
A Computational Linguistic Analysis of Bangla
bv

Zeeshan Rahman Khan

Submitted to the Department of Electrical Engineering and
Computer Science

in partial fulfillment of the requirements for the degrees of

Master of Engineering

and

Bachelor of Science in Computer Science and Engineering

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June 1995

© Zeeshan Rahman Khan. MCMXCV. All rights reserved.

The author hereby grants to MIT permission to reproduce and
distribute publicly paper and electronic copies of this thesis

document in whole or in part. and to grant others the right to do so.
.i',SSACHUSETTS INSiSTITU'TE

OF TECHNOLOGY

AUG 101995
haaer N

Author .-.. LIBRARIES

Department of Electrical Engineering and Computer Science
_ Ma 26, 1995

Certified by ,... -.. ..r.
Robert C.Berwick

Professor of Computer Science and Engineering and Computational
,(k ,f he Linguistics

I' \ ^ ~ ~J/----__ I) hesis Supervisor

Accepted by -
\ Frederic R. Morgenthaler

Chairman. Departmental Conmittee on Graduate Theses

A Computational Linguistic Analysis of Bangla

by

Zeeshan Rahman Khan

Submitted to the Department of Electrical Engineering
on May 26, 1995. in partial fulfillment

requirements for the degrees of
Master of Engineering

and
Bachelor of Science in Computer Science and

and Computer Science
of the

Engineering

Abstract
The 'Government and Binding'(GB) framework developed by Noam Chomsky and
others describes the grammars of different human languages in terms of universal,
atomic principles and language specific parameters. In this thesis, I describe the
design and implementation of a parser that analyzes a range of Bangla sentences
according to these universal principles. The system was built on the Pappi principles-
and-parameters interface system, and it successfully handles leftward and rightward
scrambling, anaphor binding, quantifier raising, and clausal extraction. I discuss the
issues and difficulties faced in implementing such a parser, comparing it against other
possible implementations. I also discuss the potential for using it as the front-end for
a Bangla-English translator.

Thesis Supervisor: Robert C.Berwick
Title: Professor of Computer Science and Engineering and Computational Linguistics

Acknowledgments

I would like to express my gratitude to my supervisor Professor Robert Berwick for

giving me the opportunity to explore the computational linguistic phenomena of my

native language Bangla. I would also like to thank Sandiway Fong for helping me

with the implementation on his Pappi development system. I would like to specially

thank my wife Fahria for putting up with my late hours at the AI Lab. And last

but not least I would like to thank my father, mother and brother, without whose

encouragement I would never had made it through five years at MIT.

Contents

1 Introduction

-1.1 The Principles and Parameters framework

1.2 'Government and Binding Theory

1.2.1 X-bar theory

1.2.2 Case Theory

1.2.3 Movement

1.2.4 Binding Theory

1.2.5 Other Theories

2 Implementation

2.1 P & P parsers

2.1.1 Pappi

2.1.2 Other parsing approaches

2.2 Bangla in the p & p framework

2.2.1 Parameters

2.2.2 Lexicon

3 Bangla

3.1 Bangla linguistic phenomena

3.1.1 Scrambling

3.1.2 Quantifier Raising

3.1.3 Clausal Extraposition

3.1.4 Semantic Filtering.

4

8

9

11

11

13

13

14

.15

17

17

18

18

20

20

26

27

27

27

36

37

39

..............................

...............

...............

...............

...............

...............

...............

...............

...............

3.1.5 Questions 40

4 Conclusion 42

4.1 Remaining Problems and Limitations 42

4.2 Future Work 43

A Tables 45

B Figures 47

C Code 49

C.1 parametersBangla.pl 49

C.2 lexiconBangla.pl 51

C.3 peripheryBangla.pl 62

5

List of Figures

1-1 Scrambled sentences.

1-2 Phrase Structure Representation

2-1

2-2

2-3

:2-4

'2-5

2-6

3--1

3-2

3-3

3-4

3-5

3-6

3-7

3-8

3-9

3-10

3-11

The pappi interface

Non-configurational parses

Case assignment for scrambled objects

Pro drop example

Wh-question example

Preposition stranding example.

VP internal scrambling

Medium distance scrambling

"Bob John-er maa-ke taake dekhalo".

"John-er maa taake bhalobashe"

Rightward Scrambling

Anaphor Binding

No weak-crossover effect in scrambling

Implementation of Quantifier Raising in Bangla

Clausal Extraposition with overt complementizer

Clausal Extraposition with empty complementizer

Wh-questions and Binding

13-1 The Bangla Font implementation

6

8

12

.19

.21

. -...... . . . 23

. 24

.24

. 25

28

29

31

32

34

35

36

38

40

41

41

48

List of Tables

2.1 GB Parameter Settings for Bangla, Japanese, English,French and Dutch 21

A.1 Run-time for parses:simple scrambling examples 45

A.2 Run-time for parses:general examples 46

A.3 Run-time for parses:detailed scrambling examples 46

7

Chapter 1

Introduction

The word order of sentences in Bangla or Hindi is more flexibile than corresponding

sentences in English, Japanese or Korean. For example, in English. there is not much

flexibility in the word-order of the sentence 'She loves Karim'. But in Bangla, all

six permutations of the three words of the corresponding sentence 'shey karim-ke

bhalobashe' are acceptable. This thesis describes a parser implementation that can

correctly and efficiently identify and parse this kind of free word order or scrambling

in Bangla sentences. Figure 1-1 is a preview of our Bangla system, and it shows

parses of three of those six derivations of the basic Bangla sentence.

Iarsing: bhalobashe shey karim-ke
LF (1):

CZ

C 12

12 NP[2]

12 NP[1] Ff49

NPt-A-P[1] 11 R3 karim

VP I(AGR)t[l] shey

NPt-A-P[2] V[3]

I(AGR)[1] V[3]

bhalobashe
One oarse found

Parsing: karim-ke shey bhalobashe
LF (1):

C2

C 12

NP[1] 12

7' ~ NP[2] 11
karim I~gkarim t VP I(AGR)t[Z]

hey NPt+A-P[1] V[3]

I(AGR)[Z] V[3]

ff lt T1 ~t9EI
bhalobashe

One parse found

Parsing: shey karim-ke bhalobashe
LF (1):

C2

A
C 12

NP[1] 11

:C VP I(AGR)t[l]

shey
NP[2] V[3]

ta{r- I(AGR)[1] V[3]

karim I
1 t1 1 ; t t
bhalobashe

One parse found

Figure 1-1: Scrambled sentences

The parser described in this thesis incorporates Bangla into the recent linguistics

8

trend where different human language grammars are described in terms of just a

few universal principles and language-specific parameters. It accomplishes this by

outlining a parametrized description of Bangla and then using that description to

parse Bangla sentences. A detailed specification of grammar rules is not necessary,

but with only a few parameter settings, simple Bangla sentences can be parsed. A

few extra rules are needed to handle free word order. This is because we have to

ensure the correct parsing of sentences that involve the interaction of scrambling

with other components of grammar. To understand these interactions and more

specifically how the Bangla parser implementation successfully handles interactions

with different syntactic binding conditions, I shall start out by describing in this

chapter the Government and Binding' theory. This is the theory that specifies the

different grammar components in the principles-and-parameters (p & p) framework.

In Chapter two of this thesis, I will go over the p & p approach from a computer

implementation point of view and show how it is implemented in Sandiway Fong's

'Pappi'[Fon94] system. In this chapter, I will also give an overview of the parameter

specifications for Bangla and compare these parameters with the settings for other

languages such as French and Japanese. In Chapter Three I will describe specific

Bangla syntactic phenomena, and explain how my system handles sentences with

these kinds of phenomena. Chapter Four concludes by outlining the prospects of

implementing a translator based on the Bangla parser.

1.1 The Principles and Parameters framework

When we examine sentences from different languages, at. first glance it might seem

that there is a vast difference between each of these languages. But, for simple

sentences from different languages, other than using a different set of words, the main

differences seems to be the word order:

(1) (i) Bangla: (Subject-Indirect Obj-Direct Obj-Verb)

Hasina Karim-ke ek-ti boi dilo
Hasina Karim-dat one book gave

9

"Hasina gave Karim a book."

(ii) Hindi: (Subject-Obj-Verb)

raam-ne kelaa khayaa
raam banana ate

Ram ate a banana.

(iii) Korean: (Subject-Indirect Obj-Direct Obj-Verb)

Sunhee-ka Youlee-eykey [chayk hankwen]-ul senmwulhayssta
Sunhee-nom Youlee-dat [book one-volume]-acc gave-a-present

"Sunhee gave Youlee a book as a present."

(iv) Japanese: (Subject-Indirect Obj-Direct Obj-Verb)

Mearii-ga taroo-ni sono hon-o watashita
Mary-nom Taroo-DAT that book-ACC handed

"Mary handed that book to Taroo."

(v) Dutch: (Verb second in matrix clause, but verb final in embedded clauses)

* Hilde verslaat Adje
Hilde defeats Adje

Hilde defeats Adje.

* Ik weet dat Janneke de auto probeert te naderen
I know that Janneke the car tries approach

I know that Joanne tries to approach the car.

(vi) French (Subject-object-verb)

I1 lit le livre
He reads the book

He reads the book

English and French sentences have the subject-verb-object order, while languages like

Bangla and Japanese exhibit subject-object-verb order. We can see that if we know

what each word means in a new language and if we know the word-order in that

language, we should be able to understand and compose the simplest sentences in

the language. In other words, we can describe the grammars for simple sentences in

10

different languages just by describing a general principle: sentences contain subjects,

objects and verbs". Of course. we also need to specify the parameter 'word-order' for

a particular language - whether the order of the sentence elements specified in the

principle is 'subject-object-verb' or 'subject-verb-object'. etc.

This is the main idea behind the principle-and-parameters framework. The logical

next step is to ask whether this approach can be extended to cover more and more

complicated sentences of different languages. The 'Government and Binding'(GB)

theory, developed by Chomsky and others, answers the quesion by allowing the anal-

ysis of a wide range of sentences from different languages using relatively few principles

and parameters.

1.2 'Government and Binding Theory'

Government and Binding (GB) theory[Cho8la, Cho8lb] describes the knowledge of

language grammars as an interlocking set of subtheories, consisting of a universal

component and a language-specific component. The universal component contains

principles that are shared among all languages in the world. The language-specific

component consists of a lexicon and a set of parameter settings; so the difference

between language grammars stem from parametric settings of universal principles

within highly constrained limits.

Here I will not go into many details of the GB theory. Rather, I shall briefly survey

the subtheories on different universal principles, which are relevant to understanding

the analysis of Bangla.

1.2.1 X-bar theory

X-bar theory describes how the syntactic structure of a sentence is hierarchically

formed by successively smaller units called phrases. In natural languages, every phrase

contains a head word. The head of a noun phrase(NP) is a noun(N), and the head

of a verb phrase(VP) is a verb(V). The head is a single word that determines the

main characteristics of the phrase and how the phrase as a whole can be use. For

11

example, in the NP 'the big tower by the Thames'. the head word is 'tower'. X-bar

theory outlines the universal constraint that all phrases are headed. The associated

parameters are whether a language is head-final or head-initial. For example, since

japanese verb phrases end with a verb. it is a head-final language, but english is

a head-initial language. The X-bar theory states that phrases must adhere to the

following schema in their structure:

1. XP - YP Xbar where YP is called the specifier of X.

2. Xbar - Xbar YP where YP is called an adjunct of X

3. Xbar - X YP1 ... YPk where YPi's are called the complements of X

C2

C 12

NP[1] 11

DET Ni I(AGR)t[l] VP
I _

the A N V[2] C2

clever boy V[2] I(AGR)[1] C 12
I I_

said that NP[3] 11
I

john I(AGR)t[3] VP

VP PP

V[4] I(AGR)[3] P NP[5]
I I I

talked about mary

Figure 1-2: Phrase Structure Representation

For example, in the phase-structure representation for the sentence 'The clever boy

said that John talked about Mary' in Fig 1-2,the determiner 'the' and the adjective

'clever' are specifiers in the first noun-phase. The prepositional phrase 'about Mary' is

an adjunct to the inner verb phrase which has the head 'talked'. The clause marked

by 'C2' - 'that John talked about Mary' is the complement of the verb 'said'. A

clause consists of a complementizer, such as, 'that' followed by a sentence 'I2'. The

head of 12 is the node marked as 'I' in the parse-tree. 'I' represents an inflectional

element which indicates the tense or verbal inflection aspects of a sentence. There are

two types of the inflectional phrases(IP) marked as 'I12' here. A finite IP is headed

12

by an 'I' with tense, while an infinite IP is 'tenseless'. An example of an infinite IP

is the infinitive 'to go' in I don't want to go". In GB theory, the sentence subject is

considered to be the specifier of I', but for infinite IPs it is postulated that an empty

category 'PRO' occupies the subject position. GB theory differentiates between the

specifier, complements and other positions in a parse-tree. The specifier of IP and

the verb-complements are known as A-positions(argument positions) while all other

positions are A'-positions(non-argument positons).

1.2.2 Case Theory

A case is an attribute of a noun or pronoun that indicates the type of position occupied

by it. In English, the four cases are Nominative for subjects, Accusative for objects,

Genitive for nouns expressing possession, and Oblique for complements of prepositions.

There might be other cases in other languages, for example, in Japanese, the Dative

case is used to express indirect objects. Case can be morphologically manifested, e.g.

in English, from the form of the noun 'John's', it is obvious that it has genitive case.

But other cases are assigned structurally by case assigners, such as active verbs, and

prepositions. The Case Theory requires that every overt NP be assigned an abstract

case. The Case Filter rules out sentences containing an NP with no case.

1.2.3 Movement

1. I read the book.

2. The book was read by me.

For sentences as above where the meaning is essentially the same, but the surface

structure is different, GB theory exposes the similarity through an underlying struc-

ture called the D-structure. In the underlying D-structure' for the second sentence

above, 'the book' is in the complement position of the verb 'was read'. It moves to the

subject position from its base position so that it can be assigned 'nominative'case.

sp e [p was [vp read [NP the book] by me]]]

13

This is because the passive verb 'was read' cannot assign case to its complement.

