
An Extensible Dynamic Linker for C++

by

Murali Krishna Vemulapati

Submitted to the Department of Civil and Environmental Engineering
in partial fulfillment of the requirements for the degree of

Master of Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

May 1995

© Massachusetts Institute of Technology 1995. All rights reserved.

Author .
. .Department of Civil and Environmental Engineering

May 15, 1995

Certified by-...................
Ram Duvvuru Sriram

Associate Professor
Thesis Supervisor

-n

Accepted by..

Joseph M. Sussman
Chairman, Departmental Committee on Graduate Studies

Bker EFn.
MASSACHUSETTS INSTITUTE

OF TECHNOLOGY

JUN 27 1995

LIBRARIES

An Extensible Dynamic Linker for C++
by

Murali Krishna Vemulapati

Submitted to the Department of Civil and Environmental Engineering
on May 15, 1995, in partial fulfillment of the

requirements for the degree of
Master of Science

Abstract
In this thesis, I have designed and implemented a portable and extensible dynamic
linker for C++. The dynamic linker, Dld++, allows a user process to dynamically
link compiled C++ code and load it into its address space; it also allows the process
to unlink such dynamically linked object code and unload it from its adress space.
Dld++ performs at run-time those tasks which are performed by traditional linkers
at link time. These tasks include loading of simple object files, searching library
archives, linking against shared libraries, relocating text and data, and resolving
symbol references. Dld++ also collects special symbols from an object module into
lists and performs user-specified actions on these lists. For example, for every object
file that is dynamically linked, Dld++ collects all the symbols corresponding to the
global/static constructors and invokes those constructors. Dld++ uses the general
purpose Binary File Descriptor (BFD) libraries of Project GNU to operate on the
object files which makes the linker portable across several object file formats. The
dynamic linker itself is implemented as a library of C++ classes so that it is easily
extensible. I demonstrate with examples how Did++ can be modified or extended for
different C++ compilers and operating system environments.

Thesis Supervisor: Ram Duvvuru Sriram
Title: Associate Professor

Acknowledgments
I would like to express my gratitude to my thesis advisor Dr. Duvvuru Sriram for
his guidance, advice and encouragement. He initiated me into the exciting field of
object-oriented databases and software systems and it was he who first suggested to
me the problem of dynamic linking in C++.

I would like to take this opportunity to thank my faculty advisor Professor Robert
D. Logcher for his advice and guidance.

I would also like to thank Dr. Amar Gupta, of Sloan School of Management, for
his advice and support.

Contents

1 Introduction
1.1 Previous Work

1.1.1 Dynamic Linking and Shared Libraries
1.1.2 The Dynamic Link/Unlink Editor Did

1.2 Incremental Linking in C++
1.2.1 Motivation for Dynamic Linking in C++
1.2.2 Issues in the Design of an Extensible Dynamic Linker

1.3 Organisation of the Thesis

2 Design of Dld++
2.1 An Overview of Dld++ functionalities

2.2 Designing with BFD Libraries
2.2.1 Overview
2.2.2 Linker Routines
2.2.3 A Simple BFD application

2.3 Implementation issues
2.3.1 Member functions of Class Did
2.3.2 Linker Callback functions

2.4 Limitations of the basic Dld.++

3 Basic Extensions to Dld++
3.1 Dynamic Initialization of Static Objects

3.1.1 The Virtual Constructor Idiom
3.2 Shared Libraries

4 A Dynamic Linker for E
4.1 Overview.
4.2 Run-time Environment in E

4.2.1 Virtual Function Dispatch
4.2.2 Initialization of Persistent Objects
4.2.3 Start and Termination of an E Program

4.3 Extensions to Dld+--
4.4 Dynamic Linking and Unlinking of Classes

4.4.1 Class Type
4.4.2 Type Identity

4

7
8

8

9

..... 10

..... 11
..... 11

..... 12

13
..... 13
..... 15
..... 15
..... 18
..... 18
..... 20
..... 22
.. ... 25

..... 25

27
27
30
33

35
..... 35
..... 37
..... 37
..... 39
..... 39
..... 40
..... 41
..... 41
..... 44

.

4.4.3 Type Availability 44
4.4.4 MetaClass 49

4.5 Summary 49

5 Conclusions 52

References 54

5

List of Figures

Base and Derived classes with virtual functions
Example illustrating the Dld++ functionalities.
A Simple BFD-based Application
The fileentry class definition
The Dld class definition
The Dld class member functions
A Linker Callback Function

Class gccdld
Methods of class gccdld
The Virtual Constructor Idiom
The Virtual Constructor Idiom- Main program

Virtual Function Dispatch in E
The dbGetVtbl Function
Dynamic Linking of E classes
Dynamic Unlinking of E classes
Definition of Class Type
Idiom for Type Identity for a Dbclass A
A Solution to Type Availability Problem
Modified Virtual Function Dispatch Mechanism
Definition of MetaClass
A Persistent Exemplar Idiom

6

............ 14

............ 16

............ 19

............ 21

.23

.24

.26

2-1
2-2
2-3
2-4
2-5
2-6
2-7

3-1
3-2
3-3
3-4

4-1
4-2
4-3
4-4
4-5
4-6
4-7
4-8
4-9
4-10

28
29

31

32

............ . 38

....38
.42

.43

.45

.46

.47

.48

.50

.51

Chapter 1

Introduction

Dynamic linking and loading refer to the ability to add new code to an already running
program so that the new code can be accessed from within the old code. Traditional
compile, load and go techniques require the shutting down of an application whenever
a new software component has to be added to the application. It can be useful to
allow a user to add a new software component to a running program on the fly so as
to facilitate rapid prototyping.

Traditional linkers combine a number of separately generated object modules and
archive library files, relocate their text and data to fixed virtual memory addresses, tie
up their symbol references and construct a final executable image. Such an executable
image is said to be statically linked. After an executable image is generated by static
linking, it is loaded into a process by mapping the image to the address space of the
process. Thus the programs are static entities in the sense that the construction of a
program is completed before its execution. It is not possible to change or enhance the
functionality of a program during its execution. Also, the entire program needs to be
relinked whenever any of the object modules is modified or a new object module is to
be added. The relinking operation is typically very expensive even when only a few
object files are modified.

Dynamic linking, on the other hand, provides the ability for a process to add
object modules to its address space or remove object modules from its address space
at run time. In addition to providing considerable flexibility to a programming en-
vironment, dynamic linking provides several other advantages. Dynamically linked
program images are significantly smaller on the secondary storage than the statically
linked images. This is because commonly used libraries are not linked statically to
the program images, but instead are linked dynamically to the process in the memory.
Also, the static linking time is considerably reduced thus facilitating rapid program
evolution. It also possible to reduce the size of the program images in the memory
by letting several processes share a single copy of commonly used library routines.

Dynamic linking also has certain drawbacks associated with it. For example,
a dynamically linked program (i.e an incompletely linked executable which needs
further link editing at program start up time) needs to complete the link editing of
undefined external symbols and hence takes longer to start the program each time.
Also, the type-safety is compromised at the interface between the old code and the

7

dynamically linked code. (The type-safety problem can be alleviated to a certain
extent in C++ as we shall see later).

1.1 Previous Work
Dynamic linking was originally part of the operating system MULTICS [7], but it
required the dynamic linking to be performed only in the kernel mode. This feature
was not initially very popular as it introduced excessive overhead into program load-
ing. In some of the later operating systems, dynamic linking was reintroduced as part
of the shared library implementation mechanism.

1.1.1 Dynamic Linking and Shared Libraries
The UNIX operating system provides a facility whereby a single copy of program
code in the physical memory can be shared among all the processes that execute that
program. This greatly reduces the memory usage. However, most of the program
executables also contain code for some commonly used library routines. For example,
almost every C program will make use of standard C library function printf. Hence,
every such program will have its own copy of printf function. It would result in a
lot of saving in memory utilization if such common library routines can be shared
between processes. Most modern UNIX operating systems [9, 14, 15] support such
shared library mechanism.

Here, we briefly discuss about the shared library mechanism in SunOS [9]. The
batch link editor in SunOS, d combines a variety of module types such as object
files, archives etc. to produce a final executable (typically known as an a. out file). In
addition to .o files and .a files, d also handles shared objects (. so files). A shared
object is simply an executable without an entry point. When Id encounters such a
shared object, it usually searches the file only for symbol information but does not
include it in the final executable being produced. After Id processes all the modules,
it typically creates an incompletely linked executable which needs further link editing
at execution time because the shared libraries have not actually been linked to the
executable. At program start-up, the program bootstrap routine crtO checks to see if
the program needs dynamic linking of shared libraries. If so, it invokes the dynamic
]link editor, d.so to complete the linking of shared libraries. The dynamic linker d.so
finds all the shared objects that were specified on the command line (that were not
loaded yet) and loads them into the process's address space.

SunOS also provides a simple programmatic interface to its dynamic linker Id.so
[20]. Operations are provided to add a new shared object to a program's address
space, obtain the address bindings of symbols defined by such objects, and to remove
such objects when their use is no longer required. The function dopen() provides
access to a shared object by loading that object into the address space and returning
a descriptor to that object. The function dsym() takes such a descriptor and a
symbol name as arguments and returns the address of the symbol. The function
dlclose() removes an object from the address space when the reference count for

8

that object reaches 0. Even though, these functions can be used to provide simple
dynamic linking capabilities to a program, they are not flexible. For one, no symbol
table is maintained within the process and hence we can not perform dynamic linking
in an incremental fashion. Further, we can only load shared objects; we cannot load
either simple relocatable object files or archive library files.

1.1.2 The Dynamic Link/Unlink Editor Dld
Did [10] is a dynamic linker that follows an approach for dynamic link or unlink edit-
ing based on a library of link editing functions that can add compiled object code
to or remove such code from a process anytime during its execution. This is a gen-
uine dynamic linker/unlinker in the sense that all the functionalities performed by a
traditional linker, namely, loading modules, searching libraries, resolving external ref-
erences, and allocating storage for global and static data structures, are all performed
at run-time.

The basic functions provided by Did are as given below:

1. The function dldlink dynamically links in the named relocatable object or
library file into memory. If the named file is a relocatable object, it is com-
pletely loaded into memory. If it is a library file, only those modules defining
an unresolved external symbol are loaded. Storage for the text and data of
the dynamically linked modules is allocated in the heap of the executing pro-
cess. After all modules are loaded, as many external references are resolved as
possible.

2. The function dldunlinkbyfile is simply the reverse of the above function.
The specified module is removed from the memory and the memory allocated
to it is de-allocated. Additionally, the resolution of external symbols is undone.

