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ABSTRACT

This thesis discusses observation of a fine structure component in light
backscattered from mucosal tissue which oscillates in wavelength. This structure is
ordinary masked by a diffusive background. We have identified the origin of this
component as being due to light which is Mie-scattered by surface epithelial nuclei.

We developed a model describing light propagation in turbid biological media
and its interaction with epithelium, which is the uppermost tissue layer, resulting in
modulation of the reflectance from tissue. This oscillatory fine structure was observed in
the reflectance spectra from cell monolayers simulating real tissues and esophagus of
human subjects.

By analyzing the amplitude and frequency of the fine structure, the density ad
size distribution of epithelial cell nuclei can be extracted. These quantities are important
indicators of early precancerous changes in biological tissues. Enlarged nuclei are
primary indicators of cancer and dysplasia in most human tissues. At the same time, if
diagnosed at this stage, cancer is curable in about 90% cases. Thus, the ability to measure
nuclear size distribution in-vivo (inside the body) has valuable applications and can be
used as a tool to diagnose early precancerous changes in the human body non-invasively
and in real time.
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Title: Professor, Department of Physics
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Chapter 1

Introduction

1.1 Optical techniques in medicine

Biomedical optics is a rapidly growing field that uses optical techniques for the

purposes of biology and medicine. Biomedical optics can be divided into biological

optics, which studies fundamental properties of the biological molecules, cells, and

tissues, and medical optics, which uses optical methods either non-invasively or

invasively.

Invasive applications employ the "effect of light on tissue" [1]. Invasive

applications can be classified by type of changes light induces in the tissue: mechanical,

chemical, or thermal. Major applications include laser ablation [2-4] (mechanical

changes), photodynamic therapy [5] (chemical changes), and laser hyperthermia [6]

(thermal changes). Generally speaking, laser ablation uses short high power pulses of

laser light. They result in removal of the irradiated tissue. An important modification of

this technique uses laser induced shock waves to ablate the tissue with minimal effect on

the surrounding tissues [4]. This results in clean minimally invasive surgical intervention.

Photodynamic therapy uses laser light to generate toxic chemicals from endogenous or

exogenous molecules that mark a diseased tissue. This results in cellular necrosis and

tissue destruction. Laser hyperthermia uses light to increase tissue temperature and induce

thermal shock that again leads to cellular necrosis and tissue destruction.
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Non-invasive or minimally invasive applications employ the "effect of tissue on

light" [1]. A tissue under study is irradiated by a light source. Then reflected or

transmitted light is collected and analyzed. Thus, some tissue attributes can be revealed.

These attributes may be (1) multicellular properties (architectural disorganization,

changes in surface morphology, cell crowding), (2) cellular properties (enlargement and

hyperchromaticity of cell nuclei, increased concentration of organelles), and (3)

molecular (shift of NADH, NADPH to oxidized states, decreased activity of

ferrochelatase, presence of abnormal proteins).

Non-invasive or minimally invasive applications of medical spectroscopy can be

divided "imaging applications" (2D and 3D, the latter are based on the photon migration

approach [7] and are usually characterized by deep penetration depths), and "diagnostic

applications" ("spectral pathology" [8]). There are three major types of diagnostic

spectroscopy: reflectance spectroscopy, laser-induce fluorescence spectroscopy (LIFS),

and Raman spectroscopy.

In reflectance spectroscopy a portion of tissue is irradiated by white light and light

reflected from the tissue is collected. Since light propagation in tissue is governed by two

processes - elastic scattering and absorption - the reflected signal can bring information

about these tissue properties. This, in tern, can give information about particular types of

tissue absorbers (hemoglobin for example) and scatterers (extracellular matrix,

mitochondria, cell nuclei, etc.). Thus, reflectance spectroscopy is best suited to detect

architectural multicellular and intracellular changes. (These are the same tissue

characteristics that a pathologist is looking at when analyzing a biopsy slide under a

microscope - he does not do chemical or genetic analysis but rather is looking for intra-

and multicellular architectural changes.) It has being applied to measure blood

oxygenation [9], tissue oxygenation [10], and detect precancerous changes in several

organs such as colon, esophagus, etc. [10].

While reflectance spectroscopy is best suited to detect architectural changes, two

other types of tissue spectroscopy - LIFS and Raman spectroscopy - can measure

molecular changes. LIFS uses a monochromatic laser source to illuminate the tissue, and

the fluorescence signal at the wavelengths longer than that of the illumination beam is
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collected. The signal may be 103 times weaker than that of reflectance. LIF signals

depend not only on the scattering and absorptive properties of the tissue, but also on the

presence of endogenous fluorophores such as collagen, NADH, and porphyrins.

Unfortunately, not all types of tissues contain such fluorophores in amounts sufficient to

measure their fluorescence (epithelial cells, for example, are known to have weak

fluorescence). LIFS was applied to detect atherosclerosis of aorta and coronary artery

[11], dysplasia in colon and bladder [12], adenomatous polyps in colon [13], and cancers

in other organs such as esophagus [14] and breast [15].

Raman spectroscopy measures a frequency shift created by the vibrations of the

molecules within the tissue. The signal is very weak - 106-109 times weaker than that of

the elastic scattering. This technique is well suited to measure the chemical composition

of the tissue. The drawback of this technique is the length of time necessary to collect a

signal. With technological advances, some of these difficulties are being solved and

Raman spectroscopy can find a broad application in clinical medicine in the future.

Raman spectroscopy has being studied as a tool to diagnose breast cancer,

atherosclerosis, etc. [16].

1.2 Reflectance spectroscopy as a diagnostic tool

1.2.1 Diagnosis of precancerous changes

Early diagnosis of cancer and precancerous (dysplastic) changes is a key element

in the treatment of cancer. Current diagnostic methods employ techniques based on X-

ray, CT scan, MRI, and ultrasound. While different in many aspects, all these methods

have one thing in common - they cannot diagnose microscopic lesions at an early stage,

when such lesions can easily be effectively treated (not to mention a great variety of

precancerous conditions which are not identifiable with these methods at all, such as flat

dysplasia in Barrett's esophagus and ulcerative colitis). The only way we can look at

tissues at a microscopic scale is by taking biopsy. Probably, biopsy is still the best way to
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diagnose most disease. However, it is invasive (requires tissue removal), and can give

very high sample error (consider the probability to find a flat dysplastic lesion 0.1-0.5 cm

in diameter in the colon, if one can take reasonable number of biopsies 0.01 cm2 each).

Many studies have being performed to find a technique to diagnose diseases of

microscopic dimensions (m's-mm's) screening large tissue areas, in-real-time, in-vivo,

and non-invasively. Such a technique would give a number of procedure-oriented

advantages (non-invasive, substitutes a number of other procedures and services -

cheaper and faster) and result-oriented advantages (screening of large tissue areas, in real

time and in-vivo - possibility to diagnose and treat the disease at the same time, targeting

of the diseased areas - limit surgical interventions).

For the last decade extensive investigations have been performed to find a

substitute for random biopsy, in order to provide accurate diagnosis of dysplasia in

different organs. Optical techniques are well suited for this purpose, since they are non-

invasive, do not require tissue removal, and can be performed in-vivo. Moreover, they are

fast (can be applied in real time), relatively cheap, and they are able to work in

microscopic dimensions, which can allow one to search for very small dysplastic sites,

which are frequently missed by random biopsies. While most human organs can be

diagnosed by means of optical techniques, such techniques are especially applicable to

the gastrointestinal tract, since it is easily accessible by optical probes, which can be

inserted into one of the channels of a conventional endoscope. We shall refer to

gastrointestinal precancerous changes throughout this manuscript.

1.2.2 Optical techniques to diagnose precancerous changes

One of the difficulties in diagnosing dysplasia in the gastrointestinal tract lies in

the fact that these changes are confined to the epithelial layer, which can be as thin as

20am, one cell layer, and relatively transparent to optical radiation. At the same time, a

fluorescence or reflectance spectrum is mostly formed in deeper tissue layers. In spite of

this, such optical techniques as LIFS and reflectance spectroscopy have been applied to
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diagnose dysplastic changes. For example, LIFS was used to diagnose high-grade

dysplasia in Berrett's esophagus [14], colonic polyps [13], and bladder cancer [12]. LIFS

is well suited to reveal biochemical alterations in the tissue. If the cells or stroma of the

diseased tissue accumulate any fluorophores that are not present in a healthy tissue, the

presence of such fluorophores can be detected by LIFS. A few endogenous fluorophores

were proposed to accumulate in dysplastic cells. Several studies have shown increased

concentrations of protoporphyrins in malignant cells (cancer and high grade dysplasia)

[14]. However, these studies did not show such increase in tissues with low-grade

dysplasia. This may mean that low-grade dysplastic cells either do not accumulate

measurable amounts of these fluorophores or do not accumulate them at all. The last

alternative is supported by the "multiple hit theory", proven to be correct for a number of

types of cancer (colon adenocarcinoma, retinoblastoma, etc.). This theory suggests that a

number of genetic alterations are necessary to transform a normal cell to malignant one,

i.e. a number of genes have to be altered. Moreover, mutation in one gene may result in

predisposition of another gene being mutated as well (however the last hypothesis has yet

to be proven). The first mutation is usually in a gene responsible for cell proliferation

and/or apoptosis (programmed cell death). The lesions composed of such cells usually

remain intact and can not lead to metastasis directly. These cells do not show changes in

chemical composition, but they proliferate more rapidly and, therefore, have increased

nuclei, nucleoli, and exhibit some intracellular architectural changes. A technique capable

of diagnosing a disease at this stage should be able to detect changes in cellular

architecture rather than provide chemical analysis of the tissue. At the next stage of

disease, another genetic mutation may lead to cell redifferentiation. This is a sign of

malignancy. These cells can show some alterations in their chemical composition.

At some point, a precancerous lesion initiates angiogenesis (growth of new blood

vessels to support the lesion). This process is absolutely necessarily for a tumor to

continue to grow and, eventually, to produce metastasis. It has not being explained yet

why and how some tumors switch to angiogenesis. Angogenic tumors can grow

uncontrollably. At this stage, because of the increased blood supply, protoporphyrins are
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accumulated in malignant cells and can be detected by some spectroscopic technique such

as LIFS.

1.2.3 Reflectance spectroscopy to diagnose early precancerous

changes

One of the most prominent features of a dysplastic epithelium is the presence of

enlarged, hyperchromatic, stratified, and crowded nuclei [18]. In fact, these changes in

nuclear size and spatial distribution are among the main markers used by a pathologist to

diagnose a tissue as dysplastic. Reflectance spectroscopy is well suited to detect

inrtracellular architectural changes. Light scattering in tissue has being considered as one

of the main difficulties of biomedical spectroscopy. Indeed, scattering prevents photons

from propagating in straight trajectories, and results in randomization of the photons

inside the tissue. When a photon is collected, one has little information about its origin

and path. Therefore, great deal of research is being done to diminish the effect of

scattering in order to perform "absorption" or "transmission" spectroscopy (analogy with

X-ray imaging).

At the same time, scattering might be useful. Different cellular and intracellular

structures have distinctive scattering patterns. Changes in intracellular architecture

(enlarged nuclei or the number of mitochondria, for example) can result in a different

scattering pattern of the tissue. This can be determined with reflectance ("scattering

spectroscopy"). Another difficulty of the application of reflectance spectroscopy to

diagnose dysplasia is that the changes we need to detect are limited to a thin surface layer

(20-30ptm, see section 1.2.2). However, as discussed below, this fact can be used to

advantage, as well. (Thus, one can use the difficulties that biological media present

instead of trying to eliminate them.)

The primary scattering centers in biological tissue are thought to be the collagen

fiber network of the extracellular matrix, the mitochondria, and other intracellular

11



substructures, all with dimensions smaller than optical wavelengths [23]. However, larger

structures, such as cell nuclei, typically 5-15 p.m in diameter, can also scatter light.

Single scattering of collimated light has been used widely to study cells and

subcellular structures in suspensions [18]. In tissues this approach can not be used since

light is randomized by multiple scattering. However, diffusely scattered light from tissue

contains information about underlying structures [19]. Transmitted [20] and

backscattered [10] photons can be used. However, this information is averaged at least

over several transport lengths because of the randomization. On the other hand, the light

in the thin layer near the tissue surface is not randomized completely, and information

about individual scatters can be retained even if the layer thickness is significantly

smaller than a transport length. Our goal, therefore, is to find a way to detect changes in a

single scattering pattern and use this information to characterize scatterers in a thin near

surface layer by analyzing the reflectance spectrum. This thesis is devoted to addressing

this problem [21].

