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Abstract

This thesis explores the integration of predictive routing information available
under the Intelligent Vehicle Highway System (IVHS) with dynamic traffic signal
control. This exploration was motivated by recent advances in both signal
processing and computational technology.

The first portion of the thesis develops the theoretical basis for the Predictive
Routing Information Signal Timing INtEgration (PRISTINE) model. PRISTINE
explicitly uses the predictive routing information available under IVHS as well as
considering the effects of queuing and congestion and compensating for them in
setting the traffic signal control plan. The thesis develops a new methodology for
using spanning trees to determine the offsets in the network and draws several
theoretical results from this premise. The thesis also develops a Queue Effects
Model (QEM) that explicitly considers the effects of bulk arrivals on average
delay and probability of stopping at an intersection; the Queue Effects Model
requires only the average arrival rate and the first two moments of platoon size,
all of which can be collected using existing technology. The thesis uses the
Queue Effects and spanning tree models as the basis for PRISTINE. Two
methods are developed for selecting the splits and cycle time in PRISTINE. One
method requires solution of a non-linear program, and the other utilizes a
heuristic approach which exploits the structure of the problem to solve the
problem in polynomial time. The non-linear program is solved using a gradient
descent method utilizing barrier functions, projections and line search techniques
to find the constrained optimal solution to the non-continuous, non-linear
objective function.

The second portion of the thesis examines the area of evaluating traffic signal
control strategies. The thesis develops an optimized third generation control
system and a traffic simulation capable of evaluating a generalized traffic signal
control strategy. The final section of the thesis compares PRISTINE's
performance versus the third generation control system. The two models are
compared using actual data collected from in ground sensors in Boston's



Backbay area. PRISTINE offers substantial savings as measured by average
delay per vehicle in cases where there were either sudden shifts in traffic flow or
dominant directions of flow in the network. Under some conditions, PRISTINE
was able to offer 50% savings in average delay and transit time per vehicle over
the third generation control model.

Key Words: IVHS, Dynamic Traffic Signal Control, Predictive Routing
Information, Spanning Tree, ATMS

Thesis Jointly Supervised by:

John D.C.Little
Arnold I. Barnett

Institute Professor
Professor of Operations Research and Management



Acknowledgments

I would like to begin by thanking the John and Fannie Hertz Foundation
which funded my studies at MIT for the past four years. On a more personal
note, I would like to thank the Foundation's staff for their help which was always
"above and beyond the call of duty." If Dr. Tally had not intervened with the
Army in 1990, I would never have been able to come to MIT.

On that note, I would also like to thank the Army for the best thirteen
years of my life that began nearly fourteen years ago on the plain at West Point
and proceeded through seven assignments on three continents to culminate with
the first three years of my doctoral studies at MIT. I would like to sincerely
thank my officers and the hundreds of enlisted personnel I had the privilege to
command and supervise. "I shall never your likes again."

In particular, I would like to thank Colonel Giordano and Colonel Kolb
who were more than mentors to me at the Academy and proceeded to guide and
advise through all my assignments in the service. I would like to thank Colonel
Bill Hand who was not only my battalion commander at Fort Riley, he was my
best friend too. I will always be appreciative to Colonel Bill MacKinlay, my first
battalion commander in Korea, who accepted me sight unseen and gave me the
chance to command the largest divisional supply and service company in the US
Army. I will remember Colonel Bob Bishop not only for his superb guidance as
my battalion commander, but also his ability to sift through complex issues and
find the important points buried within. I would like to thank General Paul

Vanderploog, because without his influence on my career I would never have left
"the trenches" and had the opportunity to contribute to the logistics community
at a theater level.

I take this opportunity to thank my co-advisors Institute Professor Little
and Professor Barnett for taking me in as their Ph. D. student when things
seemed darkest in the Summer of 1993. I would like to thank Professor Sussman
not only for being a member of my thesis committee but also for being "the
hardest working, non-signing member of a thesis committee in the history of the
Institute."

I thank my children (Kathy, Beth and Ben) for enduring the last four years
where school requirements and physical separations of various types and



durations took me away from them for long periods. You have been an
inspiration to me throughout the process.

I take this chance to thank the members of New House III would helped
me retain my sanity over the past four years. Between: gas explosions, bicycle
accidents, tumors, giving up my career in the service, and personal strife there
have been many opportunities for them to come forward and offer their aid and
support, and on each occasion they have done so willingly and with glad hearts.
In particular I would like to thank the following: Eric Zylstra, Jon Roorda, Phillip
Hume, Todd Foley, Joe Wyzorek, Douglas Soo, Costa, Koichi, Ana and Cati,
Sumit, Herb, Jorge Medina, Deanna Hiltner, Mark Brandreth, Humair, Lalit,
Toby, John Tewksbury and Jeff Dulik. I could not have made it through the last
four years without you. I would like to thank those members of Mitgaard who
helped me as well. In particular, I would like to thank: dan, Anca, Laura, Alia,
Sharon, Jan and Vanessa for their terrific support!

I would like to thank some special friends who have supported me for
many years. Dr. Mary Hillstrom has been a firm friend for ten years and the best
penpal someone could ask for. Kathy Dunn has been a friend for eighteen years
and continues to be one of my closest to this day. Jessica Maybar, a fellow Ph.D.
candidate, has been a great source of emotional strength during the past year.

I would like to thank my friends and colleagues at the 94th Army Reserve
Command who offered me support and friendship this last year at MIT. I would
especially like to thank LTC Kelly, MAJ Barclay and MAJ Towson who have
gone well out of their way to help and guide me.

I would like to thank the ORC staff and fellow students who helped and
befriended me. In particular, Paulette Mosely and Laura Rose have been
tremendous sources of strength and help. Christian Voigtlaender, Rodrigo
Rubio, Dave Markowitz, Stefanos, Milt, Barry Kostiner and Alexander Mueller
have all gone beyond the pale in offering their friendship and support.

Last, I would like to thank LMI and especially Earl Wingrove, Ron Frola
and General Bill Tuttle for keeping a position open for me upon my departure
from MIT.



Dedication

I dedicate this thesis to my three wonderful children: Katherine Laurinda

(7), Elizabeth Sandra (5) and Richard Benjamin (5) who waited patiently while

Daddy played with traffic lights for the last four years. You have been my

beacon stars. With all my love and hope!



Contents

Abstract .................................... .........................1
Acknowledgments ..................................................... 3
Dedication ................... 5........................................5
Table of Contents .................................... 6............... 6
List of Tables ................................ 8........................ 8

List of Figures ........................................................ 9
Chapter One. Introduction ....................................... 12

1.1 Overview .................................................. 12
1.2 IVHS, TSC and Predictive Routing Information . ........... 16
1.3 TSC System Structure ...................................... 23

1.4 Determining "Optimality" .................................... 27
Chapter Two. Literature Review ........................................ 30

2.1 Introduction and Overview ....................... 30
2.2 Historical Perspective ....................................... 31
2.3 The Four Traditional Approaches to TSC ............. 35
2.4 Traffic Simulation and Testing ................................ 42

Chapter Three. Basic Mathematical Model, Notation and Assumptions ..... 45
3.1 Definitions and Notation .... .......................... 45
3.2 Assumptions ................................................ 52
3.3 Measures of Effectiveness (MOE's) ........ ...... 54

Chapter Four. Heuristics for Determining Offsets . ....................... 61
4.1 Assumptions and Derivations ...................... 61

4.1.1 Assumptions ......................... 62
4.1.2 Derivations .. ........................................ 64

4.2 Route Augmentation (RA) Heuristic .................. 67
4.2.1 Verbal Description of RA Heuristic .................... 67
4.2.2 Example of RA Heuristic .............................. 69
4.2.3 Theoretical Results for RA Heuristic .. .......... 72

4.3 Maximal Spanning Tree (MST) Heuristic .. ............... 76
4.3.1 Verbal Description of MST Heuristic ................... 76

4.3.2 Example of MST Heuristic ............................. 79
4.3.3 Theoretical Results for MST Heuristic .................. 81

4.4 Potential Function (PF) Heuristic ... . ................ 92



4.4.1 Verbal Description of PF Heuristic ..................... 94
4.4.2 Example of PF Heuristic ............................... 95
4.4.3 Theoretical Results for PF Heuristic ..................... 98

Chapter Five. Predicting Performance for Traffic Signal Control Settings.. 100
5.1 Light Traffic Approximations ................................ 100

5.1.1 Stochastic Approximations for Equal Splits ............ 101

5.1.2 Stochastic Approximations for Varying Splits ........... 107

5.2 Queue Effects Model (QEM) .................................. 111
5.2.1 Priority Queue Model for QEM ....................... 111
5.2.2 Expected Mean Delay/Stops in Uncoordinated Direction.117
5.2.3 Approximation for Time Average Queue Length ........ 124

5.3 Multi-Commodity Flow Approximation for Travel Times ....... 125
Chapter Six. Setting Splits and Cycle Time .............................. 127

6.1 Traditional Traffic Engineering Approaches ............. 127
6.1.1 Current Methods for Setting Splits and Cycle Time ..... 134
6.1.2 Methods Using Predictive Routing Information ........ 137

6.2 PRISTINE Methods for determining Splits and Offsets ......... 139
6.2.1 Setting the Offsets .................................. 141
6.2.2 Setting the Splits and Cycle Time .................... 144
6.2.3 Strategy Strengths and Weaknesses ................... 161

Chapter Seven. Simulation and Heuristic Testing ........................ 164
7.1 Simulation ................................................. 164

7.1.1 Evaluating Traffic Simulation Models ................. 165

7.1.2 Existing Traffic Simulation Methods .................. 170

7.1.3 The Lin-Sarkar-Staats Simulator (LS3) ................. 171
7.2 Comparing the Heuristic and Non-Linear Program ........... 181

7.2.1 Implementing the Non-Linear Program (NLP) .......... 181
7.2.2 Descriptions and Results of the Simulation Runs ....... 188
7.2.3 Summary ........................................ 207

Chapter Eight. Comparing 3GC and PRISTINE ......... 209..........209
8.1 Implementing 3GC ............................ .......... 209
8.2 PRISTINE compared to 3GC ......... ..................... 223
8.3 Further Analysis of Surge ................................... 242
8.4 Conclusions ............................................ 250

Chapter Nine. Conclusions ..................................... ..... 254
9.1 Overview ............................................... 254



9.2 Findings .................................................. 255
9.3 Conclusions ............................ .................... 263
9.4 Contributions .......... ............................... 269
9.5 Significance of Research to the IVHS Community .............. 273
9.6 Opportunities for Further Research .......................... 277

Appendix A. Mathematical Description of 3GC ........... ............. 279
A.1 Assumptions, Definitions and Inputs . ............... 279

A.2.1 Assumptions ...................................... 279
A.2.2 Definitions ........................................ 280
A.2.3 Inputs ............................................. 282

A.2 Mathematical Statement of 3GC ...................... 283
A.3 Differences between 3GC and Existing TSC Systems ........... 286

Appendix B. Technical Overview of LS3 ............................... 287
B.1 Features ........ .................................. 287
B.2 Technical Aspects .......................................... 289

B.2.1 System Characteristics ............................... 290
B.2.2 Assumptions ....................................... 292
B.2.3 Data Structures ..................................... 293
B.2.4 Input Requirements ................................. 295

Appendix C. Sample Predictive Routing Information .................... 295
Bibliography ........................................................ 301
Glossary . ................................................ 306



List of Tables

4.1 Routings and Desired Usage Rates for Sample Network . .............. 70
4.2 Arc Selection for Route Augmentation Heuristic ..................... 71
4.3 Arc Selection for Maximal Spanning Tree Heuristic ................... 80
4.4 Node, Arc, Spanning Tree and Fraction of Arcs in Tree for Graph ....... 84
4.5 Arc Selection for Potential Function Heuristic ........................ 98
5.1 Red Lights versus Cars passing through on Arrival .................. 120
6.1 Traffic Data for Sample Intersection ............................... 128
6.2 Arc selection for Spanning Tree by PF Heuristic ..................... 156
6.3 Candidate Splits/Cycle Time ... .................................. 157
6.4 Actual Splits/Cycle Time ...... .. ................................ 158
6.5 Offsets ........................................................ 59
6.6 Measures of Effectiveness for Example ............................ 161
7.1 Wait and Transit Time ........................................... 180
7.2 Descriptive Flow Characteristics for Sample Network . ............... 182
7.3 Scenarios for Testing NLP versus SH .............................. 192
7.4 Results for light traffic scenario . .... .............................. 194
7.5 Results for AM start-up scenario .................................. 197
7.6 W ilcoxon Rank-Sum Test ........................................ 198
7.7 Results for AM rush hour scenario ............................... 199
7.8 Results for mixed traffic scenario ................................. 201
7.9 Results for PM rush hour scenario ................................ 206
7.10 Summary statistics for NLP vs SH ................................ 208
8.1 Arrivals for 3GC ................................................ 221
8.2 Possible Traffic Signal Settings .................................... 221
8.3 Sample Objective Function calculation ............................. 222
8.4 Scenarios for Testing PRISTINE vs 3GC ............................ 224
8.5 Results for early morning scenario ................................ 227
8.6 Results for AM rush hour scenario ................................ 229
8.7 Results for mid-day traffic scenario ............................... 231
8.8 Results for PM rush hour scenario ................................ 233
8.9 Results for base surge scenario ................................... 235
8.10 MOE's for varying surge multipliers .............................. 237
8.11 MOE's for alternate surge with varying multipliers .................. 239
8.12 MOE's for ten minute surge ...................................... 240
8.13 MOE's for twenty minute surge ................................... 241
8.14 Expected Arrivals ....................................... ........ 244
8.15 Cumulative Actual Arrivals ...................................... 245
8.16 Estimated surge transit times ..................................... 249
8.17 Summary statistics for PRISTINE vs 3GC . ......................... 250
C.1 Traffic flow data ...................................... ..........297
C.2 Vehicle generation rate by route .................................. 298
C.3 Vehicle generation rate by node .................................. 299



List of Figures

1.1 Structure of Intelligent Vehicle Highway System ..................... 18
1.2 Information Flow for PRISTINE .......................... 2........24
1.3 Sample Network ................................................ 26
1.4 Demonstration of a Pareto Frontier ................................ 28
2.1 Nomenclature for Traffic Signal Control ............................ 36
2.2 Depiction of Multi-Band Approach ................................ 38
3.1 Sample Network ................................................. 45
3.2 Street Segment . ...................................... 46
3.3 Space-Time Diagram ............................................. 48
3.4 Alignment Example .. ............................................ 49
3.5 Demonstration of Offset Specification ............................... 50
3.6 Depiction of Assumption 7 . ....................................... 54
4.1 Alignment Example . .. . .......................................... 63
4.2 Sample Network ................................................. 70
4.3 Route Augmentation Best Case .................................... 73
4.4 Worst Case Example for Route Augmentation ....................... 74
4.5 Maximal Spanning Tree Offset Example ............................. 78
4.6 Demonstration of Upper Bound for Maximal Spanning Tree ........... 82
4.7 Demonstration of Alignment Delay . ........................... 83
4.8 Generalized Rectangular Traffic Network ........................... 85
4.9 Demonstrating Worst Case Selection Rate for MST .................... 90
5.1 P.D.F. for W aiting Time .......................................... 103
5.2 P.D.F. for Waiting Time Convolved Four Times ..................... 105
5.3 P.D.F. for Waiting Time Convolved Eight Times .................... 106
5.4 Light Traffic Intersection ......................................... 108
5.5 P.D.F. for General Signal Setting at Intersection ..................... 110
5.6 Sample Intersection .................. ........................... 113
5.7 Display of Traffic (Coordinated vs Uncoordinated) .................. 114
5.8 Vehicle Queue Length .................. ........................ 116
6.1 Sample Intersection . ............................................ 128
6.2 3-D Graph of Probability of Stopping at an Intersection .............. 132
6.3 Information Flow for PRISTINE .................................. 138
6.4 Sample Intersection ............................................. 142
6.5 Sample PMF for Platoon Size ..................................... 150
6.6 Illustrative 3x3 Network ........................................ 155
7.1 Sample Network ................................................ 76
7.2 Waiting Time Distribution (36 Vehicles/Minute) . ................... 177
7.3 Waiting Time Distribution (72 Vehicles/Minute) . ................... 178
7.4 Waiting Time Distribution (144 Vehicles/Minute) ................... 179
7.5 Transit Time as function of Congestion ............................ 180
7.6 Sample Network ................................................ 182
7.7 Non-Linear, Non-Continuous, Convex Function .................... 183
7.8 Projection Technique for Solving NLP ............................. 186



7.9 Idealized Backbay Diagram ....................................... 191
7.10 Simulation Runs' Results Light Traffic ............................. 194
7.11 Simulation Runs' Results AM Start-Up ............................ 197
7.12 Simulation Runs' Results AM Rush Hour .......................... 199
7.13 Simulation Runs' Results Mixed Traffic ............................ 201
7.14 Sample Intersection ................................ 203
7.15 Simulation Runs' Results PM Rush Hour .......................... 206
8.1 Sample Network .................................. 212
8.2 Example of Stops as sole MOE for 3GC ............................. 213
8.3 Demonstrating 3GC Mechanisim ................................. 214
8.4 Flowchart for 3GC . .................. .................. 216
8.5 Demonstrating 3GC Split Setting ................................. 217
8.6 Demonstrating 3GC Offset Adjustment . ........................... 218
8.7 Node and Incoming Arcs .................................. 220
8.8 Simulation Runs' Results Early AM ............................... 226
8.9 Simulation Runs' Results AM Rush Hour .......................... 229
8.10 Simulation Runs' Results Mid-Day . ............................... 230
8.11 Simulation Runs' Results PM Rush Hour . ......................... 232
8.12 Simulation Runs' Results PM Surge Scenario ....................... 235
8.13 Transit Times for Varying Surge Multipliers ........................ 238
8.14 Average Arrival Rate ............................................ 243
8.15 Vehicles in the network by Time ................................. 244
8.16 Total Arrivals to the Network ................................. 245
A.1 Flowchart for 3GC ............................................... 283
A.2 Node with Incoming Arcs ........................................ 284
C.1 Routings used for AM Rush Hour Scenario ......................... 297



Chapter One

Introduction

SECTION 1.1 Overview

Traffic signal control is an area that affects each of us every day, ranging

from the morning commute to the economic aspects of a society where virtually

100% of all products are transported on the roadways of the nation at some point

between production and consumption. Although traffic signal control and traffic

signal research have been active for over thirty years, only recent advances in

information technology and micro-processor design and cost effectiveness have

made the dream of dynamic control of traffic signals feasible. It is not just the

availability of microprocessors that makes dynamic control more plausible but

also the new capabilities in data collection, information processing, data base

management and the advances in telecommunications which have changed and

will continue to change the landscape in which Traffic Signal Control (TSC) finds

itself. The Intelligent Vehicle Highway System (IVHS) was conceptualized to

integrate these and other factors into a comprehensive plan for alleviating

congestion, improving throughput, increasing safety, and numerous other goals

for the US traffic systems in the 21st Century (IVHS, 92).

A key portion of IVHS is the Predictive Routing Information (PRI) which

will be available to traffic signal control systems. The predictive routing

information presents both new opportunities and new challenges. Current traffic

signal control strategies are not explicitly designed to utilize this information.

There are four basic approaches which have been traditionally used in the area of
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TSC; they are: maximizing bandwidth through off-line computation, minimizing

average delays or stops using off-line computing, semi-dynamic control which

uses off-line computing to derive candidate settings and then fits the setting

closest to real time observations, and fully dynamic control.

This thesis accepts the Master Clock Concept (MCC) as the basis for

successful traffic signal control. The MCC is the idea that all of the traffic signal

control in an area work from the same master clock, or stated another way, all of

the traffic signals have the same total cycle times. A cycle time is the total

amount of red, green and amber time at an intersection in a particular direction.

We make three primary contributions in this thesis. First, we develop a

platform which allows us to evaluate the benefits of predictive routing

information. Second, we explore new strategies for setting traffic signals which

can be applied even without the additional information available under IVHS,

and third, we examine a particular case, the surge situation, where the use of

predictive routing information offers its greatest benefits.

The goal of the thesis is to take the Predictive Routing Information (PRI)

available under IVHS and use it in a dynamic TSC system. By dynamic TSC we

mean a system that is capable of responding to traffic conditions and PRI

information in real time. To accomplish this objective, we developed several

models. We describe and analyze a new framework for setting off-sets in a TSC

scheme by explicitly considering a tree structure in the traffic network under

scrutiny. We explore three explicit methods of selecting the offset tree in chapter

13



four. We explore a means for evaluating TSC plans in terms of common

measures of effectiveness, and in particular, the document will develop a Queue

Effects Model (QEM) for determining average wait per vehicle at a particular

intersection and probability of delay at a particular intersection for a randomly

incident vehicle. We demonstrate how to use the average wait in concert with

parameters set by the traffic manager to determine the overall cycle time and

splits for the network.

These techniques collectively make up the Predictive Routing Information

Signal Timing INtEgration (PRISTINE) model, traffic signal timing system which

explicitly uses predictive routing information (see Annex C for an example of

predictive routing information). The thesis explores two methods to implement

PRISTINE. One method is the Split setting Heuristic (SH) technique which

exploits elements of the problems structure, and the second method for

implementing PRISTINE utilizes a Non-Linear Program (NLP) to solve for the

splits and cycle time of the network. Several subtleties in the structure of the

problem allow us to solve this NLP extremely quickly.

The ultimate TSC setting scheme should be efficient enough that it can be

implemented in real time. There are many good, robust routines which are

commercially available which perform TSC operations, but none of the existing

packages are designed to utilize the PRI explicitly. We want to evaluate

PRISTINE against a system which uses existing traffic data. To accomplish this,

we develop a traffic simulation model and an optimized version of a Third
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Generation Control (3GC) system. PRISTINE is compared to 3GC using real

traffic data collected from Boston's Backbay area.

The thesis is divided into several major sections. The first is an overview

of the thesis and a description of how IVHS supports the concept of predictive

routing information. The second section is a literature review of relevant articles

which sets the historical niche for the current document and examines the

traditional approaches to TSC in the literature. The third section introduces the

mathematical definitions and derivations which are common to later chapters,

and it specifically defines the common measures of effectiveness (MOE's) for

traffic signal control. The fourth chapter develops three heuristics which

explicitly utilize predictive routing information to set the off-sets and introduces

the concept of using a tree structure to define these off-sets. The fifth chapter

explores methods for evaluating performance of a TSC and a network in terms of

our MOE's. In particular, chapter five develops a Queue Effects Model (QEM)

that predicts the effects of congestion on the average wait per vehicle and

average stops per vehicle. Chapter six describes several representative,

traditional methods for determining cycle time and off-sets, and then goes on to

develop PRISTINE, a TSC method which explicitly integrates the predictive

routing information available under IVHS and takes into account congestion

effects. Chapter seven evaluates PRISTINE using simulation techniques.

Chapter seven begins by developing the Lin-Sarkar-Staats Simulation (LS3) and

uses LS3 to compare the two techniques for implementing PRISTINE, SH and

NLP. The NLP fares better in the majority of the cases tested and is adopted as

the standard for PRISTINE. Additionally, the NLP converges to an optimal

solution extremely quickly, typically in five to seven hundred iterations. Chapter

15



eight develops an optimized third generation traffic signal control model, 3GC.

PRISTINE is compared to 3GC, and we find that predictive routing information

can be very useful in decreasing both the average stops per vehicle and the

average delay per vehicle under non-saturated conditions. In the final portion of

chapter eight we examine a surge situation; this is where a sudden increase in

traffic flow exceeds the capacity of the street segments for the current traffic

setting. Since PRISTINE uses predictive routing information, PRISTINE is able to

anticipate the increase in the traffic flow and modify the traffic signal plan to

accommodate the surge.. The concept of predictive routing information is central

to IVHS, and we will describe IVHS and how predictive routing information fits

into the IVHS vision in the next section.

SECTION 1.2 IVHS, TSC and Predictive Routing Information

The framework for vehicle routing and control for the US in the early

portion of the 21st Century will be IVHS. The Strategic Plan for Intelligent

Vehicle Highway Systems (IVHS) in the United States (IVHS, 1992) states

"surface transportation is at a crossroads." Past solutions will not solve all the

complex issues motorists will face in the future. Congestion, accidents,

frustration, pollution and plethora of other issues face the traffic system

designers and controllers of the future. But, just as there are additional

quandaries, so there will be additional sources of help. A significant portion of

that help will come in the form of additional information which will be available

to the traffic signal control systems of the future. Specifically, through

interactions between drivers and data bases and vehicles and central control

16



units, information on routings will become available. Existing TSC systems are

not designed to utilize the additional information under such a configuration.

The paragraphs that follow are brief descriptions of IVHS as a whole and its

component sub-systems, but they are not designed to be a whole or partial

survey of IVHS. These paragraphs focus on the place that predictive traffic

information plays in IVHS.

The strategic plan for IVHS in the United States (IVHS, 1992) describes

five fundamental components: the Advanced Traffic Management System

(ATMS), the Advanced Traveler Information System (ATIS), the Advanced

Vehicle Control System (AVCS), Commercial Vehicle Operations (CVO) and

Advanced Public Transportation Systems (APTS). The following sections briefly

describe these areas.
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Intelligent Vehicle Highwav System (IVHS)

Diagram showing the structure of IVHS; notice how all parts are interconnected.

Figure 1.1

Advanced Traffic Management System (ATMS) is the employment of new,

innovative technologies and their integration with traffic management systems to

bring increased order and efficiency to the movement of surface vehicles. The

strategic plan succinctly states "ATMS represents the 'smart highway' with

which the 'smart vehicle' will communicate." (IVHS, 1992) ATMS will rely upon

the collection of real-time traffic data, react to that data, change routing

information and traffic signal control devices to alleviate congestion and promote

safety. All other elements of IVHS will depend on ATMS. Of particular note to

this thesis is that ATMS includes predictive control algorithms which are products

that control traffic based on predicted traffic flows and congestion. Additionally,

18



ATMS also umbrellas the concept of using vehicles as probes, or in other words,

the surface transportation systems of the future must account for the additional

information gathered through and by the motorists and their vehicles.

The Advanced Traffic Information System (ATIS), quite simply, is the

umwelt for the flow of data from all available sources and its journey until the

extracted and analyzed final product, traffic and routing information, is passed

to the motorist (IVHS, 1992). ATIS includes numerous features some of which

are: electronic navigation systems, data communication from and to traffic

control centers, route planning and guidance systems, vehicle identification

systems, motorist warning systems, detailed maps, directories, etc., and dynamic

route guidance. Naturally, ATIS will interface with ATMS. In effect, a motorist

planning a route interfaces with a Goliath data base and is able to accurately

predict future congestion and anticipated usage of various streets and highway

segments. One of the primary goals of the "coordination stage of ATIS" which is

projected to be deployed in the range 2000 - 2004 AD is to include "route

guidance systems that interact cooperatively with a traffic management center,

providing the center with information, as well as receiving information." Thus,

the vision of ATIS would include a host of raw data collection systems which

would in turn give this data to huge data bases, allowing sophisticated analysis

paradigms to accurately and effectively turn this data into invaluable motorist

information. The information would be disseminated to motorists in a variety of

media, ranging from on-board vehicle information systems to variable signs and

radio transmissions.
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The strategic plan describes the Advanced Vehicle Control System (AVCS)

best when it states "AVCS combines sensors, computers, and control systems in

vehicles and in infrastructure to warn and assist drivers or to intervene in the

driving task." (IVHS, 1992) AVCS would help warn drivers of potential hazards

or invaluable safety and control information by enhancing motorists'

perceptions; the on-board display of road signs and speed limits would be an

example this implementation. AVCS includes an entire range of options in the

area of vehicle control, all the way from driving assistance (e.g. automated

steering, acceleration/deceleration) to fully automated control of the vehicle.

AVCS seems the most "long term" of all the aspects of IVHS, but in fact, if has

been on-going for over 30 years. Consider for a moment all for the enhancements

already available in today's vehicles such as power steering, cruise control, anti-

lock brakes, etc. Ultimately, perhaps as soon as twenty years from the present,

AVCS would comprise of on-board warning systems for intersection hazards and

completely automated vehicle operations on specific sections specially

designated and instrumented roadways; candidates would include arterial

expresses to major metropolitan areas.

Commercial Vehicle Operations (CVO) really comprises a variety of

techniques described under ATMS, ATIS and AVCS but as specifically applied to

commercial vehicles. Commercial vehicles have a number of unique issues

including: additional restrictions on route choice based on size or weight,

requirements for tariffs or inspections, safety requirements and subsequent route

restrictions, etc. Eventually CVO will be embodied in electronic tax and permit

systems and automated vehicle and driver condition monitoring and reporting.
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The Advanced Public Transportation System (APTS) apply to all manner

of public transportation modes (except for inter-city buses which are covered by

CVO). It is noteworthy that this component of IVHS also includes ride-share

schemes and the employment, monitoring and use of High Occupancy Vehicle

lanes. One might not normally consider these to be part of the mass

transportation system. APTS has four primary goals: decrease roadway

congestion, improve traveler safety and security, reduce transit systems'

operating costs and support legislative mandates.

Now that we have had the opportunity to examine IVHS and its

components, the question remains how does this specifically relate to the current

document? There are several answers to this question. First, a tremendous

amount of new data ("potential information") will be available as the programs

in IVHS become reality. Current traffic signal control methodologies cannot

utilize this additional information which leads directly to the second point. To

properly implement IVHS, the ATMS system must be theoretically sound.

ATMS requires a large predictive element.

Current systems are not designed to use that predictive element. In fact,

Smith (1979) has shown that signal timing policies based on incremental

responses to motorists changing routings may lead progressively away from the

optimum. Procedures which do global optimization do not fair much better.

There is a limit to how much computing one can perform on -line, using mixed-
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integer linear programming as one example, using the incoming, real-world data.

Chaudhary and Pinnoi (1993) have shown that, using mixed integer linear

programming (MILP) formulations, the time required for even a moderate sized

network to be solved "optimally" requires hours of CPU time on a mainframe!

For reference, a moderate sized network would be on the order of 50

intersections and 20 arterials. The models on the market today make the

fundamental assumption that the immediate future looks like the immediate

past. When one sets traffic signals, it is to alleviate projected problems. Even if

the traffic conditions are similar or very close, the problems on street segments and

at intersections may not be solved by applying "optimal" solutions. Gazis (1992)

demonstrated the existence of "phantom" bottlenecks which actually "flow" with

the traffic. In other words, attempting to correct the bottleneck retrospectively is

doomed to failure. The only reasonable way of dealing with this type of issue is

to use an anticipatory system.

If one accepts the premises of the IVHS strategic plan (IVHS, 1992) then by

the year 2004 some non-trivial fraction of the motorists on urban networks will

have their routes catalogued with a central traffic coordination center under

ATMS. How can this information best be utilized?

The framework for future traffic control systems should fulfill two

requirements. One, it should present some system for determining how to

integrate traffic signal settings in the area of control. Second, it should be able to

quantify or bound the value of such a system to the theoretician or practitioner

who would utilize such a framework.
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TSC System Structure

Since the thesis represents a first look into this new area, we will be

primarily interested in first order results. The goal of the thesis is not to produce a

system that is commercially marketable, but rather to examine the problem,

establish a workable framework and evaluate its potential. Every vehicle and

every driver on the roadways are different and have widely varying "system

characteristics." Even the simple question of how will a random driver react to a

prescribed set of information given a driving situation is extremely complex. So,

we will be pleased to obtain workable, logical results which model PRI and TSC

to the first order.

Rather than modifying an existing control system, we will tap into work

done in network theory. The most closely related, recent work done by traffic

researchers on the connection between graph theory and traffic management is

the work of Wright, Appa and Jarrett (1989) concerning minimizing the number

of crossings in an urban network to some graph theoretic limit through better

design of urban streets. We will use an approach inherent in both PASSER-II and

TRANSYT-7, the two most widely used commercial packages for TSC in the US.

We will set the offsets and the splits separately. Figure 1.2 describes the flow of

information used by the traffic signal control heuristics in this thesis.
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Figure 1.2

This begs the question why use this particular methodology? First of all, the

thesis uses the master clock as the basis for traffic signal control. The master

clock concept is that all traffic signals in the area of interest have the same total

cycle-length. There has been a tremendous amount of research on dynamically

varying cycle-lengths, but the master clock concept still has great potential for

application in real world traffic (Gartner 1992). Cedar, Dressier and Ross (1989)

developed a model for determining average delay at just one intersection with a
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variable cycle time by modeling vehicle arrivals and red lights as two arrival

streams where the red lights were priority customers. This clever model had

some difficulties describing a single intersection with one-way flow; the paper

did not begin to address the complexities of a network. We will explain the use

of the tree structure in chapters two and three, but the rationale for setting the

splits independent of the cycle time and offsets is that our procedure inherently

incorporates a progression system for the most important street segments. There

is also a psychological advantage to using a progression system. Drivers can

react to a series of synchronized green lights. It gives credibility to the system in

the minds of the motorists.

We rely for some information on the traffic manager; in particular, the

traffic manager gives the model the minimum amount of acceptable green time

along a major arterial and maximum average delay that is acceptable at an

intersection in the network. Note that this is something that varies not only by

easily measurably quantities such as traffic flow rate. One must also consider the

psychology of driving in a particular area. Even with the same street network

and the same amount of traffic, the minimum acceptable green period would

almost certainly vary from driving in New York to driving in Kent, England or

Bangkok, Thailand. For example, studies have shown that the maximum

acceptable cycle time in the US is approximately 150 seconds; after that limit,

drivers believe the traffic lights have broken down and start to do reckless things

like running red lights. At the same time, it is routine to have cycle times over 5

minutes in Bangkok, Thailand.
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We view the urban street grid, including arterials, as a network, in the

mathematical sense. The entire grid can be described as the set of nodes, arcs,

operations and sets of operations on the network. Before proceeding further, it is

important to understand the concept of synchronization. Traffic signals A and B

are said to be synchronized in the direction AB when a vehicle which leaves

signal A at the beginning of its green cycle arrives at signal B during a green

light. A good question to consider is if one wanted to synchronize the lights in a

network then at worst case how many street segment, intersection combinations

could be synchronized? As Morgan and Little (1964) stated, in the general case it

is not possible to synchronize even a single street with numerous signalized

intersections in both directions simultaneously. If one is very lucky, all the

intersections can be synchronized each direction. For example, consider the

network shown below.

1 2

3 4

In the sample, completely symmetric network shown above, the traffic manager is able to
synchronize every arc in the network.

Figure 1.3

In the case where the figure is a square with equal nominal velocities on each arc

in the diagram and without congestion effects, one can set the traffic signals at

each intersection so that they are synchronized in each direction simultaneously.
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Determining "Optimality"

A natural query is how does one determine what is "optimal" for traffic

signal control? There are nearly as many answers as there are motorists and

traffic managers. Certainly from a self interested standpoint, we would all like

our routes from workplace to home and vice versa as congestion free as possible.

From an economical and social standpoint, minimizing the number of stops or

the total delay for an entire network seem like good choices to stress in any

"optimal" solution. Many traffic engineers would tell you that maximizing

progression is the best overall method for controlling congestion. There are

many factors which may be important to some parties which matter not all to

other groups. For example, some groups may be interested in leaving certain

"scenic" drives congestion free while other may be willing to have a substantially

longer average travel time if the variance on the travel time is significantly

reduced. There are no quick and easy answers as to what approach to take.

Multiobjective programming offers a framework to view some of the

concerns. Specifically, the concept of a non-dominated solution is significant.

Imagine we have identified all of the measurable factors which are important for

determining the utility of a particular traffic signal timing plan. Clearly, you

want to get solutions which make all the factors as good as possible. But, if there

are constraints on the resources in the problem then eventually one reaches a

point where you cannot improve one factor without worsening with respect to at
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least one other factor. Such solutions are called non-dominated solutions.

Consider the diagram shown below. Let the utility functions be the sum of the x

and y components.

Y

B

x

The diagram shown above demonstrates a Pareto frontier in multiobjective programming. If
more is better for both the "X" and the "Y" axises then point "B" is better than point "A",

because "B" has more of "X" and "Y". The line "B" is on represents a Pareto frontier. One
must give up either "X" or "Y" to move from point "B" along the line.

Figure 1.4

Solution A is dominated by solution B, because both the x and the y

factors increased. Solution B is in fact a non-dominated solution because given the

constraints, it is not possible to increase the x or the y factor from solution B

without decreasing the other. The line which contains solution B is called a

Pareto frontier in multiobjective programming.
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In practice, the factors which are important are difficult to determine in

and of themselves, and getting a rating of the importance of the various factors in

nearly impossible. In this thesis, we will explore the three most commonly used

measures of effectiveness for traffic control schemes, average delay per vehicle

due to traffic signal control, average number of stops due to traffic signal control,

and progression (fraction of green lights encountered along specifically

designated thoroughfares). These measures of effectiveness have varying

utilities depending on the group scrutinizing them.
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Chapter Two

Literature Review

SECTION 2.1 Introduction and Overview

Traffic signal control has a long history. This literature review cannot but

splash the surface of the oceans of accumulated knowledge in this field. Thus,

the purpose of this chapter is to place the current work in a historical perspective

such that the reader can appreciate the state of the field. Additionally, relevant

selections from the literature will also be cited in subsequent chapters where

appropriate to establish grounding for the concepts described. We start with a

historical look at TSC and then become acquainted with representative works in

the various approaches to TSC. The interested reader is directed to Ballman

(1991) which contains an extensive survey. One can hardly doubt the value of

intelligent traffic signal control as Hauer (1994) pointed out in his article "Can

One estimate the Value of Life or is it better to be Dead than stuck in Traffic?" He

suggests that given a current estimation on the value of a human life as $1.5M

and the value of time set at $6.71/hour, it is economically more beneficial that

someone should die than endure the projected traffic delays and consequential

costs associated with them.

30



Historical Perspective on TSC and Graph Theory

The first use of graph theory for traffic control that we are commonly

aware of was Euler's (1736) use of networks to route the King of Prussia's band

across the seven bridges of K6nigsberg in 1736. The problem was to determine a

path so that the royal band passed over each bridge once and only once. Euler

showed that such a proposition was impossible. The modern use of graph theory

had begun.

The first description of trees as mathematical structures related to graphs

was by Cayley (1857). Cayley focused on the use of trees to represent special

types of polynomials.

Modern traffic signals did not appear until 1868 where they made their

first debut in London streets, and we did not see the advent of electric signal

lights before 1914 when James Hoge installed several in Cleveland, Ohio. The

first attempts to maximize progression by coordinating adjacent intersections

occurred in 1922, and the world saw the advent of dynamically controlled traffic

signals in 1928 when New Haven, East Norwalk, and Baltimore installed

actuated signals (Homburger, 1988).

Engineers and mathematicians began working on traffic control problems

almost immediately. The earliest work of note, using probabilistic methods to
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analyze traffic was published by Kinzer (1933), which was followed quickly by

Adam's (1936) report in the Journal for the Institute of Civil Engineers. Gerlough

(1955) looked at modeling traffic using the Poisson distribution in a seminal

paper.

Gerlough's paper was both broad and enlightening, and he was the first to

formally establish bounds on the maximum throughput of a street given some

Measure of Effectiveness (MOE.) Gerlough's goal was to discover the maximum

number of cars which could pass through the crossing per hour and still allow

the children to have 60 crossing opportunities per hour. This work assumed

constant arrival rates and no queuing effects. His result for the crossing problem

was:

"critical" volume (cars / hour) = V = 2 9' 0 0 0(2.322 - logD).
D

Gerlough was joined by a colleague who also published in 1955. Schul (1955)

published his paper "The Probability Theory Applied to Distribution of Vehicles

on Two-lane Highways" which demonstrated some early attempts at predicting

congestion and vehicle delays using "brute force" mathematical techniques. But,

Schul's work did not go unnoticed. A young engineer at the British Road

Research Laboratory used the techniques elucidated in Schul's work to perform

some calculations of his own.
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Webster (1958) published a paper called "Traffic Signal Settings". In this

paper, Webster established the following useful relationships (Hobbs, 1979).

c(1- )2
_ _X

2 C
d= +65x(2KJ

2(1- Xx) 2q(1 - x) q

d = average delay per vehicle on a particular arc
c= cycle time [2.1]
q= flow (in vehicles per second)
X = proportion of the cycle which is effectively green

x = degree of saturation = q

1. 5L +5
C 0 =

C = Optimal cycle time to minimize average delay
L = Lost time (e.g. amber time + acceleration / deceleration time) [2.2]
Y = Practical correction factor =. 9-.0075L

Webster assumed Poisson arrivals with a constant arrival rate, uniform departure

rates and a constant loss time during each cycle of 2 seconds, i.e. the amount of

time lost due to switching lights, accelerating/decelerating, etc. In practice,

Webster's formula works well. In fact, this will be one of this thesis' points of

comparison in chapter six.

