
Garbage Collection for the Autopilot C System
by

Walter Lee

Submitted to the Department of Electrical Engineering and
Computer Science

in partial fulfillment of the requirements for the degrees of

Master of Engineering in Computer Science and Engineering

and

Bachelor of Science in Computer Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

May 1995

(Walter Lee, MCMXCV. All rights reserved.

The author hereby grants to MIT permission to reproduce and
distribute publicly paper and electronic copies of this thesis

document in whole or in part, and to grant others the right to do so.

Author ..
Department of Electrical Engineering and Computer Science

r ,/ May 25, 1995

C ertified by
David Kranz

(J tRes e search Scientiste* \ an ,l-".~'ITesis Supervisor
Accepted by

;;,i,sSAc,liUSEJTS INSTr'UTEr r
OF TECHNOLOhairman, Departmental Committee on Graduate Theses

AUG 101995

LIBRARIES
Barer En

Garbage Collection for the Autopilot C System

by

Walter Lee

Submitted to the Department of Electrical Engineering and Computer Science
on May 25, 1995, in partial fulfillment of the

requirements for the degrees of
Master of Engineering in Computer Science and Engineering

and
Bachelor of Science in Computer Science

Abstract
In this thesis, I designed and implemented a garbage collector for the Autopilot
C compiler which is used with the Alewife machine. Autopilot C is an ANSI-C
compatible language with features that facilitate parallel programming, while Alewife
is an experimental parallel machine with a scalable number of nodes. The garbage
collector is implemented as a mostly copying garbage collector that handles ambiguous
roots. This algorithm reduces memory fragmentation and improves reference locality.
The work consists of implementing the garbage collector as well as making changes
to the compiler in the way it handles memory requests.

Thesis Supervisor: David Kranz
Title: Research Scientist

Acknowledgments

My thesis advisor David Kranz provided invaluable help and was most patient during

the project. Also, my friends, Yitwah Cheung and Sinming Law, gave me the much

needed moral support. And of course, I thank my parents, Kai Fong Lee and Alice

Lee, for giving me the opportunity to study at MIT in the first place.

Contents

1 Introduction

1.1 Techniques for Heap Space Management

1.1.1 Explicit Memory Reclamation

1.1.2 Automatic Memory Reclamation

1.2 The Autopilot C System

2 High Level Design

2.1 General Features.

2.2 Pointer Detection within the Heap

2.3 Objects Supported

2.3.1 Unions

2.3.2 Placeholders.

2.4 Preamble

2.5 Locating Object Preamble .

2.6 Parallel Processing
3 Implementation Overview

3.1 Division of the project

3.2 Generator of the pointer locators

3.2.1 Pointer lists.

3.2.2 Functionality of the pointer locators

3.2.3 Objects defined by typedefs

3.2.4 Structs/unions with complex subcomponents .

4

8

8

9

10

14

16

16

17

18

18

19

20

23

24

27

27

28

29

29

29

30

.

......................................

...................

...................

...................

...................

...................

...................

3.3 Handler for heap memory requests.

3.4 Memory allocator.

3.5 Garbage collector

3.5.1 Root tracing

3.5.2 Hleap tracing

3.5.3 Pointer correcting .

'3.5.4 Copying back locked objects

4 Implemenrtation Details

4.1 Compilation time .

4.2 Run time

4.2.1 Page links .

4.2.2 New-page lists .

4.2.3 Page-generation

4.2.4 Page-lock . . .

4.2.5 Object-start . .

5 Results and Conclusion

5.1 Status .

5.2 Improvements

........ . .31

........ . .32

........ . .33

........ . .34

........ . .34

........ . .37

........ . .38
40

..... o .. 4 0

......................... . 43

......................... . 44

..... ^ . 4 5

......................... . 45

......................... . 47

......................... . 48
49

49

50

5

.

.

.

.

.

.

.

. .I I I I

List of Figures

2-1 Format of the preamble for various object types 21

3-1 Relations between the four major complements of the implementation. 28

4-1 Format of the Pointer Locating Procedure 43

6

List of Tables

2.1 Methods used to handle placeholders with various attributes

7

19

Chapter 1

Introduction

Garbage collection is a method for automatic memory reclamation of allocated heap

space. This memory management technique enjoys excellent response time for most

memory requests, at the small cost of running a garbage collection routine when

the heap runs out of space. In addition, copying garbage collection reduces memory

fragmentation, a serious problem that plagues conventional memory management

schemes. The technique has proven itself useful in variations of Lisp where it was

originally founded, and in recent years it has been successfully adopted in other

languages as well. This thesis will extend the reach of garbage collection to the

Autopilot C compiler on the Alewife parallel machine.

1.1 Techniques for Heap Space Management

In designing a compiler for a language, one of the important issues facing the designer

is how the heap space should be managed. This is in large part determined by the

selection of an appropriate memory reclamation technique. Garbage collection is one

such technique, but there are other alternatives as well. In general, the techniques

may be classified into two classes, either explicit memory reclamation or automatic

memory reclamation.

8

1.1.1 Explicit Memory Reclamation

In explicit memory reclamation, the programmer is given the responsibility of recy-

cling the heap space occupied by unreferenced objects. To clear allocated space for

further use, the user program must explicitly deallocate the heap space. The most

popular variation of this method is dynamic-block allocation. This variation dynam-

ically determines the size of the memory block used to satisfy a memory request.

The advantage of dynamic-block allocation is that memory is allocated to fit the

size of the request, which is an improvement over more primitive schemes where mem-

ory blocks have fixed sizes. However, this method introduces several new problems.

First, it causes fragmentation of the heap space. Fragmentation occurs when objects

located away from the free end of the heap are deallocated. Though this deallocated

space can be reused, it is unlikely that the newly allocated objects will have sizes

that fully utilize the space. Over time, the heap becomes sprinkled with small pieces

of unused memory, which decreases the effective size of the heap. In addition, during

memory allocation, one is required to search through the list of fragmented space to

locate an appropriate memory block. Though the actual performance depends on the

algorithm used for selecting the block, the run time of this method is O(n), where n

is the number of fragmented pieces of memory. This is considerably worse than the

optimal performance of constant order. Finally, this method suffers from a lack of

reference locality. Related objects allocated with successive requests may be scattered

across the memory space to fill holes left by previously deallocated objects.

Shortcomings of Explicit Memory Reclamation

In general, the problem with explicit memory reclamation schemes is they require

the user programs to manage the heap space properly. If the user program does not

free the memory that it no longer needs, the heap will eventually run out of space.

Worse, if the user program accidently frees a piece of memory that it is still using,

the piece of memory may be reallocated for another object, causing information to

be overwritten and destroyed. Avoidance of these user induced errors is desirable.

9

1.1.2 Automatic Memory Reclamation

Automatic memory reclamation avoids these mistakes by providing a mean by which

garbage, or unreferenced objects in the heap, can be automatically detected and

recycled. Various methods of garbage collection fall under this category.

Garbage collection is based on the the following observation. Given a set of root

pointers through which a programming state accesses objects within a heap, one can

determine all accessible objects in the heap by doing an object trace starting from

the set of root pointers. The trace begins by marking all the objects that are within

immediate reach of the root pointers. These reachable objects are then examined

to find all objects they can reach. As new objects are discovered, they are checked

for yet-to-be-discovered objects they can reach. The process continues until no more

new objects can be found. Any object not locatable at the end of this search is safely

discarded, and the memory space it occupies becomes free for reuse.