3. The function dld_getfunction returns the address of its string argument
which should be the name of a function symbol.

Did differs from other dynamic linkers in that it can not only add an object module
to a running process, but also remove such object modules from the process. This
facilitates modification of a program behavior at run time. We can simply unload a
function definition and reload the function's new definition into the process. Even
though Dld provides a very flexible approach to dynamic linking and unlinking, it
still has some limitations.

1. It currently supports only one particular type of object file format known as
the a. out format. So, Dld cannot be used on systems which support a different
object file format. In order to port Dld to a different platform, we need to
rewrite major portions of the source code.

2. It currently can handle only C programs. In the case of object modules from
C++ programs, it cannot properly handle the static scope constructors and
destructors.

9

3. It can not handle shared libraries. This means that it can not map shared
objects into the memory. Also, if the main executable was dynamically linked
(that is it made use of shared libraries when built), the dynamically linked
modules cannot access the symbol information from those shared libraries. This
necessitates building all the executables as statically linked.

4. The source language is C. Hence, the code is not directly reusable nor extensible.

In this thesis, we propose a new extensible dynamic linker Dld++ which addresses
these limitations of Dld. Dd++ is a dynamic linker for C++ which is portable
to several object file formats and is also easily extensible because it is designed and
implemented using object-oriented programming concepts. The design centers around
reusable types and new types can be built by extending the old ones. An object of such
an user-defined type provides an encapsulation of a resource so that the resource can
be used without knowing about its internal structure or state. Also, we can extend
or modify the functionality of a resource by using the notion of sub-typing.

1.2 Incremental Linking in C++
Object-oriented design inherently supports incremental development of software. In
the case of an object-oriented language like C++, the basic problem with incremental
linking is to provide a technique for adding a new class to a running program [19].
To add a new class to a running program, we need to address the following issues:

1. We should be able to create instances of the class, which is yet to be defined,
from the original program.

2. We should be able to invoke operations on objects of the new class from the
original program in a type-safe manner.

Each of the problems has an elegant solution in C++ in the form of virtual
functions. In the case of the second problem, in order to access the dynamically loaded
code from a running program, the running program needs a late binding mechanism
that maps the method calls to dynamically loaded methods. The virtual function
dispatch mechanism of C++ is ideally suited for this. Each object has an embedded
pc nter to a per class virtual table of pointers to methods. A virtual function call on
an object is implemented as an indirect call through the virtual table. Hence, as long
as the newly loaded class is a derived class of a known class, it is possible to invoke
operations on the instances of the newly loaded class in a type-safe manner.

A variety of solutions have been proposed under the generic label of "virtual con-
structors" for the first problem [8]. Even though C++ does not allow constructors
to be virtual, a somewhat similar effect can be achieved by some simple program-
ming techniques. For example, several techniques have been discussed for the virtual
constructor idiom in [6]. One of them, which is of relevance to incremental code
development, is the exemplar idiom. An exemplar of a class is a designated instance

10

of that class from which new instances of the same class can be "cloned" by invok-
ing a particular virtual function on it. A slightly different approach to this problem
is presented in [2] in the context of an object-oriented operating system, Choices.
It introduces a class Class to store information about newly defined classes. Each
newly defined class has a Class object associated with it which contains a pointer
to the addressable constructor of the class. The addressable constructor invokes the
traditional constructor of the class.

1.2.1 Motivation for Dynamic Linking in C++
We see that incremental linking is desirable in certain applications and it is possible
to incorporate such a facility into an object oriented system provided the services of
a dynamic linker are available on the system. But when we add persistence to C++,
we have to address a new problem. A program should be able to invoke operations
on objects that are already existing on a persistent store. It may so happen that the
program does not know the type of an object that it encounters on a persistent store
because that instance was created by another program which shares the persistent
store with the original program. Hence in the case of persistent languages, some
form of dynamic loading of method code is necessary to handle such situations. In
chapter 4, we will show how to build dynamic linking capability for a persistent C++
language called E by extending the dynamic linker Dld++-- and making some simple
modifications to the run-time library support of E.

1.2.2 Issues in the Design of an Extensible Dynamic Linker
We have to address the following issues when we set out to design the dynamic linker
Dld++.

1. Portability The dynamic linker should be portable across object-file formats.
The design of Dld++ makes use of the general purpose Binary File Descriptor
Library (BFD) of Project GNU. BFD provides an abstraction of object file
formats so that the applications can operate on object files without regard to
their internal format.

2. Compiler Dependencies The dynamic linker should be usable with different
versions of the C++ language. For example, each C++ compiler handles the
initialiation of static scope objects in a different way. Since Dld++ is designed
in a object-oriented fashion, it is possible to modify or extend its behavior to
suit the needs of a particular C++ environment.

3. Operating System Dependencies The dynamic linker should be able to han-
dle the operating system (OS) dependencies. For example, the implementation
of shared library mechanism differs from OS to OS. In this case, since the Dld++
is easily extensible, it should be able to handle such dependencies. In chapter
3, we will show how Dld++ can be extended to handle the shared libraries in
SunOS.

11

4. Extensibility We should be able to add to the dynamic linker any other func-
tionalities which a particular application might need.

1.3 Organisation of the Thesis
The rest of the thesis is organised as follows. In chapter 2, we discuss about the
design and implementation of a basic version of Dld++. We briefly introduce the
BFD libraries and present the implementation using the BFD libraries. In chapter 3,
we will show how Did++ can be extended to handle static constructors/destructors
and shared libraries. In chapter 4, we consider a full-length example. We will show
how to build a dynamic linking capability for a object-oriented database language
called E. Chapter 5 concludes the thesis.

12

Chapter 2

Design of Did-++-

In this chapter, we discuss about the basic design and implementation of Dld++.
Dld+ + is implemented as a library of C++ classes. This is basically a re-implementation
of Dld [10] in C++ and using the BFD libraries.

2.1 An Overview of Dld++ functionalities
The class Did provides the basic functionalities of a dynamic linker. We start with
creating a new Did object. The constructor for class Did takes the name of the
executable file whose symbol table forms the basis for further incremental linking.
The constructor performs the initialization of its internal data structures such as the
symbol hash table. It further loads the external symbols from the executable file into
its symbol hash table.

In order to dynamically link in a file into the process, we invoke the method link
on the Dd object. The link method takes the name of the file to be linked and
processes the object file just as a traditional linker does. If the file is a relocatable
object file (so called .o files), it is loaded into the memory and relocated. If it is a
library archive (.a) file, it is searched for those entries which match an unresolved
external reference and those entries are extracted, loaded into memory and relocated.
link searches library archives repeatedly until no more entries can loaded. The
storage for both text and data (initialized and uninitialized) is allocated on the heap
of the process.

In order to unlink an object module which has previously been dynamically linked
into the process, we invoke the method unlink which takes the name of the object
module to be unlinked. When an object module is unlinked, unlink undoes the
resolution of references to external symbols defined by that module. It then reclaims
the memory occupied by the text and data portions of the object module.

We illustrate the operation of Dld++ with a simple example. Figure 2-1 shows a
simple class Base with a virtual function void describe () and a class Derived which
is derived from Base and redefines the virtual function void describe (). The source
file derived. c which defines the Derived class contains an external data symbol
dataptr which is pointer of type Base*. The file also contains a global function

13

void create-instance() which creates an instance of Derived on the heap and sets
the pointer baseptr to that instance. When the file derived. c is compiled by a
C++ compiler, the resulting object module contains an undefined reference to the
external symbol _baseptr.

// File base.h

#include <iostream.h>
class Base {

int x;
public:

Base (int i) {x=i;}
virtual void describe() {

cout << "This is a Base class object." << endl;
} 10

// File derived.c

#include "base .h"
class Derived public Base {
public:

Derived(int i):Base(i){}
virtual void describe() {

cout << "This is a Derived class object." << endl; 20

}
};

extern Base* baseptr;

void createinstance({
baseptr = new Derived (0); // create a Derived object on the heap

};

Figure 2-1: Base and Derived classes with virtual functions

Figure 2-2 shows a main program which uses the Dld++ functionalities. The
figure shows the source file sample. c which is compiled into an executable named
sample. We invoke the executable with one command line argument which is the
name of the file to be dynamically linked into the process. (It is possible to read
in the name of the file from standard input from within the program itself). In our
example, the object file to be dynamically linked is derived. o and so we invoke the
program thus:
sample derived.o

The main program creates a new Did object dynlinker on the heap and supplies
the name of the executable (in this case sample) to its constructor. It then invokes

14

the method link on dyn-linker with the argument (derived. o) to link in the object
module into the current process. The dynamic linker loads the text and data sections
of the object file into the heap of the process and relocates the text and data symbols.
In particular, the undefined external symbol _baseptr in derived. o gets resolved to
the symbol defined in the main program. The main program then gets the address of
the function symbol createinstance__Fv defined in the object module derived.o
by invoking the method getfunction. The method getfunction gets the value of a
fiunction symbol by looking it up in the dynamic linker's symbol hash table. The func-
tion createinstance is invoked through the funcptr. At this point, the pointer
baseptr points to a Derived instance. We invoke the virtual function describe ()
on baseptr which invokes the correct method (namely, Derived: describe()) and
prints the following on the standard output.

This is a Derived class object.

Finally, the main program unlinks the object module derived. o from its address
space by invoking the method unlink.

In summary, we have shown how a program can dynamically link a hitherto un-
known derived class definition to a running process and invoke functions on the objects
of the derived class. In particular, any virtual function invocation on an instance of
a derived class is type-safe. In the next chapter, we will show how to create instances
of a unknown derived class in a type-safe and general way. This necessitates some ex-
tensions to our basic Dld++ which handle the static scope C++ objects in a module
that is to be dynamically linked.

2.2 Designing with BFD Libraries
This section contains a brief introduction to using BFD libraries for building appli-
cations such as Dld++. A more detailed account can be found in [4]. We present
a simple BFD-based application which illustrates several functionalities of the BFD
library.

2.2.1 Overview

Binary File Descriptor (BFD) package is a library of routines which allows applica-
tions such as linkers operate on object files without regard to their internal format
(such as a.out, elf, coff etc.). BFD provides an abstration of object files by providing
a common interface to the object files. BFD has two major parts: a front end and a
set of back ends one for each object file format.

1. The front end provides a common interface to the application programmer. It
manages several canonical data structures and also decides which back end to
use depending on the particular platform.

