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Abstract
The use of polyphenyl vinylene in organic light emitting diodes has been motivated
by its high luminosity yield and its low temperature manufacturing. The luminosity
yield is limited by the rate at which charge can be injected into the sample. Yan et
al. (1994) suggest that using amorphous PPV instead of polycrystalline PPV as is
conventionally used should increase the luminosity yield. Amorphous PPV is achieved
by including a large number of cis inclusions, which prevent crystal formation. A side
effect of cis inclusions is that the effective conjugation length of the molecules is
shortened.

This thesis repeats mobility measurements done on conventional PPV, using amor-
phous PPV. We find that the mobility is decreased by 1-2 orders of magnitude, and
that the average conjugation length is not a limiting factor to the mobility. While
the luminosity yields are high, the current voltage traces indicate that the devices are
space charge limited and that this limits the luminosity yields.
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Chapter 1

Introduction

A growing research area is the use of organic polymers as active materials in tran-

sistor and Light Emitting Diode (LED) technologies. The response time and current

carrying capacity of these devices depends on the mobility and the dispersion in the

velocities of charge carriers as they move through the sample. In order to optimally

exploit applications of organics in devices, these transport properties must be studied

and understood.

Conjugated polymers have at least one unsaturated bond. The electrons in this

bond are located in 7r-orbitals and are free to transport charged particles. The trans-

port of carriers is usually along these bonds, with carriers hopping between the 7r-

bonds of different molecules. The transit time across the sample is limited by the

speed with which the carriers can hop between orbitals.

Transport properties of organics are complicated by the irregular packing structure

of the molecules (i.e., disorder). Molecules can form complex cross linkages which

affect the transport properties. The transport properties will also be affected by

defects in the sample and the presence of crystallite grain boundaries. The effects of

morphology on transport properties can be studied using x-ray diffraction techniques

to examine the structure of the material. Alternatively, different sample preparation

techniques, which are known to affect crystal size, can be used, or defects can be

artificially introduced into the crystal structure.
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1.1 Applications

Display technology for present lap top computers or projection displays is a fast

growing industry. Cathode ray oscilloscope tubes (CRTs) which are used in televisions

are not suitable for either of the above applications. CRT's are large andl heavy.

making them unsuitable for portable devices, and the thickness of the screen and

the size of the cathode ray tube scale with screen size, making the CRTs extrenMiely

expensive for projection displays.

1.1.1 Thin Film Transistors

Liquid Crystal Displays (LCDs) are being used for lap top computers, and the use of

similar technology is being investigated for projection displays.

Liquid crystals have a helical structure which rotates the plane of polarized light.

When viewed between cross polarizers, the liquid crystals will be transmissive if the

molecules are all aligned, or opaque if they are not. Liquid crystals can be aligned by

applying a potential across the molecule.

The displays require the ability to switch each pixel individually in an array of

480x650 pixels.. Since it is not possible to make contact to each pixel individually, a

variety of addressing schemes are being used. The simplest such scheme, passive ad-

dressing, is to switch a pixel by applying a half the switching.voltage to the horizontal

strip containing the pixel, and half the voltage to the vertical strip. The problem is

that there are a number of pixels which have half the voltage applied to them, and

appear grey. In addition, since the voltages required to switch the LCDs are on the

order of Volts, the scheme requires large amplitude signals.

For this reason, Thin Film Transistors (TFTs) are used in the displays (active ad-

dressing). These transistors enable sending lower amplitude signals and eliminating

the occurrence of grey pixels. TFTs are presently made of amorphous silicon evapo-

rated onto a glass substrate. Plastics screens are not compatible with the fabrication

method since they cannot be heated to the temperatures needed to make high quality

amorphous silicon. Using glass in the screen makes the screen heavier, more inflexible

11



and more expensive. Currently the screen accounts for 70% of the cost and about

2/3 of the weight of a lap top computer.

One important application of organic polymers may e as TFT materials in lap

topl) displays. Polymers can be spincoated onto the screen at low temperature i a

)rocess compatible with plastic substrates for displays. This is one critical al)plication

for which it is desirable to study and improve the transport properties of organics.

1.1.2 Light Emitting Diodes

Organic polymers are also being used as the active layer in light emitting diodes

(LEDs). The diodes can be manufactured on plastic substrates, making them more

strain resistant, and more suitable for large displays. The use of organic diodes in

flat panel emissive displays is therefore being investigated.

Organic polymers are well suited to display applications, since the application

does not place stringent requirements on the speed of the devices. However, although

the response times of organic devices are fast enough for display purposes, the low

mobility limits the rate at which charge can be injected into the devices, and hence

the intensity with which the device emits light.

1.2 Background

1.2.1 LEDs

The use of organics as the active layer in light emitting diodes was first demonstrated

in the 1960's when electroluminescence was observed in crystalline anthracene [10].

The devices were not of practical interest because of the high threshold voltages and

the low external quantum efficiency of the devices. Even after work was done to lower

the threshold voltages, the unstable structure of the organic made its use in an active

element impractical.

The first realisable organic diode was presented nearly twenty years later, when

electroluminescence was observed in organic dye molecules which were diffused through

12



a polymer matrix.

201z In 1990, Burroughes et al. [5] presented a polyphenyl vinylene (PPV) diode

that showed that polymers which could be easily spun from solution could be used

as electroluminescent devices. Although the efficiency of the devices was low. there

was hope that changes in the manufacturing process and addition of different side

groups, which would change the packing structure, could produce a comnlerciallv

viable product.

Currently most of the work has been in PPV and related derivatives. PP',

however, has a fairly low mobility and improved charge transport is desirable to

achieve power efficient enhancements.

1.2.2 Thin Film Transistors (TFTs)

Research in organic polymers for TFT applications has also focused heavily on con-

jugated polymers. A second material being studied for the use in transistors is alpha

hexathiophene ( - 6T). Mobilities on the order of 10-2cm 2 /Vs are being reported

in this material, in comparison to mobilities of 10-lcm 2/Vs for amorphous silicon.

Morphological studies of ca - 6T have also shown that the molecules align in a reg-

ular structure, meaning that the measured mobility will not be as strongly influenced

by the presence of defects, and will be closer to the intrinsic mobility of the organic

materials.

The performance of TFTs is also limited by transport and low mobility values.

Low mobilities lower the response time of the devices.

1.3 Motivation

The compatibility if organic polymers with plastic substrates has distinguished them

for use in display technology. The use of organic semiconductors is however delayed

by the low mobilities which are reported for these materials. Low mobilities lengthen

the response time and current carrying capacity of TFTs and lower the power effi-

ciency of LEDs because of space charge limited injection. In order to improve device

13



specifications, it is necessary to measure mobility profiles, and to understand the

processes which limit mobilities.

This thesis attempts to do this b developing a technique for measurement of

mobility based on transient electroluminescence. The technique is general to emissive

organics. The mobility profiles of polvphenyl vinylene (PPV) and various chemical

nmo(difications of it are measured. The effects of the modifications on mobility are

studied.

14



Chapter 2

Transport Properties

Conjugated polymers consist in general of repeated units of simple organic monomers,

with alternating single and double bonds[11]. The electrons about each carbon atom

are split into two sp2 hybridized orbitals which contain a total of six electrons, and

Pz orbitals which contain a total of two electrons, and are half filled. The sp 2 orbitals

are oriented in a planar configuration, and the Pz orbitals are oriented perpendicular

to the plane.

