. 

The ensemble results in Figures 4-15 provide reasonable rainfall fields over a coarser 

scale that match the measurement data from NOWRAD. The results have correlation in 

space and time. However, it cannot provide fine scale features of rainfall, nor can it be 

used to replace NORAD rainfall product. During this time interval, the data assimilation 

merges scattered ASOS rain gauge measurements at every hour and infrequent satellites 

images as shown in Figures 4-16. In addition, the RCR model only includes the GOES 

cloud-top temperature data at every hour and approximate dynamics of rainfall using 

relatively simple equations. Therefore, it is not fair to expect this data assimilation 

procedure to match fine scale rainfall of the NOWRAD data. The approach should 

provide better results at coarser scales where position errors are less important. 



Figure 4-15: The NOWRAD rainrate (left), the smoother ensemble mean (middle), and the 
differences of rainrate over the USGP region at every 3 hours during July 24', 2004 19:OO GMT 

to July 25', 2004 4:OO GMT 
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Figure 4-15: Samples of the USGP raw data available during July 24&, 2004 19:OO GMT 
to July 25m, 2004 4:00 GMT 

There are some aspects about the rainfall data assimilation project that should be 

emphasized. First, the RCR model cannot perform well where there is a large area of 

deep clouds (i.e., large region where GOES < TB). In this case, the rainfall ensemble 

generated with the RCR model is usually too scattered (e.g., Figure 4-17). The rainfall 

ensemble will not look realistic unless there are good quality measurements to update the 

ensemble. On the contrary, the RCR model will not generate new rain cells over the area 

with GOES cloud-top temperatures higher than TG. Hence, it usually underestimates low 

intensity rainfall (e.g., stratiform rainfall with low rainfall intensity and high cloud-top 

temperature). This problem has to do with the physics of the rainfall model and can be 

minimized to improve the RCR model. 

Secondly, the root mean square errors (RMSE) of the open-loop result directly fiom the 

RCR model, the forecast (i.e. state values that account for past information but not the 

current), the filter fiom the EnKF, and the fixed-lag smoother from the EnKS are 



illustrated in Figures 4-17. These RMSE's are evaluated with regard to NOWRAD 

rainrate data after aggregating to the 0.25 degree resolution and performing the moving 

average over 24 hours. Note that the RMSE is not a perfect performance indicator. It 

can be inaccurate, especially when there are significant position errors. By aggregating 

data to a coarser resolution (e.g., fiom 0.05 degree to 0.25 degree resolution), the position 

error is minimized and the RMSE provide a more reliable indicator of the accuracy at the 

coarser scale Figures 4-17 shows the open-loop result is always the most inaccurate. In 

general, the smoother ensemble provides more accurate results than the filter and the 

forecast. All RMSE's decrease during the dry down period, and increase when there is 

significant rainfall. The filter and smoother perform significantly better than the forecast 

when there are significant amounts of rainfall over a large region and there are good 

quality measurements available. The smoother can be worse than the filter or the 

forecast results, especially if the RMSE is evaluated at finer resolution. The 

measurements also play an important role in the accuracy of the EnKF and the EnKS. In 

general, during the period when there are many satellite-based measurements, the 

accuracy of the EnKF and EnKS improve significantly. 

1 -Day Moving Average Root Mean Square Error (RMSE) w/ respect to NOWRAD 
6 
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Days after 2004-06-01 
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Figure 4-17: The 1-day moving average RMSE of the open-loop, forecast, filter and smoother 
mean ensemble with regard to NOWRAD measurement over a 0.25 degree resolution 
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Finally, Figures 4-18 show examples of the filter results and the smoother results, and 

emphasize the ensemble spreading (i.e., standard derivation of the ensemble.) These 

properties are consistent with the synthetic experiment described in Section 4.3.4. In 

Figures 4-18, the left column (a,c,e) shows the update result and the right column shows 

the smoothing result. The first row represents the ensemble mean from the USGP project 

on June 1"' 2006 at 00:15 GMT. The second and the third row provide the associated 

RMSE and the ensemble spread, respectively. Lastly, the value in the parentheses on the 

title is the spatial average of the RMSE and the ensemble spread over the USGP region. 

Unlike the RMSE, the ensemble spread of the smoother is always significantly less than 

that of the update. Therefore, if the variation in the ensemble is of interest or the rainfall 

ensemble is to be used as input in a land-surface model, the filtering result (e.g., EnKF 

result) will provide more suitable ensemble than the smoothing result (e.g., EnKS result.) 



(e) ~ p d & e   TO (1 .6x103; m 15 
I 1 

fb) Moan Smooth: 0601 W:15 

Figure 4-17: Effects of the EnKS smooth ensemble over the EnKF update ensemble 



4.5 Conclusions 

This chapter focused on the ensemble data assimilation for merging multiple sources of 

rainfall measurement and producing a comprehensive rainfall ensemble. We first 

introduced the Ensemble Kalman filter (EnKF), its derivation and its formulation. The 

EnKF uses a dynamic model to propagate a state ensemble through time, and it uses the 

ensemble covariance to incorporate measurement data and update the forecast ensemble. 

The algorithm is efficient and proven to work well in many hydrological applications. 

However, when the ensemble size is small relative to the state or measurement 

dimension, the EnKF can become unstable. 

We substituted the matrix inversion algorithm in the EnKF with the stable pseudo- 

inversion technique. The new EnKF is proven to be more stable than the original one, 

especially for a small ensemble size. Moreover, we provided the SVD sampling strategy 

in the Appendix C for minimizing sampling error. Next, we accounted for future 

measurements by using the Ensemble Kalman smoother (EnKS) algorithm. The EnKS 

updates the current state with measurements from times after the estimation time using 

the correlation matrix. The algorithm is easy to implement and requires minimal 

computational cost if the EnKF has already been performed. Both the EnKF and EnKS 

algorithms were implemented on synthetic experiments and the both algorithms showed 

good estimation results. The EnKS algorithm provides superior results when the time of 

interest and later measurement times are close. 

After choosing the appropriate data assimilation technique, we estimated the parameters 

of the RCR rainfall model by using the state-augmentation technique. This technique 

treats the parameters as random variables and updates them in real-time along with the 

state ensemble. The synthetic experiments illustrated that the state-augmentation could 

provide good estimate of the model parameters when the conditions were right. These 

conditions are (1) the ensemble size must be relatively large, (2) the measurement data 

should be sufficient in space and time and be of good quality, and (3) reasonable initial 



conditions must be given. We were unable to estimate the model parameters in real time 

because of computation limitations. Therefore, we estimated parameters off-line using 

different storm events and used the results as guidelines to create time-invariant 

parameters for the USGP project. Next, we created measurement perturbations from the 

position error statistics and intensity error statistic given in Chapter 2. 

Finally, we implemented the ensemble data assimilation on the USGP project using the 

EnKF and EnKS with the RCR model. We were able to efficiently merge multiple 

sources of rainfall measurements and provide a reasonable comprehensive rainfall 

ensemble. However, the results can only be comparable to NOWRAD measurement at 

coarser resolutions. This study's approach cannot capture fine scale features and 

characteristics of rainfall. The result from merging multiple scattered measurements 

with a simple stochastic based model cannot replace NOWRAD data. We should not 

expect this data assimilation procedure to match fine scale rainfall data or to compete 

with complex meteorological modeling. The algorithm, however, may be used for 

coarser scale analyses. It is fast, simple, and easy to implement. In addition, it can 

provide an ensemble of a rainfall field that captures correlations in space and time. 



Chapter 5 

Parameter Estimation for the Multiplicative 

Cascade Rainfall Model Using the EM-SRE 

Algorithm 

5.1 Introduction 

This chapter provides method for estimating the scaling parameters of the multiplicative 

cascade rainfall model and its associated measurement error variance. These unknown 

parameters are estimated using the Expectation-Maximization technique on the Scale- 

Recursive Estimation (EM-SRE) framework. The multiplicative cascade model [54, 94, 

97, 98, 112  114  1161 is well known to provide reasonable spatial characteristics of 

rainfall. In addition, we can use this algorithm to merge static rainfall data from multiple 

measurement sources. This chapter emphasizes two major concerns when applying the 

multiplicative cascade rainfall model: (1) rainfall intermittency and (2) identifiability and 

uniqueness of the scaling parameters and measurement variances. The tree pruning 

technique is proposed to solve the rainfall intermittency issue, while the expectation- 

maximization (EM) algorithm is applied to estimate all unknown parameters in the SRE 

algorithm. 

The organization of this chapter is as follows. In the next section, we introduce the scale- 

recursive representation and outlines of the SRE framework in a general formulation. 



Section 5.3 presents the multiplicative cascade rainfall model in the form that can fit the 

SRE algorithm. We also point out some special properties and limitations of this rainfall 

representation. In Section 5.4, the tree pruning technique is proposed for dealing with 

rainfall intermittency. Next, Section 5.5 discusses the expectation-maximization (EM) 

algorithm for estimating the SRE parameters. We focus on identifiability and uniqueness 

of the SRE parameters, as well as test the parameter sensitivities to changes in SRE 

structure. In Section 5.6, we apply the combined expectation maximization and the scale- 

recursive estimation (EM-SRE) algorithm to estimate rainfall intensity, scaling 

parameters and a measurement variance of the NOWRAD rainfall observation. Finally, 

we discuss the SRE algorithm and conclude the chapter in Section 5.7. 