1.3 Organization of the thesis

This thesis reports observation of a fine structure component in backscattered

light from biological tissue which oscillates in wavelength. This structure is ordinarily

masked by a diffusive background. We have identified the origin of this component as

being due to light which is Mie-scattered by surface epithelial cell nuciei. By analyzing

the amplitude and frequency of the fine structure, the density and size distribution of

these nuclei can be extracted. These quantities are important indicators of precancerous

changes in biological tissue.

The thesis consists of three parts. Chapter 2 theoretically predicts the oscillatory

component in reflectance from biological tissue covered by a thin layer that has a rich

cellular content (epithelium). It starts with the discussion of single scattering events.

Scatterers that are large relative to the wavelength of the scattered light are considered.

The problem of light scattering by a spherical particle of arbitrary size was solved by
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Gustav Mie in 1907 [22]. However, the solutions for the cross section and phase function

are not applicable analytically and allow only numerical interpretation. This work

presents another approach. The WKB approximation is applied to determine the

scattering characteristics of large particle scattering. This approximation was first used to

calculate the optical cross section of a large particle by Van de Hulst [23]. This work

introduces the WKB approximation to estimate the scattering phase function for forward

and backward scattering. Analytical solutions are obtained and discussed. It is shown that

scattering characteristics have oscillatory wavelength dependence.

Multiple scattering by a slab of large particles is considered next. It is shown that

the signal of light backscattered from such a slab and light transmitted through it exhibits

a oscillatory component similar to that of the cross section. Section 2.3 shows that

analysis of this oscillatory component allows to determine the size distribution of the

scatterers inside the slab.

Chapter 3 presents an experimental study of the oscillatory component. The

oscillatory component was observed in reflectance from tissue phantoms, cellular

monolayers, and in esophageal tissues of human subjects. Experiments with tissue

phantoms, cellular monolayers and clinical experiments are described. It is shown that the

technique has a potential to diagnose early precancerous changes.

Chapter 4 summarizes the main results of the work and discusses future

directions.
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Chapter 2

Theoretical prediction
of oscillatory fine structure in the
reflectance from biological tissue

2.1 Light scattering by large particles

In the field of biomedical spectroscopy, tissue is usually considered to be a turbid

medium. These media are spatially inhomogeneous. Thus, the amplitudes and phases of

electromagnetic waves propagating through such media fluctuate randomly in space and time.

The description of the interaction of light with biological tissues is essentially the problem of

interaction of light with a random medium. A number of ways to describe light propagation in

random media have being developed. (1) Transport theory, in which the propagation of light

specific intensity through a random distribution of scattering and absorptive particles is

studied using the transport equation [1] and phase effects are neglected.(2) Multiple scattering

theory, which incorporates field equations and statistical considerations [2,3]. This theory

includes phase effects. However, in practice, it is impossible to obtain a formulation which

includes scattering, absorption, diffraction, interference, etc., and in all such theories the

solutions are approximate. Twersky's, Dyson's, and Bethe-Salpeter's theories are examples

[1,2,4]. (3) Numerical approaches, such as the Monte Carlo method [5]. These methods try to

simulate a physical experiment by a computer simulation or "numerical experiment". While

different in many respects, all these approaches have one fact in common. They consider the

light interaction with a multiple particle system on the basis of understanding of how light

interacts with a single particle. A system can consist of great variety of particles of different
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sizes, shapes, refractive indexes, etc.; still we can apply any of these approaches only if know

how any of the particles would scatter and/or absorb light.

Our main interest is in the light propagation in an epithelial layer containing cell nuclei

of different sizes. Epithelial nuclei are spheroidal Mie scatters with refractive index higher

than that of the surrounding cytoplasm [6,7]. Normal nuclei have a characteristic diameter

1=4-7 ,pm. In contrast, dysplastic nuclei can be as large as 20 pm in height, occupying almost

the entire cell volume [8]. As shown below, light scattering by the nuclei gives rise to a

oscillatory component in the reflectance from the tissue. First, we consider a single nucleus

and examine its scattering characteristics. Second, we consider the contributions from many

nuclei (slab of nuclei). Throughout this chapter we consider only the optical properties of cell

nuclei. Moreover, most of the results presented here are quite general and applicable to many

other types of scatterers. Thus, we will refer to cell nuclei as "scattering particles" in most

cases.

When a single particle is illuminated by a light wave, part of the incident radiation is

absorbed and another part is scattered. This scattering is described by the scattering amplitude

[10]. Two important optical characteristics of a particle can be defined using the scattering

amplitude. One is its cross section. The scattering cross section, , is defined as the cross

section of a particle which would produce amount of scattering equal to the total observed

scattered power at all directions, and is given by [9]

a, = ff(s,s')12ds', (2.1)
4;r

where s is the unit vector in the direction of propagation of the initial wave andJ(s,s') is the

amplitude of the scattered wave in the far field in direction s'. The absorption cross section oa

is defined as the cross section of a totally absorbing particle which would absorb the amount

of power absorbed by the particle. The sum of the scattering and absorption cross sections is

called the total cross section

o, = a, + , (2.2)
Since experiments show that cell nuclei have negligible absorptive properties, we concentrate

on their scattering characteristics.
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Another important characteristic is the phase function p(s,s'), which is proportional to

the probability of a photon to be scattered by the particle from direction s to s' [1]. We will

normalize it in such a way that its integral over all possible directions, s', equals unity:

p(s,s')=cs lJ(s,s') 1 2, p(s,s')ds' = 1. (2.3)
4fr

Considering that a cell nucleus is a particle large comparing to an optical wavelength,

we shall study the properties of the cross section and phase function of a large particle in the

following sections. We shall then apply our knowledge of a single scattering event to describe

reflectance from a multiparticle system (slab of nuclei), which is a physical representation of

the epithelial layer covering surface of the tissue.

2.1.1 Scattering cross section of a large particle

In the scalar wave approximation, interaction of light with any particle is nothing but

the scattering of a plane wave on some energy potential. If the particle is uniform, the energy

potential is a square well. When the scatterer is large relative to the wavelength, we can apply

eikonal or WKB approximations [9,10]. The latter is valid if the following condition is

satisfied:

AU
>> 1 (2.4)

hc

with AU the energy difference and I the characteristic size of the potential well. When a

photon of wavelength is scattered by a spherical particle of diameter 1, we have

AU = hc(n 2 -n,)/2, with n2 and n refractive indexes of the particle and the surrounding

medium, respectively. Condition (2.4) can be rewritten as follows:

>> 1 (2.5)

If the particle is large enough to satisfy (2.5), the WKB approximation is applicable. In optics

the WKB approximation is usually referred to as the Van de Hulst approximation [11]. We

will use the latter terminology.

The path length of the light ray that passes through the particle is [1 1]
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1 1 1 lz

Figure 2.1. Angle y.

a = lcosy, (2.6)

with y the angle between the radial direction and the direction of the initial ray (Fig. 2.1). The

phase of the wave in this direction is shifted from exp(ikz), with k the wavenumber, to

exp(ikz + ik(n2 -n)lcosy) . (2.7)
At a large distance from the particle one observes a superposition of the initial wave and the

scattered one. Thus, the observed beam differs from the incident by

f(s,s)Eieikz 27ik'= dS(e 2 x(n2-"')cosy _ 1)Eie i (2.8)

where x = , Ej is the amplitude of the incident wave, dS=2ncosydcosy, and the integration

is taken over the cross section of the particle. According to the optical theorem [9], the total

cross section of a particle that has rotational-reflection symmetry is proportional to the

imaginary part of the scattering amplitude in the forward direction:

4r
-, k Imf(s,s). (2.9)

k

Therefore,

, 2 Re fdS(1- e2iX(2-"')cosy). (2.10)
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Noting that

Jy(l-e Y)dy= + [ + t!• (2.11)
2 t t, (2.11)

and assuming the particle and the medium to be nonabsorbing (Im n2= Im n,=O), one can

obtain the expression for the total cross section [9]:

i2 sin(2x(n2 - n)) sin()) (2.12)
2 x(n2 - n, ) x(n2 n, )

As we will see, this expression plays one of the central roles in the thesis.

The cross section (2.12) depends on the size of the scatterer, the wavelength, and the

difference in refractive indexes. We further note that the ratio of the optical cross section to

the geometrical cross section of the particle, the so called efficiency parameter, is a function

of 4=x(n2-n,). The functional dependence of o- on 4is shown in Fig. 2.2.

The cross section (2.12) was obtained using the approximation valid for large

particles. It is quantitatively accurate only if 45>1. However, it shows behavior of oj which is

qualitatively correct for any When is small, (2.12) equals to the large ( limit of the

Rayleigh-Gans theory [12]. When 4'>1,

M 2

' =-- (2.13)
2

A large sphere blocks out twice its geometrical cross sectional area. This fact, known as the

extinction paradox [1 ], contradicts the intuitive understanding that if a light beam is scattered

by a very large particle, the photons do not "feel" the particle boundaries, and, therefore, the

cross section should equal the geometrical cross sectional area of the scatterer that is predicted

by the geometrical optics limit. The qualitative explanation of this paradox is that one factor

212/4 represents cross sectional area of the particle and the other df2 /4 comes from diffraction

of light around the edges.

Another important property of at that will be used later on is the presence of the

maxima and minima (Fig.2.2). We shall refer to this structure as the "oscillatory component".

The physical cause of this oscillatory behavior is interference between the refracted and

diffracted waves. Fig. 2.3 shows the wavelength dependence of oa for particles of different
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sizes. The periodicity of this component is proportional to the diameter of the particle and the

difference in refractive indexes. In other words, the larger and denser the scatterer, the higher

the periodicity. Thus, if one can measure the wavelength dependence of the cross section, one

can determine size of the particle by analyzing the oscillatory component.

One more comment about the cross section should be made. We assumed the particle

to be nonabsorbing (Im n2=O). This assumption is valid for many important scattering

systems, including cell nuclei, because they consist mostly of water, DNA and proteins, all of

which are known to have negligible absorption in the optical region. Thus, the calculated total

cross section a, exactly equals the scattering cross section as. However, this is not the case if

the particle is absorbing and the imaginary part of its refractive index is not zero. In this case

one can easily find the expression for the absorption cross section:

aa 2 Re fdS(l-e e-4"' Cs ), (2.14)

which for small xImn, reduces to

ca 3l 2xImn, (2.15)

and for both xImn, and p large,

0ca = . r 12. (2.16)

This simply means that the absorption cross section of a large particle equals to its

geometrical cross section (which is one of the definitions of a black body). In the following

we confine our attention to particles with negligible absorption, and therefore can use

expression (2.12).

2.1.2 Scattering phase function of a large particle

To completely describe single scattering, knowledge of the cross section is not

sufficient. We need to know the probability of a photon to be scattered in a particular

direction, which is described by the phase function (2.3). The exact solution of the scattering

of a plane electromagnetic wave by an isotropic, homogenous sphere was obtained by Mie in

1908 [13]. The expressions for the cross section and the phase function generated by this
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Figure 2.4. is the phase shift between the two light rays shown.

theory can be found elsewhere [1]. The solutions are mathematically complicated and do not

allow simple physical interpretation. To calculate the value of the cross section or phase

function, extensive computations are necessary. Moreover, mathematical transformations such

as integration of a phase function over some angle range can only be done numerically.

Since we are interested in the scattering by large particles, we can obtain an

approximate expression for the phase function using the Van de Hulst approximation, without

employing Mie theory. To do this, we first find the scattering amplitude. Again, we assume

the particle to be rotationally-reflectionally symmetrical and homogenous. It was already

mentioned that a large particle scatters light predominantly in the forward direction. This

intuitively obvious fact can be derived from the optical theorem in the general case [9].

We can estimate the scattering amplitude in the forward direction using (2.9):

If(s, s) 2 a-/r (2.17)

and

If(s s) 2 2> , . (2.18)
as

23

�



At the same time

2r 1

ors = Jds'lf(s,s')2 = dpd cos6lf()i 2> 4cf(s,s) 2sin2 X (2.19)
4,r 0 -I

where and (p are polar angles determining direction s' relative to the direction of the incident

wave s, and Ot is the angular width of the for'ard peak. Using inequality (2.18), we obtain [9]

sin2 < 4 (2.20)
2 k 2a,

As mentioned in the previous section, the total cross section of a large particles is twice its

geometrical cross sectional area. For such a particle k2at>>l and the angular width can be

estimated by

2, A
O < -22 - (2.21)

Zcrt I

Thus, a large particle scatters light predominately in the forward direction. However, as will

be shown in section 2.1.2.2, such particles have a backward directed scattering peak as well.