15

#include "dld.h"

#include "base.h"

Base* baseptr; // 'baseptr' can point to an instance of a derived class

int main(int argc, char** argv) {
/* Create a dynamic linker object

and initialize it with the name of this executable */
10

Did* dynlinker = new Dld (argv[O]);

/* Dynamically link in an object file which contains
the definition of class Derived' */

int status;
if ((status = dynlinker->link(argv[1]))==O) {

// We have successfully linked the object file

/* Get the address of function 'createinstance' which creates 20

an instance of Derived' and makes baseptr' point to
that instance. */

typedef void (*FP) ();
FP funcptr;
funcptr = (FP) dynlinker->getfunction(" createinstance__Fv");

// Invoke the function createinstance' through the pointer

if (funcptr)
(*funcptr)(; 30

/* Now baseptr' points to a 'Derived' instance
Invoke virtual function describe()' on baseptr' */

baseptr-> describe ();

// Unlink the object module

dynlinker-> unlink (argv[1]);
~~~~~~~~~~~} ~~40

return 0;

Figure 2-2: Example illustrating the Dd functionalities

Figure 2-2: Example illustrating the Dld++ functionalities

16



2. Each back end provides a set of callback routines which the front end can call
to maintain its canonical data structures.

BFD uses the following abstraction for an object file:

1. a header containing information about the rest of the file

2. several sections containing data such as program code

3. relocation information

4. symbol information

All BFD applications revolve around the basic type bfd. When an application
such as a linker successfully opens a target file (whether it be an object file or archive
or any other kind of object file), a pointer to a BFD object (an object of type bfd
) is returned. All operations on the target object are applied as methods to the
BFD object. The type bfd has the several data members which maintain information
about the target object. The following is a partial list of the data members:

1. The field 'filename' contains the filename of the target file.

2. The 'format' field describes the type of the target file (object, core etc).

3. The 'sections' field points to a linked list of sections and 'section-count' is the
number of sections.

4. In the case of object files, 'start-address' field contains the virtual memory
address of starting location of the file.

5. In the case of archive library files, 'archivehead' field points to the head of a
linked list of member files.

6. The field 'outsymbols' points to the symbol table.

7. The 'xvec' field points to a structure 'bfdtarget' which is the target jump ta-
ble (i.e. a table of pointers to back end functions which perform the actual
low-level operations on the object files). When an application wants to per-
form a certain operation on a target object, BFD translates the application's
request into a call to a back end routine through the transfer vector 'xvec'. In
short, the transfer vector is the interface between the frontend and a backend of
BFD. BFD provides macros to dispatch application's calls to proper back end
functions through the 'xvec' member. For example, the following macro simply
sends a 'message' to a bfd with a list of arguments 'arglist'.

#define BFDSEND(bfd, message, arglist) \

((*((bfd)->xvec->message)) arglist)

17



2.2.2 Linker Routines
BFD provides three special entry points in the target vector which are useful in
applications such as linkers. The three entry points are listed below:

1. The first entry point _bfdlinkhashtablecreate creates an instance of a
symbol hash table which is used by the other linker routines.

2. The entry point _bfd_linkaddsymbols adds symbols from a file to the hash
table created by the above entry point. In the case of object files, the en-
try point adds all the external symbols of the object file. The actual work
of adding the symbol to the hash table is normally handled by the function
_bfdgenericlinkaddonesymbol. In the case of archive files, the entry
point looks through the symbol table of the archive and decides which members
of the archive should be included in the linking process. For each member of
the archive that is selected, the entry point adds the symbols from that file to
the symbol hash table.

3. The entry point bfd_finallink is responsible for the actual linking of all
input files. It relocates the contents of the input sections and copies the data
into output sections. It also builds an output symbol table.

2.2.3 A Simple BFD application
In this section, we present a BFD-based application which illustrates several func-
tionalities of the BFD library. The application is a rudimentary dynamic linker which
can load an object file containing a single function definition into a process and invoke
that function through a pointer. Figure 2-3 shows the definition of a function load
which takes the name of an object file as an argument and loads that object file into
the process.

The load function creates a bfd object, called input for the input file, using the
function bfdopenr. The function bfdopenr takes two arguments, a file name and
a target name and opens the file with the specified target and returns a pointer to
the created BFD object. The target string describes the particular platform on which
this program is to run. In this example, we use a target string a. out-sunos-big
which specifies that this platform uses the a.out object file format on a Sun-3 or
Sun-4 machine and uses the big endian byte ordering. The call to the function
bfd_check_format checks that the input file is actually an object file (that is, the
file is of the type bfdobject). The function then scans through the linked list of
sections attached to the input bfd and computes the sizes of the .text, .data and
.bss sections and also the total size of these sections. It then allocates memory
of size totalsz bytes on the heap. At this point, the functions needs to link the
input file against the symbol table of the current executable (file a.out). Most of
the traditional system linkers, such as the GNU linker d [5], provide an incremental
loading option. In the case of GNU ld, it provides a command-line switch '-R name'
which specifies that the linker has to take 'name' as the name of a file whose symbol

18



#define MAXLEN 256
#include "bfd.h"
/* name of the target such as a.out-sunos-big etc */
char* target = "a.out-sunos-big";
bfd.vma load (const char* filename) {

asection* secptr; /* a pointer to a section */
int textsz, /* size of text section */

datasz, /* size of data section */
bsssz, /* size of bss section */
totaLsz; /* total size of all the sections in the object file */ 10

bfdvma loadaddr; /* address at which file is loaded */
char buf [MAXLEN];
bfd* input,* output;
/* open a bfd for the input file */
input= bfdopenr(filename, target);
bfdcheckformnat(input, bfdobject);
/* compute the total size of text, data and bss sections */
for (secptr :: input->sections; secptr != NULL; secptr = secptr->next)

if (stremp(secptr->name,". text")==O)
totaLsz += (textsz = secptr->_rawsize); 20

else if (strcmp(secptr->name, ". data")==0)
totaLsz -= (datasz = secptr->_rawsize);

else if (strcmp(secptr->name," .bss" )==O)
totaLsz -= (bsssz = secptr-> _rawsize);

loadaddr = malloc(totaLsz);/* allocate storage for the sections on the heap */
/* invoke the system linker gld */
sprintf (buf
"gld -N -Ttext X -Tdata X -Tbss X -R a.out s -o a.out.new",

load_addr,loadaddr+textsz,loadaddr+textsz+datasz,filename);
system(buf); 30
/* open a bfd for the file a.out.new */
output = bfdopenr( "a.out.new",target);
bjfdcheckformat(output, bfdobject);
/* load the text, data and bss sections into memory */
bjfdgetsectioncontents (output,

bfdgetsectionbyname(output, ". text"),
loadaddr,O, textsz);

bfrdgetsection contents (output,
bfdgetsectionbyname (output, ". data"),
loadaddr+textsz,O, datasz); 40

bjf'dgetsectioncontents (output,
bfdgetsectionbyname( output," .bss"),
loadaddr+ textsz + datasz, 0, bsssz);

return loadaddr;/* return the starting address of the text section */

Figure 2-3: A Simple BFD-based Application
Figure 2-3: A Simple BFD-based Application

19



table has to be taken as the basis for incremental linking. The file itself should not be
included or relocated in the output. This allows the output file to refer symbolically to
absolute locations of memory defined in other programs. In our example, the base file
is a. out whose symbols are taken as the basis for incremental linking and the output
file is a. out. new. It also uses the command line switches -Ttext text-start-addr etc
to specify where the text, data and bss sections should start in the output file. The
system command creates the output file a. out. new which contains the sections from
the input file, but contains symbols from both the a. out file and the input file. The
program now creates a bfd object for the output file a. out. new and reads the contents
of the three sections into memory at appropriate locations by invoking the function
bfdgetsection_contents. Finally, it returns the start address of the text section.
It is assumed that the function definition starts at the beginning of the input file.

The following main program invokes the load function with the argument fact. o
which is the compiled definition of a factorial function.

int main() 
int n=5,fact;
typedef int (*FP) (int);
FP funcptr;
bfd-initO;
funcptr = (FP) load ("fact.o");
fact = (*funcptr)(n);
printf("factorial of d = %d\n",nfact);
return 0;

} 10

The load function loads the file into memory and returns the entry address of the
factorial function into the function pointer funcptr. The main program can now
invoke the factorial function through this pointer.

2.3 Implementation issues
In this section we discuss about the implementation of DId++. The design of DId++
borrows lots of ideas from the GNU likner Id [5] whose source code is available freely.
There are two basic classes:

1. Class file_entry (Figure 2-4) encapsulates a BFD object. There are two
subclasses of this class, namely, class object_file and class archivefile.
The archive_file class maintains a list of fileentry objects corresponding
to its member files.

2. Class Dld is the dynamic linker class.

The class Dld (Figure 2-5) maintains a list of fileentry objects, inputfiles
which participate in the dynamic linking. The member hash points to the linker's
symbol hash table. The member callbacks points to a structure of pointers to
callback functions. This structure is passed to the BFD routines, and a BFD rountine

20



#include "bfd .h"
#include "List. h"

// generic fileentry class
class fileentry {

const char* filename; // Name of this file
/* Name to use for the symbol giving address of text start */
const char * locaLsymname;
bfd* thebfd; // pointer to the BFD object
/* Symbol table of the file. */ 10
asymbol **asymbols;
unsigned int symboLcount;

public:
fileentry(const char*);
virtual fileentry();

};

// entry for an object file
class objectfile: public file-entry {

boolean justsymsflag; 20
/* reference count - number of entries referenceing this file */
int refcount;
/* Start of this file's text seg in the core /
bfdvma textstartaddress;
/* Start of this file's data seg in the core /
bfdvma datastartaddress;
/* Start of this file's bss seg in the core /
bfdvma bssstartaddress;
/* if this module has all external references resolved */
boolean all-symbolsresolvedflag; 30

public:
objectfile(const char* name,int symsonly);
virtual objec tfileO();
boolean executablep() {

return allsymbolsresolvedflag;
}

};

// entry for an archive file
class archivefile: public fileentry { 40

List<objectfile, subfiles;
public:

archivefile(const char* name);
virtual archivefile ();

};

Figure 2-4: The fileentry class definition

21



invokes these callback functions whenever it needs to inform the linker about a certain
event. For example, if the BFD routine which adds a symbol to the linker hash
table detects a multiple definition for a symbol, it invokes the call back function
multipledefinition with appropriate arguments. We will describe more about
linker callbacks in the later sections.

2.3.1 Member functions of Class Did
Figure 2-2 already showed several member functions of the class Dld. Here, we de-