The simplest conjugated polymer, polyacetylene, is made up of repeated units of

ethene. Polyacetylene consists of a chain of carbon atoms with alternating single and

double bonds.

The electrons in the pz orbitals form the 7-electrons which are responsible for con-

duction. In polyacetylene, the pz orbitals will hybridize in order to lift the degeneracy

and to lower the ground state energy of the molecule[111]. The pz orbitals form two

new orbitals, a r orbital and a 7r* orbital, separated by an energy gap. Depending on

the position of the Fermi level of the molecule relative to the energy gap, the molecule

will be either a semiconductor or an insulator.

In more complicated polymers, the 7r orbitals gets split into many different bands.

The term r orbital then refers to the highest occupied molecular orbital (HOMO).

Typical polymers used as organic semiconductors may consist of benzene rings with

side chains. Poly Phenyl Vinylene (PPV), which is the polymer we use in this thesis,

consists of repeated links of Benzene with an ethene side chain (see fig 2-1).
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Figure 2-1: Structure of Poly Phenyl Vinylene(PPV)

2.1 Transport Mechanisms- Silicon

Organic semiconductors, in general have lower mobilities than inorganic semiconduc-

tors. This is due in part to the higher levels of defects and impurities in the polymer

films, but also to the disorder in the structure of the molecules. The disordered

structure means that the overlap integral is smaller, and hence the bandwidths of the

molecular orbitals are on the order of the thermal energy of the carriers [6]. This

lowers the mobility.

Carriers in inorganic semiconductors travel by means of band transport. Because

of the regular structure of the silicon atoms in the crystal, the electronic orbitals of

the atoms overlap, and form an electronic band, in which carriers are free to travel.

Electrons get thermally excited from the filled valence band to the unfilled conduc-

tion band. This leaves a positively charged hole in the valence band, and a negatively

charged electron in the conduction band. Since the bands are unfilled, both elec-

tron and hole carriers are free to travel in the bands, and transport occurs within

the semiconductor. The number of conducting carriers follow a thermally activated

16
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distribution

n = ne-Ea/kT

where Ea is the activation energy which is the difference between the Fermi energy

of the carrier and the energy level of the conduction band.

Once excited into the conduction band, the carriers are free to move within these

)ands since the bands are not filled. The carriers drift under the influence of an

electric field according to

v= E.

where the mobility, i, is constant for low voltages.

Because of the irregular structure of organics, the molecules will not be packed

as closely. There will be less overlap between wavefunctions, and the orbitals do

not form bands, but rather the r orbitals are localized and confined to individual

molecules.

2.2 Transport Mechanisms

Transport in organics occurs in the 7r orbitals[11]. Electrons in these orbitals are not

localized on any carbon atom since the or orbitals are spread across the molecule. Elec-

trons are free to move across the molecule, and carrier transport occurs as electrons

hop from one polymer molecule to the next.

The double bond in the conjugated polymers is rigid, meaning that the carbon

atoms are not allowed to rotate about their positions in the chain. The double

bond also prevents bending and twisting motion since the deformation energy of the

molecule is high. The molecules form quasi one dimensional structures because of

this, with transport mechanisms characteristic of one dimensional molecules.

The electron-phonon interaction in one dimensional molecules is generally higher

than in three dimensional molecules[6]. Because of this, a charge carrier will deform

the lattice about it. The charge carrier and the lattice deformation will move together

and form a quasi particle known as a polaron. The polaron will have the same charge

17



as an electron.

The energy gained from the deformation of the lattice, moves two electron states,

one above and one below the band gap into the band gap. In doing so, the deformation

lowers the ground state energy of the electron. This also effectively lowers the band

gap of the organic molecule. The formation of polarons follows a thermally-activated

(listribution

n = noeEA/kT

where E4 is the activation energy needed to form the polaron.

In the case of organic polymers. the velocity of the carriers is limited not by the

time needed to form the polaron, but by the time needed for the polaron to move

between the orbitals of different molecules. Various transport mechanisms have been

proposed, amongst them variable range hopping, constant length hopping, quantum

mechanical tunneling, etc. Tunneling transport occurs when carriers tunnel between

defects in the sample (see fig 2-2). Hopping occurs when carriers are thermally excited

out of the traps into the molecular orbitals where transport can occur. Experiments

suggest that transport within the sample occurs through hopping [20].

The hopping mechanism in polyphenyl vinylene is best described by variable range

hopping, where the distance which the carrier moves is variable. The temperature

dependence of this mechanism goes as

A(T) = oe- (O/T),

where p is the mobility, To is a measure of the energy needed to hop between polymer

molecules, and a has a values between 1/2 and 1/4 [18].

2.3 Trapping

Carrier transport in organics is also limited by the presence of trapping sites. Organic

polymers contain enough traps so that the time spent travelling between traps is

negligible compared to the time spent in the traps[12, 18]. The motion of carriers

18
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Figure 2-2: Hopping vs. Tunneling Transport
The energy levels of the molecular orbits are disrupted by trapping sites. Since PPV
is a disordered systems, these traps will have variable width, depth and separation.
An applied electric field is equivalent to tilting the energy levels of the orbitals. At low
applied fields, carriers will hop out of traps. The hopping mechanism is not confined to
hopping between neighboring trapping sites, since depending on the applied potential,
a carrier may gain more energy by hopping over multiple trapping sites.
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across the sample can be thought of as a three dimensional random walk with carriers

hopping from one trapping site to the next.

The time taken for a carrier to detrap from a trapping site follows a thermally

activated pattern

T = Toe-EL/kT

with the mean detrapping time, T. following an exponential distribution according to

the activation energy Ea. Since the detrapping time has some distribution and since

the time depends on the depth of the trap, which itself has some distribution. the

motion can be treated as a random walk with variable time between steps.

The distance travelled between hops is also randomly distributed, since the traps

are randomly distributed. The motion is best described by variable range hopping.

The distribution in time between steps can be incorporated into the model as a

distribution in the step size of the random walk. The temperature dependence of

variable range hopping is given by

r = roe (To/T) , a = 1/2... 1/4 (2.1)

where r is the mean detrapping time and kTo is a characteristic energy about which

the trap depths are distributed. We can then introduce P(r) as the probability that

the carriers escape in r seconds.

2.4 Hopping Mechanisms

Organics contain a large concentration of trapping sites, with a distribution of dif-

ferent trap depths (see Fig. 2-2). For analytic purposes, the traps can be divided

according to trap depth into traps from which the carriers will on average escape on

the time scale of the experiment and traps from which the carrier will not escape

on the time scale of the experiment. In this experiment, the time scale is the time

between repetitions of the electric pulse.

The distribution of shallow trap depths will give rise to a dispersion in the velocitv
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profile, since the traps limit the hopping velocity. Scherr and Montroll derived an

expression for the velocity profiles which result from a single trap depth, and from an

exponential distribution of trapping depths [18]. They find that their predictions agree

well with data taken from time of flight measurements on samples with a sandwich

geometry [1. 17]

The distribultion in deep traps will give rise to permanent trapping, and an atten-

uation of the signal. Balagurov and Vaks treat trapping mechanisms in organics as

hard sphere scattering off the trapping sites and obtain al expression for the number

of carriers n(t) as a function of time, where t is set b the time since injection [3]

n(t) = n(O)ect1/2

This "permanent trapping" also results in an offset from the dark current level in the

dc level of the signal, as trapped electrons are constantly detrapping.