In general, in GB theory the rule Move-c specifies that any element can be moved

anywhere. Whether a particular movement is allowed depends on other constraints

in the grammar. One of these constraints is the Structure Preserving Principle: 'The

result of a movement must satisfy the X-bar schema'. When a head moves out of

its base position, it leaves an empty element, a trace, behind. GB theory specifies a

special syntactic relationship that must hold between the moved head(the antecedent)

and the trace it left behind: the trace must be 'governed' by the antecedent.

There are two common types of movements: WH-movements and NP-movements[LD94].

1. Whol does Kim like tl?2

2. Kiml was defeated tl.

In the first sentence. a WH-question, the initial trace is case-marked, while in

the passive construction of the second sentence, the initial trace is not case-marked.

'Kim' had to move to the subject position to get case. The first sentences is an

instance of WH-movement while the second one is an instance of NP-movement. In

WH-movement, a wh-element moves to an A'-position, which is an instance of A'-

movement, while NP-movement is an instance of A-movement.

1.2.4 Binding Theory

In the example sentences above there are coreference relationships between traces and

NPs. Binding theory is concerned with this kind of coreference relationship of Noun

Phrases. Binding is a special structural relationship in a parse tree for a sentence.

And the principles of binding apply to a specific part in a parse-tree - the 'binding

domain' or 'the governing category'. The three principles outlining binding conditions

for NPs are as follows:

1. Condition A: An anaphor3 must be bound in its governing category.

2 Here t stands for trace and the subscript shows the co-reference relationship. In this case 'who'
and the person Kim likes, stands for the same person.

3 The term anaphor covers reflexives, such as 'himself','herself' and reciprocals, such as 'each
other'

14

2. Condition B: A pronoun must be free in its governing category.

3. Condition C: An R-expression4 must be free everywhere.

1.2.5 Other Theories

Other than these three theories that are directly pertinent to understanding the

Bangla implementation, I will just briefly mention some of the other subtheories

of GB theory[vdA93].

1. The Projection Principle requires that all the levels of syntax should observe

the specifications for each lexical item given in its entry in the lexicon.

2. Bounding Theory prevents the relationship of movement from extending too far

in the sentence.

3. Control Theory deals with the subject of infinitival clauses, i.e, the properties

of 'PRO's.

4. 0-theory deals with the assignment of semantic-roles (0-roles) to elements in the

sentence

.5. The Phonetic Form (PF) Component interprets the surface-structure to repre-

sent is as sounds

6. The Logical Form (LF) Component represents the sentence as syntactic mean-

ing, one aspect of semantic representation

In general, every principle included in the theories above makes a statement about

the (un) grammaticality of a sentence. The interaction of all these principles gives an

overall judgement of the grammaticality of a sentence. If these constraints succeed in

assigning a legal structure to the sentence, the sentence is considered grammatical;

otherwise, it is considered somehow deviant. A sentence that can be assigned more

4 Referential(R) expressions are all the other NPs except for anaphors and pronominals that select
a referent from the universe of discourse[Hae91],e.g, Kim, the boy.

15

than one structural representation fulfilling all the requirements set by the principles,

is considered syntactically ambiguous.

16

Chapter 2

Implementation

Now that we know how GB theory and the principle-and-parameters framework

works, the next question is how this framework can be used to build parsers for

natural languages. We also need to know how Bangla fits in the p & p framework so

that the Bangla language can be implemented in a principles-and-parameters based

parser. This chapter addresses these two questions.

2.1 P & P parsers

Currently there are few parser implementations available that have been built around

the principles-and-parameters framework. Among the the most notable are Dekang

Lin's Principar, Bonnie Dorr's Unitran. and Sandiway Fong's Pappi. Unitran is a

p & p based translation system implemented in LISP, while Principar is implemented

in C++ and based on a message-passing algorithm. Pappi, implemented in Prolog, is

the most easily extensible of these three systems. with over eight languages already

implemented on the system 1. Its prolog implementation of the GB theory principles is

the closest among the three parsers to a plain English description of the GB principles.

Also it comes with a user-friendly customizable interface. Although a potential future

goal of my work is machine translation of Bangla, because of the modular nature of

'As of now, Japanese, Korean, Dutch, US English, Hindi, Bangla, Spanish, French, and German
have been implemented on Pappi

17

the principles in Pappi, and the accumulated experience in implementing different

languages on the system, I opted for Pappi as the platform to implement the Bangla

parser.

2.1.1 Pappi

Pappi can be viewed as a kind of direct translation of GB Theory into a principle

and parameter based parser. The parser is true to the principles and parameters

approach of the underlying theory[vdA93]. This is evident from figure 2-1 which

shows the interface to the Pappi system. The input is typed in the space on top, and

a tree representation is printed out in the output panel. On the left panel, we can

see a number of principles, which are applied to derive the output tree.

Pappi uses the generate-and-test approach in parsing. The surface-structure can-

didates for input sentences are generated in accordance with the X-bar theory (gen-

erate). Then all the linguistic constraints as described in the GB principles filter out

invalid parses (test). Pappi is implemented in the PROLOG language, and to ensure

that the parser parses grammatical sentences, and filters out ungrammatical ones,

the GB theory has to be implemented in an accurate and unambiguous way.

2.1.2 Other parsing approaches

We could ask the question, is there a better way of implementing a parser other than

the p& p approach? Among the other approaches to parsing human languages, the

main one is a rule-based approach. In this approach usually a 'context-free gram-

mar' is written to handle different types of sentences[C.B94]. This grammar would

include a different set of rules for different types of sentences, such as, passive con-

structions, scrambling and wh-phrases. For simple scrambling between subject and

verbal complement, the following kinds of rules will be needed:

1. Sentence - Subject NP + Verb + Object NP

2. Sentence - Subject NP + Object NP + VP

18

Examples ...)

nije-ke karim bhalobashe _

bhalobashe _

Run r) Language r) Theory r) Parsers r) History r) Options r)

Parsing: bhalobashe
LF (1):

C2

C 12

pro[l] 11

VP I(AGR)t[1]
english(love)

pro[2] V[3]
english(love)

I(AGR)[1] V[3]
english(love)

bhal obashe
bhalobashe

One parse found
Parsing: Bob john-ke oi bhari chithi-ta dilo
LF (1):

C2

C 12

NP[1] I1
english(Bob)

,nglih(%ob VP I(AGR)t[1]
english(give)

bob NP[2] V1
english(John) english(give)

NP[3] V[4]
john english(letter) english(give)

DET Ni I(AGR)[1] V[4]
english(that) english(letter) english(give)

A N d
english(heavy) english(letter) dilo

One narse found
bhari chithi

J
New Tree Layout option settings are now in effectl

Info...)
Demo ...)

2
2
4
4

U

i
i
a
2
2
2i
4
4
4
3
3
2
2
2
4
4
2
2
2
2
2
2
2.
2
2
2
2
2i
i
2
2
2
£

11

104£04
104

104
11

104

4
4
72
4
8-4 8
2
2

Filters
Theta Criterion -
D-structure Theta Condition

Subjacency
Wh-movement in Syntax

S-bar Deletion
Case Filter
Case Condition on ECs

Coindex Subject
Condition A
Condition B

Condition C

ECP
Control
License Clitics
License Object pro
ECP at LF

Fl: License operator/variables
FI: Quantifier Scoping
FIl: Reanalyze Bound Proforms
License Clausal Arguments
License Syntactic Adjuncts
Wh Comp Requirement

Semantic Restrictions

Generators
Parse PF
Parse S-Structure
Assign Theta-Roles
Inherent Case Assignment
Assign Structural Case
Trace Theory
Functional Determination

Free Indexation
Expletive Linking

LF Movement

Figure 2-1: The pappi interface

19

I 11ele II
_ . . ~

II III

-- -------------- - ---------------- ---- ..--- -- ---- --------- - --- -------- -- ---- ----------- __ ..

-- r--- ------- I

I

3. Sentence . Object NP + Subject NP + VP

So we can see a huge amount of very specific language-particular systems of rules

are needed to parse different kinds of sentences. Also, no knowledge of linguistics

is reflected in the parsing systems. On the other hand, the p & p approach takes

advantage of the universality of human language structures. Rather than viewing the

grammar as a large set of ad hoc language specific rules, it views the grammar as a

modular system of principles. The principles in the p & p approach are compiled into

language-specific rules at a lower level. So, this approach abstracts away from unnec-

essary details when we are specifying a new language. We need to be aware of the

generated rules only for efficiency concerns. For example, in a p & p parser like Pappi,

a large number of illicit structures have to be generated to be filtered out by the filter

principles. When we design the permutation mechanism for scrambling in Bangla we

will have to make sure that we do not have the problem of over-generation[BF92].

2.2 Bangla in the p & p framework

Before I explain my implementation of Bangla scrambling, I will describe the overall

Bangla implementation. To incorporate Bangla into the p & p framework of Pappi,

other than specifying relevant parameter settings, I needed to build a lexicon with

Bangla lexical entries, and make enhancements to the universal principles in Pappi

to handle phenomena specific to Bangla.

2.2.1 Parameters

Table 2.1 shows parameter settings for Bangla and compares the settings to those of

Japanese. U.S. English, French, and Dutch.

The reasoning and explanation of these parameter settings is outlined below.

Head position

Bangla is a SOV language, i.e, the default word order in Bangla sentences is subject-

object-verb. Sengupta[Sen90O] establishes this by first proving the parses of Bangla

20

Table 2.1: GB Parameter Settings for Bangla, Japanese,

Parameters Bangla Japanese US English French Dutch
Head-Initial Only ci No Yes Yes Except v,i,neg
Head-Final Except ci Yes No No Only v,i,neg
Spec-Initial Yes Yes Yes Yes Yes
Agreement weak strong weak strong strong
Bounding Nodes i2.np i2,np i2,np i2,np i2,np
Case Adjacency no no yes yes no
Pro Drop yes yes no yes no
Anaphor Drop no no no yes no
Null Case Markers yes yes no no no
Allow Stranding no no yes no no
Wh in Syntax no no yes yes yes
Clitics no no no yes yes

sentences to be not flat as in Figure 2-2 but configurational or tree-structured as in

Figure 1-1. He shows that among all the different scrambled permutations of Bangla

sentences only one is base-generated and the other parse-trees are created from the

deep structure representation by applying the move-a rule2 [Sai85].

IP

NP

John's mNzhr

V

loves

NP

Figure 2-2: Non-configurational parses

We pick out the SOV order as the base-order and the other ones as moved/scrambled

structures because this way we can capture the most common types of sentences as

the principle structure, and the others as derived ones. This assignment fits with the

universal descriptions of different languages. Asian languages with similar syntactical

21

2 ref: described in chapter 1.2.3

English.French and Dutch

properties as Bangla, such as, Japanese, Korean, and Hindi are all Head-Final SOV

languages. More importantly, making head-final the base-case and other examples

derived-cases, facilitates the parsing of Bangla sentences despite the constraints im-

posed by other GB principles. We have to remember that at the base-position in

the D-structure, different binding conditions and GB principles must hold. For this

reason, we cannot take the object-subject-verb ordering as the default because in this

configuration the verb cannot govern its complement. the object. The subject in the

middle blocks the governing relationship.

We could have probably adopted a description of Bangla grammar that closely

reflected that of English. In this representation, sentences like 'shey bhalobashe

karim-ke' with subject-verb-object ordering would be considered base-generated and

the parameter Head-Initial would be set to true, so that verbs heading verb-phrases

would begin VPs. But if we do this, there would be no uniformity in the way we

treat different sentence elements. In Bangla prepositional phrases, such as, 'tomar

jonno' 3 the prepositions follow their complements. So PPs are compulsorily Head-

Final. With all these reasons in mind, I set the Head-Final parameter to be true for

Bangla. But as we shall see in the next chapter we can not ensure total uniformity.

In the case of complementizers ('c') in clausal constructions, 'c' has to be head-initial.

Specifier Position

Most languages are spec-initial as shown in the table above. Although Bangla sub-

jects(specifier of IP) can appear in any position in scrambled sentences, the concern

of universality led me to specify the position of Bangla specifiers as 'initial'. This was

done also to preserve uniformity. In Bangla noun phrases the determiners precede

the noun. For example, in the noun-phrase 'oi boi' (that book)4 the determiner(a

specifier) precedes the noun(the head, in this case).

3 'tomar jonno' = 'for you'. Preposition: 'jonno' = for; Complement: 'tomar'=your
4 oi = that, boi = book

22

Agreement

Unlike Japanese, French and Dutch. but similar to English, Bangla has weak agree-

ment between the verb and the subject NP. This stems from the fact that only

two parameters affect subject-verb agreement in Bangla: person and status[Kla81].

Bangla has auxiliary verbs, just as in English, and the movement of lexical verbs in

not allowed in Bangla, as in Dutch[Hae91, page 602].

Case Adjacency

An NP doe not have to be adjacent to a case assigner in a Bangla sentence. This is

in general true for scrambling languages. Figure 2-3 shows an example scenario when

object NPs are scrambled out of the VP. In the sentence 'dilo bob john-ke boi-ta'

meaning 'Bob gave John the book', the subject Bob is in between the case assigner

verb 'dilo' and the two objects. But the object NPs are still assigned case by the

verb.

Parsing: dilo bob john-re boi-ta
LF (1):

CZ

C 12

12 NP[3]
case(acc)

12 NP[() engllsh(book)
case(dat)

12 NP[1J english(John) 4
case(nom) I

NPt-A-P[I] I1 english(Bob
case(_) enlisho]v

vP IrGR)t[1] 4 john
englishgive) __ bob

NPt-A-P[2] vi

dilo
One parse found

Figure 2-3: Case assignment for scrambled objects

Pro-Drop

In Bangla, a pronominal subjecthtor be left unexpressed depending on

the context of utterance. For example. in response to the question, 'Has he brought

23

it?', one can answer onlv eneche' which means 'brought'. English is not a pro-drop

language and so just 'brought' is not a valid sentence, but in pro-drop languages like

Japanese, Korean and Bangla. the empty category pro5 occupies the positions of the

unexpressed NPs[Hae91. page 455]. This is why as shown in Figure 2-4, 'eneche' is

an acceptable sentence in Bangla.

arsing: eneche
LF (1):

C2

C 12

pro[1] I1
case(nom)

VP l(AGR)t[1]

pro[Z] V[3]
case(acc)

I(AGR)[1] V[3]

eneche
.ne parse found

Figure 2-4: Pro drop example

Wh in Syntax

Parsing: which book did he give
LF (1):

CZ

NP[I] C1

DET N1 C 12
I I _

which book C I(AGR)[2] NP[Z]

I(AGR)[2] V[3] he I(AGR-2] VP

did V1I3] VP

V[4] NPt-A-P[1]

give
One parse found

Parsing: shey kon boi-ta dilo
LF (1):

CZ

NP[1] C1
case(acc)

english(book) C 12

DET N1 NP[Z] I
english(which) case(acc) case(nom)

english(book) english(he/she) VP (AGRt2]english(give)

kon LFt[1] V[3
bol shey english(give)

I(AGR)[2] V[3]
english(glve)

dilo
One parse found

Figure 2-5: Wh-question example

Figure 2-5 compares English wh-questions with Bangla wh-questions. In English,

at the surface structure level. the wh-question word has to move to the beginning of

the sentence. But in Bangla and Japanese, in the surface structure. the wh-question

24

5as explained in section 1.2.1

word can be situated at the base-position. Only at the logical form level, discussed in

section 1.2.5. does the question word have to move to the beginning of the sentence.