scribe the implementation of these methods. Figure 2-6 shows the definitions for some
of the member functions.

L.Constructor The constructor (Figure 2-6) for class Dld starts with a call to
the function bfdinit () to initialize the BFD libraries. It then creates a
fileentry object for the input file on its collection inputfiles. It then
creates a new instance of a symbol hash table by invoking the function
bfdlink_hash_tablecreate and loads the symbols from the input file into
the symbol table.

2.1ink The link member function creates a fileentry instance for the input file and
loads the symbols from that file into the linker's symbol table. It then invokes
the BFD entry point bfd_dlink which performs the actual linking of the input
file. This entry point loads the sections from the input file into memory and relo-
cates their contents by invoking the BFD function _bfdrelocatecontents_.
Finally, it will scan through all the input files and performs any further neces-
sary relocations. For example, if linking a module resolves a symbol in a module
that has already been linked, we need to perform relocation on that module.

3.unlink The unlink method checks if the reference count for the input file has
reached zero. If so, it will invoke the function bfdulink which performs the
actual unlinking. This function will remove those symbols from the symbol
table which are defined by the input file. Then it will scan through the input
files and undo the relocations in those files which are affected by the unlinking.

4.getfunction This method looks up the symbol table and returns the value of the
function symbol requested.

5.executablep This method checks if all the external symbols are resolved in the
particular file. If so, it returns TRUE. This means, all the functions defined in
that file can safely be executed.

6.create-reference This method explicitly creates a reference to the given symbol
in the linker's hash table. This function is useful if we want to forcefully link a
member module from an archive library file.

22



#include "file_entry.h"

// a structure holding a set of callbacks to linker functions
struct bfdlinkcallbacks;

// class for the dynamic linker Dld++

class Did {
// list of input files involved in the link 10
List<fileentry> inputfiles;

// Hash table handled by BFD.
struct bfdlinkJhashtable *hash;

/* Function callbacks. */
const struct bfdlinkcallbacks *callbacks;

public:
Did (const char* filename); 20

virtual Did ();
// dynmically link in a file
int link (const char* filename);
// unlink a file
int unlink (const char* filename);
// get the virtual memory address of a function symbol
bfdvma getfunction (const char* funcname);
// get the virtual memory address of a symbol
bfdvma getsymbol (const char* funcname);
// determine if a module has been completely linked 30

boolean executablep(char* filename);
int undefinedsymcount;
// return a list of undefined symbols from the symbol table
char** listundefinedsym();
// explicitly create a reference in the symbol table for the given symbol
int createreference (char* name);
// explicitly define a symbol in the symbol table
int definesymbol (char* name);

;Figure 2-5: The Dld class definition
Figure 2-5: The Did class definition

23



#include "Dld.h"

// The constructor
Dld::Dld(const char* filename) {

// initialize the BFD library
bfdinit ();
// Initialize the linker callbacks
callbacks = initializecallbacks();
// make a fileentry object for the input file
objectfile* myentry = new (inputfiles) objectfile(filename); 10
// Open a BFD for the output file
outputbfd = openoutputbfd();
// create a new symbol hash table
hash = bfdlinkJashtablecreate (output);
// load the symbols from filename into symbol hash table
bfdlinkaddsymbols (myentry->thebfd);

}

// The dynamic link function
20

int Dld::link (const char* filename) {
// make a fileentry object for filename
objectfile* myentry = new (inputfiles) objectfile(filename);
// load the symbols from filename into symbol hash table
bfdlinkadd-symbols (myentry-> thebfd);
// call the special BFD entry point for dynamic linking
bfdLdlink (inputfiles, outputbfd);
return 0;

}

30

// The dynamic unlink function

int Dld::unlink (const char* filename) {
objfile* file = getfileentry (filename);
if (file->refcount==O)

delete file;
bfdulink( inputfiles, outputbfd);
return 0;

}Figure 2-6: The Dd class member functions
Figure 2-6: The Did class member functions

24



2.3.2 Linker Callback functions
The BFD routines need to interact with the linker when a specified event occurs.
In such a case, the BFD routine will invoke the appropriate callback function of the
linker. The linker callback will take appropriate action for the event and return to the
BFD routine. For example, the BFD linker function _bfdgenericlinkadd_onesymbol
adds a symbol to the hash table. When this function detects a multiple definition for
a symbol it will invoke the multipledefinition callback function of the linker as
shown in Figure 2-7.

The linker callback function multipledefinition will print a error diagnostic as
also the name of the module which first defined that symbol. In the next chapter, we
will use this callback mechanism to handle special symbols. For the example, if the
BFD routine encounters a special constructor symbol which corresponds to a static
object, it will notify the linker through the constructor callback function . The
constructor callback function will place such symbols on a linked list. The linker
can later traverse the list and invoke the static constructors at dynamic link time.

2.4 Limitations of the basic Did++-
In this chapter, we have presented the design and implementation of a basic version
of Dld++. It has just the functionalities of Dld except that it is portable across
object file formats. It cannot yet handle the static scope C++ constructors and
destructors. Also if a main program is linked with shared libraries (on systems which
support them), then the symbol table of that executable does not have the symbol
information for those symbols which are defined in the shared library. For example,
if a program is inked with the standard C shared library libc. so, then the resulting
executable's symbol table does not have entries for function symbols such as printf
even though these symbols are defined in the shared library. This is because, the
shared library itself is dynamically linked to the executable at program start up time
by invoking the system's run-time link editor (such as d .do on SUN platforms). We
need to extend Dld++ to handle such issues. The reason why these are not handled
in the basic Dld++ itself is that these issues are either compiler-specific or specific
to a particular operating system. In the next chapter, we will show how Dld++ can
be extended to handle these issues depending on a particular C++ compiler or a
particular implemantation of shared libraries.

25



boolean
_bfdgenericlinkaddonesymbol (info, abfd, name, flags, section, value,

string, copy, collect, hashp)

{

switch (action) {
case MDEF:

/* Handle a multiple definition */
if (! ((*info->callbacks->multiplecommon)

(info, name, 10
h->u. c.section-> owner, bfdlinkhashcommon, h-> u. c.size,
abfd, bfdlinkhashdefined, (bfdvma) 0)))

return false;
/* other cases /

}

}

/* This is called when BFD has discovered a symbol which is defined
multiple times. */

20

/*ARGSUSED*/
static boolean
multipledefinition (info, name, obfd, osec, oval, nbfd, nsec, nval)

struct bfdlinkinfo *info;
const char name;
bfd *obfd;
asection *osec;
bfdvma oval;
bfd nbfd;
asection *nsec; 30
bfLdvma nval;

{
einfo ("%XC: multiple definition of '%T'\n",

nbfd, nsec, nval, name);
if (obfd != (bfd *) NULL)

einfo ("%D: first defined here\n", obfd, osec, oval);
return true;

}Figure 2-7: A Linker Callback Function
Figure 2-7: A Linker Callback Function

26



Chapter 3

Basic Extensions to Dld++

In this chapter, we show how Dld++ can be extended by subclassing from the Dld
class. To demonstrate this, we consider two issues. The first issue concerns itself with
handling the constructors and destructors of static scope C++ objects in an object
module. The second issue is about handling the shared libraries.

3.1 Dynamic Initialization of Static Objects
When an object module is dynamically linked into a program, constructors should
be invoked on the static scope objects defined in that module. Similarly, when the
module is unlinked, the corresponding destructors should be invoked on those objects.

Before we explain how this is handled in Dld++, we briefly describe how this
problem is solved in the case of statically linked C++ programs. Each C++ compiler
handles this problem in its own way. We take the case of a particular C++ com-
piler called g+4- [17]. The compiler generates special symbols for these initialization
functions. The initialization functions will have a prefix __GLOBAL_$I$ and the ter-
mination functions will have the prefix __GLOBAL_$D$. The linker must build two lists
of these functions-a list of initialization functions, called __CTOR_LIST__, and a list
of termination functions, called __DTOR_LIST__. The GNU linker d builds these lists
in the following way. The linker provides a callback function constructorcallback
to the BFD routines. The BFD function _bfdgenericlinkadd_onesymbol adds
a given symbol to the linker's hash table. When this routine discovers a special con-
structor symbol, it will invoke the linker callback. The callback function accumulates
such symbols in the two lists: __CTOR_LIST__ and __DTOR_LIST__.

Depending on the operating system and its executable file format, either 'crtstuff.c'
or 'libgcc2.c' traverses these lists at startup time and exit time. Constructors are
called in forward order of the list; destructors in reverse order.

We follow a similar approach in the case of Dld++. We define the function
isspecialsymbol() which takes a symbol name as argument and returns a non-
zero value if the symbol is a special symbol; else it returns zero. A pointer to this
function is passed to the _bfdgenericlinkaddonesymbol function along with
other callbacks. This BFD routine uses the function to decide if a symbol is a special

27



symbol. If so, it will call the constructorcallback function of the linker.
We define a subclass gccdld of class Dld as shown in Figure 3-1. The class

enum specialsymtype {CTOR=1,DTOR}

speciaLsymtype
isspeciaLsymbol(char* s) {

if (hasprefix(s, "__GLOBAL_-$I$"))
return CTOR;

else if (hasprefix(s,"__GLOBAL_$D$"))
return DTOR;

else
return 0; 10

};

// File gccdld.h for class gccdld
#include "Dld.h"

/* Declare a pointer to void function type. */
typedef void (*funcptr) (void);

class gcdld: public Dld{ 20
// list of constructors

funcptr* __CTORLIST_;
public:

addspeciaLsymbol(speciaLsymtype, bfdvma,fileentry*);
resetctorlist();
int gcclink(char*);
int gccunlink(char*);

};

class gcfile: public objectfile { 30
// maintain a list of destructor symbols
funcptr* __ TORLIST_;

};

Figure 3-1: Class gccdld

gcc_dld maintains a list of function pointers __CTORLIST__ which correspond to
the constructor symbols found during a call to its method gcclink. The callback
constructorcallback invokes the method add_specialsymbol. If the symbol is
a constructor symbol, it is placed on the __CTORLIST__. If it is a destructor symbol,
it is placed on the list __DTOR_LIST__ of the corresponding gccfile object.

Figure 3-2 shows the methods gcclink and gccunlink. The method gcclink
invokes the base class method Dld: :link. It then traverses the __CTORLIST__ and

28



// file gccdld.c
#include gcc_dd.h"

// method gec_]link

int gcc_dld::gcclink(char* name) {
// invoke the parent class link method
Dld::link(name);
// traverse the list of constructors and invoke them
for (int i=O; __CTORLIST_[i] !=0; i++) 10

__CTORL1ST_[i] ();
// reset the ctor list
resetctorlist; ( )
return O;

int gcc_dld::gcc_unlink(char* filename) {
// get the file-entry
gccfile* file -= getfileentry (filename);
// traverse the list of destructors of the fileentry 20
for (int i=0; file -> DTORLIST__[i] !=0; i++)

file -> DTORLIST_[i] ();
// call the base class unlink
Dld:: unlink (filename);
return 0;

}Figure 3-2: Methods of class gccdld

Figure 3-2: Methods of class gcc~dld

29



invokes those initialization functions. After each call to gcclink, the __CTOR_LIST__