5.2 A Scale-Recursive Estimation Algorithm 

5.2.1 The Scale-Recursive Representation 

The Scale Recursive Estimation (SRE) algorithm represents the state of interest by a 

pyramidal-like grid (2-D) or by an inverse tree structure (1-D) [21, 761, as illustrated in 

Figure 5- 1. For convenience, the word "tree" will be used to represent both the 1 -D and 

the 2-D structure. The top node on the tree, called the "root node", embodies total areas 

of interest. The bottom nodes, referred to as a "leaf nodes", represent a random variables 

at the finest scale where the finest observations are available. Nodes in the middle scales 

usually correspond to the coarser observations. 

Let m(s) be the level of node s on an M-level tree, whose root node has m(s) = 0 and the 

leaf nodes have m(s) = M. Thus, there are a total of M+I scales on an M-level tree. For 

a node s at a level m(s), we denote its parent at level m(s)-I by sy, and its q children at 

level m(s)+I by sai; i=l ...q. The value q is called the branch number and usually is a 

constant across all scales on the tree. Hence, a number of nodes on each level is equal to 



gm(s). Furthermore, let x(s) and z(s) denote a state vector and a measurement vector at 

node s, respectively. 

Parent Node, Sy 
and Common Predecessor for s and t 

s q  sa, sa, sa, t 
-I" Child Node 

[a) M-level Tree on I-D Representation 

\ Root Node 
\ rn[s)=O 

[b) M-level Tree on 2-D Representation 

Figure 5-1: Examples of scale-recursive structures with (a) a one-dimensional inverse-tree, and 
(b) a two-dimensional pyramidal-like grid 

The scale-recursive dynamic model propagates state information from node sy  to s, and 

the measurement equation linearly relates an observation to a state at node s via, 

where w(s) is a process noise, and v(s) is a measurement noise. Both w(s) and v(s) are 

independent, zero-mean white noise processes with covariance matrices Q(s) and R(s), 

respectively. The term F(s)x(sy) denotes a coarse-to-fine scale prediction with w(s) 

representing higher resolution details. From (5.1), a prior covariance matrix at node s 

and a prior cross-covariance matrix between node s and t are given by 



where node sAt is the finest common predecessor of the node s  and the node t. @o is 

given by: 

5.2.2 The Two-Sweep SRE Algorithm 

Given the scale-recursive model equation (5.1) and (5.2), the SRE algorithm optimally 

estimates the state conditioned on all measurements on the tree. The SRE algorithm 

consists of an upward fine-to-coarse filtering sweep followed by a downward coarse-to- 

fine smoothing sweep. The upward and downward sweeps are analogous to the temporal 

Kalman filter algorithm and the Rauch-Tung-Striebel (RTS) smoothing algorithm [43], 

respectively. However, the SRE algorithm propagates information through scale, instead 

of time. 

The SRE algorithm begins at the leaf nodes, and the information is first propagating up 

toward the root node. In order to propagate information upward in the recursive fashion, 

equation (5.1) is modified to be: 

x ( s y )  = F ( s ) x ( s ) + G ( s )  

F ( S ) = & ( S ~ ) F ~ ( S ) & - ~ ( S )  . 

with, 

Q ( s )  = E [ G ( s )  G' ( s ) ]  = P, ( S  y )  - F ( s )  ( s )  FT ( s )  
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where (s) represents the upward propagation function, and G(s) is the upward process 

noise. Note that@(s) is a zero mean white noise with a covariance~(s)  and 

uncorrelated withx(s) . In addition, we assume that the prior covariance matrix at node 

s, denoted b y e  (s) ,  is known. Thus, p ( s )  and G(s) can be specified before applying 

the SRE algorithm. 

At each scale, the upward fine-to-coarse filtering sweep consists of three steps: (1) the 

update step, (2) the prediction step, and (3) the merging step. We denote the set of all 

measurements at node s and all nodes under s as Y, and the set of all measurements 

strictly under node s as q. The update step incorporates the measurement y(s) at node s 

to provide an update estimate i ( s  I Y,) and its corresponding update covariance ~ ( s  I Y,) 

from 

where the Kalman gain matrix K(s) is given by, 

Next, the prediction step propagates the update estimate one-scale level upward using 

(5.6). Suppose that we obtain all updated statesi(sa; I Y,,) and covariance matrices 

~ ( s a ,  15,) at all children nodes below node s; and the fine-to-coarse predicted 

estimates are given by: 



These predicted estimates from all children nodes are merged to obtain one best 

prediction of the state at node s  in the merging step, 

where the branching number q denotes the total number of children nodes under the 

current node s. The update, prediction and merging steps are recursively repeated 

upward until reaching the root node. Next, the downward sweep begins. It computes 

smooth estimates and corresponding covariance matrices conditioned on all available 

measurements on the tree. Let YA represent all available measurements on the tree. At 

the root node, YA is equal to Y,. Thus, the smooth estimate i ( s  1 YA)  and 

covariance P ( s  1 YA ) are equal to i ( s  1 Y, ) and P ( s  1 Y, ) , respectively. The smooth 

estimates at subsequent levels are given by 

i ( s  I yA) = i ( s  I q ) +  J ( s ) [ ~ ( s Y  I Y ~ ) - ~ ( s Y  1 Y,)] 

~ ( s  I Y,) = P ( S  1 Y,)+ J ( S ) [ P ( S Y  I Y A ) - P ( S Y  1 Y,)] J' ( 8 )  

with 

J ( S )  = P ( S  1 ~ , ) F ' ( s ) p - ~ ( s y  I Y,) (5.18) 

Note that i ( s y  I % ) and P ( s y  I Y, ) are the predicted state and covariance before the 

merging step. They are obtained from (5.12) and (5.13), respectively. The coarse-to-fine 
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smoothing sweep recursively propagates information downward until reaching the finest 

scale. Consequently, all final estimates are optimally conditioned on all available 

measurements on the tree. 

5.2.3 Characteristics of SRE Framework 

There are a few important characteristics of the SRE algorithm that should be 

emphasized. First, the parameters F(s) and Q(s) govern the prior correlations among all 

nodes and implicitly represent the full prior covariance matrix (i.e., covariance matrix 

with a full state vector from all nodes on the tree). The SRE framework tends to generate 

a blocky covariance matrix, which can be inconsistent with physical properties of the 

process. For example, look at the nodes s a ~ ,  sa4 and t in Figure 5-1 and assuming that 

F(s) = 1. It is easy to verify from equation (5.4) that the cross- 

covariance c (sa,  , sa, ) = P ( s )  is greater than the cross-covariance c (sa,  , t ) = P ( s y  ), 

even though the physical distance from s a ~  to sa4 and the distance from sa4 to t are the 

same. Nevertheless, their correlations are sufficient for capturing a variety of scale- 

dependent effects and proven to provide reasonable estimates of the states of interest. 

Second, the smooth estimates obtained from (5.16) and (5.17) are equivalent to those 

calculated fiom a one-step temporal Kalman filter with a 111 state vector (i.e., an 

augmented state from all nodes.) These estimates are the best linear least-square 

estimators and are optimal only if all variables in (5.1) and (5.2) are jointly Gaussian. 

However, the SRE algorithm never explicitly calculates the full covariance matrix. 

Therefore, the SRE algorithm is much more efficient and more practical for a large 

system. Moreover, the prior cross-covariance matrix and the posterior-covariance matrix 

between any two nodes after incorporating all available measurement [76] are given by 



5.3 Multiplicative Cascade Rainfall Model 

Various studies in past decades support scaling properties of spatial rainfall. These 

studies include multi-fractal characterizations [75, 79, 85, 1171, multiplicative cascade 

models and clustered point processes [54, 94, 97, 98, 112, 114, 1161. These fractal or 

multiplicative cascade rainfall models fit nicely with the SRE framework. The model is 

proven to be useful for rainfall data assimilation purposes [42, 47, 701, as well as rainfall 

model verification purposes [99, 1261. 

To employ the multiplicative cascade rainfall model with the SRE framework, we 

commonly use the normalized rainrate instead of actual rainrate. The multiplicative 

cascade rainfall model states that the normalized rainrate state at node s, denoted by a 

capital X(s), is log-normally distributed. It evolves from a coarser scale m(sy) to the next 

finer scale m(s) by multiplying with a cascade weight, W(s): 

where Ws are mutually independent random variables. Assume that both W(s) and X(s) 

are log-normally distributed with mean of 1 -0, e.g. 



By taking the log of (5.21), we obtain the additive form of the dynamic model in equation 

(5.1) with all F(s) equals to 1.0. Similarly, we assume that the rainrate observation Y(s) is 

related to the state X(s) by 

where V(s) is a log-normal measurement noise and uncorrelated with the state, e.g. 