Graph theory never completely divorced itself from its first love of traffic

management and routing. Holroyd and Miller (1966) demonstrated a statistical

correlation between the number of lane changes and accident rates in urban
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areas. Wright, et. al. (1989) later used graph theory to design networks which

dramatically cut down on the number of crossing movements required, but these

designs are unlikely to be put in practice as they consisted of infinite lane rings

circumsected by an even number of radial connecting axis's. Later in the thesis,

we will examine the use of spanning trees to help determine the offsets in the

network, but this thesis is not the first work to examine the use of trees in the

context of optimizing an objective function. Hutson and ReVelle wrote an article

called "Maximal Direct Covering Tree Problems" which developed several

formulations for sub-graph coverage; the applications to traffic signal control are

direct with the proper choice of objective function. The major contribution of

Hutson and ReVelle's paper is that it examined the use of non-spanning trees.

That is they examined the possibility of excluding some nodes from the tree if the

cost of covering the nodes were too high.

Approximately 30 years ago, one of the most widely used contemporary

methods of setting traffic signals was developed. Little and Morgan (1964) wrote

an article in Operations Research call "Synchronizing Traffic Signals for Maximal

Bandwidth". This technique was translated into the MAXBAND computer

program for signal timing (Little, 1966). At this juncture, it is best to leave a

historical sequence and look at the four major current approaches to traffic signal

control and how each developed.
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The Four Traditional Approaches to TSC

Taking a larger view of traffic signal control, there are four major

approaches for traffic signal timing which are currently employed in the public

sector. The first approach is maximizing "bandwidth" or amount of green time

as vehicles progress in a given direction along a major thoroughfare. An

example of a greenband is shown in the space-time diagram below. To better

understand this and subsequent methods for TSC, it is beneficial to understand

some of the nomenclature used to describe a particular TSC strategy.

The cycle time is the amount of time from the beginning of the red light in

a given direction until the beginning of the next red light in the same direction.

In our example below, the cycle time is 6 time units (e.g. seconds, minutes, etc.)

The offset between two lights is the time difference between when the red light

starts at one intersection in a given direction and when it starts at the intersection

and direction you are comparing it to. In the example below, the offset between

Main and Cedar streets is approximately one time unit. Now we can examine

methods which maximize bandwidth in more detail.
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Diagram above pictorially represents the meaning of the terms: split, cycle time, greenband and
offset for a simple three intersection street segment.

Figure 2.1

These methods maximize something called bandwidth, but maximizing the

bandwidth inherently involves maximizing progression, the fraction of green

lights a motorist encounters traveling along a specific route. The MAXBAND

computer program (Cohen, 1982) sets cycle times, offsets and splits in order to

maximize an affine combination of progressions for various user specified routes.

The method uses a mixed-IP optimization technique to solve the problem.

36



Passer-II was developed by the Texas Transportation Institute (1984). Passer II

examines turning movements, saturation capacities, distances, nominal speeds

and queue clearance intervals. The main advantage Passer-II has over

MAXBAND and its successors is that Passer-II implicitly considers the capacities

of the streets in its calculations. Passer-II performs its heuristic in a two phase

manner. First, it examines the demand-to-capacity ratios to set splits. Then, it

sets offsets to maximize a user specified affine combination of route progressions.

MULTIBAND is the most recent major system using progression as its primary

solution (Gartner 1990). MULTIBAND also uses a mixed-IP solution technique.

It differs from MAXBAND in that it does not require the bandwidths to be

equidistant. Consider the diagram shown below.
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Total Area of the Greenband is maximized in the Multi-Band Approach
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Under the Multiband concept, one attempts to maximize the area of the greenband shown as
Area "A" in the diagram above.

Figure 2.2

MULTIBAND seeks to maximize the area labeled "A" in figure 2.2. In this way,

MULTIBAND implicitly decreases delays for motorists who are not part of a

platoon along a thoroughfare.
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The second set of TSC strategies seek to minimize delays and stops per

vehicle across the entire network. TRANSYT is an example of the second class of

TSC methodologies. TRANSYT was developed by Webster's organization, the

Transport and Road Research Laboratory, United Kingdom (Robertson, 1969).

TRANSYT-7F, the current US version of the historical TRANSYT, is the most

widely used traffic signal control setting routine in the USA (Strong, 1991).

TRANSYT also uses a combination of simulation and incremental improvement

approach to calculate speeds, offsets and splits, but its objective function is

minimizing total delay in the network (Hadi, 1992) as opposed to progression.

All of the methods mentioned above have a common element in that each of

them collects either physical data or vehicle usage data or both and calculates the

optimal settings off-line. Thus, traffic signals set according to these routines

alone would not vary with the current traffic conditions.

The third major grouping of traffic signal control techniques combines the

first or second group with real time control (Hawat, 1992). Specifically, these

methods will involve a collection of traffic data for a period of perhaps months,

and then this data is divided into traffic patterns called signatures. An optimal

traffic signal control setting is determined for each signature using one of the

methods described previously. There are generally a large (over 100) number of

signatures. During the day to day operations, the traffic control center collects

data (which is recorded to be used during the next run of TRANSYT-7F, Passer-

II, etc.) and compares this to the signatures, selecting the closest match. The third

grouping also includes Critical Intersection Control (CIC). Here, selected

"critical" intersections allow their cycle times and splits to vary dynamically

based on observed traffic flows in real time; CIC typically uses pure Webster or
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Newell formulas to determine appropriate settings. The third group is

sometimes called generation 1.5 technology, falling somewhere between

generation 1 , totally off-line optimization, and generation 2, on-line optimization

with fixed cycle lengths for groups of intersections (Gartner, 1981).

The fourth grouping of traffic signal control strategies are third generation

controls; there are no fixed cycle lengths, splits or offsets (Gartner, 1981). We will

develop an optimized version of a third generation control system in chapter

seven. The most widely implemented of third generation control system

worldwide is called SCOOT (Robertson, 1991). SCOOT is essentially a real-time

version of TRANSYT. SCOOT is main frame based, written in a high level

language, CORAL. SCOOT samples current traffic conditions every four seconds

and updates the timing on the lights every five minutes. Newell and Grafton

proposed a continuous Dynamic Program (DP) in 1967 for traffic signal setting

(Papageorgia, 1991), and Robertson and Bretherton proposed a discrete DP

formulation as early as 1974. The problem with DP since its inception by

Bellman in 1957 has been the "curse of dimensionality". In an effort to limit the

extraneous data retained by the model, most traffic signal setting methods using

DP invoke Optimal Sequence Constraints (OSCO). Essentially this means the

models will only consider the last arbitrary number of traffic cycles. One model

of this type which has gained widespread acceptance is Optimization Policies for

Adaptive Control (OPAC) (Gartner, 1983). Shepherd (1994) wrote an excellent

survey of currently used dynamic traffic signal control programs in his article for

Transport Reviews where he examines the primary mechanisms, strengths and

weaknesses of: OPAC, PRODYN, SAGA, SCAT, SCOOT, STAUKO and UTOPIA.
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Note that each of the four proceeding methodologies all assumes that the

immediate past has the same characteristics as the immediate future. The

methods are not specifically designed to take advantage of the predictive

information which will be available under IVHS. The MOTION traffic signal

control program written under the auspices of the European DRIVE program

(Busch, 1993) makes use of the real time predictive routing information. Central

to this thesis is the real time availability of accurate routing information for

vehicles entering and proceeding through the network. Several current

approaches are examining the difficult area of collecting and processing such

PRI. Kaufman and Smith (1993) proposed such a system in their article "Fastest

Paths in Time-Dependent Networks for Intelligent Vehicle-Highway Systems".

Another process is presented by Leonard, Ramanathan and Recker (1993) in "A

Real-Time Information Processing Algorithm for the Evaluation and

Implementation of ATMS Strategies". This thesis examines ways of applying the

information from the ATIS and ATMS data bases to determine the TSC; between

the thesis' problem and filtering/setting up the data bases to hold the PRI is the

problem of actually selecting the routes the vehicles travel on. In the article

"Algorithms for efficient Real-Time Traffic Assignment", the authors describe a

state of the art, fast algorithm for optimal routing or traffic prediction under

ATMS/ATIS (Jayakrishnan, R., Tsai, W., et.al., 1993). Perhaps the most notable

contribution of the paper in light of the work done is this thesis is that the paper

advocates the use of a gradient projection algorithm for solving for traffic flow

problems. We will make use of the same technique in a slightly different

application in chapter seven to solve our non-linear program. Kim and Hobeika

(1993) have developed a model using a Auto Regressive Integrated Moving
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Average (ARIMA) model based on collected traffic data. Last, Nelson and

Palacharia (1993) have developed a neural network model for estimating current

travel times and performing data fusion under the ADVANCE traffic

management program. The system uses a counterpropagation neural network to

solve the travel time data fusion problem.

The current techniques for traffic signal control have been developed and

re-engineered over the past twenty years. Each of them is very complex. It is

difficult if not impossible based on the heuristics' complexities to place bounds

on how much the presence of these control techniques improves common MOE's

for traffic. In chapter five, the thesis will also propose a method for estimating

delays, stops and progression for vehicles traveling along uncoordinated routes

assuming statistical independence and using convolutions. The methodologies

proposed in the thesis are simple enough that they could be implemented on a

microprocessor.

SECTION 2.4 Traffic Simulation and Testing

Traffic signal control is an area that naturally lends itself to simulation.

We will use simulation techniques to test PRISTINE. In this section, we will take

an overview of some of the more common and recent simulation techniques, and

we will conclude the section by examining methods of testing the traffic

simulations themselves.
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The most commonly used and cited traffic simulation model is TRAF-

NETSIM. We will discuss TRAF-NETSIM in greater detail in chapter seven. In

brief, TRAF-NETSIM was first developed under a grant from the Federal

Highway Administration (FHWA) twenty years ago and has been continually

enhanced since that time (Rathi and Santiago, 1990). It integrates such features

as: pedestrian crossings, 16 vehicle types, three driver types, transit operations,

interactions of adjacent vehicles, effects of blockers and parkers, spillbacks, etc.

TRAF-NETSIM sets the standards for realism and robustness for traffic

simulation, but there are other simulations in the literature.

Most traffic simulations are developed for very specific applications. Roke

Manor Research Limited in England developed a simulation to examine the

interaction of vehicles guided by the EURO-SCOUT system and those vehicles

without the on-board guidance aid (Harris, S., Rabone, A., et.al., 1992). The

simulation developed was called ROute GUidance Simulation (ROGUS). Liu

and Kanaan (1992) developed a model call CORFLU which is an integrated

traffic simulation system for corridors. CORFLU is part of the TRAF system of

traffic models. Huijun and Fu (1992) developed the Urban Traffic Simulation

Model (UTSM) to examine the inner ring viaduct project in Shanghai.

Willumsen, Bolland, et.al. developed SATURN and the SAturn Travel CHoice

MOdel (SATCHMO) models to simulate congested traffic. SATURN and

SATCHMO are designed to evaluate the effects of public transportation schemes,

road pricing, traffic calming, and safety measures on congestion. Sullivan, Staley

and Taff (1993) developed an off-line testing method for examining proposed
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ATMS and ATIS applications. The program they developed was called

Mesoscopic Event-driven Traffic Simulation (METS). The DYnamic Network

Assignment Simulation Model for Advanced Road Telemetrics (DYNASMART)

is a simulation package that seeks to integrate the route selecting aspects of IVHS

with some freedom of driver choice. In chapter seven, we develop our own

simulation model, LS3, for testing the integration of PRI with dynamic traffic

signal control. One area of importance that does is not extensively covered in the

literature is how to test a traffic simulation to determine suitability.

We found two papers in the literature which addressed issues

surrounding simulation that would prove applicable in the area of traffic and

TSC modeling. The first of these was a paper by Barlas (1989) called "Multiple

Tests for Validation of Systems Dynamics Type of Simulation Models" which

described how to test not only the structural basis of simulation models but also

the behavioral aspects as well. We will examine Barlas' paper in more detail in

chapter seven where it forms the basis of our examination of the LS3 simulation

model. Towsley and Heidelberger (1989) wrote an article called "Sensitivity

Analysis from Sample Paths using Likelihoods" which could be used to see if the

vehicles were following the correct paths in the simulation, but we will use a

virtual 100% sample of the vehicles exiting the network to verify that the vehicles

followed the correct paths in chapter seven. But, if one was faced with an

unknown simulation platform, a "black box", this could prove an effective

technique for evaluating the model's structural integrity.
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Chapter Three

Basic Mathematical Model, Notation and
Assumptions

SECTION 3.1 Definitions and Notation

One can represent an urban street complex in terms of a network model,

G(N,A). G(N,A) consists of several sets. [Note: there is a glossary at the end of this

document.] "N" is the set of nodes which correspond to the intersections with

traffic signal control. Let "n" be the number of elements in N, i.e., n=IINI. "A" is

the set of one-way arcs corresponding to the individual traffic lanes in the

network. Let m= lAll. "D" is a matrix whose elements correspond to the

distances between nodes along arcs which are elements of set A. Consider the

simple urban street complex shown below.

1 3 2

A={(l ->2),(2->3),(2->4))
N={ 1,2,3,4}
m=3
n=4

Sample diagram above demonstrates node and arc sets.

Figure 3.1
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Let V be the matrix whose elements Vij represent the speeds at which

vehicles traverse the arcs (i -4 j) E A. Thereby, the time it takes a vehicle to go

from node i to node j along arc (i - j) is given by:

ti7 = time from "i" to "j" along arc (i j) = ij [31]
vijii Vij0

The arcs of G(N,A) are traversed by vehicles. To represent vehicular

travel, let Xi be the vector representing vehicle i's path as it traversed G(N,A).

Specifically, Xi (j) - the jth node visited by vehicle " i". Corresponding to

Xi, let Ti be the vector of times for vehicle "i" during its travel through G(N,A).

Here Ti(j)= the time vehicle "i" arrived at the jth node on its path through

G(N,A).

Consider the following illustration:

i i

A simple one-way arc with nodes "i" and "j"

Figure 3.2

Let us say that node i is the third node that vehicle k arrives at, and the vehicle

continues unimpeded to node j Then we have the following relationships:
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Xk(3)=i and Xk(4)=j, and if there are no delays, Tk(3)+tij=Tk(4).

Let R represent the set of routes through G(N,A). Let nR Rll.

Specifically,

R; () - the ji node on route "i".

We will define the desired usage (vehicles per unit time) of the routes to

be the vector A where Xi represents the desired usage rate of route "i". One can

introduce the concept of traffic signal control on G(N,A) by defining the cycle

length, off-sets, and splits for the network. The cycle time refers to the amount of

time between the beginning of successive green cycles at a given intersection for

a specific direction of travel. Under the master clock concept, all signal control

units have the same cycle time. Offsets represent the difference between the

beginning of a green cycle for a specific intersection going a designated direction

and the master clock zero. Throughout this thesis we will use the term splits to

refer to the amount of green time in seconds in a particular direction. Figure 3.3

(below) describes the traffic signal control for an street with four traffic signals.
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The space-time diagram above shows sample paths for vehicles 1, 2 and 3. Vehicle 1 was able
to pass through all four intersections without stopping while vehicle 2 stopped once. Vehicle

3 is moving in the opposite direction.

Figure 3.3

Figure 3.3 demonstrates the use of the space-time diagram to plot the

relationship between cycle time, splits and offset. The horizontal lines on the

figure represent signals seen from a given intersection in a fixed direction. The

small shapes (e.g. squares, circles and triangles) on the lines represent times

when the light is red. Note the three vehicle sample paths shown. Vehicle 1 goes

through all four street lights unimpeded while vehicle 2 must stop at one light,
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and vehicle 3, moving the opposite direction, must stop at three lights. The slope

of the paths at any instant "t" represent:

Distance = Velocity
Time

Let 6 represent the vector of offsets for the intersections in N and

ij represent the offset for the beginning of the green light from the master clock

zero for intersection j when traveling from intersection i.. Why use two

subscripts? The question really is how can one uniquely specify the off-set at a

particular intersection? For example consider Figure 3.4 (below).

2
I

1 a

5

A

I

4

An offset for node 5 is not completely specified unless we have both a quantity and an
orientation. In this case, we specify both a quantity and indicate this is the offset as seen by a

vehicle travelling from node 4 to node 2 through node 5.

Figure 3.4
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A value for 05 does not in and of itself give you the actual offset for the

intersection; 05 is ambiguous, unless it includes some type of orientation along

with the numeric offset. If one includes the orientation, the offset for node 5 is 05

when traveling from 4 to 2, the offset is completely specified.

This leads directly into an alternative offset designation which includes a

defining spanning tree, S. A spanning tree is a set of arcs which connect all

nodes and contains no cycles. Now, select a node i*e N. (By the definition of a

spanning tree, i1 will be a member of any spanning tree.) The O vector

represents the offsets at the intersections when traveling from i* along S, the

spanning tree. By convention, Oi* =0. Note, every spanning tree contains (n-i)

arcs. There is a unique path between any two point in G(N,A) through a

spanning tree. Ergo, any classification of off-sets is uniquely determined once

we specify the point (i.e. the root node, i*) where we begin tracing our paths

from. Consider the G(N,A) shown below.

3

1

2 5 4

If node 1 is the root node, we still have multiple paths to reach node 5. We need to uniquely
specify a path to set the offset from the root node.

Figure 3.5
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If one did not define 8 with S, there would be confusion as to when the

green cycle started. Specifically, would 05 refer to the green cycle when traveling

through 5 from intersection 2 to intersection 4 or would it refer to traveling from

intersection 3 to intersection 4 through intersection 5?

One of the most important consideration for determining traffic signal

timing in the master clock environment is the master clock cycle length. Let

C-cycle length for G(N,A). Then C refers to the time from the beginning of a

green cycle to the beginning of the next as a specified intersection in a given

orientation.

One can make interesting observations about the vehicles traveling

through the network as well. Assume vehicles arrive independently and each

vehicle arriving to the network has a specific route to follow upon arrival to the

network. (One may or may not know this route a'priori.)

If one observes the network for some fixed time interval, he can estimate

the desired usage of any particular street segment. Specifically, start observing

G(N,A) and the vehicles passing through the network at time 0 and stop

observing at time t.

Define the observed usage of the arc (i - j) to be:

Vehicles observed on street segment (i - j)/
/Time during which (i j)was observed' or in

more symbolic terms, we have

y (0,t)
i.(,t)- 11( Ot) [3.2]

iouti tiat

where ij(t, t + At) is the counting variable:
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Yij(t, t + At)= I(1) . [3.3]
VXk ()=i,Xk (l+1)=j,[Tk (l)<tnTk (1+1)>t+At]

The expression counts every occurrence where a vehicle was traveling across

(i -+ j) between times t and t+At.

One can also estimate ij(O,t) by considering the point vehicle flow rate

along arc (i - j) and use that value as the representation for the entire time

period. Now Aij(O,t) is a monotonically increasing function of the flow rate on

the arc if the average velocities of vehicles along arc (i - j) are fixed. For a fixed

time, t, one can abbreviate kij (0,t) - kij It will be useful to develop some

method of measuring traffic signal settings' effects on specific sample paths in

the next section. To do this, we need some measure of the number of street

segments and intersections a given sample path, Xi passed through while

traversing G(N,A). Define ni-number of nodes Xi passed through in G(N,A),

i.e. ni= jXi|]. It is evident that, because Xi contains no cycles, the number of street

segments traversed in G(N,A) equals ni-l.

SECTION 3.2 Assumptions

We make the following basic assumptions.

(1) The cycle time, C, for signalized intersections in G(N,A) is

constant.

(2) A vehicle will travel at a constant speed along arc (i e j) of

V.j.ii
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(3) Velocity changes are instantaneous.

(4) Traffic is of light intensity; every vehicle which is stopped at an

intersection for a red-light cycle will pass through the intersection on the

subsequent green cycle.

(5) Drivers follow routes through G(N,A) which do not intersect

themselves; these routes are all contained in R. Specifically,

(VX i E R)nl[i,,k s.t. Xi(l) = Xk(k)Il < k]. Note: the Xi are still sample paths, but the

set of all possible sample paths (with non-zero desired usage) are contained in R.

(6) One knows or can easily measure A, a vector containing the

drivers' desired usage rates (in vehicles per unit) for each route. In particular one

has:

A 3 i i - desired usage of route Ri E R.

(7) There are a maximum of two conflicting directions at each

intersection, i.e. one can have up to four way intersections, but two of the streets

are aligned. By aligned, we mean the streets share green cycles. Consider the

diagram shown below.
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(i)

F

The intersection to the left requires only two green splits to accommodate all of its incoming
arcs while the intersection to the right has to have a minimum of three separate green splits.

Figure 3.6

The first case meets the criteria of assumption (7), but the second case has

too many incoming street arcs which do not share common green splits.

SECTION 3.3 Measures of Effectiveness (M.O.E.'s)

Given a network and attendant traffic signal control parameters, G(N,A),

D, E, S, C, R, A and a set of sample paths {Xili({l,...,I}}, one can rate the

efficiency of the particular traffic control plan using the following measures of

effectiveness: progression, average delay, average number of stops, average time

in system, and expected delay per vehicle-intersection.
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(a) Progression is a measure of the ability to travel along a selected artery

without traffic signal delay (Homburger, 1988). Progression is a measure that

has a large psychological appeal. Drivers can relate to progression systems.

Drivers will adjust their pace to accommodate the offsets for the green lights.

Since progression is defined for an artery, one must first define Ar which is the

set or arcs comprising the artery. In this thesis we will define progression to be a

measure of the number of green lights that a vehicle would encounter beginning

at the first intersection in Ar at the beginning of the green cycle and traveling at

the speed limit through each intersection in Ar divided by the total number of

green lights possible. Specifically:

Progresson Actual Intersections Passed without StoppingProgression -
Potential Intersections Passed without Stopping

Note that progression is a function of a particular route or artery and does not

depend on the actual traffic flow. Progression is only a function of the speed

limits along the route and the traffic signal settings.

The highest (best) progression rating is 1, the lowest is 0.

(b) Minimize the Number of Stops is another common objective when

evaluating traffic signal control. Many groups are interested in the number of

stops. From an environmental standpoint, the number of stops is correlated to

the amounts of pollutants emitted. A safety engineer would be quick to point

out that the number of accidents is related to the amount of starts and stops a
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vehicle has to make in light to medium traffic. Minimizing the number of stops

is much like progression, but whereas progression is specified for a particular

path (e.g. the arterial), minimizing the total number of stops is a global objective.

i.e., it looks at all of G(N,A) not just (i,j)e Ar. For illustrative purposes, we will

look at the average number of stops from a functional standpoint and examine

how one might actually determine the observed number of stops from a sample

path. How does one determine how many stops a particular sample path

experienced due to traffic signal delays? Assume that when a vehicle

experiences a green light at an intersection, the vehicle immediately moves to the

next intersection, without delay (except for the amount of time, t, it takes to

traverse the street segment, i.e. ignore queue effects for the moment). Thereby, if

a vehicle is traveling from node i to node j in G(N,A), we saw in equation 3.2 that

the travel time is just t." Thus, one can count the number of delays any

particular sample path Xi experiences by using the following relation.

Ai - Number of Delays from Traffic Signals

= (1) . [3.4]
Ti() s.t Ti(l) > T i(l -1)+ x,(l)x,(l-l)l E {2, ni.

This is another expression with a counting variable as the central feature. In this

case, the variable counts all those times when the vehicle took longer to get from

one intersection to the next than it would have without delays.

Alternately, define an indicator variable 6i(l) where:

5i - Indicator variable for event vehicle "i" stopped at intersection "1" due to traffic signal control.
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We define the indicator variable the same way we did with the counting variable

above. The value of the indicator is one whenever the vehicle is delayed on the

street segment, i.e. it takes longer than is required to traverse the street segment.

i(l) = f1 if 3j {,...,ni} s.t. Ti(l) > Ti(l -1) + txi(l)X(lll E {2 .. ,nji

o0 else

Now, let N - Number of sample paths evaluatedlNs< I. Then,

Ai= a, i(l).I [3.5]

If we knew the sample paths for the time frame of interest in advance, the

objective could be described as:

N
MiTn 'i
,Ti=

[3.6]

One can define the average stops per vehicle in G(N,A) as:

N,
XAi

SG(N.A) n
') &=1s [3.7]

Even in this simplified model, the number of stops per vehicle is a

function of many things including: the network characteristics such as physical
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construction and speed limits; the traffic signal plan such as the offsets and splits;

and the nature of the arrival process for vehicles into the system such as the

average number of vehicles arriving per unit time and how the arriving vehicles

are spread out in terms of time between vehicles. We will make some

assumptions about characteristics of this arrival function in later chapters.

Another perspective is to examine the effects of any particular traffic

signal plan on the average stops at a given intersection per sample path, using

that intersection. Let So be the vector, arranged by traffic signal, containing that

data. Again examining sample paths to illustrate the measure we have:

So(j) U-f i() . [3.8]

k=1 Xi(k)=j )

This particular M.O.E. does not discriminate against longer paths. Both

minimizing the average delay and minimizing the average number of stops tend

to favor situations with shorter routes. Why? The M.O.E.'s are not only a way of

measuring absolute performance, but they are also a way of comparing various

traffic signal plans. If we said we had a traffic control system that gave us an

average of one stop per vehicle (on the average), we may be tempted to say that

sounds like a relatively good system, but would it make a difference if we said

the average driver passed through only two intersections in this network. Would

it sound better if we said the average driver passed through 35 intersections

while passing through the network? So, the second measure normalizes the

number of stops across the number of intersections the vehicles pass through.
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(c) Minimize the Average Delay is another commonly accepted measure

of effectiveness for traffic signal control. Average delay is most closely related to

costs. The amount of fuel consumed during a trip through the network is most

closely related to the delays experienced. Processes that rely on speedy delivery

of products are subject to adverse effects from travel delays. There is an adage

that time is money, and a company stands to lose a significant amount of money

if one of its influential executives is stuck in traffic. Again we will examine this

M.O.E. from a sample path and purely functional standpoint. One can easily see

that delay occurs at intersection "j" for sample path "j" iff 5i(j)=l. Now, the total

delay per vehicle is described as:

(Actual total time to pass through network - Amount of total time to get through with no delays)
Number of Vehicles

NS n

¥.{Ti(n) - tx,(J-x X(J)}
1 =1 j=2

TG(N,A) N [39

From a functional standpoint, the average delay per vehicle would be dependent

on the network characteristics such as physical construction and speed limits; the

traffic signal plan such as the offsets and splits; and the nature of the arrival

process for vehicles into the system such as the average number of vehicles

arriving per unit time and how the arriving vehicles are spread out in terms of

time between vehicles. As with average number of stops per vehicle, we must

make some assumptions about the arrival process to further analyze it. We will

do this in subsequent chapters, and in particular we will use a bulk arrival with

exponential times between arrivals in the Queue Effects Model (QEM). Later in

the LS3 simulation in chapter seven, we will evaluate the delay per vehicle in
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terms of the amount of time the average vehicle is travelling less than five MPH.

There is a high correlation between average transit time and average delay as we

will see in chapter seven. Our first area to examine will be how to set the offsets

in such a way as to set up an inherent progression scheme? We will explore the

answer to this question in the next chapter.
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Chapter Four

Heuristics for Determining Offsets

SECTION 4.1 Assumptions and Derivations

Now that the symbolic groundwork has been laid, we can examine

heuristics for traffic signal setting. Remember, we have made several "first cut"

assumptions. Many of those assumptions will be relaxed in later models. It is also

significant to note that we assume that some cycle-time exists prior to actually

setting the splits, but in actuality, we will perform the split setting in two

separate operations. In chapter four, we will explore three separate heuristics for

determining the tree. Then, we will use the predictive route information in

conjunction with the tree to determine the cycle time and splits for the network;

this will be explored in chapters five and six. Last, we will set the splits based on

C and S. Let us begin by examining the assumptions we made in chapter 3

again.
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SECTION 4.1.1

(1) The cycle time, C, for signalized intersections in G(N,A) is

constant throughout the network, i.e. every intersection in the network has the

same cycle time.

(2) A vehicle will travel at a constant speed along arc (i e j) of

V...

(3) Velocity changes are instantaneous.

(4) We will assume traffic is of light intensity; just as in chapter

one, our definition of light traffic implies that every vehicle which is stopped at

an intersection for a red-light cycle will pass through the intersection on the

subsequent green cycle. Vehicles which arrive at an intersection during a green

light will pass through that intersection unhindered.

(5) Drivers follow routes through G(N,A) which do not intersect

themselves; these routes are all contained in R. Specifically,

(VXi E R)n[ai,l,k s.t. Xi(l) = Xk(k)l < k]. Note: the Xi are still sample paths, but the

set of all possible sample paths (with non-zero desired usage) are contained in R.

(6) One knows or can easily measure A, a vector containing the

drivers' desired usage rates (in vehicles per unit) for each route. In particular one

has:

A 3 X, - desired usage of route R, E R.

(7) There are a maximum of two conflicting directions at each

intersection, i.e. one can have up to four way intersections, but two of the streets
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are aligned. By aligned, we mean the streets share green cycles. Consider the

diagram shown below.

4

W

I

(i)

P

I 

(ii)

l

The intersection to the left requires only two green splits to accommodate all of its incoming
arcs while the intersection to the right has to have a minimum of three separate green splits.

Figure 4.1

The first case meets the criteria of assumption (7), but the second case has

five non-aligned directions, which is more than allowed by assumption (7).

(8) The amount of red and green time is evenly split for each

direction at each light with a value of C/2 for each.
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SECTION 4.1.2

Knowing A along with R, one can estimate '%i for each arc. Call
A

this estimate ,i,. Now,

'ij - E '~'ij [4.1]
X,(k)=i,X,(k+l)=j

VlEl1,-..,n )
VkEl,- ,(n, -1))

As we discussed in section 1.4, one can only truly describe an optimal

solution in the case of a single objective function. In the case of multiple

objectives, as in the multiple M.O.E. s of traffic signal control, one can only

describe "non-dominated" solutions (such solutions are said to lie on a Pareto

frontier). That is solutions where you cannot improve one M.O.E. without

hurting another. One technique in multi-objective programming is to weight

conflicting objective functions by taking affine combinations of them. Consider

the case where one is interested in finding a multi-objective non-dominated

solution where we weight the progression rating, average stops per vehicle, and

average delay per vehicle using a, [ and y respectively. Let a, 3, y > 0, and

a+P+-y=l. Then, for a known set of X, sample paths, and using our descriptions of

the M.O.E.'s from chapter three, we could describe our objective function, F, as:
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N Ns ni

N, n Ai X{Ti(ni)- Xtxi(j-)X(j)}
12 i=1 j=2

F() = [- E [1- i(1)]- P =1 = =2
Ari=11=2xi.v_lx, EA, Ns NS

Objective Function 4.1

and the problem of selecting offsets for the traffic signal control scheme could be

described as:

(O,S)= arg max F(.)

0<e_, SA, {ISII=n-1, S is a tree

The actual outputs of this program would be an optimal set of splits and S;

throughout the remainder of the thesis we will refer to the value of math program

4.1 as the value of the objective function for the program. The theoretical

maximum of the objective function is cz. If we select our arterials to be the same

routes selected to be part of the tree, S, then we automatically give ourselves a progression

based system. [Note: the arcs chosen to measure progression along do not have to

correspond to an actual route at all.] One may wish to consider the main

thoroughfare as the arterial for progression purposes, and although many

vehicles may travel along it during part of their journey across G(N,A), few if

any of the vehicles will use it the entire way.] Then the points of comparison are

between which TSC plans give the smallest overall delays or stops.
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We are not going to explicitly solve the math programming model (see

above) in this thesis, because to adequately do so would require us to explicitly

know the relationship between: drivers, the vehicles they drive, their routings,

driver behavior, congestion, driver interactions, unforessen contingencies, the

traffic signal settings, etc. which is not possible (and probably not even legal).

We will use objective function 4.1 as a benchmark, making several statistical

assumptions later in the document. In particular, we will develop a non-linear

programming example based on objective function 4.1 in chapter six.

We know that in traditional traffic signal control approaches, the heaviest

travelled routes are either explicitly or implicitly given priority in setting the

traffic signals. So, when we select our tree of "most important" links, S, why not

just start with the busiest route and fill out the rest of the tree in descending

order of use? This approach leads directly to the route augmentation heuristic

for selecting the tree.
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SECTION 4.2 Route Augmentation (RA) Heuristic

It seems clear that one should pay the most attention to the most highly

traveled routes when determining traffic signal settings. Using the notion of a

spanning tree, "rooted" at i*, to give orientation and storing the numeric off-sets

in e, one can construct the off-sets using a greedy heuristic based solely on

desired route usage. First, one must understand several definitions.

Define an index vector, ( s.t. (, > ,. vi E ,...,nR .

Thus, (9 is the descending index for the elements of A. Also define a logical

variable L which is a vector of logical variables, i.e. L E {. true.,. false. }Vi E IZI.

4.2.1 Verbal Description of RA Heuristic

(a) Set the first node of the busiest route to have a zero off-

set from the master clock. Make this the root node for S. Set S=O, i.e. we begin

with no arcs in our proto-tree.

(b) Following this same route, add subsequent arcs to S if

the arcs fulfill the following two conditions:
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(i) The arc is not already in S.

(ii) The addition of the arc to S does not create a

cycle, i.e. the heuristic is building a tree. Thereby, one cannot add arcs which

create a cycle.

(c) Set subsequent nodes' off-sets such that a vehicle

traveling along this route experiences no delays due to traffic signal control

unless the node's off-set is already been set, in which case we just accept the

current setting.

(d) Continue with (b) unless:

(i) The current node is the last node in the route. In

this case, we proceed to the next route as indexed by (P.

(aa) If the next route does not intersect S (as

currently constructed) then set the off-set of the first node of this next route to

zero and proceed with step (b) above.
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(bb) If the next route does intersect the current

S then we must divide our procedure into two steps.

(bb-1) Follow the current route from its

origin node, i.e. x,, (0) to the first node which intersects S. Specifically, find

j = arg min[X, (j) E Si
je{1,.ni )

Then set the off-sets tracing S from i* to each node

(bb-2) Now, beginning with the

intersecting node, i.e. x. (j), continue with step (b) above.

(ii) We have already selected (n-i) arcs for S. In this

case, stop, the off-set setting routine is complete.

4.2.2 Example of RA Heuristic

We will use the same example for each of the off-set fixing heuristics. The

base network is as shown below in fig. 4.2.
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All the arcs in this network have cycle time distances of one tenth.

The sample network shown above is used to demonstrate the route augmentation heuristic.

Figure 4.2

The routes for the network are displayed in the table shown below.

Route Desired Usage Rate
7->8->9->4->3->2->1 2.5

6->5->4 3
7->6->1 2.3

9->4->5->6 2.4
2->5->6 2

The table above shows the desired usage rate (vehicles/time) for the network shown in
figure 4.2.

Table 4.1

Using the RA heuristic, the arcs for S would be selected in the following

order; note, the value displayed in the table refers to the maximum desired usage
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rate for any route containing the arc. The method selects arcs for the tree

beginning with the first arc for the most traveled route and proceeding until the

tree is complete. The value depicted in table 4.2 represents the desired usage rate

for the most heavily travelled route for the arc shown.

Arc (In order of selection) Value
6->5 3
5->4 3
7->8 2.5
8->9 2.5
9->4 2.5
4->3 2.5
3->2 2.5
2->1 2.5

The table shows the order the arcs were selected in using the route augmentation heuristic.

Table 4.2

This is the tree derived using the RA heuristic. To set the off-sets, one arbitrarily

sets a direction into a particular node as the root or baseline and then defines all

of the other off-sets in terms of this one by climbing the tree. Say for example that

node 6 is selected ast the base node in this case in direction (5->6). Then the off-

set for (6->5) would be .1, and the off-set for (5->4) would be .2. If the arc in S

goes in the same direction its cycle time distance is added to the total; if the arc is

reverse to the direction of travel, the cycle time distance is subtracted.
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4.2.3 Theoretical Results for RA Heuristic

Route augmentation works very well in some circumstances and very

poorly in others as we see in the following theorem.

Theorem 4.2.1: For any positive set of a, /3, yfor objective function 4.1, one can

select G(N,A), R and A such that the route augmentation (RA) heuristics' solution

can range from the optimal solution to the worst possible solution.for F(.) (as measured

in terms of the M.O.E. ' s defined earlier).

Proof: Theorem 4.2.1 is an existence theorem; we will be constructing the

simplest G(N,A) that meets the criteria presented in the statement of the theorem

above. There are two bounds presented in the theorem above, an upper and a

lower bound. The upper bound or the optimal solution case can be shown using

a construction argument. Consider the diagram shown below. G(N,A) consists

of (n-i) two way street segments (by convention, line segments without arrows

represent two way streets) or equivalently 2(n-1) one-way street segments and n

intersections; although n itself will be allowed to increase below, the network

always retains the same form. Traffic is allowed to freely flow either direction on

the arcs. Traffic can enter and leave G(N,A) from any of the n intersections, but

by assumption 4.1.1(5), traffic would never change directions on G(N,A). We

will construct the network such that it takes a vehicle C/ + 6 time units to travel

from one node to the next along its route where 6 be positive but close to zero.

Now, our claim is somewhat counter-intuitive, namely that the RA heuristic can

give offset settings which can range from producing the optimal value for

72



objective function 4.1 to producing settings which are arbitrarily worse (negative)

than the optimal possible value for F( ), ca.

X 

1 2

1 2 3 4 n

There are no conflicting routes; so, the route augmentation heuristic provides the
theoretical expected number of stops and wait per vehicle.

best possible

Figure 4.3

In fig. 4.3, there is only one route with non-zero desired usage. Thus, using the

RA heuristic the route will be completely synchronized in the sole direction of

travel. One achieves a progression of one, and average stops per vehicle and

average delay per vehicle are equal to zero, no matter how large n is. This is the

optimal performance for our M.O.E.-s, and F( *) gives back a value of a.

The worst case performance is a bit more complex. Consider the diagram

shown below.
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1 2 3 (n-l) n

X=l+( n-1)c

The route augmentation heuristic will set the offsets to favor the route from node 1 to node
"n", but this will disadvantage the majority of the traffic flow which travels in the opposite

direction.

Figure 4.4

It is the same as figure 4.3 except now there are n routes in fig. 4.4, and all of the

routes have a desired usage of 1-e except for the contra-flow route which has a

desired usage of ,2...-n = 1 + (n - 1)e. By the route augmentation heuristic, the

network would be synchronized for the route 1 -4 2 - 3 ...- n with a total desired

usage of -,2..., = 1 + (n - 1)E. Now, the total flow in the network is Y; A = n. Using

assumption 4.1.1(8) and the properties of the RA heuristic, we know that each of

the (n-i) retrograde routes will experience a stop at each intersection in G(N,A)

of duration C time units. When is positive, but close to zero, objective

function 4.1 returns the following value:
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n i-_ n -i= 

a1+(~- 1) S)[0n n(n-1) y Ca(n- 1)]
n ( n 2 n 4

a + ( -(n - 1) - n - 1) .

This is a monotonically decreasing function with respect to n. So, no matter how

negative a value one initially selects, we can always find a G(N,A) and A such

that objective function 4.1 produces an answer less than or equal to the selected

value. We could explicitly select an n which would produce the desired level of

"disfunction". Even for this G(N,A) we can modify the flows by making 

arbitrarily close to one, then in the limit we have the situation illustrated in fig.

4.3 and F(o) returns a value of (a, the best possible solution. Q.E.D.

One can see that the aggregate flows must somehow be considered when

choosing the spanning tree for setting the off-sets between traffic signals in

G(N,A). This conclusion leads us directly to the next heuristic, the Maximal

Spanning Tree (MST).
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SECTION 4.3 Maximal Spanning Tree (MST) Heuristic

The central concept of the MST heuristic is that the most critical sets of

arcs in G(N,A) to coordinate are the those with the highest aggregate desired

usage. This concept immediately abrogates the constructed example which made

the route augmentation method perform so poorly.

4.3.1 Verbal Description of MST Heuristic

There are two levels of information considered in the MST heuristic. In

the first case, one knows a'priori the routes of all the vehicles entering G(N,A)

from the present until some unspecified time in the future. (This corresponds to

the notion of route planning under the literature for IHVS.) The other level of

information is to assume one can accurately measure current flow rates along each

of the street segments in G(N,A) and approximate desired usage based entirely on

observed data. This corresponds to the level of information many cities currently

accumulate using sensors (e.g. induction loop sensors which can measure

occupancy and velocity).

(a) In the first case, where one knows the actual routes

a'priori, let ij be the aggregate of the desired usage rates of all routes traversing

(i-- j).
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In the second case, let i be the observed flow rate along (i - j) over some fixed

time period, i.e. ij- i(0,t) where t is known..

(b) Designate the MST, S, where

max
Ss.t. Sisa [4.2]

tree (j)
6-4)j)Es

Define a "branch count index" for S called c such that

ci = C(1)
(i-*-j)ES

[4.3]

Vje{l, . ,n)

This is a count of how many other nodes in the tree are connected to node i.