is reset. The method gccunlink obtains the gcc_file object for the given file.
It then traverses the __DTOR_LIST__ of that object and invokes those termination
functions. It finally calls the base class method Dld: :unlink.

We now present an example program which demonstrates the application of class
gcc_dld in the implementation of an idiom of programming known as the Virtual
Constructor idiom.

3.1.1 The Virtual Constructor Idiom
In C++, one cannot declare a constructor to be virtual [8]. It is assumed that,
everything that is needed to create an object is known to the programmer at the
point where an object is created and there is no object until after it has been created.
The virtual function mechanism is provided to allow operations to be invoked on
those objects whose exact type is unknown to the programmer.

The assumption (that everything that is needed to create an object is known at
the point of its creation) is not valid in a scenario where new classes are added to a
program at run time. In such a case, the program would like to create an object of
a class that it does not know about. All the program knows about the type of the
object is that its type is a sub type of a known type. There are several techniques
to solve this problem. These techniques are generally known as virtual construction
techniques.

In this section, we present a small example which demonstrates this technique
(Figure 3-3). The idea is borrowed from the autonomous generic exemplar idiom
discussed in [6].

The program shows a root class which has a virtual method clone () which
can create new instances of a class on the heap. The main program maintains
exemplarlist which is a collection of instances whose types are derived from root.
The file derived. c defines a subclass derived of class root and defines the virtual
method clone. This method creates an instance of derived on the heap and returns
a root* pointer to the created instance. The file also defines an exemplar instance of
derived on the exemplarlist. This exemplar is defined in the global scope. When
this file is compiled by g++, the compiler would generate special constructor and de-
structor symbols for such static objects. In this example, the compiler generates the
symbol __GLOBAL_$I$exem for static constructors and the symbol __GLOBAL_$D$exem
for static destructors.

In the main program, shown in Figure 3-4, we make use of the class gccdld.
The extended dynamic linker links in the object file derived. o by using the method
gcclink. This would automatically create an exemplar instance for the class derived
on the global collection exemplarlist. The program can find the exemplar instance
for a particular derived class by invoking the function findexemplar with the name
of the class as its argument. Once we find the exemplar for a class, we can create
new instances of that class by invoking the virtual method clone on that exemplar.
Thus, we have shown how a program might create instances of an unknown class in
a type-safe way.

30



// File root.h
#include "String.h"
class root {

String name;
public:

root (char* n) name = n;} // constructor
'root){} // destructor
virtual root* clone (int n)==O; // virtual clone method
virtual void f(); // a generic virtual function

}1~~~~~~~~~~~~~~; ~10

#include <List.h>

// maintain a list of exemplar instances
List <root> exemplarlist;

// File derived.c - a derived class definition
#include root. hi

class derived: public root { 20

int y;
public:

derived(char* n):root(n){} // constructor
derived(int i).{y=i;} // another constructor
'derived() {} // destructor
virtual root* clone (int n) {

// create a 'derived' instance on heap
return new derived (n);

}
virtual void f(){}; // a generic virtual function 30

};

/* create a global exemplar instance of derived'
on the exemplarlist' */

derived exem ("derived");
root* temp = exemplarlist.insert(&exem);

Figure 3-3: The Virtual Constructor Idiom

31



// File main.c - the main program
#include "gccdld.h"
#include root.h"

int main(int argc, char** argv) {
gccdld* dynlinker = new gccdld (argv[O]);
// link in the object file derived.o'
int status;
if ((status = dynlinker->gcclink(argv[1]))==O) {

/* find the exemplar instance by name for class derived' 10
in the exemplarlist' */

root* exemplar = findexemplar("derived");
if (exemplar) {

// create a new instance of 'derived'
root* inst = exemplar->clone(1);
// inst' now points to a 'derived ' instance
inst->f(); //invokes derived::f()

}
// unlink the module derived.o
dynlinker->gccunlink ( argv[1]); 20

// remove the exemplar instance
removeexemrnplar ( 'derived");

}
return 0;

}Figure 3-4: The Virtual Constructor Idiom- Main program
Figure 3-4: The Virtual Constructor Idiom - Main program

32



3.2 Shared Libraries
The basic version of Dld+ + cannot handle shared libraries. This means that if the
main executable was dynamically linked (that is, it was linked against some shared
libraries), its symbol table will not contain symbols exported by those shared libraries.
For example, if the main executable was linked with the shared library version of
the standard C library (libc.so on Sun4 platforms), its symbol table will not have
entries for such common functions as printf. This is because, the shared library,
libc.so which defined this function was dynamically linked to the main program at
its startup time. Suppose we try to dynamically link a module using Did::link()
method. If the module references the printf function, then the Dld:: link () method
will report an undefined symbol error for that function. One way out of this is to
make the main executable statically linked so that its symbol table is complete. But
this is not a feasible solution in the case of large executables. Hence, we need to
extend the functionalities of the dynamic linker to handle the shared libraries also.

In this section, we will show Dld++ can be extended to handle the shared libraries
ill SunOS [9]. We briefly describe how shared libraries are implemented in SunOS
before presenting the solution.

In the address space of a dynamically linked executable, the linker Id creates
an instance of a linkdynamic structure with the symbol name __DYNAMIC. The
linkdynamic structure is used by the execution-time link editor d.so to obtain all
the needed shared objects.

The program bootstrap routine crtO checks if the symbol __DYNAMIC is defined;
if so the executable needs further link editing and so it transfers control to Id.so.
ld.so processes the information contained in the __DYNAMIC structure of the program
in order to complete the link editing required to start the program. In particular,
ld.so obtains the list of shared objects that must be added to the address space of
the process and link edited. ld.so looks up the shared object and maps it into the
process's address space. For each shared object that is mapped, it builds a linkmap
structure of the following structure:

I * Structure describing name and placement of dynamically loaded

* objects in a process' address space. */

struct linkmap {

caddr_t lm_addr; /* address at which object mapped */

char *lm_name; /* full name of loaded object */

struct linkmap *lmnext; /* next object in map */

struct linkobject *lmlop; /* link object that got us here */

caddrt lmlob; /* base address for said link object */

int lmrwt : .; /* text is read/write */

struct linkdynamic *lmld; /* dynamic structure */
caddr_t lm_lpd; /* loader private data */

};

Each such structure is placed on a singly linked list (linked through the lmnext

33



field) and the head of the list is rooted in the ldneeded field of the program's
__DYNAMIC structure. At this point, d.so attempts to complete the link editing that
was begun by d at link time.

In order to handle the shared libraries during the dynamic linking, we only need to
modify the constructor of class Dld. In our implementation, We reuse some functions
from the GNU debugger GDB [18]. The basic steps performed by the modified Dld
constructor are described below.

1. Locate the base address of the SunOS dynamic linker structures, i.e., locate
the symbol __DYNAMIC. This is very trivial in SunOS, because this symbol is
already in the symbol table of the executable. We just need to look it up there.

2. Locate the list of shared objects that are mapped to this process's address space.
We just need to identify the head of the linked list of link-map structures. We
can use the GDB routine findsolib to step through the list of shared objects
that are loaded into the current process.

3. We now have information about where each shared object is mapped in the
address space. We have to enter the symbols from each shared object into the
linker's symbol hash table. We can write a routine similar to the GDB routine
solib_add which adds symbols from a shared library file to the global symbol
table.

After having done this, the dynamic linker's symbol table contains symbol in-
formation from the shared objects also. From now onwards, the methods such as
Dld: :link can make use of this symbol information.

It is also fairly straightforward to map new shared objects to the process's address
space.

34



Chapter 4

A Dynamic Linker for E

In this chapter, we show how to build a dynamic linker for the persistent C++
language E. This necessitates a few extensions not only to the basic Dld++ presented
in Chapter 2, but also to the run-time support library of the E language itself.

E [13] is an extension of C++ language providing database types and persistence.
Persistence in E entails some form of dynamic linking of method code. This is because
a program might encounter, on the persistent store, an object whose type was not
known to the program when it was compiled. This necessitates dynamic linking of
the method code of the corresponding type to the program so that the type definition
is made available to the program. The current run-time support library provided
by E is inadequate for this purpose. We modify and extend the run-time library
of E by adding functionalities to dynamically link and unlink object modules. We
then present the design of a class Type to facilitate persistent types. Each user-defined
type will have a unique persistent Type object associated with it. Class Type provides
methods for dynamic linking and unlinking of user-defined classes using the extended
run-time support. In addition, class Type ensures identity of user-defined types, i.e.,
each user-defined type will have a unique identity across compilations of a program.

4.1 Overview
We have seen in Chapter 1 that incremental linking is desirable in certain applications
and it is possible to incorporate such a facility into an object oriented system given
the availability of a dynamic linker such as Dld++. As mentioned in that chapter, the
basic problem with incremental linking in C++ is to provide a technique for adding
a new class to a running program. To add a new class to a running program, we need
to address the following issues:

1. We should be able to create instances of the class, which is yet to be defined,
from the original program.

2. We should be able to invoke operations on objects of the new class from the
original program in a type-safe manner.

35



But when we add persistence to C++, we have to address a new problem . A
program should be able to invoke operations on objects that are already existing on
a persistent store. It may so happen that the program does not know the type of an
object that it encounters on a persistent store because that instance was created by
another program which shares the persistent store with the original program. Hence
in the case of persistent languages, some form of dynamic loading of method code is
necessary to handle such situations.

E is a version of C++ designed for writing software systems to support persis-
tent applications. E augments C++ with database types, iterators, collections and
transaction support. E mirrors the existing C++ types and type constructors with
corresponding database types (db-types) and db-type constructors. Db-types are
used to describe the types of objects in a database. In particular, a dbclass is the
database counterpart of the normal C++ class. Only the instances of a dbclass are