By taking the log of (5.24), we arrive at the measurement equation (5.2) with H(s) equal 

to 1 .O. We refer to x(s) and y(s) as a log-rainfall state and a log-rainfall measurement at 

node s, respectively. The log-transformed state-space equations for the multiplicative 

cascade rainfall model are given by: 

where process noise w(s) and measurement noise v(s) are mutually independent white 

noise processes with zero-mean and variances o:(s) and a: (s) , respectively. With the 

state-space equations (5.26) and (5.27), the SRE framework in Sections 5.2.1 and 5.2.2 

can be easily applied to the multiplicative cascade rainfall model. 

There are some properties of the SRE algorithm that should be noted when being applied 

to the scale-recursive cascade rainfall model. First, the state and measurement variables 

in (5.26) and (5.27) are scalar values. Consequently, all covariance matrices P(s)'s in the 

SRE algorithm are also scalar values, and their inverses required for the Kalman gain in 

equation (5.1 1) are cheap to calculate. 



Second, the scale-homogeneity is normally assumed when using the SRE algorithm with 

the cascade rainfall model. The scale-homogeneity constraint assumes that the 

parameters are homogeneous across one scale but may vary fiom scale to scale (e.g., 

P, (s) = cr:o (m(s)) , Q(s) = 0: (m(s)) , and R(s) = o: (m(s)) for all nodes s on the same 

scale m(s)). Thus, on any M-level tree with k levels of observations, there are M+k+l 

unknown parameters. These parameters are (1) one-Po(0) at the root node, (2) M-Q(s)'s 

at all transition levels, and (3) k-R(s)'s at all observation levels. These parameters affect 

the estimation result and their values must be known before applying the SRE algorithm. 

Third, when all F(s) 's are equal to 1.0, a prior cross-covariance between any two nodes is 

simply a variance at their common predecessor (e.g., given by equations (5.4) and (5.5)). 

If the scale homogeneous assumption is applied, the scale-recursive representation 

always generates a blocky covariance matrix. This covariance matrix may be 

inconsistent with true physical properties of rainfall, as mentioned in Section 5.2.3. In 

addition, a change in the scale-recursive structure (e.g., change in the total number of 

scales and the branch number) affects the prior covariance matrix, and can influence the 

estimation of the rainfall state. 

Finally, the posterior estimates after incorporating all measurements are no longer scale- 

homogenous if there is any missing data. From (5.19) and (5.20), it can be seen that the 

value of J(s) at each node varies depending on availability of measurements in its 

vicinity. Furthermore, the cross-covariance can become even more complex if these 

posterior rainfall states are dynamically advecting in space. Consequently, we cannot 

reconstruct the state-space model with F(s) = 1.0 and with the scale-homogeneity 

assumption at the next time step. It thus seems that the SRE algorithm with the 

multiplicative cascade rainfall model is not applicable for the temporal dynamics of 

rainfall. 



5.4 Rainfall Intermittency and the Tree-Pruning Technique 

A major problem in applying the multiplicative cascade rainfall model in the SRE 

framework is rainfall intermittency (i.e., when rainrate is equal to zero). Since the states 

and the measurements on the tree are the log-transformation of rainfall rate, they are 

undefined when rainfall intensity is zero. There are a number of proposed techniques to 

deal with rainfall intermittency on the multiplicative cascade rainfall model. The most 

prominent and perhaps the simplest method is to set a minimum threshold of rainrate to a 

small but positive number. This causes the log-transform of the rainrate to be valid, and 

allows the SRE to be utilized. Nevertheless, it is shown that the estimates strongly 

depend on the threshold value [42]. From our experience with the threshold technique, 

the results are generally unstable when the threshold is too low. On the other hand, 

setting the threshold too high creates strange artifacts and alters the estimation results. 

By selecting a reasonable threshold, the SRE algorithm can perform well when there are 

only a few zero rainrate measurements. Unfortunately, a rainfall field usually contains 

large portions of dry regions. This creates a distribution that concentrates around the 

threshold value. Consequently, the Gaussian assumption is severely violated, and the 

estimation accuracy drastically reduces. Alternatively, [42] and [52] proposed a 

transformation method that raises the measurement to some empirical power. This 

transformation mimics the Gaussian distribution in a way similar to the logarithmic 

transformation. This method is less subjective than using the threshold. Nevertheless, 

when there are many zero measurements, the spatial distribution still concentrates around 

zero. Again, the Gaussian assumption is severely violated and the estimates can be 

inaccurate. 

Although some methods have been developed to account for intermittency in rainfall 

estimation, we propose a tree pruning technique that excludes regions with zero rainrate 

from the SRE algorithm altogether. As the name suggests, the tree pruning technique 

ignores information on nodes with zero rainrate observations. Beginning at the finest 

scale, node with the zero-rainfall observation is removed. Then at coarser scales, if all 



children nodes are removed, the current node is excluded. The pruning procedure 

continues until we reach the root node. At this stage, we obtain the pruned tree (the solid 

line in Figure 5-2), consisting of only rainy nodes with finite logarithmic value. This 

pruned tree is then used to estimate the log-rainfall by the SRE algorithm. 

Root Node 

eaf Nodes 
m(s) = M 

Figure 5-2: A pruned tree with zero-rainfall intensity nodes (black nodes) removed 

To make the technique consistent, the tree pruning is based on the measurement at the 

finest scale available. If any node on the pruned tree has a zero rainfall measurement, we 

will assume that the measurement at that node is missing. This assumption is based on 

the fact that the finer scale observations are usually the most accurate in measuring zero 

rainrate. If we know that any coarser scale measurement is more reliable, we may adjust 

the method accordingly. With the tree-pruning technique, the SRE algorithm and all its 

procedures to obtain the smooth estimates remain unchanged. The only exception is that 

the number of children nodes q in the merging step (e.g., equations (5.14) and (5.15)) has 

to be adjusted for the new tree structure. Moreover, the Gaussian assumption is valid no 

matter how large the zero rainfall regions are as long as the underlying distribution of 

rainy regions is Gaussian. It is important to note that the estimates from the tree pruning 

technique are sub-optimal estimators in the sense that they do not use all available 



observations in the update (e.g., they ignore zero rainrate measurements). While the 

former techniques use all available data including zero-rainrate when updating their 

states, the concentration around zero or the threshold value skews the distribution and 

decrease the accuracy of the result. Therefore, the results from the SRE algorithm are 

more reliable with the tree pruning than the former techniques. 

5.5 Parameter Estimation of the SRE Algorithm 

There are M+k+l unknown parameters when the SRE algorithm is applied to the 

multiplicative cascade rainfall model under the scale-homogeneity assumption. 

Ultimately, the accuracy of these unknown parameters determines the quality of rainfall 

estimates from the SRE algorithm. In this section, we introduce the expectation- 

maximization (EM) algorithm for estimating these unknown parameters. We then focus 

on the identifiability, uniqueness and sensitivity of model parameters to the change in the 

scale-recursive structure. 

5.5.1 The Expectation-Maximization (EM) Algorithm 

The expectation-maximization (EM) algorithm [29] is the iterative algorithm designed to 

provide the maximum-likelihood (ML) estimates of parameters. This algorithm is 

suitable for a problem where a direct access to necessary data for estimating the 

parameters is unavailable, or when some of the data are missing. The EM algorithm is 

proven to be useful and is commonly used in many applications, including parameter 

estimation, ARMA modeling, image modeling reconstruction and processing, 

simultaneous detection and estimation, pattern recognition and neural networking 

training, etc. Readers should refer to [88] for a list of references, detailed descriptions 

and applications of the EM algorithm. 



The EM algorithm consists of two major steps in each iteration: (1) the expectation step, 

and (2) the maximization step. The expectation step, or the E-step, computes the 

conditional expectations of sufficient statistics using the current estimate of the 

parameters and the posterior states conditioned on all observations. Then the 

maximization or the M-step re-estimates new model parameters from those sufficient 

statistics. These two steps are iterated until the parameters converge. The algorithm is 

known to converge, but possibly to a local instead of the global optimum. However, in 

many applications, the EM algorithm usually converges to the global optimum solution 

typically within a few iterations. 

5.5.2 The EM-SRE Algorithm for the Multiplicative Cascade Rainfall 

Model 

[65] derived the EM algorithm formula specifically to fit the SRE framework. The 

combined expectation-maximization with the scale-recursive estimation (EM-SRE) 

algorithm provides an effective and straightforward framework to estimate both the 

unknown parameters and the states of interest. Let all unknown parameters of the SRE 

algorithm be denoted by 8: this represents P(0) at the root node, and F(s), Q(s), H(s), and 

R(s) for all nodes on the tree. The EM-SRE algorithm estimates the parameters by 

iteratively maximizing the expected log-likelihood of the observed data from all 

independent runs i = 1, . . . , N: 



where X: and Y: are the full state vector and the full measurement vector constructed by 

augmenting all states and observations on the tree for independent run i. Then the log- 

likelihood < (xi, y, 8) is given by 

The subset SI in equation (5.29) represents the set of all but the root node, while S2 is the 

set of all measurement nodes. By maximizing the expected likelihood (5.29) using 

multivariable regression in the M-step, the new estimates of the SRE parameters are 

where the operator I[*] represents the averages across all independent runs i of the 

expected sufficient statistics over all nodes that share the same statistics, e.g. 