Note that all leaf nodes in S have ci equal to one.

(c) Select an arbitrary root node i* s.t. c.* =1. Let 0.i = 0.

(d) Set the off-sets for ij such that V(i -- j) E S, the MST,

a vehicle traveling from node "k" through node "i" to node "j" experiences no

delay if N[(k - i),(j i)] =.true. We can do this, because there is a unique

77



path from i1 to any other node in S, and by definition, all nodes are part of the

MST. An important point is that the arcs are directed. Additionally, one must

take into account the geometry of the physical network. Consider the following

example.

@3

A

A

L

L

.4

1 2 4
- . _ & 

.2 .3

The figure is used to demonstrate how the MST heuristic sets offsets (see below).

Figure 4.5

Assume that all of the arcs shown are in S, the MST. Let i =1. Let 1=0.

Now, the MST heuristic assigns:

012 =.2, 023 =.6, 042 = 012 [by alignment], and 042 =.9.

This assumes that t4 2 = t24'
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4.3.2 Example of MST Heuristic

We will use the same example for each of the off-set fixing heuristics. The

base network is as shown below.

I0

this network

v0
1* Iw

-0hae (d.
have cycle time distances of one tenth.

The sample network shown above is used to demonstrate the route augmentation heuristic.

[Same as Figure 4.2]

The routes for the network are displayed in the table shown below.
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Route Desired Usage Rate

7->8->9->4->3->2-> 2.5
6->5->4 3
7->6->1 2.3

9->4->5->6 2.4
2->5->6 2

The table above shows the desired usage rate (vehicles/time) for the network shown in
figure 4.2.

[Same as Table 4.1]

Using the MST heuristic, the arcs for S would be selected in the following

order; note, the value displayed in the table refers to the aggregate desired usage

rate for the arc across all routes using that arc. For example, arc (9->4) has an

anticipated usage of 4.9 vehicles per minute which is the sum of all the predicted

routes usages for that arc. In this case, the route from 9 to 6 and the route from 2

to 6. The value shown in table 4.3 is the aggregate desired usage of the arc

shown.

Arc (In order of selection) I Value
9->4 4.9
5->6 4.4
5->4 3
7->8 2.5
8->9 2.5
4->3 2.5
3->2 2.5
2->1 2.5

The table shows the order the arcs were selected in using the MST heuristic.

Table 4.3
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This is the tree derived using the MST heuristic. To set the off-sets, one

arbitrarily sets a direction into a particular node as the root or baseline and then

defines all of the other off-sets in terms of this one by climbing the tree. Say for

example that node 6 is selected as the base node in this case in direction (5->6).

Then the off-set for (6->5) would be .9, and the off-set for (5->4) would be zero. If

the arc in S goes in the same direction its cycle time distance is added to the total;

if the arc is reverse to the direction of travel, the cycle time distance is subtracted.

4.3.3 Theoretical Results for MST Heuristic

The MST Heuristic is more flexible than the route augmentation heuristic.

In situations where there are several non-intersecting routes which make up

nearly all of the flow in G(N,A) (e.g. artery during commuter cycle, etc.), the MST

solution performs near optimality.

Theorem 4.3.1: The upper bound on Objective Function 4.1 for the MST Heuristic is

the global optimal value.

Proof: [By construction] Consider the diagram shown below.
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4
In this diagram, the two routes do not cross each other; so, both can be synchronized.

Figure 4.6

In this case, the routes do not intersect, and the MST will include both

routes and one "connecting arc (e.g. (2 -e 6), (7 - 3), etc. ). The MST heuristic

will give off-sets which produce the optimal M.O.E.'s. Note, one receives

optimal (0, S) settings from the MST algorithm whenever there is no

overlapping of routes. Q.E.D.

Additionally, the MST heuristic produces the optimal (0, S) for Objective

Function 4.1 whenever there is no orthogonal or retrograde flow vice the

elements of the MST. Consider the two examples displayed below.
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i

;1 W W W 7 8
7 8 9 A1 B_>

In the network at the left, both routes can be synchronized, but in the figure at the right, one of
the two routes will experience an alignment delay. The network cannot synchronize both for

arc (5->2), because the two routes do not share a common green cycle at node 5.

Figure 4.7

In figure 4.7.A, all the flow in G(N,A) occurs along the MST, and although

there are overlapping flows, 056 will be set to accommodate the aligned flows

from 8 to 5 and 2 to 5. In figure 4.7.B in contrast, there is both orthogonal and

retrograde flow. One could devise nominal velocities and distances between

intersections which cause sever delays along the route going from 2 to 5 to 4.

Additionally, 052 will be synchronized to accommodate flow from 4 to 5 to 2,

which means that traffic flowing from 8 to 5 to 2 will be delayed for C/2 units at

node 2. We will call such a delay an "alignment delay"; this is also important for

a vehicle turning onto the MST for the first time. This alignment delay is one of

the chief reasons for changing the splits from a 50/50 arrangement. [Ed. -

foreshadowing]
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We have looked at the MST heuristic's upper bound of effectiveness, but

what about its lower bound of effectiveness. A very important question is how

many arcs are covered by the MST in a worst case scenario?

To answer this let us define "g" to be the number of the "generation" of

nodes in a g*g network. For example, a single node (i.e. g=1) has 1 node and 0

arcs. If there are g2 nodes then there are a total of 4g(g-1) arcs (each one-way)

possible in the network, assuming that each node in the center of G(N,A) is

connected to its four closest neighbors. Likewise, the MST will contain g2-1 arcs.

The results for the first four generations are contained in the table below.

node arcs arcs in MST fraction
1 1 0 0 NA

2 4 8 3 3/8
3 9 24 8 1/3
4 16 48 15 15/48

Table displays the relationships between arcs, nodes, and fraction of arcs in the spanning tree
for a square network.

Table 4.4

The results in the table immediately motivate the next theorem.

Theorem 4.3.2: The minimum fraction of arcs in the MST is one fourth.

Proof: Consider the following network with ab nodes. There are "a" columns

and "b" rows. Now, connect each node with its closest orthogonal neighbors

using two one-way arcs. Then we have the following diagram.
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1 2

1

2

,# 0

The figure shows a rectangular a*b network.

The figure shows a rectangular ab network.

Figure 4.8

Note this diagram is a network approximation of traffic flow in an urban

grid where the maximum number of non-aligned intersecting streets equals two.

In the grid described in figure 4.7, there are ab nodes; ergo, there are ab-1 nodes

in the MST. Consider the top of the graph and the extreme left hand side.

Between these two portions there are a total of 2(a+b-2) one-way arcs. There are

a total of 4(a-1)(b-1) one-way arcs in the remainder of the graph.

85



.'. The fraction of arcs included in the MST is:
[ab - 1]

[4ab - 2a - 2b]
For V (O < a, b < co) the ratio is greater than 14.

But,

lim inf ( [ab-1] 1Y4. Q E D
a,b---> oo [4ab- 2a- 2b] 4

One can see this intuitively if he considers the case of large but finite

values of a and b. For the value of the fraction to equal or exceed one fourth, the

denominator must be one fourth of the denominator. Thereby, the denominator

must equal or exceed 4ab-1] = 4ab - 4. But, (2a+2b) will exceed 4 for any

positive numbers a and b. Since the denominator is less than four times the

numerator, the whole fraction must be uniformly greater than one fourth in the

case of finite a and b. Before we can explore this more deeply, there is a simple

proposition we must prove relating to the way we look at the cumulative arc

flows when selecting the MST.

Theorem 4.3.3: Examine any two adjectent nodes, and label them i and j

respectively.If either (i - j) or (j - i) is an element of the MST then only one of the

arg max
arcs will be an element and, that arc will be the g )

arc i-0j) D

Proof: Both arcs cannot be a member of the MST, because this would form a

cycle. Assume that the arc which is the member of the MST does not fulfill the

arg max condition. Call the MST S. Arbitrarily assume that
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(j i)arg maxi ) So, (i- j) S. Let
arc -j)' (j-

S = S - {(i - j)}. Now, S + {(j --> i) is a tree; moreover,

;A-kl + ij < Xkl + ji. Therefore, S is not the MST which is a
(k-1I)eS (k-*l)eS

contradiction, and the origional premise is true. Q.E.D.

This is an interesting insight into the traffic control problem. If we focus

on the direction with the majority of traffic, we can restrict our process to look at

the direction with the most traffic flow on each two-way street segment. This is

stated in the following lemma.

Lemma 4.3.3: The MST Heuristic need only examine the maximum of each set of two

way arcs for each set of nodes to determine the MST.

Proof: The proof flows directly from the theorem above.

This lemma will prove very useful when considering the total flow

examined by the MST heuristic. We know that the MST heuristic will always

have at least half of the flow on the network available to choose from, because the

heuristic will always choose the arc with the largest flow when selecting how to

connect two adjacent nodes. Let us construct a method for selecting the MST to

help us come up with a lower bound.
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Procedure 4.3.1: Pick the arc with the largest flow between every set of

connected nodes. Now, rank order all the arcs remaining beginning with the

highest flow rate and ending with the lowest flow rate. Select arcs for the MST

according to the following rule. Add arcs beginning with the highest flow rate.

Add an arc only if it does not create a cycle. If it does create a cycle, skip that

particular arc and continue to the next arc in the ordered list. Continue until you

have chosen (n-l) arcs.

The procedure is simple O(n3 ), depending on one's data structures for the

routine, but powerful. In fact, the procedure produces the MST. Even for a

relatively complex urban grid; let us say 200 to 300 nodes, a current technology

microprocessor could calculate the MST in a few seconds. Better yet, the

procedure is assured of producing the MST.

Theorem 4.3.4: Procedure 4.3.1 produces the MST.

Proof: We know according to lemma 4.3.3 that we must only consider the arc

with the highest flow rate between any two connected nodes. Now assume that

the greedy procedure does not produce the MST. We know that the MST will

contain exactly (n-l) arcs. Call the output from procedure 4.3.1 T, and call the

true MST S. There are two cases here. Either S and T vary by only two arcs, or

there is a sequence of trees between these two trees, each varying from the next

by only two arcs. If the S and T vary by only two arcs then we can list the arcs in

descending sequence of flow rate in each tree. Select the first arc in T which
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differs from the arc list for S. Now the arc in T must be replaced by an arc with a

lower flow rate, because procedure 4.3.1 assures us that a cycle will result if the

arc is replaced by an arc with higher flow. In fact, it must be replaced by an arc

with a flow rate less than the second arc being replaced, because there are no arcs

which can be selected above the second arc which will not cause a cycle either.

But, this is clearly impossible as if both of the arcs replaced by arcs of lower flow

rate, the total flow rate for the new structure cannot be greater, and we have a

contradiction for this case. In the case where there are a sequence separating the

two trees, repeat the same line of reasoning first for one separating tree, showing

the contradiction, and then use induction to show the result holds for an

arbitrarily large number of intervening trees. Q.E.D.

But, we need to be a little cautious at this juncture. We are still not sure what

fraction of the total flow will be encompassed by the MST. We do know that at

least half of the total flow is in candidate arcs for the MST based on lemma 4.3.3.

What is the lower limit of flow which can be included in the structure? An

intermediate question is when one builds the MST how many arcs does one have

to examine before selecting the MST? This question is addressed in the following

theorem.

Theorem 4.3.5: If procdure 4.3.1 was applied to the network shown in figure 4.8 it

would examine a maximum of ab-1+(a-1)(b-1) 1=2ab-a-b-larcs before finding the

MST.

Proof: This occurs in the case shown below in figure 4.9.
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0 0 0 0

016 014 012 0
17 15 13 110306090
1 4 7 10
020508 0

The numbers on the arcs represent the order in which they
were selected to be part of the MST. The arcs in the bold print are
part of the MST; the arcs in the light print were rejected, because
they would have created a cycle.

Figure 4.9

Figure 4.9 shows the psychotic case where the flows are ordered in such a

way that, for the median case, every new arc selected implies that the next arc in

the ordered list will produce a cycle. Lemma 4.3.3 implies that the procdure need

only consider 2ab-a-b arcs. Remember, each arc can only be examined once,

because it only occupies one slot in the rank ordering. Thereby, the procedure

will examine a total of ab-1 arcs to complete the MST plus (a-1)(b-1)-1 verticle

arcs causing cycles for a total of

2ab-a-b-1. Q.E.D.

Theorem 4.3.6: Procedure 4.3.1 selects the smallest proportion of total flow for the

MST in the case where all flows are equal.
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Proof: In the case of equal flows, the MST will select a minimum of one fourth of

all the flow in the network. This follows directly from theorem 4.3.2, because we

could simply choose an arbitrary flow kl (since all the flows are equal) and

write the following relation:

Alim inf [ab l]kl which has theflow ratio in MST a f ab-1A which has the
a, b -4 oo [4ab - 2a - 2b]Jkkl

value of one fourth. Now, consider the case where the flows are not equal. We

know that procedure 4.3.1 will select the MST from the best 4ab-2a-2b-2 arcs (i.e.

2ab-a-b-ltimes two for lemma 4.3.3). Since you are not considering the last two

arcs, you will end up with a greater total than the amount if one considered all

the arcs; thereby the ratio of total flow in the ordered case must exceed the ratio

of total flow in the case of total equivalence.

Thus, the MST heuristic is logical and has some nice theoretical results.

But, it would be nice if we could minimize the alignment delays by explicitly

trying to favor routes as well as considering the total projected usage of the arcs.

The concept of including routings as well as total usage leads us to the potential

function heuristic which somewhat surprisingly is just an extension of the RA

and MST heuristics.

91



Potential Function (PF) Heuristic

The alignment delay caused theoretical problems for the MST heuristic.

Logically then, one must consider not only the aggregate flow, but one must

form the offset tree, S, incorporating information on contiguous numbers of arcs

which support the same routes as well, i.e. we would rather favor longer routes if

all other factors are equal. This leads quite naturally to the idea of a potential

function, somewhat akin to the notion of potential energy in physics. We will

assume that there is some function, related to the routes' and network's attributes, which

gives a good approximation of what the impact would be of including any particular arc

in the tree.

In mathematical terms, one would say

Assume 3 a function F[(i -- j), G(N,A), A, S] s.t. F[(i - j),...] > F[(k - 1),...]
= (O,S + (i - j)) > (,S + (k - 1)) where S c A, S contains no cycles and IIS[I < (n -1).

What does this really say? We assume that there is some function that will

give "scores" to all the remaining candidate arcs for S; arcs which are already

part of S are ineligible. The better the score, the better a choice the arc is for

inclusion in S, but we still would not choose an arc with a very high score if the

choice would cause us to form a cycle in S.
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This is the notion (or notation) of a potential function. In words, the

potential function "f" is a mapping from the network and a proto-tree, S, i.e. S

contains no cycles and I S I < (n-l), and the arc being examined to the set of real

numbers. Additionally, the function assigns a value to this set in such a way as

to establish a hierchy for selecting the arcs to make up the spanning tree to set the

off-sets. Specifically, if an arc (i->j) has a higher value when evaluated by the

potential function than arc (l->k) then the math program 4.1 using S plus arc (i-

>j) will have an equal or higher value compared to the same program using S

plus arc (l->k).

The PF seems like a radically new concept when compared to the MST

and RA heuristics, but it actually just an extension of the previous two heuristics.

(Those who are less mathmatically inclined may wish to fasten their math safety belts

before reading the remainder of this notationally "turbulent" section.) Consider the

following two definitions of potential functions. Let

I IR 11

f(l -- k)= XiIi (a l k) where
i=l

Ii (1 - k)= else k)Ri 

Note, that the value of the potential function does not depend on S, and using

this definition of the potential function gives one the MST heuristic. Why? The

indexing function, Ii, gives us a one if the arc is part of the route in question and

a zero otherwise. So, for each arc the potential just gives the sum of the directed

flows through the arc. Now consider,
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lRill
f( - k)= kiIi (1 - k) where

i=l

Ii(l*k)= r j where i arg max (kj)
l~ tj s.t. (1-4k)eR

This definition of the potential function approximates the RA heuristic.

SECTION 4.4.1 Verbal Description of the PF Heuristic

Initially we will select the arc with the greatest flow on it to start S out.

Then we will add arcs to S in order of potential function except when such an

addition would create a cycle. In this case, we select the arc with the next highest

potential function value. We continue the process until we have selected (n-l)

arcs, i.e. our tree is complete. Note that because the potential function is an

implicit function of S, we must recalculate the potential function values each time

we select a new arc. In more mathematical terms, we define the potential

function as shown below.

IlRil

f(l-4 k)= kiIi a -4 k) where
(a) Set S={}). Let

I ( 1k) 0 else...R 
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(b) If I S I <(n-l) then select the arc with the highest PF value, i.e. (i->j)=arg

max f(l->k)V(l->k), that is not contained in S and does not form a cycle when

added to S .

Else goto (d)

(c) Add (i->j) to S and recalculate f(l->k) using

JNumber of contiguous arcs of route i, including 1 - k 

{Numbr of 0 if (l - k)R i

Goto (b)

(d) The tree is complete. Stop!

SECTION 4.4.2 Example of PF Heuristic

We will use the same example for each of the off-set fixing heuristics. The

base network is as shown below.
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Q .0

All

The sample network shown above is used to demonstrate the potential function heuristic.

[Same as Figure 4.2]

The routes for the network are displayed in the table shown below.

Route Desired Usage Rate
7->8->9->4->3->2->1 2.5

6->5->4 3
7->6->1 2.3

9->4->5->6 2.4
2->5->6 2

, , ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ _

The table above shows the desired usage rate (vehicles/time) for the network shown in
figure 4.2.

[Same as Table 4.1]

The PF selects arcs based on an arc's "potential". An arc's potential is a function

of the arc's projected usage and the number of contiguous arcs for each route

passing through the arc if the arc in question is added. The arcs are selected in
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the order shown below in table 2. The best way to explain the method is to step

the reader through the selection process for the tree.

Arc (9->4) is the first arc selected it has a potential of 4.9 which is the highest

potential value across all arcs in the network when S={}. Where did the value 4.9

come from? Well, two routes pass through (9->4). By adding (9->4), we would

be making the total number of contiguous arcs equal to 1 for each route.

Thereby, we have:

potential for arc (9->4)= 1*2.5 + 1*2.4=4.9.

Arc (3->2) has a potential of 5 when S={(9->4)}. Why? There is only one route

which passes through arc (3->2), route 7->8->9->4->3->2->1 which has a

projected usage of 2.5 vehicles per minute. By adding arc (3->2) to the tree, S, it

would give this route 2 contiguous arcs, and we have:

potential for arc (3->2)= 2*2.5=5. [Note, the next highest competitor was arc

(4->5) which had a potential of 4.8 .]

Using the PF heuristic, the arcs for S would be selected in the following

order; note, the value displayed in the table refers to the potential function value

calculated for the arc at the time it was selected. Remember that the value of the

potential function depends on the arcs which have already been chosen. The

value shown in table 4.5 is calculated as shown in the proceeding paragraph.
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Arc (In order of selection) Value
9->4 4.9
4->3 5
3->2 7.5
2->1 10
8->9 12.5
7->8 15
4->5 4.8
5->6 9.2

The table shows the order the arcs were selected in using the potential

Table 4.5

function heuristic.

This is the tree derived using the PF heuristic. Note that arcs do not have

constant PF values; for example, arc (4->3) started off with a value of 2.5 and had

a value of 5 when it ws chosen to be part of S. The off-sets are calculated using

the same technique as in RA and MST once the tree S is chosen.

SECTION 4.4.3 Theoretical Results for the PF Heuristic

Theorem 4.4.1: The upper bound on Objective Function 4.1 for the PF Heuristic are

the global optimal M.O.E.'s.

Proof: The same proof applies from theorem 4.3.1. Q.E.D.

Theorem 4.4.2: The lower bound on the M.O.E.'s for the PF Heuristic are the lower

bounds of the MST Heuristic.
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Proof: In the worst case, one could construct an entire network composed of

routes which only comprise one or two arcs in length. This would prevent the PF

heuristic from achieving any of its advantages which are accrued for longer

routes. Q.E.D.

In this chapter, we examined ways of selecting the most significant street

segments to align. In the next chapter, we will examine various methods of

predicting the M.O.E.'s based on the assigned splits and offsets.
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Chapter Five.

Predicting Performance for TSC Settings

SECTION 5.1 Light Traffic Approximations

We have examined the basic math model for Traffic Signal Control (TSC) in

chapter three and looked at three heuristics for determining the tree for setting the

offsets in chapter four. Before we decide how to set the splits and cycle time for the

network, it would nice to be able to make predictions about the performance of our TSC

plan. Although we have only determined the offsets, we can make some

approximations with just this information, and later in the chapter, we will loosen some

of our restrictions from section 4.1 and develop a Queue Effects Model (QEM) which

will be the basis of our split and cycle time setting heuristics in chapter six. Assume for

the moment that we just completed one of the heuristics in chapter four.

We have a tree, S, that we use to define our offsets. By assumption 4.1.1(8), every

split is set to C/2. A vehicle which starts on an arc in S and stays on arcs contained in S

as it travels should not experience any stops or delays due to traffic signal control in the

light traffic model. We remember from chapters three and four that the light traffic

model assumes that the only reason that a vehicle will have to wait at a traffic light is

because of a red light. If a vehicle arrives at an intersection during a green light, it will
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pass through the intersection without delays, and even if the vehicle arrives during a

red light, it will be able to pass through the intersection during the subsequent green

light. But, in practice there will be vehicles which travel on S during only a portion of

their trip through G(N,A), and some vehicles may never travel along an arc in S. So, the

question is how do we estimate the performance for the routes which contain at least

some arcs which do not belong to S?

It would be convenient for analyzing large networks if one could view vehicles

traveling along the arcs which are not part of S as having characteristics which were

somehow both stochastic (retaining key random elements) yet were independently and

identically distributed(which allows us to use some very powerful probability models).

One can see that after the first red light, even vehicles which arrive according to a

Poisson process to G(N,A) will be linked to other vehicles for number of stops, delays,

etc., because the vehicles will tend to travel in platoons, even given our assumptions.

This is not a bad thing though as vehicles tend to travel in platoons in the real world as

well. To get a get an intuitive feel for some of the more complex results presented later,

let us begin by examining a more straight forward case where the splits are equally

divided between red and green time.

SECTION 5.1.1 Stochastic Approximations for Equal Splits

We will begin by assuming that the amount of red and green time is evenly

distributed at each intersection, i.e. 50% red time and 50% green time. In other words,

consider the case of this randomly chosen vehicle approaching an isolated traffic signal
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obeying assumptions 4.1 through 4.7, and assume the splits between red and green

portions of a traffic signal cycle at any particular intersection, facing any particular fixed

direction are equal to C/2. Remember that the street segments which are not contained

in S are not coordinated. We will make a slightly stronger assumption and assume that a

vehicle's probability of stopping and the waiting time distribution on one non-

coordinated street segment are independent of the same items on a different non-

coordinated street segment. In other words, every time a vehicle approaches an

intersection its chance of stopping or the amount of time it can expect to wait does not

depend on what has happened to the vehicle earlier in the network.

Looking at an isolated intersection one would expect the chance of being stopped

when reaching the intersection at a random time to be 1/2, and the waiting time

distribution to be as shown below.
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Probability Density Function (p.d.f.) for Waiting Time
A

4

1

0 .5
Waiting
Time in
Units of C

The diagram shows the probability density function for the waiting time distribution of a lone vehicle
approaching an intersection with a cycle time of length C and red and green splits equal to C/2.

Figure 5.1

Thereby, if a vehicle passed through u uncoordinated arcs (i.e. arcs that are not

part of S), the p.m.f. for number of stops experienced and the p.d.f. for the waiting time

distribution would be as shown below.
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Let C - the cycle time for G(N, A)
Let X - RV # of stops due to traffic signal control.

Let w - RV waiting time due to traffic signal control.

Let u RV # of signal controlled intersections approached on an arc e S

P (xo)2) |= xo ElZ andxO< u.

Putting it all together, we have the s- transform of the waiting time distribution

convolved u times.

fT (S)= ( sc +-e3 3sc+ 1 -es u

sc 4sc

It is easier to visualize the waiting time distribution if we examine a diagram of

its appearance after several convolutions. Below, in figure 5.2, we observe the p.d.f.

after being convolved four times. The cycle length for this example is 100 time units in

duration.
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The diagram above shows the probability density function for the total waiting time a vehicle would
experience if it passed through four independent intersections.

Figure 5.2 1

Notice that after four traffic signals, the distribution is still relatively flat and

non-normal. Perhaps, if we convolve the distribution a few more times it will become a

good approximation to the normal distribution.
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In figure 5.3, the original p.d.f has been convolved eight times.

x10- 5 Convolved 8 Times

0 100 200 300 400 500 600 700

Time

800

The diagram above shows the probability density function for the total waiting time a vehicle would

experience if it passed through eight independent intersections.

Figure 5.3

The distribution is still not very normal looking. Notice that the left side is quite

truncated and there are still obvious discontinuities at 100 and 200 time units. It turns

out that one must convolve the p.d.f. about 20 times before the discontinuities settle out.
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We can draw some very simple conclusions from this simple model. Recall that

we are assuming that the vehicle's stops and waiting time at each intersection is

independent. First of all, if a car travels along u uncoordinated arcs then the vehicle can

expect to stop u/2 times. The variance on the distribution of stops due to traffic signal

control would be u/4. The expected amount of time a car would wait for traffic signal

control would be uC/4. Now, a vehicle has a 50/50 chance of being held at the first

intersection a vehicle encounters in G(N,A). Remember, from chapter four, there is

another source of potential stops as well, alignment delays. Let v represent the number

of intersections where the vehicle enters the intersection from a direction with an

alignment delay. In total, a vehicle traveling along a route with v coordinated arcs with

alignment conflicts and u uncoordinated arcs could expect to stop v+(u+l)/2 times and

wait for [v+(u+l)/4]C time units.

SECTION 5.1.2 Stochastic Approximations for Varied Splits

Now, we know from theorem 4.3.2 that in a large network roughly one fourth of

the arcs can be coordinated. If we can determine something about the distribution of

arcs per route then we can use some powerful techniques to generate bounds on the

probability of stopping a given number of times or having to wait for a given period of

time. This is irrespective of the timing plan used. Ergo, this powerful tool could be

used to analyze networks and timing plans in the general case. Recall our

independence assumption from the preceding section. Thus, if we knew the splits at all

the intersections a vehicle were traveling on, we could express the s-transform of the

waiting time for the uncoordinated arcs as:
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ft (s) = Y[ ftXj (s)
V j .t. (X,(j-1)4X ())S (J

where f t (s) s - transform of waiting time distribution for intersection Xi(j)
whre i,

For the light traffic

displayed below in figure

model, some results are quite startling. Imagine the situation

5.4.

A

I

I

I

There are two approaches, labeled A and B, to this intersection.

Figure 5.4

Traffic enters the intersection from two directions, A and B. We will call the vehicular

arrival rate from direction A to be XA and from B to be XB. Additionally, designate the

green light for direction A to be of duration GA and from B to be of GB. Now, as long as

the vehicular arrivals are non-periodic, renewal theory tells us that the chance of

stopping for a particular vehicle is just the fraction of time when a vehicle would be

required to stop over the cycle, i.e. the red time in that direction. For example, a

motorist traveling from direction A would have to stop when the light was green for
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direction B. So, a randomly selected vehicle traveling from direction A has a probability

GB of stopping, or P(stop I A)= B . Likewise, P(stop I B)= GA . Now,
GA +GB GA +GB GA +GB

the probability that a randomly selected vehicle is traveling from the B direction is

, , and for A it is A . We are going to use the interesting fact that for a
AA + AB XA +-B

single intersection, the expected number of stops in the light traffic model is the same as the

probability of stopping. This allows us to draw on our knowledge of expectations.

Conditional expectation tells us:

XAGB + BG AP(Stop)=E(stop)=E(stop I A)P(A)+E(stop I B)P(B)= (ARemember that
(XA +XB)(GA + G)

the number of stops for the system was one of our Measures of Effectiveness (M.O.E.)

from chapter 3. So far, we have calculated the expected number of stops per vehicle at

this intersection. In steady state, the expected number of vehicles entering the

intersection over time t would be (A + XB) t. Thus, the total expected stops for the

intersection over time t would be: ('AGB + ABGA)t
(,A +AB)

Certain current traffic signal control methods make a convexity assumption

about affine combinations of average stops per vehicle and average waiting time per

vehicle with respect to cycle time. (An affine combination is a weighted sum such that

the sum of the weights is equal to one.) Such convexity assumptions are not necessarily

true. Consider again the simple network described in figure 5.4. Now let C=the cycle

time=GA +GB where GA is allowed to vary and GB is fixed. Now, performing the

second derivative test on the expected number of stops with respect to GA, one obtains:

2(XA - XB)(GA + GB)GB Note that this quantity is positive if and only if XA > XB.
(XA + B ) 2 (G A + GB)4

The expected waiting time is derived using conditional expectations in a similar

fashion to the average stops per vehicle and expected stops due to traffic signal control
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over time t. Explicitly we obtain the expected waiting time per vehicle in figure 5.4 is

XAGB + XBGA which is convex with respect to cycle time.
2(A + XB)(GA +GB)

If we view the vehicle as arriving at a random time at intersection Xi(j) along an

uncoordinated street segment and that intersection has r red units of time and g green

units of time then we could give the s-transform for the waiting time as:

ft (s)=gs+ r( - e) for that particular intersection. We can also directly
wXie) (r+ g)s

describe the probability density function:

Probability Density

4

Uniform density of height
1/(r+g) from zero to "r".

0

Waiting Time
ii-

r

The diagram above shows the probability density function for the total waiting time a vehicle would
experience at a generalized intersection with "g" seconds of green time and "r" units of red time.

Figure 5.5

Now that we have a better intuition for the light traffic model, we can apply that

intuition to the moderate traffic model where queuing is allowed to occur.
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Queue Effects Model (QEM)

In this section, we will build a model of behavior for individual intersections

based on our earlier network foundation and using some queuing theory to derive

several results. Our objective is to predict the average amount of time a vehicle will

have to wait at a random intersection when approaching an intersection along an arc

that is not part of the spanning tree, S, for the offsets. We will use the average wait

along with desired number of vehicles we wish to pass in arcs which are elements of S

to derive the cycle time and assign splits. Before we can do this however, we must

understand the model used to determine waiting time.

SECTION 5.2.1 Priority Queue Model for QEM

We make the transition here from a strictly light traffic model to a medium traffic

model. Thereby, we change assumption 4.1.1(4) to read traffic is assumed to be at most

of moderate intensity; specifically, vehicles waiting at a red light will be able to pass

through subsequent green cycles on a steady rate, but some vehicles many have to wait

through more than one red cycle. So, moderate traffic constitutes any situation where

there are congestion effects and the vehicles are able to follow the TSC plan; in other

words, nearly all the urban traffic in the United States falls in the moderate category.

This is opposed to a heavy traffic model where cars may not be able to pass through a green

light, because the follow on street segment is full; cars which proceed anyway cause a

phenomenon known as "gridlock". The heavy traffic model passes out of the realm of

TSC into the areas of capacity and urban planning. We will also eliminate assumption

4.1.1(8), because the splits and cycle time will now be allowed to vary. Assume that vehicles
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require Xl time units to pass through the intersection. View xl as a degenerate random

variable, i.e. it has a constant value. Vehicles traveling on arcse S will arrive at

intersections in platoons. Define H to be the minimum platoon size we wish to

accommodate in going from an arc E S through an intersection in our TSC strategy.

Then, we would require x1 * H time units as a minimum for the green cycle in the

vehicles on V(i -> j) E S. Intersections come in two primary varieties in G(N,A).

Either the intersection has one arc connected to it that is an element of S or it has two or

more. Why? The intersection has to have at least one arc connected to it which is an

element of S, because S is a spanning tree. Since we allow a maximum of two

orthogonal directions at each intersection, this means that we can have either one or two

directions which have a minimum green cycle time requirement bf xl * H . We will

examine the various combinations of arc types at each intersection in the last portion of

this section, but for the moment, let us concentrate on the more interesting case where

there is one direction which contains no arcs E S.

Let us calculate the average wait for a vehicle which approaches the intersection

along the arc which is not an element of S. Just as Cedar (1989) did, we will use a

priority queuing model, but unlike Cedar, we will not use the traditional M/G/1

queuing model which is too restrictive. Instead, we will use the diagram below to

define our system.
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A

(i j)

hi B
(k - j)

U i4j)eS (k j) S

There are two approaches to the intersection. Arc (i->j) is part of the tree, and arc (k->j) is not

Figure 5.6

Assume that vehicles arrive at "j" along (k -- j) in groups, and we know the number

of vehicles in any particular group is distributed according to the P.M.F. b(h), i.e.

b(h)=Prob.("h" vehicles in the group). [We actually only require a mean and a

measure of dispersion/variance to make the calculation.] It seems reasonable that

based on stragglers, previous right and left turns, curbside departures, etc. that the

arrival times of the groups would be fairly autonomous. (Note, if the arrivals in the non-S

direction also occur only at discrete intervals then we have the same situation as when we have

both directions with all arcs which are elements of S, and the cycle time and splits calculations

become trivial.) Assume that over a reasonably short period of time, the arrival rate of

the groups is constant. Call this arrival rate . Further assume that the chance of two

or more groups arriving at exactly the same time, coming from the same direction is

zero. If we also reasonably expect the chance of a group arriving over a particular time

interval to be proportional to the length of that interval and non-overlapping intervals to

be independent (both of which pass first order "sanity" checks, i.e. the assumptions

seem fairly reasonable) then we could conclude the number of groups arriving over some
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fixed time frame are distributed as a Poisson random variable with mean X. Define the

average number of vehicles which arrive in direction B per unit time as
00oo

X iXbb(i). Figure 5.7 graphically displays the situation described in this
i=

paragraph. Even though the vehicles arrive in groups, they are serviced individually.

That is, no more than one vehicle will cross the intersection at the same time. We also

assume that vehicles are served in a first come, first served order.

Coordinated ->
Deterministic

Model the system as
a Priority Queue
where the motorists
are the low priority
customers and the
red lights are the
high priority
customers.

There are two approaches to the intersection. Along the segment which is in the tree, the vehicles
arrive in an orderly fashion, but the arrivals along the non-tree segment come in bulk arrivals with

exponential headways.

Figure 5.7

As a reminder, our primary interest in this section is the uncoordinated side streets.

Call the amount of green time in the A direction G A and the amount of green time in

the B direction to be GB. We will model two customer classes, vehicles and red lights,
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where red lights take priority over vehicles. We will refer to vehicles as type one

customers and red lights as type two customers. Thus, any time we use the subscript

one it refers to vehicle customer attributes, and any time we use the subscript two, it

refers to red light attributes. For example, we know that xl is the average amount of

time it takes for a vehicle to cross the intersection; what would x 2 be? Well, we know

that it takes exactly GA time units for a red light. So, we have GA = x2. Red lights

arrive deterministically at intervals of GA+GB time units. The time between vehicle

group arrivals is negatively exponentially distributed with mean X (this flows directly

from the Poisson distribution of group arrivals over time). We define Pl ^ lXl. This

represents the fraction of time the server, the intersection, is busy with vehicles. Let

GA
P2- A . For system stability, we must have P1 + P 2 < 1 which we can writeGA +GB

out directly as Xx + G A < 1. We notice that this can be rewritten as
GA +GB

X1 ( G A + GB) < G B which tells us that on average the number of vehicles arriving

during an entire cycle must have enough time to cross the intersection during the green

light. Otherwise, the vehicles would stack up at the intersection indefinitely, and the

average waiting time would go to infinity.

Originally when analyzing this problem, the author turned to Kleinrock's (1976)

approach to priority queues. Afterall, a deterministic interarrival time is a subset of a

general independent interarrival time distribution. Unfortunately, somewhere deep in

moment generating space, two complications arose. One can show for example that

(after much simplification) that

average wait = [G(s)] = -G (k - )[-A' ()]G' (0)
dsEquation 5.4

Equation 5.4
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which says the average wait is equal to the average amount of time a random incident

customer in service takes times the average arrival rate for groups times the average

busy period length. The problem is the average busy period length is extremely elusive

in this case, because the busy period duration is not independent of time. Here is why.

We know that a red light will occur after exactly GB time units. Look at a sample

timeline for the intersection.

1

ars at intersection going ldrectlon 

1 )

I I I
I I I

-L Time

Red Green Red Green Red

Diagram shows the vehicle queue at the intersection as a function of time.

Figure 5.8

We assumed above that the interarrival periods between platoons of vehicles was

exponentially distributed. That means that theoretically the gap could be of a very large

duration, and certainly the gaps could be more than one complete cycle length in

duration, i.e. there could be several cycles where absolutely no vehicle arrive at the

intersection even though the traffic flow is moderate. In figure 5.8 gap 1 represents the

interarrival gap between successive platoon arrivals, but the distribution for gap 2 is

something quite different. The second gap represents the amount of time between the

last vehicle service and the start of the red light. Note, in many cases this quantity

would be zero, i.e. vehicles will have to wait for the red light before passing through the
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intersection. To characterize the second gap, one needs to be able to explicitly describe

the probability of servicing "x" vehicles during a green light period given "y" vehicles

present at the beginning of the green light. Then one is left in the unfortunate position

of having to solve a recursion using this preliminary result to derive the time gap

distribution. Specifically, we know a'priori the fraction of time during the green light

when the system is empty is (1- p 1), and we know that all the gaps which occur during a

period are of exponential duration except for the last one. Additionally, we know the

distribution for the number of groups which arrive during any given period. So, the

first complication was the time dependent nature of the last gap (note: this gap might

not exist at all on a given cycle if there are cars waiting to cross when the light turns red

again). The second complication was even more insidious. The existence of bulk

arrivals means that waiting time for customers is not independent of arrival time and

bulk arrival size. The bigger the size of the bulk arrival, the greater is the chance that

some or all of that arrival will have to wait for a subsequent red light. Again, the lack of

independence means that we require a more explicit characterization of the system

dynamics to get results from this path. But, do not despair. There is a technique which

does reveal the quantity in question, mean wait time, and although not conceptually

simple is computationally easy and elegant in its application of our earlier robust

assumptions.

SECTION 5.2.2 Expected Mean Delay and Stops in Uncoordinated Direction

We know that the expected value of a sum of random variables is equal to the

sum of the expected values of those same random variables always even with

dependence.. Therefore, remembering that type one customers are vehicles and type two

customers (the priority customers in this model) are red lights, one can say:

___ 2
Ws =Wo + xi (Beforei + Afteri ) [5.5]

i=l
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or the time average amount of time a random vehicle will wait at the traffic signal

before it passes through the intersection is equal to the random incident average

amount of time the vehicle must wait for the customer in service (either vehicle or red

light) plus the mean service time for all the customers who will be served before our

vehicle in question. We can write out eq. 5.5 explicitly in words as follows:

the average wait for a vehicle is equal to the average amount of time the arriving vehicle must

wait for the customer in service (whether red light or vehicle) plus the average amount of time it

will take for each customer type to be served times the average number of that type of customer

expected to be served before a vehicle arriving at a random time.

Before i refers to the expected number of all the type "i" customers who are in line

when our random vehicle arrives which will be served before the random vehicle can pass

through the intersection. Like wise. After i refers to the expected number of all the

type "i" customers who arrive after our random vehicle arrives which will be served before

the random vehicle can pass through the intersection. Type 1 customers are vehicles.

Let us assume that cars will pass through the intersection in the order they arrive

(probably a safe assumption anywhere except Boston or Berkeley!), i.e. First Come, First

Serve (FCFS). This implies that After 1 equals zero. WO is the average amount of time

the random arriving customer must wait for the customer in service to complete service,

e.g. for the car there to pass through the intersection or for the red light to finish, and

Ws is the average wait for our vehicle, the quantity we are after. We can immediately

do some simplifications and substitutions. Type 2 customers are red lights. Whenever

a red light arrives, it moves immediately to the front of the line and starts being served,

i.e. prevents vehicles from passing through the intersection. The WO term is relatively

straightforward to calculate. We arrive during a red cycle with probability

GA +GB We expect to see an average of GA/2 units of red time remaining in

118



that light when we arrive. If we arrive during a green light and there is a vehicle

passing through the intersection when we arrive then we would expect on the average

for the vehicle to take x1/2 more time units to travel through the intersection. The

probability the light is green and a ve'ricle is passing through the

vehicle arrives is: GB 1 - GB . Ergo,
GA +GB GA +GB

WO
G A + GBX1 1
2 (GA +GB)

intersection when our

[5.6]

The quantities Beforel and (Before 2 + After 2

maximum of LB. J vehicles can pass through the intersection during a given green
[cBJ 

) are strongly related. We know that a

light. Therefore, if there are J vehicles at the intersection when the car in question

arrives then the random vehicle will have to experience Lx * J
L GB 

or -1 redL GB r

lights before it can pass through the intersection. If our random vehicle arrives during a

red light it must wait for exactly
L GB 

GAexperiences a red light with probability . Now, if the light is green when our
A +G B

GBvehicle arrives, which occurs with probability , the expected number of red
GA +GB

red lights; a randomly incident vehicle

lights our vehicle must wait for is xl *J {without the floor function}.
GB

apparent after considering an example. Let GA=GB=6, Rl= 2 and J=7.