Garbage collection has been refined and improved since its introduction over thirty

years ago. Research in this area has led to an increasing number of variations, includ-

ing the mark-and-sweep collector, the copying garbage collector, and the generation

garbage collector.

Mark-and-Sweep Collector

The mark-and-sweep collector is the grandfather of all garbage collectors. Its collec-

tion process is divided into two phases, the mark phase and the sweep phase. In the

mark phase, objects are marked and traversed; in the sweep phase, the heap space

is scanned for unmarked objects, whose occupied space is freed for reuse. For this

algorithm to work, two sets of information must be kept. A bit must be associated

with each object to indicate whether it has been marked, and a mark stack is needed

to keep track of marked objects yet to be traversed in the mark phase.1

Though it was simple and usable at the time it was invented, the mark-and-

sweep collector is unsuitable for today's languages and systems. First, its run time is

'It is, however, possible to avoid the need of a mark stack.

10

proportional to the size of the heap space. As the size of memory continues to balloon,

such a collector becomes less and less efficient. Second, the existence of variable sized

objects causes the same fragmentation problem noticed in implicit dynamic-block

allocation. Since modern languages invariably contain objects of more than one sizes,

eliminating such a problem is necessary.

Copying Garbage Collector

The copying garbage collector was designed to improve on the two main deficiencies

of the mark-and-sweep collector. This collector requires that the heap be divided into

two halves. Only one of these halves is used for user program storage at any time.

When garbage collection occurs, the roots are traversed, and any newly discovered

live object is copied from the active half of the heap to the inactive half of the heap. A

forwarding pointer is left at the old object location so that other pointers to the same

object may be updated with the new object location. The live objects that have been

moved to the inactive half are then traversed to locate the rest of the live objects.

In this algorithm, the inactive half of the heap serves a dual role. During garbage

collection it serves the same capacity as the mark stack used in the mark-and-sweep

collector. At the end of garbage collection, it contains the complete set of live objects.

When garbage collection is finished, the role two halves are swapped so that the half

containing all the live objects becomes the active part of the heap.

Compared to the mark-and-sweep collector, the copying garbage collector has a

better run time order. The run time is proportional to the size of the heap in use

rather than to the total size of the heap. In addition, the process of copying the

live objects to an empty part of the heap produces two beneficial side effects, the

elimination of fragmentation and an improvement in reference locality.

The major drawback of this collector is that the effective size of the heap space

is only half of its actual size. However, since the cost of memory has declined dra-

matically in recent years, it has become increasingly less expensive to overcome this

problem.

11

Copying Garbage Collector with Ambiguous Roots The copying garbage

collector described above requires that the set of root pointers used for locating live

heap objects be precisely specified. For most languages, however, this requirement

is not practical. It is easy enough to find a set of global values, called the root set,

that contains the set of root pointers. But many languages, including C, do not have

enough control over the root set to guarantee that all values within it are pointers to

the heap.

The problem with the original algorithm is the following. Consider a typical

root set in C, which generally includes the stack and possibly other special memory

locations. Values of the root set that do not fit within the address range of the heap are

definitely non-heap pointers, but values within the address range may either be heap

pointers or just values (integers, floats, etc.) that look like pointers. Since pointer

values within the root set are not tagged or distinguished in any way from non-pointer

values, there is no way to separate the genuine pointers from the pretenders.

For this problem, Bartlett [2] describes a solution that preserves the spirit of the

copying garbage collector. This solution operates on an ambiguous root set by taking

a conservative approach to any possible heap pointers, or maybe pointers, within the

set. Objects directly traced by these maybe pointers remain at the same place during

garbage collection, so that non-pointer root values that look like pointers do not get

erroneously updated. On the other hand, objects traced from pointer values in the

heap are moved as usual, since these pointers are definitely pointers.

For bookkeeping purposes, the heap is divided into units called pages. Most

attributes used during garbage collection are stored by pages rather than by objects.

Two such attributes are the identifier and the lock attribute. The page identifier

determines whether the corresponding page contains live heap objects. A page with

live objects has an identifier that matches the value stored in current_space. The

value of currentspace is incremented at the end of every run of garbage collection.

The lock attribute indicates whether objects in the page can be moved during garbage

collection. If the attribute is set, objects in the page cannot be moved.

The outline of the algorithm is as follows. At the beginning of garbage collection,

12

the nextspace variable is set to one greater than currentspace. The collector

then traces the root set, and it copies any referenced objects in currentspace to

new pages in the heap. The identifier of these pages is set to nextspace. The

collector also leaves a forwarding pointer at the copied object's old location, and it

locks the page containing the old object.

The collector uses a queue to keep track of the pages that are allocated for storing

the copied objects. After root tracing is complete, the collector traces pages in this

queue in a FIFO manner. This step continues until all pages in the queue are traced.

Like the previous step, new objects discovered here are added to the end of the

queue, either by copying them to the last page in the queue, or by copying them to

new pages which are then added on to the queue. A forwarding pointer is again left

at the object's old location.

As pages are removed from the queue, they are added to a list of live pages. The

collector goes through this list to update pointer values within live objects. For each

pointer, it checks whether the referenced object has been moved, and whether the

page of the referenced object is unlocked. If both conditions are true, the pointer

needs to be updated using the forwarding pointer left at the object's old location.

Finally, the collector copies back the objects located in the list of locked pages. It

promotes these pages by updating the values of their identifiers to nextspace. The

collector concludes by updating currentspace to next-space.

Generation Garbage Collection

Generation garbage collection attempts to improve the response time of the garbage

collector by reducing the amount of work a typical run of garbage collection has to do.

This process is based on the observation that younger objects turn into garbage more

frequently than older objects. To take advantage of this observation, the heap space

is divided by age into different areas called generations. The younger the generation,

the more frequently it gets collected for garbage. Objects that last longer than a

certain period of time are promoted to an older generation. In order for garbage

collection of a single generation to run correctly, pointer references across different

13

generations must be readily available.

Collectors based on this idea have successfully improved the run time of garbage

collection while still producing good reference locality. This idea has also introduced

some new and interesting issues. It is uncertain how often collections of various gen-

erations should occur for optimal results. Frequent collections produce fast response

time, but they increase the aggregate time spent on garbage collection. Another issue

is concerned with when an object should be promoted to an older generation. Moving

long lasting objects to an older generation is desirable, but as an older generation in-

creases in size, the eventual garbage collection on it becomes slow and unproductive,

since most of the generation's objects are still alive. Generation garbage collection is

still an active area of research today.

1.2 The Autopilot C System

The Autopilot C System (Autopilot for short) is a parallel programming system that is

backward compatible with ANSI C. It is designed to provide automatic management

of locality and parallelism. The garbage collector in the thesis is built for this system.

Since some features of Autopilot have a direct impact on the implementation of the

garbage collector, it is appropriate to discuss the relevant features at this point.

1. Pointer Casting

Unlikely ANSI C, Autopilot forbids casting of pointers to non-pointers. This

restriction makes Autopilot more strongly typed than typical ANSI C.

2. Objects

In addition to providing the standard data types available in ANSI C, Autopilot

provides an additional class of data types called objects. Objects are heap based

data types that are automatically garbage collected. Although they are similar

to standard heap based data types in C, each of them includes an additional

preamble describing its contents. The preamble stores the information needed

14

to perform proper garbage collection on the object. Its details will be given in

the next chapter.