These expected quantities in equations (5.30) to (5.34) are calculated in the E-step using 

posterior estimates and measurements from the SRE algorithm with older parameters 

from the previous iteration: 
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E [x(s)xT ( s )  I Y:] = ~ ( s  I Y:) + ?(s I yi) iT ( s  I Y;) 

E [ X ( S ) X ~ ( S ~ )  1 Y;] = C(s,sy I ~ i ) + i ( s  I ~;)?'(sy I Y:) 

E [ y(s)xT ( s )  I Y: ] = y(s)  iT ( s  I Y ' )  

E[y(s )yT(s )  I Y'] = y(s ) .yT(s )  

where the posterior cross-covariance C(s, s y I Y:) can be obtained from (5.19), e.g. 

In addition, at the node where the measurement is missing, the expected statistics 

E [y(s)xT ( s )  ( Y' ] and E [ y ( s )  yT ( s )  1 Y; ] in equations (5.38) and (5.38) are calculated 

from 

In conclusion, all expected sufficient statistics are calculated from equations (5.36) - 

(5.42) using the old parameters in the E-step, and the new parameters are updated using 

equation (5.30) - (5.34) in the M-step. Performing the E and M steps iteratively will 

eventually will lead to a converged estimation of the parameter set 0; this is commonly 

referred to as a maximum-likelihood (ML) estimate. 



5.5.3 Identifiability and Uniqueness 

It was shown that if parameters are scale invariant (e.g. F(s) = F, H(s) = H, Q(s) = Q for 

all nodes on the tree) and the measurement noise variance R(s) is given, the EM usually 

converges to true parameters [52, 651. From our experiments, the EM-SRE algorithm 

can also estimate all process noise variances Q(s)'s under the scale-homogeneity 

assumption. The estimated parameters converge regardless of number of measurement 

scales used as long as all the measurement error variances R(s)'s are specified. This 

implies that the spatial correlation of the observations on the SRE structure contain much 

more information about the scaling properties and should be able to estimate more 

unknown parameters than suggested by [52]. This motivates us to explore the maximum 

limit of the parameters uniquely identifiable by the EM-SRE algorithm. 

Using the scale-homogeneity assumption, our multiplicative cascade rainfall model on an 

M-level tree consists of M+k+l unknown parameters, where k is the total number of 

measurement scales. These unknown parameters are one-state variance at the root node 

P(O), M-process noise variances Q(s) at all M transition scales, and k-measurement noise 

variances R(s) at all k observation scales. To find the maximum number of parameters 

that can be uniquely identified by the EM-SRE aglroithm, we seek the existing Cramer- 

Rao Bounds (CRB). Since our underlying distributions are Gaussian according to the 

multiplicative cascade model assumption, if the CRB exist, the maximum likelihood 

estimators calculated from the EM-SRE algorithm must be efficient estimators that 

satisfy the CRB with equality. 

Appendix B gives detailed analysis of the CRB for M+k+l unknown parameters of the 

EM-SRE algorithm with the multiplicative cascade rainfall model. The analysis indicates 

that the CRB matrix of all M+k+l unknown parameters do not exist. However, the 

Fisher information, which is an inverse function of the CRB, is rank deficit by only 1 row 

(or column.) The rank deficiency in the Fisher information is because the rows (or 

columns) corresponding to the process noise variance at the finest scale Q(M) and the 

measurement noise at the finest scale R(M) are identical. These two columns always 
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represent Q(M) and R(M) in the summation form. Therefore, if we treat the summation 

of process noise variance and measurement noise variance at the finest scale of the M- 

level tree as one unknown variable, e.g. Q(M)+R(M), the CRB matrix will exist. 

The CRB analysis implies that if either the process noise at the finest scale Q(M) or the 

measurement noise variance at the finest scale R(M) is specified, the EM-SRE algorithm 

can estimate up to all the remaining M+k parameters. This implication is true regardless 

of the number of M or k. Thus, even if we have measurements only at the finest scale, we 

may be able to estimate all remaining parameters at all other scales assuming that one of 

the parameters is specified at the finest scale (e.g., Q(M) or R(M) is specified). 

Nevertheless, the CRl3 analysis gives only the maximum numbers parameters that can be 

estimated. The CRB analysis does not guarantee that all those M+k remaining 

parameters can always be estimated from the EM-SRE algorithm. 

We set up a series of synthetic experiments to test whether the EM-SRE algorithm can 

accurately estimate M+k parameters of an M-level tree when R(M) is specified according 

to the CRl3 analysis. One thousand independent replicates are generated on an 8-level 

tree with a branching number of 2 x 2 in two-dimensional space using the state-space 

equations (5.27) and (5.28). The parameters Q(s)'s and R(s)'s are specified in Table 5.1. 

The EM-SRE algorithm is employed for two different cases. In the first case, we use the 

measurement data at all 8 levels to estimate one Po(0) at the root node, all 8 Q(s)'s at all 

scale and 7 R(s)'s at all but the finest scale. The second case uses only the measurements 

at the finest scale to estimate one Po(0) at the root node and all 8 Q(s)'s at all levels. In 

both cases, the measurement error variance at the finest scale R(M) is given. 



Ensemble means of the scale-recursive parameters and their ensemble standard deviations 

that are found using the Monte Carlo technique with 1000 independent replicates are 

shown in Figure 5-3. For each individual replicate, the parameters are estimated fiom 

only one run. In other words, "7 in equation (5.35) is equal to 1 and the expectation is an 

average over all nodes that share the same parameter. Consequently, parameters at the 

root node and coarser scales are prone to more error because of inadequate sampling 

average in the expectation values, as indicated by a larger standard deviation. 

Nevertheless, all parameters estimated from the EM-SRE algorithms converge to the true 

values, even when the process noise variances Q(s)'s and measurement noise variances 

R(s)'s vary with scale. In addition, there are insignificant differences between using all 

measurements at all scales (case 1) and using only measurements at the finest scale (case 

2). Thus, when the measurement noise variance at the fmest scale R ( '  is given, the 

EM-SRE algorithm can asymptotically estimate all the remaining M+k parameters on the 

M-level tree regardless of the number of measurement scale k. In addition, the accuracy 

of each parameter greatly depends on how many nodes share the same parameters. 

Table 5.1: Root-node error variance P(0) -Q(O), process error variance Q(s), and measurement 

'True' Parameters on an 8-level tree 

4 
5 
6 
7 
8 

16 x 16 
32 x 32 
64 x 64 

128 x 128 
256 x 256 

0.90 
0.70 
0.50 
0.30 
0.10 

0.50 
0.40 
0.30 
0.20 
0.10 
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Figure 5-3: (a) Process noise variances and (b) measurement noise variance estimated from the 
EM-SRE algorithm from: case A - observations fiom all scales, and case B - observations only 

from the fmest scale 

Further experiments showed that the EM-SRE algorithm can estimate all the remaining 

parameters as well if the process noise variance at the finest scale Q(ly) is given instead 

of the measurement noise variance at the fmest scale R(ly). However, when neither 

Q ( m  or R(M) is given (e.g., estimating all M+k+l unknown parameters on the tree), the 

EM-SRE algorithm can correctly estimate all process noise variances and measurement 

noise variances at all scales except for those at the finest scale. At the finest scale, 

however, the summation of process noise and measurement noise variances Q(M)+R(W 



converges to the true summation. These results agree well with the CRB analysis 

mentioned earlier. 

It may be possible to estimate all M+k+l unknown parameters using the EM-SRE 

algorithm if there is a trend on the Q(s) values from scale to scale. The following 

procedure is proposed. First, we use the EM-SRE algorithm to estimate all M+k+l 

unknown parameters; thus, we should obtain M+k-1 parameters at all but the finest scale. 

At the finest scale, we are only interested in the summation Q(M)+R(M) from the EM 

algorithm and ignore individual values of Q(M) and R(M). Next, we extrapolate for 

from Q(s)'s at coarser scales to find Q(M) at the finest scale. Finally, we subtract the 

extrapolated Q(M) from the summation Q(M)+R(M) to obtain R(M). Note that we can 

work with the state variance Po(@) as well because it is the cumulative sum of Q(s) from 

the root node down to the current node s. This may become usehl if there is a stronger 

trend in Po(s) than in Q(s). In this case, the extrapolated Po(W is subtracted out from the 

summation Po(M) +R(M). 



5.5.4 Parameter Sensitivity to Changes in the Tree Structure 

The correlations among all nodes on the tree depend on the tree structure as given in 

equations (5.4) and (5.5). When the SRE algorithm is applied, only one tree structure is 

usually used. The EM-SRE algorithm will provide the scaling parameters that best fit the 

data to that particular tree structure. These parameters best describe the correlations 

among all nodes under that tree constraint. However, the best tree structure to fit the data 

and give the best correlations is unknown. Unfortunately, it is difficult to anticipate 

differences in estimated parameters calculated from the EM-SRE algorithm when the tree 

structure changes. Thus, it is beneficial to investigate the sensitivity of the parameters 

obtained from the EM-SRE algorithm when the tree structure changes. 

To perform the sensitivity analysis, we use the same synthetic observation generated 

from the previous experiment, but only at every other scale (e.g., m(s) = 0, 2, 4, 6, 8). 