2.4.1 Field Dependence

The electric fields being applied to the sample are too small to affect the velocity due

to scattering, dE << Ut, where d is the lattice constant and Ut is the trap depth.

However, since the trap concentration is high, E > Ut, where I is the mean free path

between trapping sites, and E is the electric field. As a result of this, the detrapping

times will be field dependent,

- [- (qV- Ut)/kT ]'

In cases where the trap density is not as high, and the relation IE < Ut is valid, the

applied field is unlikely to result in shorter detrapping times. The field dependence

of the transit time is therefore likely to be due to a velocity dependent trapping cross

section.

The carriers are accelerated by the field, E. Since the distance between traps

is small, the carriers will not reach terminal velocity within the sample. Terminal
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velocity for the sample is determined by scattering off a perfect defect-free lattice.

and is field independent. The velocity dependence of the trapping potential call be

treated as hard sphere scattering with a field dependent impact parameter.

2.4.2 Trapping Mechanisms

The traps in organics give rise to a dispersive velocity profile, and an exponential tail

to the transit time distribution as the "permanently trapped" carriers dletrap. The

decay constant in the exponential tail, and the temperature dependence of the transit

times of the carriers will give an indication of the dominant trap depths, assuming

there are any.

Traps in organics can result from several things. Grain boundaries of crystals,

defects in the organic material, or cross linkages between different polymer molecules.

The effects of these trapping mechanisms can be studied by artificially introducing

extra traps, for example by changing annealing conditions, which change the size of

the crystallites or by introducing defects into the sample.

Another trapping mechanism may be hopping between the r orbitals of different

molecules. If the molecules had some ordered alignment, then the energy needed to

hop between molecules may be some fixed level. In the case of many of the organics

being used, it is likely that this is the case since the molecules are fairly rigid. The

mobility associated with the carriers hopping between the different 7r orbitals is an

important parameter, since it represents the intrinsic mobility of the sample. The

intrinsic mobility can be changed by attaching different side groups to the molecules,

which will change the way the molecules pack, and possibly lower the threshold energy

needed to hop.

2.4.3 Trap Depths

Since the energy level of the electrons in the contact lies in the band gap of the

organic, an activation energy is needed to move carriers into the r and 7r* orbitals.

The band gap is about 2 eV and the energy between the Highest Occupied Molecular
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Orbital and the energy of a hole at the Fermi level is on the order of 0.1 Volt. The

number of carriers in the sample will follow a thermally activated distribution with

the temperature dependence given by eq 2.2.

rn(T) = noe- Ea/kT (2.2)

Because the carriers need this energy in order to enter the 7r orbitals, trapping on

energy scales less than 0.1 eV will not be distinguishable from our current-voltage

profiles. This further restricts the scales which we are considering to 0.1-1.3 e for

shallow traps and 1.3 - eV for deep traps, where 1.3 eV is the trap depth from which

on average half of the carriers will detrap in the time between voltage pulses.

2.5 Molecular Orientation

In this thesis we examine the effect of varying the proportion of cis-connected monomers.

Cis-connected monomers are those where the two neighboring phenyl rings are on the

same side of the double bond (see fig 2-3). The phenyl rings are not free to rotate

about the double bond which is rigid.

The proportion of cis vs trans monomers can be controlled in the polymeriza-

tion stage, when the precursor is converted to polymer. The molecules are made

with mostly trans linkages, and changing the number of cis linkages has the effect of

changing the conjugation length of the trans connected regions. If the energy levels

of the carrier are treated as that of a particle localized on the chain. then the energy

levels can be approximated by those of a particle in a box, with longer conjugation

lengths having lower energy states. Since the energy level separations are smaller,

it will be easier for electrons to hop to the excited state of the molecule and to hop

between molecular orbitals of different molecules. In cases where the transport is

limited by the intrinsic mobility, that is hopping between different orbitals, rather

than detrapping from defect sites, longer conjugation lengths also means fewer hops

are necessary. Increasing the conjugation length should therefore increase the carrier
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trans connected
PPV

CIs connected
PPV

Figure 2-3: cis vs. trans polymers
Cis connected conjugation links have the phenyl rings on the same side of the double
bond. Since the phenyl rings are bulky, they prevent the formation of a crystal
lattice. Trans connected conjugation links have the phenyl rings on opposite sides of
the double bond. Trans connected links remain straight and promote crystallization.

mobility.

Because the phenyl rings are bulky, having a cis linkage will reduce the efficiency

with which molecules can pack, resulting in an amorphous polymer film. Molecules

with cis linkages are more likely to form cross linkages than molecules without cis

linkages, which is equivalent to having more trapping sites for the cis-linked segments.

In samples where there is a substantial fraction of cis linkages, the electronic

wavefunctions will also have less overlap, meaning that it will be harder for electrons

to hop from one molecule to the next.
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Chapter 3

Device Characteristics

The aim of the experiment is to use electroluminescence data to measure the distri-

bution in mobilities of carriers in samples of PPV. The samples consist of a layer

of polymer between a transparent Indium Tin Oxide (ITO) electrode and a metal

electrode.

The electrons in the sample have low mobilities and remain fixed at the metal

electrode. Holes are injected at the ITO contact, and travel towards the metal contact,

where the electrons are located. The holes and electrons form excitons, bound hole-

electron pairs, and subsequently recombine, emitting light. The time taken for the

exciton to radiate is much shorter (1 ns) than the time taken to travel across the

sample, and can be neglected.

From the distribution in transit times, we extract the carrier mobilities and at-

tempt to extract information about the distribution of trap depths in the sample.

The analysis is repeated on samples with a higher proportion of cis linkages, to see

whether this parameter affects the mobility.

3.1 Charge Distribution

When two metals with different work functions are brought into contact with each

other, a built in potential difference develops across the junction[14. 20]. If an insu-

lator is inserted between the two metals, a uniform electric field develops across the
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Charge Distribution in Metal-Polymer

Juncution

Nd Polymer Metal

Depletion
Width

Potential in Metal-Polymer Junction

Polymer

Figure 3-1: Potential in a Metal-Semiconductor-Metal configuration
The depletion layer builds up as positively charged holes are repelled from the positive
electrode. The depletion of charges from this region causes the potential profile shown
above. The net density of charge is Nd, where Nd is the density of holes in the polymer.

insulator.

If a semiconductor is inserted between the two metal contacts, the carriers in

the semiconductor are mobile and will migrate in order to shield the bulk of the

semiconductor from the electric field. In organic polymers, which are in general

p-type semiconductors, the holes will migrate to the negative metal electrode. A

depletion layer will build up about the electrode. The charge distribution is shown

in figure 3-1.

The charge distribution at the metal-semiconductor interface can be analysed

using the depletion approximation for the semiconductor. According to this approxi-
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mation, the charge density will be Nd in the bulk of the sample and 0 in the depletion

layer. Since the electrons in the metal have high mobilitv compared to the electrons il

the semiconductor. the excess charge on the metal side is located as a surface charge

(lensitv at the interface.