3. Futures/Placeholders

Autopilot allows an expression to be labeled as a future. When such an expres-

sion is encountered, a new thread may be created to evaluate it. This permits

parallelism between the future expression and the expressions following it. The

value of the future is returned in an object type called a placeholder.

Of course, the garbage collector requires some design support from Autopilot as

well. The support is described in the next chapter.

15

Chapter 2

High Level Design

Garbage collection is originally adapted for uniprocessors running languages like

Scheme, where the languages have explicit control over the type of information that

can be stored in the stacks and the heaps. Modern systems, of course, are more com-

plex. They introduce new issues and complications that require adjustments to the

technique of garbage collection. This chapter describes the adaptations necessary to

make garbage collection work for the Autopilot C System. Since the skeleton of the

Autopilot garbage collector is obtained from a garbage collector designed by Digital

Equipment Corporation for a Scheme-derived language called Mul-T, several of the

design decisions made here closely parallel the ancestor version.

2.1 General Features

Though not technically a part of its definition, modern garbage collection invariably

includes the responsibility to compact the memory and improve reference locality.

Being a copying garbage collector, our collector performs these functions.

For the sake of simplicity, our garbage collector will not contain the features of

a generation garbage collector. However, the current design can incorporate these

features without requiring significant changes.

16

2.2 Pointer Detection within the Heap

In order to be able to traverse an object in a heap, one needs to know the locations

of the pointers within it. For this purpose, a preamble is associated with each object.

It is located immediately before the object inside the heap.

The challenge here is to minimize the memory overhead of the pointer information.

This goal has a determining factor on two issues. The first issue is to decide where

the piece of information should be stored. It can be stored either directly in the

preamble or in an auxiliary structure whose address is stored in the preamble. The

direct approach is desirable if the information can be stored in very few words. In

particular, if the information can be fit within two words, it will always do better

than the latter approach, which carries a one-word overhead. The auxiliary structure

approach, on the other hand, is better for larger pieces of pointer information. This

approach limits the size of the preamble, and it allows sharing of information between

objects of the same type.

The second issue is to determine how the pointer information should be stored.

One option is to enumerate the locations of the pointers. The alternative is to use one

bit to indicate whether each word in an object is a pointer. The pointer enumeration

approach requires space linear to the number of pointers. It is efficient when there are

few pointer fields within an object, or if the size of the object is large. The bitmap, on

the other hand, requires space linear to the size of the object. It is therefore preferable

for small objects, particularly if the small objects also contain many pointers.

To accommodate objects of different sizes, two methods are selected to store the

pointer information. Each method addresses the two issues above by selecting the

options better suited for the objects for which the method is designed. For a small

object, the pointer information is stored as a bitmap inside the preamble. Each bit

in the bitmap corresponds to a word in the object. A "1" indicates that the corre-

sponding word is a pointer, while a "0" indicates otherwise. For a large object, the

pointer information is stored in an auxiliary structure, which is actually a procedure.

A pointer to the procedure is stored in the preamble of the object. The procedure

17

contains a list of pointer locations relative to the start of an object, as well codes

used to process that list during garbage collection.

The details of the preamble are given in section 2.4.

2.3 Objects Supported

Ideally, the garbage collector should support all objects stored within the heap. The

list of objects includes structs, unions, arrays, typedefs, and placeholders. Most of

the objects on the list can be supported by storing the locations of their pointers

via one of the two methods described above. For unions and placeholders, however,

pointer detection is a bit more complicated. Their peculiarities are described below.

2.3.1 Unions

Unions are difficult to handle because the pointer/non-pointer attributes of their fields

are not fixed. During run time, a union object may be any of its predefined subtypes,

each of which may have a different pointer distribution. To know for certain where all

the pointers are within a union at any time, one needs to store the pointer distribu-

tion of each subtype as well as know the subtype of the union at the time. However,

extending our general approach in this way to accommodate unions creates several

problems. With other objects, the space required to store the pointer information is

proportional to the object size. But for unions, the space required cannot be bounded

by a similar function of object size, since it also depends on the number of subtypes

defined for the union. Thus for unions with many subtypes, this overhead can turn

out to be unreasonably large. In addition, storing and retrieving the subtype of a

dynamically allocated union object is a nontrivial problem which requires modifica-

tions in how Autopilot C handles operations on unions. These modifications not only

have potentially far-reaching implications on other parts of the system, but they also

introduce processing time overhead. It would be desirable to find a solution that fits

better with what is already available.

The solution used to handle unions adopts the same conservative approach found

18

Pointer? Resolved? Method
no no Trace and correct the placeholder with its LSB masked.
no yes None
yes no Trace and correct the placeholder with its LSB masked.
yes yes Trace and correct the placeholder.

Table 2.1: Methods used to handle placeholders with various attributes

in treating ambiguous root pointers. Rather than storing enough information to

locate pointers with certainty, the pointer information only includes a list of possible

pointers. This list consists of any memory location within the union that stores a

pointer for any of the union's subtypes. When tracing these pointers during garbage

collection, the list is treated the same way as the maybe pointers in the ambiguous root

set. If a value could be a pointer, the object referred to by the pointer is considered

alive, and the page containing the object is locked. At the cost of some uncertainty,

this approach handles a tough and exceptional case without requiring major changes

in the design. For applications where union objects are relatively infrequent, this

solution will have little effects on the performance of the collector.

For our purposes, any object containing a field that may store more than one type

of values is considered a union. Therefore, a struct that contains a union would be a

union under this definition.

2.3.2 Placeholders

Placeholders cause complications because they add an extra attribute to an object

field that effects the behavior of the garbage collector. The method used to handle

such a field during garbage collection depends on this attribute. For non-placeholders,

the methods have already been discussed. For placeholders, the specific method

required depends on two other attributes, whether the placeholder is a pointer and

whether it has been resolved. Table 2.1 gives a mapping between the attribute values

and the methods used.

The resolved attribute is stored directly in the LSB of an object field. In order

for the garbage collector to handle placeholders properly, the preamble needs to store

19

the placeholder attribute for each field in the object. Currently, the preamble does

not contain this information, so the collector cannot handle placeholders. However,

the preamble will be modified at a later date to contain this information.

2.4 Preamble

The preamble is stored at the beginning of each heap object. It contains the infor-

mation necessary to properly perform garbage collection on the object. The list of

information needed for this purpose includes:

* identity of the object.
* size of the object.
* whether the object has been moved.
* location of its pointers.

To minimize memory overhead, the format of the preamble depends on the type

and the size of the object. For the purpose of determining this format, each object is

classified as one of the following:

Small single struct/union The object is a single struct or union whose size does

not exceed 24 words.

Large single struct/union The object is a single struct or union whose size is

greater than 24 words.

Small array of struct/union The object is an array of structs or unions. Its

struct/union size does not exceed 6 words, and its array size is less than

216 = 65536.

Large array of struct/union The object is an array of structs or unions. Either

its struct/union size is greater than 6 words, or its array size is greater than or

equal to 65536.

Simple array The object is an array of simple elements, such as char, int, or float.

20

word 0 .__.I I

superbyte bitmap

(a) Small single structure/union

word O 4 _

superbyte bitmap array size

(c) Small array of structure/union

word 0

superbyte object size

word 1

V
procedural pointer

(b) Large single structure/union

word 0

superbyte object size

word 1 I I

V i
procedural pointer

word 2

V
array size

(d) Large array of structure/union

wordO .__ _ L
I I

superbyte array size

(e) Simple array

Figure 2-1: Format of the preamble for various object types

21

Figure 2-1 shows how the information is stored in for each category of objects.