We assume that these observations are from a 4-level tree, as shown in Figure 5-4. Then, 

we employ the EM-SRE algorithm to find all the scaling parameters of the 4-level tree 

given that measurement error variance at the finest scale R(M) is known. Finally, we 

compare scaling parameters of the 4-level tree with those of the original 8-level tree 

given in the previous section. If the parameters calculated from the EM-SRE algorithm 

are not sensitive to changes in the tree structure, we would expect to see the same state 

variances Po@) and measurement variances R(s). Moreover, the process noise variance 

Q(s) of the 4-level tree should be twice the values from the 8-level tree. Nevertheless, we 

would expect some differences because it is clear that the correlation among all nodes has 

changed and the EM-SRE algorithm should compensate for these changes. 



3 8  x 28 nodes at the finest scale, m(s) = 8 

(a) 8-level tree w/ q = 2 x 2 
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Figure 5-4: One-dimensional diagram of (a) the 8-level tree with branching number of 2 x 2, and 
(b) the 4-level tree structure with branching number of 4 x 4 

The result of the sensitivity analysis is shown in Figure 5-5. The mean of the state 

variances Po(s)'s and measurement noise variances R(s)'s from 1000 independent runs 

are plotted against the original 8-level tree scales. The result shows that the state 

variances Po($ obtained from both the Clevel tree and the 8-level tree are the very 

similar. This implies that the state noise variance Po($ and the process noise variance 

Q(s) are insensitive to changes in the tree structures. However, the measurement noise 

variances R(s) estimated from the Clevel tree are higher than those of the original 8-level 

tree. This means that the EM-SRE algorithm believes that the error in the cross 

covariance structure is due to the measurement error and compensates by inflating the 

measurement noise variance. 

We recommended using the maximum number of levels or the tallest tree possible when 

using the EM-SRE algorithm to estimate the scaling parameters. For example, if there 

are 256 x 256 grids at the finest scale, it may be more conservative to construct an 8-level 

tree with a branching number of 2 x 2 instead of 2-level tree with branching number of 16 

x 16. Although a taller tree requires more parameters to be estimated, additional cost 



when using the EM-SRE algorithm is insignificant. With a taller tree, the blocky effect 

in the cross covariance matrix is less prominent. In addition, there are more correlations 

among all nodes on the tree, which is beneficial when there are a large number of missing 

observations. Furthermore, with more parameters it is easier to draw a trend in the 

parameters and extrapolate parameters at the coarser scales or at the finest scale. 

Extrapolated parameters at the coarser scales can be used to adjust the parameters 

obtained directly from the EM-SRE algorithm. Since there are less nodes, parameters at 

these coarser scales are normally inaccurate. In addition, we can use the extrapolated 

state variance or process noise variance at the finest scale to identify measurement noise 

variance at the finest scale as described earlier. 
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Figure 5 5 :  (a) State variances and (b) measurement noise variances estimated from the EM-SRE 
algorithm fiom the 8-level and Clevel tree structure 



5.6 The EM-SRE Algorithm with NOWRAD Measurements 

The purpose of this section is to demonstrate that the tree-pruning technique with the 

EM-SRE algorithm can be used to estimate the scaling parameters and measurement error 

statistics fiom real rainfall observation data. We will not focus on multiple scales data 

assimilation in this section since it has been mentioned in many studies including [47, 

521. In addition, since NOWRAD observations are very accurate and comprehensive in 

space, having measurements at coarser resolutions is unlikely to improve significantly the 

accuracy of the rainfall estimates. 

Rainfall observations used in this experiment are 15-minute cumulative NOWRAD data 

provided by the Atmospheric and Environmental Research Incorporation (AER). 

Rainfall intensity data in Figure 5-6a shows a severe convective storm at 20:30 UTC on 

Aug 19, 2004 over the latitudes 31.8 %-33 % and the longitudes 97.2w-96 w, 
approximately above Oklahoma. The normal probability plot of the log-rainrate 

observation data after applying the tree-pruning technique is also shown in Figure 5-6b to 

illustrate that the Gaussian assumption is acceptable. 

Normal Ptubability Plot 

Data 

Figure 5-6: (a) 15-minute NOWRAD rainfall observations and @) the normal probability plot 
after pruning out zero rainrate of a convective storm on Aug. 19,2004 at 20:30:00 GMT over the 

longitude of 97.2" W - 96" W and the latitude of 3 1 .8" N - 33" N 



The data are available over a 128 x 128 pixel2 grid. We use a 6-level tree with the 

branching number of 2 x 2, and a 3-level tree with the branching number of 4 x 4 to fit 

this NOWRAD data. Since there is only one measurement scale and the measurement 

noise variance is unknown, the EM-SRE algorithm can uniquely estimate state variance 

Po(s) at all but the finest scale. In addition, it provides the summation of state variance 

and measurement noise variance at the finest scale Po(M)+R(M). Figure 5-7 shows the 

semi-log plot of estimated state variances Po($ 's obtained from the EM-SRE algorithm 

using the 6-level and the 5-level tree. The state variances are plotted against the length 

scale ratio, defined as the length of the cell at scale m(s) over the length of the root node. 

This plot is commonly used in multifiactal studies and usually establishes a straight-line 

relationship. However, our result gives a slightly non-linear concave trend in Po(s). 

State Variance, Po(s), of the NEXRAD Data 

7-lewl tree 
4-lewl tree 

length 
0.1 

scale 

Figure 5-7: State variances P,(mJ estimated from the EM algorithm using the NOWRAD data 
using 7-level tree (pink) and 4-level tree (green) on Aug. 19,2004 at 20:30:00 GMT over the 

longitudes of 97.2" W - 96" W and the latitudes of 3 1 .8" N - 33" N; the dashed line is for 
extrapolating the Po(W at the fmest scale 



To estimate the parameters at the finest scale, we extrapolate to find the state variance at 

the finest scale Po(M). The measurement noise variance at the finest scale R(w can be 

estimated from subtracting extrapolated Po(M)I from the summation Po(M) +R(w 

calculated with the EM-SRE algorithm. Table 5-2 summarizes the estimated parameters 

at the finest scale using the EM-SRE algorithm and the extrapolation technique. The 

table shows that the NOWRAD observations have log-error variance around 0.03-0.04 

units. The multiplicative noise variance, e.g. variance of V(s) in equation (5.24), is given 

by 

Note that this multiplicative noise variance is unitless with a mean of 1.0. Our 

experiment indicates that the multiplicative noise variance of the NEXRAD data is 

around 0.03-0.04, which is considered very accurate. It also implies that the scale- 

recursive structure fits well with real rainfall field. 

Table 5.2: The estimated measurement noise variance obtained from the EM algorithm 
summation parameters Px(M)+R(M) and extrapolated Px(M) in Figure 5-7 



5.7 Conclusions 

This chapter presented the combined expectation-maximization with the scale-recursive 

estimation (EM-SRE) algorithm for estimating rainfall states and scaling parameters 

conditioned on rainfall observations at various scales. The EM-SRE algorithm can be 

used to merge static rainfall data given at various measurement scales as well as to 

estimate unknown parameters including the log-rainfall measurement error variance. 

This algorithm is simple, yet effective and can be applied to a very large problem. It 

calculates the best linear least-square estimates of the rainfall state given all observations, 

and it is optimal if rainfall exhibits a log-normal relationship. In addition, the EM-SRE 

algorithm iteratively estimates maximum-likelihood scaling parameters that best describe 

the observations on the tree structures. However, the scale recursive structure results in a 

blocky effect of the covariance structure. This artifact, however, does not cause 

significant error in estimating the state and can be minimized by using the tallest tree 

structure possible. We also focused on the rainfall intermittency problem and proposed 

the tree-pruning technique to avoid the logarithmic transform of zero rainfall 

measurement. 

With the EM-SRE algorithm, we could estimate all unknown scaling parameters on the 

tree structure if we specified either process noise variance or the measurement error 

variance at the finest scale. If there was a trend in process noise variances Q(s)'s or state 

variances P(s)'s, we could extrapolate to obtain the values at the finest scale. By 

subtracting the extrapolated parameters from the summation Q(M+R(M or Po(M)+R(M) 

obtained from the EM-SRE algorithm, we could estimate the measurement noise variance 

at the finest scale as well. Hence, it is possible to uniquely identify all M+k+l scale- 

homogenous parameters using the EM-SRE algorithm with extrapolation. Moreover, the 

state variance parameters are not very sensitive to the tree structure, but the measurement 

noise variances are. This is likely because the EM-SRE algorithm compensates for any 

error in the cross-correlation by inflating the measurement error. 





Chapter 6 

Conclusion and Future Research 

6.1 Conclusions and Contributions 

In Chapter 2, we proposed using the United States Great Plains (USGP) case study to 

illustrate concepts and implementations of the rainfall data assimilation. In the USGP 

project, there are six atmospheric forcing and rainfall measurement sources. The 

atmospheric forcing is provided by infrared cloud-top temperature images from the 

Geostationary Operational Environmental Satellite (GOES). This measurement was used 

in the rainfall model to provide information about cloud location and cloud depth. The 

remaining five rainfall measurement sources are the NOWRAD precipitation product, the 

Automated Surface Observing Station (ASOS), the Tropical Rainfall Measuring Mission 

(TRMM), the Special Sensor Microwave Imager (SSM/I), and the Advanced Microwave 

Sounding Unit-B (AMSU-B). Over the USGP region, accurate rainfall measurements 

from NOWRAD data is available at very fine frequency and resolution, and would thus 

dominate the data assimilation results. Consequently, NOWRAD data was excluded 

from the data assimilation scheme, and was instead used for validation purposes. 