This is more

During each

green light, three vehicles can pass through the intersection. If our vehicle arrives

during a red light, there will be two green cycles before the green cycle which allows our

vehicle to pass through the intersection which is L * J full red lights, but if we

arrive during a green cycle then a random number of cars will pass through the
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intersection before the next red light. However, the number of cars passing through the

intersection after our arrival and before the next red light is strictly greater than zero

and less or equal to _B 1, three in this case. Specifically,, consider the table below:
[ X1 j'

Cars passing through on Arrival Green i Full Red Lights we must wait for
1 3

2 i 3
r:'-_----~........--.-.-.---.----.--. .....----- ~....- ... ~......--- ~--:---~-----....-L;_~-_--- ~ -~-- ...... ~--:---~--~ ......------- ~ ~ .....---- .......--.----.--.-..-

Table displays number of full red lights a vehicle must wait for depending on how many vehicles pass
through the green light during the split when it arrives.

Table 5.1

Assuming each of these possibilities is equally likely gives us an average of

1/3*(3+3+2)=2.66667= l * J full red lights to wait for. Now, the number of vehicles
GB

before our randomly selected vehicle is not independent of whether the light is red or

green, but we can place an upper bound on the number of vehicles in front of the

randomly chosen vehicle by using the red light value. We would expect to have to wait

for more red lights if we arrive during a red light than if we arrive during a green light

for two reasons. First, there are likely to be more vehicles queued in front of us if we

arrive during a red light, and two, the vehicles that are in front of us are not being

serviced during the red light we arrive in. Thereby, an upper bound on the wait due to

servicing the customers before our vehicle (excluding the vehicle in the intersection

when we arrive is):

,. Before, + G^ I * Before In total, we can say:
GB

W G2 + G2X X-( x * Before,Ws G + GB< ) + x * Before, + GA 
2 (GA + G ) GB

Inequality 5.7
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So, we are left with two unknown quantities, Before 1 and WS. Luckily, these two

quantities are related. How? We use the fact that the interarrival times of the groups

are negative exponentially distributed. This means that, because Poisson Arrivals See

Time Averages (PASTA), that the average lead vehicle in a group sees the time average

as well. Using Little's Law then, we can say WSXL = NS where NS is the system

average number of vehicles on the street segment waiting to cross the intersection.

What is the relationship between Before 1 and NS? Actually, Before 1 > N S in this

case. Why?

Imagine the case where the bulk arrival size is always two, and vehicle platoons

still have exponential headways. The lead vehicle sees the system time average,

because Poisson Arrivals See Time Averages (PASTA). But, the second vehicle sees the

time average plus one. Thus, the average vehicle sees the time average plus one half.

We might well ask the question are there ever cases where the average customer sees

something less than the time averages? Just as an example the other direction, it is possible

to see less than the time average number of customers in the system when a random customer

arrives. Consider a D/D/1 queue where the service time is less than the interarrival time. The

customer arrives to find the server empty, but the time average number of customers in service is

certainly greater than zero!

In general, Before 1 = NS + v where v is the average number of vehicles in

front of a random vehicle approaching the intersection. What is the chance that our

arriving vehicle finds itself in a platoon of size "i" vehicles as it reaches the intersection?

There is a random incidence argument involved here as a randomly chosen vehicle is
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far more likely to be part of a large group than a small one. Working through all the

(i-)b(i)i ° 1 j2 i b(i) = Variance(b) Therefore,
algebra gives V = 2 b - Therefore,

i=1 2b i=12 b 2b

Variance(b)Before = Ws, + rinc [5.8]
2b

Now we can transform [5.7] into an inequality with one unknown:

W <: + G2 +GBt Variance(b) + G(*[ + Variance(b)]
Ws , + X X

2(GA +G) 2b GB 2b 

Inequality 5.9

This gives us a another traffic parameter for the traffic manager to use for determining

the best TSC for his or here area of interest. Specifically, the traffic manager could say

"I want the average wait for a traveler to wait no more than 30 seconds at a traffic light

due to traffic signal controls." Since we have an upper bound on the average waiting

time, we could select values for the splits to accommodate this request; this is exactly

the approach we will take in chapter six.

Before moving on to a new section, it would be useful at this point if we did a

"sanity check" on equation 5.9. To do this, first scale all the quantities so that the cycle

time, (GA+GB), equals one (w.l.o.g.). Then inequality 5.9 becomes:

GAGB + + 2 XVariance(b)/-
Ws < 22(G 1 ) b This relation makes a lot of intuitive

2 (GB- Xl )

sense. As GB <-- XX1 , i.e. the time average fraction that the green light is occupied by

vehicles passing through the intersection approaches one, the upper bound on the

waiting time goes to infinity. As the red light time goes to zero, the waiting time only
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becomes a function of the number of cars we would expect to see in front of a random

vehicle when it arrives.

Since inequality 5.9 passes the sanity check with flying colors, let us try an

example. Say that the green light in the priority direction has a duration of 25 seconds,

and the green light in the non-coordinated direction has a duration of 15 seconds. We

will assume that platoons on the non-tree arcs arrive in a bulk Poisson process as

described above with a mean interplatoon arrival time of two minutes, and platoons

come in two sizes. Platoons are equally likely to be of size one or size three. Assume

that the average vehicle takes three seconds to safely cross the intersection. In equation

form, we have (in minutes):

G A = 2 G B = 6 = xi = 3/660 60 60
Variance (b) _ / . Then inequality 5.9 tells us that

2b 4

the average wait for a vehicle traveling along the non-coordinated street segment would

expect a delay of less than 8.25 seconds or .1373 minutes at this intersection.

Using the same type of reasoning we used to derived inequality 5.9, we can

calculate the expected number of stops experienced by a vehicle to be bounded by the

following inequality:

E(Stops) < GA + G1X1w +
(GA + GB s +

Variance(b) 1

2b

So, we can predict the number of stops and average wait for the vehicles in our

network, but there may be times when it is desirable to approximate more than just the

average amount of time a vehicle will have to wait per intersection. We may want to
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know some characteristics of the queuing system in more detail. We present a

transform approximation for the time average queue length in the next section.

SECTION 5.2.3 Approximation for Z-Transform of Time Average

Queue Length

The following equation represents an approximation to the true steady-state z-

transform. Specifically, the transform was derived using the assumption that the steady

(Q(Z)G -R + Q(z)X1 1
ebb= R+G (R+Gz)[ 

where Q(z) represents the z-transform of the p.m.f. for the time average number of cars

in the queue.

The Z-transform approximation passes several "sanity" checks. For example, if

one eliminates red time it becomes the transform for an M/D/1 queuing system. If one

eliminates the green time then no steady state solution exists.

In the past two sections we examined the measures of effectiveness under both

the light traffic and moderate traffic model settings. But, what are the theoretical upper

bounds we are constrained to? In thermodynamics, we have the famous Carnot heat

engine results. No engine produced can exceed the efficiency of the theoretical Carnot

engine because of the second law of thermodynamics. Is there a comparable upper limit

in the realm of traffic signal control? Indeed there is.
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SECTION 5.3 Network Multi-Commodity Flow Approximation for

Unconstrained Travel Times

The best possible situation in a traffic flow environment is if no one encounters

any red lights and passes directly through the network. We can mathematically

approximate this by allowing every vehicle to shrink to an infinitesimal point and turn

all of the traffic lights green. How would we possibly model such a situation? Well,

really it turns into a network multi-commodity flow problem. We could view every

vehicle flowing from a particular origin in G(N,A) to a particular destination to be

composed of a specific fluid. We will have a source, the route's origin, and a sink, the

route's destination, corresponding to each route through the network. We retain the

capacity limits on the arcs in terms of vehicles per unit time; this is a function of the

speed limit and the number of lanes on the street segment. As a cost per arc, we will

use the amount of time required to traverse it at the speed limit.

The procedure defined above constitutes a minimum cost, constrained, multi-

commodity flow problem. The output from this model would be the absolute lower

bound on the amount of time it would take to traverse the network, assuming no one

stopped for a traffic light anywhere in the system and no one broke the speed limit.

Using our definitions from chapter three, this model can be formulated as shown below:
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HRf

Min ,Xuht u
h=1(i,J)eA

subject to

IIR

IxXUh PU V (i,j)eA
h=l

IN11 INI

XhO(j,h) + Xuh = XJkh + hD(j, h) V j,h
1=1 k=l

XiUh>0 V i,j,h

where D(j,h) is one if node j is a destination for route h, and O(j,h) is one if node j is an

origin node for route h.

We determined how to select the most important street segments and

synchronize them in chapter four. In this chapter, we examined several ways of

determining the MOE's given specific traffic signal control settings. In the next chapter,

we will describe a method, Predictive Routing Information Signal Timing INtEgration

(PRISTINE), of setting the splits, offsets and cycle time for G(N,A) using our work in the

previous chapters.
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Chapter Six

Setting Split and Cycle Times

SECTION 6.1 Traditional Traffic Engineering Approaches to Setting

Splits and Cycle Time

The methodology for setting off-sets can be independent of both splits and

the cycle times, but once one crosses the boundary into the realm of split and

cycle time setting, one must approach the problem from a more holistic

standpoint (Hadi and Wallace, 1991; Hawat 1992; Hobbs 1979; et.al.). In this

chapter, we will explore the issues of split and cycle-time setting. We will begin

by getting an intuition for traffic signal control strategies through examination of

the traffic lite or non-queuing model, and then we will move onto look at the

Queue Effects Model (QEM) where queuing effects become significant. The

QEM will form the basis of setting splits in the Predictive Routing Information

Signal Timing INtEgration (PRISTINE) traffic signal setting method.

The most logical point to start the examination of splits and cycle times is

to consider an isolated intersection. At first, imagine that the traffic is of very

light intensity (e.g. the average time between successive arrivals to the

intersection is on the order of ten minutes). Consider the intersection shown

below:
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Sample intersection with arrivals from two directions

Figure 6.1

Let the following relationships hold.

Direction Average Arrival Rate Green Time

2 2- 1 l k GA
341 - 1B GB

Information about intersection shown in figure 6.1 (above)

Table 6.1

Assume that successive arrivals to the intersection are independent, i.e.

assume the interarrival times are independent, and non-periodic, i.e. the arrivals

occur at non-deterministic and do not always occur at times of the form nV

where n is a positive integer and V is some real, positive number. Additionally

assume that the motorists who arrive at the intersection and are stopped by a red

light will be able to depart on the subsequent green cycle. Now, renewal theory

tells us that the average number of motorists who will have to stop during a cycle
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is: AGB + BGA. Thus, over a long period of time the fraction of motorists who

will be forced to stop is

XAGB + XBGA [6.1]

(XA + X)(GA +GB)

Under these same conditions, the average amount of time a motorist would

expect to spend waiting for a red light is:

X AG + sG 2X GB + GA [6.2]

2(XA + XB)(GA + GB)

Given formula 6.2, how would one change the traffic signal settings to

decrease the average wait per vehicle? One would want to diminish GA or GB

to decrease the expected waiting time. In other words, the smaller one makes the

cycle time the less amount of time the average customer would have to spend at

the intersection due to traffic signal control. (Of course, there is some practical

limit to this approach. One would certainly not want to set the split for any

given direction below the amount of time required for at least one vehicle to clear

the intersection. So, a cycle time of 1 /100th of a second looks great on paper, but

it is of little practical significance.) As we decrease the green splits we must

ensure that we do not decrease the green time in the more heavily traveled

direction more quickly than we decrease the green time for the lesser traveled

direction. Note also that the probability the car will be required to stop will not

change if GA and GB are decrease proportionally. This is easiest to see if you

consider a lone car approaching the intersection. The chance the car will have to

stop is the fraction of red-time the intersection experiences in the driver's
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direction of travel. Likewise, the driver this vehicle expects to wait one-half of

the red time in his direction if required to stop.

An important issue was realized by the simple example in figure 6.1, one

which we will revisit in the latter portion of this chapter. Namely, what is the

practical minimum, one desires for the effective green time in a given direction?

Effective green time is the critical issue as the traffic intensity (vehicles per

unit time) increase at an intersection. Each time one changes the signals, red to

green, green to red, at an intersection, some amount of usable intersection

crossing time is lost due to accelerations/deceleration's and safety considerations

to allow the intersection to clear. Thereby, in moderate to heavy traffic, one

wants to make effective green times as long as possible in busy directions (i.e.

there are certain practical restrictions to how long we can hold traffic in the non-

priority direction) to maximize the fraction of useful time and the flow rate

(vehicles passing through the intersection per unit time). But, there is a practical

upper limit to the cycle-time and splits. A green light in one direction

necessitates a red light in the other. The longer a light is red, the longer the

queue tends to get in that direction, and if the light is red too long then the cars

eventually spill back into other intersections, causing "gridlock." Additionally,

experience has shown that between 120-150 seconds is the largest practical cycle-

time that the average motorist will endure (Homburger, 1988). After that time

limit, motorists in the US tend to do more risky maneuvers (e.g. cutting across on

a red, causing gridlock, etc.).

A large amount of research has gone into various "practical" formulas for

determining the best time for splits and cycle times. Much of the work has been
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done looking at isolated intersections. To get a more intuitive feel for the effects

of the various splits, again use the situation depicted in fig. 6.1.

Let us now look at a specific case where the interarrival times are

independent and non-periodic. Our approach here will be to get some specific

mathematical insights into the system behavior which we will apply later in the

max split version of PRISTINE. Assume the arrivals in both directions are

Poisson. First, let us calculate the expected number of vehicles which will stop

during any particular cycle. This is evidently %AGB + XBGA. Let C=GA+GB.

Now, the probability that any particular car must stop is given by:

Ps = Probability of a random car stopping

= P(Stopped) = P(StoppedlA)P(A) + P(StoppedlB)P(B) [Note: A n B = 0]

=A + GA = GBA + [6.31
C XA + B) C 'A + XB C(XA + B)

Note, this agrees with our earlier renewal theory result (which is always

reassuring!). Now, in the following example let V be a random variable, the

number of vehicles passing through the intersection during a cycle, and let S be a

random variable, the number of vehicles stopped due to the traffic signal during

the cycle. Thereby,

E= ·1 )([RA + B] Ce )XS(V )JS i p s) [6.4]
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Now, EtV) is a monotonically increasing function of P. Thus, if one were

only concerned with minimizing the number of stops during a cycle, he would

minimize P ,, but this is the same as setting the light to be green always in the

direction with the greatest flow rate. Whether a vehicle is stopped for thirty

seconds or five years, it still only counts as one stop. This insight is easier to

visualize in fig. 6.2 below.

Prob. of Stop

0

0

Green Fraction A

The figure above shows the probability of a vehicle stopping at the intersection shown in
figure 6.1 as a function of the fraction of green time alloted to direction "A" and the relative
flow rate from direction "A". Notice if our objective is to minimize the expected fraction of

vehicles which stop at the intersection, we would always set the light red for the lesser
travelled direction.

Figure 6.2
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allocated to green time in the A direction. Notice that if the fraction of flow

coming from the A direction is less than 50%, the smallest probability of stopping

is derived by setting the fraction of green time in the A direction to zero. This

seems extremely naive; so, let us consider how to minimize the expected amount

of time a vehicle must wait. Using the same assumptions, the result is given by:

E(Waiting Time 1 ([A + XB]VCVeC(XA+XB) V S iASBi GBi + GA(S-i)

- =V V! s=o ii (0A + B) 2 

Equation 6.5

The minimum in this case occurs when A GA [6.6]

In the literature, this method is called proportionality. (Later in this chapter, we

will use proportionality to bring candidate splits up to the system cycle time.)

This is not completely orthogonal to our first result with respect to average

number of stops as higher values of traffic flow in a particular direction tend to

get more green time in that direction. Now that we have a better understanding

of the relationships between cycle time, splits and our measures of effectiveness,

it would be a good idea for us to look at some currently used methods of

determining the splits and cycle time used in practice.
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SECTION 6.1.1 Methods currently used in Practice to set Splits and Cycle

Time

Perhaps the most widely used methods were designed by Webster.

Webster examined an isolated intersection with Poisson arrivals and obtained his

famous result stated as equation 2.2 in this thesis. Namely,

1.5L+5
C0 = 1-Y
C0 = Optimal cycle time to minimize average delay
L = Lost time (e.g. amber time + acceleration / deceleration time) [6.7]
Y = Practical correction factor =. 9-. 0075L

There are several methods in practice for determining split times at

specific intersections. First, proportionality, equation 6.6, is used, and its basis is

in an isolated intersection with Poisson arrivals in both directions. The second

method is based on the same model, but the objective is to give both directions

an equal probability of clearing out all vehicle waiting at the intersection.

Note in all these cases, the network nature of the model is essentially

ignored, and this is most especially the case with the cycle time determination.

There have been many methods which look at the entire network in

determining the settings for individual intersections. Most of these methods
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were dealt with extensively in chapter two, but as a refresher consider the

following example from the literature. In 1966 Little looked at maximizing the

bandwidth for a network (Little, 1966). The next significant traffic signal control

which did not use bandwidth as an optimization criteria was TRANSYT,

developed by the Transport and Road Research Laboratory, United Kingdom

(Robertson, 1969). TRANSYT based its traffic control settings for the network on

minimizing a "disutility" function. In particular, Robertson forwarded the

notion of minimizing a weighted linear function of stops across the network as

well as total delay. The Texas Transportation Institute heralded the next

milestone in traffic signal control in 1980 with PASSER, and PASSER was

updated in 1984 to become PASSER-II (Texas Transportation Institute, 1984).

PASSER-II uses a user supplied set of routes and maximizes the progression

across these routes. This is more closely related to MAXBAND than TRANSYT

as maximizing bandwidths implicitly improves progression ratings for the same

routes. PASSER-II had several advantages over predecessors in that it directly

considered: street segment capacities, turning movements, distances, nominal

speeds and queue clearance intervals. We saw the first microcomputer

application of real-time control with the advent of SCOOT (Robertson, 1991).

SCOOT uses a heuristic search method to minimize a disutility function as with

TRANSYT. SCOOT samples traffic sensors every four seconds and updates

traffic signal control every five minutes. Several recently proposed methods for

utilizing real-time control for traffic signal control employ dynamic

programming, and the most widely used of these is OPAC, developed by Nathan

Gartner (1983), University of Massachusetts, Lowell. Lan, Messer, Chaudary and

Chang (1992) presented a methodology called COMBAND which was a

compromise approach to setting traffic signal controls. COMBAND combined

the notion of maximizing bandwidth with minimizing delay. The method is a
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multiobjective linear programming technique. Linear programming has been in

use in the area of traffic signal control since the mid-sixties, but the study of

graph theory has only recently emerged as a driving force in the field. Two

recent articles have addressed the use of graph theory in traffic management

directly. The first of these, "Graph Theory and Traffic Management: A Review of

Recent Progress and some Potential Applications" (Wright, et.al., 1989) examined

the use of graph theory to design networks to cut down on the number of traffic

crossing movements which occurred. Research (Holroyd and Miller, 1966) has

shown a direct correlation between the number of traffic crossings and accident

rates in urban areas. A recent US survey placed the total percentage of vehicle

miles driven in the US at speeds lower than 35 M.P.H. to be over 65% (IVHS, 93).

That is quite surprising when one considers the millions of intercity motor

vehicle miles accumulated on an annual basis. This survey would tend to lend

credence to Holroyd and Miller's work on designing urban networks. The other

work, "Maximal Direct Covering Tree Problems" (Hutson and ReVelle, 1989),

examined the question of how to select maximal trees given a cost function that

did not require all nodes in a structure to be connected. Traditional approaches

to maximal and minimal tree problems in graph theory literature assume 100%

coverage of nodes in the graph. Hutson and ReVelle dismiss this constraint and

formulate several models for sub-graph coverage. The applications to traffic

signal control would be direct if suitable objectives could be derived. Hutson

and ReVelle make no pretenses about the solubility of their approaches. In due

course, this discussion has led us to methods for setting splits and cycle times

using origin/destination and predictive routing information.
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SECTION 6.1.2 Current Methods which Integrate Predictive Route

Information

We assume that the models presented in this thesis receive predictive

routing information from ATMS and ATIS. The information could be extracted

from a model such as the one presented in "Fastest Paths in Time-Dependent

Networks for Intelligent Vehicle-Highway Systems" (Kaufman and Smith, 1993).

Previous approaches to traffic signal control did not have this information

available to them. This thesis assumes that this vital information is available

from the start of the process. Recall figure 1.2.
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The only work in the literature which considers the use of predictive

routing information in traffic signal control is MOTION (Ploss, G., Phillips, P.,

et.al., 1990) which was presented in a conceptual form at the transportation

conference at Yokohama, Japan in 1990. Those earlier concepts were released

with more details by Busch (1993). Much like this thesis' approach, MOTION

sets the splits and cycle time independently of the offsets. In MOTION the

offsets are based on traffic manager's input as to which routes should be

synchronized. The splits are set based on the global cycle time and a

unpublished queuing network approximation which is heuristic in nature.
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Now that we have had the opportunity to examine the traditional and

current approaches for traffic signal control, we can forge ahead and more fully

understand the methodologies described in the remainder of this chapter.

SECTION 6.2 Predictive Routing Information Signal Timing INtEgration

(PRISTINE) Method for setting Traffic Signal Controls

In this section, we will describe methods for setting the splits, cycle time

and offsets for the network. Essentially we will calculate those quantities using

the following inputs: street or network geometry, the nominal speeds or speed

limits on each of the street segments, the predictive routing information, the

minimum acceptable green time for any street, the minimum acceptable green

time for a major street segment or arterial, the maximum acceptable average wait

for a motorist at a given intersection, and the maximum acceptable cycle length.

First, we should understand the sources of these inputs. The street

geometry is a characteristic of the physical layout of the network. Likewise, we

assume that speed limits are unchanging characteristics of the network (or at

least external to signal setting process). The predictive routing information

which includes both routings and projected usage's of those routings is an output

of the interaction between the ATMS and ATIS subsystems of IVHS. The

maximum acceptable average wait for a vehicle at an intersection and the total
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maximum allowable cycle time are cultural or regional quantities. As mentioned

in the first chapter of this document, the maximum acceptable cycle time in the

US and Canada is widely regarded as being between 120 and 150 seconds

whereas in Southeast Asia, cycle times of over five minutes are not uncommon.

The maximum wait is clearly in the realm of the traffic manager. The minimum

amount of green time for the two types of street segments entering an

intersection, priority and non-priority, could come from various sources. The

traffic manager is one possible source, but if there is a sufficiently sensitive

sensor array at work in the network, the information could be derived in real

time from existing traffic conditions.

The idea behind the model is to first determine which of the street

segments are priority street segments based on the predictive routing

information. This information will be passed to the remainder of the signal

setting procedure in the from of the spanning tree, S. Then based on the physical

characteristics of the network, S and the various traffic manager inputs, the

splits and cycle time are generated. Last, the offsets are calculated based on the

cycle time, S and the physical characteristics of the network.

Now that we have the required inputs, we can describe the methods for

setting the offsets, cycle time and splits for G(N,A). We will present two

methodologies in this document. The first will be a non-linear, multi-objective

program which will solve for cycle time and splits and find an optimal solution

for our model. The second model will exploit certain characteristics of the model

and provide a heuristic technique which can be solved in a small fraction of the
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time it takes to solve the non-linear program. Both method use the same

procedure to set the offsets.

SECTION 6.2.1 Setting the Offsets

As mentioned above, the first step in this process will be to find the set of

priority street segments or the set of street segments which will be coordinated.

In general, it is not possible to synchronize all of the traffic signals for every

direction or set of streets in the network. So, we must select the most vital street

segments to coordinate based on the predictive routing information we receive

from IVHS. To do this, we use one of the three heuristics described in chapter

four: Route Augmentation (RA), Maximal Spanning Tree (MST) or Potential

Function (PF). These heuristics received the R and A matrices from the

Advanced Traffic Management System (ATMS) in coordination with the

Advanced Traveler Information System (ATIS). Recall from chapter three that R

represents the set of routes through G(N,A), and specifically,

Ri(j) _ the j node on route "i".

The desired usage's (vehicles/time) of the various routes are contained in A

where

A i - desired usage of route R; e R.
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These matrices are the inputs to the heuristics in chapter four along with D

which is a matrix whose elements correspond to the distances between nodes.

Consider the simple urban street complex shown below.

2
~am

3

4
O

A= (1 ->2),(2->3),(2->4) }
N= { 1,2,3,4}
m=3
n=4

A simple network

Figure 6.4

Let V be the matrix whose elements Vij represent the speeds at which

vehicles traverse the arcs (i -4 j) e A. Thereby, the time it takes a vehicle to go

from node i to node j along arc (i -o j) is given by:

tj - time from "i" to "j" along arc (i -- j) = ij i E Ai
j Vii0
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The heuristics produce S, a tree containing the set of one-way arcs which will be

coordinated by setting the offsets to allow progression along this directed,

spanning tree. Recall from chapter four that we will use S as our arterial for

purposes of computing progression as a measure of effectiveness, and our use of

S to coordinate the offsets ensures that the traffic signal control plan is

fundamentally grounded in a progression based system. We can arbitrarily

select a leaf node, a node with only one arc connecting it to the rest of the tree,

from S and set the offsets by "climbing" the tree. Consider once again fig. 6.3.

Assume the cycle time is C and all the splits are C/2 in length. Let the speed

limits through G(N,A) be uniformly equal to one for this example. Let S={(1->2),

(2->3), (2->4)). Select node one as the root node in this case. Now, we have the

following relations:

021 =0

012 = 21 +t 1 2

023 =012 + t 23

024 =012 +t 2 4 .

Now, if arc (2->4) had been replaced with arc (4->2), we would have just done a

sign reversal and obtained: 024 = 042 - 24 =012 + /2 -t 2 4 Note, we

actually need to know the exact splits and cycle-time to set the offsets. So, we

really calculate S first and then come back and figure out the offsets after

calculating the splits and cycle time.
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SECTION 6.2.2 Setting the Splits and Cycle Time

In this section, we will examine two methods of setting the splits and cycle

time. One method, a math program, solves to optimality, and the second

method, a heuristic exploits certain characteristics of the system and solves for

the splits and cycle time in a fraction of the time required for the non-linear,

multi-objective program. The best place to start in determining the splits and

cycle time is to examine our inputs.

SECTION 6.2.2.1 Inputs for Split and Cycle Time Determination

The inputs to this section of the model are as follows. C is our system

cycle time which will be set by the process either math program or heuristic. So,

it is a decision variable at this point. Cmax is the maximum allowable cycle time;

this is an input to the model by the traffic manager. This prevents system

"optimal" cycle times of 2 hours for example. b(x) is the probability of having x

vehicles in a platoon in G(N,A); it is an input to the model. It could be gathered

in real time, or it could be surmised based on historical data. is the weighting

of stops per vehicle in the objective function, and y is the weighting of the wait

per vehicle in the objective function. Note: y + D < 1 and P,y > 0. The street

segment going one-way originating at intersection "i" and ending at intersection

"j" is called (i->j). sij is the split (green time) in seconds for street segment
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(i->j) at intersection "j". The total flow from all routes along (i->j) is kij. S is the

spanning tree generated by one of the techniques from chapter four. Arterialmin

is the minimum allowable green split for an arterial, and Networkmin is the

minimum allowable green split across the entire network. Both of these are

inputs to the model, set by the traffic manager. The psi function is a Boolean

measure of alignment in the network.

[(i j),(k j)] { .true. if (i -4 j) and (k - j) share a common green cycle
false. else...

xl is the average amount of time it takes for a vehicle to safely cross an

intersection.

SECTION 6.2.2.2 Non-Linear Program (NLP) for Determining

Splits/Cycle Time

In this section, we will present a multi-objective, non-linear math program

to solve for the optimal splits and cycle time. The traffic manager will need to

specify the weighting appropriate to stops in the network and average vehicle

wait. As stated earlier, progression is automatically considered in the traffic

signal timing plan through our use of the spanning tree to set the offsets. Before

we launch directly into the description of the math program, it would be useful

to make some additional computations and definitions.
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We will begin with the relation X(sij) -Sii J is a measure of how many

vehicles can be safely accommodated during split sij. W(sij,y) is the probability of

waiting for "y" red lights on an arterial at intersection "j" with split sij. We will a

series of measurement variables. The first of these is the average wait at

intersection "j" for priority street segment (i->j) where Skj is the red light period

which is defined as Wi jsk W(sij,y). Then, the weighted sum of these
y=o

which is directly proportional to the expected average wait per unit time is equal

to: W j = XkjW + X kj where (i -4 j),(k -4 j) E S. In general, we do not need to

know everything about b(x) for the non-priority streets in the QEM; in fact, we

need to know two items the variance of b and the mean value of b. We define a

special variable to store the important quantity, the variance of b divided by

double the mean value of b, which we will call B. The expected wait per vehicle

along non-priority roads is taken directly from the QEM, and we have:

skj + skjkXl B * C xl ere
2C(sk-Ci1k) X Slkkj

1P[(i - j),(k -4 j)] =.false., (i - j) S and (k - j) X S. This leads us to our total
for the non-priority street segments at intersection "j", or Wj = YXkjWkj.

Vk s.t. (k--j)eS

Thus, our total expected delay per unit time at j would be characterized as

Wj = Wj + Wj. Now, moving onto the number of expected stops in the network,

we begin by using the QEM result and state:
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SA2kjkj 2 Xi2 -2
SiS +X kkjkjxl + B j C + C2 Bxl~kj

Tkj - 2 C skj(Skj -CXlXkj)

'P[(i --> j),(k -- j)] =.false., (i - j) e S and (k --> j) S.

where as before

For the priority routes,

we have a more straightforward expression for the expected number of stops

which is:.
00

T = yW(sij,y) . Then we have similar definitions for stops as we
y=O

had for average wait; specifically we have:

Tj = XiTij + kjTkj where (i - j),(k -- j) e S, XykJkjTk
Vk s.t. (k--j)oS

j =Tj + Tj.

Now, we can write our entire math program in a notationally compact

form as:

n
Minimize 13 Tj

j=1
+j=Wj

ji1

subject to

sij + kj = C V i,j,k where 'P[(i - j),(k -- j)] =.false.

Sij > Cxlii V (i - j)

sij > Networkmin V (i -- j)

sij > Arterialmi,, V (i -- j) S

0 < C < Cmax

sij >0 V (i j)

Math Program 6.1
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Math program 6.1 solves optimally for the various splits and the cycle

time, but it could be a time consuming process. The dimensionality of the

decision variables is 2n+1 where n is the number of intersections in the network.

Is there a way of taking advantage of the structure of the network and derive a

solution without having to resort to a large, non-linear math program? This was

the motivation for developing the heuristic presented in the next section.

SECTION 6.2.2.3 Split setting Heuristic (SH)

Recall that the time inputs to our system were the minimum acceptable

green split for arterials, i.e. elements of S, minimum acceptable green split across

the network, and maximum acceptable cycle time. Let us develop an intuition

for these limits before going into the mechanics of setting the splits and cycle

time in the heuristic. As stated in chapters one and three, the maximum

acceptable average wait at a traffic light is a social factor far more than a

characterization of the network or the vehicles and their routings. For example,

it may be far more acceptable for "social utility" to have everyone in the network

spend an extra minute traveling through the city and limit all the traffic signals to

a maximum cycle of 120 seconds than to have a cycle length of five minutes. So,

to some extent we need to consider the impact of each traffic light as well as

aggregate totals or averages. It may be totally reasonable to spend an average

delay of 45 seconds at a particular light, but no matter how short the remainder

of the trip takes, it would not be reasonable to expect the average motorist in

New York City to spend five minutes at a particular light. The concept behind

the minimum acceptable green splits is straight forward. The global minimum

acceptable green split across the network is the minimum time that is reasonable
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for a green period to last. This could be a time varying quantity. For example,

one would never want this quantity to fall below the average amount of time it

takes for one vehicle to safely accelerate and cross the intersection, but at 3 AM

under conditions of extremely light traffic, the value might reasonably be very

close to this value. On the other hand, if the roads are at half capacity or more,

one might specify the value to be fifteen seconds, e.g. long enough for five

average vehicles to pass through the intersection for example. This quantity,

which is more or less a safety and convenience factor, is different than the

minimum acceptable green split on the arterials or coordinated arcs. Here the

issue is one of accommodating the platoons in G(N,A).

The concept of designing a traffic signal control plan around the idea of

getting the majority of the platoon to clear the intersection underlies many of the

models in use today. There are good reasons for this. Every model is an

approximation to the real world. Drivers accelerate and decelerate at differing

rates. Likewise, they maintain differing following intervals, and all these factors

change base on the lighting, the road conditions and the level of congestion. By

seeking to accommodate a number of vehicles during one green light, one

implicitly allows for the nuances of human behavior which could never

adequately be described in a model. All progression based systems implicitly

use this concept whether explicitly maximizing progression or more subtly using

bandwidth maximization. In Matson, Smith and Hurd's (1955) classic Traffic

Engineering text, the method prescribed for calculating splits and cycle time is in

its purest form given a traffic density of X, what are the splits and cycle time required at

a particular intersection to accommodate a minimum of Y percentage of the vehicles
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which arrive during a given cycle? Traffic Engineering listed two formulae based

on empirical research relating offsets, green splits and cycle time:

Progression Speed(M. P.H.) = 68* Distance between Intersections (feet)
Fraction of Platoon to Accommodate

2 A Raw;hzoo"e
Volume(vehicles / hour) = -, IJJ L .\FV.."L

(Cycle Time[seconds])(Average Headway between Vehicles [feet])

We specified that this minimum green split time for the arterials may come from

the traffic manager, presumably based on knowledge of the system, but if we use

information gathered from the network, our overall intuition is the same as

Matson, Smith and Hurd's. Imagine that we knew the distribution of platoon

sizes for the network, based on historical or observed data to be as shown below.

4 Probability of Platoon Size

1

The

n Platoon Size

I I Ii

2 3 4 5

probability mass function for platoon size in the network

Figure 6.5
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We might set our criteria for the smallest acceptable green split for the arterial to

be sufficient to allow 80% of platoons reaching the intersection as the light turns

green in that direction to pass through an intersection unhindered. In the case

shown in fig. 6.4, this might require us to allow 4 vehicles to be able to pass

through which would put the lower bound at 3*4=12 seconds where 3 seconds

represents the average amount of time it takes a vehicle to accelerate and cross

the intersection. If we wanted the split to accommodate 95% of all platoons that

approached the intersection, we would have to allow five vehicles to pass which

would require 3*5=15 seconds as a minimum split time for an arterial. There are

several items to consider at this point. Platoon cohesion is a very transient

phenomenon at best, and the larger the platoon, the more likely it is to disperse.

Baass and Lefebvre (1990) considered this process in detail in their paper

"Analysis of Platoon Dispersion with Respect to Traffic Volume". So that even if

a longer split upstream might favor longer platoons, it is unlikely that such an

event would propagate throughout the network. We must also recognize that

there may be efficiency benefits accrued by breaking up large platoons as we will

see in the next section.

Eddie (1967) pointed out in his paper with Bavarez that in the Holland

Tunnel in New York City, the traffic authority purposely introduced breaks in

large platoons which resulted in a better overall travel rate through the tunnel.

Herman and Rothery (1967) explained why this would be true using a fluid

dynamic approximation for traffic dynamics. The idea was that a small

perturbation in a platoon could be augmented by other perturbations whereas a

break in-between elements cause them to behave independently. Herman

experimentally verified his model and demonstrated a case where a platoon of
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eleven vehicles had to stop four times in a two mile interval while a group of

three vehicles experienced no stops under nearly identical conditions. Thus, to

save time overall, the goal should not be to accommodate every platoon but

rather to accommodate some large fraction of the potential platoons passing

through the intersection. Now we have lower bounds on the acceptable green

splits and an upper bound on total cycle time. We are ready to set the splits and

cycle time.

We will use the QEM model developed in chapter five to aid in setting

splits. Recall inequality 5.9, shown below

< G2 +GBx2)XI - Variance(b)-+ GA- Variance(b)l)
2(GA + G) + cGj 2

This can be rewritten as a quadratic in terms of the green split in the

uncoordinated direction. If we specify a maximum acceptable average wait in

the non-coordinated direction, we can solve for the minimum acceptable green

split for the uncoordinated direction as long as the consistency equation

_ Variance(b) + XJl

W S > is met. If this condition is not met it means that
(1- lx l )

the intersection is over saturated. Under conditions of over saturation, the best

approach is simply to increase the network flow capacity as much as possible

and attempt to allow the excess traffic to bleed off as quickly as possible.
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By definition S must touch every node; so, we can generate a candidate set

of splits (and hence cycle times which are just the sum of the splits) for every

intersection. Then we take the maximum at all the candidate splits as the cycle

time for G(N,A). Intersections with shorter candidate cycle times have their

candidate splits increased proportional to the volume of traffic flowing into the

intersection from that direction. This is essentially a restatement of the Pignataro

method (Gerber and Hoel, 1988). The primary difference is that Pignataro used a

measurement of vehicle density over the proceeding fifteen minute interval to

determine the minimum green splits, and we use the QEM model to arrive at the

minimum acceptable green splits. One might ask why it is better to increase the

splits rather than normalize to some intermediate value. First, consider the

coordinated direction. Every increase in the green time tends to allow more of

the potential platoons to pass through the intersection unimpeded. Additionally,

in the uncoordinated direction, proportional increases in the green splits for the

coordinated and uncoordinated direction have no effect on the chance of

stopping if the conditions below are met.

GA >Xl

GB > Xl

XAX1 (GA + GB )< GA

XBXl (GA + GB) < GB

The first two conditions should be met by an appropriate choice of a lower

bound for the network green split as the requirement is for the green split to

exceed the average time it takes for one vehicle to accelerate and cross the

intersection, hardly an unreasonable condition. The second two conditions are
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system queue stability conditions which are true irrespective of the vehicle

arrival process, and namely, they require the amount of green time per cycle in a

specific direction to exceed the average amount of time it would take for the

vehicles arriving during the cycle time to clear the intersection. Additionally,

this method tends to give a high priority to the busiest intersection; the

intersection with the highest candidate splits will be the intersection with the

highest volume of traffic. There are two primary reasons for giving priority to

the busiest intersection. First, the busiest intersection does not exist in isolation.

The traffic arriving from this network must arrive from somewhere, and

presumably this traffic would come from within the network. So, the

intersections surrounding the busiest intersection would tend t have candidate

splits nearly as long as the highest set. Second, by favoring the busiest

intersections, we are favoring larger volumes of traffic. When there is little flow

on the network, nearly any traffic strategy can perform well, but as congestion

continues to increase, the real benefits are accrued from systems able to

anticipate and adapt to these conditions.

We will now illustrate this technique using the same network we used in

chapter four.

The base network is shown below.
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v

0

An illustrative 3x3 network

Figure 6.6

For this example, we used the potential function (PF) technique to

determine the tree for the offsets. The results were calculated by an automated

version of the SH and then verified manually. The following information is

available to the model: the network geometry (shown above), the predictive

route information (shown below in table 1), the minimum acceptable green time

at any intersection (15 secs), the minimum acceptable green time for a major

roadway at an intersection (30 secs), the average amount of time it takes a vehicle

to clear an intersection (2 secs), the acceptable wait for an average vehicle to wait

at any given intersection (30 secs), and the coefficient of variation for the platoon

size is 1. All street segments are 308 feet long, and the speed on all street

segments is 30 MPH. The tree, S, consists of the following arcs:
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Arc (In order of selection) Value
9->4 4.9
4->3 5
3->2 7.5
2->1 10
8->9 12.5
7->8 15
4->5 4.8
5->6 9.2

The arcs are selected in the order shown from top to bottom using the Potential Function
Heuristic. The value shown on the right is a relative measure for how beneficial the addition

of the arc to the spanning tree will be.

Table 6.2

Now that the tree is determined, we can derive the candidate splits. These

are displayed by intersection.
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CANDIDATE SPLITS/CYCLE TIMES

Intersection
1

2

3

4

5

6

7

8

Arc
(6->1)
(2->1)

(5->2)
(3->2)

(4->3)
(2->3)

(3->4)
(5->4)
(9->4)

(4->5)
(6->5)
(8->5)
(2->5)

(5->6)
(1->6)
(7->6)

(6->7)
(8->7)

(5->8)
(7->8)
(9->8)

9 (8->9)
(4->9)

Green (secs)
15
30

15
30

30
15

15
30*
30*

30
30
15
15

30
15
15

15
15

15*
30*
15

30
15

Cycle Time(secs)
45

45

45

60

45

45

30

45

45

NOTE: because of the low vehicle occupancy rate the queuing model gave an
amount of required green time that was less than the minimum specified by the
traffic manager, but if the total rate along arc (7->6) had been as high as 6
vehicles per minute, it would have been 17.5 seconds, and if the rate had been 9
cars per minute it would have required over 29 seconds.