First we determine the approximate expression for the phase function for small angle

scattering (see expresion 2.27). Backward scattering will be considered in section 2.1.2.2 (see

expression 2.34)

2.1.2.1 Small angle scattering

Consider a spherical particle with diameter 1. Because of the symmetry, both the

scattering amplitude As,s') and the phase p(s,s') depend only on the difference between unit

vectors s and s', and therefore, they are functions of 9 the difference between the polar angles

of these vectors: j(s,s')=J(6), p(s,s')=p().

One important property of the phase function, which will be implemented later on, can

be made on the basis of the optical theorem (2.9) and definition of the phase function (2.3). In

forward direction, the phase function p(0)=-Z'(ImJ(0))2 (since, for a large particle,

IIm(0O)>>IRe(0O)j) and, if the particle is non-absorbing, the cross section o4k'ImfJ0),

therefore the phase function is proportional to the cross section: p(O)=k2/(47c)2 r. We note that
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the phase function in forward direction has a wavelength dependent oscillatory component in

phase to that of the cross section.

For small scattering angles , the phase difference between the rays scattered by

different parts of the particle (see Fig. 2.4), is [11 ]

E= - sinsiny coscp, (2.22)
2

where p is the azimuthal angle of a vector oriented toward an element of the surface of the

particle. Therefore, the scattering amplitude

f () 2 JdS(l - e2ix(i1))os)e-Lsinsinrcosp (2.23)

where dS = siny cosyd/dy . The p integral can be taken immediately,

21r

fd(apeSsisinr oSp = 2z7J0(x sinOsiny) (2.24)
0

and, making the approximation sinOe=, (2.19), becomes

-r/2

f(O) i x rdysinycosy( -e 2' q or )o (x 0 siny), (2.25)
2 O

with '=x(n2-n,). This result was first obtained by Van de Hulst [9]. The integral in (2.25)

cannot be evaluated analytically and must be estimated.

Since the phase function is defined as

p(O) = l If()12 = o' ((Re f())2 + (Im f())2), (2.26)

the real and imaginary parts of the integral in (2.25) must be integrated separately. We then

obtain the phase function in the small angle scattering approximation:

= 2P2lI! J. (X0) ,I/J ()
pa (9) X = + (2.27)

XO 2 y ()

2(n, -n) cosy( ) siny(O))
82 +4(n2 - ni) siny(O) 

where we have introduced the function

y(O) = O2 + 4(n2 -n) 2 (2.28)
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Figure 2.5 (a) - Comparison of phase function calculated in the Van de Hulst
approximation, pf, and that calculated using Mie theory, p. The functions
are almost indistinguishable for small angles. (b) - Comparison of the
phase functions multiplied by sin9 (note that Jp(O)sind9=1).
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The first term in (2.22) is obtained from the real part of the scattering amplitude, and the

second term from the imaginary part. The phase function (2.27) can be used to describe the

forward scattering of a large particle.

Just as with the cross section, the phase function depends on the size of the particle, its

relative refractive index, and the wavelength of the incident light. This dependence is more

complicated in the case of the phase function. The ratio 12 depends only on p. The ratio

f depends on Sand x0: a, = a, (1,p) and p/ (9) = pf (x,p; 0). We further note that thex

phase function does not depend on the absolute value of the particle size. The scattering

curves for different values (n2-n2) and I look the same in shape and differ only in scale.

The fact that the scattering amplitude in the forward direction is proportional to the

cross section can be derived directly from (2.27). Indeed,

y(O)=2~, ~ J 2( 2 ) sin2g

the expression in brackets in (2.27) equals

x 2 sin2S sin' ) 2
4 1 -- + 2

and the phase function p(O);k2/(47)2 o. Thus, the phase function in the forward direction has

an oscillatory component that is in phase to that of the cross section (2.12):

p(0)z r- sin(2 x(n2- ~ ) ( sin(x(n2) (2.27a)

This conclusion will have a crucial impact on the results of section 2.2.

To test the validity of the approximate phase function (2.27) we can evaluate it in the

Fraunhofer diffraction limit when p> 1 and (n 2-n 2)<<1:

12 J 2(xO)
which is= ao~, corc Fanofrdf o2 haefnto[1](2.29)

which is a correct Fraunhofer diffraction phase function [12].
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(b) - Comparison of the phase functions multiplied by sin .
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Let us go back to general expression (2.27), derived for small angle scattering. What is

the angle range for which we can use it? Comparison of pf(6) with the phase function

calculated in Mie theory, p(9), shows that pf(&) describes p() accurately for angles such that

xO 020; in other words, it is not valid when the number of maxima and minima of the Bessel's

functions in (2.27) (and consequently the number of the maxima in the phase function) is

much larger that unity. This illustrated in Fig. 2.5.

To describe small angle scattering, another approximate phase function is frequently

used [1]. This is so called Gaussian phase function:

PG () = 4aWea 2, (2.30)

where a is proportional toO/ () 2 and W is a normalization parameter. W should be

chosen either to satisfy the normalization rule for the phase function or to better approximate

its behavior in some angle interval. The Guassian phase function is simpler than pf(). The

main disadvantage of using PG() is that it accurately approximates the Mie phase function

only for such angles that x2. (Roughly speaking, it is 10 times worse than pf(O).) It

describes well only the forward peak (Fig.2.6). In some cases this can be sufficient, since, for

example, the forward peak of a particle with l/ 10 and a small refractive index (n,/n,- 1 O0. 1)

contains approximately 70% of the scattering power. However, as discussed below, it can not

describe some important effects. In this case, a modified Gaussian phase function (2.78,

below) can be used.

2.1.2.2 Backscattering

In this section we estimate the phase function for scattering angles near the backward

direction. We obtained the phase function in the small angle scattering approximation. This

approximation, however, is not valid for non-forward scattering, particularly backscattering.

To find the phase function for angles 0 close to 7r we need to use Mie theory. We surely can

estimate numerically the phase function for these angle values. However, some important
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properties can be obtained without the use of rigorous numerical computations. Let us first

speculate on what kind of scattering we should expect in the backward direction.

One can predict that backscattering is negligible if the scatterer is large. At the same

time, we know from the scattering theory that [10]

if()( = i b (2.31)

sin 9 Idx/dbl

with b an impact parameter and X the corresponding deflection angle (Fig.2.7). This would

suggests that the cross section in the backward direction is infinite, if backscattering is

possible for impact parameters other than zero. In fact, strong backscattering is a striking

phenomenon observed when sunlight is scattered from clouds, called the glory. In the WKB

approximation [9]

A d/db|., (2.32)

In this expression a is the scattering angle measured from the backward direction, bg

is the impact parameter that leads to exact backward scattering, and the derivative in the

denominator is evaluated at this point. The phase amplitude is not zero in the backward

direction if there is an impact parameter bg•0. This is possible if a multiple reflections inside

the particle can lead to an outgoing beam in the exact backward direction. Examples of such

paths are shown in Fig. 2.8. It may appear that a non-zero bg exists for any spherical particle.

This is not entirely true. The particle must be large enough to permit such trajectories. That is

why the presence of a scattering peak in the backward direction is a property of large

particles only. The refractive index may limit number of permissible inner reflections. For

example, the double reflectance path (a) in Fig. 2.8 is possible only if the relative refractive

index of the particle n=n2/n, is higher than V and less than 2. The glory observed during

illumination of such particle would be very strong. Triple reflectance (path (b) on Fig. 2.8)

results in a weaker effect, but is possible for smaller n. The trajectories of higher orders are

possible as well. In general, the more reflections necessary, the smaller the backscattering

amplitude and bigger bg.
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Figure 2.7 Impact parameter b and deflection angle X

Figure 2.8 Examples of the possible trajectories of photons inside
the particle that result in exact backward scattering for impact
parameter bOO. (a) - double trajectory; (b) - triple trajectory.
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Our goal now is to evaluate the phase fimction in the backward direction. Substituting

(2.32) into (2.3) we obtain

bg

iJdx/db12 | ab
(Jo(bg sin 0'))2 . (2.32a)

Now we need to estimate bg and dX/db. For a trajectory with k internal reflections, the

deflection angle equals

X=2 a-2(k+ 1 ),l+kn' (2.33)

with a the angle of incidence, and the angle of refraction. In exact backward direction,

X=2;r and angle P can be expressed as

(k - 2) + 2a
2(k + 1)

(2.33a)

Substituting (2.33a) into the relationship between the angle of incidence and angle of

refraction sina=nsin3 we obtain a transcendental equation

sin = n sin((k - 2)r + 2a)
2(k + 1)

(2.33b)

which should be numerically solved for a. Then, the impact parameter can be found as well:

bg=(l/2)sint. The derivative dXldb can be obtained from (2.33):

d = 2da - 2(k + 1)dp. (2.33c)

Substituting da = b dp = an ab db into (2.33c) we obtain
adx ab

db
db

2 1-
abb 1

(k + 1) )

From the relationship bg=(1/2)sina one can find
1b

2

11 - 2b2/12
and from the equation

013 /1-z~i1 262/12
sinc=nsinp3 one can find a- - 2b 2/ 2 . After substitution these derivatives into (2.33d),

we obtain
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JO~I,·~l c8 (2.33e)

Substituting (2.33e) into (2,32), one can determine the phase function for backward scattering:

p(8) X12 (n2 _ 1)2 (J (X0))2, (2.34)
16;ros

where we approximated sinO~. This expression will be used in section 2.2.1.

This simple expression, obtained without employing rigorous and complicated Mie

theory, showes a number of important properties of the backscattering.

(1) The larger the particle, the stronger the backscattering. It reaches a maximum when =7c.

For a large particle (Ž'>1), this maximum can be obtained from (2.34):

8;2 si(2x(n -n,) xn(x(n2 l, ) (2.35)

As can be seen, the maximal value of the phase function is linearly proportional to x=zll/.

(2) The angular oscillations are determined by the Bessel function in (2.34), which depends on

the argument xO. Thus, the larger the particle, the more rapid the angular oscillations and the

smaller the width of the backward peak. Simply speaking, the larger the particle, the sharper

the peak.

(3) Expression (2.35) shows that the amplitude of the backscattered light exhibits a functional

dependence on wavelength. In contrast to the forward scattering phase function (compare p(r)

given by (2.35) with p(O) given by (2.27a)) which, as a function of 2, oscillates in phase with

the cross section, the backscattering oscillations are shifted by half a period. Thus, when the

forward scattering and the cross section have maxima, the backscattering has minima. The

fact that the forward scattering and the cross section are in phase is a direct result of the

optical theorem. The behavior of the backscattering can be explained by the fact that a

scattered light from a large particle is either predominantly forward or backward directed. The

scattering for intermediate angles is very weak.

Because of the quasiclassical approximation used to derive the backscattering phase

function, it is slightly different from that predicted by the Mie theory. In reality, the

backscattering peak is reached not in the exact backward direction but slightly shifted
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(Fig.2.9). This shift depends only on the parameter x and equals AO=r/x. (To correct the

description of this shift to expression (2.34), one needs to substitute the argument, , of the

Bessel function in (2.24) with -AO). The shift does not change any of the predictions made

regarding the backscattering.

One important property of the backscattering should be emphasized. While the

backward peak is significantly smaller than that for forward scattering, it can be comparable

or even larger than the light intensity that would be scattered in the same direction by an

"isotropic scatterer" (in which scattering is the same in all angles). A particle with diameter

1=10.m and n=l .1 has a maximum value of the backward peak for X=0.4lm of approximately

p,a=0. 12. The power flux collected in a small solid angle d.(2 around the backward direction

will be

In= pm,, dd (2.36)

and I/df=O. 12. For comparison, an isotropic scatterer irradiates p(9)=l/(47r) in all directions

including the backward one, and = = 0.08, one and a half times less than that of the
d 4r

10 Om particle.

In conclusion, let us discuss briefly how the scattering pattern changes with particle

size. When the scatterer is smaller than the wavelength (x<<l), scattering is described by the

Rayleigh or Rayleigh-Gans theory. The efficiency parameter (the cross section divided by the

cross sectional area of the particle) is proportional to x4 and the cross section has the famous A

4 wavelength dependence. This type of scattering is responsible for the blue color of the sky

and for the effectiveness of yellow illumination lamps in hazy morning weather. As the

particle size increases, the scattering becomes less isotropic and more forward directed. The

scattering is strongest when the particle has a diameter close to the wavelength (=0. 1--l p.m).