The description of the various fields in the preamble are as follows:

superbyte The superbyte always resides in the high byte of the first word of the

preamble. It contains the following information:

bit 7 garbage?
bit 6 array?
bit 5 struct/union?
bit 4 for non-struct/union, non-pointer(0) vs. pointer (1).

for struct/union, struct(0) vs. union(1).
bit 3 moved?
bit 2-0 size.

Bits 4-7 completely identifies the object for the purpose of garbage collection.

For a simple array, bit 4 also indicates where the pointers are. This information

only requires one bit because a simple array contains either all pointers or all

non-pointers. For an array of pointers, each word is a pointer; for an array of

non-pointers, each word is a non-pointer.

Bit 3 indicates whether the object has been moved during garbage collection.

Bits 0-2 make up a mini size field that can store the size of small objects. With

three bits, this field is large enough to store an object size ranging from one to

six units. The value "7" indicates that the object size is at least seven units,

and it directs the garbage collector to look for the actual size somewhere else in

the preamble. (See discussion on object size below for explanation of how the

storage unit is determined.)

bitmap/procedural pointer The bitmap field and the procedural pointer field are

used to store the pointer information of the object. Except for simple array,

whose pointer information is stored in the superbyte, each object contains ex-

actly one of the fields. If an object is small enough so that it is possible to store

its pointer bitmap in the preamble without making the preamble a word larger,

the bitmap field is used. Otherwise, the procedural pointer field is used. For

an array of struct/union, it is sufficient to store the pointer information for a

single element.

22

object size The object size field stores the size of an object. For an array, this size

refers to the size of one of its elements. The object size field exists whenever

the size is too large to be stored in the mini size field in the superbyte. Its unit

depends on the type of the object. For single struct/union, storing the object

size in quad words is sufficient, since objects within the heap are quad-word

aligned. For array of struct/union, the object size needs to be stored in words,

since elements within an array are only word aligned. For simple array, the

object size is stored in the form log1092 x + 1, where x is the size of the object in

bytes.

array size The array size stores the number of elements in an array. This field exists

for any object in which the array? bit of the superbyte is set. For multiple

dimensional arrays, the array size is the total number of elements, calculated

by multiplying the size of the individual dimensions.

The preamble is designed so that its size is limited to one word for as many

objects as possible. This goal is achieved naturally for simple arrays, but for large

objects involving structs and unions, two or three words are required. The design

improves on this natural constraint by providing single-word preamble formats for

single struct/union and array of struct/union that are sufficiently small. Optimizing

the most common cases makes the preamble overhead much more acceptable.

2.5 Locating Object Preamble

When an object is found to be alive, the garbage collector needs to locate the preamble

of the object, given only the pointer through which the object is discovered. To make

this possible, an auxiliary bitmap stores where all objects begin. Each bit in the

bitmap corresponds to a quad word in the heap. The value of a bit indicates the

presence (1) or absence (0) of a preamble at the corresponding quad word. An

affirmative value is also used to indicate that the page with corresponding quad word

is empty thereafter.

23

Because all preamble-object units and the heap itself are quad word aligned, the

presence of a preamble within a quad word automatically implies that the preamble

starts at the beginning of that quad word. This is why the bitmap only needs to

narrow down the location of the preamble to a quad word.

The mapping between the bits and the quad words are as follows. The bitmap is

allocated as an array of chars, each of which contains eight bits. Successive chars of

bits map to successive groups of eight quad words in the same order. Within a char,

the low bit maps to the first quad word, and the high bit maps to the last quad word.

To locate the beginning of an object from a value that points to the middle of the

object, the garbage collector scans the bitmap for a "one" value. The search starts

from the bit that corresponds to the quad word indicated by the current pointer value,

and it continues in a way that corresponds to scanning the quad words backwards

from the starting point. The preamble is located at the beginning of the quad word

that corresponds to the first 1-bit encountered in this search.

An alternative way to locate the preamble of an object is to keep a list which

contains all the addresses of the preambles in the heap. This method is advantageous

when the number of objects in the heap is small. The memory overhead would be

smaller than the adopted method. Also, locating the object preamble, which takes

logarithmic time with respect to the number of objects, would be smaller than the

adopted method's linear time with respected to the size of an object. On the other

hand, the size of each entry for this method is considerable. For a standard heap size

of approximately 1 megabyte per processor, the number of bits required to distinguish

between entries in the heap is 13. In the worst case, this list can grow to six times

the size of bitmap, and the lookup efficiency would similarly deteriorate. Therefore,

this type of storage is rejected in favor of the bitmap storage.

2.6 Parallel Processing

Autopilot C is a language designed for parallel machines. It is therefore natural to

design its garbage collector to take advantage of possible parallelism. As it turns

24

out, much of the work during garbage collection can be parallelized, and this can be

accomplished with only a a few number of synchronization points.

When garbage collection begins, each processor starts its own garbage collector.

Each of these collectors does its own work without interruption except at the syn-

chronization points.

The major steps to garbage collections are:

1. trace the roots; copy live objects to new pages.

2. trace objects in the heap; copy live objects to new pages.

3. correct moved pointers.

4. copy back objects located in locked pages.

The collectors are synchronized only after step two and step three.

Since the global memory space is distributed among the processors in Autopilot

C, a natural partition of work is to make each processor responsible for portion of the

root set and heap physically located on its own processor. This division, however,

would lead to complications when a pointer in the root set for one processor refers

to an object located in the heap space of another processor. Instead, it is more

straightforward to have each processor start out with its own root set, and have it

trace and move any object it comes across regardless of where the object resides.

Then, when objects in locked pages are to be copied back, each processor can be

responsible for the locked pages it discovers.

During step one, two, or three above, a situation may arise where two or more

processors are simultaneously attempting to process the same heap object. When

such a conflict occurs, one needs to ensure that only one of the processors ends up

processing the object. This is accomplished using the full/empty bits provided by

the Alewife architecture as locks for the heap objects. For each word in memory,

Alewife associates with it a full/empty bit that can be set or unset atomically. For

each object in the heap, we arbitrarily designate the full/empty bit of the first word of

the object's preamble to be the object's lock. Before a processor attempts to process

25

an object, it must first check whether the object is locked. A locked object indicates

that another processor is already processing the object, and it relieves the processor

its responsibility to process the object. An unlocked object, on the other hand,

permits the processor to do work on the object. Upon finding the object unlocked,

the processor locks the object, does work on it, and then unlocks the object. After

this point, if another processor finds that it needs to process this object, it can check

the preamble's contents to discover that the object has already been processed.

26

Chapter 3

Implementation Overview

The task of building the garbage collector can be subdivided into several major parts.

This section describes the functionality of these parts as well as how they fit together.

3.1 Division of the project

The addition of a garbage collector requires support from the compiler. This support

comes in two forms. First, the compiler needs to generate pointer information for

each type of object that can be stored in the heap. Second, when the user program

requests space in the heap to store a particular object, the compiler needs to translate

this request into object codes that, in addition to allocating heap space for the object,

also places the correct preamble in front of the object. Once these preparatory works

are done, the garbage collector can be run while executing the user program whenever

heap space is running low.