This is because Bangla is a wh-in-situ language[Hae91, pages 501-503].

Stranding

In English wh-questions, a wh-phrase can move out of a prepositional phrase leaving

the head of the PP behind. In this kind of preposition-stranding, case assignment

has to look at the other end of the antecedent-trace chain to assign (oblique) case.

This is shown in Figure 2-6. But preposition-stranding is not allowed in Bangla

(sentence i2ii) is unacceptable in Bangla) and so the parameter is set accordingly.

Parsing: Whom will he give the book to
LF (1):

C2

NP[1] C1
case(obq)

I C 12
whom -

C I(AGR)[2] NP[Z2] 11
case(nom)

I(AGR)[Z2] V[3] i I(AGR)t[2] VP
I he

will VP PP

Vt[3] VP P NPt-A-P[1]
I case(_o)

V[4] NP[S] to
I case(acc)

give \
DET Ni

I case(acc)
the I

book
One parse found

Figure 2-6: Preposition stranding example

(2) (i) noyon kon des theke eymatro fireche?
noyon which country from just-now returned

Which country has Noyon just returned from?

(ii) *[kon des]i noyon t theke eymatro fireche?
which country Noyon from just-now returned

25

Other parameters

Unlike French, anaphors cannot be dropped in Bangla. For example. in the following

sentence the anaphor 'nije-ke' or 'poroshpor-ke' cannot be dropped.

(3) (i) shey nije-ke bhalobashe
he/she himself/herself loves

"'He/She loves himself/herself".

(ii) taaraa poroshpor-ke bhalobashe
they each-other love

"They love each other".

Also in Bangla, there are no clitics as in French, and as in most other languages the

bounding nodes for movement are i2 and np[Hae91, page 402].

2.2.2 Lexicon

Other than specifying the relevant parameters, I built a lexicon of about a hun-

dred entries. This included proper names, common nouns, adjectives, prepositions,

adverbs, markers and verbs. In the specification of verbs, the respective argument

structures had to be specified, so that the parser would know what arguments each

verb would require. Also, information about what kind of semantic properties should

be associated with the agent performing a verb was included to facilitate semantic

filtering6. Different case-markers were specified for the different cases, such as: '-ke'

for the dative and accusative case, and '-re' or '-er' for the genitive case. In Bangla

the two determiners 'ta' and 'ti', which are similar to the articles 'a','an' and 'the' in

English, append to the end of NPs. These were specified as markers also. but only as

markers that do not assign any case.

26

6described in the next chapter

Chapter 3

Bangla

In this chapter we will take a closer look at Bangla and present an overview of the

syntactic phenomena associated with this language. I will give an overview of the

analyses proposed in the literature to account for these phenomena. As we shall see,

for some of the phenomena, the analyses are not sufficient and as a result we came

up with alternative analyses. These alternative analyses will help me explain the

last step of the Bangla implementation - enhancements to the universal principles in

Pappi.

3.1 Bangla linguistic phenomena

In general, the grammar rules for Bangla are similar to that of Japanese and Hindi.

All of these languages exhibit scrambling of noun-phrases consisting of nouns, adjec-

tives, and determiners, etc. But unlike Japanese, Bangla sentences exhibit clausal

extraposition, rightward scrambling, PP and adverbial scrambling, etc., which are

distinct linguistic properties. Bangla language sentences also exhibit standard behav-

ior such as, quantifier raising, and wh-questions. We begin the discussion of these

phenomena with an overview of scrambling.

3.1.1 Scrambling

In Bangla we can distinguish between different features of the scrambling process.

27

1. Short-distance (VP-internal) scrambling:

(4) (i) John Karim-ke boi-ta dilo
John Karim book gave

John gave Karim the book.

(ii) John boi-ta Karim-ke dilo
John book Karim gave

John gave Karim the book.

In the second sentence above the direct object 'boi' scrambles inside the VP

towards its left as shown in figure 3-1. This kind of short-distance scrambling

occurs when the complements in a verb-phrase are scrambled.

Parsing: john boi-ta karim-ke dilo
LF (1):

C2

C 12

NP[1] II1

HER VP I(AGR)t1]

john NP[2] VP

by NP[3] VT 1

bolt T;f5 NPt+A-P[2] V[4]

karim l(AGR)[1] V[4]

dilo
One parse found

Figure 3-1: VP internal scrambling

2. Short (or medium) distance scrambling to IP:

(5) (i) John Karim-ke boi-ta dilo
John Karim book gave

John gave Karim the book.

(ii) boi-ta John Karim-ke dilo
book John Karim gave

(iii) Karim-ke John boi-ta dilo
Karim John book gave

(iv) Karim-ke boi-ta John dilo
Karim book John dilo

28

(v) boi-ta Karim-ke John dilo
book IKarim John gave

As we can see in the last four examples above, the VP-internal arguments can

scramble leftward and adjoin IP at any possible order. The last two sentences

are examples of multiple scrambling: more than one noun phrase belonging to

the same verb's argument structure is moved. This movement is shown explicitly

in the parse-tree output in Figure 3-2. In this figure we can see that both 'boi'

and 'karim' has scrambled to the left of 'john',the specifier of IP.

Parsing: boi-ta karim-ke John dilo
LF (1):

CZ

C 2

NP[1] 12

B NP(2] 12

boi NP[] 11

kanrim ;; VP I(AGR)t[3]

john NPt+A-P[2] V1

NPt+A-P[1] V[4]

I(AGR)[3] V[4]

dilo
One parse found

Figure 3-2: Medium distance scrambling

3. Long-distance scrambling:

(6) (i) bob bollo je john karim-ke boi-ta dilo
Bob said that John Karim book gave

Bob said that John gave Karim the book.

(ii) * boi-ta bob bollo je john karim-ke dilo
book Bob said that John Karim gave

(iii) * karim-ke boi-ta bob bollo je john dilo
Karim book Bob said that John gave

The last two sentences above show that scrambling cannot cross clausal bound-

aries. If either or both of the VP-internal arguments of the internal clause'

1boi-ta' or 'karim-ke'

29

scramble out to the front of the sentence, it produces unacceptable sentences.

This is unique to Bangla, in Japanese or Korean, there can be long-distance

scrambling.

These scrambling processes exhibit interesting results when considered in con-

junction with other GB principles. We shall consider the interactions with different

Binding Conditions. the weak-crossover effect and anaphor binding.

Interaction with Binding conditions

(7) (i) bob taake john-er maa-ke dekhalo
Bob him/her John's mother showed

Bob showed him John's mother.

(ii) taake bob john-er maa-ke dekhalo
him/her Bob John's mother showed

(iii) bob john-er maa-ke taake dekhalo
Bob John's mother him/her showed

(iv) john-er maa-ke bob taake dekhalo
John's mother Bob him/her showed

All the sentences above have two different senses. Since the marker assigning

dative and accusative case2 in Bangla is the same ('-ke'), the sentences have two

senses: 'Bob showed to him John's mother' and 'Bob showed him to John's mother'.

For this reason, we get two parses for the first sentence above. But for the third

sentence as shown in figure 3-3 there are a total of four parses. This is because in

parse 1 and 3 in the figure, 'John' and 'him' refer to the same person. But in parse

2, Bob shows John's mother to some person other than John, and in parse 2, Bob

shows some other person to John's mother. This we know by the numbers associated

with the NPs in the parse-tree. If they are equal, then they refer to the same person.

The same kind of situation happens for sentence (7iv) above. The explanation

of the different number of parses lies in the interaction of scrambling with Binding

Condition C described in section 1.2.4. In sentence (7i) and (7ii) the pronominal

2for indirect and direct objects, respectively

30

Parsing: bob john-er maa-ke taake dekhalo
LF (1):

CZ

C 12

NP(I] jI
casenom) VP I(AGR)t[1]

NP[2 VP
bob case(acc) --------

NP[3I VI
NP[3] N1 case(dat)

case(gen) case(acc) I NPt+A-P[Z] V[4]
CT1 C case(_O) -(AR)1]87 f T1 q(AGRXII V(4]

john man C, 1i C Rt
dekhalo

LF (2):
C2

C 12

NP[1]
case(nom)

VP I(AGR)X[11

NP12 VP
bob case(acc) -----

- NP[4) VI
NP[3] N1 case(dat)

case(gen) case(acc) I NPI+A-P(21 V'1(]

aER ~ 1 - (C I(AGRXI] VLS]

john mna e1 RI
,IAbh.In

LF (3):
C2

C 12

NP[1] 11
case(nom) VP I(AGR)t[1]

NP[2] Vi
bob case(dat) NP- 4

NP(3] V(4]
NP[3] N1 case(acc) -

casegen) csed(d) i I(AGRXI] V(4]

taake
john maa ekhaio

LF (4):
CZ

C 12

NP[1I il
case(nom)

VP I(AGR)[i]

NP[2] VI
bob case(dat)

NP[4] VM
NP(3] N1 caseacc) ----.

case(gen) ce(dat) I I(AGRXI[V[5]

taaks
john maa cekhalo

4 parses found

Figure 3-3: "Bob John-er maa-ke taake dekhalo"

'taake' precedes the R-expression 'John'. If they refer to the same person(when they

are co-indexed by the same number), then 'taake' binds 'John', and this directly

violates condition C. But in sentence (7iii) and (7iv) scrambling 'saves' the parses

where 'taake' and 'John' are co-indexed, because in these cases 'taake' cannot bind

.John'.

The reverse situation happens in the following sentences:

(S) (i) john-er maa taake bhalobashe
John 's mother him/her

John's mother loves him.

loves

(ii) taake john-er maa bhalobashe
him/her John's mother loves

In this case, the first sentence has two parses as shown in figure 3-4. In the first

parse, 'John's mother' loves 'John', and in the second parse, 'John's mother' loves

someone else. But because of filtering by Condition C, the second sentence has only

one parse meaning 'John's mother' loves someone else. Note that these are the actual

meanings that these two sentences convey to native Bangla speakers. GB theory and

the parser implementation associated with it, correctly retrieves all of the senses of

these sentences.

31

Parsing: john-er maa taake bhalobashe
LF (1):

CZ

C 12

NP[1] II
case(nom)

VP I(AGR)t[1]
NP[2] N1

case(gen) case(nom) NP[21 V[3]
I(AGR)[1] V[3]

john maa ; I { taake
bhalobashe

LF (2):

C2

C 12

NP[1] I1
case(nom)

VP I(AGR)t[l]
NP[2] N1

case(gen) case(nom) NP[3] V[4]
I;~ case(acc)

E1 case(a c) I(AGR)([1] V[4]

jonn maa tai ; I
taake

bhalobashe
2 parses found

Figure :3-4: "John-er maa taake bhalobashe"

A scenario similar to the above sentences occurs for the following two sentences:

(9) (i) shey john-er bhai-ke bokbe
he/she John's brother will scold

He will scold John's brother.

(ii) john-er bhai-ke shey bokbe
John's brother he/she will scold

Here also in the first sentence, Condition C filters out the parses where shey' and

'john' are co-indexed. But this does not happen in the second sentence where 'shey'

cannot bind 'john'. Note that this is different from Korean. where Condition C

would be applied to sentences similar to the second one above. This is explained

by Lee[Lee94] through a generalization of subject binding. But Subject Binding

Generalization' is not necessary in Bangla.

Rightward Scrambling

In Bangla, as well as in Hindi, subject and object NPs can be displaced towards

the right of the verb. Anup Mahahan and Gautam Sengupta mention these kind of

sentences[Mah!90, Sen90O] in their treatments of these two languages. But an adequate

explanation of this phenomena is not included in their exposition on scrambling. In

32

general. when NPs move to the right of a verb in a verb-final language like Hindi or

Bangla. it is thought of as a specialized form of topicalization3 . Since 'pro-drop' is

allowed in Bangla 4 . sentence (10ii) below is thought of as analogous to sentence (10i)

in English.

(10) (i) He loves it, the apple.

(ii) bhalobashe aapel
loves apple

'pro' loves 'pro', apple.

(iii) john bob-ke boi dilo
John Bob book gave

John gave Bob books.

But in Bangla, a much wider variety of sentences are available. If we take sen-

tence (10iii) all 24 permutations of the 4 words is acceptable in Bangla. Of these 24

only 6 have the verb at the end of the sentence. In all other configurations there are

NPs after the verb. So this cannot be just a phenomenon of repeated stress of one or

two words. All the NPs of the matrix clause can move after the verb, in any order. As

shown in figure 3-5, I decided to implement this as rightward scrambling by adjunc-

tion to the IP. I could have made a special case for VP-internal NPs and right-adjoin

them to VPs. But this would not allow free-order between the VP-internal NPs and

the spec-IP(subject) moved to the right of the verb.

Scrambling and Anaphor Binding

(11) (i) shey nije-ke bhalobashe
he/she self loves

She loves herself.