The angular distribution of the scattered light exhibits a prominent forward-directed peak. The

width of this peak decreases with increasing particle size. The phase function decreases almost

monotonically with angle . Backscattering is negligible. This type of scattering is responsible

for light diffusion in biological materials. With further increase in size, scattering at angles

near 0=7/2 diminishes and a backward-directed peak is formed. For particles larger than the
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Figure 2.9 Comparison of the phase function calculated in the WVKB approximation for
scattering in backward directions, PB, and the phase function calculated using Mie
theory (I=lOaum, A=0.5,nm n=1.08). The phase functions plotted here are already
integrated over the phase angle p.
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Figure 2.10 Comparison of the backscattering peak for a sphere (I=l 0an) with scattering from
an "isotropic scatterer" for two different wavelengths: (a) -- X=400nm; (b) --
X=350nm; (c) - "isotropic scatterer".
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wavelength (=5--20pm), scattering is characterized by a very strong forward peak, noticeable

backscattering, and very weak scattering in lateral directions. The efficiency parameter is no

longer proportional to x, and exhibits oscillations around the value 2. This type of scattering is

responsible for such illustrious effects as the rainbow, the glory, and the ineffectiveness of

yellow street light illumination in a real London fog. Despite these well known effects, large

particle scattering has being disregarded in biological spectroscopy. This is partly due to the

fact that light inside the tissue is randomized by multiple scattering from smaller structures of

size comparable to the wavelength (extracellular matrix, cellular organelles such as

mitochondria, etc.). However, the light is not randomized in the uppermost layer of the tissue.

Thus, if this layer contains some structures with dimensions larger than the wavelength, the

pattern of the light scattered by these structures can manifest itself.

2.1.3 Important results from this section

In this section the light scattering by a single particle large relative to the wavelength

was studied. In section 2.1.1 the optical cross section of a large particle (2.12) was derived in

the Van de Hulst approximation [11]. This cross section depends on the size of the scatterer,

the wavelength, and the difference in refractive indexes between the scatterer and the

surrounding medium. The cross section has an oscillatory wavelength dependence with the

periodicity proportional to the particle diameter.

In section 2.1.2 the phase function of a large scatterer is discussed. Since large

particles scatter light predominantly in forward and backward directions, these two cases were

considered. The phase function for near forward scattering (2.27) was derived in the Van de

Hulst approximation (section 2.1.2.1). It was shown that its amplitude has an oscillatory

component (2.27a) that is in phase to that of the cross section, as required by the optical

theorem. The phase function for near backward scattering (2.34) was derived in section

(2.1.2.2). Its amplitude in exact backward direction (2.35) has the oscillatory component

which is out of phase to the oscillations of the cross section.
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In the following section we will use these results to study light reflectance from a slab

of large particles. It will be shown that the wavelength dependent oscillations of the cross

section give rise to an oscillatory component in the reflectance from the slab.

2.2 Reflectance from a slab of large particles

Mucosal tissues, which line the hollow organs of the body, generally consist of a

surface layer of epithelial cells supported by underlying, relatively acellular connective tissue.

In healthy tissues the epithelium may consist of a single, well-organized layer of cells

typically 10-20 pm in diameter. In cancerous and pre-cancerous (dysplastic) epithelium the

cells proliferate, the cellular layer often thickens and becomes more tightly packed, and the

cell nuclei become enlarged [8]. The cell nuclei in the epithelial layer are spheroidal scatterers

with refractive index higher than that of the surrounding cytoplasm [6,7]. In healthy

epithelium, the nuclei range in size from 4 gm to 7 gm. In contrast, dysplastic nuclei can have

diameters as large as 20 gum, occupying almost the entire cell volume. Thus, in the visible

range, the wavelength A<<, and the Van de Hulst approximation can be used to describe the

optical scattering cress section and the phase function of these nuclei. Therefore, their

scattering cross section exhibits oscillations in wavelength described by expression (2.12).

When a biological tissue is irradiated by light, fraction of light is reflected from the

tissue surface (specular reflectance), the remaining light penetrates into the tissue and, if not

absorbed, eventually returns back and partially collected. The ratio of this signal to that of the

incident light is called reflectance signal. It will be shown that the wavelength dependent

oscillations of the cross section give rise to a corresponding oscillatory component in the

reflectance from the tissue.

Consider a beam of light incident on the surface of epithelial tissue. A portion of this

light will be backscattered from the epithelial nuclei, while the remainder will be transmitted

to deeper tissue layers, where it undergoes multiple scattering and becomes randomized. All

of this "diffusive" light which is not absorbed in the tissue eventually returns to the surface,
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passing once more through the epithelium, where it is again subject to scattering from the cell

nuclei. Thus, the emerging light will consist of a large diffusive background plus the

component of forward scattered and backscattered light from the nuclei in the epithelial layer.

The contributions of the backscattered and the forward scattered light are independent and

will be studied separately in sections 2.2.1 and 2.2.2 respectively.

2.2.1 Backscattering from a slab of large particles (cell nuclei)

Consider a plane wave propagating in direction si close to the normal to the surface

(axis z) of a slab of thickness containing randomly distributed scattering particles (cell

nuclei) with the size distribution N(l) (the number of particles per unit area and per unit

interval of diameters). We consider here only photons that are scattered once by the particles

in the near-backward direction (Fig. 2.11, path (1)). We do not consider photons scattered

more than once in the epithelial layer (path (2) in Fig. 2.1 1) nor photons which are transmitted

to the underlying tissue layers and then return back (path (3) in Fig.2.11). Contributions of

these photons to the oscillatory fine structure will be considered in the next section). Thus,

backscattering from a slab is essentially a single elastic scattering process, although the slab

may contain many scatterers.

Consider light incident into the slab in direction s and specific intensity Ii(s) [1] (unit

mWsr'mm 2Hz'). Each particle of a diameter scatters the power (l)I,, where () is the

scattering cross section of such particle. Therefore, the decrease of the specific intensity

dI(r,s) on the distance dr due to the scattering from the particles with diameters from I to l+dl

is expressed by

dI(r,s)=- r/(r,) oa(l)I(r,s)drdl,

with (r,) the size distribution of the number density (the number density [1]

p(r)=f r7(r,l)dl). In the case of the homogenous spatial distribution of the scatterers the

decrease of the specific intensity due to the scattering from all the particles inside the slab

dI(r,s)=- qrl(l) q()dl I(r,s)dr.
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Figure 2.11. Possible photon paths in reflected light. (I)- initial light, (1) - photons

reflected after one backscattering event, (2) - photons backscattered after a number of

scattering events inside epithelium, (3) - photons diffusely reflected from underlying

layers.

Since dz=cosOdr with the angle between the direction s and the normal to the surface

directed toward the slab, and, because of the spatial homogeneity, N()= r()L, the specific

intensity of light that propagates through this slab in direction s without being scattered can be

expressed as

I(s) = exp cosIi (s)

where t is called the optical distance:
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r = fo,(l)N(l)dl.

Therefore, the probability of a photon to propagate through the slab without being scattered

equals exp(- c) and the probability of a photon to be scattered inside the slab is

1-exp( cs)

The phase function p(s,s') is equal to the probability of a photon being scattered from

its initial direction s to direction s' given that the scattering event takes place. Thus, the

probability of a photon to be backscattered in direction -s' inside the slab is

1 - e cos (s,-s'), (2.37a)

where the negative sign before s' indicates that the scattering is in the backward direction, and

p(s,-s') is the effective phase function which is the weighted average ofp(l,s,s') over scatterers

of all sizes:

p(ss') p(,s,s'),scr(l)N(l)dl, (2.38)

with p(l,s,s') the phase functions of a particle with diameter 1.

Thus, the backscattered intensity flux collected in solid angle f2 is

Ib = fJfI,(s)P(s,-s'{) - e oso sds (2.39)

where Ii(s) is the specific intensity of the incident light delivered in solid angle .j. We will

refer to this expression in section 2.3.

To appreciate the physical meaning of expression (2.39), let us consider an important

case of a small optical distance r and small angles 2c and Q. This approximation holds in

many practical applications, including our experiments with tissue phantoms and esophageal

tissues discussed in chapter 3 (in our case f2~=d=0.15). In this case, expending (2.39) to first

order in r and -cos0 (small .Qi approximation) and substituting (2.34) into (2.39), one can

obtain the reflectance associated with the backscattering
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R I() i (n2 1)2f 1lN(I)dl(1- 2 N(l)a,(, )d ) (2.40)

Note that the send term in the brackets is proportional to . Thus, the reflectance as a function

of wavelength consists of a constant "background" proportional to the relative surface area

covered by the scatterers,

l2N(l)dl, (2.41)

plus an oscillatory component proportional to - r which is out of phase with the cross section

(2.12). The cross section (2.12) contains two wavelength dependent terms, one is proportional

to 4' and the second is proportional to C2. Noticing that in our case, 4>>1 and the second

term, proportional to 42, can be neglected, the wavelength dependence of this oscillatory

component is approximated by

f jn N() dl, (2.42)
(n2 - n,)

As can be seen, particles of each diameter contribute

sin( (n2 - n))
(2.43)

(n2 - n )

to the reflectance signal. Each contribution is proportional to the factor

N(l) -dl, (2.44)
4

which is the ratio of the total cross sectional area of all the particles of this particular size to

the total area of the surface. In the case of an epithelial tissue consisting of one cell layer, this

factor is called the nucleus-cytoplasm ratio (N/C-ratio). These observed oscillations can be

analyzed by solving the "inverse problem" to determine the size distribution, N(l) (see section

2.3).
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2.2.2 Light propagation through a slab of large particles

In the previous section we considered the backscattering from a slab of large particles.

Since the backscattering is much smaller than the scattering in forward directions, the main

portion of the incident light penetrates through epithelium into deeper tissue layers

(connective tissue of lamina propria and musclular tissue of muscularis mucosa). The

connective tissue layer is relatively acellular and is usually thicker and more homogenous than

the epithelium [14]. Many investigators have established that the photons are randomized

there, and that light propagation is governed by diffusion [15]. Some photons are absorbed

and the rest are scattered back toward the surface. Such photons pass through the epithelium,

where they are scattered from the cell nuclei. If the optical distance of the epithelium e1, the

probability of multiple scattering is small. In that case, the first order multiple scattering

approximation is applicable. This is the relevant case when we consider simple columnar one-

cell-layer epithelium that covers most of the surface of the gastrointestinal tract, respiratory

system, etc. This case will be considered in section 2.2.2.1, and will be applied in Chapter 3 to

analyze the experimental results. If, however, the optical distance is no longer small, multiple

scattering can not be ignored and the transport equation must be solved. An approximate

solution valid in this regime is obtained in section 2.2.2.2. This situation is less frequent for

epithelial tissues. An example is a thick stratified epithelium of the skin (epidermis). If r>>1,

the diffusion approximation [1] gives relatively simple solutions, and the transport equation

need not be solved. This regime is almost never achieved in surface epithelium and is not

considered here.
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2.2.2.1 Small optical distance - first order multiple scattering

approximation

Consider light with angular dependence Id(O) which is incident on the slab from

below, with angle a being measured from the normal to the surface directed toward the slab

(Fig. 2.12). Note that Id is the diffuse specific intensity, not the incident specific intensity, I.

Diffuse photons come from deeper tissue layers and their angular distribution is broad, in

contrast to that of the incident light which can be confined by the delivery optics to a small

solid angle. We collect light emerging from the slab in some solid angle .Oc. Two types of

photons can be collected in a direction . Some photons propagate through the slab without

being scattered (path (1) of Fig. 2.12). Since the probability of a photon to propagate through

the slab without being scattered equals exp - o s (see section 2.2.1), the specific intensity

from these photons is

I (O)e cost (2.45)

the remaining photons undergo scattering inside the slab. If r1, we can neglect the scattering

of the photons that have been scattered once. The probability that a photon passes distance r

without being scattered is e-'(r) with (r) the optical distance corresponding to the distance r:

,r(r) = fdrt'Jdlq7(rt', l)o (I) . (2.46)
0

If the spatial distribution of the scatterers in the slab is uniform, the optical distance is

proportional to z:

ZX:(r) - c
cos '

where we introduced the factor

X = dlq(l)cr.,(l) (2.47)

and we used the fact that dz=cos 7dr. Therefore, the specific intensity of light propagating this

distance without being scattered is
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(2)

n
d0

I

Ii ) Ii a)
Figure 2.12. Possible paths of the photons collected after transmission through the slab

in a direction with phase angle 9. A photon can come out in this

direction without scattering (path 1) or after being scattered once

(path 2).