From this analysis, the implementation of the garbage collector is divided into

four components:

* Generator of the pointer locators
* Handler for heap memory requests
* Heap space allocator
* Garbage collector

27

Compile Time

I
I

I I
I

I
I

I

I
I

I
I

I
I

I
I
I

I
I

I
I

I

Run Time

I

I
I

- -> Data dependency
> Procedural dependency

Figure 3-1: Relations between the four major complements of the implementation.

Figure 3-1 gives a pictorial relation between the components. They are described

individually below.

3.2 Generator of the pointer locators

A pointer locator is either a bitmap or a procedure, created for the purpose of locating

pointers (or maybe pointers for unions) within an object. Before it begins processing

memory requests, the compiler must know the pointer locator for any object type

that may be stored in the heap. Except for simple arrays, whose pointer locators

can be represented by one bit, pointer locators must be generated by examining

the definitions of the object types. The list of these object types, as well as their

definitions, can be retrieved in a global type-structure variable during compilation.

This section describes the software module used to generate the pointer locators, as

28

Pointer Locator

Generator

-

well as some of issues involved in the module's design.

3.2.1 Pointer lists

To minimize the need to work with the cumbersome type-structure variable, the

pointer locator generates a pointer list for each object type description in that vari-

able. This pointer list gives the word offset of each pointer from the beginning of the

object. It is subsequently used to generate the pointer-locating bitmap and procedure.

3.2.2 Functionality of the pointer locators

A pointer locator is used for two purposes during garbage collection. First, it is used

while tracing through an object to look for other live objects. Second, it is used

to locate pointers in the object whose values may have to be corrected because the

objects they refer to have been moved. When creating a pointer bitmap, its usages

need not be considered because they are implemented as part of the garbage collector.

A pointer creating procedure, on the other hand, needs to hard code these usages.

To provide both functionalities, the procedure takes as input a control variable and

a pointer to an object of the proper type. The control value may have one of two

values, and its value determines which functionality the procedure performs. While

this practice of control coupling is generally considered poor programming practice, it

is necessary in this case because an extra procedure would result in an extra procedural

pointer in the object's preamble, where space is premium.

3.2.3 Objects defined by typedefs

Typedefs have so far been ignored because they do not introduce a fundamentally

novel type of objects. A new type may be created from a typedef statement, but

its structure would be identical to whatever it is defined after. Therefore, it is not

necessary to process a typedef object in the global type-structure description as long

as the fundamental object it maps to is already processed. In our compiler, an object

mapped to by a typedef object is either a simple object that does not require a pointer

29

locator (e.g. int, * float, etc.), or it is itself in the global type-structure variable.

Therefore, typedef objects may be ignored when creating the list of pointer locators.

3.2.4 Structs/unions with complex subcomponents

Structs and unions are defined in terms of other existing object types. To generate

their pointer locators, the subcomponents of the structs and unions must be scanned

for pointers. Primitive subcomponents, such as int, int *, and float, can be recog-

nized immediately as either a pointer or a non-pointer, but complex subcomponents

cannot be analyzed in this binary fashion. This section describes how these complex

subcomponents are handled.

Struct/union subcomponents

Struct or union subcomponents are stored with only their general types (union or

struct) and their names. The location of their pointers must be determined in one of

two ways:

* look up and examine their contents in the global type-structure variable.

* look up and use the pointer locators corresponding to those subcomponents.

The first method is easier to implement, but it results in duplication of work. Instead,

the second method is selected. This method, however, requires the pointer locators of

the subcomponent types to be available when processing the parent type. Therefore,

object types in the global type-structure variable must be processed in some specific

order determined by the dependencies of the objects. In the pointer locator generator,

this order is enforced by checking that all the dependencies of an object have been

processed before the object itself is processed.

Typedef subcomponents

Typedef subcomponents are handled by expanding them into the fundamental types

they map to. The expansion is performed at the beginning of the pointer locator

30

generator, and the result is stored in type-map. type-map is then used instead of the

global type-structure variable as the list of objects to be processed by the pointer lo-

cator generator. Inside type-map, typedef subcomponents are either primitive types,

structs, or unions. Therefore, each type definition can be processed as described

above.

Structs with union subcomponents

As discussed in section 2.3.1, a struct with union subcomponents is considered a union

by the garbage collector because it may contain ambiguous pointers. In the original

type-structure variable, however, this object type is identified as a struct. To make

the identifications of object types consistent with our definition, the pointer locator

generator makes the appropriate modification to type-map. Since the information is

not needed until the memory request handler is called at the end of pointer generation,

the modification can be made wherever it is convenient to do so.

The modification is actually made in the loop where the pointer locator is gen-

erated. At this point, the generator checks for union subcomponents within a struct

type. If such a component exists, the struct is relabeled as a union type. But struct

subcomponents can be mislabeled as well. This problem is solved by ensuring the

following:

* A struct type is not processed until the struct-type subcomponents it contains

have been processed.

* While processing a struct type, the generator looks up each struct subcompo-

nent in type-map to determine its correct identity.

3.3 Handler for heap memory requests

The memory request handler takes in a request for heap space from the user program

and converts it to a proper procedural call at run time. Each memory request is a call

to the procedure new, with an object type and an optional array size as arguments.

31

If no array size is specified, the array size is assumed to be one. The memory request

handler then passes the following arguments to the runtime heap space allocator:

explicit array size This is the array size argument of the call to new.

implicit array size This is the size of the array portion of the object type argument.

For example, if the input object type is int [3] [2], the implicit array size is

2 * 3 = 6. The implicit array of a non-array input object type is one.

object size This is the size of the non-array portion of the object type, expressed in

bytes.

pointer locator This is either a pointer bitmap or a pointer to the pointer locating

procedure.

object type This is a 2-bit integer that identifies the input object. The mappings

of the values are:

O = non-pointer primitive element
1 = pointer primitive element
2 = struct with no union subcomponents
3 = union, or structure with union subcomponents

Note that it is necessary to pass the array size in two arguments. During compile

time, the two arguments cannot be multiplied together and passed along as one

argument because the explicit array size may be an expression whose value cannot

be determined yet. The compiler can only pass them along separately and let the

memory allocator calculate the array size at run time.

3.4 Memory allocator

The memory allocator is the run time routine that allocates space in the heap for

heap objects. Calls to it are generated by the memory request handler during compile

time, with the arguments listed in the previous section. The memory allocator uses

these arguments to generate a preamble. It then allocates enough space in the heap

32

for both the preamble and the object. Next, the preamble is placed in the beginning

of the allocated space, and its location, as well as the new end-of-the page marker,

is noted in the preamble-locating bitmap. Finally, the pointer to the word following

the preamble is returned as the pointer to the object.

To facilitate the operation of the garbage collector, the memory allocator obeys a

set of criteria when allocating space for a memory request. First, it always allocate

space in units of quadruple words. As a result, all preamble-object units in the heap

are quadruple word aligned. In addition, the space allocated for each request is always

a contiguous block. To meet this requirement, the memory allocator scans through

the heap to find a sufficiently large block of free space for each memory request.

Moreover, if an object and its preamble are too large to fit within a heap page (see

section 1.1.2), space is allocated for them starting from the beginning of a new page,

and the last page occupied by this object would contain no other object.

3.5 Garbage collector

The garbage collector is called whenever the memory allocator cannot find space in

the heap to satisfy a memory request. As listed in section 2.6, it can be decomposed

into the following tasks:

1. trace the roots; copy live objects to new pages.