allowed to be persistent. E provides a new storage class persistent which is the
basis for creating objects on a persistent store. If the declaration of a named db-type
object specifies that its storage class is persistent, then that object retains its value
between executions of the program and it survives any crashes of the program. For
transaction support, E provides library calls to begin, commit or abort a transaction.
These calls are supported by the EXODUS storage manager [3]. A persistent object
can be shared among several programs. This is achieved by linking the object module
containing the definition of the persistent object to any program which needs to have
access to that persistent object.

The current implementation of E has some shortcomings as discussed in [13].
These problems basically arise from the standard C/UNIX model of compiling and
linking programs which is insufficient to support a persistent language like E. We
describe these problems briefly below:

1. Type Identity. E does not maintain persistent types. Programs share classes by
textual inclusion of the corresponding header files. Suppose a program creates
a persistent object of type T and later another program with a different defini-
tion for T manipulates this object. In such a case, the database can easily be
corrupted. That means E should maintain the identity for each user-defined
type. In addition, each persistent object should carry sufficient information to
identify its type. Hence object persistence entails type persistence. The current
implementation of E provides only an approximation to type identity. For each
user-defined class, the compiler computes a hash value from the class definition.
This hash value serves as a type tag and is stored in each persistent instance
of the class. The type tag serves in identifying the appropriate virtual function
table at run-time when a virtual function is invoked on the object.

2. Type Availability. Often it is possible for a program to encounter an object
on the persistent store whose type was not known at the time the program
was compiled. Suppose a program P1 creates a persistent collection pc whose
elements are of type B. P1 traverses pc and invokes a virtual function f ()
on each element of pc. Another program P2 defines a new type D which is

36



derived from B and then adds an instance of type D to pc. If P1 is run again,
an "unknown type" error occurs when it tries to invoke the virtual function f ()
on the newly added instance. Neither the virtual table nor the method code for
the class D is present in the address space of P1. So, whenever an instance of a
new sub-type is added to pc, the program P1 needs to be updated by linking
the code for the new type to P1. This is not desirable for two reasons: (a) it
is not in keeping with good object-oriented design; and (b) programs P1 and
P2 might; be running concurrently. Hence, we conclude that dynamic linking
of method code is necessary in such situations.

In this chapter, we address these issues and present solutions for the problems of
type identity, type persistence and type availability in E.

4.2 Run-time Environment in E
In this section, we briefly describe the run-time support provided by E to handle
virtual function dispatch and initialization of persistent objects. (The implementation
of persistence in E is discussed in detail in [12]). In the next section we extend
this run-time support to provide a mechanism for dynamic linking and unlinking of
object modules. We also modify the virtual function dispatch mechanism to facilitate
dynamic linking of classes.

4.2.1 Virtual Function Dispatch
C++ implements virtual functions by generating a virtual table (vtbl) for each class
having a virtual function. The vtbl is a table of addresses of appropriate virtual
methods. Every instance of such a class will have an embedded pointer (vptr) to
the vtbl of its class. At run-time, invocation of a virtual function on an instance
involves an indirection through the vtbl. In the case of persistent instances, the
above implementation will no longer suffice, because we cannot store the address of a
dispatch table in a persistent instance. That address is valid only for one program and
it is not guaranteed that the table will be loaded starting at the same address of the
main memory in another program. Several solutions have been proposed to handle
virtual function invocation on persistent instances. An approach to this problem
has been presented in the context of a persistent object-oriented language O++ in
[1]. The solution involves modifying each user-specified constructor. Whenever a
persistent instance is read into memory, the vptr is set to the correct vtbl address by
invoking the modified constructor on that instance. The modified constructor only
'fixes' the vptr but otherwise leaves the instance unchanged.

E implements a different solution for this problem. For every dbclass having
virtual functions, the compiler generates a unique integer type tag and every instance
of the dbclass will contain this tag. This type tag is generated by computing a hash
value from the class definition; same class definition hashes to the same tag in different
compilations. E introduces a global hash table for mapping the type tags to virtual

37



Global Hash Vtbl
Table

Figure 4-1: Virtual Function Dispatch in E

table addresses. To call a virtual function, the hash function is applied on the type tag
to get the vtbl address and then proceed as before by indexing into the virtual table.
Figure 4-1 illustrates the virtual function mechanism of E. The run-time support
library of E provides a function dbGetVtbl which returns the address of the virtual
table (vptr) given the address of a db-instance (Figure 4-2). dbGetVtbl hashes on
the integer type tag (stored in the instance) to find the hash table index. If the
correct entry is found at that index, it extracts the vptr and returns it. Otherwise,
it aborts the currently running transaction. The global hash table is initialized at

void * dbGetVtbl( thispt, vptoffset)
pDBREF thispt;
int vptoffset; / offset of vptr field from thispt */
{

/,
1. get type tag value by dereferencting this.pt.
2. hash into the E-hash table to get

the entry for the correct virtual table.
3. if an entry is found then

return the pointer to virtual table (vptr) 10
else

call -E-abort to abort the transaction
,/

}

Figure 4-2: The dbGetVtbl Function

38

program start-up to make entries for all the dbclasses in a particular program. The



mechanism for initialization and destruction of static objects is extended to also
initialize the hash table. This is described in Section 4.2.3.

4.2.2 Initialization of Persistent Objects
In C++, the initialization of non-local static objects in a translation unit is done
before the first use of any function or object defined in that translation unit [8]. It
is generally done before the first statement of maino). Destructors for initialized
static objects are called when returning from main(). These actions are performed in
each execution of a program. In E, persistent objects have to be handled differently
from transient objects with respect to initialization and destruction. A persistent
object has to be initialized only once in its life time and it must be initialized before
any program actually uses it. In general, all the persistent objects declared in an
E source module are initialized when the corresponding object module is linked to
any program for the first time. For each source module, E maintains a persistent flag
indicating whether the persistent objects in that module have already been initialized
or not. The run-time support provides a function EPinit to perform this one-time
initialization of persistent variables.

4.2.3 Start and Termination of an E Program
The current version of E extends GNU C++ [17] to provide support for persistence.
In this section, we explain briefly how E extends the static initialization mechanism
of GNU C++ for initializing persistent variables and the global hash table (used
in virtual function dispatch). GNU C++ employs different techniques (depending
on the operating system and executable file format) to handle the initialization and
destruction of static variables. One of the techniques, which can easily be extended
to dynamic linking, uses a program called collect2 during the linkage step of the
object modules. The collect2 program operates on a set of object files to collect
static initialization and destruction information from them. It builds two lists: a
list of initialization functions, __CTOR_LIST__, and a list of termination functions,
__DTOR_LIST__ These lists are generated as C code and the C code is compiled
and linked along with the rest of the object modules. At program start-up, the
__CTOR_LIST__ is traversed in the forward order to invoke all the static constructors;
at program exit time, the __DTOR_LIST__ is traversed in the reverse order to invoke
the global destructors.

E extends the collect2 program to also collect information about static persistent
variables and virtual tables and the information is stored in the lists __PTOR_LIST__
and __VTOR_LIST__ respectively.

At the start-up time of an E program, the E run-time library function E.main()
performs the static initialization through the following sequence of actions:

1. Invoke all the static constructors by scanning the list of pointers to constructors
in the list _CTOR_LIST__.

39



2. Initialize all the static persistent variables by scanning the list __PTOR_LIST__
(this is handled by the E run-time function EPinit mentioned earlier).

3. Scan the list __VTOR_LIST__. For each entry found in the list, find the corre-
sponding integer type tag and make an entry in the global hash table for the
type tag.

At the exit time of an E program, the E run-time library function _Eexit () invokes
the destructors for the static variables by traversing the list __DTOR_LIST__.

4.3 Extensions to Dld++
In order to build a dynamic linker for E we define a new subclass E_dld of class
Dld. This subclass is very similar to the subclass gccdld defined in the previ-
ous chapter. In addition to the __CTORLIST__, it defines two more lists. The list
_ VTORLIST__ contains the virtual table information and the list __PTOR_LIST__
contains the symbols for the static persistent variables. We also modify the func-
tion isspecialsymbol () defined earlier. The modified function now identifies four
types of symbols.

enum speciaLsymtype { CTOR=1,DTOR, VTOR,PTOR};

speciaLsymrrLtype
isspeciaLsymbol(char* s) {

if (hasprefix(s,."__GLOBAL_$ I$"))
return CTOR;

else if (hasprefix(s,"__GLOBAL_$D$"))
return DTOR;

else if (has_prefi(s," __GLOBAL_$V$"))
return VTOR; 0lo

else if (hasprefix(s,"__GLOBAL_$P$"))
return PTOR;

else
return 0;

I

The class E_dld defines two additional methods. The methods are Elink and
E_unlink. The method Elink (Figure 4-3) dynamically links in an E module
and performs the appropriate initializations. The sequence of actions performed by
Elink are described below:

1. Dynamic Linking. Invoke the base class method Dld: : link.

2. Dynamic Initialization. This involves the following steps:

1. Update the global hash table to make entries for the new vtbls by traversing
the list __VTOR_LIST__.

40



2. Invoke the function E_Pinit on the list __PTOR_LIST__ to initialize the
static persistent objects. EPinit will intialize the persistent objects only
if this module is being linked for the first time.

3. Traverse the list __CTORLIST__ to invoke static constructors.

Eunlink (Figure 4-4) gets the gccf ile object corresponding to the given file name
and performs the following:

1.Dynamic Destruction. The sequence of actions performed in this subtask are:

1. Traverse the list __DTORLIST__ of the file entry to invoke the destructors
of the static variables.

2. Traverse the list __VTORLIST__ of the file entry to update the global hash
table by deleting the corresponding hash table entries.

2. Dynamic Unlinking. Invoke the base class method Did: :unlink to unlink the
object module from the running process.

We note that in the above sequence it is crucial that the destructors are called
before the vtbl is removed from the memory so as to be able to handle virtual de-