Id()exp cos 'ZX (2.48)

The probability of a photon to be scattered between point z and z+dz equals

X dz. (2.49)
cos O'

The probability of a photon to be scattered to the direction s determined by polar angle O'

equals

p(s,s') z dz.
cos 9'

(2.50)
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The specific intensity scattered to this direction is

id(O)P COss' ) ( zC Oz dz (2.51)cos O' exp cosO')

The contribution to the specific intensity of the exiting light at angle 0 from photons which

enter the slab at angle 9'is obtained integrating (2.51) over penetration depth z:

=z(z)
Le cos'

Id (s')p(s, s') co; Xdz, (2.52)

where L is the thickness of the slab.

The contribution of the photons coming from all incident angles is

2;r Jsin ~sd Id ( )p(8 VS )fe cos 'Xdz (2.53)
COCS O' '

where we have written the phase function p as a function of polar angles 0 and ' to simplify

the following expressions (the phase function of a spherical particle does not depend on the

azimythal angles and depends on the difference -0').

Incorporating (2.45) and (2.53), we obtain the transmitted intensity

If 2r fId()e sin + 2 fssds+2a indO JsinO'd9' Id(9 )p(', 'ze cs , (2.54)
0 of 0 Cos ' 0

with 9c the angular width of .2. The integration over z can be performed and expression (2.54)

reduces to

r OS 2;rr
I f = 2r Id(O)e cos sin 9dO + 2r fsinOdO fsin'd'I7d(')p(9', ) 1- e ose . (2.55)

To perform the integration in (2.55) we need to know angular dependence of Id(O). Diffusion

theory predicts that the angalar distribution of the reflected light has, to a very good,

approximation, a a+bcos0 dependence (see section 3.3) [17]. One can show that, in this case,

expression (2.55) involves the integrals of the hypergeometric functions that allow only

numerical evaluation.

In many important practical applications, angles .2, and .2O are small and El (see the

discussion on the applicability of this approximation in section 2.2.1). The angular
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dependence of the phase function in (2.55) is much stronger than that of Id(6 ) and cos9 and

we can then expend (2.55) in -cos<<l:

I, = 2re-r JId()sin d9 + 2 (1 - e-r j) inf sin sindI()p(O, ') - (2.56)

- 2zrr e- r I ()(1 - cos )sin + - -)fsin 'ds' Jsin 6dI (O)p(O, ')(1 - cos ')

where we expended

e e-r(l -r(l - cos 0)).

The terms in figure brackets in (2.56) are much smaller than the first two terms and can be

neglected:

I/ = 2're- ' fId()sinOdi + 2r(l - e-r)Jsin'dSO' sinSdoId(9)p(,8, ') (2.56a)
o o 0

We shall use this expression in section 2.3.

If the optical distance is small, as well, we can expend (2.56a) in r:

Gc e, 2r ac

If = 2r fII (9) sin OdO + 2 rr sin O'd' sinOdOI, (O)p(, ')- I () sinOdO . (2.57)
o o o 0

Let us define the normalized transmitted intensity

I/

where (Id )n is the averaged diffuse intensity

(Id )n = 2 Id (9) sin I . (2.58)
o

Since the diffuse specific intensity changes slowly with angle, in the case of a small collection

angle 0~, If can be obtained from (2.57):

If = 1- r - fsin OdO, ()p(O, ) (2.59)
o
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where I, () is the normalized diffuse intensity

I (o) d

(Id)n

Expression (2.58) shows that the transmitted light has a component which is

proportional to -, just as in the case of backscattering (2.40). Thus, light backscattered from

the particles inside the slab and diffusive light propagating through the slab introduce an

oscillatory component which is proportional to -T. Note that these two effects are additive.

2.2.2.2 Large optical distance - sn.all angle approximation

Backscattering and forward scattering of diffuse light both exhibit an oscillatory

component in the reflectance. Its amplitude is proportional to the concentration of the

scatterers if the optical distance T<1. In same rare cases the epithelium may be thick enough

so that Xt is no longer smaller than unity, but not large enough to result in complete diffusion.

The goal of this section is to understand how the oscillatory component behaves for such .

(The results presented here will not be used in the following sections.)

When <l the first order or single scattering approximation can be used. When t>>l,

we are in the diffuse regime. In the intermediate case, we need to solve the equation of

transfer [1]

s gradI(r,s) = -,I(r,s) + , JI(r,s')p(s',s)ds' (2.61)
41r

where /,=po is extinction coefficient, p is the number density [1]; as before, I(r,s) is the

specific intensity at point r in direction s. This equation states that the change of specific

intensity in a given direction, s, equals the difference between the portion scattered to this

direction from all other directions and the portion absorbed or scattered in all other directions

from the given one. The transport equation describes not only light propagation in turbid

media but also many other processes, such as propagation of acoustic waves, neutron

transport, traffic in a city, and even money flow in a large corporation. The equation was first

formulated by Schuster in 1902. Despite extensive studies, the transport equation has not

being solved for an arbitrary phase function. Many attempts have been made to solve it, if not
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in general form, at least for a relatively general simplified case. Although success has not

been achieved, it has not yet been shown that this equation does not allow an analytical

solution.

When the scatterers are much larger than the wavelength, the light is scattered

predominantly within a small range of angles in the forward direction, and the transport

equation can be simplified. A number of approaches to solve the transport equation in this

case have been proposed [1,18]. We consider here the so called small angle approximation

[1].

A unit vector specifying direction s can be expressed as

s = ax +f py + z, (2.62)

where x, y, and z are unit vectors in the respective directions, a; /3, and y are related to the

spherical coordinates by

a = sin cosp, = sin 9csin , y=cos. (2.63)

Consider a plane wave incident on the slab in the direction z. In our approximation, angle 0 is

always small and, therefore, r 1. Thus, (2.61) can be written as

(p,s) + s. VI(ps) = -,I(p,) + I(, s)p(s' - s)ds', (2.64)

where

s= ax+fy, VI =-x+-y, =r-zz, (2.65)
c3c

and the integration over 4ir in (2.61) is formally substituted by integration in the (x,y) plane.

Although by the definition a2+f<1, we can extend the integral over the entire (x,y) plane;

because the major contribution to the integral comes from the region where a and , are small,

the contribution from the range a2+,>1 is negligibly small, and we can extend the integration

without introducing any significant error.

The solution of (2.64) can be found by using the Fourier transform method [17].

Multiplying equation (2.64) by exp(ikp), and then integrating over all p, one can obtain:

-/ isk +/, I(z,k,s) -a, f II(z,k,s')p(s s')ds'=O, (2.66)
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with

(2.67)I,(z,k,s) = ffI(z,p,s)eikdp

is the Fourier transform of the specific intensity.

If we define

I2(z,k,s) = I (z,k,s)e('= " - ~' ) ,

P(q)= fJp(s)eiSqds,

F(z,k,q) =

(2.68)

(2.69)

(2.70)

and take the Fourier transform of (2.66) with respect to s, we obtain the following first order

differential equation for F:

-F(z,k,q) - ,u,P(q - kz)F(z,k, q) = 0.
dz

(2.71)

The solution is

F(z,k,q) = F(0, k,q)exp J,uP(q- kz')dz'). (2.72)

Therefore, the solution of approximate transport equation (2.66) is obtained as inverse Fourier

transform

I(ZPS) = I Jd k q F(z k, q ) e- '(kp+s q)+: (isk-" ) (2.73)

This can be simplified to [1]

1
I(z,p,s) =

(2;r) 4
f fdkdqFO (k,q + kz)K(z,k,q)e - '(kP+,q)

where Fo relates to the incident specific intensity as

F0(k,q) = dpdso (p,s)ei(k+s q)

and

K(z,k,q) = exp - , (1 - P(q + k(z - z')))dz' .
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Consider an incident beam with Guassian radial and angular distributions:

I,(r,s) = Wexp(-a7'2)exp(-s2), (2.77)

with W a normalization coefficient. Since the solution (2.74) is valid only if the scattering is

confined within a small solid angle, we do not introduce additional error if we approximate

the phase function by

p(s) = p0 exp(-,l s 2) (2.78)

with a parameter 8 that defines the angular width of the forward peak. If chosen according to

(2.21), ,6 describes the forward peak quite accurately. However, as mentioned in section

2.1.2.1, in this case we disregard all the effects associated with light scattered in small angles

but outside the forward peak. Since we are interested in integral properties of the phase

function, it is important to choose the width of the Gaussian function, l, in such a way that it

approximates the wing of the phase function as well. We should thus choose

P= (2.79)
(sin2 9)

with c and

(sin2 ) = 2r Jsin3 Op(o)ds . (2.80)
-i

Substituting (2.77) into (2.75) we obtain

F0 (k,q) = Wfaexp( xx) (2.81)
a '- 5 a

and substituting (2.78) into (2.76) we find

P(q) = P0 exp -_). (2.82)

Therefore,

K(z, k, q) = exp {-/z + P fexp (q + k(z - z'))2dz' . (2.83)

The integral in (2.82) can not be evaluated analytically. However, it can be approximated by
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iexp(- (q+0 7

- ZI q
2= ze P

k(z - z'))2 Jdz' = ze 

Therefore, (2.74) becomes

I (z , r , s ) = 16r exp-16-- a- x .uz( - )) Jdqdkei(krs ) exp(- q

(2.85)

where we defined the function g(z)

g(z) = I + P42 
4f'2

Expression (2.85) can be simplified, and the transmitted specific intensity at point r in

direction s is

I( z r s) 6W r5 P(16;r -e 'UZ( fP exp(-g(Z)S2

The signal detected in solid angle .2c by a detector with area S, If, is obtained by

integrating (2.87):

(2.88)S= Jdr fds(L,r,s)
S 

If there is no dependence on phase angle 0,

I/= --- exp(-,uL)exp-u - exp(- g(L)_~~~~~~: (2.89)

where :c=Oc-' is the inverse width of the collection angle.

For the practically important case when

L2a<
<<1

2fl

(2.89) is reduced to

Ir w r{ [rex (If = e
l 1ca 5

(2.90)
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This signal should contain the oscillatory component. However, its amplitude, in contrast to

that obtained using first order approximation for <1, starts to decrease for 2 >. This can be

understood by noting that r is the most probable number of collisions of a photon has the

scatterers inside the slab. In every scattering event the photon changes its previous direction

1
by -. Thus, after c =5 collision the photons "forget" their initial angular distribution.

When the number of scattering events is larger than r, randomization takes place. If we

increase even further, we achieve complete diffusion. Diffusely transmitted light lacks the

oscillatory component. We should note, however, that the resultant signal contains some

oscillatory component even for large r, because there are always some particles near the

surface that scatter light just before it emerges, and the scattering by these particles results in

the formation of an oscillatory component.

2.2.3 Important results from this section

In this section the light reflectance from a slab of large particles, simulating epithelial

layer covering surfaces of the most biological tissues, was considered. It was shown that the

wavelength dependent oscillations of the cross section give rise to corresponding oscillatory

components in the reflectance from the tissue.

There are two effects contributing to the oscillatory component in reflectance - (1)

backscattering of the incident light from the particles inside the slab and (2) scattering of the

"diffusive" light returning toward the surface when it propagates through the slab. In section

2.2.1 the contribution of backscatteringn was considered. The fraction of the reflectnace

associated with backscattering was obtained (2.39) in the case when the optical distance <l1

which is valid for many practical applications. Expression (2.40) showed that the

backscattered signal has an oscillatory component proportional to -T.

In section 2.2.2 the contribution of the scattering of the "diffusive" light was discussed.

Two cases were considered: (1) z<1 -- section 2.2.2.1, and (2) large t -- section 2.2.2.2 (less
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practically important case). The intensity transmitted through the slab was obtained (2.55).

Expression (2.56a) presented the transmitted signal in a practically important case of small

collection and illumination angles. This expression will be used in the following section.

Limit of small was considered as well (2.59). It was shown that the transmitted signal has an

oscillatory component proportional to -, just like in case of backscattering.

Thus both effects are additive, and reflectance from a biological tissue covered by

epithelium exhibits wavelength dependent oscillations proportional to -T. Since the optical

distance r is determined by the size distribution of the scatterers inside the slab, N(l) (2.37),

the size distribution can be obtained by analyzing the oscillatory component. To achieve this,

an inversion technique is necessary.