Under equilibrium conditions, when no voltage is applied. no net current flows

across the junction. The width of the depletion laver is such that the drift current

caused by the potential across the junction exactly cancels the diffusion (r'rent due

to the depletion of holes at the electrode. The potential at the junction will change

as a result of the build-up in charged carriers. Assuming a one dimensional junction.

the electric field E becomes

E = J dxqp/ + ITO, (3.1)

where x is the distance from the ITO electrode. Equating the drift and diffusion

currents, drift and jdiff respectively, we obtain:

Jdrift = qPP~h (3.2)

= qDdP = jdiff, (3.3)dx f

where p is the density of holes, and D is the diffusion constant. Using the relation

D/ = kT/q, (3.4)

equation 3-3 can be integrated to yield a depletion width [20],

w Ndq ( -. (35)

For a carrier density Nd of 1016 cm- 3 , and a dielectric constant e of 3x 10-l 3Farads/cm,

which is typical of organic semiconductors, the depletion width will be 100A, com-

pared to a sample thickness of 1000A.
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3.2 Electrical Properties

The long time needed to build up the depletion layer implies that the sample has a

large capacitance. The capacitance of the sample is important for time resolution.

since the time required for the voltage across the junction to change limits the response

tiime of the sample. The capacitance is also important. since it gives a measure of the

carrier density in the sample.

Given the charge profile of equation 3-5, the capacitance associated with the sam-

ple is

C = A/d= 1200pF,

for a carrier density of 1016 cm - 3.

The built-in potential of the junction and the area of the device are known, and

the density of carriers in the organic material can be calculated to be [20]

2 V -D kT
Nd= qC2q , (3.6)

where Nd is the concentration of holes when a voltage pulse V is applied.

3.2.1 Voltage

When a voltage is applied across the junction, the carriers will no longer be in equi-

librium, and a current will flow across the junction. The magnitude of the current in

the bulk of the sample will be the drift current due to the applied electric field,

itotal = drift = n/lhE (3.7)

Assuming that carrier generation and recombination is negligible away from the elec-

trodes, and that the depletion region is small compared to the bulk of the sample,

the current flowing in the bulk of the sample will be the same as the current flowing

across the depletion region.
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Far away from the depletion region. the diffusion current will be zero. At the

depletion region, the net current is

Jdif f + Jdrift = Jtotal = ILhqE.

The thickness of the depletion region will change as a result of the applied field.

Following eq 3-5. the width of the depletion region now becomes

( N --)q ( 3.8)

3.3 Carrier Injection

3.3.1 Thermionic Injection

In a conventional semiconductor device, the charge is injected into the sample at the

contacts by thermionic injection. The amount of charge injected into the junction

can be determined by solving the equations for the drift and diffusion currents

jdrift = jdiff

Dh- = jinE. (3.9)
dx

Using the relations

Dh kT
Ah q

J Edx = V, (3.10)

this gives a solution

i Jo (eqv/kT- 1) (3.11)

29



This is the equation for charge flow across a metal-semiconductor junction as a func-

tion of applied voltage.

The charge flow equation can be understood in terms of a band model [2]. The

electrons need an activation energy Ea to be excited to the conduction band. In the

presence of an applied potential V, the energy required to reach the conduction band

is decreased.

3.3.2 Space Charge Limited Injection

If the mobility of the sample is low, then the charge injection will be limited b the

rate at which the charge can be carried away from the junction. This is known as

space charge limited injection.

If the carriers cannot be transported away from the junction fast enough, a layer

of space charge will build up at the junction. The potential due to this charge will

repel any additional carriers, and will lower the amount of charge injected into the

junction.

The current flowing across the junction will be

j = ,AqpE,

where p is the space charge density and is proportional to dE, and hence is proportional

to E/d. The analytic derivation gives a current-voltage relationship, [20]

8/e V2

J-9 d3 (3.12)

for space charge limited injection.

This type of injection is particularly important for organic LEDs since there may

be more trapping sites near the metal interface where the carriers may undergo non-

radiative recombination. Having a large amount of the injected charge trapped at

the interface may increase the rate of nonradiative recombinations [4], and lower light

emission levels.
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TO

Figure 3-2: Band Levels for Tunneling Currents
In tunneling transport, the distance the carrier must tunnel depends on the electric
field and the "tilt" of the energy levels of the molecular orbitals.

3.3.3 Tunneling Current

In metal-polymer junctions, there is evidence that carrier injection occurs as carriers

tunnel into the junction (Fowler-Nordheim tunneling) [9]. The tunneling probability

goes as [20]

j = e- kl

where k is the wave vector of the electronic wave and I is the distance across which

the electron tunnels.

The band structure model that accounts for this mechanism (Fowler-Nordheim

Mlodel) is given in figure 3-2. The ITO contact has a work function of 4.7 eV, and
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the metal has a work function of around 4 eV, depending on the metal. The energy

level of the Highest Occupied Molecular Orbits (HONMO) and Lowest Unoccupied

MIolecular Orbits (LUMO) are "tilted" as a result of the applied field. The injection

'late into these devices depends on E rather than V, since the distance the carrier has

to tunnel is proportional to VI/E. The Fowler-Nordheimi Model predicts a tunneling

current of

= nlE 2e-K2/E (3.13)

where sl and K2 are constants, with dimensions of ma - c 2/ 2 and V/cnm respec-

tivelv. Because the work function of the ITO is closer to the HOMO level than the

work function of the metal is to the LUMO level, the carriers that are injected are

predominantly holes.

3.3.4 Contact Potential

The level of injection which can be achieved will depend on the difference between

the contact potentials of the metal electrodes, (b [9]. The tunneling current is pro-

portional to e-k , where k = 4/32m*/h 2 q(b and I = 4(b/E. So the injected charge

is proportional to e- (4b/ °̀ )3 /2

By varying the potentials of the positive and negative electrodes with respect

to the energy levels of the molecular orbitals, it is possible to control the ratio of

injected holes to injected electrons. It is advantageous to have more holes injected

than electrons, since the holes in PPV have higher mobilities than the electrons.

There is evidence [4] that this may be due to electron trapping sites, for example

oxide molecules. which lower the electron mobility.

We chose to use Aluminum as the positive electrode and ITO as the negative

electrode. By doing this, we achieved a device where the carriers were predominantly

holes, and with a relatively high injection rate, since Aluminum has a high work

function ( 4.75 eV), so the potential difference, )b is small.
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3.4 Device preparation

The samples are prepared by etching lines off an ITO coated slide. The glass substrate

is (cleaned and photoresist is spincoated onto the ITO covered side. The photoresist

is l)aked, and the pattern is developed by exposing the l)hotoresist to 100 Watts of

UV light for 1 seconds. The ITO is etched off using concentrated HCl. The ITO is

patterned into 4 mm wide strips.

PPV precursor is spun onto the patterned substrate. The precursor film is spun

on at room temperature. The film is converted to PPV by heating at a temperature

of 170-300°C.

After the polymer is deposited onto the ITO coated slide, aluminum contacts are

evaporated on top. The aluminum contacts are masked into four mm strips which

run across the length of the sample, perpendicular to the ITO contacts, giving sixteen

devices with an active area of 16mm2 each.

Contact is made to the sample by placing a thin piece of indium on top of the

metal contact. Contact is then made to the indium by means of a probe contact

with a flexible tip, which is lowered until the probe is in contact with the aluminum

electrode. The layer of indium is soft and protects the chromium contact from damage

by the probe, prolonging the life time of the devices.

3.5 Polymer Preparation

The polymer film was formed by spin coating the polymer precursor onto the slide

which was then polymerized by baking at 170-300°C.