This table shows the candidate splits selected using the Split setting Heuristic (SH) method to
set them.

Table 6.3
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Now, the largest candidate cycle time was 60 seconds for intersection 4.

Now, we will set the set the splits so that all the cycle times are equal to 60

seconds, and we get the following results.

ACTUAL SPLITS/CYCLE TIME

Intersection
1

2

3

4

5

6

7

8

9

Arc
(6->1)
(2->1)

(5->2)
(3->2)

(4->3)
(2->3)

(3->4)
(5->4)
(9->4)

(4->5)
(6->5)
(8->5)
(2->5)

(5->6)
(1->6)
(7->6)

(6->7)
(8->7)

(5->8)
(7->8)
(9->8)

(8->9)
(4->9)

Green (secs)
22.2
37.8

15
45

45
15

30
30
30

40.3
40.3
19.7
19.7

39.8
20.2
20.2

30
30

15
45
15

45
15

Cycle Time(secs)
60

60

60

60

60

60

60

60

60

This table shows the actual splits and cycle time selected after the second pass.

Table 6.4
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The offsets would be selected so that the vehicles traveling along the tree

shown in figure 1 (in green) would pass through green lights after entering the

tree.

The cycle time is 60 seconds, and at 30 MPH it takes 7 seconds to go 308

feet. We can arbitrarily select any "leaf" on the tree as our base node. So, we will

select node 7 as the base node. So, our offset for the green light going from

starting at seven and heading toward 8 (or equivalently the green light one

encounters going from eight to seven), 087, is zero. Note that the offset for 067 is

30, based on the splits. Now 978 is 7 while 958 is 52. The compiled offsets for

the network are shown below.
OFFSETS

Intersection Arc Green (secs) Offset (secs)
1 (6->1) 22.2 19.8

(2->1) 37.8 42

2 (5->2) 15 20
(3->2) 45 35

3 (4->3) 45 28
(2->3) 15 13

4 (3->4) 30 21
(5->4) 30 51
(9->4) 30 21

5 (4->5) 40.3 58
(6->5) 40.3 58
(8->5) 19.7 38.3
(2->5) 19.7 38.3

6 (5->6) 39.8 5
(1->6) 20.2 44.8
(7->6) 20.2 44.8

7 (6->7) 30 30
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30 0

8 (5->8) 15 52
(7->8) 45 7
(9->8) 45 7

9 (8->9) 45 14
(4->9) 15 59

This table shows the offsets selected using the PF method.

Table 6.5

The measures of effectiveness for the PF method are as follows. Note, the

following table ignores the effects of the starting light. For example, a vehicle

approaching intersection 7 from the north would have a 50% chance of stopping

based on random incidence, and the expected delay then would be 15 seconds.

We will assume the vehicle begins its voyage just as the light turns green in the

vehicle's direction of entry for the net. We also assume light traffic conditions.
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Route Desired Usage Expected Stops Expected Delay
7->8->9->4->3->2->1 2.5 0 0

6->5->4 3 0 0

7->6->1 12.3 1 13.8
9->4->5->6 2.4 0 0

2->5->6 2 1 112.7
The MOE's for the Traffic Signal Control plan are displayed mt he table above. The MOE's~~~~I I 

The MOE's for the Traffic Signal Control plan are displayed int he table above. The MOE's
were calculated using an expected value approach.

Table 6.6

Thus, the expected number of stops across all vehicles for the network is .352,

and the expected delay per vehicle across the network is 4.7 seconds.

SECTION 6.2.3 Strategy's Strengths and Weaknesses

This section will examine in a very general sense when the use of

predictive routing information and the strategy outlined above would prove

beneficial.

There are two primary cases when the PRISTINE traffic signal setting

strategy would prove very effective. Both cases involve the edge that the

strategy receives from the predictive routing information. If there is an accident

or other incident that blocks a street, the ATMS and ATIS systems will provide

that information to both vehicle operators and the traffic control systems. The

PRISTINE strategy could free more green time along avenues leading away from
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and around the accident scene as motorists are rerouted by IVHS. Current

systems could not react to this change in the roadway pattern until congestion

had occurred on the streets surrounding the accident. The second example is

very similar. If there is a predictable surge in the traffic demand, by opening up,

i.e. allowing more green time, the routes which will be hardest hit in advance, the

PRISTINE strategy will prevent congestion later.

Just as there are times when the PRISTINE strategy will do very well,

there are also situations where the effect will be negligible. In situations where

there are no clearly defined flows of traffic, the PRISTINE strategy will not do

any better than existing systems. The heart of the PRISTINE advantage is in

being able to exploit patterns in traffic and synchronize the appropriate street

segments accordingly.

Although we specifically eliminated the heavy traffic situations, i.e.

situations where the congestion is no longer a function of traffic signal control so

much as a capacity issue, the PRISTINE strategy could be quite useful in these

situations as well. When a sports stadium lets out its glut into the surrounding

roadways, there is a temporary lack of required capacity. By using the tree

finding and offset determination heuristics from chapter four, we could identify

routes of egress from the congestion center and give priority to these routes.

Although there will still be a large traffic jam, the effects may be mitigated by

such an approach. In these cases, we would set the cycle time to the allowable

maximum and then break down the splits by straight proportion.
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The entire PRISTINE strategy would be repeated every five to ten minutes

ideally. A lot depends on how accurate the data bases which ultimately are used

in IVHS are and how frequently they are updated. If the data bases are updated

only every twenty minutes then it would be unreasonable to update the

PRISTINE strategy any sooner than every twenty minutes. Now that we have

designed a TSC strategy, how do we evaluate it? The answer lies in the next

chapter.
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Chapter Seven

Simulation and Heuristic Testing

SECTION 7.1 Simulation

In the previous chapters, we established the theoretical basis for the

Predictive Routing Information Signal Timing INtEgration (PRISTINE) model.

Chapter three established the basic mathematical description of the problem.

Chapter four describes the use of spanning trees in setting offsets in a Traffic

Signal Control (TSC) plan. Chapter five developed the Queue Effects Model

(QEM) which is the heart of PRISTINE for setting the splits on non-tree street

segments, and chapter six combined the models from the earlier chapters into

one control package, PRISTINE. In this chapter we will test our concepts using a

traffic simulation motivated by real world traffic data.

The Predictive Routing Information (PRI) generated under IVHS and

required by PRISTINE, is not yet available in practice. By PRI we are referring to

the desired usage rates described in chapter three. IVHS will provide us with the

anticipated average arrival rate of vehicles, over a fixed period of time, into the

network delineated by route. (In this thesis we used ten minutes to represent a

reasonable "fixed" period of time.) (See appendix C for an example of predictive

routing information used in the simulation.)
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It is not feasible to test PRISTINE with real world traffic at this point; we

will turn to simulation as a means of evaluating the performance of our traffic

signal control strategies. We have two primary tasks in this chapter. Recall from

chapter six that we developed two methodologies for setting the splits. One was

a Split setting Heuristic (SH) technique, and the other involved the solution of a

Non-Linear Program (NLP) to determine the splits. Our first goal is to use

simulation techniques to determine which method, NLP or SH, performs better

as the split and cycle time setting engine under PRISTINE.

Our second goal in this chapter is to use simulation techniques to test our

hypotheses concerning the value of predictive routing information (as used in

PRISTINE) in setting traffic signals. We have described our rationale for

believing the use of PRI would offer advantages over existing traffic signal

control methods in chapters 1, 2 and 6, but we should test PRISTINE against a

methodology which actually uses existing information. In this chapter we test

PRISTINE against an idealized Third Generation Control (3GC) system; we will

further describe 3GC in section 8.1 and appendix A.

However, before we can make comparisons, we need to construct an

appropriate traffic simulation model. We will take up this task in sections 7.1.1

through 7.1.3.

SECTION 7.1.1 Evaluating Traffic Simulation Models

In this section, we will address two issues. The first will be what aspects

of the physical world must be incorporated into a simulation if it is to be useful

for our tasks of comparing SH vs. NLP and PRISTINE vs. 3GC. For example it is

important in our research for there to be a dynamic interface between the

simulation and the traffic signal control strategy. Specifically, we are talking
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about the ability of the simulation to both provide information to and receive

traffic signal timing plans from the traffic control strategy while the simulation is

running.

The second issue is how one would characterize a good traffic simulation.

The two issues are related, and we will integrate them by developing our criteria

for a good simulation as we discuss our requirements for the simulation. Our

criteria are the standards by which we judge the value of a simulation while our

requirements are those aspects that must included in the simulation for it to be

useful to us.

Barlas (1989) described a method for evaluating complex simulations in an

article for the European ournal of Operational Research. In his article Barlas

pointed out that simulations must be evaluated in two distinct areas, structural

valic.ation and behavior validation. Structural validation is designed to check

whether the structure of the simulation is an adequate representation of real

system it models. Behavioral validation is designed to test whether the

simulation produces an acceptable output behavior. For example if one were

simulating the trajectories of soccer balls kicked during the World Cup playoffs

then the structural tests would be things like ensuring: the Young's Moduli of the

balls were correctly modeled and the equations for the force of gravity were

correctly written. A behavioral test would be to ensure that the soccer balls fly

farther when kicked harder. Barlas correctly asserts that the structural portion of

the testing should be completed first as there is no point in determining

behavioral characteristics of a simulation if the simulation is not structurally

sound. Our requirements for the simulation correspond to Barlas' structural

testing criteria.
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It is important to understand the tone of Barlas' remarks as well as

developing our own criteria based on his broad guidance. Barlas' techniques are

designed to be applied to very complex systems (e.g. traffic simulators) where it

would be literally impossible to test every conceivable situation that might arise

in the course of the simulation. Barlas notes that frequently simulations are

tested in non-systematic and wasteful ways, e.g. vary this parameter with the

following one million settings, when the simulation could have been tested

systematically in a much shorter and more productive period of time. In the next

section, we will begin by developing our own structural criteria to test a traffic

simulation.

SECTION 7.1.1.1 Structural Requirements

There are certain key aspects of the physical world we would like to be

present to model traffic in the simulation. These are part of the structural

requirements under Barlas' simulation evaluation scheme. A list of our

structural requirements are as follows.

(1) Reproducibility: Vehicles should travel through the network along
the street segments in a logical and consistent manner, e.g. given the same set of
circumstances, a vehicle should take the same action every time the simulation is
run. This is important to us, because we will be testing PRISTINE vs 3GC using
the same traffic scenarios in section 8.2, and the more random interference we
can filter out in the simulation design, the more accurately our simulation runs
will reflect real differences in the quality of the traffic signal control plans rather
than just random variation.

(2) Platooning: Vehicles tend to clump under real-world conditions, and
these groups of vehicles are called platoons. It is critical to the logic in PRISTINE
that vehicles move through the traffic network in platoons. Any simulation

167



designed to test the performance of SH vs NLP in PRISTINE should produce
platooning.

(3) Capacity: The simulation should have sufficient capacity in terms of
memory, addressing, etc. to model traffic flows as they begin approaching street
segment capacities, because this is frequently when TSC plans reap their greatest
benefits.

(4) Congestion Effects: Congestion must have an impact on the vehicles in
the network. As congestion increases, traffic flow should degrade. Vehicles will
be starting and stopping, and vehicle progression will become more erratic.

(5) Reasonable Time to Run: The simulation should run in a reasonable
time frame. It would not be useful for the purpose of analysis to use a simulation
that required several days of CPU time to simulate a couple of seconds of
simulated time, no matter how well the simulation matched the physical
properties of the system.

(6) Vehicle Acceleration/Deceleration: Vehicles should accelerate and
decelerate in reasonable ways. It should require several seconds for a vehicle to
go from a complete stop to 30 MPH.

(7) Dynamic Interface: Another absolutely essential feature of the
simulation is that it must allow a dynamic interface with the TSC strategies it is
testing. The 3GC strategy will require information about arrivals and departures
on each street segment in real-time; the simulation must be able to provide this
information and implement the generated TSC plan without stopping or
restarting the simulation. Even the state of the art simulation systems do not
allow this interface as we will see later in this section.

(8) MOE Reporting: The simulation must be able to monitor and record
our Measures of Effectiveness (MOE), average stops per vehicle and average wait
per vehicle.

SECTION 7.1.1.2 Behavior Validation

Behavior validation is divided into two categories, pattern prediction and

structurally oriented behavior tests. Pattern prediction testing is based on the

premise that since simulations are designed to test very complex stochastic
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systems, it is extremely difficult if not outright impossible to accurately predict

individual values of all the outputs for a given simulation run. If it were easy to

do so, there would be no need to resort to simulation as a technique. On the

other hand, it certainly is possible to predict patterns among several simulation

runs based on changes in the parameters between the simulation runs. We will

examine three such patterns.

(1) Increase in Average Delay: We would expect that as the traffic flow
volume across the network increases for a fixed TSC plan, the average delay per
vehicle would increase. (This is true to the point where heavy traffic conditions
prevail. Once vehicles are required to wait through entire green light splits
because the street segment ahead is clogged, traffic patterns tend to be very
unstable.)

(2) Variance in Individual Delay: If we increase the variance for a
stochastic arrival rate then we would expect to see a greater variance in the
individual wait experienced by each car. For example, suppose we have one
system where the vehicles always arrive in groups of two. Additionally, we have
another system which is identical in all respects, but the vehicles arrive in groups
of one or in groups of thirty-six. We can certainly set the occurrence of the two
arrival sizes so that the mean is two, but in the latter case, the additional variance
in the arrival rate would cause a much larger variance in the delay experienced
by the individual vehicles due to congestion, interactions between vehicles, etc.

(3) Increase in Average Transit Time: As the network becomes more
crowded we would expect to see an increase in the average transit time per
vehicle.

Barlas identified trends, average values and variations as three areas to

examine when testing the behavioral characteristics of simulations. Trends are

the general relationships between changes to input parameters and simulation

outputs. In particular, one is more interested in the form of the relationship

rather than in a specific mathematical equation. If changes to the flow rate in the
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the network caused seemingly random variations in the wait per vehicle for a

fixed TSC plan, we would suspect that something untoward was going on with

the simulation. The trends should be evaluated for simple cases where it is easy to

predict the form of the relationship; then when it comes time to make decisions

based on the more complex relationships generated by the simulation, the

decision maker will have more confidence in the value of the information

provided by the simulation.

SECTION 7.1.2 Existing Traffic Simulation Models

We described seven commonly applied traffic simulations in the literature

review: ROGUS, CORFLU, UTSM, SATURN, SATCHMO, DYNASMART and

TRAF-NETSIM. All of these simulations fail one or more of our structural

criteria developed in section 7.1.1.1. Most of these simulations are unable to

provide information to a traffic signal timing strategy and implement new traffic

signal plans while the simulation ran. Therefore, they failed our criterion for

dynamic interface [criterion 7.1.1.1(7)] Additionally, the remainder of the

simulations were either unavailable to us or did not report the measures of

effectiveness we wished to measure [criterion 7.1.1.1(8)]. Therefore, we elected to

develop our own traffic simulation model (see section 7.1.3 and appendix B).
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The Lin-Sarkar-Staats Simulator (LS3)

Here we will briefly describe the development of the LS3 simulator and

conduct the structural and behavioral tests described in section 7.1.1. (For a more

technical description of LS3 see appendix B.) In section 7.1.3.1 we will trace the

historical development of LS3 and see how it evolved into a form which met all

of our structural criteria. We will go on to look more closely at the form of the

simulation in section 7.1.3.2. Our outputs from the simulation, measures of

effectiveness, are defined in section 7.1.3.3. In section 7.1.3.4, we will examine

output from the simulation specifically looking for our behavioral validation

patterns from section 7.1.1.2.

SECTION 7.1.3.1 Historical Development and Structural Testing

Lin (1992) set out with the objective of writing a computer simulation for

traffic that would combine the best aspects of both microscopic and macroscopic

traffic modeling. The important features included but were not limited to:

tracking each vehicle's speed, position and turning movements, utilizing origin-

destination pairs [i.e. routing], measuring overall congestion and supporting

large network simulations. By May 1992, Lin had constructed a simulation

which ran under Turbo-C on an MS-DOS, 386 platform which integrated criteria

7.1.1.1(1) through (6) in its design parameters. The simulation not only met but

exceeded the requirement to run in a reasonable time [criterion 7.1.1.1(5)]. In

fact, for a small network (e.g. 3x3 nodes), the system was able to simulate 155

seconds of time for every second of real time the simulation ran for. Although
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the simulation was fast, it did have limitations. First, all of the street segments

had the same speed limit, 30 MPH. Second, the simulation did not allow the

signal timing plan to be modified once the simulation was running [criterion

7.1.1.1(7)]. Lin did not provide a means of either monitoring or displaying any

conventional MOE; so, it also failed in the area of MOE reporting [criterion

7.1.1.1(8)].

Sarkar (1993) began working on upgrading the simulation in the Fall of

1992. Sarkar's objective was to accomplish three tasks with respect to the

simulation. First, he was to allow for variable speed limits on the street

segments. Second, the simulation had to be modified to allow street segments of

varying lengths. Last, Sarkar needed to integrate a method of monitoring and

displaying the MOE for the model, average stops per vehicle and average wait

per vehicle (see appendix B for a description of these MOE's in the context of the

simulation). By May 1993, Sarkar had accomplished his tasks. The simulation

ran on a Macintosh(TM) Quadra 700 using Think C(TM) at a slightly slower pace,

but it allowed for the representation of much more realistic street networks and

traffic patterns to be simulated. But, the simulation still did not allow the traffic

signal timing plan to be modified during the simulation [criterion 7.1.1.1(7)].

From Fall 1993 to Spring 1994, the simulation was transferred from C to

FORTRAN 77 and installed on a DEC 5000/20 workstation. The following

features were added. The simulation allows for dynamic changes in the TSC

plan; the cycle length, split configuration and offsets are allowed to vary during

program execution. (The network structure remains fixed throughout any
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any specific simulation run.) The simulation is fully integrated with the TSC

routines that support it, and information about congestion levels, vehicle

position, speed, etc. can be fed directly to the TSC calculation programs. Such is

required to accurately model the 3GC system. The simulation now allows for

varying PRI to be entered into the system while the simulation continues to run.

So, the simulation passes all of the structural tests described in section 7.1.1.1.

The simulation can perform approximately 1100 iterations per minute for a

moderately congested (i.e. approximately 850 vehicles active in the simulation)

network with 28 nodes. The simulation works in discrete time, and each iteration

is approximately 1.007 seconds. This is long enough for a vehicle to pull out into

an intersection, come to a stop from 5 MPH, etc., but it is short enough time that

most traffic maneuvers can be completed at a microscopic level. Additionally,

the simulation has the capability to have vehicles enter the network and leave the

network from any pair of nodes; this is an improvement on earlier versions of LS3

and on NET-TRAFSIM as well.

This completes our formal structural evaluation of LS3. We will test the

behavioral characteristics in section 7.1.3.4.

SECTION 7.1.3.2 Structure of LS3

The structure of LS3 is further described in appendix B. The simulation

accomplishes its tasks in four major subprograms. SIGNAL changes the traffic

lights from iteration to iteration according to the TSC plan and ensures that no

safety conflicts occur such as both directions being given green lights at the same
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time. MOVE generates new vehicles and moves existing vehicles through the

network. PRICAL reads in the real-time PRI information and calls the TSC

setting routines. Last, STATS monitors and prints the MOE for the simulation.

The SH, NLP and 3GC modules are integrated into PRICAL.

The LS3 has seven primary data structures for effectively administering

the simulation. Structure "TSC" holds the information on the offsets, cycle time

and splits for the signal lights. Structure "NET" maintains information on the

physical layout of the network. In particular, NET holds the index ORDER

which allows the simulation to determine whether a vehicle is turning left or

right, going straight ahead, or even leaving the network as it comes to the end of

a street segment. Structure "ROAD" contains the information concerning which

vehicles are-on which street segments and which positions on those street

segments they occupy. Conversely, structure "AUTO" holds the information

from a vehicle's perspective such as route choice, speed, current arc, status and

platoon information (e.g. which vehicle it is following, which vehicles may be

following it, etc.). Structure "MOE" contains exactly that, information on the

measures of effectiveness. Structure "PRI" holds the predictive routing

information, and last, structure "MGR" has the traffic manager inputs such as

maximum cycle length, minimum green split, etc.

SECTION 7.1.3.3 Measures of Effectiveness

Every traffic simulation and traffic signal control strategy uses its own

unique measures of effectiveness (e.g. some use average queue length, others use
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average stops only, still others measure the average speed of vehicles, etc.). In

chapter three, we emphasized stops per vehicle and delay per vehicle. In the LS3

simulator these measures of effectiveness are defined differently than they were

in chapter three. In the LS3 simulation, we define the total amount of time a

vehicle is traveling at less than 5 MPH as wait or delay . This measurement

includes both full stops and significant braking operations. Delay can be viewed

as the time of greatest driver frustration, i.e. when the vehicle is fully stopped or

just creeping forward. Additionally, as we note in the diagram 7.5 above, the

average transit time and delay per vehicle are positively correlated as well. Stops

per vehicle are measured as one would expect. Every time the vehicle reaches 0

MPH a stop is recorded. Additionally, LS3 is capable of measuring the average

transit time per vehicle as a measure of effectiveness. Several authors have

argued that the average stops per vehicle in the network are the best measure of

emitted pollutants. The average delay per vehicle is a measure both of lost time

and driver frustration, and average transit time per vehicle is the easiest to

visualize. We will focus on delay as our primary measure of effectiveness, but we

will also display the average stops experienced per vehicle for those who prefer

this measure. For the our supplemental runs with the surge scenario in section

8.2, we will also display the average transit time.

It is important to point out that the simulation is an approximation to real

traffic behavior. For example drivers in the simulation are "timid"; they will

only make a left turn or proceed onto a street if they have sufficient clearance to

do so. In some cases this leads to drivers waiting five minutes or more during

congested conditions to make a left turn. This delays not only the vehicle making

the turn but the vehicles in back of it as well.

175



SECTION 7.1.3.4 Behavioral Testing

We tested the simulation's behavior using a 3x3 network called "bar". See

the network in figure 7.1 below. Each street segment is two way. There are

twenty-four one-way street segments in the network. The average flow rate on

each of these 24 arcs is the same. For example, in the scenario where the average

system flow rate is 72 vehicles per minute, each arc has an average flow rate of 3

vehicles per minute.

_di _d _

3x3 Network called "BAR"

Figure 7.1

The splits were uniformly set to 20 seconds of red and 20 seconds of green time

for each intersection. The average wait per vehicle in "bar" with a network flow

rate of 36 vehicles per minute was 6.04 seconds and had a standard deviation of

7.24 seconds. Under light traffic conditions, if we let the simulation run for an

infinite time period then we would expect the average vehicle to wait for 5

seconds (which is just the probability of stopping for a random vehicle, one-half,
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times the average amount of time we expect a vehicle to have to wait for if it has

to stop, ten seconds), but as we see in figure 7.2 below at least some of the

vehicles waited for up to 22 seconds which means there were at least some

queuing effects experienced during the simulation run. This is confirmed by the

fact that only 46% of the vehicles were able to pass through the network without

stopping as opposed to the 50% we would expect to see under light traffic

conditions. The 6.04 seconds seems like a reasonable estimate of the actual

waiting time we would expect an average vehicle to experience in this network

given these conditions. The actual wait time distribution is displayed in figure

7.2 below. (Note that some small fraction of the vehicles stopped more than once

due to congestion effects.)

0.4
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;>
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0 11 22

Wait (Seconds)

Histogram of Waits experienced by each vehicle exiting BAR for flow of 36 vehicles/minute.

Figure 7.2
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When the flow rate was increased in the network to 72 vehicles per minute in the

network, the average wait increased to 7.05 seconds with a standard deviation of

8.11 seconds. The waiting time distribution is displayed below in figure 7.3.

4)

0
QE

Vi

0.4 -

0.3

0.2

0.1

l 1 - 1 - i

0 7 14 21

Wait (Seconds)

Histogram of Waits experienced by each vehicle exiting BAR for flow of 72 vehicles/minute.

Figure 7.3

When the vehicle flow rate was further increased to 144 cars per minute, the

average wait per vehicle went to 8.40 seconds with a standard deviation of 9.38

seconds. The waiting time distribution is displayed in figure 7.4 below.

17.8

_6_�_Pf�iS�'�B�.�Z

a29

,ra~s~M



03 -

I)

0 

.)

0.1 

0 11 33

Wait (Seconds)

Histogram of Waits experienced by each vehicle exiting BAR for flow of 144 vehicles/minute.

Figure 7.4

As we increased the flow rate in the network, the average delay per

vehicle increased [pattern 7.1.1.2(1)]. Also, the standard deviation of the wait

increased; the variance in the size of the platoons becomes more pronounced as

the system flow rate increases [pattern 7.1.1.2(2)]. We also note that congestion

begins to play a role in the delay factor as the system flow rate was incremented.

All of these are expected trends. The mean and standard deviation data reinforce

our expected behavior for the simulation.

In the figure below, we see a plot of delay and transit time displayed as

the level of traffic flow. Again, we see expected trends.
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The top line represents the average transit time per vehicle, and the bottom line represents
average delay per vehicle as measured by the simulation. Transit time and delay are closely
related. The difference between the top and bottom lines can be interpreted as the time the

vehicle is moving freely in the network. The widening gap indicates that the free movement
is at a decreasing average speed. Notice that travel time increases for the more congested runs

on the right side of the graph. This data was taken from eight runs of the surge scenario
presented in section 8.2.

Figure 7.5

These figures were extracted from eight runs of the simulation using the surge

scenario presented in section 8.2 below. The more congested runs are to the right

side of the graph. It takes longer for vehicles to travel through the network

under congested conditions [pattern 7.1.1.2(3)]. Table 7.1 shows the average

delay and transit time by run.

Wait or Delay I Transit Time

21.151 69.553
21.926 69.72
23.278 73.915
25.835 79.277
53.389 130.988
89.079 169.515
106.306 193.86
117.409 199.917

This table lists the wait and transit time for each data run displayed in figure 7.5 (above).

Table 7.1
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Later in the thesis we will refer to examples which will further bolster our

confidence in the simulation results, but this concludes our formal testing of LS3.

SECTION 7.2. Testing the Non-Linear Program (NLP) vs the Split setting
Heuristic (SH)

In this section we will compare the NLP and SH methods of setting splits

and cycle time for PRISTINE. In chapter six we formulated the NLP in

theoretical terms, but the NLP is not trivial to solve. In the next section will

describe our method for solving the NLP. (We were able to code the SH directly

as described in section 6.2.2.3, and we will not devote a separate section to

describing this operation.)

SECTION 7.2.1 Implementing the Non-Linear Program (NLP)

In this section we will describe the methods used to implement the NLP

described in section 6.2.2.2 previously. Recall the NLP took the form:

n . n ^

Minimize 13 Tj + Y Y
j=1 j=1

subject to

sij +skj =C V i,j,k where 'P[(i - j),(k -, j)] =.false.

Sj > CXij V (i -- j)

Sij > Networkmi n V (i - j)

sij > Arterialmin V (i e j) E S

0 < C < Cmax

siiOV (i -j)

Math Program 6.1
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The nomenclature for math program 6.1 is contained in section 6.2.2.2.

Imagine we have the sample intersection shown below in figure 7.6.

2
4

I
1

I

3

Sample Network

Figure 7.6

We know the following information about the intersection shown.

Direction Average Arrival Rate Green Time

2-41 XA GA

I 3->1 X13 GB

Descriptive flow characteristics of network shown in figure 7.6, above.

Table 7.2

For our objective function to be piece wise convex for this intersection, the

following conditions must hold:

GA >lX

GB > 1

XAX1 (GA +GB)<GA

XBXl (GA +GB)< GB
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The first two conditions require the green split never falls below the

average amount of time it takes for a single vehicle to safely cross the

intersection, and the second set of conditions are system stability requirements.

Essentially the average amount of green time in a direction must be sufficient to

allow the average arriving vehicles to safely traverse the intersection. Extending

these constraints to the network as a whole, we require that these constraints are

met at every intersection. If the NETWORKmin green split is selected to be

greater than the amount of time it takes for one vehicle to cross safely, this

condition will be met automatically. The NLP assumes that the arrivals to the

intersection occur in platoons separated by exponential headways while the

platoon size is geometrically distributed. Math program 6.1 already contains the

stability condition as one of its constraints.

Thus, we have a piece wise convex function being optimized over a

convex set (i.e. all of the constraints are linear and hence convex). Unfortunately,

there are complications. First, the NLP will be called repeatedly during the

course of the simulation, and the street segments which are members of the tree

will change from call to call. Second, the objective function is not convex, it is

piece wise convex. Consider the function shown in figure 7.7 below.

4

L
m m m~~

An example of a piece wise convex, discontinuous function

Figure 7.7
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This function is piece wise convex as well. It is non-differentiable to even

first order across its entire domain. Fortunately, the structure of the problem aids

us immensely. Although there are 2n+1 decision variables, two for each

intersection (i.e. the green split in seconds each direction) and one for the cycle

time, the problem is really much simpler than that. The objective function is

comprised of a sum of the results for independent intersections, and the cycle

time is equal to the sum of the green splits at each intersection. Therefore, we can

use the chain rule to derive the following relationship:

aObjective 2 bjective as [7.1
- = * ' [7.1]

ac i=1 as, ac

where si is a green split at each intersection. But, to generate the partial

derivative of C, the cycle time, we need to generate the partial derivatives for

each unique split; there are a maximum of two of these per intersection, one for

each direction which does not share green time. We can retain these results and

apply a projection from the total gradient of the objective function in the split

space, VsObjective E 9,2n onto the two dimension split space using the

projection matrix: VsObjective(VsObjectiveT VsObjective) VsObjectiveT

(Strang, 1986).

The problem remains that the objective is discontinuous and piece wise

convex. Under these conditions, it is theoretically possible for NLP to select a

local minimum which is not the global minimum. To address this problem, we

did numerical approximation for pseudo-gradients, using a sufficiently large

epsilon, about .1 seconds, to ensure that the discontinuities did not cause

overflow errors (Bertsekas, 1992). Then, we took the steepest descent route and

used a limited line search to find the next candidate minimum point. The line

search technique ensured that the NLP looked for its next iteration point beyond
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the continuous area the current point was in, i.e. the line searched "jumped over"

discontinuities to search for the lowest point along the descent direction. When

the line search selected a point either below the minimum cycle time or larger

than the maximum cycle time, we projected back along the negative gradient

until we intersected the appropriate boundary.

The objective function is an aggregate of two functions, one is a

continuous convex function and the other is a piece wise linear function. The

piece wise linear function is the portion which produces the discontinuities. The

effect of the piece wise linear function decreases as the split for the priority

direction increases. Beyond about 32 seconds, the multiplier for the linear

function drops off dramatically. For example, if the split for the priority direction

is 32 seconds the multiplier is about .007, and it gets smaller after that. Since we

used a lower cut off for priority splits of 30 seconds, the continuous convex

function dominates, and the NLP is likely to select the local minimum within the

constrained area.

For example, say that the traffic flow is approximately seven vehicles per

minute along both the priority and non-priority arcs entering the intersection,

and the current splits are set at 32 seconds each. We will use weightings of one

for both stops and delay in the objective function. The contribution from the

continuous convex function is on the order of 2.53 while the contribution from

the linear function is approximately .273. The combination of using the line

search, which cuts across the discontinuities, and the small effect of the linear

function in the region where the priority split is greater than 30 seconds makes it

improbable that NLP would select a sub-optimal point.

185



Why did we use the negative gradient? The gradient gives the direction of

greatest increase, and we are trying to minimize a weighted sum of the average

stops per vehicle and wait per vehicle experienced in the network. So, we want

to go in the direction of greatest decrease. In the qR2 intersection split space, the

solution method is displayed in figure 7.8 below.

Si

ldient

+sj

sj

Gradient projection method used by NLP to improve splits at each iteration

Figure 7.8

We solved the issue of the changing problem structure by using Boolean

variables, either 1 or 0, which were tied to the condition "this street segment is

part of the tree." Essentially, the math program is run through a pre-processor

step where the Boolean variables are assigned. Once the Boolean variables are

set, the program is passed onto the NLP solver.

One last issue arose. Initially the NLP took a relatively long time to

converge. It tended to oscillate around the optimal solution, sometimes
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requiring up to 10,000 iterations or more to converge. Most of these steps took

the solution outside the feasible area. To counter this, we introduced barrier

functions that severely penalized the objective for points outside the feasible

region. This brought the number of iterations down to less than 1,000 for most

simulation runs.

SECTION 7.2.1.1 Testing the Non-Linear Program (NLP)

In the end, there was one last question though. Did the NLP actually find

the optimal solution as defined by the theoretical work in chapters three through

six? The NLP portion of the program sets the splits and cycle times. There is a

heuristic portion that sets the offsets according to the spanning tree. We used the

Maximal Spanning Tree (MST) method for the NLP module. The MST was

extensively error tested, and it each case the MST routine selected the arcs it

should have according to the procedures developed in chapter four. There is no

generalized solution for how to optimally set the cycle and splits for a traffic

network, but in a very simple case, we can test the output from the

simulation/NLP to see if it is close to an optimal solution. The most evident case

is the light traffic example. Recall the situation described in figure 7.6 and table

7.2, the optimal setting for the light traffic example is to set the split in proportion

to the arrival rate in each direction. To test the simulation/NLP performance,

we: set the minimum green split to 30 seconds, set the platoon size to a constant

of one, set the flow rates equal in both directions and let the simulation/NLP run

for six hours of objective time. Theoretically, the average vehicle should have

stopped .5 times, and the average vehicle should have waited for 7.5 seconds.
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The actual simulation results revealed a wait of 7.505 per vehicle, and the

average vehicle stopped .5 fraction of the time. Notice that throughout the last

paragraph we mentioned testing both the simulation and the NLP split setting

method. To get the results we did, presumably both portions, the NLP and the

simulation, had to be working. The level of agreement between the theoretical

result and the result seen in practice is satisfactory.

The Split setting Heuristic (SH) was tested for the Potential Function (PF)

case shown at the end of section 6.2.2.3. It calculated the results as shown in

tables 6.3 through 6.5. These figures are completely accurate. We will not devote

a separate section to this result.

SECTION 7.2.2 Description and Results of the Simulation Runs

In this section we will explore the simulated performance of the two

competing methods for the Predictive Routing Information Signal Timing

INtEgration (PRISTINE) method. The Non-Linear Program (NLP) for split

setting and Split setting Heuristic (SH) approaches for PRISTINE were compared

using data runs on the Lin-Sarkar-Staats simulation model. We would expect the

NLP to dominate the SH, because the NLP solves to optimality while the SH

gives an approximation of the optimal solution. However, recall that the

assumptions that the NLP and SH are based on do not completely reflect

"reality" as it exists in the simulation. So, even though the NLP solves the traffic

signal problem to optimality according to its assumptions, this may not represent
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the best settings for the simulation. The NLP begins with the SH solution as its

initial solution.

We would expect one of three outcomes from our simulation trials. The

first possibility is that the SH produces MOE's that are very close or even

superior to those produced by the NLP. Thus, the SH would offer a much faster

alternative to the NLP while not suffering a substantial penalty in the way of

performance as measured by the MOE's. A second possibility would be that the

NLP would offer substantial savings over the MOE's generated when using the

SH method, but the NLP would take substantially longer than the SH to find the

optimal solution. The third and last possible outcome would be that the NLP

would offer substantial savings over the MOE's generated using the SH, and the

NLP would produce its timing plan after a relatively short period of time. The

data runs revealed the third option to be the most accurate depiction of the

relationship between the two models.

The model was run on a DEC Station 5000 using the following parameters:

maximum cycle length=2 minutes, minimum green split=10 seconds, minimum

priority green split=30 seconds, maximum acceptable average delay per

intersection for non-priority routes=30 seconds. For consistency, these

parameters will be used for all of our simulation runs in chapter seven.

We discovered in the course of our research that the Measures of

Effectiveness for the simulation were relatively insensitive to the choices of the
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weightings for stops and wait in the objective functions of PRISTINE and 3GC.

We did simulation runs with weightings on the average delay per vehicle and

average stops per vehicle ranging from total contribution from stops to total

contribution from waits. None of the runs showed a significant change to the

MOE's based on these changes of parameters. We did note that the average stops

per vehicle, the average delay per vehicle and the average transit time per vehicle

are correlated. If one MOE was low then all the MOE's tended to be low. As we

point out in sections 6.1 and 8.1, it is not in the best interest of the traffic manager

to use the average stops per vehicle or the total stops throughout the network for

a given time frame as the primary basis of judging a TSC plan. So, we selected

the average wait per vehicle as the dominant MOE.

We used the Boston Backbay area as our idealized network (see figure 7.9

below).
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displayed in the figure above.

Physically the network consists of a moderate number of nodes and street

segments, 28 and 45 respectively. The arcs are one-way street segments, and the

maximum speed on each of the segments is 30 MPH.

Five specific scenarios were selected to compare the NLP and SH

performance and included:
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Name Time Duration Vehicles/Hour
Light Traffic 2 AM-5 AM 370

Morning Start-Up 6 AM-7:30 AM 1434
Morning Rush 7:30 AM-8:30 AM 2671

Mixed Traffic 9 AM-4 PM 2448
Evening Rush 4:30-5:30 PM 2748.

The table above displays the key information about each of the scenarios used to test the SH
and NLP. In the table, vehicles per hour represents the average number of vehicles exiting the

simulation per hour of simulated time.

Table 7.3

A sample set of PRI is displayed in appendix C.

Recall that our goal was to get a feel for the first order effects; that is we

are looking for the major trends rather than extremely detailed relationships

between the inputs to the traffic signal control systems and the outputs from the

simulation. Each of the possible combinations of SH or NLP and choice of

scenarios was run five separate times, using like seed values for the random

number generator for the runs of the NLP and SH. For example, the number

16838 was always used as the random seed for the first run in a series whether it

was the NLP or SH that was being tested, and 5758 was used as the second seed,

etc. We selected five runs as the number of trials, because we wanted to get a feel

for the variance of the MOE's using the NLP and SH models. If one method

dominated for a particular scenario then five runs was enough to show this

trend. If the methods produced MOE's which were sufficient for suggesting the

"tie." (A much larger set of runs to find out which model was slightly ahead did

not seem worthwhile.) This was borne out by our simulation data runs in the

remainder of the section.
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The SH ran faster than the NLP. In fact, the SH solution was used as the

starting point for the NLP. Both the NLP and SH were designed to solve the

model described in chapter three. The simulation is by nature stochastic.

Neither the NLP or SH can tell exactly what will happen in the network once the

simulation begins running. The predictive routing information used by both is

just an estimation. It is entirely possible that the SH could derive a solution that

works better for a particular simulation run than the solution produced by the

NLP. The NLP typically took between 500 to 800 recursions (i.e. the NLP

examined 500 to 800 different traffic signal settings) to converge to a constrained

optimal solution.

Specific results by run and analysis are as follows(the light bar is always

the SH result while the solid bar is for the NLP). The light traffic scenario is

designed to capture late night traffic flows in the network. There are no

discernible patterns, and the traffic flow is extremely light, on the order of one

car per minute on each street segment. The vehicles essential are randomly

incident on each traffic light in the network. Several interesting points emerge as

we analyze figure 7.10 below.
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The figure above shows the results from the light traffic scenario. The dark bars represent the
data from the NLP while the light bars are from the SH. In this case, we are measuring
average Stops per Vehicle and average Wait per Vehicle, and smaller is better. The SH

performs better for this scenario.

Figure 7.10

The numerical results are displayed in table 7.4 below.

NLP WAIT SH WAIT NLP STOPS [ SH STOPS

80.497 36.231 3.32 1.79
80.588 36.1 52 3.44 1.9
80.315 34.129 3.26 1.81
80.748 42.768 3.29 2
81.094 37.043 3.38 1.8

This table displays the average stops per vehicle and wait for vehicle experienced by the SH
and NLP methods for each of the extended simulation runs in the light traffic scenario. Each

row is the result of one data run for each model. Since smaller totals are better, the SH
performed better than the NLP for this scenario.

Table 7.4

For the light traffic scenario, the NLP produced a mean value of 3.338

stops per vehicle with a standard deviation of .072 across the simulation runs,

and the NLP simulation runs had a mean waiting time of 80.648 seconds per
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vehicle with a standard deviation of .294 seconds. The SH produced a mean

value of 1.86 stops per vehicle with a standard deviation of .09 across the

simulation runs, and the SH simulation runs had a mean waiting time of 37.265

seconds per vehicle with a standard deviation of 3.259 seconds. The SH

produced a savings of 53.79% for waiting time in this scenario.