The measurement error of each rainfall measurement source was estimated, using 

NOWRAD data as truth. We divided the measurement error into two categories: (1) 

position error and (2) intensity error. First, the position error and its statistics were 



obtained by utilizing the multi-resolution alignment (MRA) algorithm, which lines up 

rainfall measurements with corresponding NOWRAD data. The average offset distances 

fiom multiple storm events were collected and used to provide position error statistics. 

Second, the intensity error and its statistics were calculated from the residual between 

NOWRAD measurements and the aligned measurements. With these resulting statistical 

errors, we could generate a realistic ensemble of perturbed measurements, which are 

required in the data assimilation algorithm. 

To provide a comprehensive rainfall ensemble for the USGP project, we needed a rainfall 

model that can efficiently describe rainfall characteristics in space and time. This rainfall 

model was required to propagate local rainfall information from scatter measurement data 

to a specific place and time. The recursive clustered rainfall (RCR) model was 

introduced in Chapter 3 to meet these requirements. This spatiotemporal stochastic 

model was adapted from the cluster-point process rainfall model. It describes the rainfall 

process in two-dimensions using six parameters and provides a recursive form that can 

propagate rainfall through time at the any desired spatial or temporal resolution. 

However, the RCR model by itself cannot account for rainfall intermittency. 

To deal with intermittency, the RCR model incorporates cloud-top temperature from 

GOES. By choosing a reasonable temperature threshold, we can force the model to 

generate rainfall in realistic locations (e.g., inside deep cloud areas.) Furthermore, two 

consecutive GOES images can provide the velocity field by utilizing the multi-resolution 

alignment algorithm. This velocity field is needed for the RCR model to advect existing 

rainfall. The RCR model, forced with GOES data, is fast, efficient and reliable. It can 

generate a reasonable rainfall ensemble over a large area without simulating the complex 

physical dynamics needed for many metrological models. In addition, the RCR model 

requires only one forcing variable (e.g., GOES cloud-top temperature), which is usually 

available globally. Chapter 3 ended with the implementation of the RCR model with 

GOES forcing to generate large-scale rainfall over the USGP region. 



After developing an effective rainfall model in Chapter 3, we proposed in Chapter 4 the 

Ensemble Kalman filter (EnKF) as the appropriate data assimilation algorithm for 

merging the various sources of rainfall measurements and producing a comprehensive 

rainfall ensemble. The EnKF uses the state ensemble to calculate the necessary statistics 

(e.g., ensemble mean and covariance) to sequentially update the ensemble with new 

measurement information. We also produced a more stable pseudo-inversion technique 

for the EnKF. This technique can be extremely useful when the ensemble size is much 

smaller than the state dimension, as is the case in our USGP rainfall data assimilation 

problem. The EnKF is relatively fast, effective and is proven to work well in many 

hydrological data assimilation applications. It is a very powefil tool for merging 

measurement data in real-time applications. 

For a reanalysis problem in which the state of interest usually occurred prior to some of 

the observation times, the EnKF cannot account for any measurements after the 

estimation time. In this case, the Ensemble Kalman Smoother (EnKS), an extension of 

the EnKF, is more useful. It accounts for measurements after the estimation time by 

using the statistics provided by the forward EnKF algorithm. The EnKS is convenient, 

fast and requires only a minimal amount of extra calculation beyond the EnKF. 

We then estimated the model parameters by using the state-augmentation technique. 

This technique treats the parameters as additional states and updates them using the same 

methodology applied for updating actual states. Although the state-augmentation 

technique can estimate parameters in real time, it requires very large ensemble sizes in 

order to produce reliable parameter results. Because it is impractical to use a large 

ensemble in our rainfall data assimilation problem, we decided to estimate the parameters 

offline using many storm events over a smaller region and time interval. We were able to 

estimate the parameters by constraining them and providing reasonable initial conditions. 

The time-invariant parameters used in the USGP project were selected fiom these 

parameters estimation results. The three main elements in the data assimilation 

framework were then complete: (1) the RCR model with GOES forcing input with known 



parameters, (2) rainfall measurements with error statistics, and (3) the analysis algorithm 

(the EnKF and the EnKS). 

Finally, we implemented the data assimilation technique to calculate a comprehensive 

rainfall ensemble for the USGP project. It was shown that we could merge multiple 

sources of rainfall measurements and could produce a comprehensive rainfall ensemble 

using the RCR model and the EnKS algorithm. However, the algorithm cannot provide 

as fine scale features and characteristics of rainfall in as NOWRAD measurements. It is 

evident that we cannot replace the NOWRAD data using a simple stochastic rainfall 

model and available measurements, because they are too scattered in space or time. 

Nevertheless, given the limited availability and often poor quality of the raw 

measurements, the data assimilation proposed can provide satisfying coarse scale results 

over a large region. The algorithm can generate multiple realizations of rainfall, which 

are essential in many ensemble-based land-surface models. It is fast, efficient and simple 

relative to many meteorological models currently used. 

Chapter 5 presented the Expectation-Maximization and the Scale-Recursive Estimation 

(EM-SRE) algorithms to estimate scaling parameters for the multiplicative cascade 

rainfall model. This rainfall model is known for its ability to provide spatial 

characterization of rainfall process. The EM-SRE algorithm can be used to merge static 

rainfall measurements from multiple sources. It is an efficient algorithm and can 

perform well even with missing measurement data. There are two main issues when 

applying the multiplicative rainfall model. First, the multiplicative cascade model works 

with the logarithmic transformation of rainfall intensity, and thus cannot cope with 

rainfall intermittency (i.e., when rainfall intensity is equal to zero). To solve this 

problem, the tree pruning technique was proposed. The technique excludes zero- 

measurement nodes from the tree and only uses the remaining nodes to perform the EM- 

SRE algorithm. Second, there are scaling parameters and measurement uncertainty 

parameters that must be specified. The EM-SRE algorithm iteratively estimates these 

parameters along with the state. When the parameters are scale-homogeneous (i.e., the 



parameter is constant over a single scale but can vary between different scales) and one 

of the parameters at the finest scale is given, the EM-SRE algorithm can estimate all 

remaining unknown parameters. Lastly, the combination EM-SRE algorithm was applied 

to the NOWRAD measurement data to estimate the scaling properties and measurement 

error variance. 

6.2 Suggestions for Future Research 

There are three major aspects in our rainfall data assimilation algorithm that can be 

improved to provide more accurate and reliable ensemble results. These are (1) the 

rainfall model, (2) the rainfall observation, and (3) the data assimilation technique. In 

this section, potential improvements in each of these areas are discussed. 

6.2.1 Rainfall Models 

In the ensemble data assimilation, the dynamic model is used to propagate the state 

ensemble forward between update times. This propagated ensemble is used to provide 

the background covariance for an update; thus, the accuracy of the analysis ensemble is 

closely related to the accuracy of the model used. An advantage of using the ensemble 

technique is that it does not require an analytical form of the processes or it statistics. 

Consequently, we are free to modify the model to make forecasts more accurate. 

One of the major problems with our RCR model is rainfall intermittency. In Chapter 4, 

we incorporated GOES cloud-top temperature forcing variable to ensure that between 

update time steps (1) new rain cells were generated within thick cloud regions, and (2) no 

rainfall occurs under thin cloud regions. The RCR model with GOES forcing performs 



well in the presence of small but deep convective thunderstorms. However, for a large 

storm system with greater deep cloud coverage or for a frontal system, rainfall fields 

generated from the RCR model are too scattered. It might be possible to modify the 

usage of GOES or include other atmospheric forcing variables to constrain the location of 

rain cells. For instance, one might try to use the cloud-top temperature gradient or the 

Convective Available Potential Energy (CAPE) to locate rain cells instead. It is 

important, however, that data for a forcing variable should be easy to obtain for the entire 

region. 

Another important component in the rainfall model is its parameters. In this thesis, the 

RCR model parameters were estimated off-line using the state-augmentation technique. 

The technique can provide useful estimates of the parameters, but only with serious 

constraints. Apparently, these estimated parameters are highly sensitive to the constraint 

and initial condition given. In addition, we assumed that these parameters are time- 

invariant. The estimation would be more accurate if we can quantify these parameters 

more objectively through a more robust method. In addition, the accuracy would 

improved if we could update these parameters in real-time along with the rainfall state. 

6.2.2 Rainfall Measurements 

The quality of rainfall measurements has a significant impact on the accuracy of the data 

assimilation results. In this thesis, the stochastic RCR model can only provide rough 

physical description of the rainfall process. A forecast ensemble generated from the 

model is usually very scattering due to the uncertainty of its position. As a result, the 

data assimilation scheme will likely to be uncertain about the forecast and have more 

confidence in the measurement. Other than incorporating more sources of rainfall 

measurement, most improvements to the measurement component of the data 

assimilation are beyond our control (e.g., obtaining finer spatial resolution of the raw 



data, more frequent revisit times). However, we could improve the measurement model 

and error statistics. 