The precursor was formed by mixing concentrated NaOH with a 0.25 M solution

of the monomer (see fig 3-3 (a)), cooled to 1°C. The polymerization was quenched

by addition of HCl after 5 -15 minutes [16]. The solution was dialyzed through a

membrane to separate molecules of molecular weight 6000-8000, and the sample was

then stored in a freezer. The precursor polymer is precipitated out with isopropyl

alcohol, and dried in a stream of dry 02 free argon gas. The polymer was washed to
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Figure 3-3: Polymer preparation. Taken from F. Papadimitrakopoulos et al., Chem-
istry of Materials, 1994

removed any salts.

The precursor was spuncoated on to the glass substrate. Thermal conversion was

achieved by baking the slides at 170 to 300°C in a oxygen-free atmosphere. It is

important that this be done in an oxygen-free environment, since the presence of

oxygen leads to the formation of carbonyl groups on the polymer which act as trap

sites.

The samples we used were prepared using a different precursor molecule than is

normally used in PPV preparation. An advantage of using a different precursor is that

the precursor we used can be dissolved in a different solvent, and hence the samples

can be prepared at lower temperature. A further advantage is that the polymer

has a higher percentage of cis linkages, and has an amorphous structure. There is
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Figure 3-4: Plot of infra red absorption vs. wave number in PPV !or different prepa-
ration temperatures, and corresponding to different amounts of cis linkages, taken
from S. Son et al., Science April 1995
The relative amount of cis and trans linkages can be inferred by the strength of the
vibrational modes in the infra red absorption spectra.

evidence [19] that amorphous PPV may have a higher electroluminescence yield, with

an internal quantum yield of 0.22% [19] in comparison to an internal quantum yield

of 0.01% for conventionally prepared, polycrystalline PPV.

The percentage of cis conjugation links can be controlled by changing the con-

version temperature at the polymerization stage. Our samples had conversion tem-

peratures of 170°C for the maximum number of cis linkages ( and hence shorter

conjugation length) and 250°C for the sample with longer conjugation length. The

amount of cis linkages can be measured using infrared spectroscopy. This is shown in

figure 3-4 [19].
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Chapter 4

Materials and Apparatus

Characterization

4.1 Absorption Spectrum

The absorption spectra of samples of PPV, with different proportions of cis and

trans linkages were taken using a Hewlett Packard diode array spectrometer. The

absorption spectra of the samples are given in figure 4-1(a)and (b).

The absorption spectra of the samples characterizes the relative conjugation lengths

in the polymer chains. The differences in the conjugation lengths of the polymer can

be measured by the blue shift of the absorption edge at 350 nm. The carriers on

the polymer molecule act like particles in a box, with their energy scales being deter-

mined by the length of the box. Molecules with a shorter conjugation length will have

their energy levels separated by a larger energy scale. Consequently, their absorption

spectrum will be blue shifted.

The thickness of the sample, which is needed for mobility calculations can be mea-

sured from the absorption spectrum. The thickness can be measured directly using a

profilometer only if the sample is quite thick. Furthermore, measuring thickness with

a profilometer destroys the sample. The thickness of the sample can be extrapolated

by the strength of the absorption at 300 nm, and comparing the absorption of the

sample to the absorption of a very thick sample, whose thickness had been measured
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Figure 4-1: Absorption Spectra of PPV
The conjugation length of the molecules is determined by the number of cis linkages.
Conjugation length can be measured by the blue shift of the absorption edge around
350 nm.
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using a profilometer. The peak at 300 nm is not completely shown in the absorption

spectra since it lies close to an absorption peak of glass.

4.2 Emission Spectrum

The emission spectrum of the same device was taken using a SPEX Fluorimeter. Tilhe

sample was excited b a wavelength of 560 nm, and the intensity of emission was

measured at different wavelengths. The peak at 2Onrn is due to the decay of the

singlet state of the exciton, which is the primary emission mechanism [6].

The emission spectra of a 1000A thick sample of PPV is given in fig. 4-2, for an

incident wave length of 560nm.

4.3 Experimental Set up

The experimental setup used in the experiment is given below in figure 4-3. The

signal is taken from a square wave generator with pulses at 10 Hz. The duration of

the pulse is 10 ms, much longer than the RC time constant of the circuit which is 0.5

,s.

The signal is connected to the organic diode, which emits light when the voltage

is applied. The light from the organic diode is collected in a photomultiplier detector.

The photomultiplier is connected to a high voltage power supply of-1000V. The signal

from the photomultiplier is connected to the oscilloscope with a low input impedance

in order to lower the response time of the circuit (see sec 4-5).

The voltage pulse which was applied to the sample, and the light signal detected

bv the photomultiplier tube are displayed on the oscilloscope. The delay between the

voltage pulse and the light signal is measured, and the mobility is calculated from

the delay. The mobility is calculated at different field strengths.
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Figure 4-2: Emission Spectra for 560 nm Excitation

The photoluminescence spectrum taken for PPV has the same characteristic features

as the electroluminescence spectrum.
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Experimental Set Up
ac

dc

LED

HV is the High
oscilloscope.

Figure 4-3: Experimental Set up
Voltage Power Supply, PM is the photomultiplier and OSC is the
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Figure 4-4: Pulse signal
Biasing the diode at a dc level close to the turn-on voltage of the diode lessens the
turn-on time of the diode. This technique is important for samples with transit times
which are on the order of the turn-on time.

4.4 Electrical Properties

The response time of the sample is limited by the time needed (turn-on time) to build

lip enough voltage across the sample for light to be emitted (turn-on voltage), and by

the time resolution of the measurement circuitry (RC- time constant). If the input

impedance of the oscilloscope is set to 0.5 kQ, the RC time constant is 0.4/zs. In

order to reduce the turn-on time for the diode, a square wave pulse of low amplitude

with a dc bias can be applied. The dc bias is chosen to be immediately below the

turn-on voltage of the diode. The time needed to reach turn-on voltage is reduced.

The pulse signal used is shown in figure 4-4.
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Using a dc offset for the pulse makes the sample degrade at a faster rate. For a

sample thickness of 1000A, it was not necessarv to use a dc bias, since the drift times

were much longer than the turn-on times of the sample. This technique is important

for thinner samples or for samples with higher mobilities.

4.4.1 Current-Voltage relationship

The turn-on voltage of the diode can be determined by graphing the current flowing

through the diode against the voltage applied across the diode. The current-voltage

relationship of the diode was plotted using a Tektronix 575 transistor I-V curve tracer,

with the metal electrode connected to the base connection, the ITO electrode con-

nected to the collector, and the meter set to the pnp mode. The emitter is grounded.

The current-voltage relationship of the organic diode is given below in figure 4-5.

The turn-on voltage is around 15 Volts.

4.5 Instrument Resolution

The experiment was originally performed using an inorganic aluminum gallium ar-

senide LED. We assume the response time of the device is instantaneous and we

use the data from the inorganic diode to determine the instrument resolution of our

experiment.

The experimental set up was the same as in fig. 4-3. The turn-on voltage of the

inorganic diode was measured to be 1.5 V using the I-V curve tracer (see fig. 4-6), so

the diode was biased at 1.5 V, with a square wave pulse of 1 V amplitude at kHz.

The input impedance of the oscilloscope was controlled by connecting a 25 kQ

variable resistor in parallel with the input terminal of the oscilloscope. The rise

time of the light signal was measured for different input impedances. The rise time

increased with increasing impedance, indicating that the signal was limited by the

instrument resolution.