structors.

4.4 Dynamic Linking and Unlinking of Classes
In the previous section, we have described a technique for dynamic linking/unlinking
of an E object module. But these operations by themselves are not sufficient in an
object-oriented language like E. This is because of dependencies between classes. For
example a dbclass A might be a subclass of a dbclass B. Hence, before the object code
for A is loaded, we have to make sure that the object code for B has already been
loaded into the memory. This is for ensuring the proper construction of an instance
of A as well as virtual function invocation. Thus we notice that , for each user-
defined dbclass, there should be some minimal run-time type information associated
with it. This run-time type information can then be used by the load routines to
properly load all the required object modules. For dynamic linking purposes, the
only type information needed is the list of base class names. The run-time type
support is provided by means of defining a class Type. For each user-defined dbclass,
an persistent instance of Type is created which contains the type information about
the user-defined class such as the list of names of base classes.

4.4.1 Class Type
The declaration and definition of class Type is shown in Figure 4-5. The dbclass Type
provides methods load and unload to perform dynamic loading and unloading of a
dbclass respectively. The load method checks that all the base classes are loaded and
then invokes Elink to dynamically link the object module to the running process.
The unload method simply unlinks the object module by invoking Eunlink.

41



#include "E_dld. h"

// adds a vtbl entry in the global hash table
extern "C" E._addvtbl(struct _Evthash *);

// file header structure
struct fheader {

char *filename;
int compt;
struct Pvarentry * Pvars;
int ptabcount;

// name of the file
// time of compilation
// pointer to ptab vector
// size of Pvar array

};
// hash entry for a virtual table
struct _Evthash {

int tag; /* efront generated type tag */
struct _mptr * vtbl; /* address of efront -generated vtbl */
struct JEvthash * next; /* next entry in hash table */
char * str; /* class name; used if collision detected */

// function to initialize static persistent variables
extern void E_Pinit(fheader** Fhead);

10

20

30

// method to dynamically link an E module
int Edld::Eink(char* filename) 

Did::link (filename);
// add vtbl entries to the global hash table
struct __Ejhash ** vtpt;
for (int i=O;._VTOR_LIST_[i] !=0;i++){

struct E_vthash* vtp = (struct E_vthash*)(__VTOR_LIST_[i]);
_E_add_vtbl (vtp);
setClasstag( vtp->str+4,vtp->tag);

}

// initialize static persistent variables
for (int p=O;._PTOR_LIST_[p] !=O0 ;p++)

_EPinit(((f-header**)&(_PTORLIST_[p])));
// invoke the static constructors
for (int c=O;__CTOR_LIST_[c] !=0 ;c++)

_CTOR_LIST_[c]();
// reset the ctor list
resetctorlist(O;
return O;

}

Figure 4-3: Dynamic Linking of E classes

42

40



#include "E_dld.h"

// removes a vtbl entry from the global hash table
extern "C" E.deLvtbl(struct _Ehash *);

// hash entry for a virtual table
struct _Evthash {

int tag; /* efront generated type tag */
struct _mptr * vtbl; /* address of efront -generated vtbl */
struct _Evthash * next; /* next entry in hash table */
char * str; /* class name; used if collision detected */

};

// method to dynamically unlink an E module
int Edld::Eunlink(char* filename) {

// get the file-entry
gccfile* file = getfileentry (filename);
// traverse the list of destructors of the fileentry
for (int i=O; file -> _DTORLIST_..i] !=0; i++)

file -> _DTORLIST_[il ();
// delete the virtual table entries from the global hash table
for(i=0; file --> __VTORLIST_[i] !=0 ;i++)

_EdeLvtbl(file -> _ VTORLIST_[i]);
// call the base class unlink
Dld:: unlink (filename);
return 0;

}Figure 4-4: Dynamic Unlinking of E classes
Figure 4-4: Dynamic Unlinking of E classes

43

10

20



An alternative (simpler) solution would be to archive all the object modules into
an archive library file. Since the Elink method searches a library file repeatedly
to load as many member files as possible, it would automatically load the object
modules corresponding to the base classes whenever a derived class file is linked.
But this requires that all the related object modules should be archived into a single
library file.

All the Type instances are allocated on a global persistent collection:

persistent collection<Type> typecollection;

All the programs share this typecollection.
In the next two sub-sections, we will show how the problems mentioned in Section

1, namely, type identity and type availability can be solved using the Type class.

4.4.2 Type Identity
In this section, we describe an idiom for ensuring type identity for user-defined classes.
The class Type maintains a persistent collection of Type instances. It also ensures
that at any time there exists exactly one persistent Type instance for a given user-
defined class. This constraint is enforced by the createtype method of Type class
(see Figure 4-5). Since the constructor for dbclass Type is protected, the only way to
create Type instances is through the static method createtype. The createtype
method scans the typecollection to check if there is already a Type instance in
the collection with the same name. If so, it generates an error message. Otherwise,
it creates a new Type instance and returns a pointer to that instance. We need a
mechanism to install a persistent Type object on the type collection for each user-
defined class. This Type object has to be created the first time the object module
containing the type definition is linked (statically or dynamically) to any program.
We demonstrate this with a simple example. Consider a dbclass A. Figure 4-6 shows
the class definition and the relevant code. Each user-defined class should have a
static pointer to the appropriate Type object. This static pointer has the persistent
storage class. That means, it is initialized only once in its life-time. It is initialized
the first time the object module is ever linked to any program either statically or
dynamically. Moreover, the pointer is initialized to the return value of the function
Type:: createtype which enforces the type identity. This way we can ensure that
user-defined types have unique identity across compilations of programs.

4.4.3 Type Availability
In this section, we propose two solutions to the problem of type availability discussed
in Section 1.

Consider a dbclass A and a persistent collection of A instances, collA which is
shared between several programs. Note that, for every user-defined class, there exists
one unique persistent Type instance on the typecollection which is shared by
all the programs. Before scanning every shared collection, we have to scan the Type
collection to ensure that all types are loaded into the program. This way, we can make

44



// File Type.h
dbclass Type {

String name; // name of the class
StringList baseclasslist; // list of base class names
dbint typetag;

protected:
Type(String& n,StringList& b =0); // protected constructor

public:
Type();

static Type* createtype(String&,StringList&); 10
static int loadtype(int tagval); // loads a type definition given tag
int load(); // load this type
int unload(); // unload this type

};

// File Type.e

// static method to enforce type identity
#include "Type.h"
#include <E /collection.h> 20

persistent collection< Type> typecollection;

Type* Type::createtype(String& n, StringList& b)

{

collectionscan < Type >ts(type_ collection);
Type* tptr;
while (tptr = ts.next())

if (tptr->name == n)
Error("Type already exists!"); 30

return new (typecollection) Type(n,b);

I

int Type::loadtype(int tagval)
{

collectionscan< Type >ts(typecollection);
Type* tptr;
while (tptr = ts.next())

if (tptr->typetag == tagval)
return tptr->load(); 40

return 0;

Figure 4-5: Definition of Class Type

45



#include "Type. c"

// File A.h

dbclass classA{
dbint i;

public:
A(int i);
A();

// static member pointer to the Type object lo
static persistent Type* typeptr;

};

// File A.e

#include "A.h"

// method definitions for classA

1/... 20

//InitializationInitialization for the static member typeptr'

persistent Type* classA::typeptr = Type::createtype(" classA");

Figure 4-6: Idiom for Type Identity for a Dbclass A

46



sure that the program does not encounter any object on the shared collection whose
type is not known to it. Figure 4-7 shows the listing for this. Another important
thing is that while one program is scanning a shared collection, we need to prevent
other programs to create any new Type instance on the typecollection. Thus,
the scanning of both the type collection and the shared collection have to be done in
a single transaction.

#include "A.c"
#include "Type.c"
#include <trans.h>
extern collection<A> acoll;

main()
{

EBegin Transaction();
// Scan the Type collection
collectionscan< Type>ts(typecoll); 10
Type* t;
while (t=ts.nextO)

t->load();
collectionscan<A> as(a.coll);
A* a;
while (a=as.next0)

a->f (); // f() is some virtual function
ECommitTransaction();

}
20

Figure 4-7: A Solution to Type Availability Problem

As we can easily notice, the above solution is a very conservative one. If the
typecollection is very large, then scanning it whenever a shared collection is to
be scanned could be expensive. Hence we propose a solution which entails modifying
the virtual function dispatch mechanism (dbGetVtbl function).

Instead of ensuring all type definitions are properly loaded into a program before
scanning each shared collection, we would like to handle the situation only when the
need arises. That means, when we realize that a hash table entry is not found for a
given type tag, we can arrange to load the corresponding type definition. Class Type
provides a static method loadtype for this purpose. This function takes a type tag
as an argument, finds the corresponding Type object in the typecollection, and
loads the object module corresponding to that type. Figure 4-8 shows the modified
GetVtbl function. This method does not incur any extra cost for normal virtual
function calls. It incurs a one-time cost to load a particular object module when an
instance of unknown type is encountered on a shared collection.

47



// Modified dbGetVtbl function

#include "Type. c"

void * dbGetVtbl(pDBREF thispt, int vptoffset)
// vptoffset' is the offset of vptr field from thispt

{

/,
1. get type tag value by dereferencting thispt.
2. hash into the Ehash table to get 10

the entry for the correct virtual table.
3. if an entry is found then
3a. return the pointer to virtual table (vptr)

else
3b. call Type::loadtype(typetagvalue);
3c. hash into the Ehash table to get

the entry for the correct virtual table
3d. if an entry is found then

return the pointer to virtual table (vptr)
else 20

call Eabort to abort the transaction.

Figure 4-8: Modified Virtual Function Dispatch Mechanism

Figure 4-8: Modified Virtual Function Dispatch Mechanism

48



4.4.4 MetaClass
So far we have demonstrated a way of dynamically linking and unlinking classes in a E
program. In this section, we present a method for creating instances of a dynamically
linked class and maintaining those instances. We define a dbclass MetaClass for this
purpose. Just as a Type instance manages the type information of user-defined class,
a MetaClass instance manages the persistent instances of a user-defined class. The
class definition of MetaClass is shown in Figure 4-9.

A persistent MetaClass instance is created on the persistent collection metacollection
for each user-defined class. A MetaClass instance for a user-defined class contains
a collection of instances, called the extent of the class. All user-defined classes are
derived from root class. We introduce the notion of persistent exemplar idiom which
is a natural extension of the exemplar idiom discussed in [6] to the domain of per-
sistence (Figure 4-10). A persistent exemplar is a designated persistent instance of a
persistent type which is created once for the life-time of that type. This persistent
exemplar instance can be shared by any program which also shares the corresponding
persistent type. That means, a program can create the instance of a dbclass through