(ii) nije-ke shey bhalobashe

(iii) shey bhalobashe nije-ke

3 From personal communications with Douglas Jones[Jon93]
4 explained in chapter 2

33

Parsing: dJ0o 0o bol-ta lohn-e
LF (1):

CZ

C 12

12 NP[2]
case(dat)

:2 NP[3] I
- NP[1] case(acc) 5I

NPt-A- - - case(nom) g john

caseLO) P "AG h bo
CaeVP (AGR)[1]

bob
NPt-A-PZj] .1
caseL Oi

_ NPt-A-P[3] V[4]
case(_0)

I(AGR)[1] V[4]

dilo
One parse buna

Figure 3-.5: Rightward Scrambling

(iv) nije--ke bhalobashe shey

(v) bhalobashe nije-ke shey

(vi) bha]obashe shey nije-ke

(vii) taaraa poroshpor-ke bhalobashe
they each-other love

They love each other.

Condition A of GB theory 5 stipulates that an anaphor must be bound in its

binding domain. This means that in the parses for all of the above sentences, the

anaphor has to be coreferenced with the binder element. But Condition C poses

problems for sentence (lIii). This is because the anaphor 'nije-ke' is before its binder

'shev' and therefore cannot be bound by it. GB theory resolves this problem by

moving back the anaphor to its previous position, and applying Condition A to the

reconstructed structure. This is known as 'reconstruction' in GB theory. Note that

the other scrambling examples do not require machinery for 'reconstruction' in order

to be parsed correctly. Two examples are shown in figure 3-6. This is because the

scrambling mechanism posits the subject before the object in the base position.

5 discussed in section 1.2.4

34

i2 I 21 Ca - 0l cz-_ 41

lE-A-Ptl I--"T I c .,-,, [I Ci__ .

e3" °3) -"> 'ta-lins

Figure 3-6: Anaphor Binding

Linguistic explanation and implementation

There is some disagreement among linguists regarding whether scrambling is an in-

stance of A'-movement or A-movement. Sengupta in his treatise claims that scram-

bling is A'-movement. Iahajan argues that some instances of scrambling are NP-

movement(A-movement) and other ones(A'-movement). But I adopt the hypothesis

of Fong[Fon94]:

1. Scrambling is movement by adjunction in Syntax; adjoining to either VP (short-

distance) or IP (medium).

2. The landing site is an A-position.

One of the main reasons for this is the 'weak-crossover effect'(WCO). This is the

effect where a noun phrase "crosses over" a co-indexed pronoun, resulting in ungram-

maticality. An example is the sentence, "Whoi [does [hisi mother] [love ei]]?". This

effect is caused by s ntactic relationships between A'-positions. Since scrambling in

Bangla does not show this effect, we consider scrambling to be A movement. This is

shown in the examples in Figure 3-7. In the first parse all the schema satisfying the

WCO conditions are in effect, but still the sentence is grammatical in Bangla, and so

it is parsed by the Bangla parser implementation.

It may be noted here that a lot of GB principles, especially the binding conditions

are affected by the A/A' distinction. As shown above I have succeeded in parsing

quite a few sentence constructions with the A-movement hypothesis.

Once I decided on the theory behind scrambling, the implementation of scrambling

in Pappi, was not very difficult. This is because of the framework already built by

35

Parsing: kaake taar maa bhalobashe
LF (1):

CZ

NP[1] C1

· 1 C 12

kaake LFt1] IZ

NP[Z] I1

NP(1] Ni VP I(AGRt[2]

5Il R t NPt A-P[V[3
taar maa I(AGR)[2] V[3]

131 1 C 1
bhalobashe

LF (2):
C2

NP[1] C1

41t C 12

kaake LFt1] 12

NP[Z1 II

NP(3] N1 VP I(AGR)t2]

~I l l1 , NPt+A-P[l] V[4
taar maa I(AGR)[2] V[4]

bhalobashe
2 parses found

Figure 3-7: No weak-crossover effect in scrambling

SandiwaV Fong to handle Japanese scrambling. Most of my work involved modifica-

tion of the scrambling mechanism to handle rightward scrambling, and to decide the

appropriate landing sites for the moved elements. I also implemented prepositional

phrase and adverb scrambling6 . A printout of the 'periphery' file containing my

Prolog code is included in the appendix. I also had to design Bangla fonts in or-

der to display them on the sun and X-windows architecture. A printout of all these

characters is also appended at the end of this report.

3.1.2 Quantifier Raising

In English the following sentence has two meanings,

(12) Everyone saw someone.

(i) For every x there is some y such that it is the case that x saw y.

(ii) There is some y, such that for every x. it is the case that x saw y.

6 Different permutations of the sentence 'shey shohoje boi-ta dilo'= 'he easily gave the book' is
possible

36

In the first interpretation, the persons that observe or see. the number of x's,

depend on the quantifier7 everyone. The persons seen, the number of y's depend

on the quantifier someone. In the second example, the quantifiers everyone and

someone determine the scope of the variables x and y in the reverse manner. GB

theory explains this kind of ambiguity through the process of Quantifier Raising.

In this process,quantifiers are assumed to be moved to the leftmost position in a

sentence, where they can be interpreted as binding variables or determining the scope

of variables in the sentence[R.L93]. This process is very similar to the way quantifiers

are represented in predicate calculus in the field of Logic. For this reason, GB theory

assumes that there is a separate level of representation for sentences, where this kind

of logico-semantic properties are encoded; The level is called Logical Form or LF

and it is this level that the Pappi interface displays in its output. For example,

sentence (13i) and (13ii) are the two logical forms for sentence (12), corresponding to

its two interpretations.

(13) (i) everyonej someonej e saw ej

(ii) someonei everyonej e saw ej

The same can be said for Bangla, and it is shown for the corresponding Bangla

sentence (14) in figure 3-8. The figure explains the pappi implementation. In this

case, the the parse is exactly the same as the corresponding English example.

(14) keu-na-keu prottekke bhalobashe
someone everyone-acc loves

"Someone loves everyone.'

3.1.3 Clausal Extraposition

Since Bangla is a verb-final language, in complex sentences we would expect that

the verb would follow the embedded clause which is a complement of the verb. For

7 [R.L93]A quantifier is a determiner whose meaning expresses some notion of quantity: many,
lots of,few,some,every, no,etc.

37

Parsing: keu_nakeu prottekke bhalobashe
LF (1):

C2

C 12

NP[1] 12
english(someone) NP[2] IZ
C4 -1 a 4gi english(everyone)QR]

keu na keu [- ~FCF VP I(AGR)t[1]
prottekke english(love)

QRt[2] V[3]
english(love)

I(AGR)[1] V[3]
english(love)

bhalobashe
LF (2):

C2
C 12

NP[1] 12
english(everyone) 12

NP[2] 12
,,-- 7j F english(someone) QR
prottekke r;f i --------VP I(AGR)t[2]

keu_na_keu english(love)

QRt[l] V[3]
english(love)

I(AGR)[2] V[3]
english(love)

bhalobashe
2 parses found

Figure 3-8: Implementation of Quantifier Raising in Bangla

38

example, in the Bangla translation of Karim said that he loves himself' we would

expect that the clause 'that he loves himself' would precede the verb 'said'. But this

is not the case. On the contraryv. the clause follows the verb. Also the head of the

clause, the complementizer is not at the final position in the clause, it begins the

clause. This is shown in sentence (15i). The complementizer might be empty, in

which case we will end up with sentences like (15ii).

(15) (i) john bollo je shey nije-ke bhalobashe
John said that he self loves

John said that he loves himself.

(ii) john bollo shey nije-ke bhalobashe
John said he self loves

John said he loves himself.

(iii) john nije-ke je bhalobashe shey taa bollo
John self that loves he that said

That John loves himself. he said that.

We account for this anomaly with a special construction called 'clausal extra-

position'. We assume that the clause was originally situated in the complement

position of the verb, but since the verb assigns case, and a clause cannot take case,

the clause has to move out of the VP. This phenomenon is also exhibited by dutch

sentences. But in dutch, to avoid case assignment the verb can move also, which is

not possible in Bangla. I considered a more complicated form of embedded clauses

in Bangla(not implemented yet) exhibited in sentence (15iii) to be closer to Dutch

'verb-raising'[vdA93]. But this also might be considered as just an irregular form

of topicalization. The clausal extraposition implementation for sentences (15i) and

(15ii) is shown in figures 3-9 and 3-10

3.1.4 Semantic Filtering

For the Bangla sentence 'John Bob-ke boi-ta dilo', initially, I would get two parses:

one meaning 'John gave the book to Bob' and the other meaning 'The book gave

John to Bob'. The nonsensical second parse was the result of the purely syntactical

39

PFM M" Doe s rr, nqe-e bhaioashe
LF"L

engish(that)

l 1 VAGR% eng h(that) N1

:rtI' V[31 shey NP V41

(41 THE! I(AGR)[1] V[41eqgltth(sy) egs1(hil english(hfl eM e enGlhIove)
bOls o nmle engl tNh(Iove)

T1 c[1 si1 (o

bhlobashe
LF :Z

C1

eh(Jdnl ,~--(AG l
]

C
english(that)

;;;; "tn say) -NP[4] I 1

a., C.CI '3 1 engIlsh(he/she) VP I(AGR)4
.~s ~y) j Le C english(love)

A;11 V3]1 shey NP[4 vs5]
englh(sny) englsh(himselherselO engllsh(love)

4P ;ql TrRE I(AGR)[4" V[5]~~~bsli~o mie~~~~ english(love)

i51 t,; ;1 l C

bhalobashe
2 s fouC

Figure 3-9: Clausal Extraposition with overt complementizer

nature of my parser implementation. To filter out these kind of non-sensical parses,

I incorporated a semantic filters into the Bangla implementation. By specifying that

the agent who performs the action 'giving' should be animate and possibly a human,

I filtered out extraneous parse where 'book' was the agent.

3.1.5 Questions

My Bangla implementation also handles different types of questions. As outlined by

Sengupta [Sen90, page 95]. the question words move to C at LF. Also, the Binding

Conditions interact with the wh-movement to filter out unnecessary parses. For

example, sentence (16i) results in the parse in figure 3-11. Here the parse shown in

sentence (16ii) is filtered out. Parses for other questions parsed by my system are

attached in Appendix B.

(16) (i) taar bhai kaake dekheche?
his brother who saw

Who did his brother see?

(ii) taari bhai kaake, dekheche?

8written by Karen Kohl

40

Parsing: john bollo shey nije-ke bhajobashe
LF (1):

C2

C 12

12 2[2]

NP[ll I1 C 12

a7] VP I(AGR)t[1] NPr[1 I1

john C2[2]t V[3] [VP I(AGR)t[l]

I(AGR)[1] V[3] snhey NP[1] V[4]
I I

7;;;; Rl r[R I(AGR)[I] V[4]

bollo nije It ;; ;

bhalobashe
LF (2):

NP[1]

iR

C2

C 12

12 C2[2]

II C 12

VP I(AGR)t[1j NP[4] I1

jonn C22]t V[3]

I(AGR)[1]

S l VP I(AGR)t[4]

V[3] shey NP[4 V[5]
I I _

[R;]j ;4t RCbR (AGhR)[4] V[S]

bollo nije ;i

bhalobashe

Figure 3-10: Clausal Extraposition with empty complementizer

Parsing: taar bhai kaake bhalobashe
LF (1):

C2

NP[1] C1

I ; c 12

kaake NP[2] 11

NP[3] N1 VP I(AGR)t[2]
I I

i . ~'[q LFt1] V[4]

taar bhai I (AGR)[2] V[4]

bhalobashe
One parse found

Figure 3-11: Wh-questions and Binding

41

-

Chapter 4

Conclusion

The parser implementation outlined in this thesis handles a wide range of Bangla

sentences. But because of the vast nature of the natural language domain, there is

room for much improvement over my implementation. I shall conclude by outlining

some of the problems and limitations that I faced in implementing Bangla. and some

of the future enhancements that I would like to make to my system.

4.1 Remaining Problems and Limitations

The main problem I encountered when I started my work on Bangla was the shortage

of linguistic explorations of Bangla syntactic phenomena. I started out by comparing

Bangla to other languages, and thus coming up with my own explanations for many

Bangla properties. I found the work of Sengupta and Klaiman[Kla81. Sen90] at a

stage where I had already formulated my main hypotheses about the Bangla parser

implementation. Now, I would like to explore the linguistic theory in more detail.

Other than going in deeper into the linguistic theory, my parser implementation

needs work on cleaning up the interactions between the different components. For

example, I implemented clausal extraposition and Binding Condition filters on scram-

bling. But I have not been able to completely test out and implement the different

combinations of these two phenomena.

I also need to explore means to make the Bangla scrambling implementation more

42

efficient. Scrambling, in general, adds additional computational complexity into pars-

ing. This is why on complex sentences, the performance of our parser implementation

isn't very fast. But it was a tradeoff designed into the Pappi system - the tradeoff

between flexibility in implementing languages and efficiency concerns. In the ap-

pendix, I have included a table describing the timing and total number of parses

considered while parsing different example sentences. Considering the wide variety

of sentence structures that the system parses, the performance is still comparable to

other efficient parsers[LD94].

4.2 Future Work

Future extensions to the Bangla parser implementations will be in two main directions:

1. Towards a more powerful system by providing the capability of parsing more

and more complicated Bangla sentences and

2. Towards an integrated Translator implementation which would translate from

English to Bangla and vice versa.

For making the parsing system more powerful. the first step would be to scale up

the Bangla dictionary. Also a mechanism to handle Bangla verbal morphology should

be added. A mechanism to handle the volitional and non-volitional aspect of passive

construction in Bangla[Kla8.] would be a useful addition.

For translation, I would like to follow a structure like Bonnie Dorr's unitran[Dor87].

This uses an inter-lingua approach - the text in the source language is first trans-

lated into an intermediate language, and then a generation module builds sentences

in the target language, based on the GB parameters of that language. Right now we

have the English transcriptions of each Bangla word listed as a feature in the lexicon.

This can be adapted to be used with an inter-lingua. The translator would map the

tree-structure generated in Bangla, to the tree-structure in English, for example. For

Bangla-English translation, this would mean that the subj-obj-verb word order would

be mapped to subj-verb-obj order. But there are lots of other problems we have to

43

deal with before making such a syntax-directed translator powerful enough, for in-

stance, to translate some of the noted Bengali poet Tagore's work. I will just mention

one category of problems: the problem of translating idioms and complex phrases.

By making special entries for idioms in the lexicon and adopting other heuristic ap-

proaches. we can attempt to overcome some of these problems. That is precisely the

next step in the computational linguistic analysis of Bangla - to build a powerful

translation system based on our Bangla parser implementation.