A graph of the measured rise time against the termination resistance is given in

fig. 4-7.

42



Figure 4-5: I-V curve of PPV diode

Figure 4-5: I-V curve of PPV diode

Voltage is graphed on the x-axis (5 volts/div) and current (0.05 ma/div) is the y-axis.

~~~~~~43~4
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Figure 4-6: I-V trace of inorganic LED
The x-axis is voltage (.5 V/div) and the y-axis is current (.05 ma/div).
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Figure 4-7: Instrument resolution
The time taken for the light signal to reach half of it's maximum amplitude is graphed
against the termination resistance of the oscilloscope.
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Since the organic LED has a much shorter rise time. it is possible to use a higher

termination resistance with the organic LED than is used for the inorganic LED. In

a(ldition. since the light emission is lower. it is necessary to use a higher termination

rsistance in order to maximize the signal.

A tpical mobility for an organic polymer is between 10- - 10-8cmn2 /'.s. As-

snIling an applied voltage of 50 V. and a film thickness of 1000.4. and a mnobility

- 10- 4 , this will result in a velocity

v = E = i/d,

and a transit time

= d/v = d2/pl = 2s.

The termination resistance was chosen to be 500 Q, in order to give an instrument

resolution of 400ns, which is adequate resolution for PPV samples.

4.6 Photomultiplier

A second source of delay in the circuit is the turn-on time of the photomultiplier.

By increasing the voltage of the high voltage power supply, the delay time of the

photomultiplier tube is decreased. In addition, if more voltage is applied to the

photomultiplier, then the detection signal will have a higher amplitude, and the ter-

mination resistance of the oscilloscope can be raised even higher. On the other hand, a

higher voltage means a higher noise level. In particular, the photomultiplier detector

is likely to pick up more noise from the room lights in the background.

Using the inorganic LED, the effect of the high voltage supply on the rise time

of the signal is measured. The delay times as a function of Voltage are shown in

figure 4-8. The delay of the signal is less than the transit times we were expecting

to measure when the voltage supply was in the range of -500 to -1000 V. A voltage

of -1000V was chosen since the PM picked up a lot of noise from the room lights at

higher voltages. The delay in the signal was 40ns when the voltage was set to -1000
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The effect of the Photomultiplier voltage supply on the delay in the light signal is

given.
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\'. which is negligible compared to the instrument resolution.
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Chapter 5

Results

The distribution in the mobilities was extracted from the shape of the emitted light

pulse. The mean mobility obtained was lower than the mobilities which have been

reported previously [1, 11] for PPV without cis-inclusions grown by the Wessling

Method. These mobility measurements are based on time-of-flight photoconductivity

measurements [81 for PPV in a sandwich geometry. The difference in the measured

mobilities may be due to the greater prevalence of cis linkages in our sample and

the more amorphous morphology of our PPV. The mobilities measured in samples

with different average conjugation lengths were the same at low fields, indicating that

the average conjugation length of polymer molecules does not limit carrier mobility.

From the field dependence of the mobilities, it is possible to infer a trapping separation

which is the same as the molecular separation.

5.1 Transit Times

Traces of the electroluminescence intensity against time are given below in figure -1,

for a 1000A thick sample of PPV. The data are taken for a 13 ms pulse at a 10 Hz

repetition rate. The instrument resolution is 0.4,s, and the duty cycle is 10%.

It is evident from fig. 5-1 that for higher applied voltages the edge of the light

signal moves to shorter times. The effect can be seen qualitatively by estimating the

transit time as the time when the light signal reaches half of its maximum amplitude.

49



This corresponds roughly to the time when half of the carriers have traversed the

sample.

5.2 Deconvolution

The mean transit time can be estimated as the time when the light signal reaches half

of its maximum amplitude. However, it is also possible to extract the distribution

of transit times from the light pulse. The distribution of transit times an give

indications of the transport mechanisms and of dominant trap depths.

The distribution of transit times can be obtained from the detected signal of

the photomultiplier tube. If all of the carriers were injected at the same time, the

photomultiplier signal would be the transit time distribution. Applying a square wave

voltage pulse means that carriers are injected at a constant rate over a fixed interval

in time. Therefore, the contributions from each section of the voltage pulse must

be included. This is equivalent to convolving the transit time distribution with the

voltage pulse,

j(t) - f(t- )
7-

t

= o f(-)e(t-T)dT, (5.1)

where f(t) is the distribution in transit times, and (t) is the pulse function

0 if < t < T

1 otherwise.

If the contributions to j(t) for t < T are taken, where T is the duration of the

pulse, then equation 5-1 is equal to the integral

t

j(t) = f(T)dT , t < T

The transit time distribution f(t) can be extracted by differentiating the signal.
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of applied voltage. The voltage pulse starts at 2 ms and ends at 15 ms.
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The distribution of mobilities P(u) can be extracted from the distribution in the

transit times as:

d/r= v =tE
p = d2/Vr,

P(p) = f( 2) = djld2/Vp

where d is sample thickness.

If the width of the transit time distribution is much smaller than the width of the

voltage pulse, then the distribution can be extracted reasonably well. This is the case

if the photomultiplier signal reaches a steady state before the pulse is turned off.

Mobility values of up to d2 /Vt', where t' is the instrument resolution of the circuit,

can be resolved. Since the distribution of transit times gets cut off for transit times

longer than the pulse, the mobilities which are less than d2 /VT, where T is the
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dluration of the pulse. cannot be resolved. With a voltage pulse of 13ms duration and

a instrument resolution of 400 ns, this will enable resolution of mobilities from 10 - 4

to 10-9 cm2/V's for a voltage of 10 V. This gives adequate resolution for mobilities

which are on the order of what is conventionally measured for PPV.

For voltages where the mean transit time is on the order of the instrument reso-

hlution. the transit time T can be estimated as the point where the signal reaches half

of its maximum amplitude.

5.3 Transit Time Distributions

The distribution of transit times extracted from our data (fig 5-2) can be compared

to different analytic models to extract information about trapping mechanisms and

transport properties.

The data were fitted to the analytical models derived for a single trap depth and

for an exponential distribution of trapping depths. In addition, the transit times were

fitted to a seventh order polynomial and a Lorentzian. By fitting the distributions to

several different models, it is possible to estimate the error in the mobility which is

derived from fitting the measured mobility profile to an incorrect analytical model.

The mean mobility is calculated from the peak of the transit time distribution.

5.3.1 Analytic Expression

The time required for a carrier to hop out of a trap of depth Et will follow a thermally

activated distribution with the probability of hopping proportional to e- Et/kT.

For a single trap depth Et, the mean transit time will be

foo te- Ett/kT
T° N eEtt/kT (5.2)

The distribution in transit times will be the distribution in the number of hops mul-

tiplied by the distribution in hopping times.

For an exponential distribution of trap depths, the mean transit time for each
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trap depth must be averaged over the distribution in trap depth

E, f e-Ett/kTtdt
0E, fC e-Ett/kTdt (53)

Assuming an exponential distribution of trap depths. the distribution in transit

times becones [13]

f (-r) = Tr- 3/2e-To/T. (5.4)

It is not possible to extract the trap depth about which the traps are distributed, since

the mean transit time will depend on the density of traps as well as their depths. The

integral of equation 5-3, which gives the light emission signal j (t), is the error function.

A graph of the predicted distributions in transit times for a single trap depth and

for an exponential distribution of trap depths is given below in figs. 5-3 and 5-4,

respectively. The inverse power tail in fig. 5-3 is an artifact of the very deep traps