2.3 Inversion of the oscillatory component to

determine size distribution of the scatterers

The reflectance R(A) from a tissue covered by a thin slab of epithelial tissue containing

nuclei with size distribution N(l) [number of nuclei per unit area (mm2) and per unit interval of

nuclear diameter (m)] collected by an optical probe with acceptance angle 2c consists of

backward scattered photons and photons passing through the epithelium from the underlying

tissues. The contribution of backscattered photons is given by (2.56a). For small solid angles

2i and 2c the expression in the integral in (2.56a) can be expanded in 1-cosO<<l (see a

similar expansion in section 2.2.2.1) and the component of the reflectance associated with

backscattering is approximated by

(I)n- (,), e ((Ii (,-s )p(,Ss ))n, (2.91)

where Ii is the specific intensity of the incident light delivered in solid angle 2j, and

(f(s,s')) n = f(s,s')ds' for any functionfand solid angle Q.
Q
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The component of reflectance formed by photons transmitted through epithelium from

underlying layers can be obtained in the same approximation from (2.56a):

(I id , -(I e- r ( )

R1 (2) = (I)n (1a)2 e-(fi) + ((Id (, s')p(,s, s')) 2 )n , (2.92)

where Id is the specific intensity of light emerging from the underlying tissue.

Thus, the total reflectance R=Rb+Rf is given by

R() =e + I ,-')p(ss)) + (Id(js')p(,ss'))2 , (2.93)

where the quantity R (2) is the reflectance of the diffusive background

(Id (Al's))ncR()= ( )) (2.94)

The optical distance (A) depends on the nuclear size distribution as

Tr() = I%(2,l)N(l)dl,

and the scattering phase function is given by

p(2,ss') = 1 fp(, I,s,s')r,(,l )N(l)dl.

The first term in (2.91) describes the attenuation of the diffuse background, and the terms in

brackets describe backscattering of the incident light and forward scattering of diffusive

background by the epithelial cell nuclei, respectively.

As we saw in the previous section, the forward scattering term oscillates in phase with

(2), as required by the optical theorem, whereas the backscattering term is out of phase.

Thus, the epithelial nuclei introduce a oscillatory component in the reflectance with a

wavelength dependence similar to that of the cross section. Its periodicity is approximately

proportional to nuclear diameter, and its amplitude is a function of the size and number of

nuclei in the epithelium. These quantities can be determined by analyzing the reflectance

R(,).

Neglecting the square term in (2.12), the cross section as(A,1) of a large particle can be

written as
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(l) = (2 -/(2,l))q(, = I- 5- ( A,-)

where As, 1) is a oscillatory component of the cross section,

sin(k(2)l)
k(2)l (2.96)

and k is the effective wavenumber

24(n2 -n 1)k(,) =2
Ag

(2.96)

with n and n, the refractive indexes of the scatterer, nucleus, and the surrounding medium,

cytoplasm. Since

((I('SI)P(SS))2) = + fl (I - y(Al)) (2.97)

where the positive parameters f and f; depend on the angle ic and can be determined

numerically, the forward scattering term in (2.91) can be written as

((Id (2, s)p(' s ))2 )Q Z= 2) dlN(l)12 (1- (, Il)Xfo + f (1- y(2,l)))
2r(2)

For the backscattering term,

and, therefore,

) = ' (2) dlN(1)12 (1- y( ))(b-

For all large 1, [JAl) <<l and

;r dlN(l)12y(2,l) r(2)
2r T0

(2.101)

where we have defined

F() = fdlN(1)12y7(,l), ro = - fdlN(l)12. (2.102)

The function (X) represents the oscillatory component introduced by the epithelium, and r is

twice the total geometrical cross section of the epithelial nuclei per unit area. Substituting

(2.98) and (2.100) into (2.93), we obtain for zr<<l:
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((I, (2,s')p(, l,s,s'))n ) = bo - b(1- y(A,l)) (2.99)

(2.100)

(2.95)

(I, (A, S')PA, S, S')) a (I - r (A, 1))).



R(A2,) -1 ; qr(A) (2.103)
R(2)

with parameter q = 1 - f - f - bo + b,. Thus, if we can measure the reflectance R(2) and the

diffusive background R (2), we can find F(A).

Function r(A) is the integral transform with kernel A, 1) of an unknown function N(l).

We need to find such inverse transform V that

v[r(;),l] = N(l). (2.104)

In this case, the nuclear size distribution N(l) can be found as the transform of the function

R(;)
R() which is to be determined from the measurements:

[( = R(X) 1
N(R(2) -1, l (2.105)

sin(k(2)l)
Given that y(A,I) = 2 andk(2)l

fsin kl sin kl'dk 2(1- 1') (2.106)

the integral transform Vis related to the Fourier transform

2 sin(kl)kdk = 8(n2 -n,) r sin 2f(n
V[Frl]= - jr(k) in(kl)kdk 2 IF (A) sin 2 dA . (2. 107)

In practice, however, the reflectance R(2) and, therefore, (2), are measured only in some

wavelength range from 2min to 2mi,n F(() vanishes for wavelengths smaller than

, 0ldmin (n2 --n), (2.108)

where mi, is the diameter of a smallest nucleus present in the epithelium. For lma=5,m,

A,120nm. F(2) does not have oscillatory behavior for wavelengths large than

/, 2 - max(ln 2 - n1), (2.109)

where Im, is the diameter of the largest nucleus. For Ima,=15 pum, A22800nm. Thus, if we

measure R(2) for all c[2,l2], we can apply transform (2.107), integrating from i, to 22

rather than from zero to infinity. However, if the reflectance R(A) is measured for optical
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wavelengths only (from Ain=360nm to 2Am=700nm for example in the experiments discussed

in Chapter 3), than

km."

V 1 ]=2 kIF(k) sin(kl)kdk. (2.110)

2r(n 2 - n,) 27r(n2 -n , )
with ki n = and kma

Ama Imin

Consider the following important example. If all the nuclei have the same diameter 10,

N(l)=No,(l-lo) and

v'[r,l] No sin(kmax (I-l1))-sin(kmi ( - l)) (2.111)

No sin(kmax (I + 1)) -sin(kmin (I + l o))
r 1+ o10

The function V(l) has a number of peaks, with the main peak at l=o1. The broader the range

[km,, km,a], the more prominent and narrower the main peak. V(l) is shown in Fig. 2.13 for

10=10im and 2min=360nm, 2ma,=700nm. The false peaks may be mistaken for peaks from

actual nuclei. Therefore, to invert (2) we need to modify (2.107). There are a number of

ways to achieve this. One may extend F(2A) in a broader wavelength range using some

numerical algorithms and then apply (2.107). We, however, consider another way to perform

the inverse transform.

Let us modify the integral transform (2.110):

V [, ] = JF(k) exp(iklXk + kin )dk (2.112)

with Ak =27r(n 2 -n )-- . The modified transform has the exponential kernel,
min max

instead of the sine kernel used in the transform (2.1 10) and the range of integration is shifted

for convenience. Substituting in, N(l)=N5(l-lo), we obtain

No sinAk(l-l,) (2.113)
V.,[IF I0(2.113)
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r(2) was calculated for
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Figure 2.15. Inverted nuclear size distribution Vm[l] after deconvolution
with the Gaussian function.

Thye function Vm[, ] is shown in Fig. 2.14. The peak at l=lo is more prominent than that of

V'[r, 1]. Noticing that the main peak of V,,, [r,] can be approximated as a Gaussian function

with standard deviation o=l.lI m:

A exp 2c2 

with an appropriate normalization parameter A, we can further increase the resolution of the

inverse transform, deconvolving V,, [I ] with the Gaussian curve:

Vd,,,[,] = ('-"') V,,[F,l']dl', (2114)

with a=0.4,m ' 2 (which corresponds to the a=l.ltm of the deconvolving Gaussian curve).

The resulting size distribution, Vd[l], is shown in Fig. 2.15. Its width is less than 0.3pm. Such

accuracy of determination of the nuclear size distributions is sufficient (see experimental

results presented in Chapter 3).
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Thus, the nuclear size distribution can be determined as a transform of the reflectance

.[r I = 2qlf | _ IRex(k)(iklXk + kmin)dk 
Y, ir 0 (k

(2.115)

If Z0 is not small relative to unity, but rather in the same order of magnitude, and

rol IX2,) I <<1, (2.103) is no longer valid. Substituting (2.98), (2.100), and (2.101) into (2.93),

and introducing a new operator acting on an arbitrary functionf

U[f(x)] = f f(x)x2tdx , (2.116)

we obtain the following equation

R(i) ]= roe-o(1-- fo-bo)+(-e-)(b,- f). (2.117)

This transcendental equation should be solved for r.

Applying operator Vto (2.91) we obtain

(2.118)[R() ]= (I - f - bo - (bR k(,) Ij ~ll 

To determine the nuclear size distribution in this case, we need first to find Z0 from equation

(2.117), substitute it into (2.118), and find N(l).
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Chapter 3

Observation of oscillatory fine
structure in the reflectance from
biological tissue

3.1 Oscillatory component in reflectance from a
biological tissue

3.1.1 Oscillatory fine structure as a signature of epithelial cell
nuclei

In the previous chapter we showed that the reflectance spectrum from a biological

tissue covered by epithelium should exhibit a fine oscillatory component resulting from light

scattering by the cell nuclei present in this layer. This effect should not be limited to

epithelial cells. The oscillatory component may be seen in the reflectance from virtually any

type of biological tissue having a rich cellular content. The only stipulation is the absence of

complete diffusion inside the tissue. The oscillatory structure should be observed not only in

reflectance from biological tissues, but also in reflectance from any layer that contains

scatterers large comparing to the wavelength (a solution of large polystyrene beads, for

example). Since most of the organs in the human body are covered by epithelium, we can say

that the oscillatory component in reflectance has an epithelial origin.

By analyzing the oscillatory component, one can determine the size distribution of the

scatterers that produce it, in the case of a biological tissue - the cell nuclei. The ability to

measure nuclear size distributions in vivo (in vivo means inside the body, without tissue
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removal) has potentially valuable applications in medicine, since enlarged nuclei are primary

indicators of cancer and the precancerous condition, dysplasia [1].

Methods to diagnose cancer at an early stage are essential for cancer prevention and

therapy. Many types of cancer grow from the epithelial tissues which cover the inner and

outer surfaces of the body. Many of those, for example cancer in the gastrointestinal tract,

progress through the stage of dysplasia. Dysplasia can be defined as neoplastic tissue which,

although not yet malignant, has the potential to become malignant, i.e. dysplasia is a precursor

of malignancy. If diagnosed at this stage, most tumors are curable (90%-100% depending on

the organ) [1]. In the case of gastrointestinal tumors, the diagnosis is based on endoscopy.

However, dysplastic tissue is not always endoscopically apparent. In this case, detection of

dysplasia in the gastrointestinal tract relies on random sampling for this "invisible" malignant

precursor. Hec ver, samples selected via random biopsy a have high probability to miss the

dysplastic changes. In addition, in some cases biopsy samples cannot be taken. Instead of

random biopsy, some optical techniques, such as reflectance spectroscopy, might be useful.

Most human organs can be diagnosed by means of optical techniques. The gastrointestinal

tract is a particularly good example, since it is easily accessible by optical probes which can

be inserted into one of the channels of a conventional endoscope. In this chapter we study to

the case of gastrointestinal epithelial dysplasia, and particularly dysplasia in Barrett's

esophagus.

Adenocarcinoma of the esophagus arises almost exclusively in the settings of

metaplastic columnar epithelial cells in the esophagus, termed "Barrett's esophagus", which is

a complication of long-standing gastric acidal reflux. In this condition, the distal squamous

epithelium is replaced by columnar epithelium consisting of one cell layer which resembles

that of the large intestine. There is a strong evidence of progression from Barrett's esophagus

to associated dysplasia to invasive carcinoma. Patients with Barrett's esophagus have

approximately forty times greater chance to develop esophageal adenocarcinoma than the

general population. The 5 years survival of patients with esophageal adenocarcinoma is less

than 15% and, unfortunately, endoscopic surveillance of patients with Barrett's esophagus has

not resulted in reduction of esophageal cancer mortality. The most likely explanation for this

is that surveillance of Barrett's esophagus is based on random biopsy, because dysplasia
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occurring in the esophagus cannot be seen with standard endoscopic imaging. This procedure

can sample only about 0.3% of the tissue at risk. Thus, there is tremendous potential for

sampling error.

The application of reflectance spectroscopy to diagnose dysplasia in Barrett's

esophagus is limited by the fact that the primary alterations in the tissue occur in the

epithelium which can be one cell thick (-20-30p.m), while the reflectance spectrum is mostly

formed in the deeper tissue layers. One of the most prominent features of a dysplastic

epithelium is the presence of enlarged, hyperchromatic, and crowded nuclei [1]. (Nuclear

hyperchromatism means that the nuclei appear darker when stained on a glass slide.) These

changes in nuclei size and spatial distribution are the primary markers used by pathologists to

diagnose dysplasia. No significant changes in other tissue layers are observed.