44

Appendix A

Tables

The following run-time data is based on testing done on a networked Sun IPX sparc-

station running OpenWindows. In the tables, the second column denotes the maxi-

mum number of parses that were generated in the process of finding the right parse.

The third column describes the sum of the time taken to generate these candidate

parses, and the time required to filter out the incorrect parses. The correct parse-trees

for all the sentences mentioned here are included in appendix B.

Table A.1: Run-time for parses:simple scrambling examples

Sentences maximum parses generated runtime(in seconds)
mita o-ke bhalobashe 3 1.20
o-ke mita bhalobashe 6 1.75
bhalobashe mita o-ke i 47 3.82
bhalobashe o-ke mita i 47 3.83

mita bhalobashe o-ke 20 2.38
o-ke bhalobashe mita 14 1.96

45

Table A.2: Run-time for parses:general examples

Sentences maximum parses generated runtime
keu-na-keu prottekke bhalobashe 5 2.39
karim bollo je shev nijeke bhalobashe 18 9.06
karim bollo shev nijeke bhalobashe 2583 225.14
eneche 3 1.23
taar bhai kaake bhalobashe 4 2.74
kaake taar maa bhalobashe 16 5.28

Table A.3: Run-time for parses:detailed scrambling examples

Sentences maximum parses generated runtime
bob karim-ke boi-ta dilo 104 8.94
bob boi-ta karim-ke dilo 49 6.27
karim-ke bob boi-ta dilo 116 9.43
karirn-ke boi-ta bob dilo 116 9.73
boi-ta karim-ke bob dilo 104 8.86
boi-ta bob karim-ke dilo 49 6.06
bob karim-ke dilo boi-ta 141 11.41
bob boi-ta dilo karim-ke 370 23.08
karirn-ke bob dilo boi-ta 192 16.46
karirn-ke boi-ta dilo bob 192 14.95
boi-ta karim-ke dilo bob 141 11.88
boi-ta bob dilo karim-ke 370 24.72
boi dilo bob karim-ke 274 17.39
boi dilo karim-ke bob 274 17.03
karirn-ke dilo bob boi-ta 198 14.32
karimn-ke dilo boi-ta bob 198 14.60
bob dilo karim-ke boi-ta 274 17.53
bob dilo boi-ta karim-ke 274 17.69
dilo boi bob karim-ke 660 38.09
dilo boi karim-ke bob 660 38.08
dilo karim-ke bob boi-ta 660 38.58
dilo karim-ke boi-ta bob 660 37.82
dilo bob karim-ke boi-ta 660 38.27
dilo bob boi-ta karim-ke 660 39.16

46

Appendix B

Figures

This appendix contains the parse-tree output of the sentences mentioned in Appendix

A and throughout the report. A listing of the Bangla font implementation is also

included here.

47

Parsng: mnaa o-Ke bhalobashe
LF (1)

32

C 12

mntaa VP I(AGR)t1]

,NP¶21 'V[31

o I(AGR)[1] V[3]

bhalobashe
One parse found
Parsag: o-ke mitaa bhalobashe
LF (1):

C2

C 12

o NP[21 11

mtaa VP I(AGR)t21

NPt+A-F''l I V13]

iAGR)[2] V[31

bhalobashe
One parse found
Parsng: chalobashe mitaa o-ke
LF (1):

C2

c 212
12 NP[2]

12 NP[1] o

NPt-A-P(1] 11 mitaa

VP I(AGR)t1]

NPt-A-P[2 V[31

I(AGR)[1] V13j

blalobashe
One parse found
Parsing: bhalobashe c-ke mitaa
LF (1)

02

12

12 NP[1]

12 NPt2] mitaa

NPt-A-P[1] 11 o

VP I(AGR)t1]

NPt-A-P(21 V[3]

I(AGR)f1J V(3]

bhalobashe
One parse found
Parsing: mitaa bhaobashe o-e
LF (1):

Page 1

C2

C 12

NP11J 11 o

miaa VP I(AGR)t1]

NPt-A-P[21 V13]

I(AGR)[1J V[3]

bhalobashe
One parse found
Parsing: o-ke bhalobashe mitaa
LF (1):

C2

C 12

12 NP[1]

NPt-A-P[1] I1 m aa

VP I(AGR)t11

NP[2] V[31

o I(AGR)[1 V131

bhalobashe
One parse found
Parsing: keu na keu prottekke bhalobashe
LF (1):

C2

o 12

NP[11 12

kounakou NP[2] 12

prottelkke ORt11 1

VP l(AGR)tl1]

OR21 V131

(AGR1 I V131

bhalobashe

LF (2):

02

C 12

NP[1 12

prottele NP2] 12

keu_na keu ORt2j I1

VP I(AGR)t21

ORU11 V131

I(AGR)(2] V[31

bhalobashe

2 parses found
Parsing: kardm bollo e shey nije-ke bhalobhe
LF (1):

Page 2

C2

C 12

12 C212]

NP[1] I C 12

karim VP I(AGR)t1J je NPI1] I1

C212]t V 3j shey VP I(AGR)t1]

I(AGR)(1] V[31 NP[1l V4

bollo nije I(AGR)[1] V[41

bhalobashe

LF (2):

C2

C 12

12 C21

NPI1l I1 C 12

karim VP I(AGR)1 je NPI4] I1

C212]t V31 shey VP l(AGR)q4]

I(AGR)[1] V[3] NP[4] V[5]

bollo nije l(AGR)14] V[5]

bhalobashe

2 parses found
Parsing: kanm bolo shey nije-ke bhalobashe
LF (1):

C2

C 12

12 C2121

NP[1] I1 C: 12

kanm VP I(AGR)I1J NP(11 I1

C2121t V131 shey VP I(AGR)t1]

I(AGRH11 V31 NP(1 V[4]

bollo nije I(AGR)[11 V[41

bhalobashe

LF (2):

C2

C 12

12 C21

NPIl] 11 C 12

kanm VP I(AGR)1J] NP1[4 I1

C2121t Vi31 shey VP I(AGR)t4]

I(AGRXH1 V13] NP(41 V[5]
I I

bollo nije I(A,GR)14] V(5

bhalobashe

Page 3

LF (3):

C2

C 12

NPIl] 11

karim VP I(AGR)[1]

NP[1I V14]

C2 NP[11 I(AGR)(1 V[41

Op(11 C1 nile bhalobashe

C 12

12 NP(2]

NPt-A-P[21 11 shey

VP I(AGR)t21

NPt-A-P[l V[3]

I(AGR)[21 V[31

bollo
3 parses found
Parsing: eneche
LF (1):

C2

C 12

pro(1 I1

VP I(AGR)tql[

pro(2 V131

l(AGR)[11 V[31

eneche
One parse found
Parsing: taar bhai kaake bhalobashe
LF (1):

C2

NP[1] Cl

I
kaake C 12

NP[2 1

NPI3] N1 VP I(AGR)[21

taar bhal LFtI1 1 41

I(AGR)12] V141

bha_bashe
One parse found
Parsing: kaake taar maa bhalobashe
LF (1):

Page 4

C2

NP[1l Cl

kaake C 12

LFt[1] 12

NP[2]1

NP[I] N1 VP I(AGR)t2]

taar maa NPt4P[1] V[3]

!(AGFI)[2J V131

bhalobashe
LF (2):

C2

NP[1I Cl1

I '\
kaake C 12

LFt1 1 12

NP[21

NP[31 N1 VP I(AGR)42]
I I

taar maa NPt-Pl] V14

I(AGR)[2] V[41

bhalokbashe
2 parses found
Parsing: bob kanm-ke boi-ta dio
LF (1):

C2

C 12

NP(1] I1

bob VP I(AGR)t1]

NP(21 V1

karim NP[3] V14]

boi I (AGR)1 I V[4]

dib
One parse found
Parsing: bob boi-ta kanm-ke dibo
LF (1):

C2

C 12

NP[1I] II

bob VP I(AGR)1]

NP[21 VP

boi NP[31 V1

karlm NPt+A-P21 V[4]

I(AGR)11 4 V4

dblio
One parse found

Page 5

Parsng: Kanm-ke bob boi-ta dilo
LF (1)

C2

C 12

11 12I 1

kamn NP12] 11

bob VP I(AGR)tt2

NPt+A-P[1] Vi

NP[3] V(4]

boi I(AGR)(2] V[4]

dilo

One pare found
Paming: kanm-ke bo-ta bob dilo
LF (1):

C2

C 12

Mill 12

kanm NP12] 12

boi NP[31 I1

bob VP I(AGR)t3J

NPt+A-P[1 V1

NPt+A-P[2J V[41

I(AGRX31 V[41

dilo
One pame found
Pamnig: boi-ta kanm-ke bob dilo
LF (1):

C2

C 12

N1J 12I 1

boi NP[2I 12

kanrim NP[3] II
I

bob VP I(AGR)l[3]

NPt+AP21 -P V 1

NPt+A-P[1] V[41

I(AGRX31 V[41

dilo
One pane found
Pa=nig: bo-ta bob karim-ke dilo
LF (1):

Page 6

C2

C 12

NP[1] 12

boi NP(2] 11

bob VP I(AGR)t[2

NP([3 VI

kanm tNPt+A-P[1] V[41

I(AGRX21 V141

dlo
One parse found
Parsing: bob karim-ke dilo boi-ta
LF (1):

C2

C 12

12 NP(3]

NP1] I1 boi
I 'N

bob VP I(AGR)t[1]

NP[21 Vi

karim NPt-A-P[31 V141

I(AGR)111 V[4

dilo

One parse found
Parsing: bob boi-ta dilo karim-ke
LF (1):

C2

C 12

12 NP[21

NP[1J I1 kanm

bob VP I(AGR)t11]

NPt-A-P[2l Vi

NP[31 V141

boi I(AGR)[1] V[4]

dilo
One parse found
Parsing: karim-ke bob dilo boi-ta
LF (1):

Page 7

C2

C 12

NP[1] 12

karim 12 NP3]

NP12] I1 boi
I

bob VP I(AGR)4t2]

NPt+A-P[1] V1

NPt-A-P[31 V[4]

I(AGR)[21 V14]

dilo
LF (2):

C2

C 12

12 NP31

NP1]J 12 boi

karim NP[2] 1 1

bob VP I(AGR)42]

NPtA-P[1] V1

NPt-A-P[31 V41

I(AGR)[21 V[4]

dilo

2 parses found
Parsing: karim-ke boi-ta dilo bob
LF (1):

C2

C 12

12 NP11]

NPt-A-P[1] 1 1 bob

VP I(AGR)t1]

NP[21 V1

karim NP[3] 'V41
I

bol I(AGR)(1] V14]
I

dilo

One parse found
Parsing: boi- karim-ke dio bob & \hline
Eror "&" not prent In lexiconl
Error &" not prsent In lxlcont
Error: "'hllne" not present In Iexlconl
Parse blocked by Parse PF
No parses found
Parsing: karin-ke bob dilo bol-ta
LF (1):

Page 8

C2

C 12

NP1J 12

kanm 12 NFP31

NP121 II boi

bob VP I(AGR)t[q2

NPt+A-P(1l V1

NPt-A-P[31 V[4]

I(AGR)121 V[41

dilo
LF (2):