from which the carriers cannot on average detrap. These very deep traps give rise to

an increase in the background light emission.

5.3.2 Data

The distribution in transit times which we obtained was fitted to four different mod-

els for transit time distributions, the analytic solution obtained for an exponential

distribution of trap depths, the analytic solution obtained for a single trap depth, a

seventh order polynomial and a Lorentzian. The results for the mean transit time and

the width of the distribution for an applied voltage of 10V, and the mean mobility A,

calculated from the slope of the velocity distribution (fig. 5-5), are given in table 5-1.

The data shown are for voltage pulses with different amplitudes, having a duration

of 13 ms and a repetition rate of 10Hz.

The mobilities t calculated using the different transit time distributions differ bv

up to a factor of two (Table 5-1). On the basis of table 5-1, we estimate the error in

p. to be a factor of two.
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function mean transit time (ms) width of distribution (ms) mean (x 10- 9cn. 2/1 5s)

exponential 5 3.6 4

Lorentzian 6.2 5.2 2.8
1 Polynomial 7.1 6 2

Table 5.1: Parameters of transit time distribution for different fitting functions
Tile mean mobility is calculated from the slope of the mean velocity v s. voltage curve,
given in fig. ;)-5.

A graph of the mean velocity against voltage is given in fig. 5-5, for each of the

different transit time distributions. The data did not fit the analytical model for a

single trap depth well. This is partly because the single trap depth distribution will

have an exponential tail (fig. 5-4). This indicates that there is no dominant trap

depth in the PPV sample.

5.3.3 Mobilities

The mobility values we measured are much lower (10-9 cm2 /Vs) than the mobilities

which are reported for PPV in the literature (10-7cm2 /Vs). This is due to the

different method we use to obtain mobilities, as well as to the differences in the

morphologies of the samples.

The studies in the literature measure the transit time of the carriers as the time

before light is first emitted (see fig. 5-6). This is equivalent to measuring the mobilities

of the fastest carriers. Since the fastest carriers do not trap, this measurement may

give an indication of the intrinsic mobility of carriers in the sample.

We measure the transit time of the carriers from the peak of the transit time

distribution f(t) (mode transit time) or as the time when the light emission reaches

half of its asymptotic value (median transit time). We use the median or mode

transit time since we are interested in studying trapping mechanisms, and deducing

the possible trapping sites which limit the mobility. Using the median or mode transit

time will give us a lower estimate for mobility than using the fastest transit time.
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Figure 5-5: Mean Velocity Vs Voltage
The mean velocity calculated for different models is given. The mean velocity is
calculated from the data for three different models, assuming the distribution of
transit times follows a lorentzian distribution (triangle), a seventh order polynomial
(square) or, the analytic model obtained from an exponential distribution of trapping
depths (circle).

57

0.4-

__

W

I._.

0
-i) 0.2--
C
0
E

0. -



Electric Pulse

Light Pulse

T

t Transit Time
Distribui tion

time

Figure 5-6: Different methods of determining transit times.
Conventionally the transit time is measured as the time when light is first emitted
(top). We measure transit time from the peak of the transit time distribution (bot-
tom): The transit time distribution is obtained by differentiating the light emission
signal (see sec. 5-2).
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5.4 Injection

A problem with the devices is that they degrade over time as they are used. The

intensity of the light emission decreases as the devices are used. In conjunction with

this. the current-voltage graphs of the devices are also altered over time. It is likely

that these changes are due to the formation of metal oxide at the Aluminum contact.

which increases the barrier through which the carriers have to tunnel. A.s a result.

the current injection decreases. To check that this has no effect on the mobility

measurements of the device, the electroluminescence measurements were repeated as

the devices degraded. It was found that the average transit time of the carriers does

not change as the light intensity decreases.

The contact potential of the devices does not change either. The contact potential

is determined as the voltage which has to be applied before charge is injected, and

can be measured from the I-V curves. That the contact potential did not change is

an indication that the amount of voltage dropped across the bulk of the sample does

not change, and hence that the mobility is constant for a constant transit time.

To analyse the change in injection mechanism with time, current-voltage graphs

are taken when the sample is new, and after it has been used for 8, 20 and 30 minutes.

The sample was driven with a 20 V pulse at a 15% duty cycle. The different current-

voltage graphs are given in fig 5-7. It is apparent that the amount of charge injected

at a constant voltage is decreasing as a function of time.

5.4.1 Fits

The I-V curves which were taken as the device degraded were digitized and were fit to

equation 3-12 for space-charge limited injection, equation 3-13 for tunneling injection

and equation 3-11 for thermionic injection. The I-V curves were fit in order to see

whether the injection mechanism changed because of the build-up of space-charge.

The fits are given below in figure 5-8 when the device was new (a), and after 20

min (b). The functional dependence can be seen best when the data are plotted on

log-log or log-linear axes. The devices are space-charge limited after they have been

59



0.10

0.08

0.06

" 0.04
U

U

0.02

0.00

I !-')

-2 0 ? 4 6 8 10 12 14 16

Voltage(V)

Figure 5-7: Current vs. Voltage after (a) 0 min and (b) 20 min of operation.
The changes in injection levels and the changes in the shape of the I-V curve are
apparent.
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run for 20 min, while they are not space charge limited when they are new.

It is possible to estimate the mean carrier mobility from the fit of the I-V curve

against the space charge limited model. For a value = 3xlO-103F/cmn. typical of

organic semiconductors, the mobility is 0. x 10-8cm2 / Vs. This value of { is oni

the order of the value which is obtained from the electroluminositv data ( see Table 5-

1), which is further evidence that after 20 minutes the device is space-charge limite(d.

and that the injection rate is limiting the electroluminositv yield of the sample.

If the devices are space-charge limited, many carriers are trapped in the egion

about the contacts. In this region, there is a higher concentration of trapping sites

where the carriers can undergo non-radiative recombination. If the devices are space-

charge limited, the proportion of carriers undergoing non-radiative recombination

may increase. and light emission intensity may decrease faster than injection levels

decreases, as the device degrades.

We compared the decrease in injection levels to the decrease in light emission lev-

els, and found that they both decrease at the same rate. The light emission levels were

measured as the asymptotic values of the detected signal from the photomultiplier

tube. The injection levels were measured from the I-V curves of the devices. This

indicates that the rate of non-radiative recombination is not increasing. This result

is consistent with the observation that the mean carrier mobility does not change.

The carrier mobility is limited by the rate at which the carriers trap. Since the mo-

bility does not change it is likely that the probability of trapping does not change.

Non-radiative recombination occurs for particular types of trapping sites.

It seems plausible that the degradation of the sample is due to the decrease in

injection rates. All of the changes in the luminosity data can be accounted for by the

decrease in injection levels, and the sample becoming space charge limited. There is

no evidence that the transport properties of the polymer are changing with time.
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5.5 Field Dependence

The mobility was calculated for different applied voltages. Since some of the transit

times were on the same order as the instrument resolution, the mean transit time was

estimated as the time when the current reaches half of its asymptotic value.

The mobilities which were calculated for different applied electric fields are plotted

ill figure 5-9 and fig 5-10. Fig. 5-9 gives the mobilities at low field strengths. and is

plotted on linear axes. Fig. 5-10 gives mobilities at high field strengths and is plotted

on log-log axes. The mobilities are constant for low applied fields, and increase for

fields greater than E = 2 x 106V/cm. This is the behavior which has been reported