The SH method actually does better than the NLP method for this

scenario. Why is this the case? Recall equation 6.6, XA C GA This
XA + a T C

describes the optimal solution for the light traffic model. Under the conditions

described for the light traffic scenario, the assumptions for the light traffic model

are met. Recall from section 6.2.2.3 the SH determines the minimum amount of

time required at each intersection using the Queue Effects Model (QEM) from

chapter 5 to ensure the average vehicle is detained for less than the maximum

acceptable average delay per intersection. Typically in the light traffic case this

was between 1 to 5 seconds. Then, the SH method ensures that the minimum

green splits across the network are applied. In our case, the minimum green split

for a priority street segment is 30 seconds. So, the minimum practical setting for

the network cycle was 60 seconds. (The spanning tree touches every node;

therefore, if the network has more than two intersections, there will be at least

one node with at least two tree arcs attached to it. It would be extremely unlikely

that every such node would have only one or zero incoming tree arcs.) The SH

increases the splits in each direction in proportion to the vehicle flow rate in that

direction. Where the minimum QEM requirement is very small, the final

solution is a very close approximation to equation 6.6.

The NLP on the other hand, always considers potential queuing effects

before finally setting the splits; in light traffic, it considers them too much.
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Imbedded in the NLP model is a preset parameter B which represents the ratio of

the standard deviation of the platoon size in the network divided by two times

the average platoon size. When the parameters were set for the NLP, we selected

a value for B based on the assumption that congestion would have a significant

effect on traffic flow in the network. We focused on heavier traffic, because this

is where the potential savings possible under traffic signal control are the

greatest. So, the NLP set the cycle time to 60 seconds in the light traffic case too,

but it also added a bit extra to the green split for the non-priority direction. We

used a shifted geometric distribution to furnish platoon sizes in the simulation;

thus, it was possible to have platoons of large size. By and large, such platoons

did not arise in the light traffic case, and this is why the SH tended to do better

under these conditions. It would be possible to design a system where the B

values could be assigned by intersection and measured in real time as traffic

approached the intersection; this would allow the NLP to perform better under

light traffic conditions. As the traffic volume increased, the NLP began doing

better than the SH.

The morning start-up scenario is a transitional scenario from the light

traffic situation prevalent in the night to the morning rush hour. The traffic

initially is disorganized with small numbers of vehicles traversing the network

more or less uniformly, but as time goes on a definite pattern of traffic moving

from West to East emerges. The morning start-up scenario ends as morning rush

hour begins. The results for the morning start-up are displayed in figure 7.11

below.
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The dark bars represent the data from the NLP while the light bars are from the SH for the
morning startup scenario. We are measuring average Stops per Vehicle and average Wait per
Vehicle, and smaller is better. It is not immediately evident which method did better in this

case.

Figure 7.11

The numerical results are displayed in table 7.5 below.

NLP WAIT I SH WAIT I NLP STOPS _ SH STOPS

117.16 130.981 3.32 3.57
129.88 102.011 3.68 3.36
114.136 130.482 3.24 3.62
120.479 102.556 3.52 3.26
118.499 102.295 3.48 3.29

This table displays the average stops per vehicle and wait for vehicle experienced by the SH
and NLP methods for each of the extended simulation runs for the morning start-up scenario.
Each row is the result of one data run for each model. Smaller is better. Neither method is a

clear winner for this scenario.

Table 7.5

For the morning start-up scenario, the NLP produced a mean value of
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seconds per vehicle with a standard deviation of 21.074 seconds. The NLP

produced a savings of 37.63% in waiting time for this scenario.

The NLP begins to do better under the more congested conditions found

in the morning start-up scenario, and the NLP completely dominates the SH once

congestion becomes significant (e.g. the morning rush hour scenario). It is not

obvious if either the SH or NLP dominates for the morning start-up. In the well

known Wilcoxon rank-sum test (Berenson and Levine, 1992), for the ten results

(5x2) the sum of the ranks for the average waits of the SH and NLP methods are

27 and 28 respectively, and this is as close to a tie as possible. Our statistics are

shown below in table 7.6.

Method Rank Wait per Vehicle
SH 1 102.011
SH 2 102.295
SH 3 102.556

NLP 4 114.136
NLP 5 117.160
NLP 6 118.499
NLP 7 120.479
NLP 8 129.880
SH 9 130.482
SH 10 130.981

Wilcoxon Rank-Sum Table for the Morning Start-Up Scenario. There is no statistical
difference between the waiting time experienced for the SH and NLP methods for this

scenario at the 5% level significance.

Table 7.6

The morning rush hour scenario was designed to test the NLP and SH

methods under congested conditions where clear patterns are discernible. In this

case, we have a traffic flow from West to East along two major arterials,
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Commonwealth Avenue and Newbury Street. The results for these data runs are

shown in figure 7.12 below.

Stops per Vehicle AM Rush Hour
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The results of the data runs for the morning rush hour scenario are displayed above. The dark
bars represent the data from the NLP while the light bars are from the SH. We are measuring
average Stops per Vehicle and Wait per Vehicle, and smaller is better. The NLP does better in

this scenario.

Figure 7.12

The numerical results are displayed in table 7.7 below.

NLP WAIT SH WAIT NLP STOPS _ SH STOPS

130.191 203.946 2.58 3.89
125.084 194.412 2.58 3.88
142.374 219.931 2.69 3.91
126.556 167.067 2.51 3.6
122.992 176.927 2.49 3.6

This table displays the average stops per vehicle and wait for vehicle experienced by the SH
and NLP methods for each of the extended simulation runs for the morning rush hour

scenario. Each row is the result of one data run for each model. Smaller is better. The NLP
dominates the SH for this scenario.

Table 7.7
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For the morning rush hour scenario, the NLP produced a mean value of

2.57 stops per vehicle with a standard deviation of .078 across the simulation

runs, and the NLP simulation runs had a mean waiting time of 129.439 seconds

per vehicle with a standard deviation of 7.69 seconds. The SH produced a mean

value of 3.776 stops per vehicle with a standard deviation of .161 across the

simulation runs, and the SH simulation runs had a mean waiting time of 192.457

seconds per vehicle with a standard deviation of 21.074 seconds.

The NLP solution clearly dominates the SH in each data run. Queuing

effects are now significant. Now there is a dominant flow from West to East.

The flow rate into the network during the morning rush hour was approximately

2650 vehicles per hour. There were times during the morning rush hour scenario

runs when capacity was temporarily exceeded and vehicles were forced to wait

through entire green cycles, because the street segments ahead were clogged.

Even though the vehicle flow rate goes down during the next scenario, the mixed

traffic scenario, the NLP and SH methods produce worse statistics, because they

are unable to exploit definite traffic patterns.

The mixed traffic scenario was designed to test the SH and NLP methods

under conditions of congestion when there are no clear traffic patterns. We see

the results of these data runs displayed in figure 7.13 shown below.
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The results of the data runs for the mixed traffic scenario are displayed above. The dark bars
represent the data from the NLP while the light bars are from the SH. We are measuring

average Stops per Vehicle and Wait per Vehicle, and smaller is better. The NLP does better in
this scenario.

Figure 7.13

The numerical results are displayed in table 7.8 below.

NLP WAIT SH WAIT NLP STOPS SH STOPS

228.331 415.071 3.47 5.91
284.422 416.908 2.97 5.9
185.988 365.78 3.52 5.19
287.31 417.924 3. 18 5.86
302.616 394.454 3. 11 5.6

This table displays the average stops per vehicle and wait for vehicle experienced by the SH
and NLP methods for each of the extended simulation runs for the mixed traffic scenario. Each
row is the result of one data run for each model. Smaller is better. The NLP dominates the SH

for this scenario.

Table 7.8

For the mixed traffic scenario, the NLP produced a mean value of 3.25

stops per vehicle with a standard deviation of .237 across the simulation runs,

and the NLP simulation runs had a mean waiting time of 257.735 seconds per

vehicle with a standard deviation of 49.024 seconds. The SH produced a mean
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value of 5.692 stops per vehicle with a standard deviation of .308 across the

simulation runs, and the SH simulation runs had a mean waiting time of 402.027

seconds per vehicle with a standard deviation of 22.447 seconds. The simulation

uses cautious drivers and single lanes; so, under congested conditions a driver

making a left hand turn may have to wait several green periods before being able

to make a left hand turn. This delays not only the vehicle making the left hand

turn but also the vehicles behind it.

Although the NLP outperforms the SH, both methods do worse than they

did under the morning rush hour scenario even though the overall traffic flow

rate has decreased from 2650 vehicles per hour to 2450 vehicles per hour. Why

would this be the case? In both of the rush hour scenarios, there is a very strong

correlation between what the IVHS predictive routing information projects and

what the simulation actually sees at the intersections during the run. Under

congested conditions vehicles travel more slowly. PRISTINE using either the

NLP or SH models projects the traffic patterns for the traffic signal control period

based on PRI it receives at the beginning of the period. (In the simulation, this

traffic signal control period is set as a ten minute interval.) If the traffic is

sufficiently delayed, a substantial portion of the vehicles may still be in the

network at the end of the cycle. If the next batch of PRI reflects different traffic

patterns, PRISTINE may set the traffic signals in a sub-optimal fashion. In the

case of the morning rush hour scenario, there is are preferred directions of travel

through the network from West to East. So, even if the traffic from one traffic

signal control period gets delayed then it will not have a large adverse effect,

because the traffic patterns for the next traffic signal control period are very

similar to the current period.
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There are additional reasons why PRISTINE does better in situations with

dominant directions of flow. Consider the intersection shown in figure 7.14

below.

I

4

w

I C

Sample Intersection illustrating dominant flows

Figure 7.14

For example, in figure 7.14 we see that there are twelve possible combinations

incoming and outgoing directions from the intersection. If vehicles coming from

nodes "B" and "D" made up the majority of vehicles traveling through this

intersection, we would say that there was a dominant directional traffic flow

through this intersection. In this case, we could set the splits at the intersection to

better accommodate the dominant flow pattern, i.e. we would increase the

fraction of green time given to the vehicles traveling from nodes "B" and "D".

We are even more fortunate if there is one particular traffic pattern that

dominates at the intersection, because this allows us to set up the offsets to aid
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this pattern. Look again at figure 7.14. If 80% of the vehicles entering this

intersection came from node "C" and headed toward "D" then we could set up a

progression scheme with this intersection and node "D" that would benefit 80%

of our vehicles.

The key to understanding the issue of dominant directional flows is

realizing that aiding one route in a traffic scheme will generally harm another

route. To get a better insight into this issue, consider the following example.

Suppose that you had a traffic signal control plan that will help "x" fraction of

the population. Let us say that .5 < x < 1. Also assume that you can reduce the

normal MOE (e.g. stops per vehicle or wait per vehicle) to some fraction "y" of its

initial value of one, and we will assume that 0 < y < 1. Assume that initially both

groups, x and (1-x), both have an MOE rated at one. For simplicity, imagine a

symmetric situation where helping x by y means that the remaining fraction of

(l-x) will have their MOE multiplied by 1/y. For this traffic control strategy to

offer an advantage over the status quo, the following relationship must hold:

xy+(1-x)(1/y) < 1 (we are trying to get smaller MOE's in this case). Simplifying

this relationship, we must have: x > 1/(l+y) for this traffic signal control strategy

to give an advantage. Let us say that we are able to aid 80% in the example

above; then we must be able to offer a savings of at least 25% to the 80% who

benefit for the control strategy to be worthwhile.

Unfortunately, dominant directional flows and patterns do not exist in the

mixed traffic scenario. We generally see random patterns at the intersections. If

we take this lack of dominant directions at the intersections and we add high

levels of congestion, we have the situation present in the mixed traffic model.

Under these conditions about the best one can do is increase the green time in

both directions and try to maximize the capacity of the network. In effect, we can
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consider each individual intersection as an independent optimization process

where the goal is maximum capacity rather than attempting to minimize average

stops or wait.

There is an additional problem for PRISTINE in the mixed traffic model.

The progression scheme set up by PRISTINE is not as successful as it might be,

because the traffic moves very sluggishly through the network. By the time the

vehicles arrive at the intersection, the light is already red. Under its most

ambitious visions, IVHS would give traffic managers the ability to track each

vehicle's speed and position in the network (IVHS, 1993); using a more

sophisticated traffic signal control model that integrates this real time location

and speed data might alleviate some of the congestion degradation that

PRISTINE experienced under the mixed traffic scenario. Under the evening rush

hour scenario the traffic increases to an average flow rate in the network of 2750

vehicles per hour and performance improves.

The evening rush hour scenario was designed to test the methods on their

ability to perform under conditions more congested than the mixed traffic

scenario but featuring a definite flow from East to West on the streets of the sample

network. (For our generated data, the evening rush hour is symmetric with the

morning rush hour, but this was not the case with the real world data from the

City of Boston as we will see in the next section.) The results are displayed in

figure 7.15 shown below.
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The results of the data runs for the evening rush hour scenario are displayed above. The dark
bars represent the data from the NLP while the light bars are from the SH. We are measuring

Stops per Vehicle and Wait per Vehicle, and smaller is better. The NLP does better in this
scenario.

Figure 7.15

The numerical results are displayed in table 7.9 below.

NLP WAIT SH WAIT NLP STOPS SH STOPS

210.175 269.927 3.2 4.41
216.28 276.644 2.91 4.36

191.188 240.963 3.06 3.93
191.061 270.748 2.84 4.29
195.774 268.456 2.83 4.34

This table displays the average stops per vehicle and wait for vehicle experienced by the SH
and NLP methods for each of the extended simulation runs for the evening rush hour

scenario. Each row is the result of one data run for each model. Smaller is better. The NLP
dominates the SH for this scenario.

Table 7.9
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For the evening rush hour scenario, the NLP produced a mean value of

2.968 stops per vehicle with a standard deviation of .159 across the simulation

runs, and the NLP simulation runs had a mean waiting time of 200.9 seconds per

vehicle with a standard deviation of 11.619 seconds. The SH produced a mean

value of 4.266 stops per vehicle with a standard deviation of .193 across the

simulation runs, and the SH simulation runs had a mean waiting time of 265.348

seconds per vehicle with a standard deviation of 13.982 seconds.

The NLP uniformly dominates the solutions from the SH for this scenario.

Both the NLP and SH do better under this scenario than for the mixed traffic

scenario, because the inherent progression in the spanning tree method used for

setting the offsets is able to take advantage of the arterials found in the scenario,

Marlborough Street and Commonwealth Avenue.

SECTION 7.2.3 Summary

In the preceding section we examined the aggregate results of some

250,000+ simulated vehicles traveling through Boston's Backbay. We tested a

Split setting Heuristic (SH) form of PRISTINE which exploited the structure of

the signal timing problem to derive a solution and a Non-Linear Program (NLP)

which solved this theoretical problem to optimality. The NLP took longer to

process the data, but the extra time was well worth the effort. When the traffic

signal timing plan generated by the NLP and the SH were tested in the

simulation, the NLP outperformed the SH in three of five scenarios, tied in
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another, and was inferior only in the case of very light traffic (e.g. the light traffic

scenario). The general findings are summarized in the table below.

SH NLP SH NLP
Scenario Average Average Average Average

Stops(SD) Stops(SD) Wait(SD) Wait(SD)
Light Traffic 1.860(.090) 3.338(.072) 37.265(3.259) 80.649(.294)

Morning StartUp 3.420(.165) 3.448(.173) 113.665(15.582) 120.031(5.970)
Morning Rush 3.776(.161) 2.570(.078) 192.457(21.074) 129.439(7.690)
Mixed Traffic 5.692(.308) 3.250(.237) 402.027(22.447) 257.733(49.024)
Evening Rush 4.266(.139) 2.968(.159) 265.348(13.982) 200.900(11.619)

The table above contains the summary statistics for the five scenarios used to test the SH
against the NLP for use in PRISTINE. Smaller is better for the average delay per vehicle and
average stops per vehicle. The numbers shown in parenthesis are the standard deviations for

the quantities.

Table 7.10

Because the NLP was the more successful of the two approaches for PRISTINE,

we will use the NLP to set the splits and cycle time for PRISTINE when we test

PRISTINE against the optimized third generation control strategy, 3GC.
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Chapter Eight

Comparing an Idealized Third Generation Control
(3GC) Model and PRISTINE

In the last section we compared two versions of PRISTINE, a heuristic

version and a non-linear program version. In this section we will develop an

optimized Third Generation Control (3GC) system and compare its performance

against PRISTINE using our Boston Backbay network as the testbed and

motivated by real Boston traffic data. The 3GC system is developed in section

7.3.1 and appendix A.

SECTION 8.1 Implementing 3GC

Homburger and Kell described a second generation traffic signal control

system as a type of control program which provides for on-line, real time traffic

signal control utilizing a prediction model to predict near term changes in traffic

demand (Homburger and Kell, 1988). Second generation control systems

generally share common cycle lengths throughout the network; the cycle times

are typically fixed or based on historical data (Ballman, 1991). Third Generation

Control (3GC) systems improve on second generation control systems by

allowing the cycle time to vary by intersection.
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There are many versions of third generation control systems which are

commercially available including: SCAT, SCOOT, OPAC, PRODYN, UTCS 3-GC,

etc. (Ballman, 1991), but none have achieved more wide spread usage or better

results in practice than SCOOT (Bretherton, Bowen, et.al., 1986), (Robertson and

Bretherton, 1991). We will construct our 3GC model incorporating many of the

features of SCOOT. As mentioned earlier, second and third generation control

systems utilize predictive models to transform accumulated data into a usable

TSC plan. All such systems make the same steady-state assumption; namely, the

arrival patterns recorded since the last TSC plan was implemented accurately

reflect what the system will experience during the time the TSC is in effect.

SCOOT is successful to a large extent due to its effective use of the data extracted

from traffic sensors in making its predictions (Hounsell, McLeod, et.al., 1990). In

particular SCOOT maintains Cyclic Flow Profiles (CFP) which are measures of

the average flow of vehicles past a specific point on the roadway; this is generally

a sensor location. SCOOT works on three principles: measure CFP's in real time,

update its internal queuing model continuously, and incrementally update signal

settings (Robertson and Bretherton, 1991). SCOOT accomplishes this using

information gathered from inground sensors; the sensors and controlling

programs report back such information as average vehicle speed, roadway

occupancy and vehicle flowrate (Hounsel, McLeod, et.al., 1990).

Because commercial traffic signal timing packages are required to work in

real time, it is frequently not feasible to achieve optimal settings in practice. For

example, SCOOT typically is allowed to complete between 3 to 5 improvement

iterations before implementing the next TSC (Gartner, 1992), and the old split

settings are not allowed to vary from the old split settings by more than four

seconds (Robertson and Bretherton, 1991). Here is where our model, 3GC, will
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break with the tradition in the literature in two important areas. First, we will

allow 3GC to iterate until it finds the optimal solution. Second, although third

generation control systems have the ability to vary the cycle times by

intersection, in practice many of them consider the cycle time to be fixed while

operating in the field (e.g. SCOOT) (Homburger and Kell, 1988); we will allow the

cycle time to vary by intersection for 3GC.

An important aspect of third generation control systems is that they treat

each intersection as an isolated unit (Papageorgiou, 1991). There are large

theoretical advantages to this approach. For example, if an intersection at the far

edge of the city is experiencing little traffic, it would make sense to decrease its

cycle time to decrease expected wait per vehicle, but it might not make sense to

decrease the cycle time for a very congested intersection in the middle of the

city. Since the TSC system treats the intersections independently, it has the

latitude to decrease one cycle time while leaving the other cycle intact or even

increasing it as required. We will incorporate this feature into 3GC as well. (On

the other hand, PRISTINE uses a common cycle time across the entire network.)

We have sufficient information to begin constructing 3GC.

The overall objective of 3GC will be to minimize a weighted sum of the

number of stops per vehicle and the wait per vehicle in the area under the control

of 3GC. Although these goals are in some ways complementary, minimizing one

does not assure us that the other will also be minimized as demonstrated by the

example shown below. Imagine we have the simple network displayed in figure

8.1 below.
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Figure 8.1

Vehicles can approach from four street segments, and the street segments

are paired according to those which share common green cycle. We will refer to

one pair collectively as direction A and the other as direction B. Suppose we had

recorded the arrivals shown in figure 8.2 below.
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In the diagram above the gray arrows in the top half of the diagram represent vehicles arriving
from the A" direction in figure 8.1 while the dark arrow below the line represents an arrival
at the intersection from the "B" direction. The arrows represent arrivals at the intersection at
instances in time. If there is one arrow, there was one arrival while two arrows represent two
arrivals, i.e. vehicles arrived from both street segments representing the "A" direction at the
same time. Vehicles from the "A" direction can only pass through the intersection during

time segments represented by thick, solid line segments, but the vehicles from the "B"
direction can only pass through during the "gaps". Diagram illustrates how a strategy seeking

only to minimize stops in the system could lead to poor results in practice. In this example,
the vehicle from direction "B" would never be given any green time.

Figure 8.2

If our sole objective was to minimize the stops experienced per vehicle, we

would just allow green time in the A direction. The poor lone vehicle arriving in

the B direction would never be given any green time. We need to resort to the

multi objective programming methods we refereed to in chapters one and six. In

this case, we will take a convex combination of the wait per vehicle and stops per

vehicle and seek to minimize that combination. Additionally, the traffic manager

assigns lower bounds for the green splits in the network which also prevents the

problem of not assigning any green time to a particular direction. If we examine

diagram 8.2, we get an insight into how to solve this problem.
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We can view our third generation control model as a covering problem.

Imagine we have the same situation as in figure 8.2, but now we are allowed to

move the slot back and forth according to a parameter 0.

igure illustrates the use of a parameter to shift the red and green time to either hold or pass

Figure illustrates the use of a parameter to shift the red and green time to either hold or pass
through the recorded arrivals. The slot depicted above shifts to the left or right according to

the value of 0. This can be viewed as a problem of covering the recorded arrivals in such a way
as to minimize the wait per vehicle and stops per vehicle.

Figure 8.3

Now, we can set a value for 0 depending on our goal. If we wanted to

minimize the wait experienced per vehicle, we would shift the slot slightly to the

right and allow the two vehicles to pass through unimpeded and then allow the

lone vehicle to pass through while delaying only one vehicle from the other

direction. We have three parameters which we can set at each intersection, green

split (in seconds) each direction and offset for the green splits. Cycle time is just

a sum of the green splits at the intersection. We will collect the arrival data for

each intersection directly from the simulation; so, in essence, our 3GC has perfect

information. This is a great improvement over conditions in the real world
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where the traffic signal control strategy must contend with estimations, lack of

sensors and sensor faults. In particular, 3GC has a large advantage over SCOOT

which has to rely on secondary information such as historical turning

percentages to update its CFP's under many circumstances. We will perform

successive optimizations on each intersection and then the entire system. We

will continue to iterate until no further improvement takes place in the network.

We are greatly aided in our endeavors by the fact that the simulation uses

discretized time; thus, we are able to contend with a total measure space of

(Cyclemax)3 n discrete points rather than an infinity of them; of course,

(Cyclemax) 3n can get to be quite large too! As we will see in the testing, it

would be impractical to attempt to solve 3GC to optimality in a situation where

it had to provide the TSC in real time. The flow chart below displays the logic

used in 3GC to set the TSC.
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Flow chart above depicts the control structure for the 3GC strategy

Figure 8.4

The procedure begins by looking at the first node in the network. The

procedure has at its disposal a complete listing, stored in three dimensional
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array, of the arrivals along that street segment moment by moment since the last

time 3GC was run. It conducts a point by point search of the cycle time space

and selects the cycle time which gives the best objective function value consisting of

a weighted average of the stops and average delays experienced by vehicles over

the collection period. The splits are increased or decreased proportionally to

their current values during this phase of 3GC. The cycle time is allowed to range

from 2*Greenmin to Cyclemax.

The next parameters set are the splits. This also turns into a best objective

function search for the splits, but we only need to make one pass through a linear

range of split times. Why? Consider figure 8.5 shown below.

Split Time A

V _ _ .... . ....... ...... . ....

IA,-

Cycle Time

The figure shows how one can change the green split in one direction while the total cycle
time remains constant. In this case, the gap shown above increases or decreases in size as the

green split changes in length.

Figure 8.5
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the lowest ranking arc entering the intersection as measured from an arbitrary

zero point (i.e. integral multiples of the current intersection cycle time from the

simulation start time). Offset value for direction A was allowed to vary from

zero seconds to the green split for direction B.

However, 3GC was very greedy when it came to CPU time. A typical run

for a two hour block of simulated time took between one hour to one hour and

fifteen minutes. The vast majority of that time was spent by 3GC determining

the optimal settings for the TSC plan.

Of course, 3GC makes some assumptions. It assumes for example, that if

the light is green then vehicles are allowed to flow forward in the network; thus,

3GC ignores the case of gridlock and delays due to traffic maneuvers such as left

turns onto busy thoroughfares. However, these are intrinsically taken into

consideration, because the arrival rate on the various arcs will decrease as traffic

becomes clogged. Additionally, since 3GC only looks one street segment ahead

at a time, there is no over arching progression scheme, but again, this is also

implicitly considered. If one considers linking each of a nodes neighbors with

itself then eventually the entire network is linked. Like all second and third

generation TSC routines, 3GC implicitly assumes that the last data collection

period will accurately represent events during the next TSC period. This is the

assumption which routines using predictive routing information are able to

exploit.

Before moving on, it would instructive to examine a simple example of

how the 3GC model sets the traffic signal controls given a particular set of inputs.

Let us assume that the maximum cycle length is 5 seconds. The minimum green

split is 2 seconds. The entire traffic signal timing period is 10 seconds long. We
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will use the network shown below to illustrate how the 3GC model works. (Note

that nodes 1,2,3 and 4 are dummy nodes; so, we can focus on generating the traffic

signal setting for node 5.) Assume that the speed limit on each arc is 5 MPH, and

the travel time from any node to node 5 is two seconds.

1

9

A4
5

PI

4

Node and incoming arcs used to illustrate 3GC method

Figure 8.7

Arcs (1->5) and (4->5) share a green cycle at node 5 as do arcs (2->5) and (3->5).

So, we can completely specify our traffic signal controls for node 5 by setting the

following quantities: green split for (1->5), green split for (2->5), and offset for

(1->5). We will weigh the delays and stops in the objective function with a value

of one each.

Our arrivals for the last traffic signal control period (ten seconds) are

shown below.
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Time Arrivals on Arrivals on Arrivals on Arrivals on
(1->5) (2->5) (3->5) (4->5)

2 X X
3 X X
4
5 X X X
6 X X
7 X
8 X

10 

The "X" represent arrivals at the tail node of each arc shown. For example, seven seconds
into the last traffic signal timing period, a vehicle arrived on arc (4->5) heading toward node

five.

Table 8.1

There are 15 possible traffic signal settings as shown below:

Split for (1->5) Split for (2->5) [ Offset for (1->5)
2 2 0
2 2 1
2 2 2
2 2 3
2 2 4
3 2 0
3 2 1
3 2 2
3 2 3
3 2 4
2 3 0
2 3 1
2 3 2
2 3 3
2 3 4

The table shows the possible traffic signal settings for node five in the diagram above.

Table 8.2
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We will work through one complete setting to see how the stops and delay are

calculated. Let the offset for (1->5) be zero, and the splits for (1->5) and (2->5) be

set at two seconds each. The results for this setting are shown in the table below.

(Recall there is a two second delay from the time a vehicle enters one of the arcs until it

reaches node five.)

Arrivals Arrivals
to node to node
5 from 5 from

Time Arcs Light Stops Delay Arcs Light Stops Delay
(1->5) & (2->5) &

(4->5) (3->5)
1 0 Green 0 0 0 Red 0 0

2 0 Green 0 0 0 Red 0 0
3 0 Red 0 0 0 Green 0 0

4 1 Red 1 1 1 Green 0 0
5 0 Green 0 0 2 Red 2 4
6 0 Green 0 0 0 Red 0 0
7 1 Red 1 2 2 Green 0 0

8 2 Red 2 2 0 Green 0 0
9 1 Green 0 0 0 Red 0 0

10 0 Green 0 0 1 Red 1 1
11 0 Red 0 0 0 Green 0 0

12 0 Red 0 0 0 Green 0 0

The table displays the stops and delays which would have been accrued by the arrivals during
the last traffic signal control period if the settings for node 5 been an offset of zero for arc

(1->5) and green splits of two seconds each for arcs (1->5) and (2->5).

Table 8.3

The total objective for this setting would be equal to 17.

Now, 3GC would explore changing the splits while leaving the offset

constant. 3GC would select the splits which minimize the objective. In this case

3GC would find the best splits to be a split of three seconds for arc (1->5) and

two for arc (2->5) for a total objective value of 12.

Since this is smaller than the previous best of 33, 3GC would minimize

over the offsets while the splits were held constant. 3GC would discover that the
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offset of two for (1->5) gives an objective function value of 10 which is best given

the splits.

The process repeats until 3GC reaches an iteration where it cannot

improve over its last solution. In this case, 3GC would stop with the solution:

split for (1->5) equal to two, split for (2->5) equal to three, and offset for (1->5)

equal to two. This gives an overall objective value of two which is also global

minimum.

We have assumed (see appendix A) that the waits and stops are convex

with respect to both offsets and the splits. Under these conditions, this alternate

line minimization strategy will reach the optimal solution in a finite number of

iterations. It is much faster than using an exhaustive enumeration technique.

SECTION 8.2 PRISTINE compared to 3GC

In this section we will explore the simulated performance of PRISTINE

(using the NLP to set its splits and cycle time) versus the 3GC system we

developed in the last section. PRISTINE and 3GC were compared using five sets

of data on the Lin-Sarkar-Staats simulation model. The simulation was run on a

DEC Station 5000 using the following parameters: maximum cycle length=2

minutes, minimum green split=10 seconds, (for PRISTINE, the minimum priority

green split=30 seconds, maximum acceptable average delay per intersection for

non-priority routes=30 seconds). We used the Boston Backbay area as our

idealized network (see figure 7.9 above). We chose to conduct ten runs for each

scenarios in the comparisons between 3GC and PRISTINE to better illustrate any

differences between the MOE's produced by the two methods.
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Physically the network consists of a moderate number of nodes and street

segments, 28 and 45 respectively. The arcs are one-way street segments, and the

maximum speed on each of the segments is 30 MPH. The five scenarios used to

compare PRISTINE and 3GC's performance were as shown in table 8.4 below.

The table above displays the key information about each of the scenarios used to test the
PRISTINE and 3GC.

Table 8.4

We used actual traffic data, collected by the traffic sensors in the Backbay, to set

the average traffic flows (see appendix C for an example of how the PRI was

generated from this data). The last scenario is the surge response scenario.

We define a surge as a sudden increase in traffic flow such that the average

flow rate over the next TSC period will exceed the capacity of one or more street

segments under the current signal settings but does not exceed the potential

capacity of the street segments, i.e. if the traffic signals were readjusted, the

average traffic flow could be accommodated. By TSC period, we mean the length

of time that a particular TSC plan will be in force; in the case of our simulation,

we used a ten minute interval. Since we reset our TSC plan every ten minutes,

"the next TSC period" would be the ten minute period when the next TSC plan is

in effect. We refer to the average flow rate, because it is entirely possible even

under light traffic conditions for an intersection to have its capacity exceeded for
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Name Time Period Source
Early Morning 12 AM - 2 AM Boston Traffic

Mid-day Traffic 11 AM - 1 PM Boston Traffic
PM Rush Hour 4 PM - 6 PM Boston Traffic
AM Rush Hour 7 AM - 9 AM Boston Traffic
Surge Response N/A Constructed



one or more cycles even though the average flow rate does not exceed the street's

capacity. Last, we want to consider cases where the potential capacity of the

network is not exceeded so that the problem is feasible.

A surge might arise in practice when a concert or sporting event suddenly

lets out. Another example would be if an earthquake, fire or other disaster

suddenly caused a mass exodus from a metropolitan area. Severe weather could

cause certain roads to be impassable for periods of time; this could also result in a

surge condition as we have defined it.

Each of the possible combinations of PRISTINE or 3GC and choice of

scenarios was run five separate times, using like seed values for the random

number generator for the runs of PRISTINE or 3GC. For example, the number

31051 was always used for the fifth run of a sequence. PRISTINE ran

significantly faster than 3GC. Whereas a typical two hour block of simulated

time ran in seven to ten minutes for PRISTINE, the same simulation typically ran

for over an hour using 3GC.

The information from the Boston Traffic Department was extracted from

the sensors data actually collected in the Backbay area of Boston. Mr. George

Hawat, Boston Traffic Manager, supplied the sensor data broken out by fifteen

minute intervals. The routings were constructed in such a way as to support the

sensor information. Sensor locations and an example of PRI are included in

appendix C. Specific results by run and analysis are included in subsequent

paragraphs (the lighter color is always the PRISTINE result in the charts below).
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The results for the early morning traffic runs are displayed in figure 8.8

below.

The results of the data runs for the early morning scenario are displayed above. The dark bars
represent the data from 3GC while the light bars are from PRISTINE. PRISTINE does better

in this scenario.

Figure 8.8

The numerical results for this scenario are displayed in table 8.5 below.
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3GC Wait PRISTINE Wait 3GC Stops PRISTINE Stops
46.831 26.298 1.189 1.899
48.852 22.911 1.237 1.267
46.03 25.556 1.16 1.881
42.023 24.967 1. 744 1.897
50.062 21.47 1.353 1.228
44.13 15.467 1.202 1.076
50.432 21.426 1.236 1.255
55.093 31.412 1.323 2.133
53.659 28.225 1.324 1.89 71
53.959 24.389 1.274 1.238

This table displays the average stops per vehicle, wait for vehicle experienced and objective
value for 3GC and PRISTINE for each of the simulation runs for the early morning scenario.
Each row is the result of one data run for each model. Smaller is better. PRISTINE dominates

3GC for this scenario in the MOE of average wait per vehicle.

Table 8.5

For the early morning scenario, PRISTINE does substantially better on

waiting time while 3GC does slightly better on stops. 3GC produced a mean

value of 1.244 stops per vehicle with a standard deviation of .072 across the

simulation runs and had a mean waiting time of 49.107 seconds per vehicle with

a standard deviation of 4.377 seconds. PRISTINE produced a mean value of

1.577 stops per vehicle with a standard deviation of .394 across the simulation

runs and had a mean waiting time of 24.212 seconds per vehicle with a standard

deviation of 4.322 seconds.

We would expect 3GC to do best under conditions where the individual

intersections can be viewed as isolated systems. The traffic during this time

frame was light varying from an average of about 46 cars per minute throughout

the entire network to a low of about 20 cars per minute. PRISTINE did better in
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our primary MOE, delay. On the other hand, 3GC did better than PRISTINE in

the area of stops. It is quite surprising to see PRISTINE the more consistent

algorithm for light traffic. Why would this be the case? The key is in recognizing

how 3GC derived its solution compared to PRISTINE's technique. Whereas

PRISTINE considers an average anticipated flow rate into an area (based on PRI

data) and finds an optimal solution, based on expected values, 3GC tries to

optimize over the exact values measured during the last measurement interval.

The traffic this time of the morning does not follow definite patterns and

certainly is not in a steady state situation. What is the impact of this on 3GC?

Suppose that 3GC observed only a single vehicle coming along Arlington and

turning onto Commonwealth during the last observation period, it would

respond the next period by setting the green time to its maximum value

(cyclemax-greenmin) along each street the vehicle traveled and making the

offsets support the vehicle's route.

Since traffic is so light though, it is just as likely that the next vehicle could

be traveling across the specified route as along it. The low stop values tell us that

this is exactly what is happening. Only a few vehicles have to stop, but the ones

that do are waiting for long periods. Thus, 3GC does not do as well as PRISTINE

which tends to set the individual splits closer to the light traffic optimal values.

Some commercial TSC packages overcome this problem by integrating

historical data into the input for the package, but this creates problems of its own

if the traffic does not follow the old patterns. Typically in practice, the traffic

manager observes the traffic sensor input, and if it varies significantly from the

historical data or bottle necks begin to occur, he or she manually intervenes

(Hawat, 1992), (Gartner, 1992).
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The morning rush hour runs gave predictable results. The results for the

morning rush hour runs are displayed in figure 8.9 below.

The results of the data runs for the morning rush hour scenario are displayed above. The dark
bars represent the data from 3GC while the light bars are from PRISTINE. PRISTINE

outperforms 3GC for this scenario.

Figure 8.9

The numerical results for this scenario are displayed in table 8.6 below.

3GC Wait [ PRISTINE Wait 3GC Stops PRISTINE Stops

89.518 54.552 1.723 1.91
51.019 54.011 1.263 2.819
80.152 55.542 1.527 1.829
84.739 49.644 1.408 1.763
126.024 60.296 2.015 1.966
107.585 45.342 1.726 2. 165
57.411 48.017 1.343 2.247
90.384 54.211 1.607 2.419
50.499 35.594 1.588 1.833
58.141 43.142 1.285 2.176

This table displays the average stops per vehicle, wait for vehicle experienced and objective
value for 3GC and PRISTINE for each of the simulation runs for the morning rush hour

scenario. Each row is the result of one data run for each model. Smaller is better. PRISTINE
performs better than 3GC for this scenario in our primary MOE of average wait per vehicle.

Table 8.6
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For the morning rush hour scenario, PRISTINE again does substantially

better on waiting time and slightly worse in the area of stops. 3GC produced a

mean value of 1.549 stops per vehicle with a standard deviation of .235 across the

simulation runs and had a mean waiting time of 79.547 seconds per vehicle with

a standard deviation of 25.378 seconds. PRISTINE produced a mean value of

2.113 stops per vehicle with a standard deviation of .326 across the simulation

runs and had a mean waiting time of 50.035 seconds per vehicle with a standard

deviation of 7.239 seconds.

It is not surprising that PRISTINE beats 3GC for this scenario.

Throughout the morning rush hour, there is a preferred direction of travel, West

to East, and the traffic flow builds up steadily from 7 AM till 8:45 AM, and even

then, it only tapers off a little. This is precisely the type of situation where

PRISTINE should do well.

The mid-day traffic provided an interesting set of results. The mid-day

traffic run results are displayed in figure 8.10 below.

The results of the data runs for the mid-day traffic scenario are displayed above. The dark
bars represent the data from 3GC while the light bars are from PRISTINE. 3GC did better

than PRISTINE for this scenario.

Figure 8.10
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The numerical results for this scenario are displayed in table 8.7 below.

3GC Wait PRISTINE Wait | 3GC Stops PRISTINE Stops

85.636 139.413 1.654 3.265
94.542 128.851 1.746 3. 163
103.183 131.874 1.759 3.257
132.043 182.791 2.466 3.217
82.391 86.005 1.577 2.662
72.995 77.543 1.482 2.718
70.417 83.744 1.487 2.806
82.826 103.098 1.625 2.744
79.814 66.801 1.54 2.676
113.875 113.838 1.896 3. 16

This table displays the average stops per vehicle, wait for vehicle experienced and objective
value for 3GC and PRISTINE for each of the simulation runs for the mid-day traffic scenario.
Each row is the result of one data run for each model. Smaller is better. 3GC does better than

PRISTINE for this scenario.

Table 8.7

For the mid-day traffic scenario, 3GC dominates PRISTINE. 3GC

produced a mean value of 1.723 stops per vehicle with a standard deviation of

.292 across the simulation runs and had a mean waiting time of 91.772 seconds

per vehicle with a standard deviation of 19.452 seconds. PRISTINE produced a

mean value of 2.967 stops per vehicle with a standard deviation of .264 across the

simulation runs and had a mean waiting time of 111.396 seconds per vehicle with

a standard deviation of 35.316 seconds.

Why was PRISTINE was beaten by 3GC in this scenario? In the mid-day

pattern, there is a large amount of congestion on the streets, but there is no

particular pattern to it. The lack of pattern allows one to regard the individual

traffic signals as isolated units. It does no good to set the offsets to work for any

particular route, because there is nearly as much cross traffic as there is through
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traffic along the major routes. At the same time, the fact that there is significant

congestion means that the traffic patterns cannot shift significantly from one

evaluation period to the next. (We discussed these disadvantages in greater

detail under the discussion of the results for the mixed traffic scenario in section

7.2.3.) Thus, the assumptions intrinsic in 3GC are met. The traffic patterns from

the last evaluation period are good indicators for the next TSC period, and the

traffic lights can be viewed as isolated control elements.

The last two data sets have confirmed our earlier suspicions, but not so

with the evening rush hour. The results for the evening rush hour runs are

displayed below.

The results of the data runs for the evening rush hour scenario are displayed above. The dark
bars represent the data from 3GC while the light bars are from PRISTINE. 3GC did better

than PRISTINE for this scenario.

Figure 8.11

The numerical results for this scenario are displayed in table 8.8 below.
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3GC Wait PRISTINE Wait 3GC Stops PRISTINE Stops
95.475 107.007 1.838 2.681
67.364 96.121 1.349 2.978
89.303 98.818 1.636 3.053
89.56 96.666 1.759 2.978
83.029 107.06 1.5 2.86
69.47 81.379 1.377 2.731
72.502 86.179 1.168 2.556
62.164 96.896 1.338 2.987
95.775 121.595 1.77 2.887
60.068 83.294 1.239 2.782

This table displays the average stops per vehicle, wait for vehicle experienced and objective
value for 3GC and PRISTINE for each of the simulation runs for the evening rush hour

scenario. Each row is the result of one data -un for each model. Smaller is better. 3GC does
better than PRISTINE for this scenario.