2. trace objects in the heap; copy live objects to new pages.

3. correct moved pointers.

4. copy back objects located in locked pages.

This section describes each of these tasks individually. The division of labor for each

task among the processors has been discussed in section 2.6.

33

3.5.1 Root tracing

During root tracing, the garbage collector checks each value in the root set to deter-

mine if it can be a valid heap pointer. The root set consists of the user global data

and a collection of task lists. Their memory locations can be obtained from the global

variable slink, which stores many control parameters of the software environment.

In C, no value in the root set can be guaranteed to be a pointer. Therefore, the

entire root set must be treated cautiously. Any value in it corresponding to an address

in the heap space is considered a maybe pointer and handled accordingly.

Like all copying garbage collectors, our garbage collector moves live objects to an

empty part of the heap. This copying has to be performed regardless of whether the

object is discovered by a definite pointer or by a maybe pointer. The new pages that

are used to store the copied objects are linked together in a list in the order in which

they are allocated. This list is referred to as newlist.

3.5.2 Heap tracing

At the end of root tracing, heap tracing begins. This step continues to search for

live objects, but the search now operates on newlist rather than on the root set.

Starting from the beginning page of newlist, objects are traced one at a time. From

the preamble of the object, the collector obtains the object's identification, element

size, array size, and pointer locator. This information is used to determine how the

object should be handled. In particular, the identification of the object indicates

what needs to be done. Here are actions performed for each type of objects:

leftover garbage Nothing is done.

array of non-pointers Nothing is done.

array of pointers Each word in the object is treated as a definite pointer.

single/array of structs A loop "operates" the pointer locator on each struct in the

object:

34

* If the object size is at most 24 words, the pointer locator is a bitmap. For

each "1" in the bitmap, the corresponding word in the struct is treated as

a definite pointer.

* If the object size is greater than 24 words, the pointer locator is a pro-

cedural pointer. The garbage collector simply calls this procedure with

each struct as the argument, along with the control variable telling the

procedure to trace the pointers rather than to correct them.

single/array of unions The list of actions required is the same as that for the

structs, except that a "1" in the pointer locator bitmap indicates that the

corresponding word is a maybe pointer.

After an object is processed as indicated above, the garbage collector uses the

size of the preamble-object unit to advance to the start of the next object. It then

processes the next object in a similar manner. If the collector encounters an end-of-

page marker, it fetches the next page from newlist and starts processing objects on

that page. This continues until all pages in newlist are processed.

While tracing objects within pages in newlist, live objects are constantly being

discovered and copied to pages at the end of newlist. Since this procedure continues

until all pages in newlist are processed, these newly discovered objects are eventually

traced as well. When the collector reaches the end of newlist, all live objects have

been traced and, as a consequent, discovered as well.

The garbage collector treats a maybe pointer differently from a definite pointer.

The sections below describe how each is handled.

Definite pointer

When a definite pointer is discovered, the garbage collector checks for the following:

* whether the value of the pointer is within the range of the heap.

* whether the backward traversing of the preamble-locating bitmap leads to a

preamble rather than an end-of-page marker.

35

* whether the full/empty bit of the first word of the preamble is empty, indicating

that no other processor has locked the object.

* whether the forwarded? bit of the preamble superbyte is false.

* whether the garbage? bit of the preamble superbyte is true.

An object is processed only if it satisfies all of the criteria above. For the remaining

steps, the collector first set the full/empty bit of the preamble's first word. It copies

the object and its preamble either to the most recent page of newlist, or to newly

allocated page or pages which are then added to newlist. Here, allocating space

for the new object obeys the same criteria outlined in section 3.4. The forwarding

bit of the original preamble is then set to "1", and the location of the newly copied

preamble is written to the second word of the original preamble-object unit. The

garbage collector finishes by unsetting the full/empty bit of the original preamble's

first word.

Maybe pointers

Maybe pointers are handled differently from definite pointers because the objects

they point to must remain at the same place before and after garbage collection.

During garbage collection, however, any live object must be moved and be contained

in the pages of newlist; otherwise the collector will not trace through these objects.

To resolve this apparent contradiction in specification, objects referred to by maybe

pointers are still moved during garbage collection just like any other live objects,

but in addition, the pages on which they originally reside are kept in a list called

locklist. When garbage collection is finished, objects in those locked pages are

copied back. This sequence of events yields the proper behavior that satisfies both of

the requirements.

This scheme also behaves properly when an object that has been processed based

on a definite pointer is "rediscovered" by a maybe pointer. In this case, the object

does not need to be copied again, but its page needs to be locked.

36

After pointer correcting, the garbage collector copies back any object residing

on the same source page as an object referenced by a maybe pointer. This copying

reduces some of the reference locality benefits of garbage collection, and the whole

scheme introduces wasted memory space in both the source page and the destination

page. However, the copying is an unavoidable tradeoff that allows us to keep track of

locked object information for only a fixed number of pages rather than for a variable

and potentially much larger number of objects.

The specific steps for handling a maybe pointer are as follows. First the collector

checks that the value is within the range of the heap. It then checks whether the page

pointed to by the value is a live page. If both checks are positive, the collector finds

the head of the object referenced by the maybe pointer using the preamble locating

bitmap. If the page containing the head is not locked already, the collector locks it.

Locking is done by updating a global array that contains this information indexed by

page number, and by adding that page to locklist. The full/empty bit of the global

array is used to ensure that two processors are not simultaneously attempting to lock

the same page. Once the page is locked, the maybe pointer is treated like definite

pointers, as described in the previous section.

3.5.3 Pointer correcting

Once all live objects are traced and moved, the garbage collector updates the values

of the definite pointers. This involves going through the live objects in the heap,

similar to what is done while searching for live objects. The collector obtains the list

of live objects by referring to newlist. For each object in the pages of newlist, its

pointer locator is utilized similar to before, with the following changes:

* If an object is a union or an array of unions, nothing needs to be done, since

any pointer it contains is a maybe pointer whose value does not change.

* For a struct or an array of structs whose struct size is greater than 24 words,

the pointer locator is a procedural pointer. This procedural pointer needs to be

called with the control argument set for correcting rather than for tracing.

37

Each definite pointer is corrected in the following manner. The collector first

checks that the pointer value is within the address range of the heap. Then, it locates

the preamble of the referenced object using the preamble-locating bitmap. Next, it

checks the forward? bit of the superbyte in the preamble to see if the object had

been forwarded, which at this stage indicates whether the object is alive. If the bit is

set and the page containing the object is not locked, the old pointer value is replaced

with the new pointer value, calculated by adding the forwarded pointer value (second

word of the preamble-object pair) to the difference between the old pointer value and

the old preamble location. If any of the checked conditions is not satisfied, the pointer

value remains the same.

3.5.4 Copying back locked objects

The final major step to garbage collection is the copying back of objects in locked

pages. It is done as follows. The collector promotes each page in locklist by

updating its identification attribute. For each object in a locked page, it retrieves

the identification and size information of the object from the preamble. From the

preamble's superbyte, it checks for the following conditions:

1. If garbage? is set, the object is garbage generated from a previous run of the

garbage collector. Nothing needs to be done.

2. If forwarded? is set, the object is still alive. The collector locates the forwarded

object using the forwarding pointer stored in the second word of the preamble-

object unit. It copies the forwarded object back to the object's original position,

after which it converts the forwarded object to garbage.