in studies of other organics.

The increase in the mobility which is seen is likely to be due to field dependent

detrapping of the carriers. If the mobility is limited by the rate at which carriers hop

between molecules, then the energy difference between molecules is U = qdE/e =

2.8 x 10-2eV, where E is the electric field strength, and d is the distance between

molecules which can be taken to be 3 - 4A. This value of U is roughly on the order

of kT = 0.025eV, the thermal energy. Since the mobility becomes field dependent

for fields which are on the order of the thermal energy, it is likely that the increase

in mobility can be accounted for by field dependent detrapping.

5.5.1 Poole-Frenkel Model

If the field strength applied to the sample is high compared with the thermal energy

of the sample, the electrons will start to tunnel out of traps rather than hopping out

of them. Tunneling occurs when the dE/E is on the order of kT/q. The Poole-Frenkel

theory predicts a field dependence of

= (Le kT (5.5)

for tunneling transport, where AU is the trap depth and 3F = e 3 /lrereo is the

Poole-Frenkel factor, er is the dielectric constant of the polymer, and e is the electric
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charge.

The data taken agrees with this model, as can be seen in figure 5-10. It is necessary

to repeat the mobility measurements at different temperatures to obtain an estimate

for the trap depths. This is planned for future work.

The mobility measured at low applied fields is lower than the mobility reported in

the literature for PPV (10- 9 cr 2 /Vs in comparison to 10- T7cm2 / ' s for conventionally

prepared PPV). The difference in mobilities can be explained since our samples is

amorphous while conventional PPV is polycrystalline. The low mobilities probably

arise from the deeper traps in amorphous PPV compared to polycrystalline PPV. so

that the time needed to thermally detrap is longer in our samples. It is not apparent

whether the decrease in mobility is only due to the amorphous structure, or whether

the decrease in conjugation length also limits the carrier mobility. This distinction is

important since there are ways of preparing samples with longer conjugation lengths,

for example by using longer annealing times, or for preparing samples with different

packing structures, for example by changing the side groups.

If the transport is limited by the conjugation length of the sample, the energies

of the molecular orbitals would be disrupted by a higher energy at the cis linkage (fig

5-11). If carriers on the molecular orbitals act like particles in a box, then the energy

levels are determined by the conjugation length of the molecules. Examining the tem-

perature dependence of the trapping will give a value of AU, the trap depth. Whether

or not the conjugation length of the molecules limits transport can be determined by

whether the measured trapping energies scales with conjugation length, and whether

the trapping energies are of the same order (tenths of eVs) as the traps which would

result from hopping between conjugation links. This is planned for future work.

5.6 Polymer orientation

The mobilities which were extracted from the samples were lower than the mobilities

reported in the literature. We attributed these differences to the increased amount

of cis- conjugation links in the sample and to the amorphous nature of the mate-
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Figure 5-10: Molecular Orbital Levels with cis linkage

The trap depth is an artifact of the higher energy gap between molecular orbitals in

the cis linkages.
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rial. To test whether the conjugation length of molecules limits mobility values, we

repeated the analysis, with a sample which had been prepared using the same precur-

sor molecule. but which had been annealed at a higher temperature. and which had

a longer conjugation length. The relative conjugation length of the molecules can be

measured by the position of the absorption edge near 350 nm (see fig. 4-1).

5.6.1 Electric Field

The mobilitv of a sample with a longer conjugation length was calculated sing elec-

troluminescence data. The graph of the mean mobility at different electric field

strengths are given in figure 5-12, for low electric fields and in fig. 5-13 for high

electric fields. The mobility values follow the same pattern, with the mobilitv being

constant at low fields ( = 2 x 10-9 cm 2 /Vs) and increasing above a field strength of

1.4 x 106V/cm.

The mobility of the sample with longer conjugation length molecules is roughly

constant at low voltages, and has the same value at low voltages as the sample with

shorter conjugation length molecules(/ = 2 x 10-9cm 2/Vs), which indicates that

conjugation length does not limit the mobility of the samples.

The dependence of the mobility on field strength fits the Poole-Frenkel model well.

The mobilities in the second sample become field dependent at a lower electric field.

This is what is expected if the mobility were limited by the time taken to hop between

conjugation links. If this were the case, the longer conjugation links would mean a

longer distance between hopping sites. Consequently, the mobility would become field

dependent at a lower electric field.
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Chapter 6

Summary

The use of organic polymers as active elements in transistors or light emitting diodes is

motivated by their compatibility with plastic substrates, and the ease with which they

can be manufactured. To this end, new production methods are being investigated

which enable polymer production at lower temperatures. The polyphenyl vinylene

(PPV) sample on which our measurements are based was produced using one of

those new techniques. By using a precursor which could be dissolved in a different

solvent, the conversion temperature was lowered, and the polymer was compatible

with more plastics. This method was used because it produced a polymer with a

large number of cis linkages. Including cis linkages in the polymer means that the

PPV has an amorphous structure instead of a polycrystalline structure. There have

been suggestions that using amorphous PPV may increase the luminosity yields of

the devices [19].

This thesis examines the effects of the cis inclusions on the mobility of PPV. Cis

inclusions affect the mobility of the sample in two ways. Firstly, the cis inclusions

decrease the conjugation length of the molecule. Secondly, the cis inclusions affect

the efficiency with which the molecules pack and prevent the formation of a crystal

structure.

We find that the mobility of our samples is lower than that of PPV prepared in the

conventional way by a factor of 100; however, this mobility is not lower for samples

with a longer conjugation length. The conjugation length can be measured from the
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blue shift of the absorption edge in the absorption spectrum of the sample.

The low mobility limits the luminosity yields of the devices. From the I-V curves

of the device, it is evident that the charge injection is space charge limited and that

the low injection levels limit the luminosity yields of the devices.

In this thesis. we also extract a distribution of mobilities from the electrolunines-

cence measurements, and compare the experimental results to the predicted mobility

distribution based on an exponential distribution of trapping depths. Our experillmen-

tal data fits the predicted relation for an exponential trap distribution better than

that of a single trap depth. This indicates that there is no single dominant trapping

mechanism in the sample, which is consistent with the result that the mobility is not

limited by the average conjugation length of molecules.

Lastly, the thesis shows that the transport properties of the devices are limited

by the rate at which carriers hop between different polymer molecules, since the

mobilities become field dependent for field strengths where dE is on the order of kT,

indicating that the trapping site separations (d) are the same as the separations of

the polymer molecules.

The temperature dependence of the mobility is expected to give an indication of

the energies of dominant trapping mechanisms. It is expected that the temperature

dependence of the mobilities can be fitted to a Poole-Frenkel relationship to give a

value for the energy depths of the traps. Knowing the energy scale, it would then be

possible to infer what the possible trapping mechanisms may be. Future work on the

material includes these temperature measurements.

The PPV preparation was chosen in order to give a sample with higher lumi-

nescence yields [19]. This analysis shows that although the amorphous structure

increases the luminescence yields, the low mobility limits injection rates. Still, the

devices are brighter when both these factors are considered, making the technique

important for LED technology.
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