Table 8.8

For the evening rush hour scenario, 3GC again dominates PRISTINE. 3GC

produced a mean value of 1.497 stops per vehicle with a standard deviation of

.239 across the simulation runs and had a mean waiting time of 78.471 seconds

per vehicle with a standard deviation of 13.720 seconds. PRISTINE produced a

mean value of 2.849 stops per vehicle with a standard deviation of .159 across the

simulation runs and had a mean waiting time of 97.502 seconds per vehicle with

a standard deviation of 12.279 seconds.

PRISTINE is again defeated, but why is the evening rush hour any

different than the morning rush hour? In actual Boston traffic, there is not as

strong a directional component to the data for the evening rush hour. In the

morning rush hour, the background traffic at 6 AM is light, and as the

commuters begin to superimpose, their West to East pattern dominates. On the

other hand, the streets of Boston are hardly dead at 4 PM. In fact there is a

reasonably high level of congestion. So, as the commuters begin to make their

way from East to West across the Backbay, they are joining the ranks of package

deliveries, taxi cabs, fuel truck deliveries and a host of other vehicles. The East to
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West patterns are more masked by the ambient business traffic, and overall, the

traffic patterns resemble the mid-day pattern far more than an inverted version

of the morning rush hour.

The last scenario we tested was our constructed surge scenario from

chapters one, three and six. We define a surge as a sudden increase in traffic

flow such that the average flow rate over the next TSC period will exceed the

capacity of one or more street segments under the current signal timing plan but

does not exceed the potential capacity of the street segments. In this particular

scenario we introduced a vehicle flow rate along Commonwealth Avenue and

Newbury Street that was four times the value of the proceeding background

traffic. The surge began thirty minutes into the run and lasted for the remaining

thirty minutes of the run; the total run lasted an hour. (The surge was

introduced at the intersections of Arlington and Commonwealth and Arlington

and Newbury, and the desired routing for the surge traffic was to flow West, i.e.

the traffic leaves figure 7.9 at the intersections of Gloucester and Commonwealth

and Gloucester and Newbury.) The background traffic flow on all the arcs 6

vehicles per minute. All of the traffic was orthogonal, i.e. there were no turning

movements, etc. The surge traffic example results are displayed in figure 8.12

below.
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Surge Scenario

The results of the data runs for the surge scenario are displayed above. The dark bars
represent the data from 3GC while the light bars are from PRISTINE. PRISTINE clearly

dominated 3GC for this scenario.

Figure 8.12

The numerical results for this scenario are displayed in table 8.9 below.

3GC Wait PRISTINE Wait 3GC Stops PRISTINE Stops

139.28 36.904 3.225 1.281
108.441 26.572 2.844 1.186
156.609 43.31 3.393 1.481
141.783 42.676 3.241 1.348
140.452 40.465 3. 11 1.866
137.257 33.847 3.248 1.789
122.709 27.97 3.043 1.089
129.452 30.71 3.088 1.194
128.239 29.296 3.0442 1.15
105.15 24.472 2.858 1.107

This table displays the average stops per vehicle, wait for vehicle experienced and objective
value for 3GC and PRISTINE for each of the simulation runs for the surge scenario. Each row

is the result of one data run for each model. Smaller is better. PRISTINE totally dominates
for this scenario.

Table 8.9

For the surge scenario, PRISTINE completely dominates 3GC. 3GC

produced a mean value of 3.109 stops per vehicle with a standard deviation of

.030 across the simulation runs and had a mean waiting time of 130.937 seconds
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per vehicle with a standard deviation of 15.723 seconds. PRISTINE produced a

mean value of 1.289 stops per vehicle with a standard deviation of .235 across the

simulation runs and had a mean waiting time of 33.622 seconds per vehicle with

a standard deviation of 6.880 seconds.

In the surge scenario, the relatively light background traffic is

overwhelmed by the large surge from East to West while traffic on side streets

remains relatively constant. PRISTINE uniformly dominates 3GC through each

of the simulation runs. PRISTINE dominates 3GC for two reasons. The primary

reason is 3GC's assumption that the last observation period accurately represents

the upcoming TSC period is grossly violated. Second, since 3GC is a one street

segment look ahead, it necessarily only can accommodate changes one street at a

time. If changes occur slowly enough (as they do with the mid-day traffic and

evening rush hour examples), the traffic is able to pass through the streets

relatively unimpeded using the old settings, but in the surge example, the new

traffic patterns are clogged up in the early street segments because the surge

exceeds the streets' capacities given the TSC plan. Thus, the streets actually act as

storage for vehicles and the congestion moves sluggishly forward through the

network. In PRISTINE, the TSC strategy knows where the surge traffic wants to

go and sets the TSC plan to support this from the start. The traffic flow is

accommodated throughout its routing, and the congestion levels never reach the

extremes seen with 3GC.

It would be interesting to see how the results change for the surge scenario

when the level of the surge changes. The tests above were done for a surge level

of four times the previous flow. First, we will explore a variety of surge rates for

the example given above. Then, we will look at what happens in a slightly more

congested case where 3GC is initially the better strategy. For the case above, we
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will explore a minimum surge rate of 20% and a maximum surge rate of 1000%

increase in traffic flow. Below 20%, the traffic signal control plan is still able to

handle the traffic; so, surges below 20% for this network do not fit our definition

of a surge. Above 1000%, we exceed the theoretical capacity of the roadway. (As

a point of comparison, we will run the simulation with no surge for both the 3GC

and PRISTINE models to better be able to see the effects of the surge on the two

traffic signal timing strategies.) In the table below we look at the average wait

and stops per vehicle change as we modify the intensity of the surge.

Surge PRISTINE 3GC PRISTINE 3GC PRISTINE 3GC
Multiplier Waits Waits Transit Transit Stops Stops
No Surge 18.253 41.502 59.455 80.211 1.051 1.905
No Surge 18.400 36.481 58.859 74.277 0.981 1.830

1.2 21.705 54.460 66.68 95.384 1.099 2.076
1.2 18.862 41.456 61.427 81.013 0.983 1.907
2 21.151 68.919 69.553 112.935 1.089 2.291
2 21.926 61.463 69.72 104.880 1.026 2.146

4 (Base) 33.622 130.937 -N/A- -N/A- 1.289 3.109
8 50.723 204.17 127.515 261.920 1.642 3.771
8 53.389 223.755 130.988 285.211 1.651 4.034
10 106.306 210.655 193.86 269.079 2.486 3.818
10 117.409 235.419 199.917 298.682 2.502 4.148

This table displays the MOE's for 3GC and PRISTINE for each of the simulation runs for the
surge scenario. Each row is the result of one data run for each model with the exception of the
row labeled four which is the average of the five earlier runs. Smaller is better. PRISTINE

totally dominates for this scenario.

Table 8.10

PRISTINE dominates 3GC for each of the data runs. Note for these supplemental

runs, we also obtained the average transit time through the network. The results

are displayed below in figure 8.13.
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Average Transit Times by Data Run

The lighter colored area represents the 3GC results. PRISTINE provides uniformly better
average transit times than 3GC. This is a confirmation of the results displayed in table 8.10.

Figure 8.13

Throughout the range from the near light traffic example (where the traffic

only surges by 20%) to near capacity (where the traffic flow rate increases by a

factor of ten), PRISTINE does very well. As the increase in flow goes to ten times

the background traffic, we begin to reach the capacity of the roadway.

As a point of comparison, we also examined a surge scenario where, in the

base case, 3GC dominated PRISTINE. Recall that 3GC tends to dominate

PRISTINE when there is a fairly high level of congestion in the network and no

clear dominant directions of flow. Unless otherwise noted, the conditions for this

surge scenario were identical to the last surge scenario. We selected a situation

where the ambient traffic flow was 10 vehicles per minute on every arc in the

network. As in the last surge scenario, all traffic in this example was orthogonal;

this allowed us to filter out the effects of delays due to left turns, etc. from the

data. (We note that the average stops and delay per vehicle under the base case

in these data runs are significantly lower than those found in a similar level of

congestion for the mid-day traffic scenario where vehicles frequently made right

and left turns onto congested roadways.)
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Surge PRISTINE 3GC PRISTINE X 3GC PRISTINE 3GC
Multiplier Waits Waits Stops Stops Transit Transit
No Surge 39334 30.635 2.156 1.263 131.420 119.549
No Surge 37.655 24.640 2.096 1.037 129.327 117.946

2 33.221 34.925 2.093 1.346 128.953 137.918
2 32.576 45.176 2.028 1.474 126.266 147.878
4 48.213 65.005 2.463 2.050 159.085 184.031
4 38.291 71.960 2.373 1.956 157.694 185.922
6 53.113 83.344 2.497 1.626 164.173 197.212
6 51.983 77.044 2.141 1.788 180.735 194.408

This table displays the MOE's for 3GC and PRISTINE for each of the simulation runs for the
surge scenario. Each row is the result of one data run for each model Even though 3GC

performs better for the base scenario (no surge), PRISTINE performs better than 3GC as the
surge multiplier increases. The roadways are reaching saturation in the runs with a multiplier

of six.

Table 8.11

Again, under the surge scenario PRISTINE performs significantly better

than 3GC for the MOE's of average wait per vehicle and average transit time per

vehicle. It is interesting to note that PRISTINE actually decreases the average

stops per vehicle and transit time per vehicle when the surge rate of flow on

Commonwealth and Newbury increases from 10 to 20 vehicles per minute. It

seems counterintuitive until we recognize that PRISTINE has a clear dominant

direction of flow when the flow rate on the two major East to West streets

becomes 20 vehicles per minute. Also, the predictive routing information

projects well onto this scenario, because there are no turning movements. So,

even if congestion on the streets causes vehicles to slow down, the vehicles ten

minutes later will still be going the same direction. Some of the benefits of

PRISTINE's benefits are masked in this scenario, because the background flow

rate is so high that the two major East to West thoroughfares only make up a

fraction of the total flow in the network. So, our average values for the MOE's

disguise some of the benefit of using the predictive routing information.
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We also wanted to see what effects the duration of the surge had on the

MOE's. In our next scenario, the surge has exactly the same characteristics as the

first surge scenario with the light traffic background, but this time the surge only

lasts for ten minutes. The simulation run lasts for an hour. The first half hour

has light traffic. This is followed by a ten minute surge, and the last twenty

minutes go back to the light traffic background. Our results for these runs are

displayed below.

Multiplier PRISTINE 3GC PRISTINE 3GC PRISTINE 3GC
Wait Wait Transit Transit Stops Stops

1.2 17.768 42.824 59.04 82.623 1.017 1.923
1.2 18.135 38.799 59.133 78.025 0.954 1.861
2 20.385 50.413 68.727 70.645 1.063 2.034
2 26.535 68.839 51.057 90.882 1.092 2.135
4 24.944 90.792 64.218 122.879 1.265 2.49
4 34.791 102.178 91.817 135.77 1.271 2.619
8 40.245 97.696 106.454 133.807 1.406 2.638
8 40.606 108.476 107.357 144.412 1.355 2.712
10 37.215 98.92 103.373 145.726 2.342 2.664
10 39.91 109.534 109.054 154.425 2.387 2.705

This table displays the MOE's for 3GC and PRISTINE for each of the simulation runs for the
ten minute surge scenario. Each row is the result of one data run. Smaller is better.

PRISTINE totally dominates for this scenario.

Table 8.12

We also ran a scenario using a twenty minute surge. In this case, there

was: a half hour of light traffic, a twenty minute surge, and it ended with ten

minutes of light traffic. The results for these runs are shown below.
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Multiplier PRISTINE 3GC PRISTINE 3GC PRISTINE 3GC
Wait Wait Transit Transit Stops Stops

1.2 17.94 34.656 60.882 70.403 0.989 1.848
1.2 16.153 28.103 54.379 62.726 0.952 1.747
2 17.372 46.199 60.042 85.206 1.048 2.075
2 31.741 49.953 72.098 88.428 1.237 2.162
4 23.396 68.315 75.784 110.36 1.178 2.44
4 24.19 81.411 78.688 127.005 1.099 2.726
8 54.886 125.531 121.602 174.266 1.815 3.254
8 39.515 135.76 106.732 187.891 1.423 3.426

10 69.175 136.893 133.216 196.602 2.476 3.325
10 82.639 146.44 151.971 209.549 2.055 3.508

This table displays the MOE's for 3GC and PRISTINE for each of the simulation runs for the
twenty minute surge scenario. Each row is the result of one data run. Smaller is better.

PRISTINE totally dominates for this scenario.

Table 8.13

We see in the ten minute scenario that 3GC does better relatively than it

did in the original thirty minute surge scenario. This is because 3GC is able to

react to the surge (in a limited fashion) after the first ten minutes. Although

3GC's reaction comes after the surge traffic has entered the network, it still will

alleviate some of the follow on congestion. Additionally, the surge traffic makes

up a much smaller proportion of the total traffic which flows through the

network, because the surge only lasts ten minutes.

The results of the twenty minute scenario are very similar to the original

thirty minute surge, and the original comments found in the section on the thirty

minute surge (see above) apply here too.

241



Further Analysis of Surges

The discussion in section 8.2 underestimates the advantage of PRISTINE

over 3GC for surges. The reason is that, under 3GC (and to a lesser extent under

PRISTINE), some of the vehicles in the surge are prevented from entering the

network when they wish because of the congestion created by the surge. The

simulation does not record the vehicles' delay while they are still in parking lots

but only starts counting it when they enter the network. Additionally, the earlier

results averaged a pre-surge period of 30 minutes (included in the scenarios to

bring the network to steady-state before introducing the surge) with the surge

period, thereby reducing its apparent effect.

In this section we adjust the results of the simulation for several

representative data runs to take these phenomena into account. The analysis will

be approximate but should capture the main effects and demonstrate the

enhanced advantage of PRISTINE. We shall use transit time as the measure of

effectiveness in this work.

Consider what happens in the case of the ten minute surge. We will

examine the average arrival rate, number of vehicles in the network, and

cumulative arrivals over the course of a sixty minute simulation period. For this

example, we will assume the surge to last ten minutes during which time the

average vehicle arrival rate on our two major Westbound arterials,

Commonwealth and Newbury (see figure 7.9), will jump from 6 vehicles per

minute to 24 vehicles per minute.
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First we will examine the average arrival rate. For the no surge case, we

have an average vehicle arrival rate of 6 vehicles per minute at each of eleven

nodes for a total network average arrival rate of 66 vehicles per minute. This

remains constant across the entire sixty minute period. In the case of the surge,

the average arrival rate across the network is initially 66 vehicles too, but from

the 30 minute mark until the 40 minute mark, the network arrival rate jumps to

99 vehicles per minute. Then, the average arrival rate drops back to 66 vehicles

per minute. In the simulation some of the vehicles which are generated at the

nodes may be unable to enter the network, because the street segments ahead are

clogged. Thus, the actual average arrival rate in the simulation falls below the

projected rate. We will say the vehicles unable to enter the network are trapped

in parking lots to add a physical intuition to the problem. The results are

displayed in the two figures below.

Average Arrival Rate(No Surge)
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In the no surge case, the average vehicle arrival rate remains constant while in the surge case,
the average vehicle arrival rate increases for ten minutes. The dashed curve in the surge case

represents the number of vehicles that actually enter the network. (Some vehicles that are
generated at the nodes are unable to enter the simulation because the streets are full.)

Figure 8.14
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The number of vehicles in the network is fairly constant for the no surge

case, but in the surge case, the number of vehicles in the network increases as the

surge occurs. In cases where the traffic control system is unable to compensate

for the increased traffic flow, the number of vehicles in the network falls short of

the projected number.

Vehicles in the Network(No

Surge)
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Vehicles in the Network(Surge)
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For the no surge case, the number of vehicles in the system is fairly constant. For the surge
case the top (solid) line represents the number of vehicles both in the network and waiting in

parking lots. The bottom (dashed) curve does not include the vehicles which are in the
parking lots. The simulation does not start tracking a vehicle's time in the network until it

actually enters the first street segment..

Figure 8.15

The actual number of vehicles we would expect to enter the network

during the sixty minute simulation run are shown below in table 8.14.

Surge Multiplier 10 Minute Surge 20 Minute Surge 30Minute Sge
No Surge 3960 3960 3960

1.2 3984 4008 4032
2 4080 4200 4320
4 4320 4680 5040
8 4800 5640 6480

This table displays the total expected number of vehicles to arrive during the sixty minute
simulation period for each of the surge durations and surge multipliers. The numbers shown
include both the vehicles which enter the simulation and those vehicles which are stuck in

parking lots.

Table 8.14
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The cumulative arrivals for the network are also affected by the surge. In

figure 8.15 below we show the cumulative arrival rate for both the no surge and

surge cases.

In the no surge case, the vehicles arrive at a constant rate. In the surge case, the top (solid) line
represents the cumulative arrivals to the simulation (including the parking lots) while the
dashed (bottom) curve represents only the vehicles which actually enter the network. The
area between the two is the time spent by vehicles in the parking lots before they enter the

network. (We will refer to this as the "lost area".)

Figure 8.16

In the figure above, the area between the solid line and the dashed curve

represent the total time spent by vehicles in parking lots before they entered the

network. In the table below, we display the cumulative number of vehicles

which entered the network in each of the 30 simulation runs displayed below.

Surge 10 Minute Surge 20 Minute Surge l 30 Minute Surge
Multiplier PRISTINE 3GC PRISTINE 3GC PRISTINE 3GC
No Surge 3975 3961 3975 3961 3975 3961

1.2 4001 3967 4032 3987 4035 3998
2 4085 3840 4203 3887 4284 3964
4 4331 3959 4637 4098 4690 4271
8 4620 4410 4656 4410 4656 4410

The table above shows the cumulative number of vehicles which entered the network for each
of the simulation runs show. Notice that PRISTINE consistently allows more vehicles to pass

through the network than 3GC. Also note, by the time the multiplier reaches eight, the
network is saturated.

Table 8.15
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PRISTINE consistently allows more vehicles to pass through the network

than 3GC. By the time the surge multiplier reaches eight, the network is

saturated. We will calculate the missing waiting time spent by the vehicles in the

parking lots and subtract off the pre-surge period's effects for the surge

multipliers of 1.2, 2, and 4.

Before we can complete the pre-surge subtraction and calculate the lost

waiting time, it will be necessary to introduce some new notation.

We will begin by examining the base case, i.e. no surge.

Let n b (t 1 , t2 ) = number of departures from the network between times

tl and t2. For example, n b (0, 60) =3960.

We assume that nb(0,30) = nb(30, 60) = ( 2 )nb (0,60). (That is, we
assume we are at steady-state for the base case.)

Let 'tb(t 1 , t2 ) = the average transit time for the departures between
times t and t2.

We assume that b(0,30)=zb(30,60) = b(0,60), i.e. we are at
steady-state.

Let Tb(t 1 ,t 2 ) = total transit time spent in the system by vehicles
departing between times t and t2.

We assume

Tb (0, 6 0) = nb(0,60)zb(0, 60)=

nb(, 30)tb(0, 30) + nb(30, 60)b (30,60)
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For the surge case, we use the same notation, but will use the subscript

"s". As an overview, for the first thirty minutes of a surge scenario (i.e. pre-

surge), the vehicles flow smoothly through the network. We will designate the

first thirty minute period as (0,30). During (0,30) virtually all of the vehicles

generated are allowed to enter the network. During (30,60), we need to

differentiate between the transit time seen by (1) departures and cars recorded as

departures (i.e. the simulation records the vehicles still in the network at the end

of the simulation as departures, typically less than .5% of the vehicles which

passed through the network during the simulation) and (2) the same plus the

vehicles caught in parking lots.

Now, n s (30, 60) = the number of departing (and existing) cars seen by
the simulation during the surge period (30,60).

Let, n (30, 60) = the estimated departing (and existing) cars seen by the
simulation plus the vehicles still in the parking lot during the surge period
(30,60).

Our estimates of n (0, 60) are shown in table 8.14.

We assume n s (30,60) ns (0,60) - n s (0, 30) and

ns (30, 60) = ns (0, 60) - n s (0, 30) where

ns (0,30) = ns (0,30) = (2)nb(0, 60).

Let T (30,60) include total time spent in the system by all vehicles
generated by the simulation during the period (30,60) including exiting vehicles,
vehicles still in the network at the end of the scenario and vehicles still caught in
parking lots.
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In words, we could describe T s (30, 60) as (equal to)

= total time for vehicles recorded by the simulation + time spent by
vehicles in the parking lots before entering the network ("lost area" described in
figure 8.16)

which is (equal to)

= ns (30, 60)r s (30, 60) + lost area.

We would like to determine ts (30, 60). We can calculate 'rs (30, 60) using

terms we have already defined. Specifically,

Ts (0, 60) = ns (0, 60)'s (0, 60)

= ns (0, 30)s (0, 30) + ns (30, 60) (30, 60)

By assumption, we have ns(0, 30) = n(0, 30) = (2)nb(0,60). Substituting

we obtain

Ts(O, 60) = (y)nb(0, 60)b (0, 60) + n's(30,60)'s (30,60).

ns(30,60)

Using this methodology, we calculate the surge period average transit time per

vehicle. (We approximate the bottom (dashed) curve in figure 8.16 for the surge

scenario as a straight line. Given this approximation, the lost area becomes a

quadrilateral, and we integrate over time to find the lost area's value.) The

results are displayed in the table below.
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Surge 10 Minute Sge 20 Minute Sure 30 Minute Surge
Multiplier PRISTINE 3GC PRISTINE 3GC PRISTINE 3GC

No Sure 59.455 80.211 59.455 80.211 59.455 80.211
1.2 58.633 85.027 58.640 60.727 62.259 110.271
2 43.157 102.241 60.565 90.392 78.243 145.593
4 68.229 165.569 87.952 138.545 -N/A- -N/A-

The estimated average transit time per vehicle of all the vehicles (including the time spent in
parking lots) during the surge period is shown in the table above. PRISTINE's absolute

advantage in the area of average transit time per vehicle is magnified by subtracting the pre-
surge contribution and adding the time spent waiting in parking lots before entering the

network. Raw figures are shown in tables 8.10, 8.12 and 8.13.

Table 8.16

In each case, PRISTINE dominates 3GC in the area of average transit time

per vehicle. The lowest savings demonstrated by PRISTINE is in the case of the

20 minute surge with a multiplier of 1.2 where PRISTINE only saves

approximately 3.4%. The largest savings demonstrated by PRISTINE displayed

by the table occur in the case of the 10 minute surge with a multiplier of two

where PRISTINE saves 57.8% on the average transit time per vehicle offered by

3GC under the same circumstances. We varied two parameters of the surge, its

length and its multiplier. The ratio of the corrected average transit time (ATT) for

3GC compared to that for PRISTINE tends to increase as the surge multiplier

increases. For example in the base case for the ten minute surge, the ratio of ATT

using 3GC to that of PRISTINE was 1.35 while with a multiplier of 4 that same

ratio increases to 2.43. Again looking at the ratio of the corrected ATT, 3GC

seems most adversely affected under the ten minute case. With a multiplier of

two, the ratio of the ATT using 3GC to the same under PRISTINE was 2.37 for the

ten minute surge but only 1.86 under the thirty minute case. This is logical,

because 3GC has the chance to begin correcting the traffic signals to

accommodate the increased flow under the longer surge scenarios.
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SECTION 8.4 Conclusions

In this section we developed an optimized third generation control model,

3GC, and compared it to PRISTINE. PRISTINE and 3GC were compared using

six sets of data on the Lin-Sarkar-Staats simulation model. PRISTINE (using the

predictive routing information available under IVHS) did better than 3GC, the

optimized third generation traffic signal control strategy, in cases where

PRISTINE's basic assumptions about the traffic held, and 3GC did better than

PRISTINE in scenarios where PRISTINE's assumptions were less accurate. For

example we found in the mid-day traffic and evening rush hour scenarios

PRISTINE's assumption that the predictive routing information would accurately

reflect the actual traffic flows occurring in the network over the next traffic signal

control period did not hold. The intersections could be viewed as independent

entities with no large degradation in the traffic signal control performance; so,

3GC did well when compared to PRISTINE in these cases. Conversely, 3GC's

assumption of steady state conditions did not apply well in the morning rush

hour or the surge scenarios. These cases will be examined in more detail below.

To aid in our analysis of 3GC and PRISTINE's performance, table 8.14 is

printed below. It contains descriptive statistical summaries for 3GC and

PRISTINE for each of the four non-surge scenarios.

3GC PRISTINE 3GC PRISTINE
Scenario Average Average Average Average

Stops(SD) Stops(SD) Wait(SD) Wait(SD)
Early Morning 1.244(.072) 1.577(.394) 49.107(4.377) 24.212(4.322)
AM Rush Hour 1.549(.235) 2.113(.327) 79.547(25.378) 50.0351(7.239)
Mid-Day Traffic 1.723(.292) 2.967(.264) 91.772(19.452) 111.396(35.316)
PM Rush Hour 1.497(.030) 2.849(.159) 78.471(13.720) 97.502(12.279)

The table above contains the summary statistics for the four non-surge scenarios used to test
PRISTINE against the optimized third generation control model (3GC).

Table 8.17
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The early morning traffic scenario showed a savings of nearly 25 seconds

average waiting time for the PRISTINE model over the 3GC model. PRISTINE

was able to better control the traffic signals in this scenario, because PRISTINE

uses average flow rates to calculate its signal timing plan. Whereas 3GC uses

actual vehicle arrivals to calculate its timing plan. When traffic is very light, a

single arrival can make a big difference in the timing plan for 3GC, and during

the early morning scenario, 3GC tended to overcompensate.

For the morning rush hour scenario, PRISTINE waiting time per vehicle

averaged 37% below the waiting time for 3GC. Throughout the morning rush

hour, there is a preferred direction of travel, West to East, and the traffic flow

builds up steadily from 7 AM till 8:45 AM, and even then, it only tapers off a

little. This is precisely the type of situation where PRISTINE does well. The

spanning tree heuristics can set up progression schemes on the inbound, West to

East, routes. At most intersections there is a dominant flow direction., and

PRISTINE takes advantage of dominant flows by setting the splits to

accommodate the greater volume of traffic for the approaches sharing a common

green cycle.. Such dominant directions and patterns do not exist in the mid-day

traffic scenario.

In the mid-day traffic scenario, the 3GC model posted a savings of over 20

seconds from the average wait experienced by PRISTINE for this scenario. The

reason for this can be traced back to the chaotic traffic conditions that exist in the

roadway during this time frame. We generally see random patterns at the

intersections. There is no clearly dominant direction of travel at each intersection or

even a majority of them. Plus, there are high levels of congestion. Under these

conditions about the best one can do is increase the green time in both directions

and try to maximize the capacity of the network. In effect, we can consider each

individual intersection as an independent optimization process where the goal is
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maximum capacity rather than attempting to minimize average stops or wait.

The situation was much the same under the evening rush hour scenario.

The 3GC model saved 19.5% on the waiting time experienced under

PRISTINE for the evening rush hour scenario. The reason for this is exactly the

same as the rationale for 3GC's superior performance in the mid-day traffic

model. There is not as strong a directional component to the data for the evening

rush hour. In the morning rush hour, the background traffic at 6 AM is light, and

as the commuters begin to superimpose, their West to East pattern dominates,

but for the evening rush hour this is not the case. The streets of Boston are not

deserted at 4 PM. In fact there is a reasonably high level of congestion. As the

commuters begin to make their way from East to West across the Backbay, they

are joining the ranks of package deliveries, taxi cabs, fuel truck deliveries and a

host of other vehicles. The East to West patterns are more masked by the

ambient chaotic business traffic. In the case of the surge scenario, there was very

little interference from ambient traffic, and PRISTINE did very well.

The best performance from PRISTINE came in the surge scenarios. We

examined a base case scenario where there was a sudden four fold increase in

traffic along Commonwealth and Newbury moving from East to West. The large

savings experienced for this scenario prompted us to explore the parameters of

the surge more closely. We allowed the surge increase to range from only 20%

(hardly a surge at all) to a ten fold increase (reached the capacity of the

roadways). In each case PRISTINE demonstrated significant savings over 3GC.

We also examined a scenario where 3GC initially defeated PRISTINE. Recall that

3GC tends to beat PRISTINE under congested conditions where there is no

dominant direction of flow. In this case, we examined a smaller range of surge

values, because we ran into roadway capacity constraints sooner. Again though,
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PRISTINE demonstrated the value of using predictive routing information in

setting traffic signals.

Traditional methods must rely on information collected in real time, but if

something is about to happen then traditional methods are at the mercy of

circumstance. Like all third generation control methods, 3GC assumes that the

arrivals seen during last observation period accurately represent the arrival

patterns to be experienced during the upcoming traffic signal control period.

Under the surge scenario, this assumption is grossly violated. But, 3GC really

cannot compensate even after the traffic flow dramatically increases. Since 3GC is a

one street segment look ahead, it necessarily only can accommodate changes one

street at a time. In the surge example, the new traffic patterns clog up the first

street segments in their paths, because the surge exceeds the streets' capacities

given the traffic signal control plan. Thus, the streets actually act as storage for

vehicles and the congestion moves sluggishly forward through the network. In

PRISTINE and IVHS traffic signal control strategies in general, the traffic signal

control strategy knows where the surge traffic wants to go and is able to set the

traffic signal control plan to support this from the start. The traffic flow is

accommodated throughout its routing, and the congestion levels never reach the

extremes seen with 3GC.

The greatest contribution from PRISTINE and traffic signal control

systems that will be integrated into IVHS will come from their ability to react in

real time to the unexpected, non-historically arising traffic situations. As we saw

in the surge example, anticipatory traffic signal control can have huge effects in

reducing congestion and promoting traffic flow. We will revisit our findings in

the next chapter.
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Chapter Nine

Conclusions

Man lives on a placid isle of ignorance in a vast, black ocean, and it was not meant that we

should venture far!

-H.P. Lovecraft

SECTION 9.1 Overview

In this thesis we explored the potential benefit from integrating predictive

routing information with dynamic traffic signal control. In this final chapter, we

summarize our general findings and offer additional areas of research uncovered

during our investigations which may prove to be fruitful areas further research.

We found that predictive routing information could be highly beneficial in cases

where sudden changes in traffic flow caused congestion. Under such conditions,

the Predictive Routing Information Signal Timing INtEgration (PRISTINE)

system, the IVHS traffic signal control strategy, was able to cut delays by

significant amounts from what was experienced using a system which optimized

the signal settings using information which is currently available. The benefits of

using predictive routing information were not as great when traffic conditions

changed gradually, and in some cases there was no benefit. We found the

greatest benefits from using the predictive routing information came in cases
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where there were dominant directions of flow in the network. We will begin by

summarizing our findings.

SECTION 9.2 Findings

In this section we will review the findings of the thesis by chapter. The

results printed here are summary, and the interested reader is encouraged to

read the applicable chapters for further detail.

The thesis set out to determine the effects of integrating predictive routing

information with dynamic traffic signal control. The goal of this thesis was to

determine the first order effects of using predictive routing information in traffic

signal control. To a large extent, this thesis took a very conservative approach to

the availability of traffic information available under IVHS. We examined the

use of predictive routing information in traffic signal control; this is only one

component of the information that will be available when IVHS is fully

implemented. We established a general framework for the evaluation of traffic

signal control systems. The methodologies described in chapters three, four and

five could be applied to any traffic control system and are applicable even if the

predictive routing information under IVHS never materializes. We developed

PRISTINE in chapters six and seven, and in chapter eight we used a simulation to

compare PRISTINE and an optimized third generation traffic signal control

system (3GC) using traffic data which is currently available.

In chapter four we combined aspects of network flow, graph and traffic

signal control theory into the spanning tree concept for sequencing the green lights

within the network. (This process of synchronizing the lights is called setting the
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offsets.) The spanning tree concept is the notion of selecting a connected set of

directed street segments from the entire network in such a way as to form a

spanning tree. A spanning tree is a set of connected, directed street segments

selected in such a way that the set of street segments include every intersection,

and there is a unique path between every set of intersections using the spanning

tree.

We developed the concept of defining the arterials in the network based

on the spanning tree we derived. Traditionally, one selects a major thoroughfare

or several important streets or avenues as the arterials for an urban traffic grid,

but under our methodology, the arterials become those street segments which we

plan on coordinating the offsets for. The street segments in the spanning tree are

not restricted to be along major thoroughfares. In fact, the spanning tree does not

have to include a street from start to finish; the spanning tree contains street

segments. (Thus, the spanning tree can follow vehicle routes and turn from street

to street at the intersections.) Our only restrictions are that the spanning tree

must touch every intersection, and there must be a unique path between every

pair of intersections through the spanning tree.

We were able to demonstrate that under ideal circumstances, a traffic

manager would be able to synchronize all the lights under his or her control in all

directions, but in a network with n traffic signals, the traffic manager would

always be able to synchronize at least (n-l) street segments. We went on to show

that those (n-l) street segments would cover at least one quarter of the traffic in

the network under even the most unfavorable conditions.
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We developed three methods of selecting the spanning tree. The first

method was called the Route Augmentation (RA) heuristic. The idea behind the

RA heuristic is that we should select the spanning tree to cover the busiest routes

first. In section 4.2, we showed that in the area of traffic signal control, intuition

occasionally fails. For example, it seems like a reasonable idea to set the offsets in

a network in such a way as to favor the most heavily traveled routes (i.e. use the

RA heuristic), but it is possible to construct a case where this reasonable

procedure leads to the worst possible average delay per vehicle and average

stops per vehicle in a network.

The Maximal Spanning Tree (MST) heuristic uses the aggregate flow rates

to determine the spanning tree. We showed in section 4.3 that the arcs of the

spanning tree selected using this method will contain a minimum of one fourth of

the total flow in the network. Under more favorable conditions, where there are

dominant directions of flow through the network, the MST heuristic will capture

a much larger fraction, and under ideal circumstances the MST heuristic could

capture all of the flow in the network. Because the MST uses the aggregate flow

rates on the street segments, it could be implemented using existing traffic data.

The last method we developed for determining the spanning tree was

called the Potential Function (PF) heuristic. The PF heuristic considered the

length of the routes as well as the flow rates in determining the spanning tree.

All things being equal, we would rather coordinate the longer routes through the
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network than a series of shorter routes. We showed that the RA and MST

heuristics were special cases of the PF heuristic.

In chapter five our purpose was to develop general methods of calculating

the effects of traffic signal control settings in terms of average stops per vehicle

and average delay per vehicle. (In chapter five we considered delay to be the

amount of time a vehicle was stopped at a traffic light. A vehicle stopped if it

was either stopped by a red light or unable to pass through an intersection

because of congestion.) We began by looking at the light traffic model. Under

the light traffic model queuing effects are unimportant. Vehicles only have to

stop in the network if the upcoming traffic signal is red, and all vehicles stopped

at an intersection during a red light will be able to proceed during the next green

light. The light traffic model is the most widely used model in traffic signal

control literature, and we used the light traffic model to gain intuition into the

effects of changing splits on the average stops per vehicle and average delay per

vehicle. We also demonstrated that using stops per vehicle as the primary

measure for a traffic signal control plan could result in undesirable traffic

settings.

Using the light traffic model assumptions, we developed a method of

evaluating traffic signal settings in terms of expected stops per vehicle and

expected delay per vehicle. This methodology could be used under any

circumstances where queuing effects are unimportant.
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However, queuing effects are generally important in traffic signal control,

and we established a Queue Effects Model (QEM) that considered the effects of

congestion and bulk arrivals on average wait per vehicle and average stops

experienced per vehicle at an intersection. The Queue Effects Model expands the

earlier work of Cedar (1989), but where Cedar used an M/G/1 queuing system,

we allow for bulk arrivals. The Queue Effects Model is able to predict upper

bounds on both the average stops and wait a random vehicle will experience

when approaching an intersection using only average vehicle flow rate and the

first two moments of the platoon size distribution. We derived an approximation

for Z-transform of time average queue length.

The best possible situation in a traffic flow environment is if no one

encounters any red lights and passes directly through the network. We can

mathematically approximate this by allowing every vehicle to shrink to an

infinitesimal point and turn all of the traffic lights green. Under these assumptions,

the urban traffic flow turns into a network multi-commodity flow problem. We

could view every vehicle flowing from a particular origin to a particular

destination as being composed of a specific fluid. We have a source, the route's

origin, and a sink, the route's destination, corresponding to each route through

the network. We retain the capacity limits on the arcs in terms of vehicles per

unit time; this is a function of the speed limit and the number of lanes on the

street segment. As a cost per arc, we will use the amount of time required to

traverse it at the speed limit. The solution to this flow problem gives the

theoretical lower limit on the average travel times through the network.
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One of our stated goals in the thesis was to develop a methodology for

explicitly utilizing the predictive routing information available under IVHS in a

dynamic traffic signal control environment. In chapter six, we integrated the

spanning tree method of setting offsets and the Queue Effects Model into a traffic

signal control strategy, PRISTINE, which explicitly uses the predictive routing

information available under IVHS. It is important to note that we applied the

predictive routing information very rigidly. We assumed that drivers would

follow their projected routings through the network even if the street segment

ahead appeared to be congested. In reality, some non-trivial fraction of the

drivers would desert their projected paths and take new routings from the point

of congestion onward.

We explored two methods of generating the splits and cycle time for

PRISTINE in chapter six. One involved the use of a non-linear program, and the

other, a heuristic approach, exploited the structure of the problem to provide a

solution after only two passes. Both methods use the Queue Effects Model to

represent the average delay per vehicle and average stops per vehicle for the

street segments which are not part of the spanning tree.

The non-linear program has an objective function that is both

discontinuous and piece-wise convex. Traditional techniques for non-linear

programs do not offer ready solutions to these problems. In chapter seven we

turned to a gradient descent method utilizing pseudo-gradients to allow the

solver to work with the discontinuities. We used a limited line search technique,

barrier functions, and projection methods to limit the solver's chance of being
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caught in a local, non-global minimum. Our methods produced a non-linear

program solver which generally converged to a solution in less than 1,000

iterations.

To evaluate PRISTINE, we developed a traffic simulation grounded on the

earlier works of Lin (1992) and Sarkar (1993). The simulation is able to integrate

predictive routing information and implements traffic signal control plans while

still operating the simulation. (The simulation is capable of varying its traffic

signal control plan in mid-simulation run without loss of data, i.e. vehicles

continue on within the simulation from their current locations while responding

to the new traffic signal control plan.) We call this last feature the capability for

dynamic interface.. Additionally, the traffic simulation integrates key real world

aspects into its routines such as reasonable acceleration/deceleration

performance, platooning and vehicle safe driving clearances.

In chapter seven, we used the simulation to test the performance of the

non-linear program versus the heuristic approach for setting splits in PRISTINE.

We found that under all but light traffic conditions, the non-linear program had

significantly better performance in both the areas of stops per vehicle and

average wait per vehicle than the heuristic approach. Under one scenario tested,

the non-linear program decrease average wait by over 30%. The non-linear

program was able to converge to an optimal solution very quickly, typically

taking less than 800 iterations before selecting the optimal traffic signal setting.

We elected to use the non-linear program to test the performance of PRISTINE

versus our optimized third generation traffic control strategy, 3GC.
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There are many third generation traffic signal control software packages

available in the commercial sector, but due to pragmatic concerns such as

funding the purchase of these packages and the time it would take to modify the

packages, we elected to develop our own third generation control system to

compare PRISTINE against. The strategy integrated key elements of third

generation control such as: look ahead, minimization of projected stops and wait

per vehicle, and the ability to vary not only the splits and offsets but also the

cycle time for each intersection.

Our third generation control system (3GC) offers three major advantages

over most commercial packages which will make it a more competitive opponent

for PRISTINE than most commercial packages would be. First, since commercial

packages must compute traffic signal settings in real time, they often are not

allowed to iterate until they find an optimal solution. We allowed 3GC to run

until it determined its optimal solution. Second, 3GC has access to far more

information than any comparable commercial system. 3GC records every vehicle

arrival and departure from every street segment in the network. Third, although

third generation control systems have the ability to vary the cycle times by

intersection, in practice many of them consider the cycle time to be fixed while

operating in the field (e.g. SCOOT) (Homburger and Kell, 1988); we will allow the

cycle time to vary by intersection for 3GC.
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We compared the performance of PRISTINE versus 3GC using five

scenarios with multiple runs for each scenario. We used actual traffic data,

collected by the traffic sensors in the Backbay, to motivate the first four scenarios

(e.g. early morning, morning rush hour, mid-day traffic and evening rush hour).

The fifth scenario was the surge scenario which we examined under a variety of

conditions. Our conclusions from this area of research are included in the next

section.

SECTION 9.3 Conclusions

Based on our research, we have come to several overall conclusions. (We

will denote each of our major conclusions by the use of a bullet, "".)