3. If forwarded? is not set, the object is no longer alive. It is converted to garbage.

To convert an object to garbage, the object's preamble is replaced with a new single-

word preamble. The first byte of this preamble is a superbyte whose garbage? bit is

set. Its remaining three bytes store the size of the object in words.

38

The garbage collector employs the same methods used during heap tracing to

locate the next object in the page and to determine when to advance to the next

page in locklist.

39

Chapter 4

Implementation Details

This chapter fills in the details of the implementation not covered in the previous

section. To add variety and introduce a different perspective, the discussion is data

oriented rather than task oriented.

The implementation of garbage collection changes the behavior of the system

during both compile time and run time. The data required for proper execution at

these two stages are completely different. It is therefore appropriate to discuss the

global data for each stage individually.

Note that the compile time procedures are written in Mul-T, a variation of Scheme,

while the run time procedures are written in C. The languages are chosen to be

consistent with what is already available.

4.1 Compilation time

During compilation time, the following object states are maintained:

type-map type-map is created from the global type structure description, which

stores the name, identification, and structure of all complex types in the user

program. type-map differs from the global value in two ways:

1. All typedefs have been expanded at creation time.

40

2. Structs with union subcomponents are relabeled as unions. This is done

while type-map is being used to generate the pointer locators.

type-map is necessary for two purposes. First, the pointer locator generator

needs the internal structure information to create the pointer locators. Second,

the memory request handler uses it to determine the proper identification of a

complex object type. It uses this identification information to produce a run

time procedural call to the memory allocator that corresponds to a memory

request corresponding to the complex object type.

garbage-proc-position-t garbage-proc-position-t is a hash table that maps the

name of a complex object to its list of pointer locations, which are stored as

word offsets from the beginning of the object. The table is created directly from

type-map. It contains two special list values corresponding two special cases.

The name of a typedef maps to an empty list, and name of an object with no

pointer maps to a list with the single element -1. These values are necessary

during the creation of the table to determine whether the table has been filled.

A hash table is used because it has a fast lookup operation. The lookup op-

eration is called frequently while determining whether an object type can be

processed. This involves checking that the pointer locator generator has com-

puted all table entries corresponding to the complex subtypes contained in the

object type.

garbage-proc-position garbage-proc-position also contains the lists of pointer

locations, but in a list form. The position of each list in garbage-proc-position

is the same as the position of its corresponding object in type-map. garbage-

proc-position is generated from its table counterpart, but with two changes

in mapping. First, the null list used for a typedef object type is replaced with

the pointer list of its expanded object. Second, the list (-1) is converted back

to the null list it represents.

41

garbage-proc-position is created because it is more convenient to use it than

garbage-proc-position-t. Pointer list for any object type can be retrieved

from it and used without translation.

garbage-object-bitmaps garbage-object-bitmaps contains the list of pointer lo-

cating bitmaps for each object. Again, the order of the bitmaps is determined

by the order of their corresponding objects in type-map. Each bitmap is created

from its corresponding pointer list in garbage-proc-position in the following

way. A partial bitmap is created for each pointer location in the list by binary

left-shifting "1" by one less than the pointer location value. Then, the com-

plete bitmap is created by performing the binary or operation on all the partial

bitmaps.

The pointer locating bitmaps stored in garbage-obj ect-bitmaps are used dur-

ing the processing of new commands in the memory request handler.

garbage-ptr-procs garbage-ptr-procs contains the list of pointer locating proce-

dures. The order of the procedures corresponds to any of the list-based ob-

jects discussed previously. Each procedure is generated from the corresponding

pointer list in garbage-proc-position. Figure 4-1 gives the grammar of the

corresponding C code.

Here is explanation of the grammar. <name> is the name of the object type corre-

sponding to the procedure. <x> is the byte offset of a pointer from the beginning

of the object. "p" points to the object to be processed; "flag" is the control

flag that tells the procedure whether to trace or to correct input the pointer.

<ptr-mvr-proc-list> and <ptr-cor-proc-list> list the procedures that are

called for pointer tracing and for pointer correcting, respectively. If the object

type corresponding to the procedure is a struct, each pointer within the object

has a corresponding entry in both <ptr-mvr-proc-list> and <ptr-cor-proc-

list>. On the other hand, if the corresponding object type is a union, only

<ptr-mvr-proc-list> contains an entry for each pointer in the object; <ptr-

cor-proc-list> would be empty.

42

<procedure> ::= void ptrmvr_<name>(unsigned *p, int flag) {

if (flag==i) {

<ptr-mvr-proc-list>

else {

<ptr-cor-proc-list>

<ptr-mvr-proc-list> ::= <null> I

<ptr-mvr-proc-name>(*(p+<x>));<newline><ptr-mvr-proc-list>

<ptr-cor-proc-list> ::= <null> I
(p+<x>) = correct((p+<x>)); <newline><ptr-cor-proc-list>

<null> ::=

<ptr-mvr-proc-name> ::= moveptr I movecontinuationptr
<x> ::= <a nonnegative integral multiple of 4>

Figure 4-1: Format of the Pointer Locating Procedure

For each object type, the compiler generates intermediate compiler code cor-

responding to the type's pointer locating procedure. The intermediate code is

then compiled along with the intermediate code of the user program, so that

the procedure can be called during run time. During compile time, the value of

the pointer to this procedure is derived, so that the memory requests of large

objects can be translated into a run-time call to the memory allocator with this

pointer as an argument.

4.2 Run time

The possibility of having more than one active processors during run-time adds an-

other issue regarding the global data set. In addition to determining what to include

in the data set, it is also necessary to decide how the data set should be distributed

across the processor nodes. Considering this fact, items in the global memory can

be divided into two categories: local-global items and global-global items. A local-

global item is used exclusively by the processor that owns it. The natural solution

43

is to place this type of items on the processor that uses it. A global-global item, on

the other hand, may be used by any of the processors. For this type of items, the

distribution should be such that an item is located at the processor that accesses it

most. Since each item here stores an attribute of the heap, the desired feature can

be closely approximated by placing each portion of an item on the same processor as

the portion of the heap it is associated with. To simplify cross-processor references of

these items, each item is placed in the same relative position within the processor's

memory.

The following sections describe the list of the category of items in the global data

set. Each processor contains a copy of each item. Items within the same category are

grouped by similarity in contents.

4.2.1 Page links

Page link items consist of localpagelink and scpagelink. They store the local

and the global address of the portion of the page link array contained in the processor.

The page link array is indexed by page number, and it stores the identification of the

page (page number and processor number) that follows the indexing page in a list.

The indexes into the array refer to pages on the local processor. A page link value of

-1 indicates that the corresponding page is the last page on the list. Page link values

of pages not in a list are never referenced and need not have any deterministic value.

During garbage collection, three lists are maintained - one for locked pages, and

two for newly allocated pages. Since memberships in the lists are mutually exclusive,

the page link array can be used to keep track of all linkages in these lists. Only the

end page of each list requires separate storage. sc_locklist, circularnewlist,

and scnewlist are used to store this information.

Adding a page to the beginning of a list requires two changes. First, the identifi-

cation of the list's original head becomes the new link value of the new page in the

page link array. This might require cross processor memory referencing if the list is

the locked list, since the page to be added may reside in a different processor. Second,

the identification of the new page becomes the value stored in the head of the list.