C2

C 12

12 NP[3]

~~~~ ~~~~'"~I
NPIll 12 bol

kanm NP[2] 11

bob VP I(AGR)42]

NPt+A-P[1 ] V1

NPt-A-P(3] V14]

I(AGR)[21 V[4]

dio
2 parses found
Parsing: boi-ta kanm-ke dilo bob
LF (1):

C2

C 12

12 \tP[1]

NPt-A-P[1] I1 bob

VP I(AGR)t1]

NP(2] VP
I

boi NP[3] V1

kanm NPt+A-P21] V[14

I(AGRX1] V14)
I

di
One parse found
Parsing: boi-ta bob dilo kanm-ke
LF (1):

Page 9



C2

C 12

NP1] 12

boi 12 NP13]

NP[2] I1 kanm

bob VP I(AGR)q Z

NPt-A-P[3 ] VI

NPt+A-Pl1] V14

I(AGR)21 V141

db
LF (2):

C2

C 12

12 NP[3]

NP(1] 12 karim

boi NP12] 11

bob VP I(AGR)21

NPt-A-P[3] V1

NPt+A-P1] V14

I(AGR2 V141

db
2 parses found
Parsing: boi dilo bob karim-ke
LF (1):

C2

C 12

12 NPM21

12 NPF1J karn

NPt-A-P[1] I1 bob

VP I(AGRI)

NPt-A-P[2 V1

NP[31 V141

boi I (AGR){1 ] V41

dib
One parse found
Parsing: boi dilo karm-ke bob
LF (1):

Page 10



C2

C i2

12 NPfI]

12 NP[21 bob

NPt-A-P[1J ;' kanm

VP l(AGR)t1

NPt-A-P[21 1

NPf3j V14]

boi i AGR)(1] V[4]

dilo
One parse tound
Parsing: kanm-ke ok) bob boi-ta
LF (1):

C2

C 12

12 NP[3]
' I

12 NPI1] boi

NPt-A-P1 I 11 bob

VP I(AGR)t1 ]

NP[21 V1

karim NPt-A-PIl V[4]

'AGR)1l V[4]

dilo
One parse found
Parsing: Kanm-ke ac boi-ta bob
LF (1):

C2

c i2

12 NP[l 1

t2 NP31] bob

NPt-A-P11 :1 boi

VP I(AGR)t1 J

NP[21 V1

karin NPt-A-P3] V141

!(AG,R)[1] V[41
I

dilo
One parse found
Parsing: bob dio karr--ke boi-ta
LF (1):

Page 11



C2

C 12

12 NP[31

12 NP12] boi

NP[1] I1 karim

bob VP I(AGR)t1]

NPt-A-P[2] VI

NPt-A-P[31 V[4]

I(AGR)I1] V[41

dilo
One parse found
Parsing: bob dilo boi-ta karim-ke
LF (1):

C2

C 12

12 NP[2]

12 NP[31 karinm

NP[1J I1 bol

bob VP I(AGR)ttl

NPt-A-P[2] V1

NPt-A-P[31 V14]

I(AGR)[1] V[41

dilo
One parse found
Parsing: dilo bol bob karim-ke
LF (1):

C2

C 12

12 NP[2]

12 NP[1 karim

12 NP[3] bob

NPt-A-P1] I1 boi

VP I(AGR)t1]

NPt-A-P[2} VI

NPt-A-P[3 V41

I(AGR)[11 V[41

dli
One parse found
Parsing: dilo boi karim-ke bob
LF (1):

Page 12



C2

C 12

12 NPI1]

12 NP(2] bob

12 NP[3] kanm

NPt-A-P[1l 11 boi

VP I(AGR)t1ll

NPt-A-P[2] V1

NPt-A-PIF'([3 V141

I(AGR)[11 V141

diuo
One parse found
Parsing: dilo karim-ke bob boi-ta
LF (1):

C2

12 NP131

12 NP1J] boi

12 NP[21 bob

NPt-A-P[1 1 karinm

VP I(AGR)t1j

NPt-A-P[2] V1

NPt-A-P[31 V[41

I (AGR)I11 V14J

dio
One parse found
Parsing: dilo karim-ke, boi-ta bob
LF (1):

C2

c 12

12 PIl]

12 NP3] bob

12 NP[2] boi

NPt-A-P[1J I1 karim

VP I(AGR)tll

NPt-A-P[21 VI

NPt-A-P[31 V[4]

I(AGR)[1 I V41

dio
One parse found
Parsing: dilo bob karim-ke bot-
LF (1):

Page 13



C2

C 12

12 NP[3]

12 NP[2] boi

12 NP[1l] karinm

NPt-A-P11 I1 bob

VP I(AGR)t[l]

NPt-A-P[21 V1

NPt-A-P[31 V[4]

I(AGR)([1 V[4]

dilo
One parse found
Parsing: dio bob boi-ta Kanm-ke
LF (1):

C2

C 12

/12 NP[2

12 NP[31 karim

12 NPf1] bol

NPt-A-P[1] I1 bob

VP I(AGR)I

NPt-A-Pf2] V1

NPt-A-P[31 V]41

I(AGR)[11 V14]

dilo
One parse found

Page 14



Bangla

Quit F

Select a character

range: OxO0000 (0,0) thru OxOOff (0,255)

upper left: OxO0000 (0,0)

'$T F |R F | - L T | 1 F rl

_11138t 1 1+ _

_) . , ,¥, .. § % &,( I_ . /__ b _ U T R

_+2 3 f¶ I 0 1 _ _
X _ _ O / _ < __ _ _ _ _ _ 4 

t0Xt~
Figure B-1: The Bangla Font implementation

48



Appendix C

Code

The file lexiconBangla.pl outlines the Bangla dictionary and the file peripheryBangla.pl

outlines the extra code necessary to modify the principles. The parameter specifica-

tions for Bangla is included in the file parametersBangla.pl.

C.1 parametersBangla.pl

/..%%. -*- Mode: PROLOG; Package: PROLOG-USER -*-

..%%%/ BANGLA PARAMETER SETTINGS

%%%/. (c) 1991, 1992, 1993 Sandiway Fong, NEC Research Institute, Inc.

..%%% 1995 Zeeshan R.Khan

%%% REFERENCES

%%%. no P utilities

.X X-Bar Parameters

specInitial.

specFinal :- \+ specInitial.

headInitial(c).

headFinal(X) :- \+ headInitial(X).

49



,%, agreement;

agr(weak).

%% V2 Parameters

7 C is not available as adjunction site

% Empty C is null C

%,7 Subjacency Bounding Nodes

boundingNode(i2).

boundingNode(np).

%% Case Adjacency Parameter

:- initialization(no caseAdjacency).

7, Wh In Syntax Parameter

:- initialization(no whInSyntax).

.,7 Pro-Drop

proDrop.

%%,, Negation

negationMoves.

7., No Stranding

:- initialization(no allowStranding).

%% Allow null Case markers for empty Chains

:- initialization (no nullCasemarkers). changed later

%%, null Anaphor

:- initialization(no anaphorDrop).

50



7.7. Clitics

:- initialization(no clitic(_)).

7.% License object pro parameter

:- initialization(no licenseObjectPro).

C.2 lexiconBangla.pl

,%% -*- Mode: PROLOG; Package: PROLOG-USER -*-

7,7,%7 SAMPLE BANGLA LEXICON

%%% (c) 1991, 1992, 1993 Sandiway Fong, NEC Research Institute, Inc.

%%7.7,7. 1995 Zeeshan R.Khan

EXPORT

term(C)

lexicon(Word,C,Fs)

probeLexicon(Word)

vMorphToFs(Base,Form,Features)

inf(Verb,Type)

relevant (C)

REFERENCES

optWhComplement(X)

(list processing)

terminals

Word has category label C

and feature list Fs

Word is in lexicon

TNS/AGR features

constraints imposed by markers

apply to C

xbar

utilities

term(n). term(v). term(a). term(p). term(c).

term(adv). term(det). term($). term(nq).

term(neg). term(mrkr).

51

/././.

7.7.7.

7.7,7.

7.7.7,

7.7.7

7.7.7.

7.7.7.

7.7,7,%%'1%%'17.7.7.

7.7.7/././.
/./..
%1.1



%%% Most lexical entries are stored directly as

%. /% lex(Word,Category,Features)

%%' Non-base forms require inference:

%%% 1. p]Lural nouns all features except agr(_) inherited

,,.%% from the sg. form

YY%%% 2. nominalized verbs inherits verb features except morph(_,_)

M%,M,% 3. non-base verb forms all features except morph(_,_) inherited

%%% from the base form

:- dynamic edrJap:jlookup/4.

lexicon(Word,C, Fs) :-

nonvar (Word)

-> (p:robeLexicon(Word)

-> builtin(Word,C,Fs)

edrJap:jlookup(Word,_,C,Fs)) %if not in lexicon

builtin(Word,C,Fs). %if not a variable

probeLexicon(Word) :- lex(Word,_,_) ; lex(Word,,...,_).

builtin(Word,C,Fs) :- lex(Word,C,Fs). % directly available

builtin(Form,v,Fs) :- % non-base verb forms

lex(Form,v,Base,F1),

verbFeatures(Base,F2),

append1l(F1,F2,Fs).

%%% NEGATION

lex(ni, neg, ['polarity(-)]).

52



%%% POSTPOSITIONS

/%% features: grid & predicate(pretty much the same)

7%%% transparent/adjR/selR,confj

/%%% k( ).

lex(shomporke,p, [grid( [], [theme]),predicate(theme) ,english(about),

k('0073004dOO50003c004bOOc4'),adjR( [goal(roleNotPresent(X,theme),X))]).

lex(jonne,p, [grid([] ,[beneficiary]),predicate(beneficiary) ,english(for),

k('007a06eOO3e'), adjR([goal(roleNotPresent(X,beneficiary),X)])]).

lex(hote,p,[grid([], [source]),transparent,predicate(source),k(a4aba4e9), % from

adjR([goal(vpAllowExt(source,X),X)])]).

%%% ADVERBS

%%% features: adjoin(left/right), predicate, wh?, k()

lex(kibhabe,adv,[adjoin(left),predicate(manner),wh,k(a4cla4a6)]). % how

lex(kokhon,adv,[adjoin(left),predicate(time),wh]). % when

lex(gotokal,adv,[adjoin(left),predicate(time),k('00670071004b0068006c'),

english(yesterday)]).

lex(aaj,adv,[adjoin(left),predicate(time),k('00610068007a'),english(today)]).

lex(shohoje,adv,[adjoin(left),predicate(manner),english(easily),

k('00730041003c007a')]).

%%% DEGREEE ADVERBS(modify adjectives) %might need work to constrain overflow

% permit the resulting AP to take an optional clausal adjunct

lex(oti, adv,[degree,adjR(addFeatures( [allowExt(reason),

adjR(C[goal(nonfiniteClause(X),X)])])])]).

%%% DETERMINERS

%%% features: don't required person, number, vowel,definitiveness features

%%% as in English

53



lex(ei,det,[k('00450065') ,english(this)]).

lex(oi,det,[k('0059'),english(that)]).

lex(shei,det,[k(a4a2a4ce),english(that)]).

lex(kon,det,[wh,k('003cO04b0068006e'),english(which)]).

lex(prottek,det,[k('00500040003cO071003eOO4b'),english(each),op(+)]).

.%%Y% ADJECTIVES

lex(lomba,a, [grid([theme],[]) ,k(a4caa4aca4a4)]). % long (kanji c4b9a4a4)

lex(bhari, a, [grid( [theme], []) ,k( '0076006800720049') ,english(heavy)]).

lex(chupchap,a, [grid( [theme], []) ,k(cOc5a4ab)]). % quiet (na)

lex(bhalo,a,[grid([theme], []) ,k(cOc5a4ab)]). , good

lex(chalak,a, [grid( [theme], []),npprops( [animal]) ,k(c5b7bacd)]). % clever

lex(buddhiman,a,[grid([theme],[]),npprops( [living])]). %intelligent

,%% NOUNS

, Wh-nouns

lex(ki,n, [a(-) ,p(-) ,agr([3, [] ,n]),wh,grid( , ),

morphC(acc),k('0069004b'),english(what)]). % what, nani

lex(ke,n, [a(-) ,p(-) ,agr([3,sg, [m,f]]) ,wh,grid([], []),

morphC(nom),k('003c004b'),english(who)]). % who,dare

lex(kaake,n, [a(-),p(-),agr([3,sg, [m,f]]),wh,grid([], ,[]),

morphC(acc),k('004b0068003c004b'),english(whom)]).

lex(kaake,n, [a(-) ,p(-) ,agr([3,sg, [m,f]]) ,wh,grid( [ , [ ),

morphC(dat),k('004b0068003c004b'),english(whom)]).

lex(kaaraa,n, [a(-) ,p(-) ,agr([3,pl, [m,f]]) ,wh,grid([], []),

morphC(nom),k('004b006800720068'),english(who)]). % who,dare

lex(kontaa,n, [a(-),p(-) ,agr( [3, [] ,n]),wh,

k('003cO04b0068006e'),english(which)]). %which

Y,lex(kothae, english(where) ,n, [a(-) ,p(-) ,agr( [[], [] ,n]),

YY%% wh, grid( [], []) ,k(' 003c004b006800700068004f ')]).

54



% Proper Nouns

lex(bob,n, [a(-) ,p(-) ,agr([3,sg,m]) ,grid(O , [),english('Bob'),

class(person),props( [solid,living,animal,human,male]),

k('00620062')]).

lex(john,n,[a(-),p(-),agr([3,sg,m]),grid([],[]),english('John'),

class(person),props( [solid,living,animal,human,male]),

k('007aOO6e')]).

lex(karim,n, [a(-) ,p(-) ,agr( [3,sg,m]),grid( [], []) ,english( 'Karim'),

class(person),props([solid,living,animal,human,male]),

k('004bOO690072006d')]).

lex(shumon,n, [a(-) ,p(-), agr([3,sg,m]) ,grid( [], [ ),english('Shumon'),

class(person),props( [solid,living,animal,humanmale]),

k('00730075006dOO6e')]).

lex(orun,n, [a(-),p(-),agr([3,sg,m]) ,grid( [], []),english('Orun'),

class(person),props([solid,living,animal,human,male]),

k( '006100720075006e')]).

lex(fahria,n, [a(-) ,p(-) ,agr([3,sg,f]) ,grid( [], []) ,english('Fahria'),

class(person),props( [solid,living,animal,human,female]),

k('00660068004100690072004f0068'))).

lex(hasina,n, [a(-) ,p(-),agr([3,sg,f]) ,grid( [], []),english('Hasina'),

class(person),props( [solid,living,animal,human,female]),

k('0041006800690073006e0068')]).

lex(mitaa,n, [a(-) ,p(-) ,agr( [3,sg,f]),grid( [], []) ,english( 'Mita'),

class(person),props( [solid,living,animal,human,female]),

k('0069006d00710068')]).

lex(noyon,n, [a(-),p(-), agr([3,sg,f] ),grid( [], []),english('Nayan'),

class(person),props( [solid,living,animal,human,female]),

k('006e004fOO6e')]).

, Quantifier nouns

lex(keu,n, [a(-) ,p(-),agr([3,sg, [m,f]),op(+) ,grid( [], ),

55



k('003c004b0079'),english(someone),morphC(nom)]).

lex(keu_na_keu,n, [a(-) ,p(-) ,agr([3,sg, [m,f]]) ,op(+) ,grid( C[], []),

k('003cO04b0079008cO06eOO068008c003cOO4bO079'),

english(someone),morphC(nom)]).

lex(protteke,n, [a(-) ,p(-) ,agr( [3,sg, [m,f]]),op(+) ,grid( [], []),

k('00500040003c0071003eOO3cOO4b') ),english(everyone),morphC(nom)]).

lex(kauke,n, [a(-) ,p(-) ,agr( [3 ,sg, [m,f]]) ,op(+) ,grid( [], []),