* The first of these is that, although predictive routing information (as

used by PRISTINE)can offer large savings in the areas of delays and stops per

vehicle, it is not always helpful. Our simulation runs showed that PRISTINE,

using the predictive routing information available under IVHS, was able to

substantially decrease the average wait per vehicle in two cases.

First, PRISTINE performed better than 3GC in scenarios where there were

unanticipated, sudden increases in traffic flow. We call these circumstances

"surge situations". (We define a surge as a sudden increase in traffic flow such

that the average flow rate over the next traffic signal control period will exceed

the capacity of one or more street segments under the current traffic signal

settings but does not exceed the potential capacities of the street segments.)
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Second, PRISTINE did well in cases where there were dominant directions

of flow in the network. (We will discuss dominant directions of flow in more

detail below.) By a dominant direction of flow, we mean a clear majority of the

flow enters an intersection from a particular direction. A set of dominant flows was

present in the Boston morning rush hour scenario, and PRISTINE cut about one-

third off of the delay experienced under the third generation control system.

(The definition of delay we used in our simulation is the total time a vehicle is

traveling at less than 5 MPH in the network. This measure captures not only full

stops but also times when a vehicle is creeping along. These tend to be the times

of greatest driver frustration and the times of lowest fuel efficiency and greatest

emission of pollutants.) For the surge scenario, described above, PRISTINE

consistently outperformed the third generation control system.

Just as important as understanding when predictive routing information

will be valuable, it is important to know when such information will not be of

substantial benefit. Under conditions of heavy congestion when there are not

dominant directional flows in the network about the best one can do is increase

the green time in both directions and try to maximize the capacity of the network.

In effect, we can consider each individual intersection as an independent

optimization process where the goal is maximum capacity rather than attempting

to minimize average stops or wait. (Every time the light shifts from red to green

and green to red, there is some effective green time lost due to

accelerations/decelerations and the time needed to clear the vehicles in the

intersection when the light changes color. By lengthening the splits, you cut

down the fraction of the green time lost due to these factors.) There are several

traffic signal control methods which do well under congested conditions without
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dominant directions of flow. For example, MAXBAND and MULTIBAND

maximize the green bands on the arterials for the network and allow the greatest

throughput in times of heavy congestion.

In both the mid-day traffic and evening rush hour scenarios for the Boston

data, the third generation control system outperformed PRISTINE by saving

approximately 18% on the average delay per vehicle. In the mid-day traffic

scenario, there is a large amount of congestion on the streets, but there are no

particular dominant directions of flow. The lack of dominant directions of flow

make it advantageous to regard the individual traffic signals as isolated units. It

does no good to set the offsets to work for any particular route ,because there is

nearly as much cross traffic as there is through traffic along the major routes. At

the same time, the fact that there is significant congestion means that the traffic

patterns cannot shift significantly from one evaluation period to the next. Thus,

the assumptions intrinsic in the third generation control system are met.

Namely, the traffic patterns from the last evaluation period are good indicators

for the next traffic signal control period, and the traffic lights can be viewed as

isolated control elements.

There is another case where we would expect the benefits of integrating

predictive routing information to be marginal at best. This is the case when the

traffic flows are highly predictable. For example, every weekday morning in New

York City, the George Washington Bridge is totally congested in the Eastbound

direction from approximately 7:30 AM till 9 AM. It is very predictable, and

having additional predictive routing information could do little in the way of

alleviating congestion on this roadway during the morning rush hour.
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Even with the additional information available under IVHS, a new traffic

signal control strategy will do no better than existing methods if that new

strategy either cannot use the information or it uses that information incorrectly.

It is imperative that the groups working on strategies for ATMS and ATIS

communicate both the needs and the capabilities of their portions of IVHS. We

assumed in this thesis that the predictive routing information was available in a

form that was usable by PRISTINE. Without prior coordination, it is unlikely

that the group implementing a traffic control strategy would be fortunate enough

for this to be the case.

From our research we would conclude that, under highly predictable or

congested conditions with no dominant directions of flow in the network,

predictive routing information will not provide a significant advantage over

existing traffic control strategies. On the other hand, traffic signal control

methods integrating predictive routing information will reap substantial benefits

under circumstances where large surges occur or dominant directional flows

emerge.

* Our second conclusion is that if given the traffic data in a usable format,

it will not require extensive improvements in computation efficiency to

implement a traffic signal control strategy using predictive routing information

in real time. PRISTINE is not a commercial package, but we were able to obtain

signal settings for our sample network (i.e. a network with 28 nodes and 45 arcs)

using a DEC Station 5000/20 in less than 30 seconds. This involved solving the

non-linear program; when PRISTINE used the heuristic approach to set the

splits, the entire process took only a couple of seconds.
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The key to using the predictive routing information in traffic signal setting

in real time will be in developing an appropriate data base. The data base must

be accessible by the traffic signal control routines under ATMS, but additionally,

the data base must be timely and accurate. This means the data base must be

continually updated with information from both ATMS and ATIS. It will require

a concerted effort between academia, industry and the government to develop

such a system.

* Our third conclusion is that most reasonable measures of effectiveness

(e.g. average delay per vehicle, average transit time per vehicle, and average

queue length across the network) used to evaluate traffic signal control systems

tend to offer the same conclusions. For example, the measures of average transit

time per vehicle and average delay per vehicle are related. Certainly, one can

also forward the argument that the average delay per vehicle is closely related to

the average queue length in the network, another popular measure of traffic

signal efficiency. Average stops per vehicle is not a good measure of

effectiveness. Using average stops per vehicle as a primary measure of

effectiveness puts a high premium on keeping the majority of vehicles moving, but

it does not address the speed of that movement. Few motorists would trade

single stop of 30 seconds and an average speed of 25 MPH for no stops with an

average speed of 5 MPH if their paths through the network are more than a mile

long. Average queue length, average delay per vehicle and the average transit

time per vehicle would all indicate the strategy with the 25 MPH average speed

as the better choice.
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Our experience showed that, when a particular traffic strategy

demonstrated savings i:. the area of delay per vehicle, the same traffic strategy

generally produced the lowest transit times as well. The measures of

effectiveness tend to be correlated.

* Our fourth conclusion is that the presence or absence of dominant

direction flows play an important role in traffic signal control. In particular,

predictive routing information was of much more benefit when there were

dominant directions of flow within the network. The key to understanding the

issue of dominant directional flows is realizing that aiding one route in a traffic

scheme will generally harm another route. To be effective, the traffic signal

control strategy must aid the majority of the motorists by a sufficient amount to

more than compensate for the vehicles the strategy puts at a disadvantage. Under

congested conditions, traffic flows are very volatile (i.e. even small disturbances

in the traffic flow such as a stalled vehicle can cause large delays and stops for

vehicles). The reason for this is straightforward. Drivers are not able to react

instantaneously, and likewise, vehicles take time to decelerate and accelerate. If a

single vehicle flashes its brake lights, the vehicle causes a series of braking

actions throughout the traffic stream behind it.

In this thesis we explored only one aspect of new traffic signal control

possibilities available under IVHS, the use of predictive routing information, but

IVHS also offers the possibility for giving vehicle operators directions as well as
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setting the traffic signals. Since we know that having dominant directions of

flow greatly aid in reducing congestion, a IVHS strategy that directs vehicles

should strive to guide vehicles in a way that emphasizes dominant directions of

flow within the network. A system that imposed dominant directions of flow

combined with a traffic signal control system integrating predictive routing

information would provide substantial benefits to the motorist and society as a

whole.

SECTION 9.4 Contributions

We have made three primary contributions in this thesis. First, we

developed a platform which allows us to evaluate the benefits of predictive

routing information. Second, we have explored new strategies for setting traffic

signals which could be applied even without the additional information available

under IVHS, and third, we have examined a particular case, the surge situation,

where the use of predictive routing information offers its greatest benefits.

* We have developed a platform for evaluating the potential benefits of

integrating predictive routing information with traffic signal control by

comparing methods which use this information against methods which use

existing information. The platform consists of three parts: a traffic signal setting

system which uses predictive routing information (PRISTINE), an optimized

third generation control system (3GC), and a simulation package (LS3).

PRISTINE and 3GC have been discussed in detail earlier.
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The LS3 simulation package offers many features, but its most important

feature is that it allows a dynamic interface between the simulation and the

traffic signal control strategy. The dynamic interface allows the simulation to

fully integrate with both 3GC and PRISTINE. PRISTINE extracts the expected

average flow rates from the same data base that LS3 uses to generate the vehicles

entering the network. 3GC requires information on the vehicle arrival and

departure times by arc while the simulation is operating. PRISTINE and 3GC are

able to change the signal timing plan while 3GC remains in operation. Thus, we

can accurately model dynamic traffic signal control.

* We have developed two new methodologies for setting traffic signals

which could be implemented using existing traffic data. (Each of these was

discussed in more detail earlier in this chapter.) First, the concept of using a

spanning tree to define the arterial for the network could be applied without

predictive routing information and offers an intuitive approach for

synchronizing the traffic lights in an urban environment. Second, the Queue

Effects Model uses the average flow rate on a street segment and first two

moments of the size distribution for platoons approaching the intersection to

determine the expected wait per vehicle and expected stops per vehicle. The

maximal spanning tree heuristic uses average flow rate along the various street

segments to determine the spanning tree. The first two moments of the platoon

size and the average flow rate could all be gathered using induction loop sensors.
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The methods used in PRISTINE explicitly consider platooning. Unlike

other queuing systems used in traffic modeling, the Queue Effects Model

explicitly allows for bulk arrivals at intersections. In practice, vehicles tend to

travel in groups, platoons. Most queuing systems use the light traffic model

approximation or consider congestion where vehicles come as single arrivals.

These approaches ignore the congestion effects of the bulk arrivals. The

spanning tree approach to setting the offsets is designed to improve flow for

platoons along the major routes through the network. Most other methods for

setting offsets focus on maximizing the flow rate on several major thoroughfares

than coordinating traffic routing across the entire network.

* We have isolated and examined a condition under which predictive

routing information offers substantial benefits in setting the traffic signals. We

call this the surge condition. We define a surge as a sudden increase in traffic

flow such that the average flow rate over the next traffic signal control period will

exceed the capacity of one or more street segments under the current signal

settings but does not exceed the potential capacity of the street segments, i.e. if the

traffic signals were readjusted, the average traffic flow could be accommodated.

By traffic signal control period, we mean the length of time that a particular

signal timing plan will be in force. For example, in our simulation, we used a

ten minute interval. Since we reset our timing plan every ten minutes, "the next

period" would be the ten minute period when the next signal plan is in effect.

We refer to the average flow rate, because it is entirely possible even under light

traffic conditions for an intersection to have its capacity exceeded for one or more

cycles even though the average flow rate does not exceed the street's capacity.
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Predictive routing information is very useful for setting traffic signals

during a surge situation for two reasons. The primary reason for the difference

in performance is that current methods cannot react to changes in traffic flow

until these changes occur. Existing traffic signal control methods assume that the

last observation period accurately represents the upcoming, and in the surge

situation this assumption is grossly violated. Second, most existing traffic signal

control methods use a one street segment look ahead, it necessarily only can

accommodate changes one street at a time. (Even systems that attempt to

correlate usage's on street segments are inaccurate if the data changes suddenly.)

If changes occur slowly enough, the traffic is able to pass through the streets

relatively unimpeded using the old settings, but in the surge example, the new

traffic patterns are clogged up in the early street segments because the surge

exceeds the streets' capacities given the current signal timing plan. Thus, the

streets actually act as storage for vehicles and the congestion moves sluggishly

forward through the network.

A traffic signal control strategy using predictive routing information

knows where the surge traffic wants to go and sets the signal timing plan to

support this from the start. The traffic flow is accommodated throughout its

routing, and the congestion levels never reach the extremes one sees if forced to

rely on existing traffic data.
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Significance of Research to the IVHS Community

This thesis represents the culmination of over three years of research into

the integration of predictive routing information with dynamic traffic signal

control. The IVHS community should be both heartened and sobered by the

results of that research.

There is a large potential for alleviating congestion, decreasing the

emission of pollutants and increasing the economic viability of our roadways

using predictive routing information under IVHS. At the same time,

considerable time, effort and capital must be expended between now and the

realization of that vision, and it will require an unprecedented level of

cooperation between the government, academia and industry.

We were able to show under certain circumstances that an algorithm

using the predictive routing information available under IVHS was able to save
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substantial amounts in delay time over a third generation control strategy using

traffic flow information which could be gathered using existing technology. The

scenario where this savings was realized was a surge situation where there was

an abrupt increase in the traffic flow such as one might see when a sporting event

is finished or in the event of an evacuation. The traffic control model using the

predictive routing information, PRISTINE, was able to react to the increase in

traffic flow as soon as the information becomes available to ATMS. (If trip planning

comes to fruition under IVHS, ATMS could be aware of a vehicle's projected

routing before the vehicle leaves the garage.)

By increasing cycle times and the green splits allotted to the surge traffic,

PRISTINE allowed the traffic to proceed smoothly through the network; the third

generation control model was only able to react to the increase in traffic flow after

it had already occurred, and by this time, the traffic had already reached heavy

conditions. PRISTINE also performed well under conditions where there were

clearly defined directions of flow through the network such as the morning rush

hour. These were the positive findings in the thesis.

There were times when having the additional information available under

IVHS did not help PRISTINE. When conditions were both congested and

without clearly defined directions of flow, the third generation control system

outperformed PRISTINE. Under these conditions, the best one can do in terms of

stops, delay and transit time is to maximize the capacity of the traffic network

and trying to push as much traffic out of the congested area as possible.

Predictive routing information was not of substantial benefit in these cases.
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It is important to note that PRISTINE did not take advantage of all the

information or flexibility that IVHS potentially offers the traffic management

community. In this thesis we took a fairly traditional view of traffic signal

control. We set the traffic signals in terms of splits, offsets and cycle time. IVHS

offers the traffic manager the opportunity to reach beyond the status quo and

derive entirely new methods of looking at coordinating traffic and decreasing

congestion.

For example, IVHS offers the capability to direct traffic as well as react to

the drivers' wishes. If an algorithm were developed that interacted with ATIS

and ATMS in such a way as to be able to redirect traffic away from congestion

then further savings in delay and stops could be realized.

The thesis did not use all of the information that would be available under

the most ambitious plans for IVHS. If a traffic control system tracked each

vehicle as it progressed through the network and knew the vehicle's position,

speed and route, the potential savings would even be greater. Researchers are

currently looking at the use of IHVS information to dynamically determine

origin-destination pairs; this could be of potential benefit in the area of vehicle

routing. Additionally, research has been done in the area of ramp metering,

variable speed control, etc. for major thoroughfares using IVHS technology. If

this research were integrated with research into traffic signal control of urban

grids, the benefits could out weigh the benefits of considering these approaches
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individually. All these concepts will require considerable effort to bring to

fruition.

The traffic signal control strategies must be able to use the data supplied

by ATMS and ATIS, and traffic managers developing algorithms for use under

ATMS must coordinate closely with the agencies responsible for ATIS and AVCS

to see what information can realistically be supplied and in what form that data

can be provided. The thesis assumed that the predictive routing information

would be supplied in a format that was usable by PRISTINE. Currently, this

information does not exist at all. For a traffic control system to work in real time,

the information hidden within the real world traffic data must be extracted

before it is fed to the traffic control systems. Now is the time to think about what

data a traffic signal control program could use and in what form. Conversely,

the IVHS community should be realistic about the type of data it requires. Some

data is more costly than others in terms of technology and infrastructure. The

IVHS community should coordinate early on and aggressively determine a

course which will take it to the economic break even point.

The anticipated gains from IVHS are large, but there is a long way to go

from where we are now before these gains become realities. The thesis

demonstrated that the payoff for even a small part of IVHS, such as the

availability of predictive routing information, could be substantial under certain

circumstances. A broader application of the other features of IVHS would lead to

further benefits, we suspect.

The gains promised under IVHS will only be realized if the IVHS

276



community is able to coordinate and manage the data and computational

necessities required by ATMS.

Section 9.6 Opportunities for Further Research

No study of an interesting topic area is ever complete, and this is

certainly true of the study of integrating predictive routing information with

dynamic traffic signal control. The potential applications of IVHS in the area of

traffic signal timing are nearly limitless. One potential area of research would be

to consider an iterative approach that both integrated predictive routing

information, perhaps using PRISTINE as a base, and allowed for changing

drivers' routings via the on-board guidance and information systems available

under IVHS. This would allow the system to guide the vehicles into dominant

directions of flow and greatly reduce congestion effects.

Another topic to consider would be the use of a limited combinatorial

approach for setting the traffic signal control, such as we used in our optimized

third generation control system, but allow the integration of predictive routing

information. The system should do well under light traffic conditions as well as

compensate for surges. The third generation control system would have to be

modified to take into account flows rather than individual vehicles.

It would be interesting to see a field test of PRISTINE in a metropolitan

area. PRISTINE would have to be expanded to consider: multiple lanes, left turn

lanes, etc.
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In its final form IVHS would allow two way communication between the

traffic control center and individual vehicles. A traffic signal control strategy

that used not only every vehicle's routing but also its position and speed in real

time would be able overcome some of the obstacles that PRISTINE experienced

in congested, disorganized traffic. This would be a fruitful area of research as

well.

Expanding the LS3 traffic simulation to include any subset of the

following: multiple lanes, multiple types of drivers, multiple types of vehicles,

left turn lanes/logic, etc. would be useful. This would allow the user to more

accurately model traffic flows and behaviors.

We know that predictive routing is useful under conditions where there

are unexpected surges in traffic flow. It would be interesting to examine

situations where one or more traffic links are lost (e.g. a building fire, etc.) and

see how useful predictive routing information is under these circumstances.

We hope that investigators will find these ideas useful for structuring

further research.
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Appendix A

Mathematical Description of the Optimized Third
Generation Control System (3GC)

Copies of the 3GC traffic generation control system are available from the

author on request.

SECTION A.1 Assumptions, Definitions and Inputs

In this appendix we will use the notation and assumptions developed in

chapter three unless explicitly stated otherwise. Interested readers are encouraged

to review sections 3.1, 3.2 and 3.3 before continuing.

SECTION A.1.1 Assumptions

Under 3GC we will relax the following two assumptions. We will let the

cycle time vary by intersection; there is no overall cycle time for the network

under 3GC. This counters assumption 3.2(1). We do not assume that 3GC knows

the desired usage rates of the arcs in the network. This counters assumption

3.2(6).

We will make the following additional assumptions.
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(1) The traffic encountered at each intersection during the last traffic

signal control period accurately represents the traffic which will be encountered

during the upcoming traffic signal control period. This is also referred to as the

steady state assumption. During the simulation runs in chapter seven, the traffic

signal control period was set uniformly to ten minutes, but the period could be

allowed to vary. The assumptions in the thesis are not dependent on a fixed

traffic signal control period.

(2) Time is discrete. Traffic events such as turning movements,

acceleration and deceleration, etc. take place at discrete moments in time. For the

simulation, we divided all time periods into discrete increments of 1.007 seconds.

This increment could be set to a different value.

(3) We are able to record the arrivals at, departures from and turning

movements of each vehicle in the network on each arc it traverses throughout

G(N,A). This is substantially more information than existing third generation

control systems have access to.

(4) The waits and stops occurring at each intersection are convex

functions with respect to the splits and offsets for these intersections.

SECTION A.1.2 Definitions

All definitions from chapter three remain in effect. In addition, we make

the following supplemental definitions.

t - The time as measured from the beginning of the last implemented TSC
plan; in the simulation in chapter seven t varied from 0 to 599.
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sj The set of green splits for incoming arcs to node "j"

Green(O, (i->j), t, sj) = {O if the traffic flowing along (i->j) would find the light
green at time "t" given and sj, 1 otherwise}.

Grid( (i->j)) = {1 if 3 (i- > j) E A, O else...}

Next(@, (i->j), t, sj) = {O if Green(3, (i->j), t, sj) equals 0, the time from "t"
until the next green light for traffic traveling along arc (i->j) into node
"j" otherwise).

Arrival( (i->j), (j->k), t) = {1 if a vehicle passed through node "i" onto arc
(i->j) at time "t" during the last TSC period, 0 else...)

Oj - The set of offsets for node "j". Note that setting the offset for any
arbitrary direction at a node automatically sets the remaining offsets,
because directions sharing the same green split at node "j" have the
same offset. Call the direction for which the offset is selected (i->j). If
arc (k->j) does share a green split with arc (i->j) then it has an offset
equal to EOij+sij. In 3GC, we selected the first offset occurring
lexigraphically in G(N,A) to set.
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SECTION A.1.3 Inputs

We used the following inputs to 3GC:

(1) All arrivals at, departures from and turning movements of each

vehicle in the network on each arc it traverses throughout G(N,A) [from traffic

data].

(2) The maximum cycle time for the network, Cyclemax [from the traffic

manager].

(3) The minimum acceptable green split, Splitmin [from the traffic

manager].

(4) The weightings given to stops, 3, and to waits, y, in the objective

function [from the traffic manager].
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SECTION A.2 Mathematical Statement of 3GC

The 3GC method uses the following logical flow to obtain a traffic signal

control plan.

I nitialize
Variables

Complete this Procedure for Each Node

Yes

Any
!provernnt

No

4

Imrplement the
most recent
TSC plan

Flow chart for the 3GC method

Figure A.1
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Find best offset
while holding
splits constant

Each Iteration takes into consideration the nodes
one intersection upstream from the
current node

4

Mny
improvement? Yes

No

1
Done

with Node this
iteration

i

i

i
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To more fully appreciate the method, we will examine how 3GC would set

the offset and split for a single node on one pass through the system. Assume we

have the intersection shown in the diagram below.

4

le

'a

iI

dj Oi2

Node and incoming arcs used to illustrate 3GC method

Figure A.2

The objective function for 3GC is a weighted sum of delay and stops

aggregated over the entire network for a given Traffic Signal Control (TSC) plan.

The stops for the intersection shown above would be calculated as follows:

599 4 4

Stopsj ^ Z I Arrival( (ik - > j),(j- > ip), t-tikj)*{Green(E,(ik - > j),t, sj)+
t=Ok=l p=l,pwk

Green(E,(j- > ip ), tiji + Next(O,(ik- > j),t,sj ), sj)}

Using a similar approach we can calculate the wait:

599 4 4
Waitj - Y_ Y. Arrival( (ik- > j),(j-> i),t - tij) * {Next(E,(ik- > j),t,sj) +

t=0 k=l p=l,pwk

Next(E, (j- > ip), t + tji, + Next(O,(ik - > j),t, sj),sj ))
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We see that the waits and stops are a function of the arrivals, splits and

offsets. The arrivals remain fixed throughout the signal setting process. Thus, our

problem can be rewritten as:

jsj = g m iP*Stopsj +y*Waitj}. [A.1]

Initially, we set our current objective function to a very large number. We select

the optimal splits and offsets using a combinatorial approach. We allow the sum

of the non-overlapping green splits, i.e. the cycle, for the intersection to vary

from 2*Splitmin to the Cyclemax. The offset is allowed to vary from 0 to

Cyclemax. We allow the problem to reach the stated optimal condition which is

frequently quite time consuming. (In practice, most third generation control

systems only complete three to five passes before selecting a traffic signal timing

plan.) The process described above is completed for each node. The set of

generated splits and offsets is the new traffic signal control plan for the network.

An example of the 3GC method is included in section 7.3.2 above.
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SECTION A.3 Summary of Significant Differences between 3GC
and existing Third Generation Control Systems

Every third generation control system is unique. All of them have their

own methods for setting the traffic signals varying from fixed equations to

heuristic and dynamic programming techniques. Likewise, these third

generation control packages all have their own measures of effectiveness.

3GC is unique in two primary ways. First, in real world applications,

decisions about the traffic signal control settings must be made within a

reasonable time frame, and 3GC is not constrained in such a way. We allow 3GC

to continue processing until it finds its optimal solution. In real world

applications, traffic signal control systems are generally allowed to complete only

three to five passes. Second, 3GC has access to far more information than any

real world system. We assume that 3GC knows all arrivals at, departures from

and turning movements of each vehicle in the network on each arc it traverses

throughout G(N,A). Existing third generation control systems have to get by

with much less data. It would require a minimum of four induction loop sensors

per street segment for 3GC to gather the type of data it uses to make its

calculations. Most real world systems are lucky to have access to one operational

sensor per street segment.
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Appendix B

Brief Technical Overview of the
Lin-Sarkar-Staats (LS3) Traffic Simulator

Copies of the LS3 traffic simulator are available from the author upon

request.

SECTION B.1 Features

The LS3 simulator has the following features.

(1) It allows vehicles to enter and depart from any set of nodes in the

network. Additionally, these nodes are not required to be traffic signal control

nodes. Consequently, vehicles can be made to enter or leave the simulation in

mid-arc.

(2) The simulator allows roadway segments of lengths varying from 16

feet to over 120 miles. The speed limits on these segments can vary from 5 MPH

to 65 MPH in increments of 5 MPH.

(3) The LS3 simulator is designed to exploit platooning behavior in traffic

and moves platoons as units.
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(4) Individual vehicles retain their identity and routings throughout the

network even when part of a platoon.

(5) Vehicles accelerate and decelerate according to realistic parameters

(see technical aspects below).

(6) Vehicles enter the networks in platoons. The distribution of platoon

size can be varied by entry node.

(7) The simulator monitors stops, delay and transit time per vehicle and

supplies these measures of effectiveness as part of its standard output package.

Stops represent a count of the times a vehicle's speed reached 0 MPH. Delay

represents the total amount of time in the simulation when a vehicle's speed was

strictly less than 5 MPH. Transit time represents the amount of time it takes a

vehicle to go from its point of origin to its destination in the network.

(8) It is capable of varying its traffic signal control plan in mid-simulation

run without loss of data, i.e. vehicles continue on within the simulation from

their current locations while responding to the new traffic signal control plan.

(9) The LS3 simulator is capable of accepting new origin-destination pairs

and vehicle generation rates during simulation runs.
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(10) The simulator models congestion effects such as stop and go traffic,

multiple stops per street segment due to crowding and acceleration/deceleration

requirements. The LS3 simulator recognizes phenomenon such as link blockages

due to spillback.

(11) The simulator is written in ANSI FORTRAN 77 with the exception of

the random variable calls. With minor modifications, the LS3 simulator could be

exported to any platform supporting this language.

SECTION B.2 Technical Aspects

The LS3 program consists of over 400 kilobytes of code. No attempt is

made in this section to exhaustively describe the operation of the LS3 simulator.

The purpose of this section is to give a brief overview of some of the simulation's

primary operating characteristics and parameters. This section is divided into

four sub-sections.
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SECTION B.2.1 System Characteristics

This section contains information on technical aspects of the simulation

which are germane to all succeeding sections. The simulation operates on a

discrete time system. The simulation clock is updated in 1.007 second

increments. This is long enough for vehicles to make unobstructed turning

movements, decelerate from 5 MPH to a stop or accelerate from a stop to 5 MPH.

A vehicle moving at 5 MPH for 1.007 seconds will cover a distance of

approximately 7.4 feet which is almost exactly half of a standard car length.

The roadways are discretized into slots of 7.4 feet in length. An

automobile fills two such slots. The vehicle maintains its exact position and

speed (see data structures below), but in the representation of the roadway, the

vehicle is placed in the slot which most closely matches its current position. For

example, a vehicle which was 742 feet into a street segment would be placed in

slot 10 for that segment. (Conflicts are resolved working from the head to the tail

of the street segment.)

Roadways or street segments are represented as one-way arcs. Two-way

streets are represented by two distinct arcs, facing opposite directions. The

simulator currently only handles single lane traffic.
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Vehicles are always in one of four states in the simulation: (1)

accelerating/cruising, (2) decelerating/braking, (3) stopped or (4) following.

Vehicles in the simulation accelerate at a constant rate of 4 feet/sec2, and they

decelerate at a rate of 10 feet/sec 2. Vehicles will not accelerate past the speed

limit for a street segment.

The vehicles follow uniformly cautious driving policies throughout the

simulation. Vehicles already on a street segment have priority in cases of

conflict. Specifically, vehicles making driving maneuvers such as crossing an

intersection, making a left turn, etc. would wait for the existing or conflicting

traffic to clear before completing this maneuver. As noted in section 7.1 under

heavily congested traffic conditions, these policies can lead to significant delays

for individual vehicles.

When vehicles enter the network, they are randomly assigned a routing.

Vehicles will not deviate from this routing. Vehicles enter the network in

platoons. (A platoon can consist of a single vehicle.) For the LS3 simulator, a

platoon is any group of vehicles that effectively moves as a unit. A simple test

for determining whether a subject vehicle is part of a platoon is if the lead vehicle

in the platoon brakes and the subject vehicle would brake as well then the subject

vehicle is part of the platoon. (Remember, all vehicles in the simulation follow the

same driving policies; so, all vehicles brake under the same conditions.) Platoons

disperse when they are broken up by changes in traffic signals or as vehicles turn

off the primary direction of travel to follow their own routings. Platoons are

generated with exponentially distributed headways between the platoons. In the
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simulator's current configuration platoon sizes are distributed according to a

geometric distribution which varies with the vehicle generation rate at each

node.

SECTION B.2.2 Assumptions

The simulation is based on the following assumptions.

(1) All vehicles are identical in size and performance.

(2) All drivers exhibit the same performance.

(3) Time is discretized, and all driving maneuvers take place at fixed

instances in time.

(4) All traffic signals have two colors, red and green.

(5) Vehicles enter the system in platoons of varying sizes with

exponentially distributed headways.
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(6) All street segments are single lane.

SECTION B.2.3 Data Structures

The LS3 simulator has literally hundreds of thousands of individual

strings, variables, files and array elements associated with it. Some of the

representative data structures are discussed in this section. (Also see section 7.1.3

for a description of the data structures.)

Structure AUTO holds information that would be known by a vehicle

traversing the network. One major element of AUTO is the data structure CAR.

CAR contains the following information:

CAR(i,j): * Refers to vehicle "i"

* Refers to the following aspect of the vehicle depending on the

value of "j"

--j=l: Start node of current street segment which the car is on

--j=2: End node of current street segment which the car is on

--j=3: Absolute position of the vehicle on the arc

--j=4: Current speed of the vehicle(the arc specifies the direction)

--j=5: Status(i.e. accelerating, decelerating, stopped, following)

--j=6: Vehicle this car is following (if any)
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--j=7: Vehicle which is following this car (if any)

The last two portions of CAR help move the platoons. There are additional data

structures in AUTO which hold routing information.

Structure PRI has information on the expected usage rates for the routes

through the network. PRI has both the frequency of vehicle generation by node

as well as the distribution of route choices by node.

Structure NET contains information about the physical characteristics of

the network. GRAPH is a listing of all connections in the network. SPEED and

DISTANCE hold information on the maximum speeds and arc length by street

segment respectively. ORDER contains information about intersection by

outgoing and incoming arcs; this allows LS3 to determine whether a vehicle is

continuing straight through an intersection or making a left or right hand turn.

Structure ROAD holds information as seen from the perspective of the

roadway. For example, ROAD has a listing of which vehicle (if any) each slot on

a street segment is currently holding. When a vehicle is making a left hand turn

or moving onto a new street segment, the vehicle checks its safety clearances by

examining the appropriate slots in ROAD and then verifying the on-coming

vehicles' speeds and distances to impact.
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SECTION B.2.4 Input Requirements

The LS3 simulator requires several inputs to operate. They are as follows.

(1) The simulator requires the network structure. This is contained in the

file NET which is read in once during the initialization phase of the simulation.

(2) LS3 needs to know the duration of the simulation and the seed for the

random number generator. These quantities are entered by the simulation

operator during the initialization phase.

(3) The simulator requires the node generation rates, routings and route

selection rates by node. This information is read from a sequential book of files

called PATH and RATE. These parameters can vary throughout the simulation.

(4) The LS3 simulator requires the traffic signal control plan to operate.

The plan is provided by called subroutines. The subroutines are called

approximately every ten minutes, simulation time (i.e. 600 iterations), under the

current configuration for LS3.
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Appendix C

Sample Predictive Routing Information

The thesis used hundreds of sets of predictive routing information in the

simulation. For example, the mixed traffic scenario alone had 70 sets each with

multiple routes. In this section, we will give an example of how the predictive

routing information was generated for one of the sets in the morning rush hour

scenario. This will accomplish two purposes. One, it will give the reader an

appreciation of the method we used to translate the sensor data from the city of

Boston into predictive routing information. Second, it will give the reader a

better feel for the form of the predictive routing information used by the thesis.

We used the routings shown in figure C.1 for the morning rush hour

scenario. We obtained a printout that had the average vehicle flow rates broken

out in fifteen minute intervals. Since we used ten minute intervals, we had to

interpolate the time segments that did not fall evenly on the half hour breaks.

For simplicity, we will use the 8 AM data. Before progressing any further, it is

important to note that the routing data we generated is not uniquely determined

by the sensor data.
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The routings used in the morning rush hour scenario are displayed in the figure above. The
numbers in parenthesis represent the numbers assigned to the nodes. The stars represent

sensor locations

Figure C.1

The sensor data is displayed below in table C.1.

Sensor Vehicle Flow Rate (Vehicles/Minute)

248 3
249 6.4
253 7.1
254 1.0
256 5.6

The traffic flow data from Boston Traffic Center for April 5, 1994 at 8 AM.

Table C.1
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Now, let the flow rate on route "i" be represented by r(i) and the data

from sensor "j" be represented by s(j). The sensor data generates the following

equations:

s(248)=r(2)+r(3)+r(6)+r(8)
s(249)=r(4)+r(1O)
s(253)=r(l)+r(10)+r(ll)+r(12)+r(13)
s(254)=r(2)+r(3)
s(256)=r(17).

We used symmetry (in this case) to obtain the following relationships:

r(5)=r(9)=r(6)
r(7)=r(19)=r(11)
r(14)=r(13)=r(12)
r(13)=r(20)
r(16)=r(2)+r(6)+r(8)+r(19).

This allowed us to generate the following predictive routing information:

Route Aggregate Average Flow Rate (Veh/Min)
1 1

2 .5
3 .5

4 3.2
5 1

6 1

7 1

8 1
9 1

10 3.2
11 1

12 1

13 1

14 1
15 1

16 3.5
17 5.6
18 1
19 1

20 1

The figures above represent the average vehicle generation rate in vehicles per minute by
route. To be usable by the simulation, this data must be aggregated by node.

Table C.2
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This information is then combined to form the generation data for the nodes.

Node Average Platoon Arrival Rate Platoon Size Parameter
(Platoons/Iteration)

1 .017 .998
5 .028 .523
7 .035 .263

15 .031 .380
25 .017 .998
28 .036 .252

The average platoon arrival rate is the parameter for a negative exponential random variable
which generates the inter arrival times for the platoons. The platoon size parameter is the

single parameter for a geometric probability mass function which generates the platoon size.

Table C.3

The simulation generated the platoons with exponentially distributed

headways. The average platoon arrival rate represents the single parameter for

the negative exponential distribution sampled to determine platoon inter arrival

times; note, this parameter varies by node. The platoon size parameter is the

single parameter for the geometric distribution used to generate the platoon size.

The parameters in table C.3 are used to determine the platoon size when a

platoon enters the simulation, but the actual platoon sizes on the roadway during

the simulation can be quite different. For example, during our initial testing of

the LS3 using the Backbay, we did a simulation run for the mixed traffic model

where we sampled each arc every one hundred iterations. We discovered the

platoon length in the street segments in the simulation varied from a single

vehicle to platoons of up to 22 vehicles.
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In the simulation, a maximum of one vehicle can enter the network from

each node during each iteration period, 1.007 seconds. The additional vehicles

are held out of the network and released on each subsequent iteration when the

roadway has cleared sufficiently to allow them to enter, i.e. if spillbacks have

caused an entire road segment to become filled then new vehicles could be

generated, but they would not be able to enter the street segment until there was

room to accept them.

As a vehicle is generated it is randomly assigned to a route originating at

its generating node. The probability of being assigned to a specific route is equal

to the average fraction of total flow out of the node that route makes up. For

example, if a platoon is generated at node 25, every vehicle in that platoon has

100% chance of being assigned to route 9. On the other hand, a vehicle generated

at node 7 has only a 12.1% chance of being assigned to route 12.
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G L O S S A R Y

a Number of columns in a rectangular idealized urban grid

A Arc set for G(N,A)

Afteri Average number of customer type "i" a random vehicle arriving after it enters
the system which must be served before it can cross the intersection

A Arc list for arteries

APTS Advanced Public Transportation Systems

Arterialmin Minimum green split for a priority direction

ATIS Advance Traveler Information System

ATMS Advanced Traffic Management System

AVCS Advanced Vehicle Control System

b Number of rows in a rectangular idealized grid

b(h) Probability of having "h" vehicles in a platoon

b(l) PMF for bulk arrival sizes in the uncoordinated direction

Beforei Average number of customer type "i" a random vehicle sees when it enters the
system which must be served before it can cross the intersection

C Cycle length (time) for G(N,A)

C. "Branch Count Index" for S

CVO Commercial Vehicle Operations

Cyclemax Maximum allowable cycle length for the network

Si (1) Indicator variable which equals 1 if sample path "i" was stopped at node '1" due
to traffic signal control

A i Number of delays from traffic signals for sample path "i"

D Matrix of distances between nodes in G(N,A)

D(j,h) Boolean function equal to one if node j is the destination for route h
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fT (S) S-transform for PDF of waiting time

FHWA Federal Highway Administration

G A Amount of green time in the coordinated direction

GB Amount of green time in the uncoordinated direction

G(N,A) Network representation of Urban Grid, consisting of several sub-sets.

H Minimum platoon size to be accommodated for an arc belonging to S in terms of
green light time

I Root node for S

(i - j) One-way arc going from node "i" to node "j"

Ii The index function which gives the weighting for the particular route flow rate in
the PF Heuristic

IVHS Intelligent Vehicle Highway System

1 Actual arrival rate in the uncoordinated direction, taking into account bulk
arrival sizes

Desired average usage rate for (i -- j) for a fixed time-frame

A

4, i Estimate for 'il

A Vector of desired usage rates for each route in R

L Minimum platoon size (in vehicles) which the traffic signal control plan should
accommodate crossing for in the coordinated direction

m Number of arcs in G(N,A)

MCC Master Clock Concept

V Time average number of vehicles a randomly arriving vehicle sees in front
of it in its own group

n Number of nodes in G(N,A)

nb (t 1 , t2 ) Number of arrivals between times t and t2 in the base case (so surge)

ni Number of nodes in sample path "i"
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n,(tl,t 2)

n, (tl,t 2)

N

Ns

NS

Networkmin

NLP

O(j,h)

p(x0 )

pT (z)

PH

PRI

PRISTINE

qj (t)

QEM

P1

P2

Pj

Number of routes in R with non-zero desired usage

Number of vehicles whose transit time is recorded by the simulation between
times t and t2 for the surge case

Estimated number of vehicles whose transit time is recorded by the simulation
plus the vehicles in parking lots between times t and t2 for the surge case

Node set for G(N,A)

Number of sample paths evaluated

Time average number of vehicles in system

Minimum green split across the network

Non-Linear Program

Index of elements of A in descending sequence

Boolean function equal to one if node j is the origin for route h

Probability distribution for number of stops due to TSC in the network

Z-Transform of PMF for number of stops due to TSC in the network

Pure Heuristic

Predictive Routing Information

Predictive Routing Information Signal Timing INtEgration model

Alignment function which indicates if arcs share common green cycle

Instantaneous flow rate (vehicles/time) along (i -e j)

Queue Effects Model

Time average fraction of time the server is occupied during

Time average fraction of time the light is red in the uncoordinated direction

Maximum flow rate along (i j)
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R
is the set of real

ROGUS

S

G(NA)

Set of all possible routes through G(N,A) [Note: not to be confused with 91 which
numbers]

ROute GUidance Simulation

Spanning tree for G(N,A)

Average stops per vehicle in G(N,A)

So (j) Fraction of sample paths passing though node "j" which had to stop due to signal
control

e Vector of off-sets for G(N,A); must be used in conjunction with an orientation at
each intersection (derived from S and i*) to fully specify the signal timing.

T b (t 1 , t2 ) Average transit time for departures between times t and t2 for the base (no
surge) case

A

t..
v Travel time along (i -> j)

T(j)
Tb(tl,t2)

Time vehicle "i" arrived at jth node in its sample path

Total transit time for departures between times t and t2 for the base (no
surge) case

T (t 1 , t2 ) Total estimated transit time for all vehicles between times tl and t2 for the
surge case

TRAF-NETSIM Traffic Network Simulation

TSC Traffic Signal Control

UTSM Urban Traffic Simulation Model

V Matrix of nominal velocities between nodes in G(N,A)

w Amount of time waiting due to traffic signal control in the network; note, this
does not include congestion time, etc.

W 0 Average amount of time a randomly arriving customer will have to wait
for the customer in service

W S Average amount of time a randomly arriving customer must wait before passing
through an intersection
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X Number of stops in the network due to traffic signal control

X1 Average amount of time it takes a vehicle to cross the intersection

Xi Sample path for vehicle "i"
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