44

Removing the head page from a list reverses this process. The head value of the list

identifies the page to be removed, and the page link of the tail page becomes the new

head page.

Circular lists may also be maintained using the array of page links and a tail page

variable. In this type of lists, the link value of the tail page refers back to the head

page. When a page is added, the link value of the tail page becomes the link value

of the new page. Then, the value of the tail page and the link value of the original

tail page are both set to the value of the new page. When a page is removed, the

link value of the tail page identifies the page being removed, and the link value of

the tail page is set to the link value of the page being improved. Empty lists are

appropriately handled as a special case for both operations.

4.2.2 New-page lists

The list of new pages are stored in two forms during garbage collection. There is

a regular list, whose head is stored in sc_newlist, and a circular list, whose tail is

stored in circular_newlist.

Both lists are initialized to the empty lists at the beginning of garbage collection.

During root tracing and heap tracing, the circular list collects all the pages allocated

to store copies of live objects. This list is simultaneously used during heap tracing as

a source of objects to be traced. The reason a circular list is required here is to allow

pages to be removed in a FIFO manner, which yields the desired improvement in

reference locality,. As each page is being removed from the circular list, it is added to

the regular list of new pages. This list is used as the source of objects during pointer

correcting.

4.2.3 Page-generation

Page-generation items store information related to the generation attribute of a page.

There are four items in this category:

sc_current_generation Stores the current generation number.

45

sc-next_generation Stores the next generation number during garbage collection.

localpagegeneration Stores the local address of the portion of the page genera-

tion array contained in the processor. The page generation array stores the

generation number of each page, indexed by page number.

sc_pagegeneration Stores the global address of the portion of the page generation

array contained in the processor.

The generation numbers are used to keep track of the active pages in the heap. The

variables storing them are operated on in the following way. During normal operation

of running the user program, sccurrentgeneration is equal to sc_nextgenera-

tion. When garbage collection begins, the collector sets scnextgeneration to

one more than sc_current_generation. When it finds a possible pointer during

root tracing, it compares sccurrent_generation to the generation number of the

referenced page. These values have to match in order for the pointer to be considered

further.

Pages are promoted by updating their page generation numbers in scpage-

generation with scnextgeneration. During garbage collection, a page may be

promoted for two reasons. It may be a page newly allocated to store copied live ob-

jects, or it may be a page in the list of locked pages. The former type of promotion is

actually done automatically while allocating the page, since the allocation procedure

always uses sc_next_generation as the generation number for newly allocated pages.

This serves just as well outside of garbage collection, when sc_next_generation is

equivalent to sccurrentgeneration. Promotions of locked pages, on the other

hand, are explicitly performed when objects in these pages are being copied back.

When garbage collection finishes, sc_currentgeneration is updated with the

value of sc_next_generation. The variables are left untouched until the garbage

collector is called again, at which point the whole cycle is repeated.

46

4.2.4 Page-lock

Page-lock items store information related to the locked status of the page. This

category contains four items:

sclocklist Stores the first page of the list of locked pages discovered by the processor.

A page is identified with a page number and a processor number.

sc_lockcnt Stores the number of pages in the list of locked pages.

local_pagepinned Stores the local address of the portion of the pagepinned array

contained in the processor. The pagepinned array is indexed by page number,

and it indicates whether the corresponding page in the local processor is locked.

scpagepinned Stores the global address of the portion of the pagepinned array

contained in the processor.

The information about the lock status is maintained as follows. When garbage

collection begins, sclocklist is set to be the empty list. As pages referenced by

maybe pointers are discovered, they are added to the beginning of the lock-list, and

sc_lockcnt is incremented by one. The pagepinned array is also updated accordingly

for elements corresponding to the discovered pages.

Though they store the same information, the lock-list and the pagepinned array are

useful in their own ways. The lock-list is used during the copy back stage of garbage

collection. Pages on the list are removed from it one at a time, so that objects on

them can be copied back to their original memory locations. The pagepinned array,

on the other hand, is useful in two places. When the garbage collector discovers a

maybe pointer, the array is used to check whether the page referenced by the maybe

pointer has already been locked. A locked page indicates that the page is already

contained in the locked list of one of the processors, and it obviates the need to add

the page to the lock-list again. In addition, the array is used during pointer correction

to determine if a pointer value should be updated. If a pointer points to a locked

page, its value is still valid and no change is necessary.

47

Elements in the pagepinned array that correspond to locked pages are reset to

zeroes as their corresponding pages are being copied back. This ensures that all pages

are not pinned when garbage collection finishes. For sc_locklist, the initialization

is performed at the beginning of garbage collection.

4.2.5 Object-start

Object-start items consist of localobjectstart and scobjectstart. They store

the local and the global address of the portion of the object-start array contained in

the processor. The object-start array stores the preamble locating bitmap discussed

in section 2.5. Refer to that section for the format of the bitmap.

When a memory object is added to the heap, two bits are set in the object-start

array. One bit corresponds to the quad word where the memory object starts. The

other bit corresponds to the quad word immediately following the end of the object.

The first of these bits is normally set from the allocation of the previous object, but

if a new page is being allocated to store the object, this bit needs to be set explicitly.

The bitmap is initialized on a need basis. A page allocation request causes the

portion of the bitmap corresponding to the allocated page to be reset.

The object-start array is referenced during pointer tracing and pointer correcting,

where the tasks need to locate the preamble of an object given a pointer that references

the object.

48

Chapter 5

Results and Conclusion

This section describes the status of the garbage collector, and it concludes with some

future improvements.

5.1 Status

All components of the garbage collector have been completed. The garbage collector

is in the testing phase. For testing purposes, the project can be divided and tested

in two parts: the compilation part and the run time part. The test cases, however,

are carefully written so that functionalities in each part can be tested with the same

procedures. This is not as ambitious as it sounds, since in many cases a test for a

certain branch in the compilation code will test simultaneously an analogous branch

in the run-time code.

The compilation code has been thoroughly tested. I have made out an extensive

case analysis for each procedure in the code and made sure that the test cases cover

all paths through each procedure.

By nature, the run-time code is more difficult to test. Verification of the results

requires laborious scrutinization of pages of heap content printouts, and the multipro-

cessor environment under which the collector is run makes it difficult to isolate bugs.

The strategy here is to first test all the functionalities in a single processor before

trying to test in a multiple-processor environment. For a single processor, the garbage

49

collector has passed all the test cases, which cover all of the common scenarios. The

multiprocessor functionalities, however, have not been fully tested. Some bugs still

need to be eliminated.

5.2 Improvements

Future improvements of the garbage collector include the following. Of course the

immediate goal is to find and fix the bugs occurring in the multiprocessor environment.

The next important task is to change the collector so that it handles placeholders.

Finally, the compiler code can be optimized in a variety of ways. In terms of essential

functionality, the garbage collector is close to complete.

50

Bibliography

[1] Alfred Aho, John Hopcroft, Jeffrey Ullman. Data Structures and Algorithms.

Addison-Wesley Publishing Company, Reading, Massachusetts, 1983.

[2] Joel Barlett. Compacting Garbage Collection with Ambiguous Roots. WRL Re-

search Report 88/2, Western Research Laboratory, Digital, February, 1988.

[3] Benjamin Zorn. Comparative Performance Evaluation of Garbage Collection

Algorithms. Technical Report UCB/CSD 89/544, Computer Science Division

(EECS), University of California, Berkeley, December 1989.

51