k('004b00680079003c004b'),english(someone),morphC(acc)]).

lex(prottekke,n, [a(-) ,p(-) ,agr([3,sg, [m,f]]),op(+) ,grid([],[]),

k('00500040003c0071003e004b003c004b'),

english(everyone),morphC(acc)]).

lex(kauke,n, [a(-) ,p(-) ,agr( [3,sg, [m,f]]),op(+),grid( [],[]),

k('004b00680079003c004b'),english(someone),morphC(dat)]).

lex(prottekke,n, [a(-),p(-), agr( [3,sg, [m,f]]),op(+) ,grid( [], []),

k('00500040003c0071003eOO4bOO3cOO4b'),

english(everyone),morphC(dat)]).

lex(shobai,n, [a(-) ,p(-) ,agr( [3,pl, [m,f]]) ,op(+) ,grid( [], []),

k('0073006200680065'),english('everyone-all')]).

op(+) elements that are moved by QR and

/,@/, form operator-variable structures

/, Pronouns and Anaphors

lex(aami,n,[morphC(nom),a(-),p(+),agr([1,sg,[m,f]]),

grid([], []),k('006100680069006d'),english('I'),

props([solid,living,animal,human])]).

:ex(aamraa,n, [grid([], []) ,morphC(nom) ,a(-) ,p(+),agr([ ,pl, [m,f]]),

english(we),k('00610068006d00720068'),

props( [solid,living,animal])]).

lex(tumi,n, [morphC(nom) ,a(-) ,p(+) ,agr( [2,sg, [m,f]]) ,grid( [], []),

english('you/sg'),props(Csolid,living,animal,human]),

k('007100750069006d')]).

56



lex(tomraa,n, [grid( [], []) ,morphC(nom) ,a(-) ,p(+) ,agr([2,pl, [m,f]]),

english('you/pl'),props( [solid,living,animal,human]),

k('003c00710068006d00720068')]).

lex (shey,n, [agr( [3, sg, [m,f]] ) ,grid( , []),k('003c0073.'),

english('he/she'),morphC(nom),

a(-),p(+),props([solid,living,animal,human])]).

lex(o,n, [agr([3,sg, m,f]]),grid( , []) ,k('006f'),

english('he/she'),a(-),p(+),props([solid,living,animal,human])]).

lex(taaraa,n, [morphC(nom) ,a(-) ,p(+) ,agr( [3, pl, am, fl] ) ,grid( [], O),

props( [solid,living,animal]),k('0071006800720068'),english(they)]).

lex(taake,n, [grid([], []),morphC(acc) ,agr( [3,sg, m,f]]),

english( 'him/her'), a(-) ,p(+) ,props( [solid,living, animal]),

k('00710068003c004b')]).

lex(taake,n, [grid([], []) ,morphC(dat), agr( [3,sg, m,f]]),

english('him/her'),a(-),p(+),props([solid,living,animal]),

k( '00710068003c004b')]).

/,,/./,%%%%%%% note: shey taake bhalobashe -can't be co-indexed

lex(nij e,n, [grid( [] , []),a(+),p(-),agr([3,sg, [m,f]) ,english('himself/herself' ),

k('0069006e03cOO7a')]).

lex(nijera,n, [grid([] , []) ,a(+) ,p(-) ,agr([3,pl, [m,f] ) ,english('themselves'),

k('0069006eOO3cOO7aO3cOO6bO0720068')]).

lex(nijederke,n, [grid( [] , ),a(+),p(-),agr([3,pl, m,f]]),

english('to themselves'),morphC(acc),

k('0069006eO03cOO7aOO3cOO640072003cOO6b')]).

lex(taar,n, [grid( [], []) ,morphC(gen) ,agr( [3,sg,m]),

goal(a(A),inv_plus_minus(A,P)),p(P),english(his),k('007100680072')]).

lex(poroshpor,n, [grid( [], ) ,a(+) ,p(-) ,agr( [3,pl, [m,f])) ,k( '003c'),

english(eachother)]).

Y. nijeke,eke-oporke

. Common nouns

lex(eita,n, [a(-) ,p(-), agr([O, [] ,n]) ,grid( [], []),

57



english(this),k('0045006500740068')]). % this one

lex(oita,n, [a(-) ,p(-) ,agr( [], [] ,n]) ,grid( [], []),

english(that),k('005900740068')]). % that one (1)

lex(sheta,n, [a(-) ,p(-) ,agr([[], [] ,n]),grid([],[]),

english(that),k('003c007300740068')]). . that one (2)

lex(kotha,n, [a(-) ,p(-) ,agr([[], [] ,n]) ,grid([], []) ,english(word),

k('006b00700068')]).

lex(bhat,n, [a(-) ,p(-),agr([[], [] ,n]) ,grid( [], []),

english(rice),k('007600680071')]).

lex(boi,n,[a(-),p(-),agr([[],[],n]),grid([],[]),english(book),

props([solid,thought,written]),class(volume),k('00620065')]).

lex(khabar,n, [a(-) ,p(-) ,agr([[], [ ,n]) ,grid([],[]),

english(meal),k('00630068006200680072'),

props([solid])]).

lex(chul,n, [a(-) ,p(-) ,agr([[], [] ,n]),grid([],[]),

english(hair),k('00430075006c')]).

lex(gola,n, [a(-),p(-),agr([[], [] ,n]),grid([], [] ),

english('neck/throat'),k('0067006c0068')]).

lex(shohor,n, [a(-) ,p(-) ,agr( [[], ,n]),grid( [], []),

english(town),k('005300410072')]).

lex(maa,n, [a(-) ,p(-) ,agr([3,sg,f]) ,grid( [possessor], []),

english(mother),class(person),k('006d0068'),

props( [solid,living,animal,human])]).

lex(mayera,n, [agr([3,pl,f]),

k( '006d0068003c004f00720068') F]) :- nounFeatures(ma,F).

lex(chele,n, [agr([3,sg,m]),grid( [possessor], []),

english(boy),class(person),k('003c004a003c006c'),

props([solid,living,animal,human])]).

lex(baabaa,n, [a(-) ,p(-), agr([3,sg,m]) ,grid( [possessor],[]),english(father),

class(person),k('0062006800620068')]). % father

lex(babara,n,[agr([3,pl,m]) ,k('006200680062006800720068') F]) :-

58



nounFeatures(baba,F).

lex(bhai,n, [a(-) ,p(-), agr([3,sg,m]) ,grid( [possessor] , []) ,english(brother),

class(person),k('007600680065')]).

lex(chatro,n, [a(-) ,p(-) ,agr([[] ,[] , [m,f]]) ,grid([] , []),

english(student),class (person),k(b3d8cOb8)]).

lex(manush,n, [a(-) ,p(-) ,agr([[] , [], [m,f]]) ,grid( [] , []) ,english(man),

class(person),k('006d0068006e075005a')]).

lex(shishu,n, [a(-) ,p(-), agr( [[],[], [m,f]] ),grid( [], []) ,english(child/children),

class(person),k('0069005300530075')]). % child/children

lex(biral,n, [a(-),p(-), agr([[], [],n]) ,grid( [], []) ,k(c7ad),

props( [solid,living,animal]),english(cat)]).

lex(taka,n, [a(-),p(-) ,agr( [[], [],n]) ,grid( [], []),english(money) ,k(a4aab6e2)]).

lex(idur,n, [a(-) ,p(-) ,agr( [[], [],n]) ,grid( [], []),english(mouse) ,k(clcd)]).

lex(table,n, [a(-),p(-),agr([[],[],n]),grid([],[]),

k(a5c6albca5d6a5eb),props( [solid]),english(table)]).

lex(chithi,n, [a(-) ,p(-) ,agr( [[], [] ,n]) ,grid( [], U ),k('0069004300690054'),

english(letter),props([solid,thought,written])]).

%%% Verbs

% base-forms

lex(dewa,v, [morph(dewa, []),grid( [agent],[[theme], [goal]]),idoCase(dat),

english(give),agent: [solid,living,animal,human]]).

, since both theme and goal are optional

lex(bhalobasha,v, [morph(bhalobasha, []),grid( [agent] ,[goal]),english(love),

agent: [solid,living,animal]]).

lex(bokaa,v, [morph(boka, []) ,grid([agent], [goal]),english(scold),

agent: [solid,living,animal,human]]).

lex(dekha,v, [morph(see, []),grid( [agent], [goal]) ,english(see),

agent:[solid,living,animal]]).

lex(dekhano,v, [morph(dekhano, []) ,grid( [agent], [[proposition], [recipient]]),

idoCase(dat),agent: [solid,living,animal,human],

59



english(show)]).

lex(bolaa,v, [morph(bolaa, [),grid(C [agent], [[proposition], [recipient]]),

idoCase(dat),agent:[solid,living,animal,human],

english(say)]).

lex(aanaa,v, [morph(aanaa, [),grid( [agent], [patient]),allowExt(destination),

agent: [solid,living,animal] ,patient: [solid],

adv:destination:[near],english(bring)]).

I, non-base forms

lex(bhalobashe,v,bhalobasha, [morph(bhalobasha,past(-)),

k('00760068003c006c006800620068003c0073')]).

lex(bokbe,v,bokaa, [morph(bokaa,past(-)),k('0062006b003c0062')]).

lex(bollo,v,bolaa, [morph(bolaa,past(+)),k(' 0062006c003c006c0068')]).

lex(dekhalo,v,dekhano, [morph(dekhano,past(+)),

k('003c006400630068003c006c0068')]).

lex(dekhechi,v,dekha, [morph(dekha,past(+)),k('003c0064003c00630069004a')]).

lex(dilo,v,dewa,[morph(dewa,past(+)),k('00690064003c004c0068')]).

lex(dewa,v,dewa,[morph(dewa,past(+)),k('00690064003c004c0068')]).

lex(eneche,v,aanaa, [morph(aanaa,past(+)),k( '0045003cO06eOO3cOO4a')]).

% complementizers

lex(je,c,[selR([not(feature(inf(_)))]),english(that) ,k('003c006a')]). , that

% markers

lex(ke,mrkr, [left(n, [] ,morphC(acc)) ,k(a4f2)]).

lex(ke,mrkr, [left(n, [],morphC (dat)) ,k(a4f2)]).

lex(r,mrkr, [left(n, [] ,morphC(gen)),k(a4ce)]).

lex(er,mrkr, [left(n, [], morphC(gen)),k('0068')]).

lex(ta,mrkr, [left(n, [] det),k('0068')]).

lex(ti,mrkr, [left(n, [] ,det) ,k('0068')]).

lexFeature(morphC(_),n).

60



% relevant for marker constraints

relevant(n). relevant(v). relevant(p).

:- initialization(no contraction(_,_,_)).

, MISCELLANEOUS

verbalize([Yls]) :- lex(Y,n,_).

nounFeatures(Base,F) :- lex(Base,n,F1), pickl(agr(_),F1,F2),

pickl(k(_),F2,F).

verbFeatures(Base,F) :-

lex(Base,v,F1),

pickl(morph(_,_),F1,F2),

pickNF1(k(_),F2,F).

%%, MAPS MORPHOLOGY INTO SYNTACTIC FEATURES

.%% Verb morphology and Agreement

.%% Form Tense AGR

%% base infinitival

%Y. past(+) past(+) agr(_)

X%% past(-) past(-) agr(_)

vMorphToFs(_,Form,Features) :-

formToFeatures(Form,Features).

formToFeatures( [,[]).

formToFeatures(neg, []).

formToFeatures(te, []).

formToFeatures(past(X),[past(X),agr(_)]).

formToFeatures(npast(X), [past(X),agr(_)]).

61



formToFeatures(prog,[prog,past(-),agr(_)]).

% from Japanese

% verb morphology

'. irul (exists) -> ite

% iru2 (prog) -> ite

% iu (say) -> itte

, iru3 (need) -> itte

:- dynamic inf/2.

, Head movement and negation

negFromV(Neg,V) :-

V hasfeature neg,

mkFs ([index(_) ,polarity(-)] ,Fs),

mkEC(neg,Fs,Neg).

. From English

agrConstraint(X) :- intersectAGR([O,J , [n]],X) if cat(X,np).

C.3 peripheryBangla.pl

%%% -*- package: PROLOG-USER; Mode: PROLOG -*-

%%%.. PERIPHERY FOR BANGLA

..%%%. (c) 1991, 1992, 1993 Sandiway Fong, NEC Research Institute, Inc.

..%%% (c) 1995 Zeeshan R.Khan

..%X. Language-particular operations + kludgey stuff

.%%X.. 1. case agreement

.%%%.. 2. constrained scrambling

.%%%.. 3. clausal extraposition

62



%%% S-STRUCTURE GRAMMAR ADDITIONS

% Experimental feature pushing

pushFeature(morphC(_)).

:- multifile

rule ecNP

rule opC2$c2

(rule)/1.

-> [np(NP)] st ec(NP).

-> [ecNP,cl].

rule headadjoined adjoinstothe left. % in head movement

% Pushed features: Will be automatically generated...

rule dObjectNP -> [np(NP)] st \+ C==nom if NP hasfeature morphC(C).

rule ioObjectNP -> [np(NP)] st C==dat if NP hasfeature morphC(C).

rule overtONP -> [overtNP(NP)] st (C==acc;C==dat) if NP hasfeature morphC(C).

rule objectNP -> [np(NP)] st (C==acc;C==dat) if NP hasfeature morphC(C).

rule subjectNP -> [np(NP)] st \+ (C==acc ; C==dat) if NP hasfeature morphC(C).

rule rovertNP -> [overtNP(NP)] st \+ (C==obq ; C==gen) if NP hasfeature morphC(C).

rule npSubjectNP -> [np(NP)] st C==gen if NP hasfeature morphC(C).

rule npObjectNP -> [np(NP)] st C==gen if NP hasfeature morphC(C).

:- multifile (adjunction)/1.

, adjunction rule i2 -> [vp,rovertsubjNP].

% Tuesday, to break inf.loop

adjunction rule i2 -> [i2,rovertNP].

adjunction rule vp -> [overtONP,vp].

adjunction rule i2 -> [overtONP,i2].

% object scrambling (VP-int)

% no intermediate traces

63



adjunction

adjunction

adjunction

adjunction

rule i2

rule i2

rule i2

r:lle i2

%. Base adjunction

adjunction rule np

adjunction rule np

adjunction rule np

-> [pp,i2].

-> [i2,pp].

-> [i2,adv].

-> [adv,i21.

-> [overtNP,nq]. % freely adjoin NQ to NP

-> [nq,np].

-> [pp,np] st lexicalProperty(pp,conj).

:- multifile add_goals/2.

rhs [overtONP(NP),vp] addgoals [aPos(NP)].

rhs [overtONP(NP),i2] addgoals [aPos(NP)].

Y, scramble object to A-pos

Z A-pos (tentatively)

rhs [vp(VP),v] addgoals [\+ adjoined(VP)]. /, eliminate unnecessary

% non-determinism

% NQ NP Agreement

rhs [overtNP(NP),nq(NQ)] addgoals [agreeNPNQ(NP,NQ)]. % eliminate non-det.

rhs [nq(NQ),np(NP)1 add_goals [agreeNPNQ(NP,NQ)].

% Scrambling

lhs overtONP add_goals [pushReq(es(i),es(o))].