the corresponding exemplar instance without textually including the type definition
for that dbclass. The extended dbGetVtbl function (defined earlier) will take care
of the dynamic linking of the appropriate object modules into the program. Each
MetaClass instance contains a pointer to a persistent exemplar instance of the corre-
sponding user-defined class. Both the MetaClass and persistent exemplar instances
of a dbclass are created the first time the object module containing the class defini-
tion is linked (statically or dynamically) to any program. This persistent exemplar
instance can then be shared by any program which also shares the metacollection.
The static method createinstance of MetaClass takes a class name as argument
and searches the metacollection for the corresponding MetaClass instance. If the
MetaClass instance is found, a new instance is created on the extent of the class by
invoking the make () operation on the exemplar instance of the MetaClass instance.

4.5 Summary
We have discussed some important issues related to incremental linking in a persistent
object-oriented language like E. We have presented a layered approach to the problem
of incrementally adding or modifying E classes to a running program. The bottom-
most layer is a dynamic linker Dld++ which can perform certain basic dynamic link-
editing functions. The method Elink dynamically links in an object file into the
program, makes an entry in the global hash table for each virtual table found in the
object module, allocates and initializes the static persistent variables (if the module
is being linked in for the first time), and initializes the static transient variables. The
method Eunlink destroys the static transient variables, removes the relevant vtbl
entries from the global hash table, and unlinks the object module from the address
space of the program. The top-most layer consists of class Type which provides
methods to dynamically link and unlink E classes. We have modified the virtual

49



// file MetaClass.h

#include <E/collection. h>
#include <E/ dbStrings.h>
#include "Type.h"
dbclass root {
public:

root(); //constructorconstructor
virtual root();
virtual root*: make(collection<root>*)=O; 10

};

dbclass MetaClass {
dbchar* name;
collection<root> extent;
root* exemplar;
Type* tptr;// pointer to the 'Type" object
int updateextentO; // to support type changes

public:
MetaClass(dbchar*, root*); 20

'MetaClass();
root* createinstance();
static root* createinstance(dbchar* );

};

/1/ file MetaClass.e

persistent collection<MetaClass> metacollection;

root* MetaClass:: createinstance(){ 30
return exemplar->make(&extent);

}

root* MetaClass::createinstance(dbchar* n){
collectionscan <MetaClass> mcs(metacollection);
MetaClass* mptr;
while (mptr=:mcs.next())

if (strcmp(mptr->name,n)==O)
return mptr-> createinstance();

return ; 40

}Figure 4-9: Definition of MetaClass

Figure 4-9: Definition of MetaClass

50



#include "root.h"
#include "MetaClass.h"
class Exemplar {public:Exemplar(){};};
dbclass A:public root{
public:

A(){};
A();

root* make(collection<root>* c){
return new (*c) A();

} 10

persistent A exemplarA();
persistent MetaClass* meta-classA =

new (meta-collection) MetaClass(" A" ,&exemplar_A);

Figure 4-10: A Persistent Exemplar Idiom

function invocation mechanism of E so that if a program attempts to invoke a virtual
function on a persistent instance whose type is unknown to the program, the method
code of the corresponding class is dynamically loaded into the program through the
corresponding Type object. By making the type information pertaining to each user-
defined class persistent in the form of a Type instance, both type identity and type
persistence are achieved.

We have also designed a MetaClass to facilitate the creation and maintainance
of all instances (the extent) of a user-defined subclass. Each MetaClass instance
has a pointer to a persistent exemplar instance (of the corresponding class) through
which new instances of the subclass can be created. The updateextent method of
MetaClass provides a framework for object migration. That means, whenever a user-
defined type gets modified, all the existing instances of that type have to be migrated
to the new version of the type. In a general setup, a user can enter a procedure which
converts an instance of a class to an instance of a new version of the same class. This
procedure can be dynamically linked into the program and then be invoked on the
existing instances.

The design of E lends itself to easy extension. In particular, the virtual function
dispatch mechanism of E (which involves a double indirection) makes the dynamic
linking and unlinking of a class easier because 'vptrs' are not stored in each individual
object. Instead, integer type tags are stored. Whenever an E class is loaded into a
process (or unloaded), we only need to make a modification to the global hash table.

We have seen that most of the C++-based object-oriented database systems need
some form of dynamic loading of method code. We have shown how we can extend
Dld++ to build a dynamic linker for E. It is possible to extend Did++ to other
persistent C++ language environments such as the Objectstore CC [11] and the
Texas Persistent Store [16].

51



Chapter 5

Conclusions

In this thesis, we have presented the design and implementation of a portable and
extensible dynamic link editor Dld++. We started with the design of a basic version
of Did--++ making use of the BFD libraries. The basic version has a class Dld which is
the dynamic linker class. This class encapsulates the low-level functionalities provided
by the BFD libraries. The class provides a method to dynamically link a relocatable
object module or an archive library file to a running process. In the case of a relo-
catable object module, it is searched for symbol information and all the externally
visible symbols are added to the dynamic linker's symbol hash table. The dynamic
linker then allocates memory for the text and data sections of the object module on
the heap and relocates their contents. In the case of archive libraries, the dynamic
linker searches the symbol table of the archive and loads those object modules which
resolve an undefined symbol on the symbol table of the linker. In the case of shared
object, the linker loads the symbols from the shared object into its hash table, maps
the shared object to the address space of the process and relocates the shared object.
The basic version can only link in C object files. It cannot handle the initialization
of static scope C++ objects.

We extend the basic version of Dld++ to address the issues of static construc-
tors/destructors and shared libraries. The reason why these features are not included
in the basic version is that they are dependent on the particular C++ implementation
and the specific operating system environment. We demonstrated how Dld++ can be
extended to handle the static constructors of G++. This basically entails providing a
linker callback function which can collect special symbols such as the static construc-
tor and destructor symbols on linked lists. We define a new class gccdld which is a
subclass of class Dld. The class gccdld provides two new methods: one for linking
(gcclink) and the other for unlinking (gccunlink). The dynamic linking method
gcclink invokes the link method of class Dld. It then traverses the linker's list of
constructor symbols in the forward order and invokes those functions. The unlinking
method gccunlink traverses the linker's list of destructor symbols in the reverse
order and calls the method unlink of class Dld.

We also demonstrate how Dld++ can extended to handle the SunOS shared li-
braries. This entails modification of the constructor of the class gccdld. The mod-
ified constructor examines the program's __DYNAMIC structure which contains a list

52



of structures describing the shared objects that are to be linked to executable at pro-
gram startup time. The constructor locates those shared objects and finds out where
they are mapped in the process's address space. It then loads the symbols from those
shared objects into the linker's hash table.

We have noted previously that a dynamic linker such as Dld++ can be very useful
in the case of object-oriented database systems where it is sometimes necessary to
dynamically bind method code to a running process when the process encounters an
object of unknown type on the persistent store. We have shown how we can extend
Dld++ to build dynamic linking capability in the case of a persistent C++ language
E. This also necessitates some modifications and extensions to the run-time support
library of E. It would be interesting to provide similar dynamic linking facilities
to other object-oriented database systems such as the Objectstore [11] and Texas
Persistent System [16].

In summary, we have shown that Dld++ is a general purpose dynamic linking
library which is easily extensible and customizable to a variety of applications and
incorporating such dynamic linking capabilities will facilitate rapid prototyping of
software applications.

53



References

[1] A. Biliris, S. Dar, and Narain H. Gehani. Making C++ Objects Persistent:
the Hidden Pointers. Software - Practice and Experience, 23(12):1285-1303,
December 1993.

[2] Roy H. Campbell, Nayeem Islam, David Raila, and Peter Madany. Designing and
Implementing Choices: An Object-Oriented System in C++. Communications
of the ACM, 36(9):117-126, 1993.

[3] Michael J. Carey et al. The EXODUS Extensible DBMS Project: An Overview.
In Stan Zdonik and D. Maier, editors, Readings in Object-Oriented Databases.
Morgan-Kaufman Publishers Inc., 1990.

[4] Steve Chamberlain. libbfd - The Binary File Descriptor Library (Version 2.5).
Cygnus Support, First edition, April 1994.

[5] Steve Chamberlain and Roland H. Pesch. Using LD - The GNU Linker - Version
2. Cygnus Support, January 1994.

[6] James O. Coplien. Advanced C++: Programming Styles and Idioms. Addison-
Wesley, 1992.

[7] R.C. Daley and J.B. Dennis. Virtual Memory, Processes, and Sharing in MUL-
TICS. Communications of the ACM, 11(5):306-312, May 1968.

[8] Margaret A. Ellis and Bjarne Stroustrup. The Annotated C++ Reference Man-
ual. Addison-Wesley, 1990.

[9] Robert A. Gingell, Meng Lee, Xuong T. Dang, and Mary S. Weeks. Shared Li-
braries in SunOS. In Proceedings of the Summer Conference, USENIX Technical
Conference, pages 131-145, Phoenix, AZ, Summer 1987. USENIX Association.

[10] Wilson W. Ho and Ronald A. Olsson. An Approach to Genuine Dynamic Linking.
Software - Practice and Experience, 21(4):375-390, April 1991.

[11.] Charles W. Lamb, Gordon Landis, Jack A. Orenstein, and Daniel L. Weinreb.
The Objectstore Database System. Communications of the ACM, 34(10):50-63,
1993.

54



[12] Joel E. Richardson and Michael J. Carey. Persistence in the E Language: Is-
sues and Implementation. Software - Practice and Experience, 19(12):1115-1150,
December 1989.

[13] Joel E. Richardson, Michael J. Carey, and Daniel T. Schuh. The Design of the
E Programming Language. ACM Transactions on Programming Languages and
Systems, 15(3):494-534, 1993.

[14] Marc Sabatella. Issues in Shared Libraries Design. In Proceedings of the Summer
Conference, USENIX Technical Conference, pages 11-23, Anaheim, CA, Summer
1990. USENIX Association.

[15] Donn Seeley. Shared Libraries as Objects. In Proceedings of the Summer Confer-
ence, USENIX Technical Conference, pages 25-37, Anaheim, CA, Summer 1990.
USENIX Association.

[16] Vivek Singhal, Sheetal V. Kakkad, and Paul R. Wilson. Texas: An Efficient,
Portable Persistent Store. In Proceedings of the Fifth International Workshop
on Persistent Object Systems, San Miniato, Italy, September 1992. Morgan-
Kaufman Publishers Inc.

[17] Richard M. Stallman. Using and Porting GNU CC. Free Software Foundation,
Inc., September 1994.

[18] Richard M. Stallman and Roland H. Pesch. Debugging with GDB - The GNU
Source-Level Debugger. Free Software Foundation, Inc., 4.12 edition, January
1994.

[19] Bjarne Stroustrup. Possible directions for C++. In Jim Waldo, editor, The
Evolution of C++: Language Design in the Marketplace of Ideas, pages 53-73.
The MIT Press, 1993.

[20] Sun Microsystems. Programming Utilities and Libraries, March 1990.

55