There are three suggestions that should be considered. First, we ignored the position 

error of the rain gauge data and used the data to represent the average rainfall over an 

entire pixel. There may be other ways to introduce this point measurement to update the 

rainfall state as well as incorporate position error. Second, when the position error 

perturbation was added to the replicate, the entire measurement field was shifted in one 

direction with a constant displacement. With this simplification, we ignored spatial 

correlation, and the possible rotation or twisting of the measurement images. It may be 

more accurate to generate measurement position perturbations that account for the 

displacement field in more complex manner. Third, the statistics of the measurement 

error were estimated from a simple linear regression analysis with an arbitrary weight 

function. It would be beneficial to use a more robust method or include the measurement 

uncertainty from the raw data source itself. 

6.2.3 Rainfall Data Assimilation Techniques 

Among the three factors considered to improve the rainfall data assimilation result, the 

assimilation technique is perhaps the most significant and extendable subject. The 

current project utilized the ensemble Kalman filter and the ensemble Kalman smoother. 

These algorithms ignore the higher moment statistics when updating the state ensemble 

with measurements. This should not be a serious issue for our results because the state is 

directly observable. However, when the state is non-linearly related to the measurement, 

as was the case with parameter estimation using state-augmentation, the Kalman filter- 

based algorithm may not provide reliable results [6, 1201. 



Another important consideration is the separation of rainfall position and intensity 

updates [71, 92, 1071. The current data assimilation method properly deals with 

amplitude error, but it can perform poorly when there are significant position errors either 

in the forecast, or in the measurement. By disaggregating the position error problem 

from the intensity error problem, the data assimilation framework should be improved. 

Finally, we should be able to speed up the data assimilation algorithm by localizing the 

calculations in the (vector) subspace spanned by the ensemble perturbations [64,96]. 



Appendix A 

Multi-Resolution Alignment Algorithm 

The multi-resolution alignment (MRA) algorithm [I061 is a position adjustment 

technique [103-1071. The MRA algorithm is similar to the feature calibration alignment 

(FDA) algorithm [49, 56, 921. It iteratively solves for the position error problem by 

minimizing a penalty function based on a gradient and a divergence term. The MRA 

algorithm is practical for data without well-defined features. The algorithm is also more 

robust than the correlation based approaches where the displacement is given by the 

maximum correlation between two patches of images within a searching distance [31, 

631. In addition, the MRA algorithm uses local constraints for relating displacements and 

represents the displacements as smooth flow fields. This can be useful when working on 

a large region where characteristics and features vary in space. 

The MRA algorithm consists of solving a nonlinear quadratic estimation problem. 

Solutions to this problem are obtained by regularizing the ill-posed inverse problem. Let 

X(r) and Y(r) be two random vectors defined over a Euclidian grid R where 

rT = {q = (xi, Y,)~ ,  i E R} represent a position vector. Moreover, let qT = Iqi = (4, AY,)' 

,i E R} be a displacement vector and X(r-q) to represent a displacement of X by q. 

Suppose that a random vector Y is linearly related to X via, 

Y (r) = HX(r - q) + V 



where H is a transformation matrix and V is a Gaussian random noise with zero mean 

and covariance matrix R. We assume that all components in (A.l) are Gaussian and 

write the likelihood function P(X,Y lq) as 

By using Bayes' rule, we can obtain the probability ~ ( q  / X, Y) by 

Assume that the displacement prior density P(q) is given by 

P(q) cc e - L ( q )  

where L(q) is the energy function. We propose to construct L(q) from a smooth flow 

fields commonly used in the fluid flows. The smoothness assumption leads to Tikhonov 

type formulation [124]. Particularly, the penalty function L(d is composed of a gradient 

and a divergence penalty term and expressed in a quadratic form as, 

Equation (A.5) represents a weak constraint weighted by the corresponding weights wl 

and wz. From these sets of equation, we obtain the solution to the displacement field by 

minimizing the log-likelihood function 4 (i.e., log of equation (A.3)) as, 



Using the regularization constraints fiom (AS), the solution at node i becomes: 

Equation (A.7) is the field alignment formulation. It is non-linear and is solved 

iteratively as a Poisson equation. In each iteration, q is computed by holding the forcing 

term constant. The estimate of displacement is then used to deform a copy of the original 

random variable X for the next iteration. The process is repeated until a small 

displacement residual is obtained, the misfit with Y does not improve, or an iteration 

limit is reaches. Upon convergence, we have an aligned image X(6) and displacement 

n 

field 4 = Zq(') fiom each displacement q@ at iteration k = 1 . .  .n. 
k=l 

The convergence of the solution is linearly dependent on the expected displacement 

between the two fields. It is possible to speed up the computation time by perform the 

multi-resolution alignment. The multi-resolution alignment begins at the coarser scale by 

coarsen the resolution of the random field X and Y and obtain the coarse-scale 

displacement. At the coarser resolution, the alignment will converge faster because the 

displacement will be small relative to the coarser resolution. We then rescale the 

displacement field to the finer-scale, use it to deform the finer resolution image X, and 

solve for another displacement field at the finer resolution. By repeating the process until 

the resolution of interest is reached. Note that when iteratively solving for (A.7), the unit 

of the displacement field 4 is equal to the resolution of the underlying field X and Y. 

Therefore, it is essential to rescale the displacement field when we utilize it at different 

resolution or when perform the multi-resolution approach. 





Appendix B 

Cramer Rao Bound Analysis for the Scale- 

Recursive Estimation (SRE) Algorithm 

The Cramer Rao bound (CRB) [27] of an unbiased parameter estimator vector 8(@) is 

given by the inversion of the Fisher information matrix I, (8) 

CRB = I;'(@) 

Element (i,j) of the Fisher Information matrix is defined by 

where(, (Y; 8) (i.e., the log-likelihood matrix) is a function of an measurement vector Y 

given the parameter vector 8. In a special case where Y is jointly Gaussian distributed, 

the analytical form of the log-likelihood function can be written as: 



Consider the state-space equation of the multiplicative cascade rainfall model given in 

(5.26)-(5.27) and let Xbe  a full state vector consisting of all scalar states x(s) on the tree. 

Under the scale-homogeneity assumption, the prior state variance Po(s) = Po(ms), the 

process noise variance Q(s) = Q(ms), and the measurement variance R(s) = R(ms) for all 

node s at scale m(s) = m,. The full prior covariance matrix Po is given by 

The scalar value P,(s) represents the prior state variance at node s. It is calculated fiom a 

cumulative summation of the root node variance and all process noise variance up to the 

node scale m, as given by equation (3.3). When all F(s) = I. 0 and the scale-homogeneity 

is enforced, the prior state variance can be written as 

C,(s,t) in (B.5) denotes the prior cross-covariance between node s and node t as given in 

equation (5.4) and (5.5). Similarly, when all F(s) = 1.0 and the scale-homogeneity is 

applied, Co(s,t) equals the prior state variance at their finest common predecessor node 

sS. 



The full prior cross covariance matrix Po in (B.5) is a positive definite symmetric matrix 

with dimension of NxN, where N is the total number of nodes on the tree and m(s) = 

1 ... M is the level index of the M-level tree. The diagonal element of Po is the state 

variance at each node on the tree and the off-diagonal element is a cross-covariance 

between any two nodes on the tree corresponding to the row and column of matrix Po. 

Since the finest common predecessor node sAt cannot be on the finest scale, any off- 

diagonal term of Po will never contain the process noise variance at the fmest scale Q(M) 

where M is the finest scale of an M-level tree. 

From (3.27), the full measurement vector Y is related to the full state vector X by 

where the vector V is an uncorrelated white measurement noise with zero-mean and the 

covariance matrix R. The full measurement error covariance R is a diagonal matrix 

consists of scalars measurement noise variances R(s) 's at all measurement nodes. Using 

(B.6), the 111 measurement covariance matrix Pu is 

When H is a selective matrix consisting of only 1 and 0, HpoHTis equivalent to selecting 

elements in Po that corresponds to locations of measurement Y. Since R is diagonal, it 

will only be added to the main diagonal of HpoHT matrix. 

Again, considering the M-level tree with the scale-homogeneity assumption, unknown 

parameters set 0 consists of M+k+l unknown parameters. These parameters are one root 

node state variance Po(0), M process noise variances Q(m)'s at all transition scale m = 

1 ... M, and k measurement noise variances R(m)'s at all measurement scale k 1M+1. It is 



easy to verify from (B.7) that the off-diagonal elements of Py do not contain 

measurement noise variance R(s). The off-diagonal terms have the following form: 

(B. 10) 

On the other hand, the diagonal elements of P, must contain measurement noise variance 

and have the following form: 

(B. 1 1) 

Since sAt cannot be on the finest scale, of diagonal term of Py will not contain Q(M). In 

addition, the process noise variance at the finest scale Q(M) only appears in the main 

diagonal elements of Py at the finest scale and it always appear in the summation term 

with the measurement noise variance R(M), e.g. Po(0) + . . . +[Q(M) +R(M)]. Thus, element 

in the full measurement covariance matrix Py will consist of M+k unique terms with 

Q(M)+R(M) always appears as the summation. If we consider these terms as new M+k 

variables, the log-likelihood function in (B.4) will be a function of these M+k variables. 