Three most important diagnostic features of dysplastic epithelium -- enlarged,

hyperchromatic, and crowded nuclei -- can be measured spectroscopically. Determination of

the nuclear size distribution using the technique based on the analysis of the oscillatory

component of the reflectance can provide a direct evidence for the presence of the enlarged

nuclei. Nuclear hyperchromatism indicates an increase of nuclear DNA concentration and,

consequently, increase of nuclear refractive index (the nucleus is a solution of DNA, proteins,

and small molecules in water; the higher the concentration of the non-water components, the

higher the refractive index). As shown in Chapter 3, changes in refractive index can be

determined by the analysis of the oscillatory component. Finally, the fact that the nuclei

appear crowded means that their concentration, f N(l)dl, is increased. This can be determined

from the nuclear size distribution as well. Thus, the measurement of the oscillatory

component in reflectance spectra can give crucial information to diagnose dysplastic changes

in epithelial tissues.

In conclusion, we should mention that there are many examples other than diagnosis

of cancer and precancerous conditions where the measurement of size distributions of the

scatterers present in some thin surface layer might be important. These include diagnosis of

inflarmnation, regeneration, and differentiation in biological tissues, diagnosis of some

nervous disorders, studies with cell cultures, as well as applications not related to biology.
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3.1.2 Formation of the oscillatory component in reflectance from a

tissue of a hollow organ. Esophagus as an example

3.1.2.1 Histological organization of the tissue of a hollow organ

To understand how light interacts with the tissue of a hollow organ [organs of the

gastrointestinal tract (intestine, esophagus, stomach), respiratory tract (bronchi), genitourinary

tract (bladder, cervix), etc.], it is helpful to consider some general features of its histological

organization. We consider the gastrointestinal (GI) tract as an example, other hollow organs

generally exhibits the same features.

The wall of the GI tract is covered by a layer of cells called the epithelium. This tissue

layer is 20 pm to 300pm thick, depending on the part of the tract. The intestines, stomach, and

Barrett's esophagus are covered by an epithelium layer one cell thick; normal esophagus and

mouth have squamous stratified epithelium that can be as thick as 300pam. The epithelium is

supported by relatively acellular and highly vascular loose connective tissue, lamina propria,

which can be up to 500pm in thickness and contains a network of collagen and elastic fibers,

and a variety of white blood cells [2]. Beneath it there is a muscular layer, the muscularis

mucosae, which usually consists of two (intestines, middle esophagus) or three (stomach)

tenuous layers of smooth muscle cells. The proximal esophagus is an exception -- muscularis

mucosae is represented only by scattered fascicles of smooth muscle cells. In the distal

esophagus near the stomach, the muscularis mucosae can attain a thickness of 200-400 m.

Epithelium, lamina propria, and muscularis mucosae organize mucosal tissue. Beneath the

mucosa lies another layer of moderately dense connective tissue called the submucosa (400-

600,um thick), which contains many small blood vessels and abundant collagen and elastic

fibers. The overall thickness of mucosal and submucosal layers is about mm. Since a

characteristic penetration depth of optical radiation in biological tissue does not usually

exceed mm, it is sufficient to limit our consideration to those layers. Figure 3.1 shows the

mucosa of Barrett's esophagus with and without dysplasia.
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Figure 3.1 Mucosa of Barrett's esophagus, showing dusplastic as
well as non dysplastic epithelium. Cell nuclei are colored deep blue

by the H&E stain. Epithelial cells and the layer of lamina propria with
scattered white and red blood cells are seen. [12]
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When we discussed the oscillatory component in section 2, two simplifications were made:

the surface of the tissue was assumed to be flat, and the scatterers were assumed to have

spherical shape. In Barrett's esophagus, (1) the mucosa is folded into so-called crypts

(Fig.3.1) and (2) the nuclei are prolonged spheroids rather than perfect spheres. However,

these features of realistic tissues do not alter the above conclusions.

(1) Since photons scattered from the uppermost cell nuclei only contribute to the oscillatory

component in reflectance signal, the non-flat architecture of the crypts and irregularities of the

surface do not offend the scattering process and do not alter the oscillatory component.

(2) Most cell nuclei are oriented in such a way that their long axis is perpendicular to the basal

surface of the cell. Because of the folding of the epithelium, the nuclear orientation relative to

the direction of the propagation of the incident light varies depending on the position of a cell

in a crypt. Thus, all the conclusions made in section 2 still hold ( is an average diameter of a

nucleus in this case).

3.1.2.2 Formation of the oscillatory fine structure

Consider the formation of a reflectance signal in a mucosal tissue such as esophagus.

When the collimated incident light propagates through the epithelium, some part of it is

scattered backward and collected, while the rest penetrates deeply into the tissue where it

undergoes multiple diffuse scattering and absorption. Several studies have shown that

collagen is a strong scatterer, and that hemoglobin, present in the blood vessels perfusing the

tissue, is the predominant absorber of visible light [3]. Small particle scattering and

hemoglobin absorption result in the formation of the general shape of the spectral curve. Its

analysis makes it possible to obtain important tissue characteristic such as hemoglobin

concentration, oxygenation, and the characteristic size of scatterers present in the tissue [4].

However, since in dysplasia the only significant change occurs in the epithelium, the

knowledge of the parameters associated with other tissue layers does not give us much

information for diagnosis of dysplasia.

Returning to the tissue surface, diffusely reflected light passes again through the

epithelium where it is again scattered by nuclei. However at that time, forward scattered

68



photons are collected. These processes result in the formation of the oscillatory component in

the reflectance signal. Its period is inversely proportional to l(n - 1), where is the diameter

of the nucleus and n is the refractive index of the nucleus relative to that of surrounding

cytoplasm. Thus, the periodicity increases with nuclear size and is higher for enlarged

dysplastic nuclei than for non-dysplastic nuclei. In addition, its amplitude is proportional to

the number of scatterers present. By measuring the periodicity and amplitude, we can

determine the diameter and the number of the nuclei. Thus, the reflectance signal consists of a

"coarse" structure, which is a result of diffusive scattering and absorption, and a fine

oscillatory structure which is a "fingerprint" of the cell nuclei. However, in order to extract

the fine structure the coarse structure (diffuse background) must be eliminated first. To make

this possible, a physical model incorporating the effects of the diffuse scattering and

hemoglobin absorption has been developed (see below).

A number of cell types are present in the mucosa [2]. These include epithelial cells,

cells of connective tissue, inflammatory white blood cells, and erythrocytes. Epithelium is

always the uppermost layer of the tissue, while most non-epithelial cells are distributed

beneath it. Although the scattering cross sections of many cell nuclei should exhibit an

oscillatory functional dependence on wavelength, not every nucleus can participate in the

formation of the fine structure. The light scattered from a nucleus inside a diffusive region of

tissue, inside the lamina propria for example, cannot result in the modulation of the resulting

reflectance signal, because photons come to it from all possible directions, they are

randomized after that scattering, and information about the scattering event is missed. Thus,

non-epithelial layers of tissue produce the coarse structure of the reflectance signal, and only

the epithelial layer is responsible for the fine structure.
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3.1.2.3 Subtraction of the diffuse background

To determine the nuclear size distribution N(l) using (3.115) one needs to know the

reflectance signal R(2), which is measured experimentally, and the so-called diffuse

background R () (2.94). The fine structure component can be less than 5% of the total signal

and is ordinarily masked by this background of diffusely scattered light from underlying

tissue, which itself exhibits spectral features due to absorption and scattering [Fig. 3.7(a)]. In

order to observe the fine structure, this background must be removed using an appropriate

model. The diffusive reflectance from biological tissues will be discussed in details in [11],

and only discuss it briefly here.

The spectral features of the diffuse background are dominated by the characteristic

absorption bands of hemoglobin [3]. The absorption length, Ua-' [13], ranges from 0.5 to 250

mm, and the typical effective scattering length, (,a')', is 0.1 to 1 mm [3]. Thus, scattering and

absorption are of the same order, and both have to be taken into account in modeling the

background. The functional dependencies of the absorption coefficients PUa [13] and the

scattering coefficient u' [3] on wavelength are shown in Fig. 3.2.

We employed a simple physical model to describe this background [14]. Light

incident on the tissue is assumed to be exponentially attenuated. At any given depth, z, an

amount of light proportional to the reduced scattering coefficient ps' is scattered back towards

the surface and further exponentially attenuated. Since light attenuation depends on both

scattering and absorption, the attenuation coefficient is assumed to be the sum of absorption

coefficient ua and effective scattering coefficient ,u.(e) = ,,u'. The parameter /, was determined

by comparison with more accurate models of light transport and Monte Carlo simulations, and

was found to be ,6_0.07 [6,7]. Since light only penetrates -1 mm into the tissue, most of the

diffusely scattered return light originates in the connective tissue layers. We thus modeled the

tissue as a two layer medium with thin epithelium on top of a thick diffusive layer.
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Figure 3.2 (a) Absorption coefficient qua(A) of a oxygenated (HbO2) and
deoxygenated (Hb) forms of hemoglobin [13]. (b) Reduced scattering
coefficient a,(A) measured in colon tissue [3].
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We then obtain the following approximate expression for the diffusive light from underlying

tissue impinging on the epithelial cell layer [5]:

Id(2,S) = F(s)(ii(As)n 1 - exp[-(,4.l' ) + c,,)L] (3.1)
1 + c(u" /· (e))

and the corresponding background reflectance

1R( - exp[-( cLJ + cu,)L] R (3.2)

where the function

A + cos
F(s) = + ) (3.3)

;r(2A + 1)

describes the angular dependence of light emerging from the mucosal layer, s is a unit vector

pointing outward from the tissue surface in an arbitrary direction, is the angle between

vector s and normal to the surface of the tissue pointing outward, A=0.7104 [8], parameter L is

proportional to the effective thickness of the diffusive layer, parameter c is proportional to the

concentration of hemoglobin (which is the predominant absorber) to the concentration of the

scatterers in the diffusive layer, and Ro is the normalization parameter that depends on the

probe size, angular aperture, distance from the probe to the tissue surface, etc. Because both

oxygenated and de-oxygenated hemoglobin are present, the total hemoglobin absorption is

modeled as

ka = (1 - a)(Hb) + qaHbO2) (3.4)

with oxygen saturation parameter a (0<a<l1). Despite the fact that this model is approximate,

it describes the reflectance from mucosal tissues of the GI tract quite accurately (Fig. 3.7(a)).

Thus, to find nuclear size distribution N(l), one needs to complete three steps.

(1) Measure the reflectance from the tissue R(A).

(2) Determine the corresponding diffuse background R(A) by fitting (3.2) to the broad

features of R(2) by varying the parameters c, a, L, and R0. Note that the absorption

coefficient ua and scattering coefficient ,' are functions of wavelength and they are not

varied during the fitting procedure. Our studies showed that this simple model (3.2) was
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able to describe the measured reflectance spectra from human esophageal tissues quite

accurately (see Fig. 3.5a).

(3) Apply inverse transforms (2.115) and (2.114) to find N().

3.2 Experimental determination of the existence of
oscillatory fine structure

3.2.1 Experiment with polystyrene bead tissue phantom

To confirm the validity of the theory predicting oscillatory fine structure discussed in

Chapter 2, the reflectance from a tissue phantom was studied. The phantom consisted of a

suspension of polystyrene beads in de-ionized water [Polyscience, Inc.] placed on top of a

BaSO4 diffusing (and highly reflective) plate. The bead diameter was 1o= 4.45Cpm, relative

refractive index n=1.19, and the optical distance of the suspension was ro=1.06. Thus, every

photon underwent approximately one scattering event with a bead while passing through the

suspension. The beads were thoroughly mixed with water to exclude the possibility of a

number of beads touching each other. Then the beads were allowed to settle. This simulates

the conditions in columnar epithelium like that of Barrett's esophagus, colon, or bronchi. This

suspension simulated epithelium, with the beads simulating cell nuclei and the BaSO4 plate

used to simulate the diffuse reflectance from underlying tissue, such as lamina propria.