lhs dObjectNP & rhs [np(X)] addgoals [cReq(X,es(i),es(o))].

lhs ioObjectNP & rhs [np] add_goals [cReq(es(i),es(o))].

lhs subjectNP & rhs [np(X)] add_goals [ldReq(X,es(i))].

lhs leftvgridcsrlstnp addgoals [oneReq(es(i))].

lhs vO add_goals [zeroReq(es(i))].

rhs [det,nl] addinherit plus(2,[1,[wh,op(_)]]).

64



, rhs [pp,vp] replace_rhs [coPP,vp].

rhs [c2,relClNP] replace_rhs [opC2,relClNP].

% Experimental feature pushing, again...

rhs [np,vgrid] replacerhs [dObjectNP,vgrid]. %, opt. direct object

rhs [np,vl] replacerhs [ioObjectNP,vl]. % opt. indirect object

rhs [np,il] replacerhs [subjectNP,il]. % opt. subject

rhs [np,pgrid] replacerhs [overtNP,pgrid]. , disallow post-pos stranding

rhs [np,nl] replacerhs npSubjectNP,nl]. , genitive Case

rhs [np,nl] replacerhs [npObjectNP,nl].

:- multifile (left_bracket)/1.

leftbracket c2 substitute openReq for open.

%%%.. S-STRUCTURE GRAMMAR DELETIONS

%%. kind of redundant, will not be needed in next version

block rule adv -> [adv(Adv)] st maybeSubcategorized(adv,Adv).

%%% OTHER LANGUAGE-SPECIFIC AREAS

%%. EMPTY COMP

%%I.. similar as in English

%, null C is only permitted in matrix clauses and for A-bar clauses

%, emptyCompFeatures(Fs) :-

, nullFeatures(Fs),

', addF(goal(apos,fail),Fs) if \+ isMatrixLevel.

% To satisfy the WhInSyntax filter,

A% matrix [C] is freely [+/-Wh], e.g. who left, john left

65



emptyCompFeatures(Fs) :-

isMatrixLevel

-> mkFs([wh(_)] ,Fs)

nullFeatures(Fs).

%%%.Y. Move-Alpha (D-structure to S-structure)

moves(CF,np) :- cat(CF,np).

% compatibleCase(AssignedCase,MorphologicallyRealizedCase)

compatibleCase(X,X).

% compatibleCase(nom,gen).

'. compatibleCase(dat,acc). % for shey taake boi dilo

. to consider dative as acc

compatibleCase(_,topic). % deal with topicalization later

% Case Transmission: Need it for scrambling (complement to adjunct)

% NB. need to do [NP NQ NP-t], despite extraction, NQ-NP is overt

caseTransmission(Hd,NP,Case) :-

baseTrace(NP),

headOfChain(Head,NP),

Head hasfeature adjunct, . scrambling

NP hasfeature compl,

assignSCase(Hd,Case,Head),

NP hasfeature case(Case) if \+ ec(NP). % [NP NQ NP-t]

realizedAsMarker(gen).

realizedAsMarker(dat).

66



caseRealizationMode(_NP,morphC).

% NQ NP agreement

agreeNPNQ(NP,NQ) :-

NQ hasfeature classifier(Class),

((\+ ec(NP) ; NP hasfeature class(_))

-> agreeClassifier(NP,Class)

; NP hasfeature ec(trace), Y. force trace

transmitViaChain( [], [goal(agreeClassifierl(X,Class) ,X)] ,NP)).

agreeClassifierl(NP,Class) :- agreeClassifier(NP,Class).

agreeClassifier(NP,Classl) :-

NP hasfeature class(Class)

-> Class = Classl

Classi = default.

U%. Chain Formation conditions

chainLinkConditions(Head,Trace,_,UpPath,DownPath) :-

\+ vacuousScrambling(UpPath,DownPath)

if Trace hasfeatureset apos,adjunct], '. scrambling

longDistABarPos(Head,UpPath)

if Head hasfeatureset [apos,adjunct].

vacuousScrambling([],_). Y, no topmost segment crossed

vacuousScrambling(_,Down) :- \+ Down == [].

% Long Distance scrambling is A-bar

67



longDistABarPos(Head,UpPath) :-

addFeature(goal(apos,fail),Head) if in(c2,UpPath). % inter-clausal

.,/ SCRAMBLING

%%

%% Must prevent vacuous scrambling

shiftRequest(n,es).

% request carrier r(State)

% State = Var or 1

/,@/ pushReq(ES,ES') start new req state 0

%% shiftReq(ES) all requests state 0 -> 1

@Y. cReq(ES,ES') ticks off a state 1 req

%.. cReq(X,ES,E-S') X must be ec if req found

%% openReq(ES,ES') put in place of open, barf if state 0 req found

% initiates a request

pushReq(ES,[r(_)lIES]) :- kReq(ES).

%. handles r([X])

kReq([XIESI) :-

open():)

-> true

(functor(X,r,_)

-> kReql(ES)

kReq(ES)).

% fails if we get to r(_) before an open

kReql([XIES]) :- open(X) -> true ; \+ functor(X,r,_), kReql(ES).

68



% change state of all open requests

% handles r([X])

shiftReq([XIES]) :-

open(X)

-> true

; ((X = r(1) ; X = r([1]))

-> shiftReq(ES)

; shiftReq(ES)).

% state <- 1

ldReq(Item,ES) :- ec(Item) -> ldReq(ES) ; true.

ldReq([XIES]) :-

open(X)

-> true

; (X = r(V)

-> (var(V) -> V = [_] ; true),

shiftReq(ES)

; shiftReq(ES)).

% consume one shifted request

cReq(ES,ESp) :-

ES = [XIES1],

(open(X)

-> ESp = ES

; (X = r(S)

-> (S == 1 % consume

-> ESp = ES1

; ESp = XIESpl],

cReq(ES1,ESp 1))

; ESp = [XIESpl],

69



cReq(ES1,ESpl))).

% obligatory consume shifted request

cReq(Item,ES,ESp) :-

ES = [XIES11],

(open(X)

-> ESp = ES

(X = r(S)

-> (S == 1 % shifted

-> withEmpty(Item),

ESp = ES1

ESp = [XIESpl],

cReq(Item,ES1,ESpl))

ESp = [XIESpl],

cReq(Item,ES1,ESpl))).

withEmpty(X) :- ec(X) -> true ; adjoined(X,_,X1), withEmpty(Xl).

% non-local request propagation

% ES = ...Rs...]

% ES' = [..Rs...,open,...]

, Translates r(C1]) -> r(l)

openReq(ES,ESp) :-

nlReql(ES,ES1,Rs),

appendl(Rs,ES2,ESp),

open(ES , ES2).

, separates local requests Rs leaving ES'

nlReql(O, [], L]).

70



nlReql([XIES],ESp,Rs) :-

open(X)

-> ESp = EXIES],

Rs = El[]

(X = r(S)

-> (S == 1 % already shifted

-> Rs = [XlRsp],

nlReql(ES,ESp,Rsp)

; S == [1], % shift, xform r([1l)->r(l)

Rs = [r(l)lRspl,

nlReql(ES,ESp,Rsp))

ESp = XIESpl],

nlReql(ES,ESpl,Rs)).

% <= 1 state 1 req, no state 0 req

oneReq([XIESI) :-

open(X)

-> true

(X = r(S)

-> S == 1,

zeroReq(ES)

oneReq(ES)).

I, no reqs of any state allowed

zeroReq([XIES]) :- open(X) -> true ; \+ functor(X,r,_), zeroReq(ES).

%%% LEXICON SUPPORT

externalRolesForNi(X,Y) :-

vpAllowExtL( [goal,source],X)

-> Y = goal

71



; unsaturatedExtRole(X,agent),

Y = agent.

/.%%% CLAUSAL EXTRAPOSITION

:- multifile (rule)/1.

% Availability of empty Comp

rule empty c with Fs st isMatrixLevel, mkFs([wh(_)],Fs).

% Allow the option of local rightwards CP/IP Extraposition

rule xpCP$c2 with Fs -> [] st rwmTrace(c2,Fs,input(i),es(i),es(o)).

% rule xpCP -> [c2] st true.

rule xIP -> [i2 st cpExtpd(es(i)). % for efficiency only

% rule xIP -> [i2].

rule xpdCP -> [c2(CP)] st rwmChain(CP,es(i),es(o)), licenseXpdCP(CP).

:- multifile (adjunction)/1.

adjunction rule i2 -> [xIP,xpdCP].

rhs [c2,vgrid] replacerhs [xpCP,vgrid]. % option of CP extraposition

:- multifile (appgoals)/2.

rhs [c2(CP),vgrid] appgoals [antiCaseCP(CP)]. % Dutch no Case for CP/IP

%%% EMPTY COMP

/, Empty C is Q only

'/ emptyCompFeatures(Fs) :- mkFs([wh],Fs).

72



%% Chain Formation conditions

% chainLinkConditions(_New,_Head,_L,_UpPath,_DownPath).

%% Dutch differs from German (and archaic Dutch) in that the base

%% order is not possible. Traced to Case reasons.

antiCaseCP(CP) :- CP hasfeature case(block) if \+ ec(CP).

% trace of rightwards movement

% push rw(i2/c2,ChainItem) onto environment stack

% Lemma: Extraposition not required in matrix clauses.

rwmTrace(C,Fs,ES,ESp) :-

mkFs( [ec(_)] ,Fs),

mkEC(C,Fs,CP),

phraseToChainItem(CP,Item),

push([rw(C,Item)] ,ES,ESp).

rwmTrace(C,Fs,Input,ES,ESp) :-

unboundedLookaheadTest(Input),

mkFs([ec(_)] ,Fs),

mkEC(C ,Fs,CP),

phraseToChainItem(CP,Item),

push([rw(C,Item) ,ES,ESp).

cpExtpd(ES) :-

\+ \+ pop(rw(_,_),ES,).

% extraposed clause

73



. form chain with trace

rwmChain(CP,ES,ESp) :-

cat(CP,C),

pop(rw(C,Trace),ES,ESp),

phraseToChainItem(CP,Head),

chainLink(Head,Trace,_,_),

coindex(Head,Trace),

instantiateChain( [Head,Trace]).

rwmChainOpen(CP,ES,ESp) :-

cat(CP,C),

popUpOne(rw(C,Trace),ES,ESp),

phraseToChainItem(CP,Head),

chainLink(Head,Trace,_,_),

coindex(Head,Trace),

instantiateChain( [Head,Trace]).

licenseXpdCP(CP) :-

notEmptyOperator(NP) if NP specifierof CP.

%%%%,,/, D-structure Binding

X.7 A beta-marks B in S

binds(A,B,CF) :- a, redefinition of "binds"

(betamark(A,B,CF) ; ccommands(A,B,CF)),

coindexed(A,B).

betamark(A,B,SS) :-

ccommandsinDS(A,B,SS),

74



A has_feature subject, % A is a subject

make A have_feature beta_marked.

,% A c-commands B in D-struct

ccommandsinDS(A,B,S) :-

recoverDsRecur(D,S),

D has_constituents Cs,

in(Al,C,Cs),

transparent(Al,A),

dominatesmine(C,B).

c_commandsinDS(A,B,S) :-

S has_constituent C,

ccommandsinDS(A,B,C).

recoverDsRecur([DS,DLeft,DRight], [SS,SLeft,SRight]) :-

recoverDsElement( [DS], [SS]),

[DS] hasfeature % DS is not empty

-> recoverDsRecur(DLeft, SLeft),

recoverDsRecur(DRight, SRight)

true.

recoverDsRecur(DS,[SS,Word]) :-

recoverDsElement(DS,[SS,Word]).

recoverDsRecur(DS, SSI) :-

recoverDsElement(DS, SS]).

dominates_mine([C$_$[Fsll_]--_] , [C$_$ [Fs21_--) :-

sameCategory(Fsl,Fs2),

dominates.mine[C$

dominates_mine( [C$_$ Fs1 I_]--_,Word] , [C$_$ [Fs21_3--_,Word]) :-

75



sameC:ategory(Fsl ,Fs2),

dominates_mine(A,B) :-

A has_feature _,

A hasconstituent C,

dominates_mine(C, B).

76



Bibliography

[BF92] Robert C. Berwick and Sandiway Fong. Madama butterfly redux: Pars-

ing english and japanese with a principles-and-parameters approach. In

R.Mazuka. editor, Japanese Sentence Processing. Lawrence Erbaum, 1992.

[C.B94] Robert C.Berwick. Class notes, natural language processing and knowl-

edge representation. Course 6.863, Massachusetts Institute.of Technology,

Cambridge, MA, 1994.

[Cho8la] Noam A. Chomsky. Lectures on Government and Binding. Foris Publica-

tions, Dordrecht, 1981.

[Cho8lb] Noam A. Chomsky. Principles and parameters in syntactic theory. In

N.Hornstein and D.Lightfoot, editors. Explanation in Linguistics. Long-

man, London and New York, 1981.

[Dor87] Bonnie Jean Dorr. Unitran: A principle-based approach to machine trans-

lation. Technical Report 1000, MIT Artificial Intelligence Laboratory, 1987.

[Fon94] Sandiway Fong. Towards a proper linguistic and computational treatment

of scrambling: an analysis of japanese. In Proc. COLING-94, Kyoto, Japan,

August 1994.

[Hae91] Liliane Haegeman. Introduction to Government and Binding Theory. Black-

well Publishers, second edition, 1991.

[Jon93] Douglas Arnold Jones. Binding as an interface condition: an investigation

of Hindi scrambling. PhD thesis, MIT. 1993.

77



[Kla81] M.H. Klaiman. Volitionality and Subject in Bengali: A Study of Semantic

Parameters in Grammatical Processes. Indiana University Linguistics Club,

Bloomington, 1981.

[LD94] Dekang Lin and Bonnie Dorr. Government-binding theory and principle-

based parsing. October 1994.

[Lee94] Young-Suk Lee. Scrambling as Case-Driven Obligatory Movement. PhD

thesis, University of Pennsylvania, Philadelphia, PA 19104, 1994.

[Mah90] Anoop Kumar Mahajan. The A/A-Bar distinction and movement theory.

PhD thesis, Massachusetts Institute of Technology, Cambridge, MA 02139,

1990.

[R.L93] R.L.Trask. A dictionary of Grammatical Terms

London and New York, 1993.

[Sai85] M. Saito. Some Asymmetries in Japanese and

tions. PhD thesis, MIT, 1985.

[Sen90] Gautam Sengupta. Binding and Scrambling in

versity of Massachusetts, September 1990.

[vdA93] Tim van der Avoird. Accomodating gb theory

Pappi document, March 1993.

in Linguistics. Routledge,

Their Theoretical Implica-

Bangla. PhD thesis, Uni-

for dutch by using pappi.

78