Consequently, the Fisher Information matrix having the dimension (M+k+l) square is 

calculated from the 2nd derivative of the log-likelihood function with respect to a pair of 

these M+k+l unknown parameters. 

Since the process noise variance and measurement noise variance at the finest scale 

always appear as a summation Q(M)+R(M), their derivatives of the expected log- 

likelihood function with respect to either of these two variables are the same, e.g. 



wherec representing the log-likelihood function given by (B.4). It is a function of Po(0), 

Q(l), R(l), ..., and Q(lY)+R(.. The equity in (B. 14) is a result fiom using the chain 

rule. 

It is evident that if the likelihood-function is given by (5.26) and (5.27) with F(s) = 1.0, 

the partial derivative of the likelihood-function with respect to the Q(' and that with 

respect to R ( '  are identical. Consequently, the last two rows and last two columns of 

the Fisher Information matrix given in (B.3) will have the same value regardless of the 

number of state scales M or the measurement scales k. When all M+k+l unknown 

parameters are to be estimated, the fisher information is always rank deficit and the 

Cramer Rao Bound will not exist. 

However, in the case when either Q o  or R(M) is know or the summation Q(M)+R(M) 

is treated as one unknown parameter, the Fisher information usually have a 111 rank. As 

a result, the Cramer Rao Bound will exist. In addition, since all states and measurements 

are assumed to be jointly Gaussian in the scale-recursive algorithm, the maximum- 

likelihood estimators calculated form the EM-SRE algorithm are the efficient estimators. 

Thus, given either Q(M) or R(IY), it is possible to obtain up to M+k optimal parameters 

fiom the EM-SRE algorithm. 





Appendix C 

Sampling Strategies 

Sampling scheme is one of the most important topic when using the Monte Carlo based 

technique. The accuracy of the data assimilation problem based on the ensemble method 

depends on how well we sample the distribution. Effective sampling strategies become 

even more important when we have limited resources or constraints that allow us to only 

use small ensemble size. In addition, the sampling strategy is useful for selecting a small 

number of samples from a population and making sure that these samples can represent 

the population well. The sampling strategy presented in this chapter uses the concept of 

eigenvalue spectrum to retain subset of members that span the largest space [39, 1001. 

Direct application of the sampling scheme to be presented in this section is to improve 

rainfall estimate from any ensemble approaches. The main idea is to generate large 

number of ensemble forecasts from the dynamic model, and only select a subset of 

members that contain the most useful information to be used in the analysis scheme. This 

scheme is extremely useful when the forecast is less computationally demanding than the 

analysis scheme. Generally, since the forecast step can be done in parallel, the critical 

moment that requires the most computation resource should be at the analysis stage 

where all ensemble members are combined to approximate the distribution and necessary 

statistics. In stead of using all random samples, a smart sampling strategy will greatly 

speed up the calculation with very insignificant lost of accuracy. 



In additional to direct benefit to the data assimilation framework, an effective sampling 

strategy is useful when we would like to select a subset of our results to be used in other 

applications. For example, suppose our rainfall assimilation algorithm can generate up to 

500 replicates for each time step but we only need 25 samples rainfall as forcing in a 

more complicated hydraulic model. How can we effectively sample 25 members that 

best describe the process? Figure C-1 illustrates a sample benefit of using the sampling 

scheme to select a small subset of noisy images corrupted by multiplicative log-normal 

noise. The top left image show the mean from 500 corrupted images with a sample 

member presented on the top right. The lower left picture shows the mean image from 10 

sampling member using the random selection method, while the lower right image show 

the mean from the sampling strategy to be present in this section. Note that the random 

selection method is done by calculating the perturbation from the mean, randomly 

selecting 10 perturbations, and then adding back the mean value. 

Ensemble Mean of 500 members 

Ensemble Mean of 10 members 
(use a Random Selection Method) 

A Sample Member 

Ensemble Mean of 10 members 
(use The Sampling Strategy) 

Figure C-1: Benefit of using the sampling strategy based to a random selection method; the mean 
and covariance are nicely preserved using the SVD sampling strategy 



The derivation of sampling scheme start by defining an error covariance matrix P E !Rnxn 

with eigenvalue decomposition, ZAZ' = P . To have a sample with maximum rank and 

best possibly represents the error covariance matrix for a given ensemble size N << n, we 

should sampled from the first N dominant eigenvectors and associated eigenvalues of P. 

In other words, we want to generate a sample matrix A E WXN such that rank(A) = Nand 

the condition number defined as the ratio between the singular values, 

K(A) = 0, ( A ) / D ~  (A) , is minimal. 

Approximate the error covariance matrix with its ensemble covariance, 

 where^ is matrix that holds all ensemble perturbations from the mean, U E !RnxN, 

E E !RNxN , and V E !RNxN are reduce-sized singular value decomposition matrices ofA.  

When the ensemble size N approaches infinity, the n singular vectors in U will converge 

towards the n eigenvectors in Z and z ~ / ( N  -1) will converge toward the eigenvalues, A. 

For a fix ensemble size N, we can improve the rank conditioning of the ensemble by 

ensuring that the first N singular vectors in U are similar to the first N eigenvectors in Z. 

The implementations of the sampling scheme go as follows. Suppose that we have a 

large ensemble states Ap E !RnxBN and we would like a sub-sample A E ! R n x N ,  i.e. select N 

members from ,GN members. 



1) Obtain the ensemble perturbations A, E 91nXPN by subtracting each column with 

the ensemble mean A, E 93""' 

2) Compute the reduce-sized SVD: U ~ Z ~ V ~  = A, with U p  E 9lnxPN , X ,  E 9IPNxPN, 

and V g  E illBNxPN 

3) Store the first N x  N quadrant of X ,  to a matrix X E 91NxN 

4 )  Store the first N singular vector of Up to a matrix U E !RnXN 

5) Create a random orthogonal matrix V E 91NxN from right singular vectors of an N 

x N random matrix. 

6) Obtain the sample perturbations A E !$InxN from A = 'uXvT 43 

7) Obtain sample ensemble matrix A by adding each column of the sample 

perturbation matrix A with the ensemble mean iP E Fin"' calculated in step 1). 

It is important that the ensemble perturbation Ap is used, not the original ensemble 

matrix A,, because the singular value will only converge to the square root of eigenvalue 

for a zero mean matrix. Applying the singular value decomposition directly to non-zero 

mean ensemble matrix will get singular matrix that dominated by the mean value and 

may cause numerical instability. Secondly, the rescaling factor yfi in step (6) is 

included to ensure that the variance of the sample will be consistent. As the total size PN 

approaches infinity, the singular vectors and the square of singular value will converge 

toward the eigenvectors and eigenvalues, respectively. Using the SVD instead of explicit 

eigenvalue decomposition reduces a lot of computation cost, especially when the 

dimension is large. 

The benefit of using this sampling strategy can be evaluated by the ratio of the largest to 

the smallest singular value. Figure C-2 illustrates the benefit of sampling 50 members 

from 100, 150, 200, 250, and 300 total ensemble members, respectively. For an 

increasing in size of the original ensemble, there are clearly an improvement in the ratio 
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between the first and the 50" singular value. The improvement is, however, greater for 

less correlated ensemble as in the example of independent measurement noise (top plot) 

versus more-correlated new rainfall cell noise using the recursive rainfall model (bottom 

plot) proposed in chapter 4. In addition, the improvement decreases as the number of 

total increases. 

Siqldr Value 

Figure C-2: The fxst 50 singular vectors of a selective matrix sampling 50 members from 50, 
100, 150,200,250, and 300 total members 



We also apply this sampling strategy to select rainfall replicates generated from the 

recursive rainfall models given chapter 4. The sample ensemble from this technique has 

the mean and covariance that are more consistent to the original ensemble than the 

sample ensemble selected from a random selection method. Figure C-3 shows the benefit 

of the SVD sampling scheme in comparison to the standard random selection. In the left 

column we plot the mean from all ensemble members (top) consist of 500 members, the 

mean from a random selection method (middle), and the mean from the SVD sampling 

strategy (bottom) both having 10 members. The 2nd and the 3rd column show the first 5 

random sampling members from the random selection method and the SVD sampling 

strategy, respectively. In this plot, the mean is better conserved from the SVD sampling 

strategy. 

The SVD sampling strategy presented in this chapter is a fast and easy to implement 

technique to optimally select sample member from large population. The algorithms 

better conserved the mean and covariance of the sampling member better than the 

random selection method. Thus, we highly recommend to use this sampling strategy 

every time there need to sample members from full ensemble obtained from the rainfall 

data assimilation scheme. In addition, if the condition allow, it would be beneficial to 

dynamically propagate much more ensemble members and use the sampling strategy to 

select partial of ensemble in the analysis stage so that it is within a computation limit. 



Mean of All Ensemble Sample Members 
(Random Selection) 

Sample Members 
(SVD Sampling) 

Mean of Sample Ensemble 
IRqndorrl Selection) 

Mean of Sample Ensemble 
(SVD Sampling) 

Figure C-3: Comparison between the random selection method and the SVD sampling strategy 
to select 10 rainfall samples £kom 500 rainfall members generated by the recursive rainfall model 
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