In the experiments, an optical fiber probe was used to deliver white light from a xenon

arc flashlamp [EC&G] with a 10p.sec pulse duration and an average pulse energy of 5J to the

phantom and collect the reflectance signal (Fig. 3.3). The probe tip, 1 mm in diameter,

consisted of a central delivery fiber surrounded by a ring of six collection fibers, all of which

were covered with a 1 mm thick quartz optical shield. The optical fibers were fused silica,

200 ,pm core diameter, NA=0.22. The tip of the probe was beveled at 170 angle in order to

eliminate specular reflection from the shield/air or shield/water interface. At the proximal end

of the probe the collection fibers were arranged in a line and imaged onto the input slit of a
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r Optic

Firure 3.3 The experimental setup.

spectrograph [Instruments SA CP-200], which dispersed the collected light. An electronically

gated diode array detector [EG-G PAR OMA III] recorded the reflectance spectra over the

wavelength range 360-685 nm. Before data collection, a reference reflectance signal from the

BaSO4 plate (without the suspension) was measured. In the experiments, the probe was placed

in contact with the suspension.

Fig. 3.4(a) shows the measured reflectance from the phantom. The fine oscillatory

component of the signal can be seen. Note that the approximations we made to obtain (2.93)

are satisfied by the conditions of this experiment. Expression (2.93) was derived in the

following approximations: (1) the particles are large which means >> and >1, (2) the

optical distance is not large enough to permit multiple scattering inside the slab, s_1, (3) the

delivery angle and collection angle are small, OQ<<1 and Qc<<1. In our experiments I was
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Figurre 3.4 Reflectance from a polysterene bead tissue phantom. (a) - total reflectance;
(b) - the oscillatory structure after subtracting out diffuse BaSo4 background.
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4.5gpm, (47 and condition (1) is satisfied; ro=1.06 and condition (2) is satisfied;

Q,=nc= rNA2=0.15 and (3) is satisfied. Fig. 3.4(b) shows the ratio R-(,) -1 in comparison to

the model prediction (2.93). As can be seen, the theory describes the experimental data quite

accurately, supporting the validity of the model.

3.2.2 Experiment with cellular monolayers

The experiments with the tissue phantoms described above demonstrate that light scattering

by large particles leads to the formation of the oscillatory component in the reflectance. They,

however, do not establish that cell nuclei produces in the same effect. To confirm this fact,

elastic scattering from cell cultures was studied. The data was collected using the same

experimental setup as in the experiments with the tissue phantoms. The samples were

monolayers of normal and T84 tumor colonic cells, approximately 15 m long, affixed to

glass slides in buffer solution, and placed on top of a BaSO4 diffusing plate. The tumor cells

were grown in a confluent manner. The normal cells were allowed to settle on a glass slide

and the remaining nonattached cells were washed out. The diameters of the normal cell nuclei

ranged from 5 to 7 .m, and those of the tumor cells from 7 to 16 gum. The cell monolayers

simulated epithoiium and, like in the experiments with the bead phantoms, the BaSO4 plate

simulated the underlying tissues.

Fig. 3.5(a,b) shows the resulting spectra from normal and T84 tumor cell samples,

respectively. Distinct spectral features are apparent. For comparison, the reflectance spectrum

from the BaSO4 plate by itself is also shown [Fig.3.5(c)]. As can be seen, the latter spectrum

lacks structure and shows no prominent features.

The solid curves of Figs. 3.6(a,b) show the resulting nuclear size distributions of the

normal and T84 cell culture samples extracted from the spectra of Figures 3.5(a,b) using

(2.115). A nuclei-to-cytoplasm relative refractive index of n=1l.06 was used. The dashed

curves show the corresponding size distributions, measured via light microscopy [15]. The

extracted from the spectra and measured via light microscopy distributions can be

approximated by Gaussian distributions. The parameters of those are presented in Table 1.
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Figure 3.5 Reflectance spectrum from cell culture monolayer samples. (a) Normal

colonic cells ( R = 0.38); (b) T84 cells (R = 038); (c) Reflectance
spectrum from the BaSO4 plate.
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Nuclear size distributions from data of Fig. 3.5. (a) Normal colon cells;

(b) T84 tumor colonic cells. In each case, the solid line distribution is

extracted from the data and the dashed line distribution is measured using

light microscopy. Because of insufficient morphometric data, the nuclear

size distribution for the normal cell culture sample is depicted as a

Gaussian distribution with mean diameter and standard deviation

determined from the light microscopy measurements.

As can bee seen, the extracted and measured distributions are in good agreement for both

normal and T84 cell samples, indicating the validity of the above picture and the accuracy of

our method of extracting the information.
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Normal Cells Tumor T84 Cells

Mean Standard Mean Standard

Diameter (Im) Deviation (pjm) Diameter (pLm) Deviation (pim)

Microscopy -6 -0.5 10.2 2.0

Spectroscopy 6.2 0.45 10.1 2.2

. ,_ ..... _____

Table 1 Parameters of nuclear size distributions for normal and T84 tumor colonic cells,

measured using light microscopy and extracted from the spectra.

3.3 Clinical experiments. Diagnosis of dysplasia in
Barrett's esophagus

We have observed the oscillatory fine structure in diffuse reflectance from esophagus

and colon mucosa of patients undergoing gastroenterological endoscopy procedures. We

consider here the case of Barrett's esophagus, in which the epithelium consists of a thin

monolayer of columnar cells similar to those used in the cell culture experiments. Data was

collected as in the cell culture studies. The optical fiber probe was inserted into the biopsy

channel of the endoscope and brought into contact with the tissue surface.

Figure 3.7(a) shows the reflectance spectra from two Barrett's esophagus tissue sites,

both independently diagnosed by three pathologists as (1) normal and (2) precancerous, i.e.

dysplastic. As can be seen, the differences in these unprocessed spectra are small. To analyze

them, equation (3.2) was first fit to the broad features of the data by varying the parameters c,

a, L, and R0. The resulting fits are quite accurate. After removing the diffuse background by

calculating R(,)/R(A), the oscillatory fine structure is seen clearly [Figure 3.7(b)]. In

particular, the fine structure from the dysplastic tissue site exhibits higher
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Figure 3.7 Reflectance from Barrett's' esophagus. (a) Diffuse reflectance
from non-dysplastic site (solid line), dysplastic site (dashed line), and model
fit (thick solid line); (b) corresponding fine structures.
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Figure 3.8 Nuclear size distribution obtained from reflectance from

Barrett's' esophagus: non-dysplastic site (solid line) and

dysplastic site (dashed line).

frequency components than that from the normal site. Transform (2.115) was then employed

to extract the respective nuclear size distributions, yielding Figure 3.8. As can be seen, the

difference between normal and dysplastic tissue sites is pronounced. The distribution of nuclei

from the dysplastic site is much broader than that from the normal site, the peak diameter is

shifted from -7 pgm to about -10 gm, and the shape exhibits distinct structure. In addition,

both the relative number of large nuclei (>10 m) and the total number of nuclei are

significantly increased.

This technique was used to study data from 55 tissue sites (9 human subjects). After a

reflectance spectrum was measured, biopsy was taken from the same site. The biopsies were

independently analyzed by four pathologists. It should be emphasized here that diagnosis of

dysplasia in Barrett's esophagus is characterized by significant inter- and intraobserver

variability and presents a challenge for even experienced GI pathologists. Agreement between

two pathologists on positive diagnosis may be less than 60% [10].
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Figure 3.9 Results of clinical studies on patients with Barrett's esophagus. N -- density of

epithelial cell nuclei, N(I> Opm) - percentage of nuclei with diameter large 10 Apm.

Sites diagnosed by all four pathologists as non-dysplastic are represented by dark

cycles; those diagnosed at least by three pathologists as "low grade dysplasia" are

represented by white cycles.

Therefore, various approaches are possible, including: (1) compare results of "spectroscopy

diagnosis" with the averaged score provided by the pathologists and (2) consider only such

sites that most/all pathologists agree on the diagnoses. We consider here the second one.

Since most non-dysplastic nuclei range in diameter from 5m to 8m, nuclei of

regenerating cells can be larger than those of the intact cells but rarely exceed 1C1m in

diameter, and dysplastic nuclei can easily be larger than 10.m [16]. We therefore define a

nucleus with a diameter 1>10pm as an "enlarged" and suspected for being dysplastic. As
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mentioned above, another important characteristic of the dysplastic epithelium is the

stratification and crowding of the nuclei. These properties are reflected by total number of

nuclei No= N()dl. A width of a typical non-dysplastic cell is about 12tm. Thus, the non-

dysplastic epithelium which does not show stratification contains approximately N0=70 nuclei

per 104jLm2 of surface area. Given that a cell rarely can be smaller than 8m in diameter, a

value of No>l 50nuclei/104 Pm 2 is a sign of stratification and crowding.

The resulting plot (total number of nuclei vs. percentage of nuclei with a diameter

larger that 10 jgm) is presented in Fig. 3.9. Defining dysplastic sites as the ones which have

25% or more of the total number of nuclei larger than 10 gm, the technique diagnosed 35 out

of the 36 sites correctly (there was a disagreement among the pathologists regarding other 19

sites), with one dysplastic site out of a total of 6 misidentified. This site could be misidentified

because of a number of reasons, including: (1) fault of the technique; (2) the spectrum was

taken from a site different from that of the biopsy (sample error); (3) the biopsy was

misdiagnosed by the pathologists.

This study suggests that the diagnostic accuracy provided by this technique is at least

as good as the accuracy provided by an independent pathologist (more detailed discussion on

this issue will be published elsewhere [17]). Additional clinical studies and pathological

correlation will be needed to test the applicability of the technique to diagnose dysplastic

changes in Barrett's esophagus and other mucosal tissues.
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Chapter 4

Conclusions and future directions

4.1 Conclusion

This work has reported observation of a fine structure in light backscattered from

biological tissue which is oscillatory in wavelength. The origin of this component is due

to light which is Mie-scattered by surface epithelial cell nuclei. It is shown that analyzing

the amplitude and frequency of the fine structure, the density and size distribution of

these nuclei can be extracted.

The light scattering by a particle large relative to the wavelength was studied. The

cross section and phase function of such scatterers were determined in the Van de Hulst

approximation. Special attention was given to forward and backward scattering. It was

shown that the scattering cross section and other integral characteristics of the light

scattering by large particles exhibit oscillatory wavelength dependence.

Knowledge of the properties of the single scattering was then used to study the

formation of the reflectance from mucosal tissue. The tissue is modeled by a two layer

model. The upper cellular layer (epithelium) was considered as a slab of large particles

(cell nuclei) situated on top of a relatively acellular layer (connective and muscular

tissues) where light is completely randomized due to diffusion. Light backscattering from

a slab of large particles was studied using the first order multiple scattering

approximation. Light propagation through the slab was studied using the first order

approximation (for a slab of a small thickness) and the small angle multiple scattering
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approximation (for a large thickness of the slab). Analytical solutions for the backscatted

light and light transmitted through the slab were obtained. It was shown that the

reflectance from such a slab has an oscillatory wavelength-dependent component similar

to that of the cross section. A transform to invert this oscillatory component to determine

the size distribution of the particles in the slab was obtained.

The theoretical predictions were compared to the experiments performed on tissue

phantoms and cellular monolayers. The application of the technique to determine

epithelial nuclear size distributions in human esophagus was discussed. Since the

enlargement of the cell nuclei and their concentration are important indicators of

precancerous changes in biological tissue [1], the technique may provide a useful tool for

observing such changes in patients. The potential of the technique to diagnose

precancerous changes was discussed.

4.2 Future directions

The are three major directions the work could be continued in.

1. Physics related. In the presented work unpolarized white light was used. Instead, it is

possible to improve the accuracy and applicability of the technique by using polarized

light. This can solve one of the major limitations of the technique - necessity to

subtract the diffusive background coming from underepithelial tissues. The

illumination of the tissue by polarized light and measuring the dependence of the

reflectance not only on the wavelengths but on the polarization state can render the

background subtraction much easier and may significantly increase the amplitude of

the oscillatory component. Development of the corresponding theoretical apparatus

would be necessary. Applicability of some other physical effects such as weak

localization can be studied as well.

2. Application related. If the new physical effects which can increase the accuracy and

applicability of the technique are found, a new apparatus to diagnose dysplasia in

human tissues can be built. New numerical algorithms to analyze the data can be

developed. They will be faster and more accurate than the present algorithms.
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3. Medically related. More extensive multipatient clinical studies can be performed to

test the applicability of this technique to diagnose dysplasia in Barrett's esophagus.

So far the technique has been applied to diagnose precancerous changes in human

esophagus and colon. Most of the cancers (more than 90%) arise from epithelium.

The examples are stomach, mouth, bladder, lung, breast, liver, etc. The technique

could be tested on these organs as well. In each case extensive studies are necessary

to correlate the results with pathology findings. In the long term prospective, a

computer guided biopsy system can be built on the basis of the technique. It can be

used as a clinical tool to diagnose dysplastic changes in some of the mentioned

organs.
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